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3.3 Measurement of Fabry Pérot spectra after mirror deposition . . . . . . . . . . . . . . . . . 22

4 Photon pairs generation 23

5 Conclusions and perspectives 24



Acronyms

BS Beam Splitter.
CAR Coincidence to Accidental Ratio.
DBR Distributed Bragg Reflectors.
DFG Difference Frequency Generation.
FDE Finite Difference Eigenmode.
FDTD Finite Difference Time Domain.
FSS Fine Structure Splitting.
HOM Hong-Ou-Mandel.
HPF Hybrid Polarization Frequency.
IBAD Ion Beam Assisted Deposition.
JSA Joint Spectral Amplitude.
JSI Joint Spectral Intensity.
OSA Optical Spectrum Analyzer.
PPLN Periodically Poled Lithium Niobate.
QD Quantum Dots.
QPM Quasi-Phase Matching.
SEM Scanning Electron Microscope.
SFG Sum Frequency Generation.
SFWM Spontaneous Four Wave Mixing.
SHG Second Harmonic Generation.
SLM Spatial Light Modulator.
SNSPD Superconductive Nanowire Single Photon Detector.
SPDC Spontaneous Parametric Down Conversion.
TT Time Tagger.

ii



Introduction

Context: Quantum technology is an emerging field of physics and engineering, encompassing tech-
nologies that rely on the properties of quantum mechanics, especially quantum entanglement, quantum
superposition, and quantum tunneling. This field is divided into four main research topics:

• Quantum computing, where quantum properties of systems like trapped ions and superconducting
circuits are used to implement algorithms that could be in principle much more efficient than
classical ones, exponentially reducing the time required for calculations;

• Quantum simulation is closely related to quantum computing; using a different approach, it consists
in using a controllable and easily accessible quantum system to analogically simulate a less accessible
and controllable one;

• Quantum metrology exploits the inherent high sensibility and sensitivity of quantum systems to
produce very accurate and precise measurements;

• Quantum communication utilizes quantum properties of photons (like entanglement) to transmit
information in an unconditionally secure way.

These 4 pillars are based on a common foundation, generally referred to as “enabling technologies”, which
brings together all the research on materials, devices, theoretical tools in physics and information theory
required for application developments.

Photons have proven to be the most reliable platform for quantum communications for several reasons:
they travel at the speed of light, they can exploit pre-existing classical networks (like optical fibers and
satellites), they exhibit quantum behavior at room temperature and they are resistant against noise and
decoherence. The ability to generate and engineer quantum states of light is therefore crucial for the
development of this technology. In this work we focus on sources of photon pairs, that can be divided
into two main categories: deterministic and probabilistic.
Deterministic sources ideally generate a pair each time a trigger signal is sent; they can be implemented
using radiative cascades in atoms, as it was done by A. Aspect, P. Grangier and G. Roger [1] [2] in their
experimental implementation of the “Gedankenexperiment” with calcium atoms to test the violation of
Bell’s inequality [3].
Probabilistic sources exploit down-conversion of a pump laser in nonlinear crystals. Several materials
are available, such as LiNbO3 [4] and GaAs for Spontaneous Parametric Down Conversion (SPDC)
(exploiting a second order nonlinearity) and Si for Spontaneous Four Wave Mixing (SFWM) (exploiting
a third order nonlinearity). Since they are based on a probabilistic process, they are not able to produce
photons on demand; however, they allow for simpler setups (room temperature operation, no need for
vacuum chambers), can take advantage of well established fabrication technologies and enable high quality
quantum state generation exploiting a large variety of degrees of freedom.

Today, thanks to the progress in miniaturization and scaling, deterministic sources are mainly imple-
mented using biexciton-exciton cascade in semiconductor Quantum Dots (QD), as it was first proposed
by Benson et al. [5]. They can be integrated with other structures to increase the collection efficiency,
such as microcavities [6] or Distributed Bragg Reflectors (DBR) [7]. One of the main challenges in their
development is overcoming the Fine Structure Splitting (FSS), which reduces the degree of entangle-
ment and indistinguishability [8]. Probabilistic sources, on the other hand, moved from bulk crystals
to integrated sources, such as Silicon microring resonators [9] for SFWM and AlGaAs waveguides [10]
for SPDC, which can be integrated in monolithic chips that contain all the components needed for the
implementation of quantum information protocols [11].

Presentation of the lab

I carried out my internship in the Quantum Information and Technologies (QITe) team of the Laboratory
Matériaux et Phénomènes Quantiques (MPQ), a mixed research unit of Université Paris Cité and CNRS.
The laboratory specializes in the study of frontier quantum materials and in the development of novel
quantum devices. These activities rely on a large spectrum of theoretical and experimental expertise in
material physics, transport and optics, and technological platforms of cleanroom fabrication, spectroscopy
and high-resolution electronic microscopy.

The QITe team develops platforms and integrated photonic devices for quantum information; it is
organized in three research axes: quantum photonics, trapped ions and theory. During my internship I
was part of the quantum photonics group, which works on the design, fabrication and characterization of
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III-V semiconductor sources of entangled photons working at room temperature at telecom wavelength.
The group develops several projects:

- Counterpropagating entangled photon sources, on which I worked during my internship, particularly
suited for quantum simulations ad quantum metrology;

- Copropagating entangled photon sources, particularly suited for communication protocols exploiting
broadband entangled photon states;

- Waveguide array networks for the implementation of spatial modes entanglement;

- Hybrid III-V/SOI entangled photon sources, to combine the assets of the two platforms.

Internship project

My internship focuses on a waveguide microcavity emitting quantum states of light in a transverse pump
configuration, and in particular on the engineering of the spectrum of the emitted two-photon state in
view of the realization of an ion-photon interface, a key element for the inclusion of trapped ions nodes
in quantum networks. To pursue this objective and achieve ion-photon entanglement, a wavelength and
spectral width match between the ion and photon systems is required. During my internship, I worked
on the spectral narrowing of the emitted photon pairs; this enabled me to integrate the team’s work by
familiarizing myself with numerical simulations, cleanroom fabrication and sample characterization in
both classical and quantum optical regime.

