
Ainur: Enhancing Vocal Quality through Lyrics-Audio
Embeddings in Multimodal Deep Music Generation

Thesis by
Giuseppe Concialdi

In Partial Fulfillment of the Requirements for the
Degree of

Master of Science in Data Science and Engineering

POLITECNICO DI TORINO
Turin, Italy

2023
Defended 15/06/2023

To Love, the immutable engine propelling life, uniting family, friends, and lovers. Without

whom, this work would not be.

ii

ACKNOWLEDGMENT

I am profoundly grateful to my supervisors, Dr. Eliana Pastor and Dr. Alkis Koudounas, for

their continuous support and guidance. Our regular meetings and their insightful suggestions

were instrumental in the completion of this thesis.

A special thanks to Dr. Koudounas for his thorough revision and invaluable advice on the thesis

layout, which significantly enhanced the quality of my work.

Lastly, I wish to acknowledge the crucial computational resources provided by HPC@POLITO

(http://www.hpc.polito.it) which were indispensable to this research.

To all those mentioned and to those who have contributed silently in the background, I extend

my heartfelt gratitude. This thesis stands as a testament to your support, guidance, and faith

in my abilities.

GC

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Research Questions . 2
1.2 Contribution . 3
1.3 Open Source . 5
1.4 Structure of the Thesis . 6

2 BACKGROUND . 9
2.1 Deep Music Generation . 9
2.1.1 Timeline . 9
2.2 Limitations and Challenges . 11
2.2.1 Originality . 11
2.2.2 Variability . 12
2.2.3 Controllability . 13
2.2.4 Coherence . 13
2.2.5 Discussion . 14
2.3 Data Representation . 15
2.3.1 Raw Waveform . 16
2.3.2 2D Representation . 17
2.3.3 Latent . 21
2.3.4 Symbolic . 22
2.3.5 Acoustic Features . 23
2.4 Deep Generative Models . 24
2.4.1 Autogressive Models . 24
2.4.1.1 Markov Model . 26
2.4.1.2 Recurrent Neural Network . 27
2.4.1.3 Convolutional Neural Network 28
2.4.1.4 Transformer . 29
2.4.2 Non-Autoregressive Models . 31
2.4.3 Deep Latent Variable Models . 31
2.4.3.1 Variational Autoencoder . 32
2.4.3.2 Normalizing Flows . 34
2.4.3.3 Generative Adversarial Network 36
2.4.3.4 Diffusion Model . 38
2.4.4 Hybrid Models . 40
2.4.5 Transfer Learning . 41
2.5 Controllable Generation . 43
2.5.1 Text-to-Music . 44

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

2.5.2 Lyrics-to-Music . 44
2.5.3 Music-to-Music . 45
2.5.4 Symbolic Conditioning . 45
2.5.5 Image-to-Music . 46
2.6 Music Dataset . 46
2.6.1 Raw Music Dataset . 47
2.6.2 Symbolic Music Dataset . 49
2.6.3 Music Metadata Dataset . 50
2.7 Commercial Proprietary Software 51
2.8 Deep Generation and Copyright 53
2.8.1 Dealing with Protected Data . 54
2.8.2 Research and Fair Use . 55
2.8.3 Limitations . 56

3 RELATED WORK . 57
3.1 Literature Overview . 57
3.2 AR Models . 58
3.2.1 Image and Raw Music Generation 58
3.2.2 Text-to-Speech Synthesis . 62
3.2.3 Recent Advances in Audio Synthesis 63
3.3 VAE Models . 65
3.3.1 Vector-Quantized VAE . 65
3.3.2 Non-Vector-Quantized VAE . 68
3.4 NFs Models . 68
3.5 GAN Models . 70
3.6 Transformer Models . 73
3.6.1 Applications in Audio Generation 74
3.7 Diffusion Models . 75
3.7.1 Image Generation . 76
3.7.2 Audio Generation . 80
3.8 Multimodal Embedding Models 85

4 AINUR . 87
4.1 Architecture . 88
4.1.1 Three-Stage Architecture . 90
4.1.2 Hierarchical Model . 92
4.1.2.1 Lyrics-Audio Pre-Training . 92
4.1.2.2 Diffusion Prior . 94
4.1.2.3 Diffusion Autoencoder . 97
4.1.3 Encoders . 98
4.1.3.1 Text Transformer . 98
4.1.3.2 Vision Transformer . 99

v

TABLE OF CONTENTS (continued)

CHAPTER PAGE

4.1.3.3 T5 . 100
4.1.3.4 Spectrogram Encoder . 101
4.1.4 Diffusion . 102
4.1.5 Modularity . 103
4.2 Multimodal Control . 104
4.2.1 Lyrics . 105
4.2.2 Text Descriptors . 107
4.2.3 Audio . 108
4.2.4 Image . 109
4.3 Input Representation . 109
4.3.1 Text Embeddings . 110
4.3.2 Lyrics Embeddings . 110
4.3.3 Audio Embeddings . 111
4.4 Workflow . 111
4.4.1 Training . 113
4.4.2 Inference . 114
4.5 Model Comparison . 116

5 EXPERIMENTAL SETUP . 118
5.1 Dataset . 118
5.1.1 Evaluation Dataset . 119
5.2 Training Setup . 120
5.2.1 Pre-Processing . 120
5.2.2 Loss Functions . 121
5.2.3 Training Procedure . 121
5.2.4 Hyperparameter Tuning . 122
5.2.5 Validation Strategy . 122
5.3 Metrics . 123
5.3.1 Fréchet Audio Distance . 123
5.3.2 CLASP Cycle Consistency . 125
5.4 Implementation Details . 126
5.4.1 Software Frameworks . 126
5.4.2 Data Handling and Storage . 127
5.5 Hardware Requirements . 128
5.5.1 Computing Resources . 128
5.5.2 Hardware Limitations and Challenges 130
5.6 Reproducibility . 130

6 RESULTS . 133
6.1 Evaluation Procedure . 134
6.2 Intrinsic Evaluation . 136
6.3 Model Analysis . 140

vi

TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.4 Comparative Evaluation . 141
6.5 Summary of the Results . 144

7 FUTURE WORK . 147

8 CONCLUSION . 153
8.1 Summary of Research . 153
8.2 Discussion of the Results . 155
8.3 Key Contributions . 158
8.4 Limitations . 160

APPENDICES . 163
Appendix A . 164
Appendix B . 172

CITED LITERATURE . 175

VITA . 187

vii

LIST OF TABLES

TABLE PAGE
I MUSIC GENERATION TASKS. 111
II STATE-OF-THE-ART AUDIO GENERATION MODELS. 116
III HARDWARE SPECIFICATIONS. 128
IV INTRINSIC QUALITY EVALUATION. 135
V INTRINSIC INFERENCE TIME BENCHMARK. 139
VI COMPARATIVE EVALUATION. 143

viii

LIST OF FIGURES

FIGURE PAGE
1 Structure of the thesis. 8
2 Fully connected DAG of an autoregressive model with four variables. 25
3 First order Markov’s autoregressive model with four variables. . . . 26
4 RNN architecture. Recurrent cell representation (left) and unfolded

version of the recurrent cell (right). 27
5 Causal convolution with no dilation. Input variables are shown in

blue i , hidden variables are represented in black h and output variables
in orange o . 28

6 Functional block diagram for the scaled dot-product attention. . . . 30
7 VAE architecture. The input x and target x̃ data are shown in blue

, the compressed latent variable z in orange and the encoder/decoder
architecture in green . The input data is compressed by the encoder
to a compact latent representation. The latent is then decoded x̃ to be
as close as possible to original input distribution x. 32

8 NF architecture. The transformation f(x) and the inverse f-1(z)
represents the composition of all the functions used for the mapping.
The latent z has the same dimensionality of the input data. 34

9 GAN architecture. During training, starting from the noise z, the
generator produces a sample x̃. Then, the discriminator receives both
samples from the data distribution x and the estimated one x̃, and tries
to predict whether the sample is real or synthetic. 36

10 DDPM architecture. In the forward stage, the input data is gradually
corrupted into Gaussian noise. In the backward stage, it is possible to
recover the original input by starting from pure noise and removing
it step by step. All the intermediate representations have the same
dimensionality as the input. 37

11 Latent diffusion model architecture. The diffusion process is per-
formed in the latent space of a pre-trained autoencoder. The cross-
attention operation during the diffusion process allows for conditional
generation. 40

12 An illustrated overview of Ainur’s architecture, showcasing its three
hierarchical layers. From top to bottom: (1) input encoders and CLASP
embeddings for textual and audio data; (2) a diffusion prior module
guided with text embeddings and audio CLASP embeddings; and (3) a
diffusion autoencoder conditioned on the generated prior for synthesizing
the output. The blue kite symbol represents the cross-attention oper-
ation; blue triangles signify the conditioning of the diffusion process
via latent injection. 89

ix

LIST OF FIGURES (continued)

FIGURE PAGE

13 Close-up of the CLASP process. Audio data is first transformed into
Mel-spectrograms, and then both spectrograms and lyrics are separately
encoded into embeddings. These embeddings are compared, and the en-
coders are optimized to generate embeddings that maximize the relative
similarity between the two distinct representations. 93

14 Close-up of the prior diffusion process. The audio x is first trans-
formed into Mel-spectrograms and then encoded into a latent variable
z. The diffusion process is guided by the textual description and the
CLASP embedding through cross-attention and latent injection opera-
tions during the reverse diffusion stage. 95

15 Close-up of the diffusion autoencoder. By incorporating the previ-
ously generated latent variable x̃ into the U-Net architecture, the decod-
ing process is able to reverse the noise and generate a new audio sample
x̃. 96

16 Ainur inference workflow. The process begins at the top with inputs.
(1): text and lyrics are used by default, but inference can also be con-
ducted using an audio input and text description. The input embeddings
are used to guide the (2) prior generation from noise "z to reconstructed
latent z̃, utilizing cross-attention for the text descriptors and latent in-
jection for the lyrics/audio inputs during the diffusion process. In the
bottom layer (3), noise "x is decoded into the generated audio x̃, con-
ditioned on the generated latent. The switch is used to select the
task: lyrics-to-music (default) or audio-to-music. 115

17 Intrinsic quality evaluation of Ainur. 165
18 Intrinsic coherence evaluation of Ainur. 166
19 Intrinsic inference time benchmark of Ainur. 167
20 Detailed intrinsic inference time benchmark of Ainur. 168
21 Inference time comparative benchmark. 170
22 Quality comparative evaluation. 171

x

LIST OF ABBREVIATIONS

AI Artificial intelligence

AR Autoregressive

CM Consistency models

CLASP Contrastive Lyrics-Audio Spectrogram Pre-training

CLAP Contrastive Language-Audio Pre-training

CLIP Contrastive Language-Image Pre-training

CNN Convolutional neural network

CPC Contrastive predictive coding

CQT Costant-Q transform

DAG Directed acyclic graph

DDIM Denoising diffusion implicit model

DDPM Denoising diffusion probabilistic model

DLVM Deep latent variable model

GAN Generative adversarial network

GRU Gated recurrent unit

LDM Latent diffusion model

LSTM Long-short term memory

xi

LIST OF ABBREVIATIONS (continued)

MFCC Mel-frequency cepstral coefficient

MLP Multilayer Perceptron

MSE Mean squared error

NADE Neural autoregressive distribution estimation

NAR Non-autoregressive

NF Normalizing flows

NLP Natural language processing

NN Neural network

ODE Ordinary differential equation

RNN Recurrent neural network

SOTA State-of-the-art

STFT Short-time Fourier transform

TTS Text-to-speech

VAE Variational autoencoder

xii

SUMMARY

As an emerging research field, deep music generation faces significant challenges, such as

handling high-dimensionality of audio data, computational resource requirements, and quality

concerns, particularly with generated vocals. This study aims to address these concerns by in-

troducing Ainur, an innovative deep learning model designed specifically to enhance the quality

of generated vocals.

We investigate the effectiveness of various deep learning techniques and multimodal input

conditioning strategies to improve vocal generation. Additionally, the utility of transfer learning

and pre-trained models is examined, along with the impact of multimodal input strategies

on the quality and diversity of the produced music. Ainur employs a hierarchical diffusion

model and a latent diffusion prior for handling high-dimensional data and uses Contrastive

Lyrics-Audio Spectrogram Pre-training (CLASP) embeddings for multimodal data fusion. Our

findings reveal Ainur’s capability to produce high-quality and varied music, substantiating the

use of our proposed novel evaluation metrics.

The study also acknowledges the importance of ethical considerations and limitations in-

herent to deep music generation. Recognizing the potential implications of AI-generated music

on creative integrity, and the potential misuse of such technology, we emphasize the need for

responsible use. This work significantly contributes to the deep music generation field, estab-

lishing novel methodologies, offering robust tools, and providing directions for future research,

while promoting collaboration and transparency through the open-source nature of Ainur.

xiii

CHAPTER 1

INTRODUCTION

Music is an art form that has always been associated with human creativity, emotion, and

expression. However, with the advent of computer technology, the idea of generating music

through machines became a reality. Computer-generated or synthetic music refers to music

created automatically by computer programs or algorithms. The potential applications of

computer-generated music range from music production to education and entertainment. In

music production, it can be used as a tool for generating new ideas and exploring different styles

and genres. In education, it can be used to teach music theory and composition and provide

students with opportunities to experiment with different musical ideas. In entertainment, it can

be used to create original soundtracks for films, video games, and other media. Furthermore,

the development of these systems has the potential to democratize music production, allowing

aspiring musicians and composers to generate high-quality music without the need for expensive

studio equipment or formal training. The development of deep learning architectures has been

particularly transformative for the field of music generation. These architectures are designed

to learn from large volumes of data, such as audio recordings or sheet music, and use this data

to generate new musical compositions that are technically proficient and stylistically consistent.

In this work, we will delve into the intricacies of music generation focusing on modern deep

learning architectures and emphasizing the role of multimodal conditioning in guiding and

improving the quality of the synthesis.

1

2

1.1 Research Questions

In this research, we investigate the domain of deep music generation by employing the lat-

est state-of-the-art architectures for generation and exploring multimodal input conditioning to

steer the generation process. Music generation has received less attention than image and text

generation and is still an underdeveloped field with several challenges that limit its scalability

and reproducibility. These issues primarily arise from the lack of readily available copyright-

free data and the high dimensionality of audio data, making audio generation computationally

intensive and requiring high-performance computing resources. Despite these challenges, the

potential benefits of developing successful music generation models are enormous, and this

research aims to contribute to the advancement of the field by investigating various deep learn-

ing techniques and multimodal input conditioning strategies to generate high-quality musical

compositions.

This thesis focuses on enhancing the quality of the vocals generated in the field of deep music

generation. While prior research has successfully generated high-quality music by conditioning

it on text descriptions, the quality of the vocals produced has been inadequate and often

unintelligible. To address this issue, this thesis aims to answer the following research questions:

1. What deep learning techniques can be employed to improve the quality of vocals generated

in the field of deep music generation?

2. How can multimodal input conditioning strategies be leveraged to generate vocals that

are coherent and consistent with the overall theme and mood of the generated music?

3

3. Can the use of transfer learning or pre-trained models effectively improve the quality of

vocals generated in deep music generation, and if so, what are the best approaches for

their implementation?

4. How do different multimodal input conditioning strategies, such as combining text, image,

and symbolic musical representations, impact the quality and diversity of the generated

music?

The research questions listed above will guide the investigation, and extensive experimentation

and ablation will be conducted to provide empirical evidence of the results. The findings of

this study are expected to provide valuable insights into the challenges and opportunities in

the underdeveloped field of music generation, thereby contributing to the advancement of the

field.

1.2 Contribution

Our research makes significant strides in the field of deep music generation. Let us delve

into each major contribution, as each one sets a precedent, encouraging future work in this

compelling area of research.

• CLASP model and embeddings: One of the linchpins of our work is the adaption

and innovative use of the Contrastive Lyrics-Audio Spectrogram Pre-training (CLASP)

model and embeddings for music generation. In the quest to provide a richer, more holistic

approach to music generation, we harness CLASPs unique ability to integrate lyrics and

audio spectrograms to build a comprehensive multimodal representation of the music.

4

By intertwining such diverse modalities, our approach has the potential to fundamentally

change how deep learning perceives and interprets music, thus opening up exciting avenues

for future research.

• Hierarchical diffusion model: Breaking away from conventional architectures, our

study introduces a novel hierarchical diffusion model, an extension of a diffusion autoen-

coder architecture. The purpose of this model is twofold: to infuse a higher level of

quality into the generated music, and to inject an extra layer of sophistication into the

music generation process. With this innovative approach, we aim to facilitate deeper ex-

ploration into music generation, augmenting the richness of the music while keeping the

computational complexity in check.

• Single GPU inference and training: In an era dominated by extensive computational

needs, we champion the cause of accessibility with Ainur. Ainur, our proposed model,

is specially designed to run on single, consumer-grade GPUs. This strategic decision

brings state-of-the-art music generation within the reach of many, while simultaneously

mitigating the need for massive computational resources. As we tread the path of de-

mocratizing advanced music generation techniques, we believe Ainur’s contributions will

resonate within the research community and beyond, thus encouraging further advance-

ments in the field.

• Lyrics-to-music generation: A key highlight of our work is the birth of Ainur, a deep

learning model specifically tailored to address the challenges of lyrics-to-music generation.

Through Ainur, we direct attention towards an underexplored domain within deep music

5

generation, and set the stage for further exploration in this direction. This step could

potentially act as a catalyst for future advancements, creating a ripple effect in the field

of music generation.

C3 and FAD evaluation metrics: Finally, our research gives rise to two new evaluation

metrics - the C3 evaluation metric and the FAD evaluation with the YAMNet model.

These robust methods promise to pave the way for objective, standardized, and uniform

assessment of music generated by deep learning models. We believe the introduction of

these evaluation mechanisms will have profound implications for the field, providing a

common benchmark against which future models can be evaluated and compared.

The multitude of contributions from this research hopes to inspire further advancements in the

field of deep music generation, introducing new methodologies, establishing benchmarks, and

making high-quality music generation a practical reality.

1.3 Open Source

This research project aims to make all its outputs, including pre-trained models and user

interfaces for downstream tasks, publicly available on a GitHub repository. By doing so, we

seek to promote openness and collaboration in the field of deep music generation, allowing other

researchers, practitioners, and users to access the tools developed in this study.

The pre-trained models and the user interface are designed to cater to the needs of re-

searchers and practitioners who are interested in improving and advancing the state-of-the-art

in music generation. Additionally, users can query the model for generating musical composi-

tions, and they will hold the intellectual property rights to the resulting outputs.

6

The model and its components are not intended for commercial use, and there are no profit-

making intentions behind this application. Instead, the primary goal is to contribute to the

academic community and make a positive impact on the field of deep music generation. By

providing access to the model and its outputs, this research hopes to inspire further innovation

and foster collaboration in the field.

1.4 Structure of the Thesis

This thesis is arranged according to the structure delineated in Figure 1. We begin in

Chapter 2, which supplies the necessary background information and elucidates key topics that

form the bedrock of the approaches and techniques used throughout this thesis.

Next, in Chapter 3, we conduct a detailed exploration of the significant literature that has

influenced the development of this research and advanced the field of deep music generation.

This chapter considers not only the works directly related to raw music generation but also

pioneering studies from the realms of text-to-speech, video generation, and symbolic music

generation. These areas have generated key insights that can be fruitfully applied to the domain

of music generation. The literature review within this chapter has been arranged chronologically

to underscore the progression of influential works in deep music generation from the advent of

the deep learning era, grouped by the corresponding generative model family.

The main body of the thesis commences with Chapter 4, which introduces Ainur, a novel

model designed for multimodal conditional music generation. In this chapter, we provide a

thorough examination of the model’s architecture, its use of multimodal input conditioning,

and the complete workflow of the model.

7

We then move to Chapter 5, which outlines the comprehensive evaluation procedure em-

ployed to assess the outputs generated by Ainur. The outcomes of the rigorous experimentation

phase and the consequential ablation studies are then presented in Chapter 6.

Chapter 7 follows next, where we discuss potential enhancements and innovative ideas that

emerged during the development of Ainur, providing a roadmap for future research directions.

Lastly, we conclude the thesis with Chapter 8, summarizing our key findings, reflecting on

the implications of our research, and pointing toward future prospects in the field of deep music

generation.

8

Deep Music Generation

Background

Deep Music Generation

Limitations and Challenges

Data Representation

Deep Generative Models

Controllable Generation

Music Dataset

Commercial Proprietary Software

Deep Generation and Copyright

Related Work

Literature Overview

AR Models

VAE Models

NFs Models

GAN Models

Transformer Models

Diffusion Models

Multimodal Embedding Models

Ainur

Architecture

Multimodal Control

Input Representation

Workflow

Model Comparison

Experimental
Setup

Dataset

Training Setup

Metrics

Implementation Details

Hardware Requirements

Reproducibility

Results

Evaluation Procedure

Intrinsic Evaluation

Comparative Evaluation

Model Analysis

Summary of the Results

Future Work

Conclusion

Figure 1: Structure of the thesis.

CHAPTER 2

BACKGROUND

2.1 Deep Music Generation

Deep music generation refers to the task of creating new and unseen samples of music

through deep learning architectures. Combining deep learning techniques with multimodal

conditioning has enabled the incorporation of various types of data, such as images, text,

and other perceptual input, to guide and improve the quality of the generated music. The

multimodal-guided generation has opened up a new world of creative possibilities, allowing for

the production of music that is not just artificially generated but also personalized and tailored

to specific contexts and themes.

