
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering - Artificial

Intelligence and Data Analytics

Master’s Degree Thesis

Designing new Maximum Common
Subgraph solvers: Heuristics,

Multi-Threading and Graph Neural
Networks

Supervisor

Prof. Stefano QUER

Candidate

Marco PORRO

July 2023

Abstract

The Maximum Common Subgraph (MCS) is a complex theoretical computer science
problem, generalization of the Subgraph Isomorphism problem, finding applications
in diverse domains such as chemistry, biology, medicine, and network management.
This research focuses on improving the performance of the McSplit algorithm, a
popular recursive Branch-and-Bound MCS solver. The objective of this project
is to develop a tool that efficiently identifies the largest subgraph within a given
time limit, addressing real-world scenarios where finding the optimal solution is
not always the primary goal.

To achieve this, a diverse range of strategies have been explored to identify the
most effective approaches for future advancements. Three distinct implementations
have been developed as part of this effort. Firstly, novel sorting heuristics have been
devised for the McSplit algorithm, aiming to establish a best-first vertex selection
policy during the tree search. These heuristics have been combined with a newly
designed multi-thread parallel architecture, optimizing the allocation of processor
time to promising branches of the recursive algorithm. Additionally, Graph Neural
Networks (GNNs) have been employed to identify and prioritize the most favorable
branches at each intersection of the tree search.

To assess the performance of these tools, extensive testing has been conducted
using open-source datasets pertaining to Internet infrastructure networks and
other relevant real-world applications. The evaluation of performance metrics
demonstrates significant improvements over existing state-of-the-art MCS solvers
in the targeted use cases. In conclusion, this research project has successfully
enhanced the capabilities of the McSplit algorithm, providing notable advancements
in solving the Maximum Common Subgraph problem for practical applications.
These achievements have been recognized through the acceptance of our paper titled
A web scraping algorithm to enhance maximum common subgraph computation at
ICSOFT 2023. Furthermore, the analysis of the proposed methodologies, including
sorting heuristics, parallel architecture, and Graph Neural Networks, offer valuable
insights for future research to determine the most promising strategies among the
explored approaches.

ii

Acknowledgements

This milestone marks the end of an incredibly rewarding double-degree program
between Politecnico di Torino and the University of Illinois at Chicago (UIC).

I am deeply thankful to my advisor, Prof. Stefano Quer, and the doctoral
candidates, Andrea Calabrese and Lorenzo Cardone, for their invaluable assistance
and availability. A heartfelt appreciation goes to my UIC advisor, Prof. Abolfazl
Asudeh, for his guidance and support.

I am indebted to my fellow student colleagues, starting with my thesis partner,
Salvatore Licata, for their collaboration and support. I am also grateful to the
Chicago group and to my long-standing university friends for their affection and
companionship throughout this academic adventure.

Above all, I want to extend my heartfelt thanks to my family, who have always
been there for me and supported me in countless ways. Their unwavering belief in
me has made this incredible journey possible, and who knows how many more to
come.

MP

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiii

1 Introduction 1
1.1 Objectives . 1
1.2 Thesis Structure . 2

2 Background 4
2.1 Graphs . 4

2.1.1 Definitions . 4
2.1.2 Graph isomorphism . 6
2.1.3 Subgraph isomorphism . 7

2.2 Maximum Common Subgraph (MCS) problem 7
2.3 McSplit algorithm . 9

2.3.1 Existing MCS solvers . 9
2.3.2 McSplit . 9
2.3.3 McSplitSO and McSplitSD 13

2.4 Reinforcement Learning (RL) . 14
2.4.1 Theoretical overview . 14
2.4.2 An example of Q-learning 15
2.4.3 McSplitRL . 16
2.4.4 McSplitLL . 17

2.5 Machine Learning meets graphs: GNNs 19
2.5.1 Multi-Layer Perceptrons (MLPs) 19
2.5.2 Graph Neural Networks (GNNs) 22

Graph Convolutional Networks (GCNs) 22
Graph Attention Networks (GATs) 23

v

3 Algorithmic Optimizations and Heuristics 24
3.1 McSplitDAL . 25

3.1.1 Overview . 25
Domain Action Learning . 25
Hybrid learning policy . 25

3.1.2 Our implementations . 27
Joint vs Isolated Q-tables 27
Initialization of Q-tables . 27
McSplitRL+DAL vs McSplitLL+DAL 28

3.2 Static Heuristics . 29
3.2.1 PageRank (PR) . 31
3.2.2 Betweenness Centrality (BC) 33
3.2.3 Closeness Centrality (CC) 35
3.2.4 Katz Centrality* (KC*) . 35
3.2.5 Local Clustering Coefficient (LCC) 38
3.2.6 Summary . 40

4 Parallel Architectures and Multi-Threading 41
4.1 McSplit Multi Branch (McSplitMB) 42
4.2 McSplit Branch Sharing (McSplitBS) 43

4.2.1 Building an iterative version of McSplit 44
4.2.2 Branch Sharing . 45

Block size . 48
Delayed Sharing . 50

4.3 Conclusion . 51

5 Graph Neural Networks (GNN) 53
5.1 GLSearch . 54

5.1.1 The architecture . 54
5.1.2 Training . 55
5.1.3 Our experience . 57

5.2 McSplitGNN . 57
5.2.1 The architecture . 58
5.2.2 Training . 59

5.3 McSplit DiffGNN . 60
5.3.1 Model Architecture . 60
5.3.2 Training . 61
5.3.3 Training on synthetic data 62

vi

6 Experimental Analysis 64
6.1 The experimental setup . 64

6.1.1 Testing methodology . 64
6.1.2 Datasets . 66
6.1.3 Result post-processing . 68

Gain plots . 69
Mean Normalized Difference (MND) 69

6.2 Experimental Analysis of the Static Heuristics 71
6.2.1 McSplitDAL implementations 71

McSplitSD . 71
Joint vs Isolated Q-tables 72
Initialization of Q-tables . 73
McSplitRL+DAL vs McSplitLL+DAL 74
Comparison of all McSplitX variants 74

6.2.2 A first toe in the water with PageRank 75
6.2.3 Comparison of the static heuristics 77

6.3 Multi-Threading architectures . 81
6.3.1 McSplit MultiBranch (MB) 81

Thread count . 81
Static Heuristics . 83

6.3.2 McSplit Branch Sharing (BS) 84
Block Size . 84
Thread Count . 86
Static Heuristics . 87
Delayed Sharing . 88
Is Reinforcement Learning effective in McSplitBS? 89

6.3.3 Conclusions on Multi-Threaded McSplit 90
6.4 GNN models . 93

6.4.1 McSplitGNN . 93
6.4.2 McSplit DiffGNN . 95
6.4.3 Conclusions on the GNN-based models 97

6.5 Summary of Results . 98
6.5.1 Qualitative comments of the results 98
6.5.2 Quantitative comparison of the best algorithms 99

7 Conclusion 103

Contributions 105

A Additional Charts 107

Bibliography 115

vii

List of Tables

2.1 Assignment of bidomain labels in McSplit 12

3.1 Static heuristics for McSplit . 40

viii

List of Figures

2.1 Basic graph types . 5
2.2 Example of the MCS problem . 8
2.3 Example of the McSplit algorithm during the recursive search . . . 11
2.4 Example of Q-learning . 15
2.5 Leaf Vertex Union Match . 18
2.6 A perceptron with n inputs . 20
2.7 Multi-Layer Perceptron (MLP) . 20
2.8 Popular activation functions . 21
2.9 Graph Convolutional Network (GCN) 22

3.1 Example of Domain Action Learning 26
3.2 Example of Local Clustering Coefficient (LCC) 38

4.1 Branching structure of McSplit . 42
4.2 McSplitMB . 43
4.3 McSplitBS: iterative implementation of the recursive search 45
4.4 McSplitBS: global stack after T0 reaches the termination condition . 47
4.5 McSplitBS: subdivision in threads 48
4.6 Comparison of broad vs focused exploration patterns 51

5.1 GLSearch architecture . 55
5.2 McSplitGNN architecture . 58
5.3 DiffGNN architecture . 61

6.1 Progression of the best solution size (|S|) in McSplit 65
6.2 Statistics of the Large dataset . 67
6.3 McSplit performance on Small dataset 68
6.4 Comparison of McSplitDAL and McSplitDAL-SD on Small 71
6.5 Comparison of McSplitDAL Joint and McSplitDAL Isolated on Small 72
6.6 Comparison of McSplitDAL and McSplitDAL (init) on Small . . . 73
6.7 Comparison of McSplitLL+DAL and McSplitRL+DAL on Small . 74
6.8 Comparison of all McSplitX variants on Small 75

ix

6.9 Comparison of all McSplitX+PR variants on Small 76
6.10 Analysis of outliers in McSplitX+PR variants on Small 77
6.11 Comparison of all McSplitDAL+ variants on Small 78
6.12 Comparison of all McSplitDAL+ variants on Large 79
6.13 Comparison of McSplitMB+PR using a different number of threads

on Large-Finetuning . 82
6.14 Comparison of McSplitMB versions using 32 threads and different

static heuristics on Large-Finetuning 84
6.15 Comparison of McSplitBS versions using PageRank, 32 threads, and

different block sizes on Large-Finetuning 85
6.16 Comparison of McSplitBS versions using PageRank, 32 block size,

and different thread counts on Large-Finetuning 86
6.17 Comparison of McSplitBS versions using 32 threads, a block size of

32, and different static heuristics on Large-Finetuning 88
6.18 Comparison of McSplitBS versions with or without delayed sharing

using 32 threads, a block size of 32, and different heuristics on
Large-Finetuning . 89

6.19 Comparison of McSplitBS versions with and without DAL policy,
using 32 threads, a block size of 32, and different heuristics on
Large-Finetuning . 90

6.20 Comparison of the best performing versions of McSplitMB and
McSplitBS using 32 threads, a block size of 32, and different heuristics
on Large . 91

6.21 Comparison of all McSplitGNN and McSplitGNN static on Large-
Finetuning . 94

6.22 Comparison of McSplit DiffGNN and DiffGNN synthetic on Large-
Finetuning . 96

6.23 Comparison of the best-performing algorithms for each family on
Large . 100

6.24 Comparison of the best-performing algorithms for each family on
Small . 102

A.1 Full difference heatmap of McSplitBS versions using PageRank, 32
threads, and different block sizes on Large-Finetuning 108

A.2 Full comparison of McSplitBS versions using delayed sharing or
not, with 32 threads, block size of 32, and different heuristics on
Large-Finetuning . 109

A.3 Full difference heatmap of McSplitBS versions using delayed sharing
or not, with 32 threads, block size of 32, and different heuristics on
Large-Finetuning . 110

x

A.4 Full comparison of McSplitBS versions using the DAL policy or
not, with 32 threads, block size of 32, and different heuristics on
Large-Finetuning . 111

A.5 Full difference heatmap of McSplitBS versions using the DAL policy
or not, with 32 threads, block size of 32, and different heuristics on
Large-Finetuning . 112

A.6 Full comparison of McsplitMB and McSplitBS, with 32 threads,
block size of 32, and different heuristics on Large 113

A.7 Full difference heatmap of McsplitMB and McSplitBS, with 32
threads, block size of 32, and different heuristics on Large 114

xi

Acronyms

BC
Betweenness Centrality

BFS
Breadth First Search

BS
Branch Sharing

CC
Closeness Centrality

DAL
Domain Action Learning

DFS
Depth First Search

DQN
Deep Q-Network

FSM
Finite State Machine

GAT
Graph Attention Network

GCN
Graph Convolutional Network

xiii

GNN
Graph Neural Network

KC
Katz Centrality

LCC
Local Clustering Coefficient

LSM
Long-Short term Memory

LUM
Leaf vertex Union Match

MB
Multi Branch

MCCS
Maximum Common Connected Subgraph

MCES
Maximum Common Edge Subgraph

MCIS
Maximum Common Induced Subgraph

MCS
Maximum Common Subgraph

MDP
Markov Decision Process

ML
Machine Learning

MLP
Multi-Layer Perceptron

MND
Mean Normalized Difference

xiv

MSE
Mean Squared Error

NN
Neural Network

NP
Non-deterministic Polynomial-time

PDF
Probability Density Function

PR
PageRank

PTAS
Polynomial-time Approximation Scheme

RL
Reinforcement Learning

SD
Swapping of Density

xv

Chapter 1

Introduction

The field of theoretical computer science plays a fundamental role in advancing
our understanding of computational problems and their complexity. Within this
domain, the Maximum Common Subgraph (MCS) problem stands as a classic
and challenging conundrum with numerous real-world applications, stemming from
software engineering to structural biology and computational chemistry. The MCS
problem seeks to identify the largest possible subgraph shared between two given
graphs, offering insights into graph similarity and their structural relationships.

Given the elevated computational complexity of the MCS problem, a significant
body of research has been focused on developing more efficient algorithms that
can solve it in a faster and more scalable manner. The inherent difficulty of the
problem stems from its NP-hard nature, which implies that finding an optimal
solution within a reasonable amount of time becomes increasingly challenging as
the input graphs grow in size and complexity. As a result, researchers are actively
exploring algorithmic advancements, optimization techniques, and parallel comput-
ing approaches to improve the efficiency and scalability of MCS algorithms. These
efforts aim to reduce the computational burden associated with the MCS problem,
improving its effectiveness in larger-scale graph analysis tasks and facilitating its
integration into real-world applications.

1.1 Objectives
The primary objective of this thesis is to enhance the performance of one of the
currently most popular MCS ground-truth solvers, McSplit. Due to the broad and
comprehensive nature of our goals, we opted for a breadth-first search approach for
our work, exploring and implementing a wide range of improvement techniques,
analyzing their effectiveness and identifying the strategies that yield promising
results. This methodology allows us to explore different avenues for enhancing

1

Introduction

McSplit, without getting too deeply entrenched in any single strategy. It enables
us to survey a broader landscape of potential improvements and compare the
performance of various approaches across different scenarios.

Throughout our exploration, we will evaluate different algorithmic enhancements,
including heuristic node priority, parallel multithreaded architectures and machine
learning, aiming to improve the quality of the produced solutions within a limited
time frame.

Our goal is to identify strategies that can potentially improve upon the existing
state-of-the-art solutions. If a particular strategy demonstrates a significant increase
in runtime efficiency, it would represent a valuable advancement in the field. On the
other hand, if a strategy fails to yield substantial improvements, we will critically
analyze and explain the reasons behind its limitations, providing valuable insights
to the scientific community.

Through rigorous experimentation and analysis, we will compare the performance
of our modified versions of McSplit against the original algorithm and other state-of-
the-art MCS solvers. By benchmarking the different implementations on a large set
of test instances, including real-world datasets, we can draw meaningful conclusions
about the effectiveness of each strategy and provide empirical evidence to support
our findings.

1.2 Thesis Structure

The thesis is structured into several chapters that systematically explore different
aspects of the MCS problem and its potential enhancements. Each chapter focuses
on a specific area of investigation, contributing to the overall understanding and
improvement of MCS solvers.

Chapter 2, "Background", delves into the fundamental concepts related to the
MCS problem. It provides a comprehensive background on graphs, including
definitions, properties, and common terminology. The chapter then dives into the
theoretical foundations of the MCS problem, exploring concepts such as graph
isomorphism and subgraph isomorphism. Furthermore, it introduces McSplit and
discusses its variants that have been proposed over the years. To explore some
of these variants, the chapter also covers Reinforcement Learning, related to the
McSplitRL and McSplitLL algorithms, and a brief overview of Machine Learning
and Graph Neural Networks (GNNs).

In Chapter 3, "Algorithmic Optimizations and Heuristics", the focus shifts to in-
vestigating different heuristics for improving MCS by prioritizing the best branches
of the search space. The strengths, limitations, and potential trade-offs of each
heuristic are thoroughly discussed, providing insights into their applicability and

2

Introduction

impact on MCS problem-solving. Furthermore, the chapter explores our implemen-
tation of the current state-of-the-art MCS solver, McSplitDAL, including several
potential optimizations that were introduced and tested during the development
process.

Chapter 4, "Parallel Architectures and Multi-Threading", explores the potential
benefits of parallelization in the context of MCS problem-solving. The chapter
discusses the design and implementation of two multithreaded frameworks for Mc-
Split, aiming to enhance its performance and scalability on multicore architectures.
Moreover, the exploration of concurrent computing techniques provides a valuable
platform to evaluate whether a deeply focused search approach can yield better
results than a breadth-first strategy.

In Chapter 5, "Graph Neural Networks (GNN)", the focus turns to the application
of GNNs as part of Machine Learning MCS solvers. The chapter proposes multiple
GNN-powered models to guide the search process of McSplit, with the goal of
improving its efficiency as a dynamic node priority heuristic. Special regard will be
given to discussing the potential challenges and limitations of the proposed designs,
as well as the applicability of GNNs to the problem at hand.

Chapter 6, "Experimental Analysis", presents a comprehensive analysis of the
findings from the previous chapters. It summarizes the performance, strengths,
and limitations of the explored strategies and techniques. Through comparative
testing, the chapter identifies the most effective among the proposed MCS solvers.
Furthermore, it discusses the broader implications of the research and potential
future directions for enhancing MCS problem-solving techniques.

The thesis includes an appendix section that reports additional data and charts
that were not included in the main body of the thesis.

3

Chapter 2

Background

In this section, we delve into key theoretical concepts relevant to the research work,
and we define important terminology that will be used throughout the rest of
the thesis. Additional concepts will be introduced in subsequent chapters as they
become relevant.

2.1 Graphs
Graphs are mathematical structures that model the relationships between objects.
Graph theory is the branch of mathematics that studies the properties and ap-
plications of graphs, which can be used to represent many real-world phenomena,
such as social interactions, game logic, language systems, molecular structures, or
infrastructure networks. Specifically, the field of graph theory is often considered
to have been born from Leonhard Euler’s Königsberg bridge problem in 1741 [1],
which first used topological abstraction to decipher a real-world conundrum.

2.1.1 Definitions
We will now define the basic terminology used in graph theory:

Definition 1. A Graph is a mathematical object represented by G(V, E), where
V is a collection of entities, called vertices or nodes, and E is a set of relationships
between pairs of entities, called edges.

Let |V | represent the number of vertices in V , and |E| denote the number of
edges in E. For brevity, in this thesis we will occasionally use an abuse of notation
to denote the number of vertices of a graph G as |G|. For two vertices u and v, if
there exists an edge e connecting them, we can denote this edge as e = (u, v). The
vertices u and v are considered adjacent or neighbors, and e is incident to both

4

Background

(a) Generic graph (b) Directed graph

(c) Weighted graph (d) Disconnected graph

Figure 2.1: Basic graph types

u and v. We call neighborhood(v) the set of nodes u such that (u, v) ∈ E. The
degree deg(v) of a vertex v corresponds to the number of edges incident to it.

An edge is classified as undirected if it models a bidirectional relationship
between two vertices. Conversely, an edge is considered directed if it represents
a relationship that is valid only in one direction. If any edge within a graph is
directed, the graph as a whole is categorized as directed.

If in a graph G the edges can model relationships of different strengths, then G
is said to be weighted, and each edge e is assigned a weight w(e). Otherwise, G is
said to be unweighted.

Two edges e1 and e2 are adjacent if they share a vertex u. A path is a continuous
collection of edges, adjacent pair by pair, that connect two vertices u and v. The
length of a path is the number of edges it contains. If in a graph G there exists a
path between any two vertices, then G is said to be connected. Otherwise, G is
said to be disconnected.

A graph G is said to be complete if every pair of vertices is connected by an

5

Background

edge:
∀u, v ∈ V, (u, v) ∈ E (2.1)

If we consider a subset of vertices åV ⊆ V that satisfies 2.1, then we can say that åV
forms a clique.

2.1.2 Graph isomorphism

We define the notion of graph isomorphism. The following definition considers only
undirected, unweighted graphs, but the concept can be extended to other types of
graphs as well.

Definition 2. Two graphs G1(V1, E1) and G2(V2, E2) are said to be isomorphic if
there exists a bijection f : V1 → V2 such that for any two vertices vi, vj ∈ V1, vi

and vj are adjacent in G1 if and only if f(vi) and f(vj) are adjacent in G2.

Graph isomorphism plays a crucial role in graph theory as it enables us to
compare two graphs independently of their specific representations or labels. This
property is essential, as graphs are routinely stored and managed using different
data structures, such as adjacency lists or adjacency matrices, each offering unique
trade-offs in terms of memory usage and computational efficiency. Furthermore,
the labels used to identify the vertices and edges may differ across graph instances.
By determining if two graphs are isomorphic, we can establish their structural
equivalence, which allows for the identification of common patterns, structures, or
properties among different graphs, facilitating meaningful comparisons and analysis
across various domains. Furthermore, graph isomorphism forms the basis for
numerous graph algorithms and computational techniques, making it a fundamental
concept with significant implications for graph analysis and problem-solving.

However, determining whether two graphs are isomorphic is a computationally
expensive task, which has been extensively studied in theoretical computer science
under the name of graph isomorphism. Classified as a decision problem, it is
believed to belong to the class of NP (Non-deterministic Polynomial-time) problems.
While it remains an open question whether graph isomorphism can be solved in
polynomial time for all instances, significant progress has been made for specific
classes of graphs, such as trees and planar graphs, for which the problem can be
solved polynomially [2][3][4]. Moreover, it has been proven that under reasonable
assumptions, graph isomorphism is not NP-complete [5]. Due to its many both
theoretical and practical applications, graph isomorphism remains an active area
of research, with ongoing efforts to develop more efficient algorithms and explore
its underlying properties.

6

Background

2.1.3 Subgraph isomorphism
Let us define the notion of subgraph. The following definition considers only
undirected, unweighted graphs.

Definition 3. A graph G′ = (V ′, E ′) is said to be a subgraph of a graph G = (V, E)
if and only if V ′ ⊆ V and E ′ ⊆ E. If a subgraph G′ is induced, any two vertices
vi, vj ∈ V ′ ⊆ V are adjacent in G′ if and only if they are also adjacent in G.

This definition resembles Definition 2. Specifically, we can postulate the following
corollary:

Corollary 3.1. Two graphs G1 and G2 are isomorphic if and only if G1 is an
induced subgraph of G2 and G2 is an induced subgraph of G1.

Therefore, we can consider the problem of determining whether a graph G1 is an
induced subgraph of another graph G2 as a generalization of graph isomorphism.
This decision problem is known as subgraph isomorphism, and it is one of the
cornerstones of theoretical computer science, as it generalizes other well-known
problems such us Maximum Clique, Hamiltonian Cycle and Independent
Set. As such, subgraph isomorphism is also proven to be NP-complete [6].

2.2 Maximum Common Subgraph (MCS) prob-
lem

Building upon the concept of graph isomorphism seen in Section 2.1, we can now
delve into the subject of this research project: the Maximum Common Subgraph
(MCS) problem. The MCS problem is an optimization problem that aims to find
the largest subgraph that is common to two given graphs, and its decision version is
consequently a further generalization of Subgraph Isomorphism. The problem
is formally defined as follows:

Definition 4. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the Maximum
Common Subgraph problem consists in finding a graph G = (V, E) such that G
is isomorphic to a subgraph of G1 and to a subgraph of G2, and |V | is maximum.