Figure 1: Sketch of the source based on the counterpropagating phasematching scheme under transverse
pumping

The report is structured as it follows: chapter 1 consists an overview of second order nonlinear pro-
cesses in crystals, with particular focus on AlGaAs. In chapter 2 I present the results of my numerical
simulations concerning the waveguide’s facet reflectivity and the emitted biphoton state. The experimen-
tal characterization of my sample is detailed in chapter 3, while in chapter 4 I describe the experimental
setup used for the photon pairs generation. In the end, in chapter 5, I summarize the results of my work
and present the future development of this project.
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1 Nonlinear optical processes in AlGaAs

1.1 Introduction to nonlinear optical processes

This analysis follows the book Nonlinear Optics by R. Boyd [12]. When a weak electric field E(t) impinges
on a material, this will display a linear response that we express through the polarization density P (t):

P (t) = ϵ0χ
(1)E(t) (1.1)

where ϵ0 is the vacuum permittivity and χ(1) is called the linear susceptibility of the material. More in
general, the polarization can be expressed as a power series of the field:

P (t) = ϵ0

[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

]
= P (1)(t) + P (2)(t) + P (3)(t) + ... (1.2)

with χ(2) and χ(3), respectively, the second order and third order nonlinear susceptibilities. For simplicity,
the fields were taken as scalar quantities and therefore the susceptibilities are in turn scalar. In the general
case where one considers vector fields, the χ(m) susceptibility becomes a m + 1 rank tensor. Its value
decreases very fast with increasing order: to give an order of magnitude, we can say that:

χ(1) ∼ 1 m/V

χ(2) ∼ 10−12 m/V

χ(3) ∼ 10−24 m/V

Hence, in order to observe nonlinear effects, intense fields are required, like the ones produced by laser
sources. Moreover, χ(2) is identically zero for centrosymmetric media (i.e. crystals with inversion sym-
metry), like Silicon. As a consequence, in order to exploit second order nonlinear processes, one has to
resort to non-centrosymmetric crystals, like LiNbO3 and AlGaAs. In this kind of media, several kinds of
second order nonlinear processes (also referred as “Three wave mixing” because they involve three waves
at frequency ω1, ω2, ω3) can happen:

• Sum Frequency Generation (SFG) (Figure 2a): two pump fields of frequency ω1 and ω2

generate a third field at frequency ω3 = ω1 + ω2

• Second Harmonic Generation (SHG): a particular case of SFG with ω1 = ω2 = ω, hence the
generated field has frequency 2ω

• Difference Frequency Generation (DFG): two pump fields of frequency ω1 and ω2 generate a
third field at frequency ω3 = ω1 − ω2

• Spontaneous Parametric Down Conversion (SPDC) (Figure 2b): it is the inverse process
of SFG, i.e. one pump field ωp generates two fields ωs, ωi (often called signal and idler) such that
ωs+ωi = ωp (energy conservation). This process cannot be entirely descripted classically; however,
a semiclassical description is possible by considering a DFG interaction of the pump field with
vacuum fluctuations.

(a) SFG (b) SPDC

Figure 2: Sketch illustrating two three wave mixing processes : a) Sum Frequency Generation; b) Spon-
taneous Parametric Down Conversion
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1.1.1 Propagation in a nonlinear medium

Let us start from Maxwell equation for a material with no free charges (ρ = 0) and no free currents
(J = 0):

∇×E = −∂B
∂t

(1.3)

∇×H = −∂D
∂t

(1.4)

∇ ·B = 0 (1.5)

∇ ·D = 0 (1.6)

They can be combined to obtain:

∇2E− 1

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P

∂t2
(1.7)

The polarization vector can be split in its linear and nonlinear part:

P = PL +PNL (1.8)

Similarly for the displacement vector:
D = D(1) +PNL (1.9)

where the linear part is:
D(1) = ϵ0E+P(1) (1.10)

In a lossless, dispersionless and isotropic media:

D(1) = ϵ0ϵ
(1)E (1.11)

with ϵ(1) the real, frequency independent dielectric constant. Hence, Equation 1.7 reduces to:

∇2E− n2

c2
∂2E

∂t2
=

1

ϵ0c2
∂2PNL

∂t2
(1.12)

1.1.2 Phase matching

Consider a SFG process that generates a field E3 from two fields E1 and E2 propagating along the z
direction (analogous considerations can be applied to DFG and SPDC). For simplicity, let us also consider
scalar fields, dropping the vectorial notation:

E1 = A1e
i(k1z−ω1t) + c.c.

E2 = A2e
i(k2z−ω2t) + c.c. (1.13)

E3 = A3e
i(k3z−ω3t) + c.c.

where
ki =

niωi

c
, ni = n(ωi), i = 1, 2, 3 (1.14)

The output intensity can be proven to be [12]:

I3 =
8d2effω

2
3I1I2

n1n2n3ϵ0c2
L2 sinc2

(
∆kL

2

)
(1.15)

with I1, I2 the two input intensities, L the medium length, deff = 1
2χ

(2) and

∆k = k1 + k2 − k3 (1.16)

the phase mismatch. As it can be seen from Figure 3a, the effect of phase mismatch on the output
intensity (and therefore on the conversion efficiency) is very important: it is therefore crucial to satisfy
the relation

∆k = 0 (1.17)

called phase matching condition. However, this condition, that can be rewritten as:

n1ω1

c
+
n2ω2

c
=
n3ω3

c
(1.18)

is not straightforward to be satisfied because of the dispersion of the refractive index. In bulk crystals,
different solutions can be implemented:
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a) Exploit the birefringence of the crystal, i.e. the dependance of the refractive index on the field
polarization. This can be done in highly birefringent nonlinear crystals like KDP and LiNbO3 [13].

b) Quasi-Phase Matching (QPM): as it can be seen in Figure 3b, in case of phase mismatch the field
intensity oscillates while it propagates inside the structure. The idea of QPM is to invert the sign
of deff when this oscillation is at its maximum: in this way the nonlinear interaction continues
to be constructive instead of becoming destructive. By doing this periodically in correspondence
of every extrema of the oscillation, a net increase of the intensity can be achieved. This can be
realized by periodically poling a nonlinear crystal, i.e. periodically changing the orientation of its
crystallographic axis, as it is done for instance in PPLN [14].

(a) (b)

Figure 3: (a) Effect of phase mismatch on SFG efficiency (b) Optical intensity for a perfect phase match
(blue) and a phase mismatch ∆k = 4/L (red)

1.2 GaAs and AlGaAs optical properties

GaAs is a widely used material in photonics and optoelectronics thanks to its several assets:

• Room temperature operation at telecom wavelength;

• High second order non linearity [15];

• High electro-optic effect [16];

• Direct band gap, allowing the monolithic integration of electrically driven laser and nonlinear optical
medium [17];

GaAs has a zincblende crystal structure with 4̄3m symmetry; if we introduce the tensor:

dijk =
1

2
χ
(2)
ijk (1.19)

we can exploit GaAs permutation symmetries to define an equivalent contracted matrix dil according to
[12]:

jk 11 22 33 23/32 31/13 12/21
l 1 2 3 4 5 6

Hence, χ
(2)
ijk is reduced to a 3x6 matrix:

dil =

d11 d12 d13 d14 d15 d16
d16 d22 d23 d24 d14 d12
d15 d24 d33 d23 d13 d14

 (1.20)
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Moreover, the 4̄3m symmetry imposes only the d14 element to be non-zero:

dil =

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

 (1.21)

This material’s properties can be engineered by realizing an alloy with AlAs, obtaining AlxGa1−xAs with
different molar concentration x, as shown in Figure 4.