2.1.1 Timeline

Synthetic music has come a long way since its inception in the mid-twentieth century. The

development of computer technology in the 1950s and 1960s paved the way for experiments

with automated music composition, leading to the emergence of computer-generated music in

the following decades. Since then, computer-generated music has undergone significant ad-

vancements and has become a thriving field of research, incorporating various techniques and

applications.

Early Years. The origins of synthetic music can be traced back to the early experiments

with automated music composition in the 1950s and 1960s. Despite many unpublished or

9

10

unpopular projects carried out in 1955 and 1956 [23], computer-generated music debuted in

1957 with the creation of a 17-second song called “The Silver Scale” [6]. The composition was

the creation of Newman Guttman, and it was brought to life by a software known as Music I.

This program, specifically engineered for sound synthesis, was the brainchild of Max Mathews,

a pioneering figure in computer music, during his tenure at Bell Laboratories. During the same

year, the Illiac Suite composition [33] was released. It consisted of four pieces of music that

were generated by an electronic computer called the Illiac I. The Illiac I was one of the earliest

electronic computers developed by the University of Illinois at Urbana-Champaign. The Illiac

Suite was composed using several sets of rules and probabilities to determine which notes to

play and when to play them, based on the principles of Markov chains. In the following years,

other researchers experimented with automated music composition using different methods,

such as algorithmic composition and rule-based systems [23].

Deep Learning Era. While the concept of creating music using machines has existed for

several decades, it was only with the development of modern deep learning architectures that

the generation of highly complex and nuanced musical compositions became possible. These ar-

chitectures have allowed for the creation of music that can rival the quality of human-generated

music. The impressive victory of the AlexNet architecture [55] at the 2012 ImageNet large-scale

visual recognition challenge marked the renaissance of deep learning. Several deep learning ar-

chitectures have been employed for the task of music generation or, more in general, for audio

synthesis.

11

2.2 Limitations and Challenges

Deep music generation faces several unique challenges and limitations that distinguish it

from other fields of deep learning, such as image generation and natural language synthesis.

Unlike images and text, raw audio data is highly dimensional, and downsampling or compression

of audio data can lead to a loss of quality, making the training of deep generative models for

music generation incredibly challenging. For instance, a medium-sized 256 ◊ 256 RGB image

has approximately the same dimensionality as only two seconds of stereo audio sampled at

48,000 kHz [91]. Moreover, music is inherently a human form of artistic expression, and the

lack of a coherent framework for music generation can result in unnatural and incoherent

music creation. Additionally, music requires a structure and coherence that follows the rules of

music theory. To address these challenges, researchers have proposed various techniques such

as incorporating music theory into the training process, conditioning the model on musical

features, and incorporating randomness into the training process to encourage creativity and

originality [44].

2.2.1 Originality

Despite high-level similarities among songs belonging to the same genre, each song possesses

individual features that make it unique. The originality properties of music arise from the

creative work of composers and artists and include the ability to create new musical structures

and patterns that have not been previously heard, as well as the capacity to produce music that

is emotionally evocative and aesthetically pleasing. Deep music generation tries to abstract the

process of composition by training over hours of song data and trying to replicate the recurring

12

patterns that underlie the musical structure. Theoretically, sampling from the distribution of

a fully pre-trained generative model should always produce unique results different from the

samples used during the training. However, in practice, many tests are conducted in order to

ensure that the samples are fairly different and do not plagiarise in any way the existing and

copyrighted works [1] (more about copyright in Section 2.8).

2.2.2 Variability

In addition to originality, variability is another important property that deep music genera-

tion systems must possess. Variability refers to the ability of the system to produce music that

is diverse and interesting, with a wide range of musical elements and styles.

• From a content perspective, this means that the system should be able to generate music

that is melodically and harmonically varied, with a mix of simple and complex patterns

and rhythms. Additionally, the system should be able to generate diverse music in terms

of its instrumentation, timbre, and texture.

• From a temporal perspective, variability refers to the ability of the system to produce

music that changes over time, with a sense of progression and development. This requires

the system to be able to generate musical phrases and motifs that evolve and develop over

time with a sense of structure and coherence.

Achieving these variability properties is challenging, as it requires the system to be able to learn

and model a wide range of musical patterns and structures and to be able to generate novel

and interesting variations of these patterns.

13

2.2.3 Controllability

Controllability is a critical property for deep music generation systems, enabling users to

guide and direct the creative output of the system according to their preferences and require-

ments. This requires the system to be able to respond to a wide range of external inputs

and constraints, including user-defined criteria such as key, tempo, and genre, as well as other

contextual factors such as the emotional content of the music. In order to achieve controllabil-

ity, deep music generation systems must incorporate sophisticated algorithms and models that

are able to take into account these external factors and generate music that is both musically

coherent and aligned with the user’s preferences.

2.2.4 Coherence

Coherence in music refers to the way in which different musical elements, such as melody,

harmony, and rhythm, work together to create a sense of unity and cohesion. Achieving coher-

ence in music generation is a formidable challenge, particularly in the case of multitrack audio

with vocals, where the generation process must synchronize diverse audio modalities and har-

monize them in a compelling manner. This poses a substantial obstacle to generative models,

which lack access to all modalities of the data, and require human intervention to optimize

coherence in music composition. The attainment of coherence is highly valued in music genera-

tion and demands a deep understanding of musical structure and form, as well as the capacity

to incorporate creative and improvisational elements in the music generation process.

14

2.2.5 Discussion

Despite the considerable progress made in deep music generation research, there remain

several challenges and limitations that need to be addressed. One of the primary limitations

is the difficulty in achieving a balance between originality and coherence. While originality

is important for generating novel and interesting music, it can lead to a lack of coherence if

not properly balanced with other properties. Additionally, there is often a trade-off between

variability and coherence in deep music generation, as generating highly variable music can

make it difficult to maintain a consistent sense of musical structure and coherence.

Another challenge is the difficulty in evaluating the results in deep music generation [101].

While there has been significant progress in developing objective metrics that are useful to

compare different generative models, there remains a need for more sophisticated evaluation

metrics that are highly correlated with the perception of audio and that can replace the sub-

jective evaluation that is time-consuming and prone to errors [49; 34; 109; 61].

Furthermore, deep music generation systems are still limited by the quality of the data they

are trained on, which can affect the system’s ability to generate high-quality music. This is

particularly true in the case of audio with complex audio modalities, such as vocals, where

the system’s ability to generate coherent and musically satisfying music is often limited by the

quality and diversity of the training data. The lack of a reference dataset and large datasets for

the training makes it difficult for practitioners and researchers to study and develop techniques

useful to overcome the challenges posed by this task [1].

15

In conclusion, while deep music generation has made significant progress in recent years,

there remain several challenges and limitations that need to be addressed in order to achieve

truly remarkable results. Overcoming these limitations will require continued research and

development in the field, as well as the incorporation of new techniques and approaches from

related fields, such as music theory, audio engineering, and cognitive science.

2.3 Data Representation

Audio data representations in a computer are crucial for various applications, including

music production, speech recognition, and acoustic signal processing. Audio data is represented

by the computer in the form of digital signals: audio is encoded by sampling and quantizing

the continuous information provided by sensors that are able to detect the air vibrations that

produce sound.

There are various types of audio data, each with its unique characteristics. The most com-

mon types of audio data are speech, music, and environmental sounds. Speech is characterized

by its high-frequency content and narrow dynamic range. The human voice is a complex sound,

with different frequencies occurring at different levels of intensity. In contrast, music is charac-

terized by a wide range of frequencies and a high dynamic range. The dynamic range of music

refers to the difference between the quietest and loudest sounds in a piece of music. Environ-

mental sounds are characterized by their variability and unpredictability. These sounds can

include natural sounds, such as wind and water, as well as man-made sounds, such as traffic

and machinery.

16

The different nature of audio data requires different processing techniques. For example,

speech recognition systems need to be able to distinguish between different phonemes and

recognize the patterns of speech. In contrast, music production requires techniques such as

equalization and compression to adjust the frequency balance and dynamic range of the au-

dio. Environmental sound analysis requires techniques such as feature extraction and pattern

recognition to identify and classify different sounds.

2.3.1 Raw Waveform

The raw waveform of a song is a time-domain representation of the audio signal that captures

the instantaneous amplitude of the signal at each point in time. It is a 1-dimensional continuous

representation of a signal, and it is characterized by the sampling frequency and the bit depth.

• The sampling frequency determines the quality and fidelity of the resulting audio sig-

nal. The sampling frequency, also known as the sampling rate or the Nyquist frequency,

represents the number of samples per second that are taken to represent an analog signal

digitally. Typically, the sampling frequency for raw waveform data is at least twice the

highest frequency in the analog signal, according to the Nyquist-Shannon sampling theo-

rem. The most common sampling frequency for audio is 44.1 kHz, which is the standard

for audio CDs. Other common sampling frequencies include 48 kHz, 96 kHz, and 192

kHz, which are used in high-quality audio applications such as studio recording and audio

mastering.

• The bit depth is a fundamental parameter that defines the precision and dynamic range

of the audio signal. Bit depth refers to the number of bits used to represent each sample

17

of the digital audio signal. The higher the bit depth, the greater the dynamic range and

precision of the audio signal. In raw audio data, the most common bit depth is 16 bits,

which allows for a dynamic range of 96 dB. However, higher bit depths, such as 24 bits

and 32 bits, are becoming increasingly popular in professional audio applications, as they

provide greater dynamic range and accuracy.

This representation provides a highly detailed and accurate representation of the audio signal,

allowing for high-quality and high-fidelity playback. However, generating audio directly as a raw

waveform is a challenging task, as it requires generating a vast number of samples, each of which

must be precisely controlled to create a coherent and realistic audio signal. Furthermore, the

high dimensionality of the raw waveform representation makes it difficult to store and process

large audio files efficiently. Generating long audio samples is a computationally intensive task

that requires significant computing resources and specialized machine learning architectures.

2.3.2 2D Representation

The spectrogram representation of audio data is a widely used alternative to the raw wave-

form representation, which captures the spectral content of the audio signal over time. Unlike

raw waveform data, spectrograms have a lower dimensionality, making them easier to process

and store. However, the lower dimensionality of spectrograms comes at the cost of losing some

of the fine-grained details of the audio signal, such as phase information.

Spectrograms can be computed using various mathematical techniques that involve analyz-

ing the spectral content of the audio signal over time x(t). One common method for computing

spectrograms is the short-time Fourier transform (STFT), which involves dividing the audio

18

signal into small overlapping time windows and computing the Fourier transform of each win-

dow.

STFT {x(t)}(⌧,!) =

Z+1

-1
x(t)!(t- ⌧)e-i!tdt (2.1)

This results in a time-varying frequency representation of the audio signal, where the ampli-

tude of each frequency component at each point in time is represented as a color or grayscale

value in the spectrogram. Other approaches to computing spectrograms include the Mel scale,

which uses a non-linear frequency scale that approximates the human auditory system, and the

constant Q transform (CQT), which uses logarithmically spaced frequency bins to capture the

spectral content of the audio signal more accurately [69].

These different spectrogram computation methods can be used to improve the task of audio

generation by providing a more compact and interpretable representation of the audio signal,

enabling more efficient processing and analysis, and facilitating the design of more effective

machine learning models for audio synthesis and processing.

Amplitude Spectrogram. An amplitude spectrogram is a type of spectrogram that repre-

sents the amplitude of each frequency component of an audio signal over time. Unlike a power

spectrogram, which represents the square of the amplitude of each frequency component, an

amplitude spectrogram represents the actual amplitude of each frequency component, providing

a more direct and interpretable representation of the audio signal. The amplitude spectrogram

s(t,!) is computed using STFT over the waveform representation x(t), and the amplitude

19

of each frequency component is then computed by taking the absolute value of the Fourier

transform.

s(⌧,!) = |STFT(⌧,!)|2 (2.2)

The resulting spectrogram is represented as a matrix, where the rows represent frequency bins,

the columns represent time windows, and the value at each element represents the amplitude

of the corresponding frequency component at the corresponding time window.

When the STFT representation is processed by only considering its absolute value, the

corresponding phase component of the spectrogram is lost. This loss of phase information in

the representation renders it impossible to reverse the transformation. However, it is worth

noting that the phase component is complex and difficult to generate, while the amplitude

spectrogram is relatively easier to model. To overcome the challenge of the missing phase

component, one can utilize a neural vocoder to estimate the discarded phase [94; 87; 53] or use

phase approximation algorithms like Griffin-Lim [10].

Mel Spectrogram. The Mel spectrogram is based on the Mel scale, which is a non-linear

frequency scale that approximates the human auditory system’s perception of frequency. The

mapping between frequency units f to Mel units m is the following:

m = 2595 log10
3
1+

f

700

4
(2.3)

The Mel scale is divided into a set of equally spaced frequency bins, and the power spectral den-

sity of the audio signal is then mapped onto these bins using a series of overlapping triangular

20

filters [68]. The resulting Mel spectrogram provides a more perceptually meaningful represen-

tation of the audio signal than a traditional spectrogram, as it emphasizes the frequency ranges

that are most relevant for human hearing. The resulting Mel spectrogram is represented as a

matrix, where the rows represent the Mel frequency bins, the columns represent time windows,

and the value at each element represents the power spectral density of the corresponding Mel

frequency bin at the corresponding time window.

Costant-Q Transform. The CQT is based on the frequency-domain transform that approxi-

mates the human cochlea’s frequency response, which is more closely related to the logarithmic

frequency scale than the linear frequency scale [113]. Unlike the traditional STFT, which em-

ploys a constant-width frequency filter bank, the CQT uses a variable-width filter bank. The

variable-width filters ensure that each frequency bin in the CQT has a constant quality factor

(Q-factor), which is defined as the ratio of the center frequency to the bandwidth of the filter.

This results in a more efficient representation of the audio signal, with reduced redundancy and

increased energy concentration, particularly for harmonic sounds. The CQT representation is

also robust to changes in pitch and timbre, making it an ideal representation for tasks such as

audio synthesis, transcription, and manipulation.

Rainbowgrams. Rainbowgrams are a type of CQT spectrogram that utilizes a color mapping

scheme to visually represent the energy distribution of the audio signal in the time-frequency

domain [69]. Rainbowgrams provide a more intuitive and aesthetically pleasing representation

of the audio signal, allowing for better visualization of the harmonic and inharmonic structures

21

of the sound. The color mapping scheme used in the rainbowgrams typically ranges from blue

for low energy to red for high energy, with green, yellow, and orange shades in between.

2.3.3 Latent

Latent audio data is a compressed form of representation that captures the underlying struc-

ture and features of the audio signal in a lower-dimensional space. This type of representation

is generated using a neural network trained on a large dataset of audio signals. Latent repre-

sentations have the advantage of being highly informative and containing more meaningful and

abstract features than raw waveforms or spectrograms, as they can capture complex temporal

and spectral patterns of the audio signal. This property of the latent representation makes it

highly useful in tasks such as audio generation, music transcription, and speech recognition.

However, the use of latent representations in audio analysis and processing requires careful

consideration of the choice of network architecture, training data, and optimization procedures

to ensure that the resulting representations are both informative and stable. Furthermore, the

interpretation of latent features is often challenging due to their abstract nature [69].

Latent audio representations can be seen as audio embeddings similar to text embeddings

used in natural language processing (NLP). They are both forms of compressed representations

that capture the underlying structure and features of the signal or text in a lower-dimensional

space. One key difference is that text embeddings operate on discrete symbols (words) with

a clear semantic structure, whereas audio signals are continuous and do not have an inherent

semantic structure. As a result, the representation of audio signals needs to be learned in a

different way, for example, through a CNN or an autoencoder. Another difference is the nature

22

of the features captured by each representation. Text embeddings capture the semantic meaning

of words, while latent audio representations capture the acoustic and temporal structure of the

audio signal. This difference arises because the types of features that are informative for each

domain are different.

One of the key advantages of latent representations is their ability to embed different modal-

ities into a unified space, enabling a multi-faceted representation of the data. A notable ex-

ample of such multimodal embeddings is the Contrastive Language-Image Pre-training (CLIP)

framework [80], which learns a joint text-image embedding space through a contrastive learn-

ing objective. By aligning the text and image embeddings in the same space, CLIP enables

cross-modal retrieval and manipulation of the two modalities. In the generative field, CLIP

embeddings have been employed in various text-to-image tasks and have demonstrated impres-

sive results. For instance, StyleCLIP [77] combines CLIP embeddings with styleGAN [48] to

generate images with fine-grained control over their visual attributes. This approach has been

shown to outperform state-of-the-art image generation methods on several benchmark datasets.

The ability of CLIP embeddings to bridge the gap between text and image modalities has also

been utilized in natural language processing tasks such as image captioning, visual question

answering, and image retrieval.

2.3.4 Symbolic

Symbolic representation is a specific type of audio representation that is tailored for music.

It utilizes knowledge of music theory and encodes audio data into a compact form that is easy to

manipulate. The most commonly used form of symbolic music representation is MIDI, which

23

includes information about the timing, pitch, and duration of individual notes in a musical

composition. Because MIDI files are highly compact, they are widely used in music generation

tasks. However, a major limitation of symbolic representation is that it can lack the fine-

grained details and nuances that are present in real musical compositions, which can lead to a

less natural or artificial sound.

Additionally, the MIDI representation is not suitable for vocal representation since it is

only used to encode synthetic sounds or synthesized voices. Therefore, it is necessary to use

additional techniques to encode the vocals in music generation tasks. Despite these limitations,

the low dimensionality and efficient representation of MIDI has made it a popular choice for

music generation tasks.

2.3.5 Acoustic Features

Acoustic feature audio representation is a type of audio representation that leverages domain-

specific knowledge to extract high-level features from audio signals. These features include

mel-frequency cepstral coefficients (MFCCs), spectral centroid, and zero-crossing rate, among

others. One of the main advantages of this representation is its ability to capture the timbral

and rhythmic aspects of audio, making it useful in applications such as speech recognition and

music genre classification. However, acoustic feature representations are not well-suited for au-

dio generation due to their low-level nature and lack of information about higher-level musical

concepts such as harmony and melody. Additionally, the accuracy of feature extraction can

be influenced by environmental factors (such as the location where the audio is recorded) and

noise, making the representation susceptible to variations.

24

2.4 Deep Generative Models

Deep generative models form a specific group within machine learning algorithms, whose

main task is to comprehend the underlying pattern within a dataset and subsequently generate

new data that mirrors the characteristics of the initial input. These models, usually built on

neural networks, are employed in various tasks, including image synthesis, text generation,

and music composition. These models are primarily divided into three types: autoregressive,

non-autoregressive, and latent variable models. Autoregressive models predict each data point

based on its predecessors, learning the sequence’s dependencies. Non-autoregressive models, in

contrast, can predict all data points simultaneously, allowing faster operations. Finally, latent

variable models first learn a low-dimensional representation or latent space of the input data.

This representation, encapsulating essential characteristics of the input, is then used to generate

new, similar samples.

2.4.1 Autogressive Models

Autoregressive (AR) generative models are based on the chain rule of probability, where the

probability of a variable that can be decomposed as x = x1, ..., xn is defined as follows:

p(x) = p(x1, ..., xn) =
nY

i=1

p(xi|x<i) (2.4)

where the vector x<i = {x1, ..., xi-1} and we define p(x1|x<1) = p(x1) as the initial state dis-

tribution. In this way, the product rule allows for factorizing the joint distribution in an

ordered fashion into several conditional distributions. However, this is not the only possible

25

sorting: the same result can also be achieved by factorizing the joint distribution backward

p(x) =
Q1

i=n p(xi|x>i). This is called anticausal direction, and it is usually harder to learn [67].

Equation 2.4 is general and does not make any assumption of conditional independence. The

complexity of computing each conditional probability increases exponentially with the number

of variables n that constitute the joint density. It is possible to represent an autoregressive

x1 x2 x3 x4

Figure 2: Fully connected DAG of an autoregressive model with four variables.

model with a Directed Acyclic Graph (DAG), as shown in Figure 2. Each arrow represents a

conditional relationship between the source and the destination vertex. It is clear to see that

the number of edges grows exponentially with the cardinality of the nodes. Hence, modelling

all conditional distributions p(xi|x<i) is unfeasible [103]. Several techniques employ a single

model with shared parameters to overcome this issue. These models are often parameterized

26

with neural networks: there are many ways to achieve the same result leading to different model

implementations.

2.4.1.1 Markov Model

A straightforward way to deal with the intractability of the factorization of the joint density

is to make a first-order Markov’s assumption. Therefore, we suppose that each variable in the

sequence is conditionally dependent only on its predecessor and conditionally independent from

all other variables p(xi|x<i) = p(xi|xi-1). This significantly restricting assumption makes it

challenging to model long-range relationship patterns. We can alleviate this assumption by

allowing longer dependencies. Higher-order Markov’s assumptions enhance the expressivity

of the model, but the trade-off between model complexity and capability makes these simple

models unsuitable for most use cases. An example of first-order Markov’s model is shown

x1 x2 x3 x4

Figure 3: First order Markov’s autoregressive model with four variables.

in Figure 3. For this simple model, the joint probability density can be easily factorized as

p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3) (2.5)

27

2.4.1.2 Recurrent Neural Network

The problem of short-range memory can be solved by employing an internal state zi that

includes the information of the past states. In a Recurrent Neural Network (RNN), the internal

state, denoted as zi, is determined by previous observations, represented by x<i. This means

that zi is a function that systematically depends on these past observations. This approach al-

lows to model long-range dependencies and does not rely on any Markov assumptions. However,

RNNs are sequential models and are usually very slow. Figure 4 show the representation

hi

zi

xi

hi-1

zi-1

xi-1

hi

zi

xi

hi+1

zi+1

xi+1

Figure 4: RNN architecture. Recurrent cell representation (left) and unfolded version of the
recurrent cell (right).

of the recurrent cell of an RNN. It is possible to notice that when RNNs are deep during the

forward propagation, they tend to forget their initial states due to the vanishing gradients

problem. This issue can be overcome using Long-Short Term Memory (LSTM) cells [59].