Definition 4 can be trivially amended to support the concept of the Maximum
Common Induced Subgraph (MCIS) problem, which specifically requires the sub-
graph G to be induced and strives to maximize the number of vertices in G. This
is different from the Maximum Common Edge Subgraph (MCES) where the
graphs are not required to be induced, and the objective is to maximize the number
of edges. However, the MCIS has much more relevance in the literature, to the

7

Background

point that the terms MCS and MCIS are often used interchangeably. In this work,
we will follow this convention and use the term MCS to refer to the MCIS problem.

Another common variant is the Maximum Common Connected Subgraph
(MCCS) problem. As the name implies, this problem requires the subgraph G to
be connected, and it is consequently a specialized case of the MCS problem. In
this work, we will focus on the more general MCS problem, as it is more difficult
and the algorithms we will see can be easily adapted to solve the MCCS problem
as well. Additionally, while our exploration of the MCS problem primarily revolves
around undirected and unweighted graphs, the methodologies presented can be
readily extended to encompass directed and weighted graphs.

MCS belongs to the class of NP-Hard [7]. Furthermore, it has been shown
that it cannot be easily approximated, because it is of class MAX SNP-Hard [8],
consequently it is not possible to find a PTAS (Polynomial-Time Approximation
Scheme) for it unless P = NP .

This problem finds many practical applications in fields like bioinformatics [9],
chemistry [10][11], software analysis [12] and open information extraction [13], and
it is therefore of great interest to the scientific community. For this reason, many
algorithms have been proposed to solve it, and we will see some of the most relevant
ones in the next section.

Figure 2.2: Example of the MCS problem

In 2.2 we can see an example of the MCS problem. The two graphs G1 (blue)
and G2 (purple) have a common subgraph G (highlighted in yellow) of size 7. G
can be expressed as a collection of matches of nodes of the two graphs, therefore
we define the solution as a set S of matches ⟨u, v⟩ between the nodes u ∈ V1 and

8

Background

v ∈ V2. In this case,

S = {⟨A,1⟩, ⟨C,3⟩, ⟨D,4⟩, ⟨E,5⟩, ⟨F,6⟩, ⟨G,7⟩, ⟨I,10⟩}

If this solution S represents the largest common subgraph, then it is called the
optimal solution of the MCS problem. Following this notation, any other induced
subgraph of G1 and G2 with fewer nodes than S is still called a solution, but not
an optimal one.

Note that G is not connected, and therefore it is not a solution to the MCCS
problem. The optimal solution to the MCCS problem is the set S ′ = S \ {⟨I,10⟩}

2.3 McSplit algorithm

2.3.1 Existing MCS solvers
The MCS problem can be approached using different types of algorithms. One
category consists of ground-truth solvers, which aim to find the exact optimal
solution. Prominent examples include McSplit [14] and k ↓ [15], or other methods
that rely on clique-based approaches[16][17]. These solvers employ techniques
such as recursive backtracking and constraint satisfaction to perform an exhaustive
search of the solution space. As a result, they guarantee to find the optimal solution,
albeit in a potentially lengthy but finite amount of time.

Another category of MCS algorithms comprises approximate graph-matching
methods. These methods provide a faster alternative to exact solvers but may not
necessarily yield an actual common induced subgraph. They can be further divided
into supervised models, including I-PCA [18], GMN [19], and NeuralMCS [20],
and unsupervised models like GW-QAP [21] and RlMCS [22]. Supervised models
typically require labeled training data and employ machine learning techniques
to approximate the solution. On the other hand, unsupervised models might use
mixed approaches or leverage optimization algorithms to iteratively refine their
approximation.

While approximate models offer computational efficiency, they often rely on exact
solvers to generate labels for training and cannot guarantee the optimal solution. In
this research project, our focus will be on the exact solver McSplit, which represents
the current state-of-the-art MCS ground-truth solver. By investigating McSplit and
exploring strategies to enhance its performance, we strive to directly or indirectly
contribute to the advancement of all types of MCS-solving algorithms.

2.3.2 McSplit
McSplit is a backtracking algorithm that uses a branch-and-bound approach to
solve the MCS problem. It was first introduced in 2017 by McCreesh et al. [14] and

9

Background

has since been improved and optimized. The algorithm is based on the observation
that the size of the largest common subgraph is bounded by the size of the smallest
of the two given graphs. This observation is used to prune the search space and
reduce the number of recursive calls, thus reducing the overall runtime, but still
guaranteeing the optimal solution.

1 S ← {}
2

3 Function McSplit(G, H)
4 S = mcs(G, H, {})
5 return S

6

7 Function mcs(G, H, Scurrent)
8 if |Scurrent| > |S| then
9 S ← Scurrent

10 end
11 Bound← ComputeBound(G, H, |Scurrent|)
12 if Bound < |S| then
13 return
14 end
15 β ← SelectBidomain(G, H)
16 v ← SelectV ertexV (G, β)
17 G′ ← G \ {v}
18 while w ∈ SelectV ertexW (H, β) do
19 S ′

current ← Scurrent ∪ {v : w}
20 H ′ ← H \ {w}
21 UpdateBidomains(G′, H ′, v, w)
22 mcs(G′, H ′, S ′

current)
23 end
24 mcs(G′, H, S ′

current)
25 return

Algorithm 1: The McSplit algorithm.

In Algorithm 1 we show a simplified pseudocode of McSplit. The algorithm takes
two graphs G(VG, EG) and H(VH , EH) as input and returns the MCS S. During
the recursive search, S will hold the best solution found until that point, while
Scurrent will hold the induced subgraph identified by the current search branch.
Both S and Scurrent are saved as sets of node matches ⟨v, w⟩, but they logically
represent a graph. In this algorithm, as well as the rest of this thesis, we will
consider v a generic node of G and w a generic node of H. The algorithm starts
by initializing S to the empty set (line 1), then it immediately calls the recursive

10

Background

function mcs (line 4) passing as initial current solution another empty set.

Figure 2.3: Example of the McSplit algorithm during the recursive search

The function mcs uses the concept of Bidomain to select the next pair of
vertices to be added to Scurrent. Consider 2.3, where we have two graphs G and H
and the algorithm is already in the middle of its execution (Scurrent /= {}). The
current vertex matchess are Scurrent = {⟨A,6⟩, ⟨C,1⟩, ⟨D,5⟩}. In the next step of
the algorithm, we need to find a new pair of unmatched vertices that would not
break the MCS definition if added to Scurrent.

To do so, in 2.1 we assign a binary bidomain label to each unmatched vertex
based on its constraints. For example, vertex B ∈ G has the label 010 because
it is connected to C, but it is not connected to A or D. Vertex 2 ∈ H has the
same label 010 because it has the same connections, considering the matches of
Scurrent. For this reason, B and 2 are both in bidomain 010 and ⟨B,2⟩ is a valid
candidate that could be added to Scurrent. On the other side, vertex G has the
label 010 and vertex 3 has the label 000, so they are not in the same bidomain and
cannot be added to Scurrent. This is because in the new match set, the vertex G
would have one neighbor (C) and 3 would have no neighbors, which is not allowed
by the isomorphism requirement of the MCS problem.

For future reference, we call β = {βleft, βright} a generic bidomain, where βleft

11

Background

Table 2.1: Assignment of bidomain labels in McSplit

Graph G Graph H
Vertex A C D Bidomain Vertex 6 1 5 Bidomain

B 0 1 0 010 b 0 1 0 010
G 0 1 0 010 c 0 0 0 000
H 0 1 1 011 d 0 1 1 011
E 1 0 1 101 g 1 1 1 111
F 0 0 0 000

and βright are respectively the sets of vertices in G and H that have the same
bidomain label. In the example of 2.3, for bidomain 010 we have βleft = {B, G}
and βright = {2}. A bidomain β implicitly defines a set of candidate pairs, which
are all the possible combinations of vertices in βleft and βright. In the example, the
candidate pairs for bidomain 010 are {⟨B,2⟩, ⟨G,2⟩}. We call B the collection of all
bidomains.

In line 15, Algorithm 1 selects the smallest of the bidomains containing at least
one candidate pair ⟨v, w⟩, selects one of the vertices v ∈ βleft, then it iterates over
all the vertices w ∈ βright in the bidomain and recursively calls the algorithm with
the updated graphs G′ and H ′. The updated graphs are obtained by removing
the vertices v and w and their adjacent edges from G and H respectively. The
vertices are selected in line 16 and line 18 in order, from the node with the highest
degree to the one with the smallest. After selecting each new pair (line 9), the
algorithm updates the bidomains (line 21) to incorporate the constraints imposed
by the newly matched vertices. This is the most cumbersome operation of the
algorithm, with a worst-case time complexity of O((|G|+ |H|) log(|G|+ |H|)). Once
the iteration is finished, the current search branch is considered exhausted and the
algorithm makes a new recursive call to itself to select the next vertex v and repeat
the process.

The algorithm as described until now is performing an exhaustive sweep of the
search space, but the true optimization of McSplit lies in its pruning strategy. At
line 11 it computes the bound of the current solution. The bound is a limit on the
maximum size of the solution that can be generated by the current branch without
breaking the MCS definition. Given a generic bidomain β, the maximum number

12

Background

of matches it can produce is Bound(β) = min(βleft, βright). Therefore, the bound
of the current branch is the sum of the current solution size and all the bounds of
all the bidomains.

Bound = |Scurrent|+
Ø
β∈B

Bound(β) (2.2)

If the total bound is smaller than the best solution S, the current branch
cannot lead to a better solution, so the algorithm can prune that branch without
compromising the quality of the final result.

2.3.3 McSplitSO and McSplitSD
Due to its simplicity, the McSplit algorithm has been extended multiple times. The
first small contribution comes from Trimble [23] who observed that the order of
the graphs G and H could influence the performance of the algorithm.

1 Function McSplitSO(G, H)
2 if |VG| < |VH | then
3 S = McSplit(G, H)
4 else
5 S = McSplit(H, G)
6 end
7 return S

8
Algorithm 2: The McSplitSO algorithm. The input graphs are swapped
based on their vertex count.

McSplitSO compares the sizes of the two input graphs and changes their order
accordingly. The optimization exploits the intrinsic asymmetry in the vertex
selection and the bound-based pruning strategy in McSplit. Through practical
experimentation, Trimble has observed that arranging the smaller graph as the
first input reduces the size of the bounds at the lower levels of the search tree.
Consequently, this arrangement enhances the pruning effectiveness.

On the other hand, McSplitSD (SD standing for "Swapping of Density") takes a
different approach by considering the density of the graphs. The density of a graph
is calculated using the formula

d(G) = 2|EG|
|VG|(|VG| − 1) (2.3)

In Algorithm 3, the densities of the graphs are compared using a metric called
"density extremeness" (line 2). This metric assigns a higher value to a graph with a

13

Background

density close to 0 (indicating an independent set) or 1 (indicating a clique), and a
lower value to a graph with a density in the middle range. Based on this metric,
McSplitSD swaps the order of the graphs and places the less extreme graph first.
As with McSplitSO, it has been found through experimental observations that this
arrangement improves the pruning performance of the algorithm.

1 Function McSplitSD(G, H)
2 if |12 − d(G)| < |12 − d(H)| then
3 S = McSplit(G, H)
4 else
5 S = McSplit(H, G)
6 end
7 return S

8
Algorithm 3: The McSplitSD algorithm. The input graphs are swapped
based on their density.

Trimble also proposes an adaptive version of these optimizations, named Mc-
Split2S. However, the resulting modification is not easily applicable to the other
McSplit variants that will be explored in the next sections, so it will not be
considered.

2.4 Reinforcement Learning (RL)
The next steps forward in the evolution of McSplit are based on Reinforcement
Learning. We take a brief pause to explain better this technique, as it will hold
considerable importance thorough this thesis.

2.4.1 Theoretical overview
Reinforcement Learning (RL) is a distinct paradigm within the field of Machine
Learning (ML), setting itself apart from traditional supervised and unsupervised
learning approaches. While supervised learning relies on labeled examples and
unsupervised learning seeks to find patterns in unlabeled data, RL takes a unique
approach to the learning process through trial and error. In RL, an agent interacts
with an environment by observing the current state, performing actions, and
receiving feedback on those actions in the form of a new state and a reward score
that represents their goodness. The objective of RL is to develop algorithms that
enable the agent to learn an optimal policy (a mapping from states to actions) that
maximizes the cumulative reward over time. This focus on cumulative rewards

14

Background

distinguishes RL as a powerful tool for addressing sequential decision-making
challenges in dynamic environments.

At the core of RL is the notion of the Markov Decision Process (MDP) [24], which
provides a mathematical framework to model the interaction between the agent
and the environment. A MDP consists of a set of states, a set of actions, transition
probabilities that define the dynamics of the environment, and reward functions
that assign numerical values to the agent’s actions and states. RL algorithms
utilize the MDP framework to learn the optimal policy by iteratively exploring
the environment, updating the agent’s policy based on the observed rewards, and
improving its decision-making abilities over time.

Reinforcement learning encompasses various approaches, with one prominent
method being Q-learning. Q-learning is a value-based RL algorithm that aims to
learn the optimal action-value function, known as the Q-function. The Q-function
follows the optimal policy and outputs the expected cumulative reward for taking
a particular action in a given state. By iteratively updating Q-values based on
observed rewards and applying an exploration-exploitation trade-off, Q-learning
converges to the optimal Q-function and, consequently, the optimal policy [25].

The power of RL lies in the fact that it does not require large labeled datasets,
which might be difficult, costly or impossible to obtain, nor it needs a model of the
environment. The only requirement is a feedback function that approximates the
environmental response to the agent’s actions.

2.4.2 An example of Q-learning

(a) Game board

Q-table Actions
North South East West

St
at

es

A1 0 0 0 0
...
C2 0 0 0 0
C3 0.435 0 0 0
C4 0 0 0.913 0
C5 0.913 0 0 0
...
E5 0 0 0 0

(b) Q-table

Figure 2.4: Example of Q-learning

2.4 illustrates a popular example of Q-learning applied to game theory.

15

Background

In this example, the agent is a robot that must navigate a 5x5 grid world to
reach a goal in cell E5. The agent can move in four directions (North, South, East,
West) and it can travel a certain distance until a termination condition is reached.
In this case, the position on the board represents the state of the agent, while
the four directions are the four possible actions. The movement of the agent is
a series of steps, identified by the position (State) and the action that the agent
takes (action). The reward function assigns a value of 1 when the goal is reached
and 0 otherwise.

The Q-table represents the agent’s Q-function, which is initialized with zeros for
all state-action pairs. Each cell of the Q-table is referred to as a Q-value. The agent
begins in state B2 and selects an action (e.g., East) based on the current Q-values.
The agent then transitions to the next state (e.g., B3) and receives a reward of 0,
as it did not reach the goal. Using the Bellman equation [26], the agent updates
the Q-value for the state-action pair (B2, East) based on the observed reward and
the maximum Q-value for the next state (B3).

Throughout the iteration process, the agent learns that cells D5 and E4 have a
maximum Q-Value of 1 since they can reach the goal in one action. Cells C5, D4
and E3 cannot reach the goal directly, but they can reach a state with a Q-value of
1, therefore they get a relatively high reward. The agent continues to explore the
environment, updating Q-values based on observed rewards, until it converges to
an optimal policy. In this example, one of such optimal policies is to move East
from state C3 and then North from B5 to reach the goal state E5.

2.4.3 McSplitRL
The original McSplit algorithm uses a degree-based heuristic to determine the
order in which the vertices are selected during the recursive search (lines 16, 18
in Algorithm 1). While the order of vertex selection may not be significant in a
normal complete search, in McSplit it plays a vital role in optimizing the search
process. By visiting the best nodes first, the algorithm can quickly identify and
prune unpromising branches, leading to faster convergence and improved efficiency.
This is particularly important considering that McSplit tends to have long execution
times, especially for medium to large-sized graphs, therefore, to mitigate this issue,
a timeout is often employed. If we are able to select the best vertices first, we
might find better solutions within the given timeout.

Liu et al. [27] propose a McSplit variant that uses Reinforcement Learning, called
McSplitRL. McSplitRL saves two tables of rewards, which stores the individual
rewards of all the vertices in G and H. Given a vertex v ∈ G, we call its score
SG(v). At the beginning of the algorithm, these rewards are initialized to zero.
During the recursion, when a new pair of vertices (v, w) is matched and added to
the local solution, McSplitRL computes a reward R(v, w) which is proportional to

16

Background

the reduction in the bound achieved by the match.

R(v, w) =
Ø

β′∈B′
min(|β′

left|, |β′
right|)−

Ø
β∈B

min(|βleft|, |βright|) (2.4)

We call B′ the set of bidomains before the match, and B the set of bidomains
after the match. The reward R(v, w) is then added to the accumulated rewards of
both vertices, v and w.

SG(v) = SG(v) + R(v, w)
SH(w) = SH(w) + R(v, w) (2.5)

During vertex selection, McSplitRL chooses the node with the higher accumu-
lated reward, as it indicates a higher potential to reduce the local search space. The
selected branch will be faster to explore, and eventually prune if it is not promising,
thus increasing the number of visited branches within the given timeout.

2.4.4 McSplitLL
While McSplitRL presents improvements over the original McSplit algorithm, it
also faces a challenge regarding the staleness of rewards during the progression
of the recursion. As the search moves into different areas of the search tree, the
rewards computed earlier may no longer accurately reflect the current state of
the graph. Most commonly, a vertex w ∈ H might be an optimal candidate for
selection in a certain branch of the search tree, but not in another.

This is one of the main issues that McSplitLL [28] aims to address. McSplitLL is a
variant of McSplit that introduces two new independent improvements: Long-Short
Memory Branching Heuristic and Leaf Vertex Union Match Strategy.

Long-Short Memory (LSM) Branching Heuristic To address the reward
staleness issue, McSplitLL changes the reward structure of the Q-learning infras-
tructure. While vertices v still have an individual reward SG(v), the reward of
w vertices is now dependent on the currently selected vertex v, to which w is
matched. We call this pair reward Sp(v, w), and it behaves as a reward on the
actual matches. While in McSplitRL the rewards had a memory occupation com-
plexity of O(|G|+ |H|), in McSplitLL it expands to O(|G||H|). The reward update
policy is trivially changed from 2.5 to 2.6.

SG(v) = SG(v) + R(v, w)
Sp(v, w) = Sp(v, w) + R(v, w) (2.6)

17

Background

Under Q-learning terminology, the selected vertex v represents the state on
which is applied the action of matching a vertex w. The pair reward Sp(v, w) is
the Q-value of the state-action pair (v, w).

On these two sets of rewards, McSplitLL applies an independent decay mecha-
nism, based on two threshold values tv < tp. After the reward update, if SG(v) > tv,
then all rewards SG(·) are decayed by a factor α (by default α = 1

2). The same
process applies to all Sp(·, ·) scores, when Sp(v, w) > tp. The LSM mechanism uses
two different thresholds because the pair rewards are more specific and naturally
more precise than the individual rewards, therefore they are valid for a longer
period of time. On the other hand, the vertices v are selected more dynamically
and their rewards tend to become stale faster.

Leaf Vertex Union Match (LUM) Strategy The second improvement lever-
ages the concept of leaf vertices in an undirected graph. A leaf vertex vl is a vertex
with degree 1, meaning that it is connected to only one other parent vertex vp.
If vp ∈ G and wp ∈ H are matched, then their connected leaves vl and wl are
necessarily in the same bidomain and can be matched automatically.

Figure 2.5: Leaf Vertex Union Match. If ⟨D,4⟩ ∈ Scurrent, the leaf vertices in
bidomain β can be automatically matched pair-by-pair, in any order. Since the
number of leaves is different on the two sides of the bidomain, one leaf will remain
unmatched.

If two matched vertices ⟨vp, wp⟩ are connected to multiple leaves (2.5), then
it can be trivially proven that all leaves can be immediately matched pair-by-
pair regardless of the order (for instance, ⟨X,10⟩, ⟨Y,11⟩, ⟨Z,12⟩). This occurs

18

Background

because the leaves are not directly connected to each other, so their match cannot
influence any other node. If the number of leaves is different on the two sides of
the bidomain, some leaves will remain unmatched. This improvement, while based
on a simple observation, can lead to significant performance improvements, as it
reduces the number of recursive calls and the number of vertices to be considered
in the branching heuristic. Moreover, this mechanism does not affect the optimality
of the algorithm.

2.5 Machine Learning meets graphs: GNNs
In recent years, Machine Learning (ML) has emerged as a dominant field in
computer science, and it is now an essential tool for many research projects in all
domains. However, traditional linear neural networks or other models that operate
on fixed-dimensional input vectors are not well suited for handling graph-structured
data. Graphs are inherently different from regular tabular data or images because
they capture complex relationships and dependencies among a variable number of
elements.

2.5.1 Multi-Layer Perceptrons (MLPs)
A Neural Network (NN) is a basic category of ML architecture that performs a non-
linear transformation of the input features by means of an activation function. It is
a fundamental ML model used for tasks such as binary classification or non-linear
regression.

Perceptron A NN consists of a single layer of artificial neurons, called percep-
trons, which take a set of input features X, multiply them by corresponding weights
W , and sums them up. Each perceptron can also have a bias b that is added to the
total. The weighted sum is then passed through an activation function f(·), for
example a step function, to produce the output y. The activation function makes
the perceptron a non-linear function, allowing it to process and learn more complex
information. Specifically, the step function assigns a value of 1 if the weighted sum
exceeds a certain threshold and 0 otherwise, but there is a wide range of other
activation functions that can be used.

Mathematically, the output of a perceptron can be represented as follows:

y = f(
nØ

i=1
wixi + b) (2.7)

The weights and the bias of the perceptron are initially assigned random values
and are updated during the training process using algorithms such as gradient

19

Background

Figure 2.6: A perceptron with n inputs

descent, to minimize the error in the network’s predictions. This error, or loss, is a
function that computes a distance metric between the output of the perceptron
and a given label ŷi, which represents the desired outcome. This dependency on
labels makes the NN a supervised model. A popular loss function is the Mean
Squared Error (MSE), defined as follows:

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (2.8)

By minimizing the loss, the perceptron is able to learn the optimal set of param-
eters that best produce the desired outcome on the input data. This knowledge
can then be used to make predictions on new data.

Multi-Layer Perceptron A Multi-Layer Perceptron (MLP) is a network com-
posed of multiple layers of perceptrons stacked on top of each other. The output
of each layer of neurons is passed as input to the next, and the final output is
computed by the last layer. The output of each perceptron is passed through an
activation function before being passed as input to the next layer. In these more
complex structures, the activation function is typically applied element-wise to the
output of each perceptron in a layer, but each layer can have a different activation
function.

Figure 2.7: A multi-layer perceptron (MLP) with three layers. Each circle repre-
sents a perceptron with a bias (not shown), and each line represents a connection
between neurons with an individual weight.

20

Background

Two popular activation functions used in MLPs are the sigmoid or the rectified
linear unit (ReLU). ReLU is defined as

ReLU(x) = max(0, x) (2.9)

and is a non-linear function that is zero for negative values and linear for positive
values (Figure 2.8b). It is a commonly used activation function in neural networks
because it is simple to compute and its only operation is to discard the negative
values, leaving the positive ones unaltered. However, the ReLU function is not
differentiable at x = 0, and it has a null gradient for x < 0, which can cause
problems during the training process, so sometimes the LeakyReLU variant is used.