(a) (b)

Figure 4: AlxGa1−xAs properties as a function of molar concentration: (a) refractive index n, calculated
with Gerhsitz model [18] (b) Second order non-linear coefficient d14 calculated using Ohashi model [19]

However, AlGaAs is isotropic, hence birefringent phase matching is not possible. QPM can be im-
plemented through periodical poling by wafer bonding [20] or epitaxial regrowth [21], but this approach
introduces significant losses. Our group works on integrated waveguide sources exploiting two types of
QPM schemes:

• A source based on a copropagating phase matching scheme, where the pump, signal and idler fields
all propagate along the direction of the waveguide, as sketched in figure 5a. This source uses modal
phase matching, i.e. it exploits the difference in the effective refractive index of different types of
guided modes;

• A source based on a counterpropagating phase matching scheme, sketched in 5b, where the pump
impinges on the top of the waveguide and the signal and idler propagate in opposite directions
along the waveguide. The phase matching scheme integrated by this source, on which I worked on
during my internship, is detailed in the next section.

(a) Copropagating phase matching scheme (b) Counterpropagating phase matching scheme

Figure 5: Sketches of the two different types of sources
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2 Design of the counterpropagating source

The facet reflectivity has a very strong impact on the spectrum of the biphoton state emitted by the
waveguide; in particular, increasing the reflectivity through the deposition of Bragg mirrors will allow
us to achieve the spectral narrowing previously mentioned in the introduction. In this section, I present
the results of my numerical simulations concerning the dimensions of the waveguide and the effect of the
mirror deposition on both the facet reflectivity and the emitted biphoton state.

2.1 Dimensioning of the waveguide

Starting from a pre-existing epitaxial structure, I performed numerical simulations to choose the top
width and the etching depth of the waveguide: the objective is to obtain signal and idler modes well
confined in the structure and far from the flanks so that, when mirrors will be deposited, possible defects
and imperfections induced by the deposition will not alter the fields in a significant way. The source
consists of a ridge waveguide made of a stack of AlGaAs layers implementing the counter-propagating
SPDC scheme. The Al concentration and thickness of each layer are displayed in Table 1. The cladding
consists of a series of Bragg mirrors made of AlGaAs layers with 90% and 35% Aluminium content; these
layers have three main functions [22]:

1. Confine the generated photons (at wavelength λ = 1550 nm) by total internal reflection

2. Create a resonant microcavity for the pump laser (at wavelength λ = 775 nm)

3. The bottom mirror avoids the penetration of the pump field into the substrate

The core instead consists of layers of 25% and 85% Al concentration, leading to an alternation of high and
low χ(2) value. This choice allows to implement a QPM scheme along the vertical direction: as pointed
out in [23], the conversion efficiency depends on the nonlinear overlap integral :

χΓ =

∫
deff (x)ΨP (x)ΦS(x)ΦI(x)dx (2.1)

where ΨP ,ΦS and ΦI are, respectively, the pump, signal and idler amplitude. Being inside a resonant
microcavity, the pump is a stationary wave; in an homogeneous material, the positive and negative half-
periods of this stationary wave would compensate each other and interfere destructively, giving χΓ = 0.
Instead, the structure is engineered in a way that the positive half-periods of the wave are in the high χ(2)

region and the negative half-periods are in correspondence of the low χ(2) region, as it is represented in
Figure 6 (reproduced from [23]): in this way, the contribution of the latter to the integral is attenuated,
obtaining an overall positive χΓ. The spatial distribution of the modes for the final structure and the
respective simulation results are reported, respectively, in Fig. 7 and Table 2. In the following, TE mode
will also be referred as H polarization and TM as V polarization.

Figure 6: Representation of vertical QPM scheme. H and L correspond, respectively, to high and low
χ(2) regions. Reproduced from [23]
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Number of periods Role Al content (%) Thickness h (nm)
1 Substrate 0

36
Bottom
Bragg

90 70.8
35 50.1

1 Buffer 90 125.1

4
Core 25 129.1
Core 80 104.3

1 Core 25 129.1
1 Buffer 90 125.1

14
Top
Bragg

35 50.1
90 70.8

1 Cap 0 50.0

Table 1: Epitaxial structure of wafer K7AD121

Figure 7: Left: TE mode spatial distribution. Right: TM mode spatial distribution

Top width 7 µm
Etch depth 1.6 µm

neff at λ = 1550 nm confinement
TE 3.087435 90.00%
TM 3.073054 94.17%

Table 2: Effective refractive index and confinement factor for the waveguide reported in Fig. 7

In a counterpropagating geometry (see sketch shown in Figure 8), the energy conservation and phase
matching conditions: {

ωp = ωs + ωi

kp = ks + ki

(2.2)
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can be rewritten as: 
ωp = ωs + ωi
ωp

c sin θ = ks − ki
np(ωp,x)ωp

c cos θ = kQPM

(2.3)

The third equation describes how the vertical component of the pump wavevector is compensated by the
QPM scheme. The second equation highlights one of the key features of the source, its tunability: by
changing the angle with which the pump field impinges on top of the waveguide, it is possible to tune
the wavelength of the emitted photons.

Figure 8: Counter propagating phase matching scheme. Reproduced from [22].

2.2 Study of the effect of mirror deposition on the facets reflectivity

In this section, I report the numerical study I did on the effect of the Bragg mirror deposition on the
facets modal reflectivity. At first I used a plane wave approximation, then I refined the simulation by
using a Finite Difference Time Domain (FDTD) method.