28

2.4.1.3 Convolutional Neural Network

Instead of using RNNs to model long-range dependencies, it is possible to employ Convolu-

tional Neural Networks (CNNs) [32]. This architecture is particularly suitable for autoregressive

models because the parameters can be easily shared, and it is parallelizable, therefore, faster

than RNNs. Normal convolution cannot be applied for autoregressive models as long as it

xi-3 xi-2 xi-1 xi

zi-3 zi-2 zi-1 zi

ki-3 ki-2 ki-1 ki

yi-3 yi-2 yi-1 yi

Figure 5: Causal convolution with no dilation. Input variables are shown in blue i , hidden
variables are represented in black h and output variables in orange o .

is not causal. Causal convolutions (Figure 5), a specific type of convolution for temporal data,

ensure that the model does not infringe on the sequence in which we model the data. This

means the prediction p(xt|x< t) made by the model at timestep t must not rely on any future

29

timesteps such as xt+ 1, xt+2, ..., xn. In the context of images, the equivalent of causal con-

volution is a masked convolution. This is executed by creating a mask tensor and performing

an element-wise multiplication of this mask with the convolution kernel prior to its application

[71]. Additionally, it is possible to increase the field of view by performing dilated convolution.

Dilated (atrous1) convolution was first introduced by [114]. It is a type of convolution that

inflate the kernel by inserting holes between the kernel elements. An additional parameter r

(dilation rate) indicates how much the kernel is widened. There are usually r-1 spaces inserted

between kernel elements.

2.4.1.4 Transformer

The transformer is a model architecture that overcomes the recurrence and relies entirely

on an attention mechanism to draw global dependencies between input and output [107]. Self-

attention is an attention mechanism relating different positions of a single sequence to compute

a representation of the sequence. The Transformer has an encoder-decoder structure: the

discrete input (x1, x2, ..., xn) is mapped into a continuous latent space z = (z1, z2, ..., zn). Given

z, he decoder is responsible for creating an output sequence, represented as (y1, y2..., ym), in

which each symbol is generated one at a time. With each progressive step, the model behaves

auto-regressively, utilizing the symbols that were previously generated as supplementary input

for the generation of the subsequent symbol. A query, a set of key-value pairs, and an output,

all of which are vectors, can be mapped to one another by an attention function. The result is

1Derived from the French term “à trous” meaning “with holes”.

30

Q K V

MatMul

Scale

Mask

Softmax

MatMul

Figure 6: Functional block diagram for the scaled dot-product attention.

calculated as a weighted sum of the values, with the weights assigned to each value determined

by how well the query matches the key in question. Given the matrix of queries, Q, and the

matrices of keys and values K,V , the calculation for the scaled dot-product attention is as

follows:

Attention(Q,K, V) = softmax
A
QKT

Ô
dk

B

V (2.6)

In this formula, dk represents the dimensionality of the queries and keys. A schematic

representation of the scaled-dot product attention is shown in Figure 6. Moreover, there exists

a mechanism known as multi-head attention. This concept enables the model to simultaneously

31

pay attention to varying sets of information, each from different representational spaces, at

distinct positions. The vanilla implementation of the Transformers is designed to work with

textual data: it employs several self-attention layers in both the encoder and the decoder.

2.4.2 Non-Autoregressive Models

While AR models provide accurate estimates of the target distribution, sampling from them

requires several sequential steps. Non-autoregressive (NAR) models [9; 56; 119] are a type of

sequence generation model that can generate output sequences in parallel without depending on

previously generated tokens. NAR models can be faster to sample from than AR models because

they generate each token independently, allowing for parallel computation. Additionally, AR

models typically require careful training techniques, such as teacher-forcing, to ensure that the

model generates high-quality output sequences. These training techniques can slow down the

training process and make the model less efficient. NAR models, on the other hand, do not

require teacher-forcing, and can be trained more efficiently, leading to faster training times and

potentially better performance [110].

2.4.3 Deep Latent Variable Models

Deep latent variable models (DLVMs) are based on the idea that a generative process can

be seen as an abstraction of reality and a consequent concretization of the abstracted idea

into a tangible output [103]. The abstraction process presumes that it is possible to idealize

a concept in a low-dimensional manifold, and then, by sampling in this space, the compressed

representation of the concept is expanded into the original high-dimensional space. In particular,

the low-dimensional space is referred to as latent space, and the latent variables z are called

32

x E(x) z D(z) x̃
qφ(z|x) p✓(x|z)

Figure 7: VAE architecture. The input x and target x̃ data are shown in blue , the compressed
latent variable z in orange and the encoder/decoder architecture in green . The input data
is compressed by the encoder to a compact latent representation. The latent is then decoded x̃
to be as close as possible to original input distribution x.

hidden factors in data. The idea behind latent variable models is that we introduce the latent

variables are denoted as z and the joint distribution is factorized in the following manner:

p(x, z) = p(x|z)p(z). However, during training, we only have access to x. As a result, the

marginal likelihood function is expressed as:

p(x) =

Z
p(x|z)p(z)dz (2.7)

2.4.3.1 Variational Autoencoder

Variational autoencoders (VAEs) [51] employ variation inference to compute a lower bound

for p(x) and optimizing the lower bound instead of directly optimizing the likelihood (Equation 2.7)

which is intractable [67]. If we take into account a family of Gaussian variational distributions,

33

parameterized by φ = µ,σ2 : qφ(z)φ, the logarithm of the marginal distribution can be ap-

proximated in the following manner:

log p(x) Ø Ez ⇠ qφ(z)[log p(x|z)]- Ez ⇠ qφ(z)[logqφ(z)- log p(z)] (2.8)

Nonetheless, implementing variational inference for every data point is not efficient. A more

practical approach involves considering an amortized variational posterior, that is, qφ(z|x) in

place of qφ(z) for each x. In such a case, we obtain:

log p(x) Ø Ez⇠qφ(z|x)[log p(x|z)]- Ez⇠qφ(z|x)[logqφ(z|x)- log p(z)] (2.9)

An amortized variational posterior refers to a strategy for learning a function to approximate

the posterior distribution instead of separately estimating the posterior for each datapoint. By

employing this approach, we establish a model reminiscent of an auto-encoder, featuring both

a stochastic encoder and a stochastic decoder. The lower bound of the log-likelihood function

is called the evidence lower bound (ELBO): the first term in (Equation 2.9) accounts for the

reconstruction error when z is decoded into x while the second term represents the Kullback-

Leibler (KL) divergence between qφ(z|x) and the difference between the ELBO and the true

log-likelihood is denoted by p(z|x).

Both the stochastic decoder and encoder are parameterized by neural networks (NNs). The

schematic in Figure 7 summarizes the main features of the VAE architecture. The reparame-

terization trick is employed in the encoder qφ(z|x) for reducing the variance of the gradient.

34

x f(x) z f-1(z) x̃

Figure 8: NF architecture. The transformation f(x) and the inverse f-1(z) represents the
composition of all the functions used for the mapping. The latent z has the same dimensionality
of the input data.

Due to the flexibility in the architecture of the encoder and decoder, as well as in the selection

of the prior, VAEs represent a highly potent class of models.

2.4.3.2 Normalizing Flows

The decoding of the prior in VAEs is not trivial, and it usually results in blurry samples.

Normalizing flows (NFs) circumvent this issue using invertible transformations. Whenever a

variable is mapped in another space through a function, it is necessary to take into account the

spatial reshaping due to the transformation:

pX(x) = pZ
!
f-1(x)

"--Jf-1(x)
-- (2.10)

= pZ
!
f-1(x)

"--Jf(z)
---1 (2.11)

35

Where the term
--Jf-1(x)

-- is the determinant of Jacobian of the inverse function f-1(x) and

accounts for the morphing of the manifold inducted by the transformation. (Equation 2.11)

shows a property of the Jacobian operator that allows switching between the Jacobian of the

inverse function with the inverse of the Jacobian of the transformation.

Following this path, it is possible to use the idea of the change of variable to learn complex

transformation that maps the data to an arbitrary space and then use the inverse transformation

to bring the latent back to the data-space, as shown in Figure 8. The problem with this reasoning

is that inverting an arbitrary transformation is computationally demanding, and it does not

scale up well with large amounts of training data. The main idea of NFs is to chain several

simple, computationally efficient, and invertible transformations to get a complex mapping:

pX(x; ✓) = pZ
!
f-1
✓ (x)

" MY

m=1

---Jfm✓ (zm)

-1

(2.12)

Where ✓ represents the parameters used in the NN for learning the transformation, and M is

the number of composed functions used. The main problem with NFs is that we have to choose

a NN which is invertible and for which the determinant of the Jacobian matrix is easy to

compute [103]. In practice, this restriction makes it difficult to deal with NF models, which are

usually replaced by novel denoising diffusion probabilistic models (DDPMs). Diffusion models

are similar to NFs with the difference that the chain of arbitrary function is replaced with the

composition of isotropic Gaussian functions (more about DDPM in Section 2.4.3.4).

36

z G(z) x̃ x D(x) y

Figure 9: GAN architecture. During training, starting from the noise z, the generator produces
a sample x̃. Then, the discriminator receives both samples from the data distribution x and
the estimated one x̃, and tries to predict whether the sample is real or synthetic.

2.4.3.3 Generative Adversarial Network

Another approach to generation is to model the target distribution implicitly. Generative

adversarial networks (GANs) [28] perform an adversarial training procedure that allows the

model to learn the underlying distribution of the data. The model is composed by a generator

G(z) and a discriminator D(x), the training requires two steps:

1. The generator takes Gaussian noise as input and generates samples of the target density

distribution.

2. The discriminator may receive the real input data or the generated data, and it tries to

classify the input as real or fake.

37

x x1 x2 xT-1 xT

Figure 10: DDPM architecture. In the forward stage, the input data is gradually corrupted into
Gaussian noise. In the backward stage, it is possible to recover the original input by starting
from pure noise and removing it step by step. All the intermediate representations have the
same dimensionality as the input.

This procedure is backed up by the following adversarial objective:

min
G

max
D

Ex⇠pdata(x)
#
logD(x)

$
+ Ez⇠pz(z)

#
log

!
1-D(G(z))

"$
(2.13)

In practice, we play a min-max game in which we are trying to improve the generation by

fooling the discriminator into believing that the generated samples are coming from the real

data distribution. When the objective converges, the generator is able to produce samples that,

from the discriminator standpoint, are indistinguishable from the original ones. The training

procedure is reported in Figure 9, where y is usually a binary label that indicates whether the

input sample is predicted to be real (1) or fake (0).

38

2.4.3.4 Diffusion Model

Denoising diffusion probabilistic models (DDPMs) [35] possess state-of-the-art performances

in many tasks. The key idea of DDPMs is shown in Figure 10: the diffusion process increasingly

corrupts the input data into noise by modeling it as a first-order Markov chain. The diffusion

process foresees two stages:

1. Forward: during this stage, each intermediate representation is augmented with some

level of noise with respect to the previous step. After several steps, the distribution of

the representation is the same as an isotropic Gaussian.

2. Backward: starting from pure Gaussian noise, it is possible to generate unseen samples

from the input distribution by removing some amount of noise that the network is able

to learn during the training phase.

The forward diffusion procedure, comprising T steps, can be expressed as follows:

q(xt|xt-1) = N
!
xt;


1- βtxt-1,βtI

"
(2.14)

Here, βt serves as the variance schedule, acting as a tuning parameter to regulate the amount

of noise introduced at each stage. Given that the forward process involves the composition of

normal distributions, it is viable to sample from any given time step in a closed form:

q(xt|x0) = N
!
xt;

Ô
ātx0, (1- ↵̄t)I

"
(2.15)

39

In this equation, ↵t is given by 1-βt and ↵̄t is the product of all ↵i for i = 1 to t. The backward

stage defines the generative process of the model. Going backward from noise, it is possible to

approximate q(xt-1|xt) with a Normal distribution if βt is small in each diffusion step. The

denoising process is parameterized with a neural network that has the following objective:

Et⇠[1,T],x0,✏t

Ë
Î✏t - ✏✓(xt, t)Î2

È
(2.16)

Where ✏t is the noise at timestep t. In practice, the NN is trained to understand how much

noise is injected at timestep t with a simple mean squared error (MSE) loss. Therefore, to

perform the training of the model, it suffices to sample a random timestep t and some noise

✏ from a standard Normal distribution and then perform the gradient descent step on the loss

in (Equation 2.16) until convergence. Generally, the U-Net architecture [89] is employed to

model ✏✓(xt, t) injecting positional embeddings in the U-Net layers to acquire the temporal

information.

Over the years, several authors have proposed approaches to improve vanilla DDPMs. One

of the major drawbacks of these models is that during the sampling, many steps (⇠ 1000) are

needed to produce high-quality results. [70] suggest an improved noise scheduler that outper-

forms the linear scheduling, and [96] introduces denoising diffusion implicit models (DDIMs)

that generalize the Markovian process and are able to generate a sample with an order of mag-

nitude fewer steps (⇠100). Distillation techniques [65] make it possible to use a pre-trained

DDPM and distill the diffusion, making it possible to achieve results comparable to the start-

40

x E(x) x0 x1 xT D(xT) x̃

q(x0:T)

p(x0:T)

Figure 11: Latent diffusion model architecture. The diffusion process is performed in the latent
space of a pre-trained autoencoder. The cross-attention operation during the diffusion process
allows for conditional generation.

ing DDPM but with dozens of steps. Finally, consistency models (CMs) [97] allow to distill

pre-trained DDPMs or to train consistency models from scratch that are able to perform the

sampling in a single backward step from noise to data1.

2.4.4 Hybrid Models

Different combinations of deep generative models can be used, typically to leverage the

strengths of each model for improved performance. Some popular examples of hybrid models

include replacing the prior in the VAE architecture with autoregressive models and performing

adversarial training with non-GAN models. One of the state-of-the-art (SOTA) architectures

for image generation is the latent diffusion model (LDM) [88], which merges VAE, DDPMs, and

1Additional steps improve the quality of the generation.

41

transformers. A schematic visualization of an LDM is presented in Figure 11: in the latent space

of an autoencoder, a DDPM performs the diffusion process on the compressed latent variable.

In the U-Net layers that parameterize the diffusion, several attention heads perform the cross

attention between the input and some embedded conditioning signal, making it possible to

perform guided diffusion with crossmodal input sources.

2.4.5 Transfer Learning

Transfer learning has become a popular technique in the field of machine learning and

artificial intelligence due to its ability to improve the performance of models by leveraging

knowledge gained from previously learned tasks. It refers to the practice of utilizing pre-trained

models as a foundation for a new task rather than starting the training process from scratch.

Typically, the pre-trained model is trained on a sizable dataset that shares similarities with the

new task, allowing it to learn features that are useful for the new task [82].

Transfer learning can be especially useful when the new dataset is small, as training a model

from scratch on a small dataset may lead to overfitting, a scenario where the model excels at

the training data but struggles with new, unseen data. By using a pre-trained model, the

model has already learned to recognize and extract useful features, which can reduce the risk

of overfitting. Transfer learning also allows for faster training times, as the pre-trained model

has already learned a large amount of knowledge, reducing the number of iterations required

for convergence. Another advantage of transfer learning is that it can be used to improve the

performance of models in domains where large amounts of labeled data are not readily available,

such as audio generation or speech recognition. By using a pre-trained model that has been

42

trained on a similar domain, the model can learn from the pre-trained features and improve its

performance on the new domain.

Transfer learning has been widely applied in the field of audio generation, specifically in the

domains of speech, music, and sound effects.

• In speech generation, transfer learning has been used to improve speech recognition and

speech synthesis [66; 95]. For example, pre-trained models for speech recognition can be

fine-tuned to a specific speaker or language with a smaller amount of training data, result-

ing in better accuracy and efficiency. Similarly, pre-trained models for speech synthesis

can be used as a starting point for generating new speech samples and then fine-tuned on

a specific task, such as emotion recognition or voice conversion.

• In the domain of music generation, transfer learning has been applied to various tasks,

including melody and harmony generation, instrument separation, and music style transfer

[43; 116; 61; 40]. For instance, pre-trained models for music generation can be fine-tuned

to generate new melodies or harmonies that follow a certain style or mood. Transfer

learning can also be used to separate individual instruments from a mixed audio signal,

which is useful for tasks such as music remixing and audio source separation. Moreover,

pre-trained models can be used to transfer the style of one piece of music to another,

allowing for the creation of new music that preserves certain characteristics of the original

piece.

• Finally, transfer learning has been used in the field of sound effects generation, which

involves synthesizing sounds that correspond to specific events or actions [20; 102]. Pre-

43

trained models can be fine-tuned to generate new sound effects that match the character-

istics of a given scene or environment.

Overall, transfer learning has proven to be a useful technique for improving the accuracy and

efficiency of audio generation tasks in a variety of domains by leveraging pre-existing knowledge

from related tasks or domains.

2.5 Controllable Generation

Controllability in deep generative models is a crucial aspect for their successful implementa-

tion in real-world applications. In the field of deep music generation, controllability is particu-

larly important in order to produce high-quality and diverse musical compositions that cater to

the user’s preferences. The main attributes of conditional deep music generation are as follows:

• Controllability: enables the generation of music constrained to a specific class or set of

attributes. With the aid of controllability, it is possible to steer the generation process

towards a specific music genre, tempo, or key, among others.

• User experience: the user is able to create its own outputs by inputting specific at-

tributes, thus empowering the user to have control over the generated outputs.

• Compositionality: a critical attribute of controllability in deep generative models. The

ability to generate novel concept combinations is essential in music generation as it pro-

vides the opportunity to generate unique and distinct compositions.

• Multimodal conditioning: controlling the generation with cross-modal inputs may

improve the quality and the speed of the generation. By inputting additional information

44

such as text, images, or videos, it is possible to provide more information to the model

and guide the generation process more efficiently.

2.5.1 Text-to-Music

Text-to-music generation is a task that involves generating a musical composition given

textual input. In this task, the model is trained to learn the correlation between the input

text and its corresponding musical representation. The input text can be a description of a

musical genre, the name of artists, or any other textual information that can be semantically

associated with musical elements. The generated music can be in any genre, style, or tempo,

depending on the training data and the model’s architecture. The task of converting text into

music is demanding owing to the complexity and diversity of music and language, as well as

the subjective nature of music.

2.5.2 Lyrics-to-Music

Lyrics-to-music generation is a specific subtask of text-to-music that involves generating

music with vocals based on lyrics as input conditioning. This task is particularly challenging

as lyrics information serves as both textual and temporal conditioning. The temporal aspect

of lyrics links the words in the lyrics to specific time intervals in the music data. Consequently,

the lyrics’ content has a significant impact on controlling the music generation process. To

address this challenge, some models, such as Jukebox [13], have attempted to generate music

and vocals conditioned on lyrics information using an autoregressive approach.

45

2.5.3 Music-to-Music

Music-to-music generation is the task of generating novel musical compositions that are

inspired by a given musical piece or a set of pieces. In this context, the input and output are

both musical data, and the generative model is tasked with learning the underlying patterns

and structures of the input music and generating novel pieces that share similar qualities. This

task is challenging due to the complexity and diversity of musical compositions and the need

to capture and reproduce the intricate relationships between musical elements such as melody,

harmony, rhythm, and instrumentation. The success of music-to-music generation depends on

the ability of the model to learn and generalize from the input music and generate compositions

that are both diverse and coherent.

2.5.4 Symbolic Conditioning

Symbolic conditioning is a subtask of music-to-music generation that leverages symbolic mu-

sical representation to generate new music compositions. This conditioning method is different

from audio conditioning since it utilizes symbolic data in the form of MIDI files, which encode

music as a sequence of notes with temporal and timbre information. The symbolic conditioning

approach provides several advantages, including compact representation, easy manipulation,

and control over the generated music’s melody and structure. Symbolic conditioning models

have been successfully applied to generate music compositions that emulate a specific style,

genre, or composer. However, this method is not without limitations. The symbolic condi-

tioning approach has difficulty capturing the complex timbre and subtle nuances of the music.

46

Therefore, while symbolic conditioning is a promising subtask of music-to-music generation, it

has room for improvement in terms of generating more realistic and natural-sounding music.

2.5.5 Image-to-Music

Image-to-music generation is a challenging task in the field of deep generative models that

aims to generate music given an image as input. This task belongs to the realm of multimodal

generation, where the generation process starts from a modality that is very different from the

audio domain. This approach offers many possibilities to create new and innovative musical

compositions, leveraging the rich variety of features embedded in images. For instance, it is

possible to generate music that conveys feelings expressed in the input image, such as sadness,

joy, or excitement.

2.6 Music Dataset

Music datasets play a crucial role in the development and evaluation of machine learning

models for music generation tasks. However, creating large and diverse music datasets can be

a challenging task due to various reasons. One of the main challenges is the availability of the

data. The vast majority of music recordings are owned by record labels and music publishers,

making it difficult for researchers to access them. This limitation has resulted in the creation

of smaller datasets or even the need for researchers to create their own datasets by manually

curating and annotating music recordings. Such datasets are often limited in size and scope,

hindering the ability of researchers to develop and evaluate robust music generation models.