The sigmoid function is defined as

σ(x) = 1
1 + e−x

(2.10)

and is an S-shaped curve that maps the input to a value between 0 and 1 (Figure
2.8a). It is commonly used in the output layer of a neural network to rescale the
final scores to values between 0 and 1, but it is not recommended for hidden layers
because it is prone to the vanishing gradient problem. The vanishing gradient
problem occurs when the gradient of the activation function becomes very small
(as in the case of the sigmoid when x→ ±∞), causing the weights to be updated
very slowly and the learning process to possibly stagnate.

(a) Sigmoid Function (b) ReLU Function

Figure 2.8: Popular activation functions

21

Background

2.5.2 Graph Neural Networks (GNNs)
MLPs assume that the input data is in a fixed-dimensional format, where the order
or connectivity between elements is irrelevant or unknown. This assumption fails
to capture the structural information present in graphs, such as node connections
and neighborhood relationships. Additionally, traditional models have a predefined
number of perceptrons in the first layer, which must always be equal to the number
of input features. Consequently, they lack the ability to handle varying-sized inputs,
which is a fundamental characteristic of graph data.

To overcome these limitations, Graph Neural Networks (GNNs) have gained
attention as a specialized class of models designed explicitly for graph-structured
data. GNNs leverage the inherent connectivity and relational information present
in graphs to learn and make predictions. By performing message passing and
aggregation operations across nodes, GNNs can capture the complex dependencies
and structural patterns within graphs.

Figure 2.9: A graph convolutional network (GCN) with three layers. Considering
node A, in each layer the node aggregates information from its neighbors, which
themselves store information about their neighbors, therefore expanding its knowl-
edge to all nodes within a 3-hop radius.

Graph Convolutional Networks (GCNs)

The most common GNN architecture is the Graph Convolutional Network (GCN).
In each convolutional layer, each node in the graph collects information from its
neighboring nodes (message passing) and updates its own representation based
on this information. This process is iteratively performed across multiple layers,
allowing nodes to gather information from distant parts of the graph. By combining
local and global information, GNNs strive to capture the structural patterns and
properties in the graph. By adjusting the number of layers of the GCN, the model
can learn to incorporate increasingly complex information and identify patterns of

22

Background

a desired size.
The learning process of a GCN happens in each layer after the message passing

operation. Once a node has collected the information about its neighbors, it stores
it in a hidden state vector. While the number of vertices is variable from graph
to graph, the dimensionality of the node vector in each layer is defined a priori.
Therefore, the vector can then be passed through a MLP, which outputs a learned
representation of the node, which is then passed to the next layer. The output of
the final layer is the node embedding, which is a vector representation of the node
and its neighborhood that captures its structural properties and can be used for
downstream tasks.

Graph Attention Networks (GATs)

Another widely recognized GNN architecture is the Graph Attention Network (GAT)
[29]. GATs share similarities with GCNs in their ability to aggregate information
from neighboring nodes. However, a key distinction is that GATs employ K
attention heads to learn a weighted combination of neighbor representations. This
mechanism allows GATs to incorporate a cognitive attention mechanism, enabling
the model to selectively emphasize relevant neighbors while disregarding irrelevant
ones. The output of each GAT layer is represented by:

y =
KÛ

k=1
f(αkWX) (2.11)

where X is the input node feature matrix, collecting the vector features of all
vertices, W is the weight matrix, f denotes a generic activation function, and αk

corresponds to the attention coefficient associated with the k-th attention head.
Each attention coefficient αk is a trainable parameter that is learned during the
model training process. Consequently, incorporating attention heads in GATs
introduces additional trainable parameters, slightly augmenting the overall size of
the model.

23

Chapter 3

Algorithmic Optimizations
and Heuristics

In Chapter 2 we introduced the McSplit algorithm and we discussed the improve-
ments made by McSplitRL and McSplitLL, which were achieved using a smarter
node selection heuristic based on Reinforcement Learning. While these changes
improved the performance of McSplit, they also introduced some additional over-
head. McSplitRL needs to spend a significant amount of clock cycles keeping the
Q-table of rewards up to date, and in McSplitLL the overhead is even greater due
to the increased size of the Q-table. This implies that these algorithms try to have
a smarter vertex selection policy to increase the pruning rate and home in on the
optimal solution faster, at the cost of having overall slower iterations. We call
these dynamic heuristics, as the vertex selection policy is updated on-the-fly as the
algorithm runs.

In this chapter, we will first build different implementations of McSplitDAL,
the state-of-the-art solver at the time of the research project, in search of possible
algorithmic optimizations. For future reference, we will refer to the family of the
main McSplit variants (McSplit, McSplitLL, and McSplitDAL) as McSplitX.

We will then try to improve the performance of McSplitX using what we will call
static heuristics. The considered heuristics will be PageRank (PR), Betweenness
Centrality (BC), Closeness Centrality (CC), Katz Centrality* (KC*), and Local
Clustering Coefficient (LCC). We refer to the family of McSplitX variants with
static heuristics as McSplitX+. These heuristics will produce scores based on the
properties of the graph, which will not change during the execution of the algorithm.
We will then compare the performance of these different implementations, and try
to understand the impact of the different heuristics on the sizes of the solution
produced by the algorithms.

24

Algorithmic Optimizations and Heuristics

3.1 McSplitDAL

3.1.1 Overview
McSplitDAL [30] was the state-of-the-art algorithm for solving the MCS problem
during the research project. As in the case of McSplitLL, it brought 2 contributions
to the McSplit algorithm: a modified reward function called Domain Action
Learning (DAL), and a hybrid learning policy that combines DAL with the original
RL policy.

Domain Action Learning

In McSplitRL the reward was uniquely based on the bound reduction achieved by
the selected match. The authors of McSplitDAL argue that this reward function
can be integrated with a new component that takes into account the reduction in
complexity of the updated bidomains.

Consider 3.1. In Figure 3.1a we have a graph with four bidomains. When
the pair ⟨B,1⟩ is matched (Figure 3.1b), the total number of bidomains remains
unchanged. However, when the pair ⟨D,6⟩ is matched (Figure 3.1c), the number of
bidomains is increased to six. Since the number of unmatched vertices after the
match is necessarily the same, it is intuitive that the bidomains will have to be
smaller on average. This effect is clearly visible in Figure 3.1c. Having a higher
number of smaller bidomains increases the likelihood of finding leaves, which can
be easily matched using the LUM strategy of McSplitLL. Furthermore, smaller
bidomains might also be immediately pruned, as they have a smaller bound.

To reward matches that increase the number of bidomains, and therefore decrease
their size, the authors of McSplitDAL propose the following modification to the
reward function:

R(v, w) =
Ø

β′∈B′
min(|β′

left|, |β′
right|)−

Ø
β∈B

min(|βleft|, |βright|) + |B| (3.1)

Hybrid learning policy

The hybrid learning policy of McSplitDAL is a combination of the original RL
policy and the DAL policy. The authors note that the RL and DAL agents are
prone to fixation on a local minimum. A workaround to this problem is to switch
between the RL policy and the DAL policy every number of iterations MaxNbApp.
The switching is orchestrated by a counter NbApp that is reset to zero when a
policy switch occurs (NbApp > MaxNpApp) or when a new best solution is found
(|Scurrent| > |S|). The rationale for this mechanism is that the two agents are

25

Algorithmic Optimizations and Heuristics

(a) Before matching

(b) After matching ⟨B,1⟩

(c) After matching ⟨D,6⟩

Figure 3.1: Example of the DAL reward function.

different enough to help the algorithm to escape local minimums, but they are still
both good enough to find a satisfactory solution.

26

Algorithmic Optimizations and Heuristics

3.1.2 Our implementations
The authors of McSplitDAL did not provide an official implementation of the
algorithm. Therefore, we implemented our own version of the algorithm in C++,
and we tested some small modifications to the algorithm on the way. Here are
reported some of the most notable variants we produced.

Joint vs Isolated Q-tables

The first modification we tested was the use of joint Q-tables versus isolated Q-
tables. McSplitDAL uses an alternation of the RL policy and the DAL policy,
which define different reward update functions. In the first version, McSplitDAL
Joint, there is a common Q-value pool for both policies, and only the reward
update function is routinely changed. In the second version, McSplitDAL Isolated,
there are two separate Q-value pools, one for each policy. The update function
is computed simultaneously for both policies, but only the Q-value pool of the
current policy is interrogated during a McSplit branching event.

McSplit Isolation necessarily requires double the memory capacity and the
computational power to store and update the Q-value pools. However, it also
allows the two policies to learn independently of each other. This allows the policies
to differentiate more, and therefore to escape local minimums more easily.

Initialization of Q-tables

Traditional RL approaches rely on a starting initialization to zero of the Q-values,
which are then updated over the course of numerous iterations. In McSplitDAL (or
in general in all derivatives of McSplitRL) the algorithm is executed only once, but
the rewards are still initialized to zero. At the start of the recursion, McSplit has to
decide which candidate match to select, and since all the Q-values are initialized to
zero, the algorithm will select as a tie-breaker the vertex with the highest number
of incident edges, as provided by the node-degree heuristic. Therefore, in the first
stages of the recursion, the algorithm will act similarly to the original McSplit
while the Q-table fills up.

However, the first branching decisions are arguably the most important ones:
each branch might require a long time to be explored, and therefore the algorithm
might not have enough time to explore all of them. Consequently, it is important
to make sure that the first branching decisions are the best ones. In the current
state, if during a recursion the algorithm has to decide between two vertices, one
already encountered and one new, it will always select the already encountered
vertex, as it will have a non-zero Q-value. This is not necessarily the best choice,
as the new vertex might have a higher degree, and it might be a better candidate.

27

Algorithmic Optimizations and Heuristics

To solve this problem, we test a different McSplitDAL variant, where the Q-
tables are initialized with the scores provided by the heuristic (i.e., the degree of the
node). This way we assign a stronger initial weight to the heuristic during the first
recursions, which will then slowly decade as the rewards follow their update-decay
cycle.

McSplitRL+DAL vs McSplitLL+DAL

McSplitDAL alternates the RL policy and the DAL policy to have two different
search agents that can collaborate to escape local minima. However, the RL policy
is less performant than other search agents, such as McSplitLL. Therefore, we test
a variant of McSplitDAL where the RL policy is replaced by McSplitLL. For clarity,
we call this variant McSplitLL+DAL, differently from the original McSplitDAL,
which we temporarily call McSplitRL+DAL.

The two implementations represent a trade-off: McSplitLL+DAL has two good
agents, but they are both similar and therefore they might not be able to escape
local minima. McSplitRL+DAL has two different agents, but one of them is less
performant than the other, and therefore it might not be able to find good solutions.
We will test the two variants to see which one performs better in practice.

28

Algorithmic Optimizations and Heuristics

3.2 Static Heuristics
As discussed in Algorithm 1 (Section 2.3), McSplit uses a higher-degree-first heuristic
to select the next vertex to branch on. Since the degree of the nodes is constant, it
can be computed once at the start of the algorithm. An efficient implementation
is shown in Algorithm 4. The algorithm first computes the degree of each vertex
(lines 2-3) as a numerical score, then sorts the vertices of G and H in descending
order of these scores (lines 4-5). In our implementation, the graphs are represented
through an adjacency list to reduce memory consumption, but the approach is
valid with other data structures as well. The actual recursive McSplit function is
then called on the sorted graphs.

1 Function McSplit(G, H)
2 gorder = computeHeuristic(G)
3 horder = computeHeuristic(H)
4 åG = sort(G, gorder)
5 æH = sort(H, horder)
6 S = mcs(åG, æH, {})
7 return S

8
Algorithm 4: Implementation of McSplit that sorts the vertices of G and H
according to a heuristic before starting the search.

Inside the mcs() function of the basic McSplit algorithm, the vertices are selected
in the order they appear in the sorted graphs, thus respecting the heuristic without
any explicit and expensive calculation during the recursion. In the case of the
more complex RL-based McSplit variants, the selection functions use the Q-table
rewards to select the vertices, but they still rely on the sort order as a tie-breaker
(Algorithm 5). In Chapter 6 we will confirm through experimental observations that
the heuristic still holds a significant impact on the performance of the RL-based
algorithms.

McSplit uses the degree heuristic in the hope that highly connected vertices are
more likely to be part of the solution. However, this metric fails to account for
the properties of the neighborhood of the node and is therefore extremely limited.
This simplicity makes the heuristic particularly fast to compute, but this is not
an important property, as the sort order is computed only once at the start of the
algorithm. Moreover, the degree is by its nature a low-variance integer number, so
most nodes will have the same score and ties will be frequent.

Next, we propose alternative heuristics that should have the following properties:

• They should produce high-variance floating-point scores, to decrease the

29

Algorithmic Optimizations and Heuristics

1 Function SelectVertexV(G, β)
2 vertices = getBidomainV ertices(G, β)
3 max_reward = 0
4 best_vertex = null
5 for v ∈ vertices do
6 reward = getRLreward(v)
7 if reward > max_reward then
8 max_reward = reward
9 best_vertex = v

10 end
11 end
12 return best

13
Algorithm 5: selectVertexV function that selects the next vertex v to branch
on, using RL rewards. The static heuristic is implicitly used as a tie-breaker,
since if multiple nodes have the maximum reward, only the first in the heuristic
sort order is selected. The selection function for w is similar.

30

Algorithmic Optimizations and Heuristics

probability of ties.

• They should be relatively fast to compute so that the overhead of calculating
them is negligible compared to the time spent in the recursive calls.

Regarding the second requirement, we need to consider that the graphs need to
be sorted on the computed scores, with a worst-case complexity of O(|V |2 log |V |),
for a graph G(V, E). Our main goal is to keep the complexity of the heuristics
lower or comparable to this threshold. In practice, the heuristic computation might
also be performed in parallel, if the selected algorithm allows it.

Next, we will examine five alternative heuristics designed for the McSplit algo-
rithm. These new candidate sort orders have been chosen based on their ability to
prioritize the vertices in different ways, with the objective of establishing a more
effective best-first node selection policy.

3.2.1 PageRank (PR)
PageRank [31] is a crucial algorithm that revolutionized web search and information
retrieval. Its implementation paved the way for the emergence of Google, as it
successfully addressed the limitations of previous ranking methods. Developed by
Larry Page and Sergey Brin at Stanford University, PageRank aims to quantify
the importance and relevance of web pages based on their inbound link structure.
By assigning a numerical score to each page, PageRank provides a reliable measure
of its authority and popularity within the vast web ecosystem. This algorithm
evaluates both the number and quality of incoming links, considering links from
high-ranking pages as more valuable. Consequently, PageRank not only enhances
search engine rankings but also enables the identification of influential web pages.

As the world wide web can be represented as a directed graph, the importance
metric computed by PageRank can be directly applied to the nodes of the graphs
in the MCS problem. The intuition is that a node is important if it is pointed to
by other important nodes. Since in our research we are focusing on undirected
graphs, in Algorithm 6 we report an undirected version of PageRank.

The algorithm computes a stochastic matrix Gs from the input graph G (lines
5), which represents the flow of information in each edge. If we pretend that each
node produces one unit of information, and that this information proportionally
flows in all incident edges to the adjacent nodes, then the stochastic matrix Gs

represents the relative amount of information that a node u will send to a node v.
Gs represents a Markov chain, where each node is a state and the edges are the

transitions between states. The objective of PageRank is to compute the stationary
distribution of the Markov chain, which is the probability that a random walk on the
graph will be in each node. The stationary distribution is computed by iteratively
multiplying the stochastic matrix Gs with a vector p containing the probability

31

Algorithmic Optimizations and Heuristics

1 DF ← 0.85
2 ϵ← 0.00001
3

4 Function PageRank(G)
5 Gs ← computeStochasticMatrix(G)
6 Gs,t ← GT

s

7 p← [1
|G|] ∈ R|G|

8 while error > ϵ do
9 ranks← [0] ∈ R|G|

10 ranks← Gs,t · p
11 ranks← DF × ranks + 1−DF

|G|
12 errorslocal = abs(ranks− p)
13 error ← errorslocal · ([1] ∈ R|G|)
14 p← ranks

15 end
16 return p

17

18 Function computeStochasticMatrix(G)
19 Gs ← [0] ∈ R|G|,|G|

20 forall u ∈ G do
21 forall v ∈ G do
22 if deg(u) = 0 then
23 Gs[u, v]← 1

|G|
24 else
25 if (u, v) ∈ EG then
26 Gs[u, v]← 1

deg(u)
27 end
28 end
29 end
30 end
31 return Gs

32
Algorithm 6: PageRank algorithm for undirected graphs.

32

Algorithmic Optimizations and Heuristics

of being in each node (line 10). In practice, this is achieved by computing a dot
product between the transposed matrix Gs, t and p. The algorithm stops when the
difference between the probability vectors of two consecutive iterations is less than
a threshold ϵ (line 2). This difference is computed as the sum of the differences
of the individual node probabilities (line 10 we indicate it as a dot product of the
difference vector and the unitary vector).

The damping factor DF (line 1) is a parameter that controls the probability
of jumping to a random node instead of following the edges of the graph. This
is necessary to avoid the case where a node has no outgoing edges, which would
cause the algorithm to get stuck in that node. The damping factor is the main
feature that differentiates PageRank from the Eigenvector Centrality metric. The
PageRank algorithm is guaranteed to converge to the stationary distribution, and
the resulting vector p contains the PageRank score of each node.

The time complexity of the algorithm highly depends on the implementation.
Algorithm 6 builds the stochastic matrix Gs in O(|V |2 + |E|), which is easier to
handle, then it iterates k times until convergence in O(|V |). This sacrifices both
time and memory (O(|V |2)) for the sake of simplicity during the prototyping phase
of the research. If the input graphs become too large, PageRank can be reduced to
an overall complexity of O(k(|V |+ |E|)).

3.2.2 Betweenness Centrality (BC)
Betweenness centrality [32] is a measure of centrality in a graph that considers
the shortest paths. Given any pair of vertices in a connected graph, there exists
at least one path between those nodes such that the number of edges that the
path passes through is minimized. This path is called the shortest path. The
betweenness centrality for each vertex is the number of these shortest paths that
pass through the vertex. If a pair of vertices has multiple paths composed of the
minimum number of edges, only one of them is considered.

Algorithm 7 is an implementation of the Betweenness Centrality that uses the
Brandes algorithm [33] to compute the shortest paths between all pairs of nodes in
the graph and assigns the centrality scores.

In the algorithm we consider each node s ∈ G separately, and we compute all
shortest paths from that node to any other node w ∈ G using a BFS approach.
We use a queue Q to store the nodes that we still need to visit, and a stack S to
store the nodes in the order that we visit them. We also use a vector P to store
the predecessors of each node in the shortest paths, and a vector σ to store the
number of shortest paths from s to each node w ∈ G. We use a vector d to store
the distance from s to each node w ∈ G, and a vector δ to store the centrality of
each node w ∈ G.

The core of the algorithm is the computation of δ in line 30 using a backtrack

33

Algorithmic Optimizations and Heuristics

1 Function BetweennessCentrality(G)
2 BC← [0] ∈ R|G|

3 for each s ∈ |G| do
4 P ← []× |G|
5 S ← stack()
6 Q← queue()
7 σ ← [0] ∈ R|G|

8 d← [−1] ∈ R|G|

9 δ ← [0] ∈ R|G|

10 σ[s]← 1
11 d[s]← 0
12 Q.push_back(s)
13 while |Q| > 0 do
14 v ← Q.pop()
15 S.push(v)
16 for each w ∈ neighborhood(v) do
17 if d[w] < 0 then
18 Q.push(w)
19 d[w]← d[v] + 1
20 end
21 if d[w] = d[v] + 1 then
22 σ[w]← σ[w] + σ[v]
23 P [w].append(v)
24 end
25 end
26 end
27 while |S| > 0 do
28 w ← S.pop()
29 for each v ∈ P [w] do
30 δ[v]← δ[v] +

1
σ[v]
σ[w]

2
(1 + δ[w])

31 end
32 if w /= s then
33 BC[w]← BC[w] + δ[w]
34 end
35 end
36 end
37 return BC

Algorithm 7: Betweenness Centrality

34

Algorithmic Optimizations and Heuristics

approach (achieved by fetching the elements of the stack S in the reverse order
of their insertion). At each source s and destination w, δ is equal to the ratio
of shortest paths passing through v by the number of shortest paths not passing
through v. The δ of each node v is then accumulated in the BC global vector.

The computation of the Betweenness Centrality is considerably more complex
than the original degree heuristic. In the worst case, it has a time complexity
of O(|V |(|V | + |E|)), but, if needed, more optimized algorithms are available
to further reduce the complexity to O(k|V |), with k < |E| [34]. In practice,
this implementation has an advantage over PageRank, as the operations on each
vertex s are completely independent. This means that the algorithm can be easily
parallelized on multiple threads, achieving a speedup that is essentially linear with
the number of threads.

3.2.3 Closeness Centrality (CC)
Closeness centrality [35] is a measure of centrality in a graph based on the average
shortest path distance between a node and every other node in the graph. It is
defined as the reciprocal of the sum of the shortest path distances d(s, w) from the
node s to all other nodes w in the graph. Thus, the more central a node is, the
closer it is to all other nodes.

CC(s) =
Ø

w∈G\{s}

1
d(s, w) (3.2)

To get a proper average of the distances, we should normalize the equation by
|G| − 1, but this is not important for our application.

The algorithm, shown in Algorithm 8 is a straightforward computation of the
lengths of the shortest paths d(s, w) using Dijkstra’s algorithm, followed by the
application of 3.2.

For each node, the code has the same complexity as Dijkstra’s algorithm, which
is O(|E|+ |V | log |V |) if a Fibonacci heap is used. However, versions optimized for
the Closeness Centrality and with a lower complexity are available [36]. Regardless,
the final complexity of our implementation is quadratic in |V |, thus we expect its
computation to introduce a noticeable overhead during the execution of McSplit.
As in the case of the Betweenness Centrality, the computation of the Closeness
Centrality is completely independent for each node s, and thus the algorithm can
be easily parallelized on multiple threads.

3.2.4 Katz Centrality* (KC*)
The Katz Centrality (KC) [37] is a measure of centrality that takes into account
the number of paths of length l between a pair of nodes. It is defined as the sum

35

Algorithmic Optimizations and Heuristics

1 Function ClosenessCentrality(G)
2 CC← [0] ∈ R|G|

3 for each s ∈ |G| do
4 Visited← [false] ∈ R|G|

5 d← [∞] ∈ R|G|

6 dt← [∞] ∈ R|G|

7 d[s]← 0
8 dt[s]← 0
9 for j ← 0 to |G| − 1 do

10 Minimum←∞
11 for k ∈ |G| do
12 if Visited[k] = false then
13 if Minimum > dt[k] then
14 Minimum← dt[k]
15 u← k

16 end
17 end
18 end
19 dt[u]←∞
20 for w ∈ neighborhood(u) do
21 if Visited[w] = false then
22 if d[w] > d[u] + 1 then
23 d[w]← d[u] + 1
24 dt[w]← d[w]
25 end
26 end
27 end
28 Visited[u]← true
29 end
30 CC[s] = 1

sum(d)
31 end
32 return CC

Algorithm 8: Closeness Centrality

36

Algorithmic Optimizations and Heuristics

of the number of paths of length l between a pair of nodes s and w for all l ∈ N,
weighted by a factor α ∈ R. Unlike the Betweenness and Closeness Centrality
measure that used the shortest paths, the KC uses all paths between a pair of
nodes, therefore resembling more PageRank and the similar Eigenvector Centrality.
However, we used a slightly modified version of KC that we call Katz Centrality*,
which considers only the shortest paths. This enables us to compute the algorithm
using a single BFS traversal, instead of the longer iterative approach used in the
original algorithm, thus keeping the heuristic fast to compute in O(|V |+ |E|).