In the plane wave approximation, we consider a plane wave with wavelength λB impinging on a mirror
constituted of N bi-layers made of two materials of refractive index n1, n2 of optical thickness λB

4 . The
reflectivity at wavelength λB is given by [24]:

R =

1− ne

ni

(
n2

n1

)2N
1 + ne

ni

(
n2

n1

)2N

2

(2.4)

where ni and ne are respectively the indexes of the incident and exiting medium. In our case, SiO2 was
used as material 1 (n1 = 1.444) and TiO2 as material 2 (n2 = 2.3) at λB = 1550 nm, going from a guided
mode in AlGaAs waveguide (modal effective index ni ≃ 3.1) to air (ne = 1). More accurate results can
be obtained by performing a Finite Difference Time Domain (FDTD) simulation: this method discretizes
and numerically solves the time-dependent Maxwell equations in a finite spatial and temporal grid for an
arbitrary source, overcoming the plane wave approximation. Results obtained using the two approaches
are reported in Table 3 and 4.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
R 59.97% 81.82% 92.40% 96.93% 98.78% 99.52%

Table 3: Simulated reflectivity values obtained using Equation 2.4

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
R (TE) 29.56% 63.01% 83.77% 92.24% 96.62% 98.32% 98.98%
R (TM) 22.87% 55.02% 77.72% 87.5% 92.95% 95.42% 96.74%

Table 4: Simulated reflectivity values obtained by FDTD simulations of our waveguide

These values of reflectivity can in turn be used to calculate the Fabry-Pérot transmission spectra
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displayed in Fig. 9 according to [25]:

T =

(
1 +

4R

(1−R)
2 sin2

δ

2

)−1

(2.5)

where δ = 2π∆
λ ,∆ = 2nL, n is the modal effective refractive index and L is the mirror distance (i.e. the

waveguide length). Because of the birefringence of the waveguide, the TE transmission spectrum TTE

and the TM transmission spectrum TTM are not perfectly superimposed. In order to quantify the degree
of overlap, we use the quantity: ∫

TTE(λ) · TTM (λ)dλ√∫
T 2
TE(λ)dλ ·

∫
T 2
TM (λ)dλ

(2.6)

If the number of mirrors increases, the reflectivity increases, so the peaks become narrower and the
overlap decreases; this can represent a problem in case we want to dispose of indistinguishable photons,
a useful resource for a variety of quantum protocols. In order to counter this behaviour, we can imagine
to compensate the birefringence of the structure by acting e.g. on temperature, strain or by using the
electro-optic effect. This would enable to tune the resonance frequencies of TE and TM photon, increasing
their overlap, as shown in Figure 10. In this way, the overlap is limited only by the different reflectivity
of the two modes. A comparison between overlap values before and after this correction is listed in Table
5.

Figure 9: Fabry-Pérot spectra obtained from Eq. 2.5

Figure 10: Fabry-Pérot spectra obtained from Eq. 2.5 after birefringence compensantion

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
With birefringence 0.9814 0.9408 0.8676 0.7716 0.6636 0.5595 0.3270

Without birefringence 0.9985 0.9974 0.9954 0.9920 0.9872 0.9845 0.8788

Table 5: Overlap values

2.3 Joint Spectral Amplitude

In this section I describe the calculations of the quantum properties of the state emitted by the waveguide
I have designed. Let us consider the down conversion of a pump field Ep(ωp) in an H -polarized signal
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photon and a V -polarized idler (HV interaction for short)1, that are respectively in the guided modes
Es(ωs) and Ei(ωi). As depicted in Figure 5b, we call signal the photon propagating to the right and idler
the one propagating to the left. The emitted biphoton state can be written as [22]:

|ψ⟩ =
∫∫

dωsdωi ϕ(ωs, ωi)â
†
H(ωs)â

†
V (ωi) |0⟩ (2.7)

where â†σ(ω) are the creation operators for a photon with polarization σ and frequency ω and ϕ(ωs, ωi)
is the Joint Spectral Amplitude (JSA):

ϕ(ωs, ωi) =
ϵ0L

iβh̄
√
vHg (ωs)vVg (ωi)

×
∫

dr χ(2)Ep(r, ωs + ωi)EH(x, y, ωs)EV (x, y, ωi)e
−i∆kz (2.8)

vσg (ω) are the group velocities, L is the waveguide length and β is the generation probability. The JSA
normalization reads:

⟨ψ|ψ⟩ =
∫∫

dωsdωi |ϕ(ωs, ωi)|2 = 1 (2.9)

The squared modulus of the JSA, called Joint Spectral Intensity (JSI), corresponds to the probability to
find a pair of photons with respective frequencies ωs and ωi. The JSA can be factorized as:

ϕ(ωs, ωi) = χΓ(ωs, ωi) · PM(ωs, ωi) · ϕspectral(ωs, ωi) (2.10)

The factor χΓ is the overlap integral between the fields:

χΓ =
ϵ0Lε

(0)
p

iβh̄
√
vHg (ωs)vVg (ωi)

×
∫∫

dxdy χ(2)(x)ΠW (y)fµcav(x)ϕp(y)EH(x, y, ωs)EV (x, y, ωi) (2.11)

where ϵ
(0)
p is a normalization constant, fµcavity(x) describes the effect of the vertical microcavity, ϕp(y)

is the pump transverse spatial profile along the y direction and

ΠW (y) =

{
1 if |y| < L

2

0 otherwise
(2.12)

takes into account the finite size of the sample. The second factor PM(ωs, ωi) in Equation 2.10 describes
the phase matching condition:

PM(ωs, ωi) =

∫
dz ΠL(z)ϕp(z, ω+)e

−ikdeg(ω+)z−i
ω−
v̄g

z
(2.13)

where ω− = ωs −ωi; ϕp(z, ω+) contains the dependence of the pump’s transverse spatial profile on z and
on ω+ = ωs+ωi = ωp. kdeg is the value that the z−axis projection of the pump’s wavevector should have
to generate frequency-degenerate signal/idler pairs and it is linked to the device’s birefringence according
to:

kdeg(ωp) =
ωp

c

ns − ni
2

=
ωp

c
sin θdeg (2.14)

v̄g is the average group velocity of the guided modes:

v̄−1
g =

(
vHg + vVg

2

)−1

(2.15)

and

ΠL(z) =

{
1 if |z| < W

2

0 otherwise
(2.16)

1The same reasoning can be applied to the VH (i.e. V -polarized signal and H -polarized idler) interaction.
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with W being the waveguide’s width. Finally, the factor ϕspectral in Equation 2.10 takes into account the
pump’s energy spectrum and the vertical microcavity spectral effect:

ϕspectral = fspectrum(ω+)fµcav(ω+) (2.17)

Equation 2.13 highlights the impact of the pump beam profile on the JSA: for instance, Figure 11 shows
the effect of the waist size of a Gaussian pump beam on the JSI: the width of the JSI along the anti-
diagonal in the (λs, λi) plane is inversely proportional to the waist size. In a previous work of the QITe
team it was shown that, through pump beam shaping techniques, it is possible to control the exchange
statistics in frequency of the generated photon pairs, obtaining fermionic [22] [26] and anyonic behaviour
[27].