Another challenge in creating music datasets is the scarcity of audio data. While there are

a plethora of music recordings available, they often come in different formats and qualities,

47

making it difficult to curate a standardized dataset. Additionally, the cost of acquiring high-

quality recordings is often prohibitive, making it difficult for researchers to collect large amounts

of data. This scarcity of audio data can result in overfitting of the models to the available data,

leading to poor generalization and limited applicability.

Furthermore, the use of copyrighted material in music datasets can create legal challenges

for researchers. While some datasets are made available under a permissive license, others

may require the researcher to obtain permission from the copyright holders before using the

data. This can be a time-consuming and costly process, resulting in delays in research progress.

Additionally, the use of copyrighted material can limit the distribution of the datasets, as some

researchers may not have the necessary permissions to use the data.

Lastly, the lack of a reference dataset for comparison poses a challenge to the evaluation

of music generation models. While there are several publicly available music datasets, there is

no standardized reference dataset for evaluating the performance of different music generation

models. This can make it difficult to compare the performance of different models and hinder

progress in the development of better music generation techniques.

2.6.1 Raw Music Dataset

Several freely available raw waveform music datasets can be used in machine learning re-

search. These datasets are particularly valuable because they offer direct access to the audio

data that can be fed into a machine learning model. However, it should be noted that storing

raw waveform data can be space-consuming, and as a result, some of these datasets may contain

48

relatively small amounts of data or be excessively large and difficult to manage. Some examples

of the most popular raw music datasets are:

• Free Music Archive [11] is a publicly available dataset that can be easily accessed and

used for various tasks related to Music Information Retrieval. It includes a wide variety

of music genres and contains a large collection of audio files, making it a valuable resource

for research and experimentation.

• GTZAN dataset [99] consists of 1000 audio tracks, each 30 seconds in length, and is used

for evaluating music genre classification models. There are 10 different genres included in

the dataset, with 100 tracks per genre. All tracks are in mono 16-bit WAV format and

sampled at 22050Hz.

• MagnaTagATune dataset [57] comprises more than 25,000 music clips, each with a

duration of 29 seconds. These clips are sourced from a diverse collection of over 5,000

songs, 445 albums, and 230 artists. The dataset spans a wide variety of music genres,

such as classical, jazz, rock, and pop. Uniquely, each music clip in the dataset carries

binary annotations for over 180 different tags. These tags denote the presence or absence

of certain features like vocals, various instruments, and specific musical genres. Human

players participating in the online game TagATune generated these annotations. Players

listened to audio clips during the game and assigned descriptive tags accordingly.

49

2.6.2 Symbolic Music Dataset

Symbolic music datasets are a popular alternative to raw waveform data because they

contain symbolic representations of musical information such as pitch, timing, and duration.

They can be processed by music information retrieval algorithms, music transcription, and

music generation models. These datasets are highly popular and widely available online due

to their ability to facilitate many research areas related to music technology. Symbolic music

datasets cover a major portion of the available music dataset online, thanks to their lighter and

more manageable format that can be easily processed and analyzed. Here are some examples

of freely available symbolic music datasets:

• The Lakh MIDI [81] dataset contains over 176,581 unique MIDI files from a variety of

sources, including the web, user contributions, and digitized music scores. This dataset is

considered one of the largest symbolic music datasets available and is suitable for various

research tasks, including music information retrieval and music generation.

• Maestro [30] is a dataset of MIDI performances that includes over 172 hours of solo

piano music performed by various artists. It covers a wide range of musical styles. It

includes several MIDI features, such as velocity, timing, and expression, that can be used

in research related to expressive music performance analysis and modeling.

• NES-MDB [16] is a dataset that contains over 36,000 MIDI files of music from classic

Nintendo Entertainment System (NES) games. This dataset has been used in research

related to video game music analysis and machine learning models for music generation.

It can be used to study the unique features of 8-bit video game music.

50

• NSynth [21] is a dataset of over 300,000 unique sounds generated by a neural network

trained on the Google Magenta platform. This dataset contains a wide range of sounds,

including musical instruments, human voices, and environmental sounds. It can be used

in research related to sound synthesis, timbre analysis, and machine learning models for

music generation.

2.6.3 Music Metadata Dataset

Metadata music datasets are a valuable resource for music generation research, as they

provide information about various characteristics of music, such as artist, genre, tempo, and

mood. These datasets do not contain raw music files but rather provide a wealth of information

about the music that can be used to train machine learning models. The metadata can be used

to generate new music based on certain features or characteristics or to classify and organize

large music collections. Additionally, metadata can be combined with raw music datasets

to enhance the performance of machine learning models by providing additional contextual

information. Some examples of freely available metadata music datasets are:

• The Million Song Dataset [4], which contains the audio features for one million songs.

The metadata includes information such as artist, release year, tempo, and key, as well

as acoustic features extracted from the audio signal such as loudness and timbre.

• AudioSet [26] is a large-scale dataset of annotated audio events that includes over 2

million 10-second sound clips from a wide range of sources. The dataset includes anno-

tations for various sound events, such as music, speech, and ambient sounds. It can be

51

used to train machine learning models for several tasks, such as sound event detection

and classification.

• MusicCaps [1] is a recent dataset of 5,521 10-second music clips from AudioSet, each

with a free-text caption and an aspect list describing features such as genre, mood, and

instrumentation. The MusicCaps dataset has been conceived with the aim of using it as

an evaluation dataset rather than a training dataset. The dataset is solely dedicated to

music and offers high-quality annotations supplied by experts.

2.7 Commercial Proprietary Software

The landscape of AI-generated music has expanded beyond the realm of academic research,

with a rising number of commercial platforms providing AI-driven music generation services.

These platforms are gaining traction as they cater to the growing demand for customizable,

royalty-free music that can be used in various creative projects, such as online videos, video

games, or other artistic endeavors. One of the main characteristics of these commercial plat-

forms is their focus on generating instrumental music, with only a few options for vocal tracks

or music with vocals.

Notably, the algorithms and training data used by these commercial services are propri-

etary and undisclosed, which makes it challenging to comprehend the inner workings of these

models, including their training methodologies and data sources. Despite this, their increasing

popularity is a testament to the burgeoning interest in AI-generated music and its potential to

revolutionize the creative landscape.

52

The following platforms are among the prominent commercial online services that offer

synthetic music generation capabilities:

• AIVA1

• Amper2

• Soundful3

• Ecrett4

• SoundRaw5

• Boomy6

• Amadeus Code7

• Mubert8 [3]

1AIVA website (aiva.ai).

2Amper website (ampermusic.com).

3Soundful website (soundful.com).

4Ecrett website (ecrettmusic.com).

5SoundRaw website (soundraw.io).

6Boomy website (boomy.com).

7Amadeus Code website (amadeuscode.com).

8Mubert website (mubert.com).

https://www.aiva.ai
https://www.ampermusic.com
https://soundful.com
https://ecrettmusic.com
https://soundraw.io
https://boomy.com
https://amadeuscode.com
https://mubert.com

53

These platforms showcase how AI-generated music can enhance the creative process and

unlock new opportunities for creators. Their success and continued development serve as an

inspiration for the broader research community, motivating further investigation into AI-driven

music generation techniques.

As more research is published in the open-source domain, we can expect to witness even

greater advancements in AI-generated music, leading to more sophisticated models and higher-

quality output. This synergy between commercial platforms and academic research will continue

to drive innovation and expand the possibilities for AI-driven music generation. By embracing

this collaboration, both creators and consumers will benefit from the ongoing evolution of AI-

generated music, ultimately enabling a richer and more diverse creative landscape.

2.8 Deep Generation and Copyright

Music generation is a relatively underdeveloped domain that lacks readily available audio

data sources. Unlike other fields, such as natural language processing and computer vision, the

task of gathering a complete and high-quality music dataset with metadata and customized

audio quality attributes is still very challenging. As a result, the lack of reference data creates

many obstacles for researchers and practitioners in the field of music generation, leaving them

dependent on the research of companies and eminent universities that have the resources to

access huge computational power.

Gathering a web-crawled dataset requires terabytes of storage and a large cluster of servers

that are capable of downloading music at a high-speed rate. Additionally, audio data is inher-

ently high-dimensional, which makes the training of machine learning models challenging on

54

its own. The aforementioned issues have given rise to a discernible imbalance in the research

landscape over the last decade in the domain of music generation. This predicament creates

an uneven playing field, with sizable corporations and research institutions enjoying a marked

advantage over their smaller counterparts, ultimately constraining progress in the field of music

generation research.

Moreover, the nature of music data as an intellectual property protected by copyright laws

further slows down research progress in music generation. In contrast to natural language

processing and computer vision, where publicly available reference datasets are often provided,

the lack of publicly available music datasets hinders the ability of researchers to train and

evaluate models. To avoid copyright infringement, researchers must obtain explicit permission

from the copyright holders, which is a time-consuming and often costly process. This limitation

makes it more difficult for researchers to advance the state of the art in music generation.

2.8.1 Dealing with Protected Data

The field of deep music generation relies heavily on the availability of large datasets to

obtain concrete research results. However, the use of private web-crawled datasets that are

not readable or accessible has become a common practice in recent works [13; 63; 1; 3; 92].

It is possible that these datasets contain copyrighted material, and obtaining permission from

every intellectual property holder is not feasible given the large number of samples required for

training a music model.

One possible option for obtaining large amounts of royalty-free music data is to purchase

it from online platforms that specialize in selling such content. While these platforms can

55

provide high-quality music samples that are free from copyright restrictions, they often come

at a high cost, which can be a barrier for smaller labs or individual researchers. Additionally,

the metadata associated with these datasets is often limited, which can make it difficult to

utilize the data in research fully. For example, some platforms may not provide information

on the commercial success of a particular song or the associated artist, which can be crucial

in analyzing the characteristics of a successful piece of music. Despite these limitations, online

platforms that sell royalty-free music remain a viable option for researchers who require large

amounts of high-quality music data for their projects.

2.8.2 Research and Fair Use

When it comes to using copyrighted material for research purposes in the field of deep mu-

sic generation, it is crucial to acknowledge that employing copyrighted material for research

purposes is generally considered lawful under the fair use doctrine. Fair use is a legal provi-

sion within copyright law that permits restricted utilization of copyrighted material without

obtaining explicit permission from the copyright holder [12; 24]. While the specifics of fair use

can vary depending on the circumstances, using copyrighted material for research purposes is

often considered a valid use under this doctrine. However, it is still important for researchers

to be aware of the potential legal issues that could arise and to take steps to minimize any risks

involved in using copyrighted material in their work. Furthermore, any commercial use of the

generated content would require obtaining appropriate licensing and permissions.

56

2.8.3 Limitations

Despite the significant advancements in the field of deep music generation, there remain

certain limitations and risks associated with utilizing machine learning models for music gen-

eration. Specifically, the use of such models may lead to unwanted or unexpected behaviors,

including the creation of music that is inappropriate or offensive, the infringement of intellectual

property rights, and potential legal liabilities for individuals or organizations involved in the

creation or distribution of such music. As such, it is crucial that users of these technologies are

aware of the potential risks and effects associated with their use and take appropriate steps to

mitigate any potential legal or ethical concerns. Furthermore, it is important that developers

of deep music generation models consider these limitations and work towards developing more

ethical and responsible approaches to the development and deployment of these technologies.

Any input for conditioning the generation of the music and the resulting output should be

attributed to the user. Additionally, the user should own the rights to the generated output. It

is crucial to have clear guidelines and agreements in place regarding ownership and attribution

to ensure that the use of deep music generation technology is both legal and ethical.

CHAPTER 3

RELATED WORK

3.1 Literature Overview

Numerous works from various domains have significantly shaped the field of deep music

generation, each contributing innovations and advancements. Many novel architectures offer

insights and research directions that can be directly applied to music generation tasks. Addi-

tionally, related fields such as text-to-speech and audio generation have also played a crucial

role in deep music generation research, fostering the development of new models and techniques.

In this thesis, the Related Work chapter explores a selection of influential models that have

pushed the boundaries of the state-of-the-art in music generation. While this review is not

exhaustive, it offers a detailed examination of key models that have contributed to raw music

generation and those that utilize 2D representations of audio data. It is important to note that

this review does not cover works focused on symbolic music generation.

The Related Work chapter delves into the milestones achieved in deep music generation and

their transformative impact on the field. It provides an extensive overview of various models,

their underlying architectures, and training mechanisms. The chapter highlights the models’

contributions to raw music generation, which involves creating music from scratch without rely-

ing on pre-existing musical structures. Furthermore, the review investigates influential models

that employ 2D representations of audio data, enabling the synthesis of more sophisticated and

57

58

nuanced music. Ultimately, this chapter offers a thorough review of the related work in deep

music generation, laying the foundation for the remainder of the thesis.

3.2 AR Models

In the early stages of autoregressive modeling for deep music generation, several notable

models emerged that laid the foundation for more advanced architectures. This section of

the Related Work aims to review the key contributions of the most influential work on early

autoregressive modeling, leaving aside the Transformer models, which are examined in Section

3.6. Particular emphasis will be put on autoregressive models that are able to directly generate

raw waveform audio due to their importance for this thesis.

3.2.1 Image and Raw Music Generation

Uria et al. [104] proposed Neural Autoregressive Distribution Estimation (NADE) as a

deep generative model for representing the joint distribution of high-dimensional data. NADE

is based on the idea of modeling the probability distribution of a data point by decomposing it

into a product of conditional distributions, each of which is represented by a neural network.

In the context of music generation, each conditional distribution models the probability of a

specific note or event occurring given the previous ones. Mathematically, the joint distribution

modeled by NADE can be represented as follows:

p(x) =
DY

i=1

p(xi|x<i), (3.1)

59

where x is a data point, D is the dimensionality of the data, and x<i represents the vector

of previous components. NADE’s ability to capture complex dependencies in the data made it

a useful early model for music generation, but its feedforward architecture limited its capacity

to model long-term dependencies.

The PixelRNN model, proposed by Oord et al. [72], addressed the limitations of NADE

by introducing RNNs into the autoregressive framework. PixelRNN aimed to model images by

predicting the intensity value of a pixel given the previous pixels in a row-by-row manner. While

originally designed for images, PixelRNN’s architecture could be adapted for music generation

by modeling the generation process as a sequence of discrete events. The model’s RNN-based

architecture allowed it to capture longer-term dependencies more effectively than feedforward

models like NADE, thus improving the quality of generated music. The core component of

PixelRNN is the LSTM layer, which allows the model to learn complex patterns in sequences

without suffering from the vanishing or exploding gradient problems typically encountered in

traditional RNNs. By utilizing LSTMs, PixelRNN is capable of modeling longer and more

complex musical structures compared to its predecessors.

WaveNet, a groundbreaking work by Oord et al. [71], is a model for generating raw audio

that has had a significant impact on the field of music generation. Unlike previous models that

relied on a discrete representation of musical events, WaveNet directly models the raw audio

waveform, allowing it to generate high-quality audio with a wide range of musical structures and

timbres. WaveNet employs a stack of dilated causal convolutional layers, which can effectively

60

model long-range dependencies in the audio signal while maintaining a manageable number of

parameters. The model’s autoregressive nature is expressed as:

p(x) =
TY

t=1

p(xt|x<t), (3.2)

where T is the length of the audio signal, and xt represents the value of the waveform at time

t. WaveNet’s ability to model long-range dependencies, combined with its direct generation of

raw audio, has enabled it to produce state-of-the-art results in various music generation tasks,

making it a pivotal model for this thesis.

WaveNet introduced a novel architecture for generating raw audio that has become a cor-

nerstone in the field of music generation. The structure of the model is composed of a series of

dilated causal convolutional layers meticulously designed to efficiently grasp long-range depen-

dencies present within the audio signal. Dilated convolutions [114] is a key feature of WaveNet,

as they allow the model to increase its receptive field exponentially with depth while main-

taining a relatively small number of parameters. This property is crucial for modeling the

long-range structure in music, which often spans several seconds or more. Another crucial as-

pect of WaveNet’s architecture is the use of causal convolutions, which ensures that the model

respects the temporal order of the data. This is achieved by masking the future context in the

convolution operation, making sure the output at each time step only depends on the current

and previous inputs. This causal structure is essential for autoregressive models, as it preserves

the generative process’s sequential nature.

61

SampleRNN, introduced by Mehri et al. [64], is an unconditional end-to-end neural audio

generation model that builds on the autoregressive framework. It combines the strengths of

RNNs and feedforward models to generate raw audio waveforms efficiently. SampleRNN is a

hierarchical model that processes and generates audio at different time scales, allowing it to

capture both local and long-range dependencies in the audio signal. The architecture of Sam-

pleRNN consists of multiple tiers, with each tier corresponding to a specific temporal resolution.

The higher-level tiers capture long-term dependencies and global structures in the audio, while

the lower-level tiers model local and fine-grained dependencies. This design allows SampleRNN

to effectively represent the complex structures and patterns in music that span across vari-

ous temporal extents. Each tier in the SampleRNN architecture consists of a combination of

RNNs and autoregressive models. The RNNs are responsible for capturing dependencies across

coarser time scales, while the autoregressive models refine the generated audio by modeling the

dependencies at finer time scales. The use of autoregressive models, such as the 1D PixelRNN,

within the lower tiers of the hierarchy enables SampleRNN to generate high-quality, detailed

audio waveforms. The final output of the SampleRNN is a raw audio waveform generated at

the highest temporal resolution.

Compared to NADE, SampleRNN is more capable of modeling long-range dependencies

due to its hierarchical structure and the use of RNNs. The use of multiple time scales allows

SampleRNN to efficiently capture complex structures in music that span different temporal

extents. While NADE relies on a feedforward architecture, which can limit its capacity to

model long-term dependencies, SampleRNN’s recurrent structure provides a more suitable ar-

62

chitecture for capturing the dynamics of music. Compared to PixelRNN, SampleRNN shares

similarities in its use of RNNs for capturing long-range dependencies. However, the hierarchical

structure of SampleRNN differentiates it from PixelRNN, which employs a single level of tem-

poral resolution. This hierarchical approach allows SampleRNN to efficiently generate audio

by modeling dependencies at different time scales, providing a more scalable architecture for

audio generation. In contrast to WaveNet, SampleRNN uses a combination of recurrent and

autoregressive models instead of dilated causal convolutions. While WaveNet’s architecture

is designed to capture long-range dependencies with a relatively small number of parameters,

SampleRNN achieves this through its hierarchical structure. Both models have demonstrated

success in generating high-quality audio, but their architectural differences result in distinct

trade-offs in terms of computational efficiency and model complexity.

3.2.2 Text-to-Speech Synthesis

Several autoregressive models have primarily focused on the task of text-to-speech (TTS)

synthesis. However, their architectures and the techniques they introduced have also had an

impact on the field of deep music generation as they expand the possibilities of autoregressive

modeling.

Ping et al. [78] presents a fully convolutional TTS system that employs a sequence-to-

sequence architecture with attention mechanisms. The encoder consists of several convolu-

tional layers followed by a multi-head self-attention mechanism, transforming the input text

into a high-level representation. The decoder, also composed of convolutional layers and self-

attention, generates a mel spectrogram conditioned on the encoder’s output. A separately

63

trained WaveNet vocoder then converts the mel spectrogram into raw audio waveforms. This

fully convolutional architecture and the use of self-attention mechanisms can be adapted to mu-

sic generation tasks, providing a flexible framework for modeling complex relationships between

input and output sequences in an autoregressive setting.

Tacotron [108] uses an encoder-decoder architecture with attention mechanisms for end-to-

end speech synthesis. The encoder maps the input text to a high-level representation, which

is then passed to an attention-based decoder that generates a mel spectrogram. The mel

spectrogram is converted to a raw audio waveform using a separate WaveNet vocoder. This

attention-based encoder-decoder architecture can be adapted for music generation tasks, as it

provides a framework for learning complex relationships between input and output sequences.

Tacotron 2 [94] refines the original Tacotron architecture and incorporates a WaveNet-based

vocoder for generating raw audio directly from the predicted mel spectrogram. Improvements

include a modified attention mechanism, a more advanced pre-net for the decoder, and the use

of convolutional layers in the encoder. These enhancements result in higher-quality synthesized

speech and a more stable training process. The integration of a WaveNet vocoder in the

Tacotron 2 pipeline further highlights the versatility of autoregressive models in generating

high-quality audio across various domains, including music generation.

3.2.3 Recent Advances in Audio Synthesis

WaveRNN [46] combines the strengths of autoregressive modeling and RNNs to generate

raw audio waveforms efficiently. WaveRNN employs a Gated Recurrent Unit (GRU) with

a dual softmax layer to output two probability distributions at each time step, one for the

64

most significant bits and one for the least significant bits of the audio sample. This approach

allows for a more efficient sampling process compared to models like WaveNet, which requires

a large number of output channels. WaveRNN leverages a compact architecture, making it

more computationally efficient and easier to deploy on resource-constrained devices while still

maintaining high-quality audio generation capabilities.

MelNet [106] generates audio in the frequency domain by modeling the time-frequency

structure of spectrograms. MelNet utilizes a 2D autoregressive architecture with both horizontal

and vertical dependencies, allowing it to capture both temporal and spectral structures in the

audio. This approach differs from other autoregressive models like WaveNet and SampleRNN,

which operate directly on raw audio waveforms. By working in the frequency domain, MelNet

can more effectively learn the underlying patterns and structures in the audio data, potentially

leading to improved generative capabilities and a broader range of applications.

Seq-U-Net [98] introduces a model inspired by the WaveNet architecture, using a one-

dimensional causal U-Net for efficient sequence modeling. Seq-U-Net employs local and global

skip connections that allow it to capture long-range dependencies while reducing computational

complexity compared to WaveNet. This model demonstrates the potential for combining au-

toregressive modeling with U-Net architectures to improve efficiency in audio synthesis tasks.