1 Function KatzCentrality*(g)
2 α← 0.5
3 KC ← [0] ∈ R|G|

4 for s ∈ G do
5 visited← false ∈ R|G|

6 score← [0] ∈ R|G|

7 score[s]← 1
8 next_layer = {s}

// Run BFS
9 while |next_layer| > 0 do

10 current_layer ← next_layer
11 next_layer ← {}
12 for v ∈ current_layer do
13 for w ∈ neighborhood(v) do
14 if visited[w] = false then
15 score[w]← score[w] + α · score[v]
16 next_layer = next_layer ∪ {w}
17 end
18 end
19 end
20 for w ∈ next_layer do
21 visited[w]← true
22 end
23 end
24 KC[s] = sum(score)
25 end
26 return KC

Algorithm 9: Katz Centrality*

In Algorithm 9 we can see that KC* computes a metric that extends the
traditional degree heuristic. The algorithm computes the shortest paths from a

37

Algorithmic Optimizations and Heuristics

given vertex s to all other vertices w in the graph. If we call d(s, w) the length of
the shortest path from s to w and k the number of paths from s to w with a length
of d(s, w), vertex w is assigned a local score given by k · αd(s,w). More in general, if
Sl(s) is the set of vertices at minimum distance l from s, the total score of w is
given by

KC*(s) =
∞Ø

l=1
|Sl(s)| · αl (3.3)

An alternative interpretation is that the algorithm calculates the l-neighbors
of s (i.e., the vertices exactly l edges away from s) and assigns them a score
proportional to αl. By summing the scores of all l-neighbors for each value of l, the
algorithm provides an enhanced measure of centrality that captures the influence
of neighboring vertices in a comprehensive manner. Following this definition, the
degree heuristic is a special case of KC* with α = 1 computed only for l = 1.

3.2.5 Local Clustering Coefficient (LCC)
Most of the previous heuristics try to estimate a value of centrality that is best
suited for the MCS problem. On the other hand, Local Clustering Coefficient
(LCC) is a metric of how much the nodes tend to cluster together and form a clique.
It is defined as the ratio of the number of edges (u, v) connecting the neighboring
nodes of a vertex s, and the maximum number of edges that could possibly exist
between them.

LCC(s) = 2|{(u, v) ∈ E : (s, u) ∈ E ∨ (s, v) ∈ E}|
degn(s)(degn(s)− 1) (3.4)

Figure 3.2: Example of the Local Clustering Coefficient (LCC) of a node A with
degn(s) = 4. The LCC is the ratio of the number of edges between the neighboring
vertices of A (highlighted in green) and the maximum number of edges that could
potentially exist between them (missing edges are shown in red).

38

Algorithmic Optimizations and Heuristics

We call these edges triangles, because they form a triangle together with the
edges (s, u) and (s, v). For brevity, we define degn(s) = |neighborhood(s)|, in the
knowledge that degn(s) = deg(s) if s does not have self-loops (edges (s, s)).

1 Function LocalClusteringCoefficient(G)
2 LCC ← [0] ∈ R|G|

3 for s ∈ G do
4 if degn(s) < 2 then
5 LCC[s]← 0
6 else
7 ntriangles ← 0
8 neighbors← neighborhood(s)
9 for v ∈ neighbors do

10 neighbors← neighbors \ {v}
11 for w ∈ neighbors do
12 if (v, w) ∈ E then
13 ntriangles ← ntriangles + 1
14 end
15 end
16 end
17 LCC[s]← 2ntriangles

degn(s)(degn(s)−1)
18 end
19 end
20 return LCC

Algorithm 10: Local Clustering Coefficient

The algorithm presented in Algorithm 10 provides a straightforward imple-
mentation of 3.4. The algorithm operates by computing the number of triangles
present in the neighborhood of a given vertex s. This count is then divided by the
maximum number of triangles that could potentially exist in the neighborhood of s,
represented by degn(s)(degn(s)−1)

2 . It is important to note that this formula is specific
to undirected graphs. In terms of computational complexity, if an adjacency matrix
is used the algorithm can be considered linear in the number of edges of the graph
for each vertex s. It iterates through all the edges (v, w) of the graph and checks
whether vertices v and w are neighbors of s in O(1). Consequently, it would be
O(|E|) for each vertex s, thus O(|V ||E|) for the whole graph in the worst case.
However, in practice the complexity is dependent on the implementation.

39

Algorithmic Optimizations and Heuristics

3.2.6 Summary
For clarity, in the rest of this thesis we will append the heuristic acronym as a
suffix of the considered algorithm. For example, while McSplitLL uses the degree
heuristic, McSplitLL+PR uses the PageRank heuristic. To broadly refer to a
family of algorithms, regardless of the heuristic used, we will use the notation
"McSplitLL+".

Table 3.1: Static heuristics for McSplit

Heuristic Acronym Description

Degree Number of incident edges
PageRank PR Probability of being in any random walk
Betweenness Centrality BC Number of traversing shortest paths
Closeness Centrality CC Average length of shortest paths from the node
Katz Centrality* KC* Count of neighbors weighted by shortest distance
Local Clustering Coefficient LCC Cliqueness of the neighborhood

3.1 summarizes the heuristics that we will use in the rest of this thesis, with
a short description of the node information used to assign the priority order. To
speed up their computation, BC and CC are computed on multiple threads, since
they are easily parallelizable.

40

Chapter 4

Parallel Architectures and
Multi-Threading

Multithreading is a technique in computer programming that enables concurrent
execution of multiple threads within a single process. Threads are independent
sequences of instructions that can be scheduled to run simultaneously, allowing
for parallel execution and efficient utilization of system resources. Each thread
operates independently and can perform its own set of tasks, sharing the same
memory space with other threads within the process.

Multithreading offers several advantages, including improved responsiveness
and increased throughput in applications that can benefit from parallel execution.
It allows for the efficient execution of tasks that can be divided into smaller,
independent units, enabling better utilization of multicore processors and facilitating
concurrent processing of multiple tasks.

This chapter focuses on exploring parallelization techniques for the McSplit
algorithm. McSplit uses a recursive approach to perform a complete exploration of
the search space, and parallelizing it poses unique challenges. The recursive nature
of McSplit implies that the execution of each action is dependent on the actions
that preceded it, creating interdependencies that need to be carefully preserved and
managed during parallel operations. Additionally, the pruning mechanism adds
another layer of complexity, as it requires maintaining the correct pruning state
across multiple threads to ensure the validity of the exploration.

In this chapter, we will investigate two approaches to parallelize McSplit and
improve its performance by leveraging the multithreading capabilities of modern
general-purpose computers. We call these approaches McSplit Multi Branch and
McSplit Branch Sharing. If these approaches reveal themselves to be effective,
future research could explore the possibility of implementing a distributed version
of McSplit, which could greatly increase the scalability of the algorithm and allow

41

Parallel Architectures and Multi-Threading

it to benefit from the computational power of multiple machines.

4.1 McSplit Multi Branch (McSplitMB)
McSplit Multi Branch (McSplitMB) is a very simple parallel version of McSplit,
which was built on the original idea by the authors of the original McSplit paper.
In McSplitMB, the branching structure of the McSplit algorithm, as depicted in
Figure 4.1, serves as the basis for parallelization. Each node in the figure represents
a call to the McSplit function after selecting a node pair ⟨v, w⟩.

Figure 4.1: Branching structure of McSplit. In each step, the algorithm selects a
node pair ⟨v, w⟩ and proceeds to the next step, building a tree structure.

The key idea behind McSplitMB is to split the recursive tree vertically, allowing
multiple threads to concurrently explore different branches of the search space. The
process starts with a master thread that performs the initial steps of the McSplit
algorithm until a certain depth. At this depth, the master thread identifies all
recursion nodes and submits them to a thread pool.

Within the thread pool, each thread is assigned to a task, which corresponds
to a specific recursion node and the relative branch of the search space, and
proceeds to execute the McSplit algorithm from that point onwards. Once a task
is completed, the thread fetches another task from the queue. This allows for
parallel computation of multiple McSplit instances, each starting from a different
recursion node. By distributing the workload among multiple threads, McSplitMB
significantly reduces the overall execution time, accelerating the search for the
maximum common subgraph.

42

Parallel Architectures and Multi-Threading

Figure 4.2: McSplitMB: the master thread M performs the initial steps of the
McSplit algorithm until a certain depth (here depth = 2). At this depth, the master
thread identifies all recursion nodes and submits them to a thread pool.

The number of threads involved in the parallelization is determined by the
parameter nthreads, which specifies the desired level of parallelism. The depth
parameter is used to control the granularity of the parallelization. A lower value
of depth results in a smaller number of larger tasks submitted to the thread pool,
which could reduce the thread pool management overhead. However, a lower value
of depth also increases the risk of load imbalance among threads, as some branches
of the search tree may be pruned early on, possibly leaving the task queue empty
and some threads idle.

4.2 McSplit Branch Sharing (McSplitBS)
McSplit Branch Sharing (McSplitBS) is a more complex parallel version of the Mc-
Split algorithm that addresses the potential issues of load balancing and inefficient
resource utilization in McSplitMB. While McSplitMB provided a simple approach
to parallelization, it could encounter challenges when dealing with workload im-
balances and suboptimal branch selection. Specifically, McSplitMB could end up
wasting computational resources on branches that are unlikely to lead to a maximal
common subgraph. This is especially true if we employ a good heuristic for branch
selection. In this case, the last threads in the thread pool could quickly finish all
the tasks in the queue due to pruning, and be left idle for the rest of the execution

43

Parallel Architectures and Multi-Threading

because incapable of picking up new branches. This would result in a suboptimal
utilization of the available resources, and ultimately in a slower execution time.
The issue is further aggravated by the fact that the depth parameter is set statically,
but its optimal value is non-trivially dependent on the complexity of the input
graphs. This complexity is closely related to the size and density of the graphs,
but the exact relationship is not known. As a result, McSplitMB is less versatile
on a heterogeneous set of inputs.

4.2.1 Building an iterative version of McSplit
To overcome the aforementioned limitations, McSplitBS introduces a transformative
change to the McSplit algorithm by converting it from a recursive implementation
to an iterative one. This allows for greater control and flexibility. In this new
approach, the algorithm maintains a context variable called Step. This context
variable stores all the information required for the search operations, and it allows
for the transfer of search branches between different threads. By moving the Step
object from one thread to another, we are enforcing a form of high-level context
switching. The main information carried by the context is the set of bidomains B,
which implicitly defines the set of vertices that are still available for matching, plus
other auxiliary information such as the current solution Scurrent or the last selected
vertex v. A stack data structure is used to store the context objects while they are
waiting to be processed, following a Last-In-First-Out (LIFO) policy.

As a broad generalization, in the iterative implementation of McSplit in a
single-thread environment the algorithm repeats the same set of operations:

1. Pop the top element of the stack.

2. Process it.

3. Push the newly created branches back to the stack.

4. Repeat until the local stack is empty.

However, due to the asymmetric nature of the mcs() function, which involves
selecting a single vertex v and then iterating over multiple vertices w to find matches
for v, the Step context can be of two types, StepV and StepW , each representing
part of a recursion call. StepV instructs the thread to select a new vertex, and then
to create a corresponding StepW . StepW is used to select a single new vertex w,
then generate a new StepW object along with a new StepV . The creation of these
objects follows a simple Finite State Machine (FSM), represented in Figure 4.3b.
For ease of management, since stepV objects cannot create multiple branches, they
are computed immediately upon creation, and in practice, only StepW elements
can be pushed to the stack.

44

Parallel Architectures and Multi-Threading

(a) Execution flow

(b) Finite State Machine
diagram

Figure 4.3: McSplitBS: iterative implementation of the recursive search

Consider Figure 4.3a. Thread T0 starts the algorithm with a StepV object
containing the initial state of the algorithm, denoted as V0. The object contains
all the context required for the selection of a new vertex v. Upon selecting v, a
new StepW object, W0,0 in the diagram, is created. The StepW object carries
additional information required for the selection of a vertex w. Once T0 utilizes
W0,0 to select the first vertex w, it generates two new StepV and StepW objects,
namely V1 and W0,1. W0,1 is inserted onto the local stack, then V1 is immediately
computed, and the new W1,0 it created is inserted as the last element in the local
stack. Consequently, W1,0 is immediately selected, while W0,1 remains in the stack
until all the child branches of W1,0 have been exhaustively explored. W1,0 then
leads to the creation of W1,1 (left idle in the stack) and V2. This process continues
until T0 reaches the end of the main branch, where it is not possible to select any
other vertex v. Consequently, the last StepV aborts its execution, and T0 pops the
last StepW context that was inserted and left idle in the stack, thus switching the
current branch. The algorithm terminates when the local stack becomes empty,
indicating the completion of the exploration of the entire search space.

4.2.2 Branch Sharing
To parallelize the iterative implementation of McSplit, a global stack is introduced,
which is shared among all the threads. This global stack serves as a storage for the

45

Parallel Architectures and Multi-Threading

StepW objects that are awaiting assignment to a thread. The operation of each
thread is slightly modified as follows:

1. Pop the top element of the global stack and push it to the local stack.

(a) Pop the top element of the local stack.
(b) Process it.
(c) Push the newly created elements back to the local stack.
(d) Repeat until termination condition X.

2. Push the remaining elements from the local stack to the global stack.

3. Repeat until the global stack is empty.

The termination condition X is the policy that allows us to manage the branching
behavior of the algorithm. We define it as X = local stack is empty or local stack
size is greater or equal than block_size. The first condition is trivial: if the stack
is empty, the thread has explored the entire local branch, and it can now fetch a
new branch from the global stack.

The second condition is used to limit the size of the local stack, preventing the
thread from exploring alone a branch that is too large. In McSplit a big branch is
likely a promising one, because it has not been pruned yet. However, it is also a
branch that will take a long time to explore, and it is likely that the thread will
not be able to finish in time before the timeout.

Therefore, we force the thread to relinquish control of the branch and push all
its pending elements to the global stack. This will effectively split the branch across
multiple threads, and it will allow the algorithm to explore the branch in parallel.

Consider block_size = 4. The thread starts the exploration and visits the recur-
sion tree with a DFS approach until the local stack contains {W0,1, W1,1, W2,1, W3,0}
(4.4). Then, T0 pushes all elements to the global stack, and it immediately pops
the top context object W3,0 from it into the local stack (4.4).

As shown in 4.5, the algorithm progresses with more iterations. Let’s assume
the thread T0 has popped W3,0 from its local stack and is currently processing it,
temporarily leaving the stack empty. Meanwhile, thread T1 pops W2,1 from the
global stack and explores its local branch. If the branch is large enough, Thread
T1 will further split it, resulting in the creation of a new W2,2 object that will be
pushed back to the global stack. In this example, we assume that W2,2 selects the
last w that can be matched to the vertex v selected by V2, so the StepW object
only generates V5. Since the entire branch of W1,0 is already assigned to T0, T1 and
T2, thread T3 fetches W1,1 from the global stack.

It is notable that in Figure 4.5 W0,1 is the only element remaining in the global
stack, despite being the first element initially pushed onto it. While McSPlitMB

46

Parallel Architectures and Multi-Threading

Figure 4.4: McSplitBS: global stack after T0 reaches the termination condition

47

Parallel Architectures and Multi-Threading

Figure 4.5: McSplitBS: subdivision in threads

performs a BFS subdivision of work, McSplitBS prioritizes the most promising
branches, in order to get the largest solution as soon as possible. This highlights
that McSplitBS relies heavily on the effectiveness of the node selection heuristic, as
a poor branch selection at the beginning of the algorithm can significantly impact
its performance.

Algorithm 11 reports a more detailed overview of the McSplitBS inner workings,
considering that mcsThread is the function running in all nthreads threads. For
practical reasons, the actual code is slightly different from the flow described here,
and the pseudocode reflects some of these changes.

Block size

The choice of block_size in McSplitBS has a significant impact on the granularity
of the context switching among threads. A low block_size results in threads
relinquishing their steps more frequently, leading to a larger number of steps in

48

Parallel Architectures and Multi-Threading

1 S ← {}
2 Stepsglobal ← stack()
3 Function mcsThread(G, H)
4 Stepslocal ← stack()
5 while time < timeout do
6 Pop Step sg from Stepsglobal under mutual exclusion
7 Stepslocal.push(sg)
8 while 0 < Stepslocal.size() < block_size do
9 s← Stepslocal.getHead()

10 restore context from s
11 if s is a StepV then

// this is a StepV
12 if |Scurrent| > |S| then
13 S ← Scurrent

14 end
15 Bound← ComputeBound(G, H, |Scurrent|)
16 if Bound < |S| then
17 return
18 end
19 β ← SelectBidomain(G, H)
20 v ← SelectV ertexV (G, β)
21 G′ ← G′ \ {v}
22 make s a StepW
23 Stepslocal.push(s)
24 else

// this is a StepW
25 w ← SelectV ertexW (H, β)
26 S′

current ← Scurrent ∪ {v : w}
27 H ′ ← H \ {w}
28 UpdateBidomains(G′, H ′, v, w)
29 snext = newStepV (context)
30 Stepslocal.push(snext)
31 if βright = ∅ then

// No more branches to explore, backtrack
32 Stepslocal.pop()
33 end
34 end
35 end
36 if Stepslocal.size() > 0 then
37 Stepsglobal.push(Stepslocal.all())
38 end
39 end

Algorithm 11: The McSplit Branch Sharing algorithm.

49

Parallel Architectures and Multi-Threading

the global stack. This means that the first thread quickly pushes its steps to the
global stack during the initial stages of execution. The following threads will be
able to pop elements from the global stack sooner, starting their exploration closer
to the root of the tree. However, this increases the number of elements present on
the global stack and raises the potential for concurrency conflicts among threads
when fetching new context objects.

On the other hand, a high block_size reduces the frequency of conflicts in
accessing the global stack under mutual exclusion. Furthermore, the sibling threads
start their execution from deeper branches because the first thread takes longer
to submit tasks to the global stack. This could be beneficial as it makes the
algorithm focus on the most promising branch, which was selected by the first
thread. However, if the first selected branch is not the best one, the algorithm
will take longer to explore other areas of the search space. Moreover, a higher
block_size means that the threads will hold onto their steps for a longer duration
before relinquishing control, potentially leading to increased load imbalance among
the threads.

Lastly, with a high block_size there is the possibility that a thread might dump
a significant number of steps onto the global stack, potentially overshadowing all
the previous steps. As a result, these earlier steps may take a considerable amount
of time to be fetched and processed. This behavior shifts the algorithm’s focus
towards the latest branch being explored, as the steps from previous branches may
experience delays in execution.

Delayed Sharing

To investigate the impact of the starting point of sibling threads on the performance
of McSplitBS, we design a specialized test. In this test, regardless of the chosen
block_size, we artificially modify the behavior of the first thread. Instead of
immediately pushing elements to the global stack when the termination X is
reached, we enforce a condition that prevents the first thread from pushing any
elements until it performs the first pruning operation. This modification ensures
that the first thread explores deeper into the first branch before sharing its progress
with the sibling threads.

By delaying the initial push to the global stack, we aim to observe the effects of a
more focused exploration strategy. McSplitBS typically discovers a reasonably sized
solution in its first branch, especially when coupled with a good heuristic. Therefore,
the pruning process primarily occurs deep within the initial branch. By restricting
the first thread’s ability to push to the global stack before pruning, we can determine
if a tighter exploration, with a higher concentration of promising branches, leads
to improved overall performance compared to the broader exploration of a low
block_size or McSplitMB (4.6).

50

Parallel Architectures and Multi-Threading

(a) Focused exploration

(b) Broad exploration

Figure 4.6: Using a high block_size or the Delayed Sharing technique results
in a focused exploration, delving deep into a small set of branches, potentially
missing the best branch. A broad exploration visits more branches but in a shallow
manner, risking incomplete exploration of individual branches. Evaluation and
experimentation are needed to determine the optimal strategy.

4.3 Conclusion

Given the complexities and trade-offs associated with the choice of McSplitMB
or McSplitBS and its block_size parameter, it is challenging to make accurate
predictions on which is the optimal strategy. The behavior of the algorithm, in
terms of load distribution and branch exploration, depends on various factors such
as the characteristics of the input graph, the nature of the search space, and the
architecture of the underlying hardware. To determine the most suitable approach,
empirical testing and experimentation are necessary. Furthermore, McSplitBS
adopts a more complex implementation compared to McSplitMB, primarily due

51

Parallel Architectures and Multi-Threading

to the new iterative structure and the introduction of the context variable Step,
as well as the management of the frequent concurrency conflicts on the global
stack. This additional complexity comes with some overhead, making it crucial
for McSplitBS to deliver substantial performance improvements to justify its use.
However, our primary objective is to investigate the performance trade-offs between
broad and tight exploration strategies on a parallel architecture. We also aim
to measure the performance boost achieved by parallelization compared to the
single-threaded McSplitX+ algorithms.

52

Chapter 5

Graph Neural Networks
(GNN)

One key challenge in McSplit is the selection of optimal nodes at each branching
stage. This decision significantly impacts the efficiency and effectiveness of the
algorithm. In Chapter 3 we focused on static heuristics, which assign pre-defined
scores or priorities to nodes based on certain characteristics. However, applications
in different domains might benefit from diverse and more specialized heuristics,
which would require extensive manual trial-and-error research to identify.

To address this limitation, we turn to machine learning, aiming to leverage its
capabilities to learn effective node selection policies. In particular, we explore the
application of GNNs as heuristic models for the McSplit algorithm.

Our investigation begins with an exploration of an existing solution called
GLSearch, which utilizes GNNs to score and select entire vertex pairs in McSplit.
We will use the knowledge gained by GLSearch to develop our own in-house GNN-
based models to investigate the viability and effectiveness of the ML approach as a
tool to improve the node selection process in McSplit.

In the realm of machine learning, conducting research and experimentation
often demands a significant investment of time and resources. Given the scope
of our current endeavor, which involves exploring various potential enhancements
for the McSplit algorithm, it is important to clarify our primary objective. While
we aim to make advancements and identify new state-of-the-art solvers, our main
focus lies in assessing the viability of using Graph Neural Networks (GNNs) as a
potential solution. Through this research, we strive to contribute to the collective
understanding of the utility and applicability of GNNs, paving the way for future
advancements in this domain.

53

Graph Neural Networks (GNN)

5.1 GLSearch
GLSearch [38] is a complex architecture that combines the power of GNNs and RL
through a Deep Q-Network (DQN) architecture. While built following the McSplit
framework, GLSearch applies radical changes to the node selection process. Instead
of relying on static heuristics to individually select the vertices v and w, GLSearch
utilizes a ML model to directly select a pair of vertices ⟨v, w⟩ to be matched at
each branching stage. Unlike other GNN-based MCS approaches, GLSearch is still
designed to explore the entire search space, given enough computational resources
and time, so it is still classified as a ground-truth solver for the MCS problem.