(a) waist size 0.5 mm (b) waist size 0.8 mm

Figure 11: Simulations of the JSI for a Gaussian pump beam having different waist size

2.4 Fabry-Pérot cavity effect

In this section we show the effect of the facets reflectivity on the Joint Spectral Amplitude. The role of
facet reflectivity in the process of SPDC was first analysed by Jeronimo-Moreno et al. [28]. G. Boucher
and S. Francesconi applied their approach to the counterpropagating source [29] [22]. The basic idea is
the following: assume a photon pair is generated at the center of the waveguide, with the signal photon
propagating to the right and the idler going to the left. When the signal photon (with polarization σ)
reaches the facet, it will be transmitted and exit on the right (R) with probability ft,σ or it will be
reflected back and exit on the left (L) with probability fr,σ; the mirror reasoning is valid for the idler
photon. This effect can be taken into account by replacing the creation operators with the following
expressions:

â†s,σ(ω) → ft,σ(ω)â
†
R,σ(ω) + fr,σ(ω)â

†
L,σ(ω) (2.18a)

â†i,σ(ω) → ft,σ(ω)â
†
L,σ(ω) + fr,σ(ω)â

†
R,σ(ω) (2.18b)

The transmission and reflection probabilities are given by the Fabry-Pérot cavity functions:

ft,σ(ω) =

√
1−Rσe

iωnL
2c

1−Rσei
2ωnL

c

(2.19a)

fr,σ(ω) =

√
Rσ (1−Rσ)e

i 3ωnL
2c

1−Rσei
2ωnL

c

(2.19b)

where Rσ are the modal reflectivities. As a consequence, there is a non-zero probability to have both
photons exiting on the same side, or a signal photon exiting on the left and an idler exiting on the right;
in order to select an HV interaction (that is an H -polarized signal photon at frequency ωs on the right
side and a V -polarized idler with frequency ωi on the left), we put a polarizer and a frequency filter at
each output of the device, reducing Equations 2.18a and 2.18b to:

â†s,H(ωs) → ft,H(ωs)â
†
s,H(ωs) (2.20a)

â†i,V (ωi) → ft,V (ωi)â
†
i,V (ωi) (2.20b)

Therefore, the final result is a multiplication of the original JSA of Equation 2.10 by the two Fabry-Pérot
functions:

ϕFP (ωs, ωi) = ϕ(ωs, ωi) · ft,H(ωs) · ft,V (ωi) (2.21)
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As shown by Figures 13b and 13c, this gives the JSI a chessboard-like pattern governed by the position
and the width of the Fabry-Pérot peaks (the first determined by the modal refractive index nσ and the
second by the modal reflectivity Rσ).

2.5 Hong-Ou-Mandel interference in the single interaction case

In this section I describe the Hong-Ou-Mandel interference and I analyze the impact of the facets reflec-
tivity on the interferogram. The Hong-Ou-Mandel (HOM) experiment [30] is an interference setup that
allows to asses the indistinguishability of photon pairs, a widely used resource in quantum information
protocols. The setup is illustrated in Figure 12: two independent and indistinguishable photons enter
a 50:50 beamsplitter from the input ports 1 and 2; port 2 is also equipped with a delay line τ . At the
output ports 3 and 4 there are two Single Photon Detectors, in turn connected to a coincidence counter.
Let us consider for now the case τ = 0: using â†i for the creation operator and |n⟩i for the number state
n at port i, the input wavefunction is:

|Ψ⟩in = |1⟩1 |1⟩2 = â†1â
†
2 |0⟩ (2.22)

where |0⟩ is the vacuum state. The effect of the beamsplitter consists in the substitution [31]:

â†1 → 1√
2

(
â†3 + â†4

)
â†2 → 1√

2

(
â†3 − â†4

) (2.23)

Hence at the output we get:

|Ψ⟩out =
1

2

(
â†3 + â†4

)(
â†3 − â†4

)
|0⟩ =

=
1

2

(
â†23 −�

��â†3â
†
4 +�

��â†4â
†
3 − â†24

)
|0⟩ = (2.24)

=
1√
2
(|2⟩3 |0⟩4 − |0⟩3 |2⟩4)

The simplification on the second line was possible because â†3 and â†4 commute. In conclusion, if the
photons are indistinguishable, they both exit from the same output port and no coincidences are registered
by the counter. If τ ̸= 0, the photons arrive at different times, lose their indistinguishability and the
coincidence rate gradually reaches the value 0.5; the final result is a characteristic Hong-Ou-Mandel dip.
This is valid for two independent photons: in the case of our biphoton state, the two photons must be
treated as a whole and it can be proven that the coincidence probability for a temporal delay τ is [22]:

Pc(τ) =
1

2
− 1

2
Re

[∫∫
dω3dω4ϕ

∗(ω4, ω3)ϕ(ω3, ω4)e
i(ω4−ω3)τ

]
(2.25)

Therefore, a sufficient and necessary condition to have no coincidences at τ = 0 is to dispose of photon
pairs with a symmetric JSA in the frequency domain:

ϕ(ω3, ω4) = ϕ(ω4, ω3) (2.26)

In Figures 13 I show the results of my JSI simulations with the respective HOM interferograms calculated
according to Equation 2.25. Two important aspects can be deduced from them:

Figure 12: HOM setup
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(a) Beam waist 0.8 mm, no Fabry-Pérot effects

(b) Beam waist 0.8 mm with Fabry-Pérot effects due to facets reflectivity

(c) Beam waist 0.8 mm with Fabry-Pérot effects due to 3 bilayers Bragg mirrors deposited onto the facets

Figure 13: Examples of JSIs and their relative HOM graphs for three different situations of reflectivity

1) Interferograms 13b and 13c present satellites dips at delay times τ equal to integer multiples of the
cavity round trip time τRT . This is due to the presence of the cavity, which allows a photon that
exits the waveguide at time t=0 to interfere with a photon that exits after one (or multiple) round
trips. Hence, higher reflectivity means that a photon can do many more round trips before exiting,
enhancing this effect and producing more dips. Moreover, the interferogram in Figure 13c is not
symmetric because of the difference in the facets modal reflectivity;

2) Interferogram 13c has a dip visibility V lower than 100%, indicating partial distinguishability.
Indeed, nTE ̸= nTM and RTE ̸= RTM , so the Fabry-Pérot spectra of signal and idler are slightly
different, decreasing the degree of indistinguishability of the two photons. In particular, further
simulations show that:

• if nTE = nTM and RTE = RTM , V = 100%

• if nTE ̸= nTM and RTE = RTM , V = 98.98%

• if nTE = nTM and RTE ̸= RTM , V = 94.04%

• if nTE ̸= nTM and RTE ̸= RTM , V = 93%

Hence, the difference in reflectivity plays a more important role in distinguishability than the
waveguide birefringence.