Furthermore, Seq-U-Net incorporates dilated convolutions, enabling it to handle a large recep-

tive field without a significant increase in the number of parameters. This results in enhanced

computational efficiency, making Seq-U-Net suitable for real-time applications. By embracing

these innovations in autoregressive modeling and audio synthesis, the field of deep music gener-

65

ation can continue to evolve and create new possibilities for generating high-quality and diverse

musical outputs.

3.3 VAE Models

VAEs have emerged as a powerful technique in the field of deep music generation due to

their unique ability to work in low-dimensional spaces and their fast inference capabilities. By

encoding high-dimensional input data into a low-dimensional latent space, VAEs can effectively

compress the data, allowing for efficient manipulation of the latent representations. This com-

pression property is particularly valuable in the music and audio generation domain, where the

input data can be very high-dimensional and complex.

Furthermore, VAEs excel in representation learning [117; 7], enabling the discovery of mean-

ingful and interpretable structures within the data. Through the optimization of a lower bound

on the data likelihood, VAEs learn to encode and decode the data in a way that captures the

underlying distribution. This enables the generation of new samples with similar characteristics

to the training data, making VAEs particularly well-suited for generating diverse and coherent

musical structures. In the following sections, we discuss various VAE models and their impact

on deep music generation.

3.3.1 Vector-Quantized VAE

Vector-quantized VAEs have proven to be especially suited for music and audio generation

tasks, as they allow for the effective compression of high-dimensional data and enable the

generation of diverse and high-quality samples. In the work by Oord et al. [73], the authors

propose VQ-VAE, a VAE model that employs vector quantization in the bottleneck layer to

66

learn discrete latent representations. The VQ-VAE model consists of an encoder that maps the

input data to a continuous latent space, followed by a quantization step that discretizes the

continuous representation into a set of discrete latent codes. The decoder then reconstructs the

original data from the discrete codes. VQ-VAE has shown promise in generating diverse and

coherent samples, making it suitable for deep music generation tasks.

The VQ-VAE-2 model [84] builds upon the original VQ-VAE framework by employing a

hierarchical architecture. This hierarchical structure enables the model to capture multi-scale

dependencies in the input data more effectively. The VQ-VAE-2 consists of multiple levels

of VQ-VAE models, each capturing information at different resolutions. This hierarchical ap-

proach allows the model to create high-quality results while still maintaining the advantages

of discrete latent representations. Although the paper primarily focuses on image generation,

the hierarchical architecture can be applied to music generation, capturing various levels of

abstraction in the audio data.

In the study by Hadjeres and Crestel [29], the authors present VQ-CPC, a model that

combines the vector quantization technique from VQ-VAE with contrastive predictive coding

(CPC) to learn meaningful representations for template-based music generation. The VQ-

CPC model consists of an encoder and a discrete autoregressive model that predicts future

latent codes based on the current context. The encoder maps the input audio to a set of

discrete latent codes, while the autoregressive model learns to predict future codes, thus enabling

the generation of coherent musical structures. This combination of vector quantization and

contrastive predictive coding offers a powerful approach for deep music generation tasks.

67

Jukebox [13], a generative model for music, has significantly impacted the deep music gen-

eration field due to its impressive capabilities in generating high-quality and coherent music

samples across a wide range of genres and styles. Developed by OpenAI, Jukebox is based on

a hierarchical VQ-VAE architecture, which enables the model to effectively capture long-range

dependencies and multi-scale structures present in music. The Jukebox model consists of three

separate VQ-VAEs, each operating at a different level of the hierarchical architecture. The first

level downsamples the raw audio data, while the second level focuses on capturing mid-level

structures, such as musical phrases and local patterns. The third level captures the highest-

level abstractions, such as long-range dependencies and global structures in the music. These

hierarchical levels work together to enable the generation of music samples with a high degree

of coherence and quality.

A key aspect of the Jukebox model is its ability to condition the generation process on various

metadata, such as genre, artist, or even lyrics. This conditioning information is passed through

an embedding layer and combined with the latent codes at each level of the hierarchy. This

allows the model to generate music that is not only coherent but also customized according

to specific user preferences. To generate new music samples, Jukebox utilizes a top-down

approach, first generating high-level latent codes from the topmost VQ-VAE, then progressively

refining the generated audio through each lower level of the hierarchy. This approach allows

for the efficient generation of music samples while maintaining the high quality and diversity

characteristic of the VQ-VAE models.

68

3.3.2 Non-Vector-Quantized VAE

One notable model in the domain of non-vector-quantized VAEs for music and audio gener-

ation is RAVE [8]. RAVE is a VAE-based model that focuses on generating high-quality audio

samples efficiently. The model uses a customized architecture that leverages the strengths of

VAEs while addressing some of the limitations associated with generating high-quality audio.

In RAVE, the authors employ a convolutional VAE architecture with a masked autoencoder

for distribution estimation (MADE) [27] as the prior distribution for the latent codes. The

MADE prior allows the model to capture complex dependencies between latent dimensions,

leading to a more expressive latent space. This results in improved sample quality while still

maintaining the fast inference capabilities characteristic of VAE models. The architecture of

RAVE includes a hierarchical structure with several levels of encoding and decoding. At each

level, the model employs dilated convolutions, which allow it to capture long-range dependencies

in the input audio data. One key aspect of RAVE is its ability to generate audio samples in

parallel, which significantly speeds up the generation process. This is achieved by employing

a parallel WaveGAN [110] architecture in the final decoder stage, allowing for the efficient

generation of high-quality audio samples.

3.4 NFs Models

Normalizing flows (NFs) transform a simple distribution into a more complex one through a

series of invertible mappings. They provide several benefits for deep music and audio generation,

including exact likelihood computation, tractable inference, and efficient sampling. In this

69

section, we discuss influential normalizing flow models that have shaped the field of music and

audio generation.

RealNVP [15] serves as a foundational work in normalizing flows, introducing a series of

invertible transformations called affine coupling layers. These layers enable the efficient com-

putation of both forward and inverse mappings, paving the way for subsequent advancements

in the field.

Glow [50] extends the concepts of RealNVP by incorporating a new type of invertible trans-

formation, the invertible 1 ◊ 1 convolution. This addition further enhances the efficiency and

expressiveness of normalizing flows, allowing Glow to learn more intricate audio data distribu-

tions.

Latent Normalizing Flows for Discrete Sequences [119] explores the application of normal-

izing flows to discrete data, such as symbolic music representations. The authors propose a

method that uses normalizing flows in continuous latent space to learn latent-variable models

of discrete sequences. This approach enables the modeling of complex dependencies between

discrete variables while preserving the benefits of normalizing flows, such as efficient sampling

and exact likelihood computation.

Blow [93], a normalizing flow model specifically designed for raw-audio voice conversion

tasks, features a single-scale architecture that simplifies the overall structure and enables more

efficient training and inference. Blow employs hyperconditioning to condition the flow of auxil-

iary information, such as speaker identity or linguistic content, making it well-suited for audio

applications.

70

Argmax Flows [38], a recent work in the field, develops a framework for learning categorical

distributions using normalizing flows. The authors propose two methods: Argmax Flows, which

models the categorical distribution through a continuous relaxation, and Multinomial Diffusion,

which extends probabilistic diffusion models to categorical variables. These methods allow for

the modeling of complex categorical distributions while retaining the advantages of normalizing

flows, such as tractable inference and efficient sampling.

3.5 GAN Models

Generative Adversarial Networks (GANs) have demonstrated remarkable success in vari-

ous domains, including music and audio generation. In this subsection, we will discuss three

influential GAN models that have impacted the field of deep music generation.

WaveGAN [17] is an early attempt to apply GANs to raw waveform synthesis. The model

consists of a generator and a discriminator network trained in an adversarial fashion. WaveGAN

is capable of generating high-quality audio samples from random noise and has been used for

various tasks, including speech, music, and sound effect generation. Conditional WaveGAN

(cWaveGAN) [58] extends WaveGAN by conditioning the generation process on additional

input, such as a class label or metadata. This conditioning allows cWaveGAN to generate more

diverse and contextually relevant audio samples.

GANSynth [19] is another notable model that leverages GANs for audio synthesis. Unlike

WaveGAN, which operates directly on raw audio waveforms, GANSynth employs a spectral

representation of audio, specifically, the log magnitude of the STFT. This representation enables

the model to generate high-quality audio samples with improved frequency-domain control.

71

GANSynth utilizes a progressive growing training scheme, which allows it to generate samples

at various resolutions and achieve faster training convergence compared to traditional GAN

models.

MelGAN [56] is a GAN model specifically designed for conditional waveform synthesis. It

generates high-quality audio waveforms from mel-spectrogram features. MelGAN’s generator

consists of a stack of transposed convolutional layers followed by residual blocks, while the

discriminator uses a multi-scale architecture, enabling the model to capture both local and

global features of the generated audio. One of the main advantages of MelGAN is its highly

efficient inference, which is significantly faster than real-time on standard hardware.

Parallel WaveGAN [110] builds upon the success of WaveGAN and improves its architecture

further. It employs a multi-resolution spectrogram loss during training, which helps the model

generate high-fidelity waveforms. The generator architecture in Parallel WaveGAN is based

on the WaveNet [71] model, while the discriminator utilizes a multi-scale design similar to

MelGAN. By leveraging the strengths of both MelGAN and WaveNet, Parallel WaveGAN

achieves superior audio quality and faster inference compared to previous models.

StyleGAN [47; 48] is a groundbreaking GAN architecture that introduces a novel style-

based generator design. Although originally proposed for image synthesis, StyleGAN has been

adapted to generate high-quality audio samples as well. The key innovation in StyleGAN is

the introduction of adaptive instance normalization (AdaIN) layers, which allow the model to

control the style and content of the generated samples separately.

72

HiFi-GAN [52] is a generative adversarial network specifically designed for efficient and

high-fidelity speech synthesis. It builds upon the successes of MelGAN and Parallel WaveGAN,

incorporating lessons learned from these models to achieve superior audio quality. The generator

architecture of HiFi-GAN is based on hierarchical multi-scale residual networks, while the

discriminator uses a multi-scale design. During training, the model employs a combination

of adversarial, feature-matching, and perceptual losses to guide the generation process. HiFi-

GAN++ [2] extends HiFi-GAN to address bandwidth extension and speech enhancement tasks.

The main contribution of HiFi-GAN++ is a novel generator architecture that incorporates

additional modules: SpectralUnet for spectral preprocessing, WaveUNet as a convolutional

encoder-decoder network, and SpectralMaskNet for learnable spectral masking.

Lastly, Musika [75] introduces a rapid music generation system that can be trained effi-

ciently on extensive music datasets and enables faster-than-real-time generation of arbitrary-

length music on consumer-grade hardware. The system employs adversarial autoencoders to

learn a compact, invertible representation of spectrograms, and a GAN is subsequently trained

on this representation for specific music domains. A latent coordinate system allows for the

parallel generation of long music sequences, while a global context vector ensures stylistic co-

herence throughout the generated music. Musika supports both unconditional and conditional

generation and accommodates various conditioning signals, such as note density and tempo

information.

73

3.6 Transformer Models

In recent years, Transformer models have revolutionized deep learning by delivering powerful

sequence-to-sequence modeling capabilities with efficient attention mechanisms [107]. Their

prowess in capturing long-range dependencies and generating coherent sequences has enabled

their use in various domains, including music and audio generation. In this section, we delve into

some groundbreaking Transformer-based models that have significantly advanced deep music

generation.

A notable model designed explicitly for music generation tasks is the Music Transformer

[39]. By building on the original Transformer architecture and incorporating the concept of

relative positional encoding, it captures the structure of music more effectively. The Music

Transformer surpasses the limitations of earlier models, such as RNNs, by generating coherent

and expressive music with a longer-term structure. The model’s impressive capabilities include

creating complex pieces of music, featuring polyphonic compositions with multiple voices and

intricate rhythmic patterns.

Shuffle-Exchange Networks [25] offer an innovative approach to sequence processing. By

combining the powerful attention mechanism of Transformers with greater computational effi-

ciency, the Shuffle-Exchange Network (SEN) optimizes input sequence rearrangements to per-

form sequence-to-sequence tasks in O(n logn) time, compared to the O(n2) complexity of a

standard Transformer.

74

3.6.1 Applications in Audio Generation

FastSpeech [87] is a text-to-speech model that builds upon the Transformer architecture.

Instead of using an autoregressive model, FastSpeech employs a non-autoregressive approach,

which enables faster and more robust speech synthesis. The key innovation of FastSpeech is the

introduction of a duration predictor, which predicts the length of the generated mel-spectrogram

frames. This allows the model to generate speech with fine-grained control over prosody and

naturalness.

FastSpeech 2 [86] is an extension of the original FastSpeech model, which further improves

the quality and controllability of the synthesized speech. FastSpeech 2 introduces a variance

adaptor, which predicts the pitch, energy, and duration of the generated speech, allowing for bet-

ter control over prosody and expressiveness. This model also employs a knowledge distillation

approach to transfer the autoregressive teacher model’s knowledge to the non-autoregressive

student model, leading to improved performance.

AudioGen [54] is a model for generating audio guided by text, addressing the difficulty

of producing high-quality audio samples based on descriptive text captions. The model is

comprised of two primary phases: the initial phase encodes raw audio into a discrete series of

tokens by employing a neural audio compression model. This audio representation generates

high-quality audio samples while maintaining a compact representation. The subsequent stage

incorporates the use of an autoregressive Transformer-decoder language model. This model

functions by working on the discrete audio tokens that have been derived from the initial

phase, conditioning these tokens based on the provided textual inputs. The text is represented

75

using a separate pre-trained text encoder model, specifically T5 [82], enabling the model to

generalize to text concepts that may not be present in the current text-audio datasets.

Compared to existing text-to-audio works, AudioGen generates samples with better objec-

tive and subjective metrics, resulting in more natural-sounding audio compositions not seen

in the training data. The authors also demonstrate the model’s ability to extend to audio

continuation, both conditionally and unconditionally. This innovative approach to textually

guided audio generation has the potential to impact deep music generation tasks by enabling

the creation of complex and diverse audio samples conditioned on textual descriptions.

3.7 Diffusion Models

Diffusion models have rapidly evolved into a highly promising technique in deep genera-

tive modeling, establishing themselves as the state-of-the-art approach in various tasks [14].

Although primarily popular in the realm of image generation, the architectural innovations in-

troduced by diffusion models can be readily adapted and applied to audio and music generation

fields.

A critical development in diffusion models involves fusing diffusion-based techniques with

transformer architectures. This hybrid approach combines the strengths of both paradigms,

offering a flexible and powerful framework for generative modeling. These state-of-the-art

models deliver high-quality results while maintaining a high level of control over the generative

process, making them particularly attractive for applications in music generation.

The success of diffusion models in image generation has opened the door for their application

to audio generation. These models have already demonstrated their potential by producing

76

high-quality results, surpassing the performance of other architectures in the field. Additionally,

diffusion models for audio generation boast faster generation speeds compared to autoregressive

approaches, addressing one of the longstanding challenges in the field.

In this master’s thesis, we use diffusion models as the foundation for our implementation.

We will conduct a thorough investigation of various diffusion model architectures specifically

designed for audio generation, examining their distinct characteristics and evaluating their

impact on the deep music generation domain. Throughout our analysis, we will assess the

strengths and weaknesses of these models and explore their potential to drive future innovations

in the field of deep music generation.

3.7.1 Image Generation

With the introduction of improved Denoising Diffusion Probabilistic Models (iDDPM) [70],

the authors significantly reduced the number of diffusion steps while enhancing the sample

quality. This achievement is attributed to several modifications to the original DDPM archi-

tecture. The authors focus on learning the reverse process variances by altering the learning

objective of the original DDPM. Furthermore, they propose a new cosine noise scheduler that

yields improved results compared to the original linear noise scheduler [35].

Cascaded Diffusion Models (CDMs) [36] enable the generation of high-fidelity images in

a sequential manner. A CDM includes multiple diffusion models operating sequentially, each

responsible for generating images with progressively higher resolution. The pipeline initiates

with a base diffusion model that generates the coarsest, or lowest-resolution image. This image

then undergoes one or more stages of super-resolution diffusion models. These models upscale

77

the image and incrementally introduce finer details. The efficacy of this cascading sequence

is heavily reliant on conditioning augmentation. To this end, the authors introduce a novel

technique for enhancing the lower-resolution inputs that condition the super-resolution models.

The key innovation in CDMs is the conditioning augmentation for super-resolution models,

which is crucial for achieving high sample fidelity.

Denoising Diffusion Implicit Models (DDIMs) [96], in comparison to their counterparts, are

viewed as a superior and more productive variant of iterative implicit probabilistic models that

follow the same training methodology as DDPMs. The generative process in DDPMs is framed

as the inverse of a particular Markovian diffusion process. To enhance DDPMs, the researchers

introduced a variety of non-Markovian diffusion processes which maintain the same training

target. These non-Markovian processes might represent deterministic generative processes.

This leads to the creation of implicit models that can produce superior quality samples at an

impressively increased speed.

Diffusion Autoencoders (DAEs) [79] utilize DDPMs for representation learning, aiming to

achieve an interpretable and decodable image representation via autoencoding. This strategy

includes using a trainable encoder to recognize high-level semantics and employing a DDPM as

the decoder to manage remaining stochastic variations. The DAE transforms images into a dual-

component latent code. The first component holds semantic importance and exhibits linearity,

while the second component captures stochastic, or random, details, thereby enabling accurate

reconstructions. This method accommodates advanced applications like altering attributes in

78

actual images, amplifies the efficiency of noise reduction, and simplifies numerous subsequent

tasks, such as few-shot conditional sampling.

Latent diffusion models (LDMs) [88] were developed to maintain the quality and adaptabil-

ity of Denoising Diffusion Probabilistic Models (DDPMs) while addressing the constraints of

limited computational resources. By applying DDPMs within the latent space of pre-trained

autoencoders, LDMs strike an optimal balance between reducing complexity and preserving de-

tail, significantly enhancing visual fidelity. Incorporating cross-attention layers into the LDM

architecture allows for generating various conditioning inputs, such as text or bounding boxes,

enabling high-resolution synthesis through a convolutional approach. LDMs demonstrate su-

perior scalability when dealing with high-dimensional data, resulting in more accurate and

detailed reconstructions. Moreover, LDMs feature a versatile conditioning mechanism based on

cross-attention, which supports multi-modal training and various applications, including class-

conditional, text-to-image, and layout-to-image models.

Distillation. The distillation process for diffusion models aims to reduce the number of

timesteps required during generation without compromising the quality of the generated sam-

ples. This process is particularly important for improving the efficiency of diffusion models in

both the training and inference phases.

Salimans et al. [90] introduce a novel parameterization for diffusion models, which enhances

their stability when using fewer sampling steps. In addition, the authors propose a method for

distilling a trained deterministic diffusion sampler that requires fewer sampling steps. This

process, called progressive distillation, is applied iteratively, halving the number of required

79

sampling steps at each iteration while maintaining high sample quality. The proposed approach

significantly reduces the sampling time of diffusion models for both unconditional and class-

conditional image generation. The progressive distillation procedure is also efficient in terms

of computational resources, as its total runtime is comparable to that of training the original

model.

Meng et al. [65] address the computational expense of classifier-free guided diffusion models

during inference. The authors propose a two-stage distillation approach to improve the sampling

efficiency of these models. In the first stage, a single student model is introduced to match the

combined output of the teacher’s conditional and unconditional models. In the second stage, the

student model is progressively distilled into a model that requires fewer sampling steps, using

the method introduced by Salimans and Ho in [90]. The distilled model is capable of handling

various guidance strengths and efficiently balancing sample quality and diversity. The proposed

distillation framework is applicable to both pixel-space and latent-space diffusion models trained

on autoencoders. The distilled models are demonstrated to generate high-quality results using

as few as 2-4 denoising steps in text-guided image editing and inpainting tasks.

Song et al. [97] introduced a novel family of generative models called Consistency Models

(CMs) designed to overcome the slow sampling speed of diffusion models, which has limited

their potential for real-time applications. Consistency models achieve high sample quality

without adversarial training and are capable of fast one-step generation. Additionally, they

enable a few-step sampling for trading to compute resources for improved sample quality, and

80

they support zero-shot data editing tasks, such as image inpainting, colorization, and super-

resolution, without explicit training.

Consistency models can be trained either as a method to distill pre-trained diffusion models

or as standalone generative models. These models build upon the probability flow (PF) ordinary

differential equation (ODE) found in continuous-time diffusion models, and they learn to map

any point at any timestep to the trajectory’s starting point. This self-consistency property

enables the generation of data samples through a single network evaluation.

The authors propose two training methods for consistency models, both based on enforcing

the self-consistency property. The first method employs numerical ODE solvers and a pre-

trained diffusion model to generate pairs of adjacent points on a PF ODE trajectory. By

minimizing the difference between model outputs for these pairs, a diffusion model can be

effectively distilled into a consistency model for high-quality, one-step sample generation. The

second method, however, does not require a pre-trained diffusion model and trains a consistency

model independently. This positions consistency models as a separate family of generative

models.

3.7.2 Audio Generation

Diffusion models have unlocked new potential in generating high-fidelity audio samples,

rivaling traditional generative methods. However, their iterative nature often leads to slow

sampling speeds, limiting their use in real-time applications. As a result, recent research has

focused on improving the efficiency of diffusion models for audio generation by reducing infer-

ence time, thus expanding their potential use cases.