5.1.1 The architecture
During the execution of GLSearch, at each branching point in the McSplit algorithm
we encounter a specific state representing the current bidomains and a set of multiple
actions representing the possible pairs of vertices that can be selected. This state
and actions could be stored in a Q-table in the same way as McSplitRL, and use
Reinforcement Learning to predict the best match for a given state.

However, in McSplitRL the selection of the vertices was essentially stateless,
and in McSplitLL the selection of w had as a state the single vertex v, so the
Q-table had a memory occupation complexity of O(|V |2). When dealing with
medium to large graphs, the number of possible combinations of bidomain states
and possible vertex matches becomes exceedingly large, making it impractical to
store all of them in a Q-table. To overcome this issue, GLSearch adopts a Deep
Q-Network (DQN). A DQN is a reinforcement learning technique where the Q-table
is approximated by a MLP model. Instead of explicitly storing the Q-values, the
DQN learns to approximate them through training and saves a model object of a
much smaller size.

As seen in Section 2.5, MLPs require a fixed-size input in the form of a vector,
while bidomains take the form of collections of nodes of variable size. This requires
the definition of a mapping function capable of generating a state-action pair
representation that can be fed to the DQN. To achieve this encoding, GLSearch
utilizes a Graph Attention Network (GAT). The GAT is run on the set of bidomains
B at the current state of the McSplit recursion to compute a fixed-size embedding
eB. To better represent the state, the GAT is also used on the entire graphs G
and H to compute the global embeddings eG and eH . To represent the actions,
the GAT computes node-level embeddings ev and ew for v and w, which are the
vertices of the pair considered by each action.

These embeddings are then combined using a one-dimensional convolution
operation, resulting in a final fixed-size vector embedding that encodes both the
state and the considered action. The resulting representation is fed into the MLP

54

Graph Neural Networks (GNN)

model, which outputs a goodness score V (B, ⟨v, w⟩) for the considered state-action
pair.

Lastly, the authors introduce a discount factor γ to adjust the importance of
the goodness score. This is done to increase the difference between the rewards
and hopefully optimize the training of the model.

The architecture of GlSearch is quite complex, and it includes other small details
that we will not cover in this thesis. For a more in-depth explanation of the model,
we refer the reader to the original paper [38].

Overall, the entire DQN pipeline can be expressed using the following equation:

Q(B, ⟨v, w⟩) =1 + γ ·MLP (conv1d((5.1)
GAT (B), GAT (G), GAT (H), GAT (v), GAT (w)))

Figure 5.1: GLSearch architecture

5.1.2 Training
Training GLSearch poses several challenges, particularly in determining which
state-action pairs are favorable or unfavorable. To train the DQN, it is necessary
to have a function env() that simulates the environment response to a given
state-action pair. In this case, it should return a score of how good a branch is. The
crux of the issue lies in the fact that the MCS problem typically requires significant
time and computational resources to obtain the optimal solution. Consequently, it
is often difficult to ascertain which branches within the search space are genuinely
advantageous, because we don’t know in which branch the optimal solution lies.

55

Graph Neural Networks (GNN)

To overcome this challenge, GLSearch incorporates a curriculum learning ap-
proach. Curriculum learning involves gradually exposing the learning model to
increasingly complex or challenging instances of the problem. In the context of
GLSearch, this approach helps in guiding the training process, starting from simpler
instances where the optimal solutions are known and gradually progressing towards
more challenging scenarios.

Furthermore, the training is split into 3 stages:

1. pre-train: During the initial stage of training in GLSearch, the model
begins with no prior knowledge. To establish a strong foundation for the
subsequent learning process, training is initiated using small graphs for which
it is computationally feasible to calculate the optimal solution. To obtain the
optimal solution, the McSplit algorithm is employed to perform a complete
traversal of the search space without employing any pruning techniques.
By exhaustively exploring the search space, the pre-training phase allows for
the determination of the exact length of each branch and the identification of
the best solution within that branch. As a result, during the training process,
a label is assigned to each state-action pair based on the remaining length
yt of the best solution within the corresponding branch. Then the DQN loss
function is replaced with a MSE loss function L to train the predicted score
Q(B, ⟨v, w⟩) to match the label yt:

L = 1
N

NØ
i=1

(Q(B, ⟨v, w⟩)− yt)2 (5.2)

2. imitation learning: In the second stage of training, GLSearch goes beyond
using only small graphs for training and incorporates larger graphs as well.
The reason for this is to ensure better generalization of the model on larger
graphs, as small graphs may not fully capture the complexity and challenges
presented in real-world networks.
Since the optimal solution is not available, GLSearch leverages McSplit as
an expert solver for the MCS problem. McSplit guides the search process
by making informed decisions at each branching point, based on the default
degree heuristic.
The DQN in GLSearch is trained again using a MSE loss function, where
the labels are obtained from the decisions made by McSplit. In other words,
McSplit’s branching decisions act as the ground-truth labels for training the
DQN. The objective is to train the model to replicate the decision-making
process of McSplit and ultimately achieve similar performance, rather than
surpassing it.

56

Graph Neural Networks (GNN)

3. randomized learning: In the final stage of training, the objective is to
train the model to make smarter decisions than those made by McSplit. This
is done by performing the training using two parallel decision-making agents:
the DQN and a random policy.
A parameter ϵ determines the probability of using the random policy to select
the next branch of the recursion. This is done to ensure that if the model is not
able to make good decisions yet, a stochastic agent allows for the exploration of
new and potentially promising branches that the DQN might have overlooked.
Assuming that the model improves in the course of this stage, ϵ is set to
gradually decay, so that by the end of the training the DQN is the primary
decision maker in the algorithm.

5.1.3 Our experience
GLSearch is a complex system, and due to the complexities involved, we have
omitted several details in this overview. Our primary objective was to understand
and potentially adapt GLSearch methodologies for our experiments, as our main
goal was to explore the application of GNNs to McSplit. Consequently, we dedicated
a significant amount of time to comprehend the code implementation. However,
it is important to note that the publicly provided code had several flaws that are
still unresolved at the time of writing. Part of our effort on GLSearch has been
dedicated to the reformatting and restructuring of the code, in the hope to obtain
a fully working system. Regrettably, this work was for the most part unsuccessful,
and completely rewriting from the start such a complex body of code was beyond
the scope of our research, so we were limited to utilizing what had been provided.

We were able to successfully execute the program on a very limited set of graph
pairs and evaluate the available pre-trained models, but we encountered challenges
in getting the training code to function properly. As a result, we are unable to
conduct comprehensive testing of the software. Most importantly, GLSearch has
been trained to tackle the MCCS problem, whereas our focus is on the MCS, so it
is not possible to perform a fair comparison of GLSearch against our other models.
Considering these difficulties, we made the decision to discontinue our exploration
of GLSearch and move on to building our own models.

5.2 McSplitGNN
The first of these models is called McSplitGNN. Our objective is to develop a simpler
system compared to GLSearch, which will enable us to gain a deeper understanding
of how GNNs behave in the context of the MCS problem. However, unlike GLSearch,
we aim to preserve the fundamental structure of McSplit, where the selection of

57

Graph Neural Networks (GNN)

vertices v and w is performed separately. Nonetheless, the architecture can be
extended to the selection of a matching pair ⟨v, w⟩, if needed.

The simplest application of the GNN is the individual selection of a vertex v or
w. In the traditional McSplitX+ models, this is done through a combination of
RL and static heuristics. In McSplitGNN, we replace the static heuristics with a
dynamic GNN-based model, which is trained to assign a score to each candidate
vertex.

5.2.1 The architecture

Figure 5.2: McSplitGNN architecture

The architecture of this model is shown in Figure 5.2. The input is the selected
bidomain β that contains the candidate vertices u. Since we are working on
individual vertex selection, in this section we will use only one side of the bidomain,
but the process is identical for both sides. The bidomain, which is internally
represented as a collection of vertices with the same bidomain label, must be
converted into an induced subgraph I ⊆ G before being fed into the GNN. The
GNN is a GCN composed of 3 Graph Convolutional layers. Given a starting
node-level embedding of size 1, the successive layers produce embeddings of sizes 4,
16 and 8. The dimension of the embeddings directly impacts the number of model
parameters and, consequently, the training time. Considering that bidomains
typically represent small subgraphs with limited connectivity, thus having low
complexity, we opted for a smaller number of parameters in favor of being able to

58

Graph Neural Networks (GNN)

run more training epochs.
The final embedding is fed into a two-layer MLP which compresses each node-

level embedding in a single scalar score. As in the convolutional layers, the MLP
uses ReLU as the activation function in the first layer, and the final score is
normalized by a sigmoid function. The output of the MLP is a vector of size
|β|, where each element represents the score of the corresponding vertex in the
bidomain. The node with the highest score is selected as the next vertex v or w in
McSplit.

5.2.2 Training
The main challenge of integrating GNNs into McSplit is the scarcity of training
data. Our model is supposed to work like a heuristic value function, and we opt for
a dynamic heuristic approach such as GLSearch, such that in the testing phase the
model is used at each branching point to get a localized set of scores. Our focus is
to have a fast training process, in order to be able to test different architectures
and hyperparameters. For this reason, we decided to use a destructured dataset,
which is generated offline before the training process.

To generate such a dataset, the McSplit algorithm is run on a set of graphs, and
the context of each branching point in the algorithm is saved to a binary file. The
resulting context objects contain the currently selected bidomain and the vertex
scores νi. These scores are obtained by taking advantage of the recursive nature of
McSplit: during a branching event, the algorithm calls itself to explore the new
branch, and when the function invocation returns, we can determine if the branch
contributed to increasing the current solution Scurrent, and if so, by how much.

By relying on McSplit, we cannot expect the model to surpass its performance
in terms of solution size. Furthermore, by working as a dynamic heuristic, the
algorithm is necessarily slower than the McSplitX+ models, which use static
heuristics that are computed only once at the start of the exploration. Therefore,
we do not expect the model to be able to make better decisions than McSplit, but if
it shows comparable performance it would mean that the model could be improved
in future research using a progressive curriculum approach.

It is important to note that the McSplit is run with pruning enabled. Con-
sequently, the pruned branches will achieve a score of νi = −1, or at least less
than their actual maximum increase. While this could be addressed by assigning
the bound as the score of the pruned branches, this could unfairly advantage the
pruned branches, as they would be assigned a higher score than the actual increase
they would have achieved. Regardless, our strategy does not heavily interfere with
the goodness of the scores νi, as the pruned branches in McSplit are guaranteed to
not have the maximum solution, but it means that the scores are not probabilistic.
For this reason, we use a sigmoid function as the final activation function of the

59

Graph Neural Networks (GNN)

MLP, instead of a softmax. The objective of the model is therefore not to predict
the probability of a branch being the best, but rather to try to output a holistic
score that considers the branch length and whether the branch will be pruned.

The scores νi are then further multiplied by the factor αi, which indicates if
the vertex is in the final solution found by McSplit. This adjustment penalizes
branches with a good increase in solution size, but which include matchings that
ultimately prevent the algorithm from finding the maximum solution.

The resulting dataset is a set of individual branching records. After shuffling,
this allows the model to learn patterns that are independent of the execution order
of the branching events. The training is done using the Adam optimizer, with
a learning rate of 0.005, and the MSE loss function is employed to compare the
sigmoid σ of the label with the predicted reward yi, for each vertex ui ∈ β:

αi =
1 if ui ∈ S

0 if ui /∈ S
(5.3)

L = 1
n

|β|Ø
i=1

(σ(αiνi)− yi)2

5.3 McSplit DiffGNN
McSplitGNN is designed as a dynamic heuristic score generator, to imitate the
behavior of a static heuristic. However, this involves losing graph information
during the compression transition from an embedding to a scalar value performed
in the MLP stage. As such, we create a new differential model, DiffGNN, which is
designed to perform decisions based on a difference of vector embeddings.

5.3.1 Model Architecture
The architecture (5.3) accepts as input the two sides of a bidomain, in the form
of two graphs βleft and βright. The bidomain graphs are processed by a GCN
module similar to the one used in McSplitGNN. However, this GCN is composed
of 4 convolutional layers, of respective sizes of 4, 16, 32 and 64. By increasing the
number of layers, we are collecting more information from a wider neighborhood of
the nodes. Additionally, increasing the size of the final layers allows the model to
store more information, despite costing more computational power. The GCN uses
a ReLU activation function internally, and a sigmoid activation function on the
final layer.

The GCN module is run twice on βleft and βright to produce two collections
el ∈ R|βleft|,64 and er ∈ R|βright|,64 of node-level embeddings. The objective of the

60

Graph Neural Networks (GNN)

Figure 5.3: DiffGNN architecture

model is to assign similar embeddings to nodes v and w that should be matched
together, and dissimilar embeddings to nodes that should not be matched together.
To achieve this, the algorithm computes the differences dv,w ∈ R64 of all the possible
combinations of the el and er embeddings, resulting in 3D tensor d ∈ R|βleft|,|βright|,64.

The pair inference process consists in selecting v using the DAL policy with the
PageRank heuristic. Then, the algorithm selects the pair ⟨v, w⟩ that minimizes
the MSE of the difference dv,w, thus selecting the vertex w. Although the GNN
is currently designed to select the vertex w, once the model is perfectioned and
properly trained, it could be adapted to select both v and w at once as a single
pair, by selecting the two closest matchings across all possible combinations. This
would allow the model to be used as a standalone dynamic heuristic, without the
need for the DAL policy. On the other hand, selecting a pair in a single step in a
bidomain of a thousand nodes would require comparing a million pairs of vector
embeddings, which is computationally expensive. As such, we leave this as a future
work.

5.3.2 Training
The training process for our model closely follows that of McSplitGNN, as described
in Section 5.2. After extracting the context of the branching points of a regular
McSplit run, which includes the bidomain graphs βleft and βright, the model is
trained using the differences of the embeddings generated by the GCN module.

To update the trainable parameters, a MSE loss function L is applied to the

61

Graph Neural Networks (GNN)

tensor d, asking each difference to be 0 if the corresponding nodes are matched
in S, 0.5 otherwise. We ask for a difference of 0.5 because the embeddings are
the output of a sigmoid function, so pushing them too far apart might lead to a
vanishing gradient situation.

lv,w =
[0] ∈ R64 if ⟨v, w⟩ ∈ S

[0.5] ∈ R64 if ⟨v, w⟩ /∈ S
(5.4)

L = 1
|βleft| ∗ |βright| ∗ 64

|βleft|Ø
v=1

|βright|Ø
w=1

64Ø
k=1

(dv,w,k − lv,w,k)2

During training, it can be observed that the distribution of these labels lv,w is
highly unbalanced, with the majority of combination matchings ⟨v, w⟩ not appearing
in the solution S. To address this imbalance, a filter is incorporated into the training
pipeline. This filter randomly samples k non-matching combinations, where k is
the number of matching combinations. This approach ensures a balanced dataset
for training and prevents the model from learning to always output a score of 0.5.
Alternatively, a weighted loss function could have been used, but the filter offers
the advantage of significantly reducing the amount of data needed to be computed
in Equation 5.4 by several orders of magnitude, particularly for large bidomains.

5.3.3 Training on synthetic data
One of the challenges of supervised Machine Learning is to identify and collect an
appropriate set of labels for the training data. In the case of McSplitGNN, the
labels are mostly based on the decision-making process of McSplit, filtered by the
matchings of the solution S. In DiffGNN, the labels are immediately dependent on
the solution, which is used to identify the pair combinations ⟨v, w⟩ that should be
rewarded. However, due to the high algorithmic complexity of the MCS problem,
it is not feasible to compute the optimal solution for each pair of graphs in the
dataset, so the labels are generated using a suboptimal solution.

The issue becomes considerably more relevant on larger graphs, where the
McSplit algorithm might find a much smaller set of matchings than the actual
maximum common subgraph. As such, the model is likely to be trained on a set of
labels that is not representative of the actual optimal solution and therefore of the
actual best decision-making process.

To address this issue, we propose to generate a synthetic dataset of large graph
pairs and their relative solution. One of the key challenges in this process is to
devise an algorithm or procedure able to synthesize data that follow a similar feature
distribution compared to real-world test instances. Our approach is therefore the
following:

62

Graph Neural Networks (GNN)

1. Fetch a Graph G from a pool of real-world graphs and create two copies G1
and G2.

2. Inside each copy Gi, attempt to attach a new node v to each vertex u with a
probability pv.

3. Inside each copy Gi, attempt to create every possible non-existent edge (u, v)
with a probability pe, where u and v cannot be both vertices of G.

4. Randomly remap the vertex labels of G1 and G2 and save the pairs of remapped
labels of the node in G as the solution S.

The procedure creates two new graphs G1 and G2 such that the original graph
G is the maximum common subgraph of the new pair. The probability pv is used to
control the number of new vertices added to G, and it controls how big the solution
will be relative to the two synthetic graphs. The probability pe is used to control
the number of edges added to G, and it controls how connected the new graphs
will be. To ensure a good quality of the generated data, the value of pe should
be assigned to match the connectivity of the original graph G. This step cannot
create new edges between vertices of the original graph G to ensure that S will be
an induced subgraph. Additional checks can be enforced to make sure that the new
elements do not increase the size of the actual optimal solution (as an example,
adding a single leaf node f to the same vertex of G1 and G2 would make f a part
of the maximum common subgraph). However, internal testing showed that this
suboptimal solution S is already considerably larger than the solution found by
McSplit, so this step will not be taken in our experiments. The vertex remapping
is done to ensure that no information about the original graph is retained in the
new pair.

The procedure is repeated for each graph in the dataset, and the resulting pairs
are saved as the synthetic dataset. Using randomized probabilities ensures that
the generated data will follow a similar distribution to the real-world data, but it
will not follow a specific pattern. This is important to avoid overfitting the model
to a specific type of graph.

63

Chapter 6

Experimental Analysis

In this chapter, we test the behavior of our proposed algorithms and present an
experimental analysis of our study, focusing on the performance evaluation of the
different approaches applied to the MCS problem. We start by discussing the testing
setup, including the dataset and hardware configuration. Next, we individually
analyze the results of the static heuristics, parallel architectures, and GNN-based
models. We examine their performance, discuss their strengths and limitations,
and highlight any notable observations. Finally, we compare the best-performing
approaches across the different families, aiming to identify the most promising
solutions for improving the efficiency and effectiveness of the McSplit algorithm in
solving the MCS problem.

6.1 The experimental setup
Applications of the MCS problem can be found in several domains, and our testing
methodology aims to simulate such real-world scenarios. To achieve this goal, it is
essential to carefully select the datasets and design the testing apparatus to reflect
the research objectives.

6.1.1 Testing methodology
Due to the NP nature of the problem, there are no real guarantees of finding an
optimal solution in a short amount of time, so the goal of this research is to find
an algorithm that searches for a best-effort solution within a limited timeframe.
This property is particularly important when dealing with multiple graph pairs
and the need to find multiple MCSs. In such scenarios, spending excessive time on
each pair is not feasible, and an efficient algorithm that delivers good solutions in
a short time becomes crucial.

64

Experimental Analysis

(a) Size of the largest solution dur-
ing recursion

(b) Size of the largest solution over
time

(c) Detail of Figure 6.1a (d) Detail of Figure 6.1b

(e) Number of recursions over time
in the linear descent phase

Figure 6.1: Progression of the best solution size (|S|) in McSplit. The plots are
in semi-log scale. 6.1c and 6.1d show a zoomed-in version of the plots in the last
stages of the algorithm.

Consequently, all tests will be run with a strict timeout, which should be long
enough to allow for the visit of at least a few branches. 6.1 reports the progression

65

Experimental Analysis

of the size of the best solution (|S|) produced by McSplit, for a single run of the
algorithm on a pair of graphs of 1945 vertices with a timeout of 3 minutes. The
plots are in semi-log scale, and show that the algorithm is able to find a good
solution in less than one second after a quick descent in quasi-linear time, after
which the solution size does not appreciably increase anymore. Consequently, in
all tests the timeout will be set to 60 seconds, to account for the longer visit times
of the largest graphs in our test suite. The timeout does not take into account the
graph loading times.

Interestingly, Figure 6.1e highlights that the recursion speed is not constant.
This is due to the fact that while descending the search tree, the bidomains get
smaller and their management is faster.

All tests have been carried out on a workstation equipped with an Intel Core
i9-10900KF CPU with 64 GB of RAM, under the Ubuntu 20.04 LTS Focal Fossa
operating system. The C++ code for the McSplitX+ algorithms is written in C++
and compiled with GCC 9.3. The GNN-based models are written in Python 3.8
using PyTorch 2.0.1 and CUDA 12.1. The training process was carried out on an
NVIDIA GeForce RTX 3070 GPU with 8 GB of VRAM.

6.1.2 Datasets
Datasets for the MCS problem are somewhat difficult to obtain. This is because
we need pairs of graphs that are structurally similar, but not isomorphic. This is
to simulate the most common use cases, where the two graphs are contextualized
in the same domain (e.g., two molecules, two road networks, two social networks,
etc.), and they share a similar structure.

We aim to use moderately sized graphs. This is done primarily to stress test
the algorithms on harder problems and to ensure that eventual differences in
performance have enough time during the search to manifest. On the other, we
want to avoid using graphs that are too large, as they would require excessive time
to solve, which is not feasible for our extensive testing requirements.

Our test suite will be composed of three datasets:

1. Small: A collection of graph pairs from a public MCS dataset [39]. The
original dataset contains 54,600 small graph pairs with different characteristics,
from which we sampled 400 graph pairs, all composed of 100 nodes or fewer.
This dataset is quite homogeneous in terms of size, but its difficulty varies
significantly. The connectivity is between 10% to 90%. This dataset is used
to test the algorithms on a large number of smaller graph pairs, to obtain a
broader statistical overview of their performance.

2. Large: A collection of graph pairs derived from the AS-733 dataset, collected
from Stanford University[40]. It contains 733 real-world graphs relative to the

66

Experimental Analysis

Oregon Autonomous Systems (AS). These are networks of internet routers
spanning the years 1997 to 2000. The dataset contains single graphs of size
between 2,000 and 6,000 nodes. These graphs were sorted by size and then
paired together two-by-two, to achieve 366 pairs with a maximum size ratio of
10%.

(a) Size distribution (b) Average degree distribution

Figure 6.2: Statistics of the Large dataset

The distribution of the graph size, reported in Figure 6.2a, follows a relatively
wide distribution, with most graphs having a size between 3,000 and 5,000
nodes, which will have to be taken into account during the analysis. The
average node degree hovers around 1.5, with less overall variation (Figure 6.2b).
This dataset is used to test the algorithms on a set of large heterogeneous
real-world graph pairs, to evaluate their performance on more challenging
and varied problems. The increased size also helps to better evaluate the
performance of the parallel algorithms, which explore a larger search space.

3. Large-Finetuning: The previous datasets contain 400 and 366 MCS in-
stances each. Assuming a 60 seconds runtime for each graph pair (which is
a conservative estimate that is not considering the graph loading times and
other test management overhead), each complete run of the algorithm requires
more than six hours. Considering the large amount of testing mandated by
the high number of algorithms and hyperparameters, this is not a feasible
approach. To overcome this issue, Large-Finetuning is a sampled subset
of graph pairs of the Large dataset, containing 122 pairs. The sampling was
done through a uniform distribution over the size-sorted pairs, to ensure that
the distribution of the graph sizes is preserved. This dataset cuts the testing
time to about 2 hours per experiment.