There is a way to eliminate the birefringence of the waveguide, as it will be detailed in the following.
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2.6 Hong-Ou-Mandel interference in the double interaction case

In this section I report the results of the numerical study of the effect of the facets reflectivity on the
HOM interferogram when taking into account the two possible generation processes occurring in the
device. As specified at the beginning of the chapter, so far we considered the case of a single interaction
(HV ), which can be achieved by the use of polarizers and filters. On the other hand, if we keep both
interactions, the emitted state can be written as [22]:

|Ψ⟩ =
∫∫

dω1dω2

[
ϕV H(ω1, ω2)â

†
s,V (ω1)â

†
i,H(ω2) + ϕHV (ω1, ω2)â

†
s,H(ω1)â

†
i,V (ω2)

]
|0⟩ (2.27)

where ϕHV and ϕV H are, respectively, the JSA of the HV and VH interaction, with the normalization
condition: ∫∫

dω1dω2

[
|ϕHV (ω1, ω2)|2 + |ϕV H(ω1, ω2)|2

]
= 1 (2.28)

This kind of interaction allows to obtain Hybrid Polarization Frequency (HPF) entangled states: if
the frequency modes are well separated, we can approximate the JSAs with Dirac deltas (ϕ(ω1, ω2) ∼
δ(ω1 − ω0

1)δ(ω2 − ω0
2)), thus getting:

|Ψ⟩ ∼ |V, ω0
1⟩s |H,ω

0
2⟩i + |H,ω0

2⟩s |V, ω
0
1⟩i (2.29)

which is an entangled state in the hybrid polarization/frequency space in the basis
{
|V, ω0

1⟩ , |H,ω0
2⟩
}
.

As in the single interaction case, it is possible to calculate the HOM interferogram:

Pc(τ) =
1

2
− Re

[∫∫
dω3dω4ϕ

∗
V H(ω4, ω3)ϕHV (ω3, ω4)e

−i(ω4−ω3)τ

]
(2.30)

Figures 14 show the simulations of the JSI and the respective HOM interferogram, which, for this kind
of biphoton state, is characterized by the presence of both a dip and a peak. It is worth noticing that
the dip visibility is not affected by the Fabry-Pérot effects (i.e. by the birefringence and the difference
in modal reflectivity): this can be explained by the fact that this state contains the sum of the HV and
VH interaction, compensating these differences. The distance between the two lobes that are present in
the JSI is governed by the birefringence: the larger ∆n is, the further they are from each other; in the
case of a non-birefringent waveguide, the two lobes collapse in one and the same HOM interferogram of
a single interaction picture is obtained.

(a) Beam waist 0.8 mm, no Fabry-Pérot effects

(b) Beam waist 0.8 mm with Fabry-Pérot effects due to facets reflectivity
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(c) Beam waist 0.8 mm with Fabry-Pérot effects due to 3 bilayers Bragg mirrors deposited onto the facets; JSI is
zoomed in one of the lobes

Figure 14: Examples of JSIs and their relative HOM graphs for three different situations of reflectivity

2.7 Dry etched waveguide

The dependence of the modal refractive indexes on the waveguide width was pointed out in S. Francesconi’s
PhD thesis [22]. In order to exploit this dependence to eliminate the birefringence, however, the waveg-
uide width must be slightly above 1 µm; such dimensions cannot be achieved using UV lithography and
wet etching, but require e-beam lithography and dry etching, enabling the fabrication of a waveguide with
steep vertical sidewalls. Comparison between the two etching profiles can be seen in the SEM images in
Figure 15 [22].

Figure 15: Comparison between a wet etched waveguide profile (a) and a dry etched waveguide profile
(b)

Figure 16 depicts the difference ∆n between the modal refractive indexes of the TE and TM polarized
modes generated by SPDC as a function of the waveguide width. The condition ∆n = 0 is met for a
width of 1.18 µm; the corresponding spatial profiles of the two modes are shown in Figure 17. Since
the other distinguishability source is the difference in modal reflectivity, I also performed the reflectivity
FDTD simulation for this waveguide, obtaining the results reported in Table 6. These simulations show
that, unlike the wet etched waveguide, the dry etched sample’s reflectivity saturates around 90%.
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Figure 16: Birefringence as a function of waveguide’s width

Figure 17: Spatial distribution of the modes in 1.18 µm-wide dry etched waveguide. Left: TE polarization.
Right: TM polarization

N=0 N=1 N=2 N=3 N=4 N=5 N=6
R (TE) 0.2907 0.5293 0.7092 0.7892 0.8397 0.8620 0.8708
R (TM) 0.3298 0.5958 0.7734 0.8447 0.8856 0.9012 0.9085

Table 6: Simulated reflectivity values obtained by FDTD of the 1.18 µm wide dry etched waveguide

In all the simulations, mirrors had an optical thickness of λ
4 , a value that in theory should work with

plane waves. Since the mode is propagating in such a narrow structure, the plane wave approximation
may not work very well, so I slightly varied the thickness of the mirrors from this value to see if I could
gain in reflectivity. However, the gain is very small: with mirrors 5% thicker, reflectivity increases only
by around 1%.

To understand the reason behind this lower reflectivity, I performed other simulations varying the
width of the waveguide. These simulations show that, when the waveguide width is below 2.5µm, the
field starts leaking out of the waveguide, probably due to diffraction effects. Figure 18 is the field
distribution in a cross-section of the waveguide in a specific time-instant of the simulation, showing the
field spreading outside of the waveguide edges (marked in black). In order to quantify this effect, a
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confinement factor can be defined as:

C(t) =

∫∫
guide

|E(x, z, t)|dxdz∫∫
whole
space

|E(x, z, t)|dxdz
(2.31)

where E(x, z, t) is the time-dependent field passing through the cross-section of the waveguide at each
time instant of the simulation. The time-average value of this factor is 76.76% and 80.88% for the TE and
TM modes respectively; its time evolution is shown in Figure 19. For reference, figure 20 shows the same
parameter for the two modes mode in a 2.25 µm-wide waveguide; in this case, the average confinement
is 98.52% and 96.76% for TE and TM mode respectively. The lower confinement of the 1.18 µm-wide
waveguide may be the cause of the reflectivity saturation: since part of the field exits from the guide,
it does not see the AlGaAs/mirror interface but the air/mirror interface and this, in turn, may limit
the reflectivity. On the other hand, the Finite Difference Eigenmode (FDE) simulations that I used to
calculate the eigenmodes in Figure 17 show that the confinement in the 1.18 µm-wide waveguide is around
90.5% of the TE polarization and around 96.6% for the TM polarization. The two simulation methods use
different approaches: the FDTD discretizes and numerically solves the time-dependent Maxwell equations
in a finite spatial and temporal grid for a given source, while FDE discretizes the 2D cross-section of the
waveguide and solves the matrix eigenvalue problem to calculate the profile and effective refractive index
of its eigenmodes. The incongruence between the results obtained via the two methods may indicate the
presence of simulation artefacts; further simulations are required to clarify this aspect.