81

WaveGrad [9], an early application of diffusion models in audio generation, is a conditional

model for waveform generation that estimates data density gradients. WaveGrad, which ex-

pands on previous developments in score matching and diffusion probabilistic models, begins

with a Gaussian white noise signal that is progressively refined using a gradient-based sampler

conditioned on the mel-spectrogram. This method provides a balanced compromise between the

speed of inference and the quality of the sample, achieved by adjusting the count of refinement

steps. Consequently, this effectively mediates the quality disparity between non-autoregressive

and autoregressive models in the realm of audio. Notably, WaveGrad can generate high-quality

audio samples in as few as six iterations, expanding the possibilities for applications in audio

generation.

DiffWave [53] is a flexible diffusion probabilistic model designed for both conditional and

unconditional waveform generation. It effectively converts white noise signals into structured

waveforms through a constant-step Markov chain during the synthesis process. By adopting a

feed-forward and bidirectional dilated convolution architecture inspired by WaveNet, DiffWave

accomplishes high-quality speech synthesis while considerably cutting down on synthesis time.

Its versatility allows for the creation of high-quality audio signals in both conditional and

unconditional waveform generation tasks, demonstrating superior performance to WaveGAN

and WaveNet in terms of audio quality and sample diversity.

FastDiff [42] is a rapid conditional diffusion model, specifically designed with speech syn-

thesis in mind. It leverages time-aware, location-dependent convolutions, featuring a range of

receptive field designs to effectively model long-duration temporal dependencies under adapt-

82

able circumstances. In addition, FastDiff incorporates a noise schedule predictor, enabling a

reduction in sampling steps whilst maintaining high-quality generation. When deployed in

an end-to-end text-to-speech synthesis system known as FastDiff-TTS, the model is able to

generate superior speech waveforms, negating the need for intermediary features such as Mel-

spectrograms. FastDiff sets a new standard in speech quality and offers a sampling speed that’s

58 times quicker than real-time on a V100 GPU, marking the first time diffusion models have

been practically viable for speech synthesis deployment.

Diffsound [111], an innovative text-to-audio generation model, comprises four main compo-

nents: a text encoder, a VQ-VAE, a decoder, and a vocoder. The authors focus on designing

an effective non-autoregressive decoder based on a discrete diffusion model. Diffsound pre-

dicts all mel-spectrogram tokens in one step and refines them in the next, ultimately obtaining

the best-predicted results after several steps. By using contextual information from all to-

kens and revising any token in each step, Diffsound effectively avoids the unidirectional bias

and accumulated prediction error problems associated with traditional autoregressive decoders.

Experiments show that Diffsound not only achieves better text-to-sound generation results but

also exhibits a generation speed five times faster than the autoregressive decoder.

Msanii [62] is a novel diffusion-based model for efficiently synthesizing long-context, high-

fidelity music. Combining the expressiveness of mel spectrograms with a novel U-Net architec-

ture and diffusion models, Msanii can synthesize high-quality music samples at a high sample

rate without relying on concatenative synthesis, cascading architectures, or compression tech-

niques. This approach represents a significant advance in the music synthesis field, as it gener-

83

ates long samples of high-quality music. Additionally, Msanii can be used to solve other audio

tasks, such as audio inpainting and style transfer, without requiring retraining. This represents

the pioneering effort to effectively utilize a diffusion-based model for generating extended music

samples at high sample rates.

Riffusion [63], created as a hobby project, fine-tunes the Stable Diffusion AI model to

generate images of spectrograms, which are then converted to audio clips. To generate infinite

AI-generated jams, the creators pick one initial image and generate variations of it using image-

to-image generation with different seeds and prompts. They create initial images that are an

exact number of measures and then smoothly interpolate between prompts and seeds in the

latent space of the model to produce smooth transitions between clips. By interpolating the

latent space, the in-between points still sound like plausible clips, offering more interesting

results than interpolating the raw audio. This approach allows for diverse and unique riffs and

motifs to emerge during the interpolation process.

Moûsai [91; 92] is a text-conditional cascading diffusion model developed for text-conditional

music generation. It employs a bespoke two-stage cascading diffusion technique that compresses

the audio waveform using an innovative diffusion autoencoder. It then learns to create con-

densed latent representations conditioned on the text embedding produced by a pre-trained

language model. The model utilizes an efficient 1D U-Net architecture for both cascade stages,

which facilitates real-time audio generation on a single consumer-grade GPU. Moûsai allows

for the generation of long-context 48kHz stereo music that extends beyond a minute based on

context, while still maintaining a reasonable inference speed.

84

ERNIE-Music [118] can generate text-to-waveform music that can receive arbitrary texts

using diffusion models. It incorporates free-form textual prompts as conditions to guide the

waveform generation process. To address the lack of large parallel text-to-music datasets, the

model collects data from the Internet using a comment voting mechanism. ERNNIE-Music

applies conditional diffusion models to process musical waveforms and studies the impact of

different text formats on learning text-music relevance. The generated music samples rival

related works in terms of diversity, quality, and text-music relevance.

In parallel with Moûsai and ERNIE-Music, Noise2Music [41] introduces a novel approach

presenting an innovative text-driven music generation technique using a series of cascading

diffusion models. This architecture involves a generator model responsible for creating an

intermediate representation based on text prompts and a cascader model that produces high-

quality audio using the intermediate representation and the text prompts when applicable. Two

alternative intermediate representations are explored: a log-mel spectrogram and a lower-fidelity

3.2kHz waveform. The diffusion models utilize 1D U-Nets to learn noise vectors and incorporate

pre-trained language models to derive text embeddings. The proposed method successfully

generates 30-second, high-quality, 24kHz music samples that capture essential text prompt

characteristics, such as genre, tempo, instruments, mood, and era, while also encompassing fine-

grained semantic details. Furthermore, Noise2Music contributes to developing the MuLaMCap

dataset, comprising 400K music-text pairs, which is anticipated to benefit future research in

music captioning, retrieval, and generation.

85

3.8 Multimodal Embedding Models

Multimodal embeddings have given rise to an array of models that capitalize on the fusion of

different modalities, creating novel samples by encoding cross-modal information into a compact

representation. This results in a more expressive and holistic representation of data. In this

section, we delve deeper into the state-of-the-art models that employ multimodal embeddings

for guided generation, focusing on CLIP, AudioLDM, and MusicLM.

CLIP (Contrastive Language-Image Pretraining) [80] represents a breakthrough in learning

transferable visual representations, as it takes advantage of the multimodal nature of data.

The model is built upon a dual-encoder architecture comprising a vision transformer [74] and

a transformer-based language model [107]. CLIP’s primary goal is to jointly learn a shared

embedding space for images and text, which allows for the alignment of semantic content

across both modalities. This alignment enables the generation of images that are semantically

consistent with the given text prompts, paving the way for techniques such as StyleCLIP [77] and

DALLE-2 [83]. These methods demonstrate the potential of CLIP’s multimodal embeddings in

guiding generative models for various image generation and manipulation tasks.

Moving to the audio domain, AudioLDM [60] is a state-of-the-art model for text-to-audio

generation that generates high-quality audio from textual descriptions. The architecture of

AudioLDM revolves around a mel-spectrogram-based VAE to learn continuous latent represen-

tations of audio signals. A latent model conditioned on contrastive language-audio pretraining

(CLAP) embeddings is employed to enable the generation of semantically coherent audio based

on the given textual prompt. The key factor contributing to AudioLDM’s success is its use of the

86

audio-text-aligned embedding space (CLAP embeddings). This allows the model to be trained

with audio data alone, resulting in a high-quality and computationally efficient text-to-audio

generation system.

Lastly, MusicLM [1] stands as a state-of-the-art model for producing high-quality music

based on textual descriptions. This model employs a hierarchical sequence-to-sequence archi-

tecture, building upon AudioLM’s [5] multi-stage autoregressive modeling and extending it with

text conditioning. A crucial component of MusicLM is the integration of SoundStream audio

embeddings [115] and MuLan embeddings, which are joint music-text embeddings that enable

the generation of music consistent with a text prompt without the need for captions during

training. Originating from the MuLan model [40], MuLan embeddings project both music and

its corresponding text description into a shared embedding space, enabling MusicLM to gener-

ate music based on the text input during inference. These embeddings share similarities with

CLIP embeddings in that they both utilize multimodal information for generating content;

however, while CLIP focuses on images and text, MuLan embeddings encompass music and

text.

The use of multimodal embeddings, such as CLIP, CLAP, and MuLan, demonstrates the

effectiveness of leveraging cross-modal information for various generation tasks, including image,

audio, and music generation. These models exemplify how the fusion of modalities can lead

to more expressive and versatile generative models, paving the way for future research in the

realm of multimodal data representation and generation.

CHAPTER 4

AINUR

In this chapter, we delve into Ainur1, an innovative model designed to enhance the quality

of vocals in raw-generated music. Ainur leverages a hierarchical diffusion model architecture

combined with Contrastive Lyrics-Audio Spectrogram Pre-training (CLASP) embeddings to

guide the prior generation and improve the vocal quality. Utilizing both textual descriptions

and lyrics as conditioning inputs, Ainur stands out with its remarkable capabilities in text-to-

music and lyrics-to-music generation tasks, offering performance levels that are on par with the

current state-of-the-art models in the field. Ainur’s most distinguishing feature is its ability to

achieve these impressive results with near real-time inference speeds. This propels it leagues

ahead of other leading models like Jukebox [13] and MusicLM [1], outpacing them by orders

of magnitude in terms of efficiency. This balance of speed and quality makes Ainur a notable

contribution to the field of music generation.

The textual descriptions encompass essential metadata of a song, such as genre, similar

artists, and progression sequence within a piece (e.g., part 2 of 4). On the other hand, the

lyrics consist of text fragments aligned with the words uttered during specific time spans in

the song. Thanks to the contrastive lyrics-audio pre-training, the lyrics’ representations are

1The name “Ainur” is inspired by J.R.R. Tolkien’s The Silmarillion, in which the Ainur are divine
spirits responsible for creating the world through their music. This creation story is known as the
“Ainulindalë,” meaning “The Music of the Ainur” in Tolkien’s Elvish language.

87

88

harmoniously aligned with the audio, enabling Ainur to generate music from music input with

coherent lyrics.

Remarkably, Ainur can generate up to 22 seconds of high-quality 48,000 kHz stereo audio

in almost real-time, offering an excellent balance between quality and generation time. To put

this into perspective, the MusicLM model takes a whopping 153.1 seconds just to generate

5 seconds of audio. In stark contrast, Ainur comfortably creates 22 seconds of music in a

mere 5.8 seconds, not only performing faster but also delivering comparable, if not superior,

audio quality. This impressive performance underscores Ainur’s potential for real-time, high-

quality music generation. In the following sections, we will comprehensively explore Ainur’s

architecture, shedding light on its modules and workflow to provide an in-depth understanding

of the model’s capabilities and inner workings.

4.1 Architecture

The Ainur architecture, as depicted in Figure 12, draws inspiration from state-of-the-art

models and novel architectures in both image and audio generation fields. The motivation for

enhancing vocal generation and addressing the challenging task of lyrics-to-audio generation

comes from Jukebox [13]. To the best of our knowledge, Jukebox is the only work that tackles

this specific task, which presents unique challenges compared to the text-to-audio task.

A key contribution of Ainur is the incorporation of CLASP embeddings during training

to guide the generation process. These embeddings are conceptually related to CLIP [80]

embeddings and serve as an adaptation of CLAP embeddings [60] in the context of lyrics and

music data. CLASP embeddings extend the potential of contrastive pre-training approaches to

89

x

ES

ET EL EA

z

wT wL wA

x0

z0

x1 xT

z1 zT z̃

x̃

CLASP

Figure 12: An illustrated overview of Ainur’s architecture, showcasing its three hierarchical
layers. From top to bottom: (1) input encoders and CLASP embeddings for textual and audio
data; (2) a diffusion prior module guided with text embeddings and audio CLASP embeddings;
and (3) a diffusion autoencoder conditioned on the generated prior for synthesizing the output.
The blue kite symbol represents the cross-attention operation; blue triangles signify the
conditioning of the diffusion process via latent injection.

align multimodal representations, resulting in versatile and robust representations capable of

conveying coherent and structured information from both modalities.

Ainur’s hierarchical structure and its strategy of leveraging different modalities and repre-

sentations to guide the diffusion process are inspired by the DALLE 2 paper [83]. Like DALLE

2, Ainur performs contrastive pre-training to align representations and maximize their similar-

ity. It then carries out diffusion prior training, followed by training a decoder to produce the

output image. In Ainur, the final stage decoder is replaced by a diffusion autoencoder guided

by the prior generated in the second stage.

90

Furthermore, Ainur’s model and architecture are significantly influenced by the Moûsai

model [92] for music generation. We rely on several libraries and pre-trained models provided

by the authors in the ArchiSound repository1 [91]. Like Moûsai, Ainur employs latent diffusion

[88] and diffusion autoencoder [79] to model and learn the underlying structure of audio data

in a more compact space while using cross attention to guide the generation with multimodal

inputs. Unlike Moûsai, which uses a frozen pre-trained encoder for encoding textual descrip-

tions, Ainur performs contrastive pre-training on lyrics-audio samples to align the encoders,

producing similar latent representations. In terms of audio representation, while Moûsai uses

amplitude spectrogram, Ainur adopts Mel-spectrogram representations. For the textual de-

scription embedding, Ainur utilizes the same pre-trained T5 transformer [82] employed by the

Moûsai model.

4.1.1 Three-Stage Architecture

Ainur architecture employs a three-stage hierarchical model, which loosely resembles the

structure of a hierarchical Variational Autoencoder (VAE) [105]. This hierarchical approach

allows Ainur to effectively manage and generate the high-dimensional audio signal by relying

on a series of increasingly higher-dimensional representations.

At each stage of the hierarchy, Ainur focuses on different levels of abstraction and granularity

in the data, allowing the model to capture both global and local structures within the audio

1The Archinet GitHub account hosts a collection of invaluable libraries that have significantly con-
tributed to the development of this project. Throughout our work, we have extensively utilized the repos-
itories audio-diffusion-pytorch and a-unet, as well as the pre-trained models available in the archisound
repository.

https://github.com/archinetai/

91

signal. The hierarchical framework provides a strong foundation for Ainur’s architecture, as

it is known for its ability to encode smaller priors and then decode them in a sequential and

hierarchical manner.

1. The first stage of Ainur’s hierarchical model involves generating a high-level, compact rep-

resentation of the input data using pre-trained encoders. This stage focuses on capturing

the global structure and contextual information present in the data.

2. In the second stage, the model utilizes these compact representations to generate interme-

diate representations with higher dimensions. These intermediate representations provide

a richer and more detailed description of the data, enabling the model to incorporate

more specific information about the content and structure of the generated music.

3. Finally, in the third stage, the model uses the intermediate representations to guide the

generation of the high-dimensional audio signal. At this point, the model is capable of

capturing the fine-grained details and nuances of the audio signal, resulting in a high-

quality and coherent output.

The hierarchical design of Ainur offers several advantages, including improved interpretability,

scalability, and modularity. By dividing the generative process into distinct stages, Ainur can

focus on different aspects of the data at each level of the hierarchy, allowing the model to

generate high-quality and coherent audio signals while maintaining computational efficiency.

Furthermore, this hierarchical structure enables the architecture to be easily adapted or ex-

92

tended for different downstream tasks and performance improvements, providing a versatile

framework for audio generation.

4.1.2 Hierarchical Model

As depicted in Figure 12, Ainur is designed with a sequential hierarchical structure that

progresses from low-dimensional embeddings. These embeddings guide the latent prior gener-

ation through cross-attention and latent injection, which is then incorporated into the layers

of the U-Net responsible for modeling the reverse diffusion process within the diffusion autoen-

coder. In the following sections, we will delve deeper into each architecture layer, providing a

comprehensive understanding of the individual components. We will specifically highlight the

multimodal nature of the inputs and discuss how the resulting output representations effectively

convey the relevant information.

4.1.2.1 Lyrics-Audio Pre-Training

Lyrics and audio data inherently possess distinct characteristics, leading to notably different

digital representations. On the one hand, lyrics manifest as a form of natural language that

evolves over time, typically lacking explicit temporal information. They are often organized into

sentences and paragraphs that correspond with the temporal progression of a song. In the case

of synced-lyrics, however, temporal information is encoded as metadata or natural language,

providing a richer representation of the song’s structure [13].

On the other hand, audio data, specifically music, is the result of quantizing and sampling

continuous information. This data is usually represented as high-quality raw audio or lossless

compressed data (such as MP3). Music data exhibits a much higher dimensionality than natu-

93

Lyrics Audio

L x

STFT(x)

EL EA

wL wA
CLASP

Figure 13: Close-up of the CLASP process. Audio data is first transformed into Mel-
spectrograms, and then both spectrograms and lyrics are separately encoded into embeddings.
These embeddings are compared, and the encoders are optimized to generate embeddings that
maximize the relative similarity between the two distinct representations.

ral language and is inherently non-discrete. This discrepancy makes it challenging to align the

representations of text and audio directly. However, by leveraging the low-dimensional repre-

sentations of encoded text and audio, these two modalities can acquire a more similar nature,

enabling the optimization of encoders to produce closely related latent representations.

In order to effectively manage both audio and text inputs, we rely on a multimodal model

that is proficient at handling these different types of data simultaneously. CLIP [80] is a method

that applies contrastive learning between images and natural language in order to enhance the

correspondence between information related to an image and the image itself. This is achieved

94

by optimizing the encoders to produce (text, image) tuple embeddings with the highest scaled

pairwise cosine similarity when compared to all other non-corresponding pairs of text and

images within the same data batch. Following this concept, CLAP [60] aligns natural language

and audio by first transforming the audio into a 2D representation using the STFT and then

applying the same idea as CLIP.

Building on this foundation, CLASP embeddings are representations of lyrics and audio

spectrograms that work to enforce the similarity between (lyrics, audio) tuples. Input lyrics,

which are synced with the audio, embed temporal information in the form of natural language.

These lyrics are preprocessed and cropped to align with the corresponding audio fragment.

Consequently, CLASP embeddings inherently encode the temporal information associated with

lyrics data as well as the ordinal information of the sequence of textual tokens embedded in the

transformer encoder through positional embeddings [107].

As depicted in Figure 13, the spectrogram encoder in CLASP is a simple vision transformer

[18] and a causal language model to get the text features. Rather than training from scratch,

CLASP leverages transfer learning by using the CLIP checkpoint as a baseline for training.

When fine-tuned on the data in the form (lyrics, spectrograms), CLASP effectively generates

coherent vocals-lyrics embeddings from both audio and lyrics, illustrating its versatility and

effectiveness in handling such complex data representations.

4.1.2.2 Diffusion Prior

CLASP embeddings play a crucial role in guiding the generation of coherent lyrics in music.

In addition to providing structural guidance for the content of the generated music, natural

95

CLASP Embedding

wL

Text Embedding

wT

x

Audio

S

Mel-Spectrogram

ES zz "

Noise Diffusion U-Net

z̃

Figure 14: Close-up of the prior diffusion process. The audio x is first transformed into Mel-
spectrograms and then encoded into a latent variable z. The diffusion process is guided by
the textual description and the CLASP embedding through cross-attention and latent injection
operations during the reverse diffusion stage.

language descriptions are utilized to supply extra information that helps steer the synthesis

of music. This textual input is similar to that used in text-to-music generation, where it can

express the genre or style of the song, the groups and artists that the generated piece resembles,

and the temporal descriptors of the song’s progression. A pre-trained, frozen T5 encoder is

employed to encode the text description, and cross-attention is performed with the resulting

embedding to guide the generation toward a specific style and part of the track. Additionally,

CLASP embeddings are injected into the layers of the diffusion U-Net to provide structured

multimodal information of audio and lyrics to condition the generation of music.

Following the approach in [88], cross-attention is not performed in the high-dimensional

audio space but rather in the latent space of an autoencoder, as depicted in the close-up view

in Figure 14. This prior represents a compressed version of the original audio sample. To

96

NoiseAudio

x " x̃

Generated AudioDiffusion U-Net

z̃

Prior

Figure 15: Close-up of the diffusion autoencoder. By incorporating the previously generated
latent variable x̃ into the U-Net architecture, the decoding process is able to reverse the noise
and generate a new audio sample x̃.

achieve this, the audio sample is first transformed into a frequency-time representation using

the STFT and then mapped onto the Mel scale for a more perceptually accurate representation.

Subsequently, the spectrogram is further compressed using a simple 1D U-Net encoder [91]. The

resulting latent serves as the central element in the latent diffusion process with cross-attention

and latent injection guidance.

Learning to generate this low-dimensional prior is essential for real-time generation of high-

quality audio and effectively allows the guidance of the generation process using the attention

mechanism. This would be infeasible in a high-dimensional environment, thus making the

compression and guidance of the latent space a pivotal aspect of the Ainur architecture.

97

4.1.2.3 Diffusion Autoencoder

The final layer of the Ainur architecture features a diffusion autoencoder capable of gener-

ating high-quality 48,000 kHz stereo audio (Figure 15). The ability to directly model such a

high-dimensional signal is attributed to two key aspects of this architecture:

1. The U-Net is utilized for modeling the reverse diffusion process, which has a unique archi-

tecture that performs 1D convolution operations. This enables the network to significantly

speed up the downsampling and upsampling operations, resulting in a considerable overall

acceleration of the process.

2. The prior, generated in the previous stage, is injected into the layers of the U-Net and

concatenated with the noise of the reverse denoising process. This enables the network

to function as an autoencoder, with the generation process being aided instead of relying

solely on pure noise for generation.