67

Experimental Analysis

6.1.3 Result post-processing

(a) Distribution of the graph sizes
in Small

(b) PDF of the sizes of the solution
produced by McSplit on Small

Figure 6.3: McSplit performance on Small dataset

We run McSplit on Small to analyze its behavior. The size of the best solutions
found by the algorithm is highly variable, depending on the graph size and the
complexity of the problem. Figure 6.3b reports the Probability Density Function
(PDF) of the sizes of the solution produced by McSplit on Small. For reference,
Figure 6.3a shows the distribution of the graph sizes on the same dataset. A
large majority of test instances are of size 100, while a few outliers are inserted
to get an idea of the behavior of the algorithm on very small graphs and detect
possible anomalies. The PDF of the solution sizes has a few well-defined peaks for
the smaller graphs, approximately around 10 and 20 nodes, but it is much more
variable for the larger graphs, where McSplit cannot explore the entire search space.
Specifically, the graphs of size 100 have solutions that range from 50 to 90 nodes,
with a peak around 55 nodes.

This is a problem, as it highlights that the complexity of the problem varies
significantly across the instances, and that the average graph size is not necessarily
a good indicator of the difficulty of the problem. Furthermore, the observed results
support our decision to use datasets with a large number of instances, to obtain
a more accurate statistical estimate of the performance of the algorithms that is
independent of such drastic variations.

Consider two graph pairs A and B of the same size, but where A is more
difficult than B. When evaluating multiple algorithms on these instances, both will
produce smaller solutions for A and larger solutions for B. Therefore, an absolute
difference of k nodes between the solutions of the two algorithms on A is much

68

Experimental Analysis

more significant than the same difference on B. Consequently, to analyze the data
we will not be able to rely on a simple average of the sizes of the solutions, as it
would fail to capture the complexity of the problem. Instead, we will use a set of
post-processing techniques to obtain a more accurate representation of the results.

Gain plots To compare the performance of multiple algorithms, several post-
processing techniques will be applied to the obtained set of solution sizes:

• Sorting: The results are sorted by increased solution size. If multiple algo-
rithms are being compared, the sorting can be performed relative to just one
of these algorithms, or relative to the average solution. This behaves as a
proxy metric for the complexity of the problem, as the instances at the left of
the graphs represent harder problems with overall smaller solutions.

• Normalization: The size of the solution has considerable variations depending
on the graph size and complexity. To achieve a better visualization, for each
instance the results can be normalized to the result of a single algorithm, or to
the average solution size. This allows us to compare the relative performance
of the algorithms on each instance. This technique is particularly useful on
the Large and Large-Finetuning datasets, where the graph size varies
significantly.

• Rolling Average: When comparing multiple algorithms, the normalized
data can still highly variable, since an instance can be easy for one algorithm
and hard for another. To obtain a smoother visualization, the results can be
averaged over a window of instances. Assuming a set of N MCS solutions S
and window size of W < N , we obtain a collection of N −W values ri, where
ri represents the average over a contiguous set of M results.

ri = 1
W

i+WØ
j=i

|Sj| ∀i ∈ [1, N −W] (6.1)

While this technique hides the possible outliers and reduces the visible variance,
it allows us to better visualize the overall trend of the algorithms.

The transformed data will therefore be charted on a line plot to show the relative
performance of the algorithms. The x-axis will represent the windows of sorted
instances produced by the rolling average, while the y-axis will represent the average
normalized solution size of each window.

Mean Normalized Difference (MND) While the line plots are useful to
visualize the relative performance of the algorithms, they do not constitute a single

69

Experimental Analysis

numerical metric to quantify the performance difference between the algorithms.
Consequently, we devise the following function, which will be called Mean Normal-
ized Difference (MND). MND is defined as the average of the difference between
the solution sizes of two algorithms, normalized by their average. Formally, given
two distributions of N value, A and B, the MND is defined as:

MND(A, B) = 100
N

NØ
i=1

Ai −Bi

Ai+Bi

2
(6.2)

= 100
N

NØ
i=1

2Ai −Bi

Ai + Bi

In the formula, the result is multiplied by 100 to obtain a percentage value.
This metric is used because the solutions sizes are highly variable, so a regular
average of differences would be skewed towards the instances with a large solution
size. The MND intuitively represents a distance metric between two algorithms A
and B, following similar but unknown distributions. Furthermore, it is signed and
symmetric, so it also carries the information on which algorithm is more performant
than the other. These scores will be computed for each pair of algorithms and
shown in a heatmap, to complement the insights offered by the line plots.

70

Experimental Analysis

6.2 Experimental Analysis of the Static Heuris-
tics

Designed the testing framework, we can now proceed to the experimental analysis
of the algorithmic optimizations described in Chapter 3.

6.2.1 McSplitDAL implementations
In this section, we will compare the performance of the different implementations
of McSplitDAL, introduced in Section 3.1.2. We will use the Small dataset due to
its large instance number, hoping to detect the small statistical differences between
the different implementations.

McSplitSD

We first validate the performance increase of the SD policy proposed by Trimble
[23].

(a) Rolling average (W = 50), normalized
by McSplitDAL, sorted by average.

Method MND (%) Average

McSplitDAL 0.00% 45.605

McSplitDAL-SD 0.11% 45.650

(b) Test statistics. The MND is relative to
McSplitDAL.

Figure 6.4: Comparison of McSplitDAL and McSplitDAL-SD on Small

The gain plot in Figure 6.4a shows the rolling average of size 50 of the solution
sizes normalized to the results of McSplitDAL. Therefore, the plot of McSplitDAL
is a constant line at 1.0, while the line of McSplitDAL-SD shows the relative
performance of the SD policy. Predictably, the smaller instances to the left of the

71

Experimental Analysis

graph have all the same solution size, since the algorithm is able to explore most,
if not all, the search space.

According to the results, the SD policy does improve the performance of McSplit-
DAL, but not by a considerable margin. Over the Small dataset the McSplitDAL-
SD achieves just a 0.11% MND score over McSplitDAL. While this number lies well
within the realm of statistical error, this behavior is constantly present across differ-
ent runs, suggesting a minimal, yet real, causal advantage. Consequently, despite
the small difference, we can declare McSplitDAL-SD the winner, and therefore all
the future McSplitX+ variants will use the SD policy.

Joint vs Isolated Q-tables

(a) Rolling average (W = 50), normalized
by McSplitDAL Joint, sorted by average.

Method MND (%) Average

McSplitDAL Isolated 3.73% 47.483

McSplitDAL Joint 0.0000% 45.650

(b) Test statistics. The MND is relative to
McSplitDAL Joint.

Figure 6.5: Comparison of McSplitDAL Joint and McSplitDAL Isolated on Small

Unlike the SD policy, the McSplit Isolated does provide a more significant
performance boost relative to McSplit Joint. As shown in 6.5, the isolated Q-tables
variant of McSplitDAL achieves a convincing 3.73% difference over the competitor.
This means that the differentiation of the learned policies between each of the two
RL and DAL agents is considerably more beneficial than the small reduction in
computational overhead brought by the joint version.

If the tested graph pair is large enough, the size of the pair Q-table Sp(v, w) is
O(|G||H|), which could overflow the available memory. In the case of McSplitDAL
Isolated, this memory consumption would be doubled, as each agent would have

72

Experimental Analysis

its own Q-table. However, this does not increase the overall memory occupation
complexity, thus relegating the use of the McSplitDAL Joint to the few rare cases
of graph pairs for which |G||H| < Max_memory < 2|G||H|.

Consequently, all the future McSplitDAL+ variants in this thesis will use isolated
Q-tables.

Initialization of Q-tables

(a) Rolling average (W = 50), normalized
by McSplitDAL, sorted by average.

Method MND (%) Average

McSplitDAL (init) -1.27% 46.625

McSplitDAL 0.0000% 47.483

(b) Test statistics. The MND is relative to
McSplitDAL.

Figure 6.6: Comparison of McSplitDAL and McSplitDAL (init) on Small

6.6 shows that the initialization of the Q-tables with the heuristic sort order does
not provide any significant advantage over the default initialization. Specifically,
the results show a performance decrease of 1.27% relative to the zero-initialized
McSplitDAL.

The gain plot in Figure 6.6a shows an interesting pattern, where the initialized
version performs comparatively, if not slightly better, in the tougher test instances
on the left of the plot, but the performance declines fast on easier instances, up to
6% worse in some windows. Overall, the results suggest that the initialization of the
Q-tables with the heuristic sort order is not beneficial, especially on larger instances,
therefore all the future McSplitDAL+ variants will use the zero-initialized Q-tables.

73

Experimental Analysis

(a) Rolling average (W = 50), normalized
by McSplitRL+DAL, sorted by average.

Method MND (%) Average

McSplitLL+DAL -0.33% 46.625

McSplitRL+DAL 0.0000% 46.825

(b) Test statistics. The MND is relative to
McSplitRL+DAL.

Figure 6.7: Comparison of McSplitLL+DAL and McSplitRL+DAL on Small

McSplitRL+DAL vs McSplitLL+DAL

McSplitLL+DAL is the variant that uses two LL and DAL agents rather than
two RL and DAL agents. 6.7 shows that the performance of McSplitLL+DAL
is comparable to McSplitRL+DAL, with a slight performance decrease of 0.33%
relative to the latter. The increased performance of LL relative to RL seems to not
be significant enough to overcome the downside of the reduced agent differentiation,
which leads to an increased fixation inside local minima.

The McSplitRL+DAL algorithm is the winner of this comparison, and therefore
all the future McSplitDAL+ variants will use two RL and DAL agents.

Comparison of all McSplitX variants

At this phase of the testing process, we have identified the best-performing variant
of McSplitDAL as the one using the SD policy, with zero-initialized isolated Q-tables
for the pair rewards, and two RL and DAL agents. 6.8 compares the McSplitX
variants McSplit, McSplitLL, and McSplitDAL. The results show that McSplitLL
is the best-performing variant, with a performance increase of 0.97% relative to
McSplit. McSplitDAL is the second-best variant, with a performance increase of
0.71% relative to McSplit.

These results seem to be in conflict with the data published by the authors of
McSplitDAL, who reported a net performance increase over McSplitLL. We believe

74

Experimental Analysis

(a) Rolling average (W = 50), normalized
by McSplit, sorted by average.

Method MND (%) Average

McSplitDAL 0.71% 47.468

McSplit 0.0000% 47.193

McSplitLL 0.97% 47.767

(b) Test statistics. The MND is relative to
McSplit.

Figure 6.8: Comparison of all McSplitX variants on Small

this difference is caused by our considerably different testing methodology, focused
on finding the best solution before a strict timeout, rather than finding the optimal
solution of many small MCS instances in the shortest time possible.

6.2.2 A first toe in the water with PageRank
Once the performance of the base McSplitX models has been measured as a baseline,
we can start testing the static heuristics. We are first going to individually test
the McSplitX variants with the PageRank heuristic, to get a first idea of the
performance increase that can be achieved when changing the heuristic.

The results depicted in 6.9 present a comparison between all the McSplitX and
McSplitX+PR variants. While the results for the McSplitX algorithms remain
consistent with those displayed in 6.8, the current plot exhibits a slight variation
due to the sorting of results based on the new average of all methods. Overall, it
is evident that the McSplitX+PR variants outperform their respective McSplitX
counterparts, demonstrating a performance increase of at least 2% across almost all
test windows. Notably, the McSplitDAL+PR variant achieves a maximum average
improvement of 5.34% relative to the base McSplit algorithm.

To better display the relative performance differences, the heatmap in Figure
6.9b presents itself as a matrix where each cell XY reports the mean normalized
difference MND in percent of the variant Y (on the left axis) relative to the variant

75

Experimental Analysis

(a) Rolling average (W = 100), normalized
by McSplit, sorted by average (b) MND heatmap (%)

Figure 6.9: Comparison of all McSplitX+PR variants on Small

X (on the bottom axis). The diagonal shows the differences of all methods relative
to themselves, and therefore is always 0%. The numbers to the right of each row
are the average solution sizes of each Y method across all tests.

The gain plot in Figure 6.9a seems to have an anomaly, as all the McSplitX+PR
variants seem to have a strong performance increase in 100 windows. By examining
the same graph without the rolling average and normalization (Figure 6.10a), it
becomes apparent that these exceptional results are attributable to a few prominent
outliers. For instance, McSplitX performs remarkably poorly on instance 213,
whereas McSplitX+PR achieves a significantly favorable outcome. Consequently,
the resulting difference highlights an approximate 400% performance difference.
While this particular data point is not representative of the overall algorithmic
performance, it is not considered an outlier in the strict sense, as it is not a result
of measurement error. Hence, it does hold meaningful implications.

However, to maintain fairness, Figure 6.10b displays the same graph with the
outliers filtered out. The performance increase of McSplitX+PR remains largely
unchanged, with McSplitDAL+PR persisting as the best-performing variant.

Moreover, the line plot reveals another intriguing phenomenon. When employing
the degree heuristic, McSplitLL slightly outperforms McSplitDAL, yet McSplit-
DAL+PR clearly outperforms McSplitLL+PR. This observation suggests that the
PageRank heuristic compensates for the performance decrement of the DAL policy.

76

Experimental Analysis

(a) Results sorted by average.
(b) Rolling average (W = 100), normal-
ized by McSplit, sorted by average, with
filtered outliers.

Figure 6.10: Analysis of outliers in McSplitX+PR variants on Small

Such behavior can be attributed to the more intricate reward mechanism employed
by DAL, which benefits from a sophisticated heuristic that guides the algorithm
towards more favorable branches during the initial stages of recursion. Analogously,
comparable effects can be observed in the other McSplitX+ variants, leading to the
conclusion that McSplitDAL represents the superior variant among the McSplitX
approaches when considering alternative sort orders. Consequently, moving forward,
we will solely focus on presenting the results of the McSplitDAL+ variants.

6.2.3 Comparison of the static heuristics
Following the selection of McSplitDAL+ as the best-performing McSplitX+ family
variant, we proceed to test all the static heuristics. As a reminder, we are going to
compare the following node sort orders:

• Degree: The number of edges in the graph that are adjacent to the vertex.

• PageRank (PR): Connections to high profile vertices

• Betweenness Centrality (BC): Number of shortest paths that traverse the
vertex

• Closeness Centrality (CC): Average length of the shortest paths from the
vertex

77

Experimental Analysis

• Katz Centrality* (KC*): Count of neighbors weighted by shortest distance

• Local Clustering Coefficient (LCC): Cliqueness of the neighborhood

(a) Rolling average (W = 100), normalized
by McSplitDAL, sorted by average (b) MND heatmap (%)

Figure 6.11: Comparison of all McSplitDAL+ variants on Small

In Figure 6.11, the results of the McSplitDAL+ variants are depicted. The
gain plot displayed in Figure 6.11a reveals that there is no clear winner across
all test windows. On the left side of the graph, the Local Clustering Coefficient
heuristic emerges as the front runner for the most complex problem instances.
However, Katz Centrality* exhibits a distinct advantage on the simpler problem
instances and performs comparably well across the entire test suite. In terms of
average performance, Katz Centrality* proves to be the best-performing heuristic,
demonstrating a 1.14% MND improvement over McSplitDAL. The Local Clustering
Coefficient heuristic follows as the second best-performing approach, exhibiting a
0.83% gain.

Furthermore, the line plot unveils similarities between different heuristics. Both
the Betweenness Centrality and Closeness Centrality algorithms follow comparable
trends, as they are both rooted in the concept of shortest paths, with Betweenness
Centrality performing slightly better. Similarly, PageRank, which is closely related
to Eigenvector Centrality, exhibits a similar pattern but with marginally higher
scores. This suggests that these heuristics encounter similar difficulty or ease in

78

Experimental Analysis

classifying vertices based on similar criteria. On the other hand, the Local Clustering
Coefficient generates a slightly different pattern, while Katz Centrality* stands
out as the most distinct, with a clear advantage on the simpler problem instances.
Consequently, these observations imply that on distinct datasets featuring graphs
from diverse and specific domains, the choice of heuristic may need to be evaluated
as a hyperparameter on a case-by-case basis.

(a) Rolling average (W = 100), normalized
by McSplitDAL, sorted by average (b) MND heatmap (%)

Figure 6.12: Comparison of all McSplitDAL+ variants on Large

Figure 6.12 presents the outcomes of the McSplitDAL+ variants on the Large
dataset. The observed behavior diverges from that observed on the Small dataset.
Katz Centrality*, which demonstrated competence in solving smaller and simpler
instances, encounters challenges when confronted with larger graphs, resulting in
inferior performance even compared to the default degree sort order. Moreover,
the Closeness Centrality proves to be ill-suited for larger graphs, possibly due to
its high algorithmic complexity, exhibiting a significant 10.53% decrease in average
gain against McSplitDAL. On the other hand, the Local Clustering Coefficient
continues to outperform other heuristics on easier or larger instances but experiences
a substantial decline in performance at the opposite end of the spectrum. The
Betweenness Centrality and PageRank heuristics maintain relatively consistent
and comparable performance across the entire test suite. Notably, the PageRank
heuristic emerges as the top-performing approach on the Large dataset, showcasing

79

Experimental Analysis

a 0.63% increase over McSplitDAL.
Based on these findings, it can be concluded that Katz Centrality* is better suited

for smaller and simpler problems, while the Local Clustering Coefficient performs
well on medium-sized instances. On the other hand, Betweenness Centrality and
PageRank prove to be versatile heuristics, displaying competitive performance
on both small and large graphs. Specifically, PageRank consistently produces
larger subgraphs than the current most efficient MCS solver, McSplitDAL, on both
datasets.

These results indicate that McSplitDAL+PR represents the new state-of-the-
art ground-truth solver for the MCS problems across the entire test suite. A
comprehensive discussion of these findings can be found in our paper A Web Scraping
Algorithm to Improve the Computation of the Maximum Common Subgraph [41],
which was written as part of the thesis work.

80

Experimental Analysis

6.3 Multi-Threading architectures
In this section, we present the results of the multithreaded implementations de-
scribed in Chapter 4: McSplit MultiBranch and McSplit Branch Sharing. The
initial testing is carried out on the Large-Finetuning dataset. This choice is
motivated by the dataset’s larger graph sizes, which result in a greater search space.
Such a setup is particularly conducive to uncovering the potential benefits of a
parallel exploration and highlighting the distinctions between a focused approach
and a broader one.

6.3.1 McSplit MultiBranch (MB)
McSplitMB is a parallelized version of McSplit that utilizes a straightforward
BFS strategy. The algorithm incorporates two hyperparameters: the number of
threads, denoted as nthreads, and the depth at which the threads commence their
independent exploration of their assigned branch. These parameters are highly
dependent on the hardware specifications of the machine executing the algorithm,
making it difficult to determine an optimal value universally. For our experiments,
we employed a machine equipped with 10 cores and 20 hardware threads, and based
on internal testing, we selected a depth value of 4. Additionally, the algorithm was
executed on all the proposed heuristics to detect eventual differences in how they
behave in a multi-threaded environment.

Thread count

The initial experiment conducted focuses on examining the impact of the number of
threads on the performance of McSplitMB. The specific number of threads used is
dependent on the hardware configuration and not the focus of the analysis, however,
the resulting plot (Figure 6.13a) reveals an intriguing observation. The data is
normalized relative to the performance of McSplitMB+PR 1 Thread, which uses
the McSplitMB architecture, but it operates sequentially on a single thread. The
test windows are sorted based on the outcomes of the 1 Thread version, therefore
the test windows on the left represent those MCS problems that are comparatively
more difficult to solve for the non-parallel algorithms.

We can see that all the other versions running on more than one thread share
a very similar pattern relative to the sequential version. They can solve the easy
tasks in a comparable amount of time, but they are significantly faster on those
instances that 1 T struggles with. This finding suggests that when the sequential
algorithm yields a good solution, that solution is not easily improved even by
incrementing the number of threads. However, in harder instances where the 1
Thread version is unable to find a good solution, the introduction of additional

81

Experimental Analysis

threads provides an advantageous opportunity to explore alternative branches.
Overall, this increases the likelihood of finding a larger subgraph, and increases the
resiliency of the algorithm when the initial branch selection is unpromising.

(a) Rolling average (W = 50), normalized
by McSplitMB+PR 1 Thread, sorted by Mc-
SplitMB+PR 1 Thread (b) MND heatmap (%)

Figure 6.13: Comparison of McSplitMB+PR using a different number of threads
on Large-Finetuning

Additionally, the plot demonstrates that the performance gain is not linear with
the number of threads. Although the parallelization overhead is anticipated to
be minimal due to the independent branch exploration, the performance gains
do not scale proportionally to the number of threads. This indicates that the
chosen heuristic (PageRank, in this instance) is sufficiently effective in identifying
promising solutions within the initial branches, and the subsequent threads, which
primarily investigate the last branches in the sort order, seldom discover better
solutions.

Furthermore, it also highlights the complexity of improving the MCS solutions.
Up until this point, all performance gains have been in the order of a few percentage
points, at maximum. The fact that visiting a search space 16 times larger than the
sequential version only yields a 1.53% improvement is a testament to the difficulty
of the problem. On our machine, the most favorable outcome is achieved with
32 threads. The MND difference amounts to 1.68% over the sequential version
on 1 thread. While the improvement may appear modest in relative terms, it is
important to restate that the dataset includes significantly larger graphs compared

82

Experimental Analysis

Small, with an average solution size of roughly 3800 nodes. Therefore, the 32-
thread version produces subgraphs that are larger than the ones produced by the
sequential version by tens of nodes. Considering the exponentially diminishing
returns of the algorithm after the initial tree descent (6.1), this improvement holds
substantial significance.

Lastly, we note that the best variant uses 32 threads, which is well beyond the
number of available hardware threads. This phenomenon can partly be explained
by the fact that the algorithm is not entirely CPU-bound, and the threads can
spend a not insignificant amount of time waiting for the memory to be accessed.
This can be especially true when the input graphs are very large, and the bidomain
data structures cannot fit in the cache. In extreme cases, it is also possible that the
required information is relegated to the SWAP partition of the computer, further
increasing the access times. Therefore, the additional threads can be utilized to
hide the memory latency, and the performance continues to improve even after
the number of threads exceeds the number of hardware threads. However, another
possible explanation is that the increased number of threads inherently forces the
algorithm to explore more branches at once, effectively enforcing an even broader
and shallower search.

Static Heuristics

The second set of experiments investigates the influence of the static heuristics
on the performance of McSplitMB. For fairness, all tests were conducted with the
same number of threads (32). The outcomes are depicted in Figure 6.14. The
observed patterns mostly resemble the behavior exhibited by the heuristics in the
sequential version of McSplitDAL (Figure 6.12a). McSplitMB+PR consistently
demonstrates an improvement over McSplitMB, even considering the performance
uplift observed by the multithreaded implementations on the most challenging
instances, as observed in Figure 6.13a. Conversely, CC and LCC appear to gain
even more substantial benefits from parallelization, particularly on the left portion
of the graph. On the other side, BC exhibits significant gains on larger solution
problems but loses its advantage on smaller ones. Finally, KC* seems to benefit
the most from the parallelization of McSplitMB, getting back a convincing lead
over the other heuristics, with a 4.83% difference relative to the default degree sort
order. Despite its overall instability, KC* has the potential to be a very effective
heuristic, if appropriate to the problem at hand.