Figure 18: Time snapshot of TE (left) and TM (right) field distribution

Figure 19: Field confinement of the TE (left) and TM (right) mode inside the 1.18 µm wide waveguide
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Figure 20: Field confinement of the TE (left) and TM (right) mode in a 2.25 µm wide waveguide

FDTD simulations also show that, even if the field does not stay strictly confined inside the 1.18 µm-
wide waveguide, it still stays close to the waveguide’s edges, getting around 3 µm far from them. Figure
21 shows the confinement factor in this region. If this is the case, a possibility to increase the confinement
inside the guide could be surrounding it with some other structure to push the field back in. This idea
will be further analyzed in my future PhD thesis work.

Figure 21: Field confinement of the TE (left) and TM (right) mode in a 3 µm region around the 1.18 µm
wide waveguide

3 Fabrication and characterization of samples with high reflec-
tivity mirrors

In this section I detail the fabrication and characterization of samples provided with high reflectivity
Bragg mirrors. To perform the deposition, I participated to the discussion with X. Lafosse, engineer of
the Center for Nanoscience and Nanotechnology (C2N), discussing with him about the choice of materials
and number of mirrors. We came to the conclusion that 3 mirrors of SiO2/TiO2 bi-layers on each facet
of the waveguide should give at the same time high reflectivity, good adhesion and a good general quality
of the deposition. The discussion was supported by the numerical simulation I performed.

3.1 Deposition technique

SiO2 and TiO2 were deposited by X. Lafosse at C2N by Ion Beam Assisted Deposition (IBAD). In
this technique, a material is evaporated by an electron beam and bombarded by low-energy ions. The
ion beam is a widely used tool in micro and nanofabrication thanks to its flexibility and versatility:
for instance, by changing ion species, beam shape and ion energy, one can achieve physical or chemical
etching or deposition. IBAD is widely used for the deposition of optical dielectric films: when evaporated,
hard materials such as TiO2,HfO2 and fluorides tend to have low thermal energy and, when deposited,
form a columnar microstructure [32], resulting in a low-density and porous film. During low-energy ion
bombardment, knock-on target atoms can either leave the surface as sputtered atoms or be implanted
below the surface and be trapped as interstitial atoms. The latter increases the local film density, while
the voids left by sputtered atoms are filled by the e-beam evaporated atoms coming from the deposition
source [33]. The final result is reduced porosity and increased film density.
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Ti3O5 was used as starting material for the TiO2 deposition because, when evaporated, TiO2 stoi-
chiometry changes, causing the physical and optical properties (in particular, the refractive index) of the
final film to change in unexpected and non-reproducible ways. Ti3O5, on the other hand, is much less
susceptible to stoichiometry shifts, allowing higher control on the deposited film properties [34]. O2 ion
beam was used for the IBAD.

SiO2 was deposited starting from SiO2 itself using an ion beam of Ar and O2. The O2 ion flux and
concentration is a very important parameter during the deposition: while being evaporated by the e-
beam, some SiO2 molecules may lose one O atom, becoming SiO and causing a shift in the final refractive
index. Interaction with the O2 ions allows these molecules to “recover” the lost O atom, obtaining a
more uniform SiO2 deposition [35].

3.2 Measurement of Fabry Pérot spectra before mirror deposition

The wafer K7AD121 was already available and had been realized in 2020 by A.Lemaitre at C2N by
Molecular Beam Epitaxy. UV lithography and wet etching were performed to obtain the waveguides
I have designed and presented in section 2.1; the process is schematically described in Figure 22. The
resulting sample, named K7AD121-L1, contains 40 groups of waveguides, each group in turn containing
3 waveguides of different widths: the bottom one (B) is 8 µm wide, the middle one (M) 7 µm and the top
one (T) 6 µm. I measured the Fabry-Pérot spectra of a set of waveguides to verify that the sample was in
good condition and to be able to compare the modal reflectivity before and after the mirror deposition.
Optical losses were evaluated via the Fabry-Pérot technique [36]: a tunable telecom laser was injected
onto the waveguide and the power at the output facet was collected and measured. The transmitted
power as a function of the laser wavelength presents Fabry-Pérot fringes due to facets reflectivity, with a
contrast K given by:

K =
Imax − Imin

Imax + Imin
(3.1)

related to the internal optical losses via:

R̃ = Re−αL =
1−

√
1−K2

K
(3.2)

where R is the (lossless) reflectivity, α is the propagation loss coefficient and L the waveguide length.
Using the value of R obtained from the 3D numerical simulations (detailed in section 2.2) and the value

of R̃ from the experimental measurements, the optical loss coefficient can be evaluated as:

α =
1

L
ln

(
R

R̃

)
(3.3)

The obtained results for the best two waveguides of the sample are detailed in table 7. Figures 23 and
24 show the experimental Fabry-Pérot spectra of guide 20B and 24M respectively.
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Figure 22: Schematic representation of the fabrication process. Reproduced from [22]

(a) TE mode (b) TM mode

Figure 23: Fabry-Pérot transmisison spectra of guide 20B

(a) TE mode (b) TM mode

Figure 24: Fabry-Pérot transmisison spectra of guide 24M
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TE TM

Guide R̃ α(cm−1) R̃ α(cm−1)

20B 0.234 1.3228 0.136 3.8016
24M 0.23 1.4197 0.1622 2.0231

Table 7: Results of Fabry-Pérot measurements for the waveguides 20B and 24M

3.3 Measurement of Fabry Pérot spectra after mirror deposition

Sample K7AD121-L1 was characterizard again after the mirror deposition, using the same procedure
detailed in Section 3.2. The results for the two best waveguides are listed in Table 8 and Figures 25 and
26 show the experimental Fabry-Pérot spectra.