These features allow the Diffusion Autoencoder (DAE) to handle high-dimensional data

while maintaining close-to-real-time generation performance. Injecting the prior during the

denoising process enables the model to act as both a decoder and a vocoder [92].

Ainur employs a pre-trained DAE from the ArchiSound [91] library. This model has 86

million parameters and can compress the input signal into a latent representation with a 32x

compression rate. Consequently, the prior size becomes manageable, making it feasible to ef-

fectively incorporate useful information while not being overly compressed, complicating the

diffusion process, as suggested in [88]. In [92], the authors discovered that satisfactory results

98

in audio latent diffusion can be achieved with compression factors up to 64x. As such, we deter-

mined that a 32x compression factor offers a good balance between reducing data dimensionality

and retaining a reasonably uncompressed data representation.

4.1.3 Encoders

Ainur utilizes a variety of encoders to create compact and more manageable representations

of data. Each encoder serves a unique purpose within the Ainur ecosystem. The CLASP

representation learning forms a crucial component of Ainur, and the encoders employed play a

vital role throughout the entire architecture. In this section, we will delve into the details of the

encoder architectures used and discuss how these encoders contribute significantly to Ainur’s

overall functionality.

4.1.3.1 Text Transformer

CLASP, which is fine-tuned on CLIP, employs the same text encoder architecture as pre-

sented in the original CLIP paper. This text encoder is a powerful masked self-attention Trans-

former designed to handle natural language processing tasks effectively [107]. The architecture

of the Transformer model consists of several layers that are identical in structure, each incorpo-

rating a multi-head self-attention mechanism, which is then followed by feed-forward networks

that are fully connected and position-aware. This multi-head self-attention mechanism enables

the model to focus on different parts of the input text, making it highly efficient at capturing

long-range dependencies and contextual information.

To process input text sequences in CLIP, the text encoder first converts the text into token

embeddings. These token embeddings are then combined with positional embeddings, allowing

99

the model to incorporate the position of each token within the sequence. The combined embed-

dings are fed into the Transformer layers, which learn to encode the input text into a high-level

representation that captures both semantic and syntactic information.

The masked self-attention mechanism in the text encoder permits the model to concentrate

on relevant parts of the input text while disregarding the masked sections. This ability helps

the model to learn word dependencies more effectively and generate coherent, contextually

accurate representations. By using the same text encoder architecture from CLIP, CLASP can

build upon the powerful natural language processing capabilities of the Transformer model.

4.1.3.2 Vision Transformer

CLASP also leverages the same vision encoder as used in CLIP, which is based on the Vision

Transformer (ViT) architecture [18]. Specifically, CLASP employs the ViT-B/32 variant, which

is designed to process images effectively while maintaining a manageable model size.

The ViT architecture adapts the original Transformer model for image processing tasks.

Instead of directly processing raw pixel data, the ViT first divides the input image into non-

overlapping fixed-size patches. Each patch is then linearly embedded into a flat vector, forming

a sequence of patch embeddings. These embeddings are combined with positional embeddings

to account for the spatial location of each patch within the image. This sequence of patch

embeddings is then processed by the Transformer layers, which are identical to those used in

the text encoder.

The ViT-B/32 variant of the Vision Transformer, in particular, uses a patch size of 32◊ 32

pixels, resulting in a balance between the granularity of the input representation and compu-

100

tational efficiency. The multi-head self-attention mechanism in the vision encoder enables the

model to focus on different parts of the input image, capturing both local and global contextual

information.

By using the ViT-B/32 architecture for the vision encoder, CLASP takes advantage of the

powerful image processing capabilities of the Vision Transformer, allowing it to effectively learn

high-level representations of image data that can be aligned with textual information.

4.1.3.3 T5

Ainur employs a T5 Transformer as a frozen pre-trained encoder for handling textual de-

scription input. The T5, or Text-to-Text Transfer Transformer, is a state-of-the-art model

specifically designed for natural language processing tasks [82]. It follows the encoder-decoder

architecture and is based on the original Transformer model introduced by [107].

In Ainur, only the encoder part of the T5 is utilized. The T5 encoder is composed of a

series of identical layers. Each of these layers houses a multi-head self-attention mechanism

which is then succeeded by feed-forward networks that are fully connected and consider the

position of each element. Like other Transformers, the T5 model also incorporates positional

embeddings to account for the position of each token in the sequence. The multi-head self-

attention mechanism enables the model to focus selectively on different parts of the input text,

capturing both local and long-range dependencies effectively.

The T5 model has been pre-trained on a wide range of natural language processing tasks

using a text-to-text transfer learning approach, which allows it to generate powerful and contex-

tually rich text representations. By using a pre-trained T5 encoder and keeping it frozen during

101

training, Ainur leverages the extensive knowledge and understanding of language that the T5

model has already acquired. This enables Ainur to effectively process textual descriptions and

incorporate them into the overall generative process.

4.1.3.4 Spectrogram Encoder

Ainur employs a straightforward 1D U-Net encoder, which is a component of the ArchiSound

DAE1, to process the Mel-spectrograms of the input audio. This encoder is designed to effi-

ciently compress the audio representation while retaining the vital information needed for the

generative process.

The input for this encoder is an 80-channel Mel-spectrogram created by applying the STFT

to the audio signal. The utilization of 80 channels is a strategic choice, as it allows for a

comprehensive representation of the audio signal. This level of granularity helps maintain

a healthy balance between capturing essential details and ensuring computational feasibility,

hence preserving the overall quality of the audio data. In Ainur, the STFT is conducted with a

window size of 1024 samples and a hop length of 256 samples between consecutive frames. This

approach provides a detailed frequency analysis while preserving a suitable time resolution.

The window function spans 1024 samples, and the audio signal has a sampling rate of 48 kHz.

Following the STFT, the spectrogram is transformed into a Mel-spectrogram by mapping

the frequency bins to 80 Mel-frequency bands. This conversion yields a perceptually meaningful

representation of the audio signal, as it more accurately reflects the human auditory system’s

response to various frequencies.

102

The encoder aims to produce a compressed version of the input Mel-spectrogram while

maintaining the crucial information required for the generative process. The encoder output is

a compressed input representation, downsampling the original data by a factor of 2 to produce

32 channels. This downsampling enables the model to generate a more compact and manageable

representation of the audio data while still retaining the essential information needed for the

subsequent generative stages.

4.1.4 Diffusion

Ainur’s music generation process leverages diffusion models, specifically incorporating two

diffusion models utilizing the v-diffusion objective [90; 92]. These models are at the core of

Ainur’s ability to generate rich and diverse musical content. In this section, we will discuss

the diffusion models employed in Ainur, with a particular focus on the latent diffusion model’s

classifier-free guidance [37] that enables controllable generation.

Diffusion models have emerged as a powerful paradigm for generative modeling, capa-

ble of producing high-quality samples while maintaining computational efficiency. In Ainur,

the v-diffusion objective is the foundation for both diffusion models, offering a robust and

flexible framework for learning and generating complex musical structures. The v-diffusion

(Equation 4.1) objective builds upon previous work in denoising diffusion models and extends

their capabilities, allowing for more efficient and versatile generation processes. The v-objective

is formulated as follows:

L = Et⇠[0,1],σt

Ë
||‚vσt - vσt ||

2
2

È
(4.1)

103

The objective in Ainur’s diffusion models deviates from the traditional diffusion equation, as

expressed in (Equation 2.16). In this case, ‚vσt and vσt represent the generated and original

velocities, respectively. These velocities are defined as the derivative @xσt
@σt

, where σt denotes the

noise level. The velocity term captures the extent to which a data point changes due to a small

alteration in the noise level σt.

The first diffusion model used in Ainur is the diffusion autoencoder, which is responsible for

encoding the input data into compact latent representations and subsequently decoding them

to generate the final audio signals.

The second diffusion model, the latent diffusion model, generates the high-level latent repre-

sentations that guide the autoencoder during the music generation process. In order to enable

controllable generation, the latent diffusion model employs classifier-free guidance [37]. This

approach allows for manipulating the latent representations in a meaningful and intuitive way,

enabling users to exert precise control over the generated music’s attributes and characteristics.

By combining these two diffusion models and leveraging the v-diffusion objective, Ainur is

able to generate high-quality and diverse musical content that can be precisely controlled by the

user. The hierarchical structure of the models and the incorporation of classifier-free guidance

ensure that Ainur remains both efficient and effective in generating a wide range of musical

styles and genres.

4.1.5 Modularity

Ainur’s architecture combines various components and integrates both trainable and pre-

trained modules into a cohesive, unified structure. While we have thoroughly examined each

104

component of Ainur, it is important to note that the architecture is entirely modular and

customizable, allowing for using different or more advanced modules. The selection of modules

for Ainur has been primarily driven by three main objectives:

1. Transfer Learning: To achieve impressive results with limited computational resources,

we emphasize utilizing transfer learning. This approach allows us to leverage pre-trained

models as baselines for Ainur’s architecture and to expedite the development process.

2. Reliability: Some pre-trained components of Ainur, such as the T5 text encoder, were

chosen not only for their excellent performance but also for the maturity and reliability of

the underlying research. By doing so, we avoid using immature architectures that might

lead to undocumented issues during the model’s development.

3. State-of-the-art: Ainur incorporates architectures that have been established as state-

of-the-art in their respective tasks. As a result, Ainur can produce high-quality results

by building upon the accomplishments of these cutting-edge models.

Despite these guiding principles, each module in Ainur’s architecture can be altered or

updated with more advanced or alternative modules to perform different downstream tasks or

enhance its overall performance.

4.2 Multimodal Control

Ainur boasts a flexible conditioning mechanism, allowing for a wide range of control over

the generated output. The model can accept various inputs, such as textual descriptions of the

desired song, lyrics to be woven into the music, or audio signals that condition the generation

105

process. Each input signal is encoded and harnessed to influence the generation of the prior

representation.

Thanks to the CLASP embeddings, Ainur can seamlessly handle different types of input

signals, including lyrics and audio. These representations are specifically designed to be aligned,

which enables Ainur to treat them consistently. As a result, Ainur can adeptly perform lyrics-

to-music and music-to-music generation tasks. Moreover, when certain inputs are omitted,

the model’s task changes accordingly. For instance, omitting lyrics or audio signals leads to

a standard text-to-music generation task, while removing both the text description and lyrics

or audio signals turns Ainur into an unconditional music generation model. This level of

adaptability is unparalleled in the music generation field, making Ainur the first of its kind to

significantly enhance user experience in generating music.

In the next section, we will explore the various conditional signals employed to guide music

generation in Ainur, shedding light on how these signals contribute to creating unique and

engaging musical outputs.

4.2.1 Lyrics

Ainur’s training process incorporates lyrics information in the form of natural language,

typically structured into sentences and paragraphs. To effectively manage the temporal aspect

of lyrics as they evolve throughout a song, Ainur uses synced lyrics during the training phase.

Synced lyrics embed the temporal information directly within the text by including the start

time for each sentence in the song. This time information is essential for aligning the lyrics

with the corresponding music timestamps. Once the lyrics and audio are aligned, the temporal

106

information is removed, leaving only the natural language content of the lyrics. Here’s an

example of synced lyrics used during the training:

«[00:45.18]I got your hey oh, now listen what I say oh

[00:54.61]When will I know that I really can’t go

[00:57.69]To the well once more - time to decide on.

[01:00.49]Well it’s killing me, when will I really see, all that I need

to look inside.

[01:05.05]Come to believe that I better not leave before I get my chance

to ride,

[01:09.29]Well it’s killing me, what do I really need - all that I need

to look inside.

[01:13.92]Hey oh... listen what I say oh»1

During the inference phase, only the lyrics information is needed, without any temporal

annotations or time information. This is achievable due to the positional embeddings inherent

in the transformer encoders used in Ainur. Consequently, the ordering of the vocals is already

embedded within the textual representation. Ainur generates audio that aligns with the specific

lyrics provided as input during inference.

1Lyrics from Snow (Hey Oh) - Red Hot Chili Peppers.

107

4.2.2 Text Descriptors

Ainur utilizes a textual description to guide the generation process, which is created during

training by merging the metadata associated with each song. The textual description includes

the following attributes:

• Name of the artist or group performing the song

• Musical genres and styles associated with the song

• Progression sequence number within the song

The artist’s name helps the model learn to generate music that resembles the style of a

specific author or group. The genre of the song is the most crucial attribute for guiding the

generation toward the desired music style. Modeling the entire distribution of possible music

is inherently challenging; therefore, this information is essential to steer the diffusion model

toward the right data modality representing a particular genre.

The sequence number serves as an indicator, enabling the model to learn which part of the

song is being played and, implicitly, the total length of the song. This information acts as a

form of positional embedding, helping the model understand the structure and sequencing of a

song’s various parts.

To ensure robustness, the attribute positions within the textual description are randomized,

and some attributes may be omitted during different epochs. Furthermore, the items are

concatenated using various symbols and delimiters, which are randomly chosen based on a

custom distribution that reflects how these delimiters are typically used for separating words.

108

The resulting text descriptors provide a flexible and comprehensive representation of the songs

for the model to learn from. Some examples of text descriptors for the songs include:

Red Hot Chili Peppers,Alternative Rock-8 of 10

Alternative Rock R.E.M. 4 of 13

Steam Powered Giraffe,Comic 7 of 19

4.2.3 Audio

Ainur’s music generation can be guided by various inputs, including song fragments, rhythms,

or motifs. The input audio should share the same characteristics as the generated audio, which

means it should have a maximum length of 21 seconds, be an uncompressed raw high-quality

audio file, sampled at 48,000 kHz, and contain two channels (stereo). Providing an audio

fragment as input will strongly influence Ainur’s generated music to resemble the style of the

conditioning song.

Furthermore, Ainur can seamlessly accept either lyrics or audio as input signals, thanks to

the CLASP embedding representation. These embeddings can effectively convey the informa-

tion from the input song, and due to the contrastive pre-training, they also carry structured

and consistent information about the vocals present in the generated audio. This flexibility

allows Ainur to adapt its music generation process based on various input types, enhancing the

user experience and producing high-quality results.

109

4.2.4 Image

Ainur possesses a unique capability for image-to-music generation, even without being

specifically fine-tuned on images. This inherent ability stems from the CLASP embeddings,

which are derived from CLIP, a model trained on (text, image) pairs. As a result, Ainur can

carry out image-to-music generation tasks natively without any modifications.

Although CLASP embeddings do not directly align audio embeddings, they instead encode

audio as a 3- (identical) channels Mel-spectrogram, which is subsequently aligned with the

textual representation. This characteristic allows Ainur to effectively perform image-to-music

generation by leveraging the transfer learning benefits gained from CLIP’s training process. In

this way, Ainur can generate audio based on images, opening up new possibilities for creative

applications and user experiences in the domain of audio generation.

4.3 Input Representation

Ainur’s innovative approach to handling diverse input data is facilitated by the use of em-

beddings. As a common method for representing complex data in machine learning systems,

embeddings are incredibly effective in managing data with varying characteristics under a uni-

fied representation. Additionally, these embeddings offer a compressed representation, making

them easier to handle due to their inherently reduced dimensionality. Consequently, operations

such as cross-attention and reverse denoising can be executed more efficiently.

To process each input, Ainur utilizes specialized encoders that have been specifically trained

for their respective data encodings. These representations are crucial for guiding the generation

of priors within a low-dimensional latent space, ultimately contributing to Ainur’s ability to

110

create unique musical outputs. In the following discussion, we will delve into the characteristics

of these multimodal data embeddings, particularly emphasizing their dimensionality. By exam-

ining these features, we can gain a deeper understanding of Ainur’s capabilities in generating

music content.

4.3.1 Text Embeddings

Ainur’s text embeddings are generated using a pre-trained T5 encoder, which has been frozen

to maintain its original state during the training process. This approach produces embeddings

that consist of 768 features, effectively capturing the rich information contained within the

textual input. Additionally, the maximum length of these embeddings is limited to 64 tokens,

ensuring that the model’s processing capacity is not overwhelmed. The utilization of the T5

encoder not only allows for an efficient and compact representation of textual data but also

contributes to Ainur’s impressive performance in music generation tasks. By employing such

powerful text embeddings, Ainur is better equipped to handle the complexities of various input

signals and generate high-quality musical outputs that are guided by the encoded information.

4.3.2 Lyrics Embeddings

Ainur’s lyrics embeddings are generated using a straightforward text transformer that serves

as a text encoder. These embeddings consist of 512 features and incorporate positional em-

beddings to encode the ordinal information of the tokens present in the lyrics. The resulting

representation is not only compact and easy to manage but also effectively captures the essence

of the natural language and, implicitly, the temporal dimension of the lyrics. By utilizing this

efficient and informative representation, Ainur is able to understand better and process the lyri-

111

TABLE I: MUSIC GENERATION TASKS.

Text Descriptor Lyrics Audio Image Task

X X lyrics-to-music
X X audio-to-music
X X image-to-music
X text-to-music

uncoditional music generation

cal content, which in turn contributes to the generation of musically coherent and expressive

outputs that align with the provided lyrics.

4.3.3 Audio Embeddings

In Ainur, audio embeddings are derived by converting the audio signal into a Mel-spectrogram

and then encoding it using a vision transformer, which functions as an image encoder. This

process results in embeddings with 512 features, allowing for a consistent representation that

can be easily compared with other embeddings within the CLASP framework. By utilizing this

innovative approach, Ainur effectively translates the rich and intricate information contained

in the audio signal into a compact and coherent format. This, in turn, enables the model to un-

derstand better and manipulate the musical characteristics, ultimately generating captivating

and high-quality music that aligns with the provided inputs.

4.4 Workflow

Ainur’s hierarchical architecture relies on a series of sequential operations, carefully struc-

tured to optimize the music generation process. While the training and inference workflows

112

differ regarding input data, both workflows share a top-down approach that starts with low-

dimensional embeddings and progresses to the audio space domain. The inputs required for

each stage are as follows:

1. Training:

• Music

• Text descriptors

• Synced-lyrics

2. Inference:

• Text descriptors

• Lyrics

• Audio

• Image

It is worth noting that all the inputs used during inference are optional, and various combi-

nations of them enable Ainur to tackle different tasks in an agnostic manner. The relationships

between inputs and resulting tasks can be found in Table I1. Interestingly, when no input is

provided, Ainur serves as a model for unconditional music generation. In the following sections,

we will delve into the specific training and inference workflows Ainur uses at each stage.

1Relationship between the input conditioning data and the corresponding tasks performed during
Ainur’s inference stage.

113

4.4.1 Training

The high-level overview of Ainur’s training workflow is illustrated in Figure Figure 12.

The three-stage architecture is trained sequentially in a sandwich-like manner, involving the

following steps:

1. Contrastive pre-training: First, the lyrics-audio contrastive pre-training occurs at the

top of the architecture. Both audio and lyrics inputs are transformed into 512-dimensional

embeddings by their respective encoders. In line with the CLASP framework, the encoders

are jointly optimized to produce representations that maximize the similarity between

matched lyrics-audio pairs and minimize the similarity between each representation and

all other non-matching counterparts in the batch.

2. Diffusion autoencoder: Next, the diffusion autoencoder learns to compress and recover

the input audio signal by optimizing an encoder that generates a latent representation.

This latent representation is then injected into the denoising U-Net during the high-

dimensional audio signal decoding phase, along with the noise. The input audio signal is

initially transformed and mapped into a Mel-spectrogram and then encoded into a latent

representation. Simultaneously, the raw waveform audio is corrupted by noise during the

forward diffusion process and denoised during the reverse diffusion process, together with

the injected latent spectrogram representation. The spectrogram encoder and decoding

U-Net are trained to minimize the v-diffusion objective between the reconstructed audio

signal and the original one.

114

3. Diffusion prior: Lastly, the middle layer is trained to reproduce and learn the underly-

ing distribution of the latent used to guide the generation of the diffusion decoder. Due to

its low dimensionality, this latent representation is particularly suitable for conditioning

through cross-attention with multimodal inputs. To direct the generation, cross attention

is computed using the text embeddings along with the CLASP embeddings injected into

the diffusion U-Net. Similarly to the diffusion autoencoder, the v-objective between the

generated latent and input latent is minimized, and classifier-free guidance with a prob-

ability of 0.1 is used. The embedding scale factor, which determines the impact of the

multimodal guidance, will be an essential hyperparameter during the model’s evaluation.

In Ainur, we used a pre-trained DAE, making it possible to skip the second stage of training

and focus solely on the contrastive pre-training and prior generation.

4.4.2 Inference

Ainur’s inference process proceeds sequentially from top to bottom, as illustrated in Figure

Figure 16. The speed of inference is influenced by two crucial factors:

• Number of diffusion steps: The number of denoising steps required to transition from

noise to music. This hyperparameter directly impacts the inference time and can be

adjusted to balance quality and speed.

• Embedding scale and conditioning inputs: The weight of the conditioning signals

used for guiding the generation may affect the convergence of reverse diffusion. Further-

more, the presence of particularly significant input signals can steer the generation more

quickly toward a modality that facilitates faster inference time.

115

"x

ET EL EA

"z z̃

wT wAwL

x̃

Figure 16: Ainur inference workflow. The process begins at the top with inputs. (1): text and
lyrics are used by default, but inference can also be conducted using an audio input and text
description. The input embeddings are used to guide the (2) prior generation from noise "z
to reconstructed latent z̃, utilizing cross-attention for the text descriptors and latent injection
for the lyrics/audio inputs during the diffusion process. In the bottom layer (3), noise "x is
decoded into the generated audio x̃, conditioned on the generated latent. The switch is
used to select the task: lyrics-to-music (default) or audio-to-music.