In general, discernible patterns emerge, wherein each heuristic possesses its own
strengths and weaknesses contingent upon the instance difficulty and parallelization.
PR and BC consistently demonstrate stability across the test suite, establishing
themselves as the most reliable heuristics.

83

Experimental Analysis

(a) Rolling average (W = 50), normalized
by McSplitMB 32 T, sorted by average (b) MND heatmap (%)

Figure 6.14: Comparison of McSplitMB versions using 32 threads and different
static heuristics on Large-Finetuning

6.3.2 McSplit Branch Sharing (BS)
McSplitBS represents the second parallel variant of the McSplit algorithm, aiming
for a more targeted approach to parallelization by enabling multiple threads to
collaborate on the exploration of a single branch. Similar to the previous section,
the experiments are conducted on the same machine, and the analysis follows a
consistent structure. However, McSplitBS introduces an additional parameter,
denoted as block_size, which necessitates separate testing and evaluation.

Block Size

Since there is no best candidate value for block_size, in this initial test McSplitBS
is evaluated on a wide range of values. In keeping with the previous experiments,
PageRank is selected as the static heuristic due to its consistent performance, and
32 threads are employed using the DAL policy. We recall that the block_size
controls the maximum size of the local stack, dictating the extent to which each
thread can independently explore a portion of the search tree before requiring
synchronization with other threads. Thus, if the block_size is set to a value that
is too small, it will lead to an excessive number of resynchronizations between

84

Experimental Analysis

threads. If it is too large, the threads will not share enough, effectively acting as a
poorly-optimized version of McSplitMB.

(a) Rolling average (W = 50), normalized
and sorted by average (b) MND heatmap (%)

Figure 6.15: Comparison of McSplitBS versions using PageRank, 32 threads, and
different block sizes on Large-Finetuning

Some of the results are depicted in Figure 6.15, while a complete version of the
difference heatmap is available in Appendix A. Since there is no baseline to compare
against, all results are normalized based on the average solution size. Among the
tested values, 32 emerges as the clear winner, with a difference of 1% over most
competitors. Lower values of block_size exhibit a sharp drop in performance, with
8 falling notably below the average. On the other hand, high values are not as
detrimental, maintaining an acceptable efficiency.

Interestingly the block sizes above 512 exhibit an almost identical pattern. The
behavior is due to the fact that the in these cases the maximum size of the local
stack is comparable to the length of the search tree, which entails that the first
thread will likely share its branch only a few times during the first descent, and the
other threads will likely never be assigned a branch that cannot fit entirely in the
local stack. Consequently, the only data on the global stack will be the nodes that

85

Experimental Analysis

were pushed by the first thread during the first descent. During the progression of
the algorithm, each thread will independently explore the entire branch assigned
to it, then pop the last node from the global stack and continue the exploration
on a new branch. This behavior presents itself after a critical value of block_size
is reached, and further increasing this parameter does not affect the performance.
Furthermore, by allowing the threads to explore entire branches independently,
the algorithm is greatly reducing the number of conflicts and the parallelization
overhead, thus justifying the performance gains observed in the charts.

However, the data suggest that the optimal value for block_size is 32, which
represents an intermediate search strategy: not as broad as McSplitMB, but not as
strongly focused as the larger block sizes. Consequently, 32 is now confirmed as
the default setting for the next experiments.

Thread Count

(a) Rolling average (W = 50), normalized by
McSplitBS 1 Thread and sorted by average (b) MND heatmap (%)

Figure 6.16: Comparison of McSplitBS versions using PageRank, 32 block size,
and different thread counts on Large-Finetuning

The performance of McSplitBS with different thread counts is shown in Figure
6.16. The baseline is represented by the algorithm running on a single thread.
Since this version does not gain any practical benefit from the use of the concurrent

86

Experimental Analysis

architecture, it is run with a block size of 2048 to minimize the time spent on the
Step migrations from the local to global stack, while the other parallel tests are
conducted considering block_size = 32.

The results indicate that lower thread counts experience increased overhead,
resulting in poorer performance compared to the baseline. However, the 24 and
32 threads versions are able to overcome this disadvantage through parallelization.
Similar to McSplitMB, the 32 threads version of McSplitBS exhibits the best
performance, with a 1.05% difference relative to the baseline.

As noted for McSplitMB, it is interesting to note the noticeable performance
difference between the 24 and 32 threads versions of McSplitBS, considering that
the testing hardware only has 20 logical cores. This means that the threads cannot
be allocated on the processor all at once, but they will have to be scheduled by the
operating system. The observed performance difference is likely due to the fact
that the 32 threads version is able to perform a wider exploration, as there are
more agents that will be able to pick up the larger branches identified at the start
of the algorithm. Conversely, it is more likely that the exploration of a branch will
repeatedly be interrupted by the operating system, which will have to schedule
other threads on the same core. Regardless, the data suggests that this is not a
significant issue compared to the benefits of the wider exploration.

Moreover, the overall performance delta among all the considered thread counts
is at most 1.32%, which is a relatively small difference. This indicates that
the algorithm is not able to scale well with the number of threads, due to the
considerable overhead introduced by the concurrent access to the global stack.
Furthermore, McSplitBS incurs a significant algorithmic cost to save and manage
the branching contexts inside the Step variable. This operation is necessary to
replicate the recursive behavior of the original McSplit algorithm, which stores the
same information on the call stack, and it cannot be easily optimized without a
complete redesign of the algorithm.

Static Heuristics

As observed in the previous sections, each static heuristic aims to optimize the
search for specific types of patterns within particular instances of the MCS problem.
However, their performance is also influenced by the search strategy employed by
the tested algorithm. Given the more complex nature of McSplitBS compared to
both McSplit and McSplitMB, it is possible that the optimal static heuristic for
McSplitBS differs from the one used in the previous experiments.

The results presented in Figure 6.17 provide some support for this hypothesis.
CC, PR, and BC are largely unaffected by the change in algorithm, with BC
being the most favorable choice. However, the performance of Katz Centrality* is
notably poorer, indicating that this sort order may be only suitable for simpler

87

Experimental Analysis

(a) Rolling average (W = 50), normalized
by McSplitBS and sorted by average (b) MND heatmap (%)

Figure 6.17: Comparison of McSplitBS versions using 32 threads, a block size of
32, and different static heuristics on Large-Finetuning

problems and parallelization strategies. Conversely, the Local Clustering Coeffi-
cient (LCC) exhibits a similar performance pattern to its sequential counterpart,
McSplitDAL+LCC, and emerges as the leading heuristic for problems with larger
solutions, but with unsatisfactory results in the smaller test windows.

Delayed Sharing

Delayed Sharing refers to the technique of preventing the threads from pushing
any step on the global stack until the first pruning event occurs, regardless of the
block size. This is intended to control the depth of the first branch sharing and
force a more focused search in the first explored branches.

To not oversaturate the plot, 6.18 reports the results using only the most stable
heuristics: PR, BC, and LCC. The full comparison charts are available in Appendix
A. The delay mechanism seems to overall produce a negligible, if not harmful, effect,
reducing the performance by up to 0.73% relative to the respective non-delayed
algorithm. For this reason, the delayed sharing will not be considered in the
following experiments.

However, it is worth noting that this mechanism does achieve promising results

88

Experimental Analysis

(a) Rolling average (W = 50), normalized
by McSplitBS+PR and sorted by average (b) MND heatmap (%)

Figure 6.18: Comparison of McSplitBS versions with or without delayed sharing
using 32 threads, a block size of 32, and different heuristics on Large-Finetuning

in larger instances when using the LCC heuristic, which is the leader in this
region of the chart. This suggests that the heuristics may be more capable of
navigating larger search spaces, and only in this situation the delayed sharing might
be beneficial. This hypothesis will have to be confirmed in future research with
considerably larger graph pairs.

Is Reinforcement Learning effective in McSplitBS?

In McSplitBS, each thread undergoes multiple branch switches during the search
process. This implies that the Q-table rewards employed in the DAL policy are
learned and applied to different branches at different times. This could introduce
noise during the branching decisions, as the learned RL context may have been
directly transferred from another branch and immediately applied to the current
one. Preliminary testing suggested that better performance could be achieved
when the threads shared a common Q-table instead of utilizing local ones. This
approach reduces the overfitting of a specific branch in favor of a more general
policy. Conversely, it also reduces the effectiveness of the reward decay introduced
by DAL, and it introduces additional overhead due to the necessary synchronization

89

Experimental Analysis

(a) Rolling average (W = 50), normalized
and sorted by average (b) MND heatmap (%)

Figure 6.19: Comparison of McSplitBS versions with and without DAL policy,
using 32 threads, a block size of 32, and different heuristics on Large-Finetuning

operation to guarantee mutual exclusion access to the Q-table.
Therefore, 6.19 reports the results of a test meant to evaluate whether the DAL

strategy is still advantageous in McSplitBS. The findings indicate that this is not
the case, with the non-DAL version of McSplitBS exhibiting a better performance in
all the most stable heuristics PR, BC, and LCC. The results on the other heuristics
are available in Appendix A. Consequently, in the following comparisons McSplitBS
will be implicitly assumed to be the non-DAL version.

6.3.3 Conclusions on Multi-Threaded McSplit

Collected the results of the previous experiments, in 6.20 we compare the perfor-
mance of the best performing versions of McSplitMB and McSplitBS. For clarity,
the chart only shows a subset of the considered heuristics, namely PR, BC, and
KC*. The complete results are available in Appendix A. For improved statistical
precision, the tests are run on the entire Large dataset, using 32 threads and a
block size of 32.

The results indicate that McSplitMB is overall the most efficient algorithm,

90

Experimental Analysis

(a) Rolling average (W = 100), normalized
by McSplitBS+PR and sorted by average (b) MND heatmap (%)

Figure 6.20: Comparison of the best performing versions of McSplitMB and
McSplitBS using 32 threads, a block size of 32, and different heuristics on Large

especially when combined with its most favorable heuristics KC* and LCC. Inter-
estingly, this pattern is not consistent across all sort orders, as McSplitBS+PR
exhibits a better performance than McSplitMB+PR. Similar behavior is observed
for degree-based variants as well.

As already stated, the performance of McSplitBS is heavily influenced by the
choice of the static heuristic. Consequently, it is essential to select the most
suitable one for the specific problem at hand. However, on our specific test set,
PageRank and the original node-degree are the only sort orders that benefit from
using McSplitBS over McSplitMB. In all other cases, McSplitBS is either slower or
exhibits a negligible performance gain.

This suggests that the more focused approach of McSplitBS cannot outmatch
the broader exploration of the search space produced by McSplitMB, finding
advantageous applications only in specific scenarios. Particularly, McSplitBS finds
success with an effective and stable heuristic such as PageRank because it is able
to find large solutions in the first branches of the search. If the heuristic is not as
effective, allocating more resources to other branches will more likely lead to more
satisfactory results. However, it is also possible that the performance of McSplitBS
could be improved by further tuning the width of the search and the efficiency of

91

Experimental Analysis

the parallel architecture.

92

Experimental Analysis

6.4 GNN models
This section is reserved for the analysis of the results of all GNN-based models.
While naturally interested in identifying the best-performing approach, the main
goal of this exploration is to understand the behavior of the GNNs and the
impact of the different parameters on the results. While all the considered models
are written in Python to make use of the popular PyTorch machine learning
libraries, the McSplit code and the testing methodology are equivalent to the
previous implementations in C++. The following subsections will present the
individual results of McSplitGNN, McSplit DiffGNN, and their variants, while the
last subsection will present a comparison of all methods and the conclusions that
can be drawn from them.

6.4.1 McSplitGNN
McSplitGNN is the simplest of the models discussed in Chapter 5, relaying on a
GCN to produce node-level embeddings which are then converted into scalar scores
by a MLP. The model has been trained on the branching context information
extracted from the McSplit exploration of 10 graphs from the Large dataset. Each
of these explorations produces from 100 thousand to 50 million branching contexts,
depending on the graph size. To preserve the asymmetric nature of McSplit, two
separate models have been trained, one on the branching decisions used to select v,
and the other on the decisions used to select w. These two models will be then
used independently to score the nodes in the branching context of a new graph
pair. The GNN architecture has to be trained on bidomains of variable size, so the
batch size must be set to 1. The low batch size means that the gradient descent
is performed on each sample, so training was performed in only 3 epochs, with a
learning rate of 0.005.

McSplitGNN was tested on the Large-Finetuning dataset. In 6.21 the
following variants are compared:

• McSplitGNN: the model described above.

• McSplitGNN v only: the GNN model is used to score v, while w is selected
using the DAL policy with the PageRank heuristic.

• McSplitGNN w only: the GNN model is used to score w, while v is selected
using the DAL policy with the PageRank heuristic.

• McSplitGNN static: at the start of the algorithm the GNN model is run on
the entire graphs G and H to generate node scores and compute a static sort
order. Then the branching decisions are performed using the DAL policy with
this new GNN-based heuristic.

93

Experimental Analysis

(a) Rolling average (W = 50), normalized
and sorted by average (b) MND heatmap (%)

Figure 6.21: Comparison of all McSplitGNN and McSplitGNN static on Large-
Finetuning

• Random: a very simple McSplit variant, implemented in Python, that ran-
domly selects v and w from the branching context. This variant is used as a
baseline to compare the performance of the other models.

• McSplitDAL+PR: the McSplitDAL algorithm with PageRank heuristic, which
serves as a baseline for the performance of the McSplitGNN variants. For
fairness, this algorithm is also implemented in Python instead of the original
C++.

All the considered models perform considerably better than the random algo-
rithm, thus confirming that the GNN is able to learn some useful information from
the branching context. McSplitGNN obtains a higher gain over the average when
the Neural Network is selecting both vertices, rather than just one of them. This
discrepancy in the v-only and w-only versions is likely caused by a mismatch in
the node priority order on the two sides of the McSplit algorithm, consequently
rendering the resulting vertex matching less effective. However, this effect seems to
have a moderately positive effect on the larger MCS instances to the right of the
plot.

94

Experimental Analysis

The most interesting observation is related to the static version of McSplitGNN,
which is able to greatly outperform the other variants across all windows. This
Transfer Learning strategy uses the optimization knowledge gathered from dynamic
branch decisions made on small bidomains, and it adapts it for the computation
of one-shot static scores on the entire graphs. The presented results are a clear
representation of the innate advantage that static heuristics have over dynamic
ones. During each branching event, McSplitGNN has to convert the bidomain node
lists to two independent graph objects, which alone requires considerable CPU
time, and then run the two GNN models to score the nodes. This overhead is
completely avoided by the static version, which is able to compute the node scores
once and then use them for the entire duration of the algorithm. Furthermore, the
static version has the ulterior advantage of being able to use the DAL policy and
the power of Reinforcement Learning.

This Transfer Learning approach used to adapt dynamic decision-making policies
to static heuristics shows results that are comparable with McSplitDAL+PR, the
new state-of-the-art variant of McSplit, with an MND score difference of 2.41%.
This is a promising result, which might be easily improved by adopting a learning
strategy more suited to static heuristics.

Consequently, future machine learning models applied to the McSplit algorithm
should target one of two distinct paths. The first is to develop a more complex
model that is purposely built to produce an effective static sort order, which can
then be used by the DAL policy. The second is to develop a model that is able to
produce node scores in a very short amount of time, so that the dynamic version
of the model can be used without incurring significant overhead. The potential
advantage of the latter strategy is that the model could take advantage of the
local branching context, which is not available to the static version. To keep track
of the current and past states, the model would likely require a more complex
architecture, possibly involving integration with a DQN (as in the case of GLSearch)
or Recurrent Neural Networks.

6.4.2 McSplit DiffGNN

McSplit DiffGNN uses a GCN model with the aim of assigning similar embeddings
to nodes v and w that should be matched. The training is done again on branching
contexts extracted from the McSplit exploration of 10 graphs from the Large
dataset. Since it uses a single model, the training was extended to 5 epochs.

The same model was then trained on the modified branching contexts extracted
from a synthetic dataset, as discussed in Section 5.3.3. The dataset was created
from Large graphs using a vertex probability pv = 10% and an edge probability
pe = 2%.

95

Experimental Analysis

(a) Rolling average (W = 50), normalized
and sorted by average (b) MND heatmap (%)

Figure 6.22: Comparison of McSplit DiffGNN and DiffGNN synthetic on Large-
Finetuning

6.22 compares the performance of the two implementations on the Large-
Finetuning dataset. While the observed difference is not as significant compared
with the other models, currently DiffGNN synthetic is not able to provide a
significant advantage over the original model. The most likely explanation is
that the synthetic graphs do not present the same level of complexity as the real-
world graphs, and consequently the model is not able to learn a more effective
representation of the branching context. However, the results are still promising,
and future research might be able to improve the specifications of the generation
of synthetic graphs to achieve more satisfactory results. Specifically, the synthetic
dataset might be more effectively employed by using it as a step of a multi-stage
curriculum learning process.

Both DiffGNN models are not able to confidently reach the solution sizes of the
simpler McSplitGNN. However, this is not an unexpected result. These models
only use the differential matching system for the selection of the vertex w, while
the selection of v is still done using the DAL policy with the PageRank heuristic.
Future research might be able to achieve higher performance by using the model
to select entire graph pairs.

96

Experimental Analysis

6.4.3 Conclusions on the GNN-based models
The architectures of the GNN-based models are extremely simple, considering the
complexity of the problem under discussion, and the training is relatively fast, with
a maximum time of a few hours. The obtained results are promising, as they show
that some knowledge can be obtained from the node-level embeddings, but they
also highlight the challenges that are still present in the field of GNN research
applied to the MCS problem.

The main issue is that any dynamic GNN-based model is necessarily slower
than a static heuristic since it requires the computation of the node embeddings
at each branching event. The dynamic version is able to execute a fewer number
of iterations, and therefore it can explore fewer branches, consequently it has to
perform more accurate branching decisions to be able to reach a good solution in
the first branches.

At this time, the data suggests that the path forward for future research is
to focus on improving the performance of the static version of the model, up to
the point of matching, or even surpassing, the performance of the other heuristics
considered in this thesis. Once this goal is achieved, it is likely that the static
approach might reach a maximum efficiency cap, considering that the scores cannot
change and adapt to the developments of the search process. This learned knowledge
could then be integrated with the branching contexts in a dynamic model which
uses Recurrent Neural Networks or Reinforcement Learning techniques, with the
aim to overcome the limitations that come from the slower search speed, and
hopefully achieve a new state-of-the-art solver for the MCS problem.

97

Experimental Analysis

6.5 Summary of Results
This chapter presented a comprehensive analysis of three different families of
algorithms for the Maximum Common Subgraph (MCS) problem. The performance
of various approaches within each family was evaluated, and the best-performing
algorithms were identified through comparative testing. It is worth noting that
other slight variations of these algorithms were developed and tested during the
research, but their performance did not meet the desired criteria and no interesting
conclusions could be extracted from these attempts, therefore they were not included
in this thesis.

6.5.1 Qualitative comments of the results
Static heuristics The first family includes a set of implementations of McSplit-
DAL, among which the best-performing version uses the SD swap strategy, coupled
with zero-initialized isolated Q-tables for the RL and DAL policies. The algorithm
is then further improved by using a collection of heuristics to reach a larger solution
before a fixed timeout of 60 seconds. The behavior of the different sort orders is
highly dependent on the domain of application and the solver used, but PageRank
was selected as the most stable and overall best-performant variant.

Multi-threading The second family investigates multi-threading techniques
through the McSplitMB and McSplitBS parallel implementations. The parameters
for these algorithms were carefully selected based on comparative testing, and in the
final experiments both algorithms were executed on 32 threads, with a block size of
32 and excluding delayed sharing in the case of McSplitBS. Both variants did not
use the DAL policy. The results indicate that McSplitMB using Katz Centrality*
is the fastest parallel algorithm for the MCS problem in specific applications.
However, McSplitBS remains competitive when employing the more stable heuristic,
PageRank. Consequently, McSplitMB+ can be tentatively considered the fastest
parallel algorithm for the MCS problem, but McSplitBS+ might still constitute a
valid and more stable alternative in some domains.

Graph Neural Networks The third and last family is related to the GNN-based
models. Unlike the previous families, this group of comparisons was not necessarily
aimed at finding the fastest solver, but rather to gain a deeper understanding of
the challenges of applying a Machine Learning approach to the MCS problem, and
hopefully build a knowledge base for future research. Our investigation concluded
that a GNN model used to compute node scores as a static heuristic can more
easily obtain satisfactory results without a significant increase in complexity. On
the other hand, models that attempt to act as a dynamic decision agent require

98

Experimental Analysis

a more articulated architecture capable of overcoming the drawbacks of having a
lower search speed.

Final considerations on heuristics Considering the results observed in the
first two categories, we can provide a description of the considered heuristics as
follows:

• PageRank (PR): This heuristic demonstrates high stability and consistently
outperforms the original degree heuristic. Although it may not be the most
efficient option when parallelized, it still yields satisfactory results. Overall,
PageRank can be considered the most effective sort order in a general domain,
and therefore McSplitDAL+PR represents the new state-of-the-art sequential
MCS solver.

• Betweenness Centrality (BC): Another stable heuristic, although slightly less
so than PageRank. While it may be less effective than PageRank in sequential
explorations, it gains a significant advantage when used in parallel.

• Local Clustering Coefficient (LCC): A semi-stable heuristic that tends to
perform better on larger instances. It benefits from the McSplitMB architecture
but is not as effective in McSplitBS.

• Katz Centrality* (KC*): A very unstable heuristic that can produce excellent
results, particularly on smaller and simpler graphs, but it can also perform
very poorly. It is largely the most effective heuristic when used in parallel with
the simple parallelization strategy of McSplitMB, but it shows unacceptable
performance in the more complex McSplitBS. While KC* can deliver solutions
of outstanding quality, it should be carefully vetted to make sure it suits the
target domain.

• Closeness Centrality (CC): This heuristic regularly performs worse than any
other, including the original degree. It is not recommended for any application.

6.5.2 Quantitative comparison of the best algorithms
6.23 reports a comparison of the best models from each family on the Large
dataset. Starting from the bottom, McSplitGNN and McSplit DiffGNN produce
considerably smaller solutions than the other algorithms due to their relatively
immature implementations.

Among the static heuristics used with the DAL policy, PageRank is the most
stable, constantly delivering higher quality solutions than the default degree-based
McSplitDAL, with a positive difference of 0.63%, and it outperforms the original
McSplit by 1.04%.

99

Experimental Analysis

(a) Rolling average (W = 100), normalized by McSplit and
sorted by average

(b) MND heatmap (%)

Figure 6.23: Comparison of the best-performing algorithms for each family on
Large

100

Experimental Analysis

This difference is further increased by employing multiple threads. Using
PageRank, McSplitBS is able to outperform McSplitMB by 1.29% and the sequential
version McSplitDAL+PR by 2.27%. However, on the Large dataset McSplitMB
is able to obtain considerably better results when using Katz Centrality*, with
an overall difference of 5.44% over McSplitDAL. However, it is important to note
that the results obtained by McSplitMB+KC* are highly unstable, and the same
algorithm can perform very poorly on some other test sets. The data clearly
highlights the importance of selecting the right heuristic for the target domain.
Moreover, the numbers here reported are measured on the algorithms running on
32 threads, and different machines with other parallelization capabilities might
obtain different results.