(a) TE mode (b) TM mode

Figure 25: Fabry-Pérot transmission spectra of guide 20B

(a) TE mode (b) TM mode

Figure 26: Fabry-Pérot transmission spectra of guide 24M

TE TM

Guide R̃ α(cm−1) R Rsim R̃ α(cm−1) R Rsim

20B 0.5479 2.9484 0.7138
0.9224

0.4386 3.9154 0.9381
0.875

24M 0.6919 1.6275 0.9191 0.5896 2.3255 0.8837

Table 8: Fabry-Pérot characterization after mirror deposition

The presence of secondary peaks in the spectra of guide 20B indicates that it is multimodal: we can
assume that this feature was already present before the mirror deposition, but the width of the peaks
due to the low reflectivity did not allow to resolve them. After the deposition, the peaks became narrow
enough to be resolved. The losses of guide 24M are close to the values before the deposition, so it can be
used to estimate the lossless mirror reflectivity: assuming that α has the pre-deposition value indicated
in Table 7, R = R̃eαL can be calculated, giving RTE = 0.9191 and RTM = 0.8837, both very close to the
value of my numerical simulations Rsim (see Table 4).
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4 Photon pairs generation

In this section I describe the experimental setup used for the photon pair generation. The setup had to
be remounted, so, in order to verify that it was properly aligned, we mounted sample F3W083, which
had already been tested. The setup used for photon pair generation is sketched in Figure 27: a Ti:Sa
laser emits 4 ps pulses at wavelength λ = 773 nm; the low power arm of the 99:1 Beam Splitter (BS) is
sent to an Optical Spectrum Analyzer (OSA) to check its emission spectrum. The other arm, instead,
is sent to the Spatial Light Modulator (SLM) for the beam shaping (as described in [22]) and is then
focused on the top of the sample. The setup is equipped with two systems of lenses: the first is a telescope
between the laser and the SLM and enlarges the laser spot in order to fully exploit the SLM area, while
the second is a 4f setup between the SLM and the sample that reduces back the spot size and allows to
report the phase imposed by the SLM on the sample. Finally, the pump beam is focused on the sample
by means of a cylindrical lens to match as well as possible the top surface of the waveguide. The photon
pairs emitted by the source are collected through microscope objectives, coupled to fibers and sent to the
Superconductive Nanowire Single Photon Detector (SNSPD), in turn connected to a Time Tagger (TT);
optical longpass filters with a cut-on wavelength of 1400 nm are added to reduce noise.

Figure 27: Experimental setup. Lenses’ focal lengths are expressed in millimetres

To test that the setup is working properly, we have initially excluded the SLM by means of a flip
mirror and mounted an older sample (F3W083) to asses the good realignment of the setup, obtaining the
coincidence graph in Figure 28. The peak at ∆t ≃ 8.5 ns proves the pair generation, with a Coincidence
to Accidental Ratio (CAR) around 48. The fact that the peak is not centred at ∆t = 0 is due to a
difference in the optical paths of the setup and can be compensated in data post-processing.
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Figure 28: Coincidence histogram obtained with the sample F3W083

The next step will be to mount the sampleK7AD121-L1 and characterize its efficiency and the generated
quantum state through HOM interference and JSI reconstruction.

5 Conclusions and perspectives

During this internship, I worked on an AlGaAs waveguide source of photon pairs, and in particular on
the spectral narrowing of the emitted biphoton state in view of a project of the team focused on the
realization of an ion-photon interface. My work involved both numerical simulations and experiments: I
started by performing simulations to find the fabrication parameters (i.e. top width and etching depth)
that would give good mode confinement inside the waveguide.

In view of the deposition of Bragg mirrors to increase the facet reflectivity, I performed FDTD
simulations to calculate the reflectivity as a function of the number of mirrors. Based on these results,
I also performed JSI simulations to assess the effect of the mirrors on the emitted biphoton state. This
work highlighted that the main sources of distinguishability between the two photons are the difference in
modal reflectivity and in effective modal refractive index (birefringence) between the TE and TM modes.
To eliminate the birefringence, a waveguide width slightly above 1 µm is required, hence a dry etching
process must be used, resulting in a waveguide with vertical sidewalls. However, FDTD simulations of
this structure show lower reflectivity; further simulations are required to investigate this problem.

Sample K7AD121-L1 was fabricated by UV lithography and wet etching and I characterized it via
the Fabry-Pérot technique, identifying the two best guides in terms of losses. The collaboration with X.
Lafosse (C2N) allowed us to identify the materials and number of layers for the Bragg mirrors deposition;
for a first trial, three bi-layers SiO2/TiO2 Bragg mirrors were deposited by X. Lafosse by Ion Beam
Assisted Deposition (IBAD) at C2N. The characterisation of the sample after the mirror deposition has
allowed to deduce reflectivity values RTE = 0.9191 and RTM = 0.8317, in very good agreement with my
numerical simulations.

Subsequently, the setup for the photon pair generation was remounted and tested with an old sample.
The coincidence graph proves that the setup works properly. This setup will be used for the experimental
measure of sample K7ADA121-L1’s JSI via dispersive fiber spectrography [37] [22] to verify the effect
of the mirrors on the emitted biphoton state. A HOM experiment will also be done to test the validity
of our numerical simulations.

My PhD project will focus on pushing further the spectral narrowing of this source, in view of the
realization of an ion-photon interface: this could be achieved by the deposition of more mirrors or by
exploiting other degrees of freedom given by this source. We will also work on the implementation of Bell
states in different degrees of freedom (for example polarization and frequency), to increase the possibilities
of realization of the photon-ion interface. Moreover, pump beam shaping techniques, which were already
used to engineer the exchange statistics of the photon pairs, will be further exploited for the realization of
highly nonclassical states, such as hyper-entangled polarization-frequency states, cat states and compass
states; this work opens promising perspectives in quantum metrology and computing and will be done in
collaboration with the theoreticians of the group.
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[30] C. K. Hong, Z. Y. Ou, and L. Mandel. “Measurement of Subpicosecond Time Intervals between
Two Photons by Interference”. In: Physical Review Letters 59.18 (Nov. 2, 1987), pp. 2044–2046.
doi: 10.1103/PhysRevLett.59.2044.

[31] Frédéric Bouchard et al. “Two-Photon Interference: The Hong–Ou–Mandel Effect”. In: Reports on
Progress in Physics 84.1 (Jan. 1, 2021), p. 012402. doi: 10.1088/1361-6633/abcd7a.

[32] P. J. Martin. “Ion-Assisted Thin Film Deposition and Applications”. In: Vacuum. Special Issue
Vacuum, Electron and Ion Technologies Papers from the Fourth Bulgarian Summer School, Sozopol,
Bulgaria, 7-11 October 1985 36.10 (Oct. 1, 1986), pp. 585–590. doi: 10.1016/0042-207X(86)
90325-8.

[33] James K. Hirvonen. “Ion Beam Assisted Thin Film Deposition:” in: Materials and Processes for
Surface and Interface Engineering. Ed. by Yves Pauleau. NATO ASI Series. Dordrecht: Springer
Netherlands, 1995, pp. 307–346. doi: 10.1007/978-94-011-0077-9_9.
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