The static version of McSplitGNN has a negative score of 2.17% relative to
McSplitDAL, but interestingly, the gain plot reveals that on larger instances it
can outperform the most efficient sequential solver McSplitDAL+PR and it is
comparable to the parallel algorithm McSplitBS+PR. Its performance is even more
impressive considering that it is implemented in Python, which is a much slower
language than C++.

On the Small dataset (6.24) the algorithms show a similar, but different,
behavior. The GNN-based models are still the worst-performing, but by a smaller
margin. This is likely not a merit of the GNNs, but rather a consequence of the
fact that the Small dataset is composed of smaller graphs, which are easier to
solve. Interestingly, the static version of McSplitGNN is not as effective anymore,
showing similar performance to the other GNNs. This suggests that the learned
policies are not effective on small graphs, likely due to the fact that the training
set was composed of larger instances. McSplitMB confirms its superiority over
McSplitBS, winning even when using the PageRank heuristic. Katz Centrality* is
still the most effective sort order for easier instances, but it loses considerably in
the left region of the plot. This is consistent with what was observed in Section
6.2.3. On this smaller dataset, the winning algorithm is McSplitMB+PR, closely
followed by McSplitMB+LCC.

101

Experimental Analysis

(a) Rolling average (W = 100), normalized by McSplit and
sorted by average

(b) MND heatmap (%)

Figure 6.24: Comparison of the best-performing algorithms for each family on
Small

102

Chapter 7

Conclusion

The research work described in this thesis was aimed at improving the performance
of the most effective ground-truth solver for the Maximum Common Subgraph
(MCS) problem, McSplit. The research has been carried out in three main direc-
tions: the exploration of algorithmic optimizations and new static heuristics to
prioritize the most promising areas of the search space in the improved McSplitDAL
algorithm, the development of multi-threading techniques to fully leverage the
computational power of modern multicore processors, and the application of Graph
Neural Networks to guide the algorithm through a supervised approach.

One of the key challenges of the MCS problem lies in its algorithmic complexity.
MCS is known to be NP-hard, making it unfeasible to find an optimal solution
within limited time constraints. Without a reference target, it becomes challenging
to assess the quality of the solutions found by the solver under scrutiny, or even
to produce good-quality labels for Machine Learning models. Ultimately, the
final objective of the thesis is to increase the time efficiency by finding the largest
common subgraph possible between two graphs in the allocated time budget.

The research led to the formulation of a new algorithm, McSplitDAL+PR,
which incorporates the PageRank algorithm, widely known for its application in
the Google search engine, to approximate a best-first node selection policy. The
algorithm produces statistically larger solutions compared to previous methods
and now represents the new state-of-the-art solver for the MCS problem. This
achievement warranted the publication of a paper titled A web scraping algorithm
to enhance maximum common subgraph computation in the proceedings of the 2023
International Conference on Software Technologies (ICSOFT 2023).

However, alternative heuristics, based on Betweenness Centrality, Local Cluster-
ing Coefficients, and a modified Katz Centrality variant, proved to be particularly
effective in specific use cases. Consequently, to achieve the highest level of per-
formance, the selection of the most appropriate heuristic should be considered a
hyperparameter to be fine-tuned for the specific domain of application.

103

Conclusion

Likewise, the two considered parallel architectures McSplit MultiBranch (MB)
and McSplit Branch Sharing (BS) offer different levels of performance depending
on the application and the adopted heuristic, but ultimately the MB variant
demonstrated greater effectiveness and scalability in the majority of cases.

Finally, the Graph Neural Network (GNN) approach proved to be a promising
path to explore, particularly when employed to generate a static vertex sort order
for the McSplit algorithm. Through a Transfer Learning approach, our GNN model
was able to generate node scores that ultimately led to a comparable performance
relative to the other static heuristics, thereby paving the way for future advance-
ments in this area.

The research has been conducted as a broad, but shallow, exploration of different
approaches, all designed to address the MCS problem, and as such it has left many
open questions and avenues for future research. While it is not feasible to list all
possible improvements that could be explored, we focus on highlighting the most
promising ones.

One particularly intriguing direction is the application of the GNN approach to
construct a dynamic search policy which could lead to a significant improvement in
the performance of the algorithm. The agent would rely on a Deep Q Network or
on Recurrent Neural Networks to maintain knowledge of the current state, while
employing a Graph Convolutional Network to explore the graphs. Furthermore,
designing the model to leverage fixed-size data structures would enable optimal
utilization of the computational capabilities offered by modern GPUs.

Regarding parallel processing, the Branch Sharing variant could benefit from the
implementation of a more sophisticated thread management system. Such a system
would create larger tasks and prioritize each compute unit based on their probability
of discovering a solution. This approach would enhance the algorithm’s ability to
effectively leverage the computational power of the system while minimizing time
wasted on tasks that are unlikely to yield helpful solutions.

The work presented in this thesis makes a concrete contribution to the research on
the Maximum Common Subgraph problem. The findings and techniques developed
in this study have the potential to positively impact other scientific domains and
industries, including structural biology, computational chemistry, and software
engineering. Furthermore, the wide array of algorithms presented in this study,
along with the extensive range of experiments undertaken, provide helpful insights
on the MCS problem and serve as a valuable resource for future researchers seeking
to advance the state-of-the-art in the field.

104

Contributions

The thesis work is the result of an engaging and stimulating collaboration between
me and my fellow colleague Salvatore Licata (Politecnico di Torino - candidate
for Master’s degree in Computer Engineering). The work was supervised by Prof.
Stefano Quer (Politecnico di Torino) and Prof. Abolfazl Asudeh (University of
Illinois at Chicago), as well as the Ph.D. candidates Andrea Calabrese and Lorenzo
Cardone (Politecnico di Torino).

While most of the research has been conducted as a tightly collaborative effort
between me and Salvatore Licata, I can summarize my major contributions as
follows:

• Chapter 3: Exploration and implementation of some of the proposed Mc-
SplitDAL variants, including the SD policy and the comparison between
McSplitLL+DAL and McSplitRL+DAL. Research and implementation of the
static heuristics for McSplitDAL (in sequential or parallel versions).

• Chapter 4: Adaptation of the static heuristics on McSplitMB. Design and
implementation of the McSplitBS architecture, including the delayed sharing
variant.

• Chapter 5: Extensive analysis and reformatting of GLSearch to attempt
to reproduce the results of the original paper, with a particular focus on the
curriculum learning structure. Design and implementation of the McSplitGNN
architecture, including its transfer learning application in the static version.
Design and implementation of the model and the training pipeline of Mc-
Split DiffGNN. Design and implementation of the synthetic graph generation
process.

• Chapter 6: The experiments and data collection were conducted collabora-
tively, but all the data analysis, interpretation of the results, and conclusions
are the result of my individual work.

105

Appendix A

Additional Charts

This appendix contains additional charts that were not included in the main body
of the thesis due to space constraints.

107

Additional Charts

Figure A.1: Full difference heatmap of McSplitBS versions using PageRank, 32
threads, and different block sizes on Large-Finetuning

108

Additional Charts

Figure A.2: Full comparison of McSplitBS versions using delayed sharing or not,
with 32 threads, block size of 32, and different heuristics on Large-Finetuning

109

Additional Charts

Figure A.3: Full difference heatmap of McSplitBS versions using delayed sharing
or not, with 32 threads, block size of 32, and different heuristics on Large-
Finetuning

110

Additional Charts

Figure A.4: Full comparison of McSplitBS versions using the DAL policy or not,
with 32 threads, block size of 32, and different heuristics on Large-Finetuning

111

Additional Charts

Figure A.5: Full difference heatmap of McSplitBS versions using the DAL policy
or not, with 32 threads, block size of 32, and different heuristics on Large-
Finetuning

112

Additional Charts

Figure A.6: Full comparison of McsplitMB and McSplitBS, with 32 threads,
block size of 32, and different heuristics on Large

113

Additional Charts

Figure A.7: Full difference heatmap of McsplitMB and McSplitBS, with 32
threads, block size of 32, and different heuristics on Large

114

Bibliography

[1] Leonhard Euler. «Solutio problematis ad geometriam situs pertinentis». In:
Commentarii academiae scientiarum Petropolitanae 8 (1741), pp. 128–140
(cit. on p. 4).

[2] Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy. «Polynomial-time
algorithm for isomorphism of graphs with clique-width at most three». In:
Theoretical Computer Science 819 (2020). Computing and Combinatorics,
pp. 9–23. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.2017.
09.013. url: https://www.sciencedirect.com/science/article/pii/
S0304397517306758 (cit. on p. 6).

[3] Charles J. Colbourn and Kellogg S. Booth. «Linear Time Automorphism
Algorithms for Trees, Interval Graphs, and Planar Graphs». In: SIAM Journal
on Computing 10.1 (1981), pp. 203–225. doi: 10.1137/0210015. eprint:
https://doi.org/10.1137/0210015. url: https://doi.org/10.1137/
0210015 (cit. on p. 6).

[4] Alfred V Aho and John E Hopcroft. The design and analysis of computer
algorithms. Pearson Education India, 1974 (cit. on p. 6).

[5] Uwe Schöning. «Graph isomorphism is in the low hierarchy». In: Journal of
Computer and System Sciences 37.3 (1988), pp. 312–323. issn: 0022-0000.
doi: https://doi.org/10.1016/0022-0000(88)90010-4. url: https:
//www.sciencedirect.com/science/article/pii/0022000088900104
(cit. on p. 6).

[6] Stephen A. Cook. «The complexity of theorem-proving procedures». In:
Association for Computing Machinery, May 1971, pp. 151–158. doi: 10.
1145/800157.805047 (cit. on p. 7).

[7] M R Garey and D S Johnson. «Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences)».
In: Computers and Intractability (1979), p. 340. issn: 0036-1445 (cit. on p. 8).

115

https://doi.org/https://doi.org/10.1016/j.tcs.2017.09.013
https://doi.org/https://doi.org/10.1016/j.tcs.2017.09.013
https://www.sciencedirect.com/science/article/pii/S0304397517306758
https://www.sciencedirect.com/science/article/pii/S0304397517306758
https://doi.org/10.1137/0210015
https://doi.org/10.1137/0210015
https://doi.org/10.1137/0210015
https://doi.org/10.1137/0210015
https://doi.org/https://doi.org/10.1016/0022-0000(88)90010-4
https://www.sciencedirect.com/science/article/pii/0022000088900104
https://www.sciencedirect.com/science/article/pii/0022000088900104
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047

BIBLIOGRAPHY

[8] Viggo Kann. «On the approximability of the maximum common subgraph
problem». In: vol. 577 LNCS. 1992. doi: 10.1007/3-540-55210-3_198
(cit. on p. 8).

[9] Peter J. Artymiuk, Ruth V. Spriggs, and Peter Willett. «Graph theoretic meth-
ods for the analysis of structural relationships in biological macromolecules».
In: Journal of the American Society for Information Science and Technology
56 (5 2005). issn: 15322882. doi: 10.1002/asi.20140 (cit. on p. 8).

[10] Hans Christian Ehrlich and Matthias Rarey. «Maximum common subgraph
isomorphism algorithms and their applications in molecular science: A review».
In: Wiley Interdisciplinary Reviews: Computational Molecular Science 1 (1
2011). issn: 17590876. doi: 10.1002/wcms.5 (cit. on p. 8).

[11] John W. Raymond and Peter Willett. Maximum common subgraph iso-
morphism algorithms for the matching of chemical structures. 2002. doi:
10.1023/A:1021271615909 (cit. on p. 8).

[12] Younghee Park, Douglas S. Reeves, and Mark Stamp. «Deriving common
malware behavior through graph clustering». In: Computers and Security 39
(PART B 2013). issn: 01674048. doi: 10.1016/j.cose.2013.09.006 (cit. on
p. 8).

[13] Erick Nilsen Pereira de Souza, Daniela Barreiro Claro, and Rafael Glauber.
«A similarity grammatical structures based method for improving open in-
formation systems». In: Journal of Universal Computer Science 24 (1 2018).
issn: 09486968 (cit. on p. 8).

[14] Ciaran McCreesh, Patrick Prosser, and James Trimble. «A partitioning al-
gorithm for maximum common subgraph problems». In: vol. 0. Interna-
tional Joint Conferences on Artificial Intelligence, 2017, pp. 712–719. isbn:
9780999241103. doi: 10.24963/ijcai.2017/99 (cit. on p. 9).

[15] Ruth Hoffmann, Ciaran McCreesh, and Craig Reilly. «Between Subgraph
Isomorphism and Maximum Common Subgraph». In: Proceedings of the AAAI
Conference on Artificial Intelligence 31.1 (Feb. 2017). doi: 10.1609/aaai.
v31i1.11137. url: https://ojs.aaai.org/index.php/AAAI/article/
view/11137 (cit. on p. 9).

[16] Matjaz Depolli, Sandor Szabo, and Bogdan Zavalnij. «An improved maximum
common induced subgraph solver». In: Match 84 (1 2020). issn: 03406253
(cit. on p. 9).

[17] Yasuharu Okamoto. «Finding a Maximum Common Subgraph from Molecular
Structural Formulas through the Maximum Clique Approach Combined
with the Ising Model». In: ACS Omega 5 (22 2020). issn: 24701343. doi:
10.1021/acsomega.0c00987 (cit. on p. 9).

116

https://doi.org/10.1007/3-540-55210-3_198
https://doi.org/10.1002/asi.20140
https://doi.org/10.1002/wcms.5
https://doi.org/10.1023/A:1021271615909
https://doi.org/10.1016/j.cose.2013.09.006
https://doi.org/10.24963/ijcai.2017/99
https://doi.org/10.1609/aaai.v31i1.11137
https://doi.org/10.1609/aaai.v31i1.11137
https://ojs.aaai.org/index.php/AAAI/article/view/11137
https://ojs.aaai.org/index.php/AAAI/article/view/11137
https://doi.org/10.1021/acsomega.0c00987

BIBLIOGRAPHY

[18] Runzhong Wang, Junchi Yan, and Xiaokang Yang. «Learning combinatorial
embedding networks for deep graph matching». In: vol. 2019-October. 2019.
doi: 10.1109/ICCV.2019.00315 (cit. on p. 9).

[19] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli.
«Graph matching networks for learning the similarity of graph structured
objects». In: vol. 2019-June. 2019 (cit. on p. 9).

[20] Information Technology. «Neural Maximum Common Subgraph Detection
With Guided Subgraph Extraction». In: System (2009) (cit. on p. 9).

[21] Hongteng Xu, Dixin Luo, and Lawrence Carin. «Scalable gromov-wasserstein
learning for graph partitioning and matching». In: vol. 32. 2019 (cit. on p. 9).

[22] Yunsheng Bai, Derek Xu, Alex Wang, Ken Gu, Xueqing Wu, Agustin Mari-
novic, Christopher Ro, Yizhou Sun, and Wei Wang. «Fast Detection of
Maximum Common Subgraph via Deep Q-Learning». In: (Feb. 2020) (cit. on
p. 9).

[23] James Trimble. «Partitioning algorithms for induced subgraph problems».
PhD thesis. 2023 (cit. on pp. 13, 71).

[24] Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic
programming. wiley, Jan. 2008, pp. 1–649. isbn: 9780470316887. doi: 10.
1002/9780470316887 (cit. on p. 15).

[25] Matthew T. Regehr and Alex Ayoub. «An Elementary Proof that Q-learning
Converges Almost Surely». In: CoRR abs/2108.02827 (2021). arXiv: 2108.
02827. url: https://arxiv.org/abs/2108.02827 (cit. on p. 15).

[26] Thomas G. Dietterich. «Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition». In: Journal of Artificial Intelligence Research
13 (2000). issn: 10769757. doi: 10.1613/jair.639 (cit. on p. 16).

[27] Yanli Liu, Chu Min Li, Hua Jiang, and Kun He. «A learning based branch
and bound for maximum common subgraph related problems». In: 2020. doi:
10.1609/aaai.v34i03.5619 (cit. on p. 16).

[28] Jianrong Zhou, Kun He, Jiongzhi Zheng, Chu Min Li, and Yanli Liu. «A
Strengthened Branch and Bound Algorithm for the Maximum Common
(Connected) Subgraph Problem». In: 2022. doi: 10.24963/ijcai.2022/265
(cit. on p. 17).

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks. 2018. arXiv:
1710.10903 [stat.ML] (cit. on p. 23).

[30] Yanli Liu, Jiming Zhao, Chu-Min Li, Hua Jiang, and Kun He. Hybrid Learning
with New Value Function for the Maximum Common Subgraph Problem. 2022.
arXiv: 2208.08620 [cs.AI] (cit. on p. 25).

117

https://doi.org/10.1109/ICCV.2019.00315
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://arxiv.org/abs/2108.02827
https://arxiv.org/abs/2108.02827
https://arxiv.org/abs/2108.02827
https://doi.org/10.1613/jair.639
https://doi.org/10.1609/aaai.v34i03.5619
https://doi.org/10.24963/ijcai.2022/265
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2208.08620

BIBLIOGRAPHY

[31] Lawrence Page and Sergey Brin. «The anatomy of a large-scale hypertextual
Web search engine». In: Computer Networks 30 (1-7 1998). issn: 13891286.
doi: 10.1016/s0169-7552(98)00110-x (cit. on p. 31).

[32] Linton C. Freeman. «A Set of Measures of Centrality Based on Betweenness».
In: Sociometry 40 (1 1977). issn: 00380431. doi: 10.2307/3033543 (cit. on
p. 33).

[33] Matthias Bentert, Alexander Dittman, Leon Kellerhals, André Nichterlein, and
Rolf Niedermeier. «An adaptive version of brandes’ algorithm for betweenness
centrality». In: Journal of Graph Algorithms and Applications 24 (3 2020).
issn: 15261719. doi: 10.7155/jgaa.00543 (cit. on p. 33).

[34] Matthias Bentert, Alexander Dittman, Leon Kellerhals, André Nichterlein, and
Rolf Niedermeier. «An adaptive version of brandes’ algorithm for betweenness
centrality». In: Journal of Graph Algorithms and Applications 24 (3 2020),
pp. 483–522. issn: 15261719. doi: 10.7155/jgaa.00543 (cit. on p. 35).

[35] Alex Bavelas. «Communication Patterns in Task-Oriented Groups». In: Jour-
nal of the Acoustical Society of America 22 (6 1950). issn: NA. doi: 10.1121/
1.1906679 (cit. on p. 35).

[36] Junzhou Zhao, Pinghui Wang, John C.S. Lui, Don Towsley, and Xiaohong
Guan. «I/O-efficient calculation of H-group closeness centrality over disk-
resident graphs». In: Information Sciences 400-401 (2017), pp. 105–128. issn:
0020-0255. doi: https://doi.org/10.1016/j.ins.2017.03.017. url:
https://www.sciencedirect.com/science/article/pii/S002002551730
5960 (cit. on p. 35).

[37] Leo Katz. «A new status index derived from sociometric analysis». In: Psy-
chometrika 18.1 (1953), pp. 39–43 (cit. on p. 35).

[38] Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. «GLSearch: Maximum
Common Subgraph Detection via Learning to Search». In: Proceedings of the
38th International Conference on Machine Learning. Ed. by Marina Meila and
Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,
18–24 Jul 2021, pp. 588–598. url: https://proceedings.mlr.press/v139/
bai21e.html (cit. on pp. 54, 55).

[39] P. Foggia, C. Sansone, and Mario Vento. «A database of graphs for isomor-
phism and sub-graph isomorphism benchmarking». In: Proc. of the 3rd IAPR
TC-15 International Workshop on Graph-based Representations (March 2001)
(cit. on p. 66).

[40] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. June 2014 (cit. on
p. 66).

118

https://doi.org/10.1016/s0169-7552(98)00110-x
https://doi.org/10.2307/3033543
https://doi.org/10.7155/jgaa.00543
https://doi.org/10.7155/jgaa.00543
https://doi.org/10.1121/1.1906679
https://doi.org/10.1121/1.1906679
https://doi.org/https://doi.org/10.1016/j.ins.2017.03.017
https://www.sciencedirect.com/science/article/pii/S0020025517305960
https://www.sciencedirect.com/science/article/pii/S0020025517305960
https://proceedings.mlr.press/v139/bai21e.html
https://proceedings.mlr.press/v139/bai21e.html
http://snap.stanford.edu/data

BIBLIOGRAPHY

[41] A. Calabrese, L. Cardone, S. Licata, M. Porro, and S. Quer. «A Web Scraping
Algorithm to Improve the Computation of the Maximum Common Subgraph».
In: vol. 0. 2023, pp. 197–206. isbn: 978-989-758-665-1 (cit. on p. 80).

119

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Thesis Structure

	Background
	Graphs
	Definitions
	Graph isomorphism
	Subgraph isomorphism

	Maximum Common Subgraph (MCS) problem
	McSplit algorithm
	Existing MCS solvers
	McSplit
	McSplitSO and McSplitSD

	Reinforcement Learning (RL)
	Theoretical overview
	An example of Q-learning
	McSplitRL
	McSplitLL

	Machine Learning meets graphs: GNNs
	Multi-Layer Perceptrons (MLPs)
	Graph Neural Networks (GNNs)
	Graph Convolutional Networks (GCNs)
	Graph Attention Networks (GATs)

	Algorithmic Optimizations and Heuristics
	McSplitDAL
	Overview
	dal
	Hybrid learning policy

	Our implementations
	Joint vs Isolated Q-tables
	Initialization of Q-tables
	McSplitRL+DAL vs McSplitLL+DAL

	Static Heuristics
	PageRank (PR)
	Betweenness Centrality (BC)
	Closeness Centrality (CC)
	Katz Centrality* (KC*)
	Local Clustering Coefficient (LCC)
	Summary

	Parallel Architectures and Multi-Threading
	McSplit mb (McSplitMB)
	McSplit bs (McSplitBS)
	Building an iterative version of McSplit
	Branch Sharing
	Block size
	Delayed Sharing

	Conclusion

	Graph Neural Networks (GNN)
	GLSearch
	The architecture
	Training
	Our experience

	McSplitGNN
	The architecture
	Training

	McSplit DiffGNN
	Model Architecture
	Training
	Training on synthetic data

	Experimental Analysis
	The experimental setup
	Testing methodology
	Datasets
	Result post-processing
	Gain plots
	Mean Normalized Difference (MND)

	Experimental Analysis of the Static Heuristics
	McSplitDAL implementations
	McSplitSD
	Joint vs Isolated Q-tables
	Initialization of Q-tables
	McSplitRL+DAL vs McSplitLL+DAL
	Comparison of all McSplitX variants

	A first toe in the water with PageRank
	Comparison of the static heuristics

	Multi-Threading architectures
	McSplit MultiBranch (MB)
	Thread count
	Static Heuristics

	McSplit Branch Sharing (BS)
	Block Size
	Thread Count
	Static Heuristics
	Delayed Sharing
	Is Reinforcement Learning effective in McSplitBS?

	Conclusions on Multi-Threaded McSplit

	GNN models
	McSplitGNN
	McSplit DiffGNN
	Conclusions on the GNN-based models

	Summary of Results
	Qualitative comments of the results
	Quantitative comparison of the best algorithms

	Conclusion
	Contributions
	Additional Charts
	Bibliography