The inference path depends on the input selected for Ainur. By default, Ainur performs the

lyrics-to-music generation task, and the outputs of the CLASP encoders (EL, EA) are injected

during the prior diffusion along with the cross-attention with textual embeddings of the text

descriptor encoder (ET).

At this stage, all inputs are encoded into a compact representation. Unlike the training

phase, no other inputs are used besides these embeddings. Starting from Gaussian noise "z,

the model generates a latent representation z̃ guided by the encoded input via cross-attention.

116

TABLE II: STATE-OF-THE-ART AUDIO GENERATION MODELS.

Model Year #Parameters [M] Sample Rate [kHz] Channels

Ainur 2023 910 48 2
AudioGen [54] 2022 285 16 1
AudioLDM-S [60] 2023 181 16 1
AudioLDM-L [60] 2023 739 16 1
Jukebox [13] 2020 1000 44.1 1
Moûsai [92] 2022 1060 48 2
MusicLM [1] 2023 1890 16 1
Riffusion [63] 2022 890 44.1 1

This latent diffusion process is relatively fast compared to the diffusion performed in the audio

space, and the generated prior includes all the information needed to generate the song in the

high-dimensional space according to the conditioning inputs.

Finally, at the bottom layer, high-dimensional Gaussian noise "x is fed into the decoding

U-Net along with the injected latent that guides the noise decoding. After a series of denoising

steps, the generated audio becomes a completely new and original sample with style resembling

the music distribution used for training the model.

4.5 Model Comparison

The following analysis centers on a comparative evaluation of state-of-the-art models in

music and audio generation. As shown in Table II1, we consider key metrics such as the

1Comparison of state-of-the-art models in music and audio generation. The table presents the model’s
publication year, total parameters, the audio’s sample rate, and the number of channels indicating
whether the audio is mono or stereo.

117

model’s publication year, total parameters, the audio’s sample rate, and the number of channels

to discern whether the audio is generated in mono or stereo.

Our model, Ainur, stands out in its capacity to generate high-quality stereo audio at a 48

kHz sample rate, akin to the Moûsai model. This characteristic is crucial in producing high

fidelity audio, which is a key determinant of audio quality. The higher the sample rate, the

higher the frequency response and, thus, the better the sound quality. Moreover, stereo audio

generation, as opposed to mono, provides a more immersive listening experience, reproducing

the spatial location of sound sources for the listener, a crucial feature for music generation.

In terms of the number of parameters, Ainur holds 910 million parameters, which is less than

some models such as MusicLM, Moûsai, and Jukebox. However, the number of parameters is

not always directly proportional to model performance, and an increased number of parameters

can sometimes lead to overfitting or increased computational costs. As such, Ainur strikes a

balance between model complexity and performance.

Notably, Ainur, AudioLDM and MusicLM models were published in 2023, marking them as

the most recent developments in the field. This indicates their potential to leverage the latest

advancements and techniques in AI for music generation.

In conclusion, the forthcoming results in Chapter 6 will substantiate the model’s potential,

signifying a substantial advancement in the realm of music and audio generation. It exhibits

a promising combination of high-quality audio generation in terms of sample rate and channel

number, while maintaining a balanced number of parameters, which underscores its efficiency

and state-of-the-art design.

CHAPTER 5

EXPERIMENTAL SETUP

This chapter serves as a comprehensive exposition of the various facets involved in the devel-

opment and evaluation of the Ainur system. This section systematically elucidates the different

components, such as the dataset, training setup, metrics, implementation details, hardware

requirements, and reproducibility considerations. By delving into the minutiae of the research

process, this chapter aims to offer readers a thorough understanding of the robust methodolo-

gies employed in the study of Ainur. Overall, this chapter sets the stage for understanding the

results presented later on.

5.1 Dataset

In order to effectively train and evaluate Ainur, we meticulously assembled a dataset com-

prising over 31,000 music tracks, which amounts to approximately 2k hours of high-quality

48,000 kHz stereo music (more in Section 5.4.2). In addition to the raw waveform data encoded

as .flac files, the dataset encompasses metadata information about authors and genres, which

serve to create the text descriptors. Time-synced lyrics embedded within the songs are a critical

component for training Ainur. By extensively crawling the web, we aimed to create a diverse

and comprehensive dataset that encompasses a wide range of music styles, mirroring the con-

temporary landscape of digital music catalogs. To achieve this goal, the dataset spans a broad

118

119

time frame, with most songs released between the 2000s and 2020s and several selections dating

as far back as the 1960s. Predominantly, the music and lyrics in the dataset are in English.

Possessing a rich and diverse dataset fosters the model’s ability to capture the distribution of

contemporary music more closely. This characteristic comes at the expense of a greater demand

for the model to comprehend various music modalities, which can differ significantly from one

another. Consequently, the learning process becomes more challenging and time-consuming

than focusing on a single genre or style. Nevertheless, we were determined to develop a machine

learning model capable of excelling across various music styles without overfitting to a specific

genre and maintaining its capacity for generalization.

Despite the dataset’s relatively modest size, the music samples used for training are seg-

mented into approximately 20-second-long pieces, thereby increasing the number of training

samples exposed to the model during each epoch. This approach is also applied to the lyrics

input, which is aligned with the audio samples. The songs are cropped using overlapping 20-

second windows, and the text descriptor contains information regarding the window’s position

within the song as well as the overall song length.

5.1.1 Evaluation Dataset

To accurately evaluate Ainur’s performance on an unseen dataset, we reserved approxi-

mately 1,000 samples specifically for validation and testing purposes. The evaluation dataset,

which was randomly sampled from the original dataset, contains both raw music data and the

necessary song metadata, including lyrics, to assess Ainur’s performance effectively.

120

A small portion of the evaluation dataset is dedicated to monitoring the model’s progress

throughout the training process. Several validations are conducted at regular intervals during

training, utilizing a validation set that contains around 10 hours of music data. This data

provides a rough estimate of the Fréchet Audio Distance (FAD) [49] (discussed further in Section

5.3), which serves as a metric for overseeing the training process. For the final testing of the

model, we employed a larger dataset, consisting of 50 hours of music, to obtain a more accurate

estimation of the FAD, thus allowing for a more precise evaluation.

5.2 Training Setup

5.2.1 Pre-Processing

The song metadata undergoes a pre-processing stage before being fed into the model. First,

lyrics and text are extracted from the metadata and normalized into Unicode, and any in-

correctly formatted time references are eliminated. Next, both the audio and the lyrics are

randomly cropped into a window of approximately 22 seconds (220 samples at 48,000 kHz) and

synchronized within the same window. As the temporal alignment is sentence-based, it is possi-

ble that the lyrics may not perfectly correspond with the audio window, resulting in a potential

discrepancy of one sentence more or less than the corresponding audio segment. During the

alignment process, the temporal information is removed from the lyrics, leaving only natural

language.

To assemble the text descriptors, group, genre, and sequence information is combined us-

ing random shuffling and random delimiters, which follow a custom distribution. If multiple

genres or artists are present, they are concatenated in the text descriptors. The audio remains

121

unaltered and unscaled, as we opted not to normalize it to enable the model to learn differ-

ent loudness levels and pitches characteristic of specific genres, thus facilitating multimodal

learning. Any silent audio samples are discarded from the song dataset.

5.2.2 Loss Functions

Ainur utilizes three distinct loss functions, each corresponding to a stage within the training

architecture. During the contrastive pre-training phase, Ainur optimizes the cosine similarity

between the audio and lyrics encoded representation within a contrastive learning framework.

The cosine similarity serves as the optimization objective for this stage. In both the prior

and autoencoding stages, the v-objective optimization loss is employed to fine-tune the U-Net

during the reverse diffusion process.

5.2.3 Training Procedure

We used batch sizes of 16 for CLASP training and batch sizes of 8 for prior training. CLASP

training was conducted over more than 330 epochs, totaling approximately 120k iterations, and

took over 120 hours on a single Nvidia V100 GPU . Ainur’s prior was trained for 730 epochs

and with 1M+ iterations for approximately 720 GPU hours. To stabilize the training process,

a tanh bottleneck was implemented in both diffusion U-Nets to constrain values between -1

and 1, which enhances diffusibility. The training procedure inherently augments the training

samples by performing random cropping of 22-second audio segments.

We employed the AdamW optimizer for training Ainur, with a learning rate of 10-4, weight

decay 10-3, β1 = 0.95, β2 = 0.999, and ✏ = 10-6. Additionally, we utilized stochastic moving

average (SWA) with a learning rate of 10-4, along with an exponential moving average (EMA)

122

that has a β value of 0.999. During the prior stage training, we compensated for the lack of

computational resources to handle large batch sizes by using gradient accumulation with a batch

scheduler of 0 : 4, 600 : 2. This scheduler progressively reduces the number of accumulation

batches from 4 at epoch 0 to 2 beyond epoch 600. We also clipped gradients larger than 5 to

prevent exploding gradients during training.

5.2.4 Hyperparameter Tuning

Our efforts in hyperparameter tuning were limited, as we did not conduct extensive grid or

random searches. Instead, we opted for standard hyperparameter values known to work well

with models similar to Ainur, as well as widely used values in the training of various diffusion

models. While we acknowledge that Ainur could be further optimized, our primary focus in

this research was not on extensive hyperparameter tuning. We leave the thorough optimization

of Ainur and related hierarchical diffusion models to future work.

5.2.5 Validation Strategy

We monitored Ainur’s training progress by conducting frequent validation steps every 10

epochs. During these validations, we employed a hold-out method with a small validation set

to compute the FAD metric using the VGGish model [32]. This offered a general indication

of the quality of the generated audio. The validation involved only 50 diffusion steps and an

embedding scale of 7, providing a quick and rough estimate of the model’s performance. During

testing, we utilized several additional metrics to obtain a more comprehensive evaluation of the

model using a larger reference test set of audio samples.

123

5.3 Metrics

In this section, we discuss the various metrics employed to evaluate Ainur’s ability to gener-

ate high-quality music and vocals. Our primary focus is on the FAD [49], a widely used metric

for assessing the quality of generated audio. Additionally, we will explore the coherence of

the multimodal CLASP embeddings and their contribution to Ainur’s generation capabilities

through the use of our proposed C3 metric. By examining these metrics, we aim to provide a

comprehensive understanding of Ainur’s performance and its effectiveness in generating realistic

and coherent music.

5.3.1 Fréchet Audio Distance

The evaluation of Ainur’s performance in generating high-quality audio and vocals primarily

relies on the FAD, a well-established metric for assessing the quality of generated audio. To ob-

tain a comprehensive understanding of the model’s capabilities, we employ multiple embedding

models that offer different perspectives on the quality of the generated music [1]. In particular,

we utilize the VGGish [32] and YAMNet [100] models to assess the musical quality, while the

TRILL [95] model is employed to evaluate the vocal quality.

The Fréchet Audio Distance (FAD) is a metric used for evaluating the quality of generated

audio, particularly in the context of generative models. It is based on the Fréchet Inception

Distance (FID) [32], a popular metric for assessing the quality of generated images. FAD is

designed to capture the similarity between two sets of audio samples, such as real audio samples

from a dataset and generated audio samples from a model.

To compute the FAD, we performed the following steps:

124

1. Feature extraction: Both sets of audio samples (real and generated) are first passed

through a pre-trained audio embedding model, such as VGGish, YAMNet, or TRILL.

This step transforms the raw audio data into high-level feature representations, which are

then used for comparison.

2. Compute statistics: For each set of feature representations, the mean and covariance are

calculated. These statistics represent the central tendency and dispersion of the feature

distributions, respectively.

3. Compute Fréchet distance: The Fréchet distance between the two Gaussian distri-

butions defined by the means and covariances of the real and generated feature sets is

computed. This distance measures the dissimilarity between the two distributions and is

used as the FAD score.

A lower FAD score indicates that the generated audio is more similar to the real audio, and

thus, the generative model’s performance is better. The FAD metric is useful for evaluating

generative models as it provides a quantitative measure of the audio quality and enables a

comparison between different models or configurations.

Our approach to utilizing different encoding models stems from the notion that these mod-

els, due to their varying training data, are expected to measure distinct aspects of audio quality.

While the VGGish and YAMNet models are trained on audio data, the TRILL model is specif-

ically designed for speech data. As a result, the combination of these models allows us to

capture both speech and non-speech aspects of the generated audio, providing a more thorough

evaluation of Ainur’s performance.

125

5.3.2 CLASP Cycle Consistency

In this work, we introduce the CLASP Cycle Consistency (CCC or C3) metric, a novel

evaluation metric designed to assess the coherence between generated audio samples and their

corresponding lyrics CLASP embeddings that guide the generation process. The C3 metric is

inspired by the MuLan Cycle Consistency (MCC) metric [1], which evaluates the alignment

of generated audio and the corresponding MuLan text embeddings. As CLASP embeddings

provide a multimodal representation of lyrics and audio, the C3 metric is well-suited to measure

the consistency between the two modalities in the context of our generative model, Ainur.

To compute the C3 metric, we follow these steps:

• Generated audio embeddings: First, the generated audio samples are encoded into

CLASP embeddings using the pre-trained audio CLASP encoder. This step transforms

the generated audio into high-level feature representations that can be compared with the

corresponding lyrics embeddings.

• Reference lyrics embeddings: Next, we encode the guiding lyrics using the pre-trained

lyrics CLASP encoder. This produces a set of high-level feature representations that

capture the semantics of the input lyrics.

• Cosine similarity: Finally, we compute the cosine similarity between the generated

audio embeddings and the reference lyrics embeddings. The cosine similarity measures

the angle between the two embedding vectors and serves as a proxy for the coherence

between the generated audio and guiding lyrics.

126

The C3 metric ranges between [0, 1], with values closer to 1 indicating a higher similarity

between the generated audio and the guiding lyrics. By computing the C3 metric on our test

set, we can assess the coherence between the audio and lyrics and analyze the influence of

the CLASP embeddings in guiding the generation of music. This evaluation provides valuable

insights into the performance of our model and the effectiveness of the CLASP embeddings in

achieving our desired generative outcomes.

5.4 Implementation Details

5.4.1 Software Frameworks

Ainur is a Python-based implementation using version 3.8.8 and leverages various popular

libraries for machine learning and numerical data manipulation. The architecture of Ainur is

built using PyTorch [76], while PyTorch Lightning [22] facilitates the training process. Thanks

to the pre-trained CLIP model [80] for the CLASP encoders and the Mel-spectrogram-based

diffusion autoencoder from the ArchiSound library [91], Ainur’s training has been significantly

accelerated. Furthermore, libraries provided by the ArchiNet1 organization have played a crucial

role in the development of Ainur’s architecture.

Operating in the latent space of the diffusion autoencoder, Ainur’s prior model takes in 32

input channels stemming from the Mel-spectrogram encoder. The diffusion U-Net then down-

samples the input signal to 512 times the temporal dimension, using a sequence of downsam-

pling factors per layer: [1, 2, 2, 2, 2, 2]. The U-Net consists of seven layers, with a progressively

1ArchiNet GitHub repository (github.com/archinetai).

https://github.com/archinetai/

127

increasing number of channels [128, 256, 512, 512, 1024, 1024] and a corresponding number of re-

peating items per layer [2, 2, 2, 4, 8, 8]. Ainur employs self-attention in the last four layers, with

12 attention heads and 64 attention features per attention item. Cross-attention with the text

descriptors occurs at all stages to guide music generation according to the chosen modalities.

CLASP embeddings are injected into the first layer of the diffusion U-Net, enhancing the noise

with structured embeddings that facilitate vocals generation.

5.4.2 Data Handling and Storage

The training, validation, and test datasets for Ainur were compiled over the course of a

week through web scraping techniques. The music scraping procedure was conducted using

Spotify’s APIs1, and the usage of this music complies with fair use regulations, as it is strictly

for research purposes and devoid of any commercial intentions. This process involved gathering

raw music samples accompanied by song metadata and synchronized lyrics. The acquired data

was stored on BeeGFS [31], a high-performance parallel file system specifically designed for

optimized storage with a throughput higher than 5 GB/s (Infiniband EDR 100Gb/s). This

data was retained on the file system solely for the duration of Ainur’s training and promptly

deleted upon completion.

128

TABLE III: HARDWARE SPECIFICATIONS.

Architecture Cluster Linux Infiniband-EDR MIMD Distributed Shared-Memory
Node Interconnect Infiniband EDR 100 Gb/s
Service Network Gigabit Ethernet 1 Gb/s
CPU Model 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores
GPU Node 24x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores
Performance 90 TFLOPS
Computing Cores 1824
Number of Nodes 57
Total RAM Memory 22 TB DDR4 REGISTERED ECC
OS CentOS 7.6 - OpenHPC 1.3.8.1
Scheduler SLURM 18.08

5.5 Hardware Requirements

5.5.1 Computing Resources

The training of Ainur was carried out on high-performance computing (HPC) SLURM

[112] cluster, graciously provided by HPC@POLITO1 at the Polytechnic University of Turin.

This powerful HPC infrastructure featured a Linux Infiniband-EDR MIMD Distributed Shared-

Memory architecture, Infiniband EDR 100 Gb/s node interconnect, and Gigabit Ethernet 1

Gb/s service network. The cluster’s processing capabilities were supported by 57 nodes, each

equipped with 2x Intel Xeon Scalable Processors Gold 6130, operating at 2.10 GHz and 16

cores. Furthermore, the nodes housed 24x nVidia Tesla V100 SXM2 GPUs, boasting 32 GB

1Spotify web API documentation website (developer.spotify.com/documentation/web-api).

1HPC@POLITO website (hpc.polito.it).

https://developer.spotify.com/documentation/web-api
http://www.hpc.polito.it

129

of memory and 5120 CUDA cores, resulting in a total of 90 TFLOPS in performance. The

HPC cluster contained 1824 computing cores and 22 TB of DDR4 REGISTERED ECC RAM

memory, all managed by the CentOS 7.6 - OpenHPC 1.3.8.1 operating system and the SLURM

18.08 scheduler (Table III1).

Despite the impressive capabilities of the HPC cluster, we opted to train Ainur on a single

GPU. This decision was made to enhance reproducibility and ensure that users with access to

only a single consumer-grade GPU could still deploy and fine-tune the model effectively.

The training of CLASP employed a single non-parallelized job with 16 CPUs and 6400MB

of primary memory for each CPU. The training required approximately 1 week for a total of

approximately 120k iterations of finetuning with batch sizes of 64. On the other hand, training

Ainur prior was a more intensive task, taking about a month. This was accomplished on a

single GPU V100, running over a million iterations.

In our experimentation, we explored the possibility of scaling Ainur’s model by parallelizing

the training process across multiple GPUs. We found that Ainur could be trained seamlessly in

a distributed environment. Thanks to the PyTorch Lightning framework, the model’s training

scaled gracefully with the addition of more GPUs, which in turn reduced the overall training

time proportionally to the number of devices utilized. This parallel training approach em-

ployed a distributed data-parallel (DDP) strategy, synchronizing gradients across all devices to

efficiently compute the backpropagation process.

1Specifications of the SLURM servers cluster used for training Ainur, detailing key hardware compo-
nents and performance metrics.

130

5.5.2 Hardware Limitations and Challenges

Training Ainur on a single consumer GPU presented some challenges, mainly due to the

time it took to achieve acceptable quality results and the memory limitations imposed by

GPU devices. This required us to use smaller batch sizes. In the original CLIP paper [80], the

authors were able to use much larger mini-batches of 1,712 text-image tuples, which proved to be

beneficial for the contrastive learning framework. However, given the increased dimensionality

of audio representations and our limited computational resources, we could only manage batches

of 64 lyrics-audio (spectrograms) tuples and small mini-batches of 8 data points for the prior

training.

We partially addressed this issue by using batch gradient accumulation and mixed-precision

training while ensuring stability during training by applying gradient clipping with a maximum

value of 5. In the future, training Ainur could greatly benefit from using more GPUs to speed

up the process and more primary memory to handle larger batch sizes. During inference, the

model could leverage additional GPU memory to perform more diffusion steps and generate

higher-quality samples. Moreover, implementing distributed parallelization strategies would

result in an overall training speedup, further reducing the time required for training.

5.6 Reproducibility

Ensuring the reproducibility of results is a crucial aspect of scientific research. To promote

transparency and facilitate the replication of our work, we have made every effort to provide

all the necessary content, model, and training details for the Ainur project.

131

The complete codebase required for creating Ainur can be found in the Ainur GitHub

repository1. We have provided model weights and checkpoints within the repository, allowing

users to fine-tune Ainur or deploy it for their own research purposes. It is important to note

that we do not take responsibility for the improper use of Ainur. This software is intended for

research purposes only and not for commercial use. We strongly discourage and condemn any

misuse of our research.

Ainur is released under the MIT License, which is a permissive free software license. This

means that users are free to use, modify, and distribute the software, provided that they include

the original copyright notice and license text in any copy of the software or substantial portions

of it. The MIT License does not impose any restrictions on the use of the software, whether

for research or commercial purposes. However, it does not provide any warranty or liability

protection; users employ the software at their own risk. By adhering to the terms of the MIT

License, we aim to foster a collaborative and open research environment that encourages further

advancements in the field.

Reproducibility is of paramount importance when it comes to training Ainur, and we have

taken several steps to ensure that other researchers can reproduce our results or build upon

our work. While the original training data used for Ainur will not be made available due to

copyright constraints, and all data will be erased after the training process, we have taken

1Ainur project GitHub repository (github.com/Gio99c/ainur).

https://github.com/Gio99c/ainur

132

measures to ensure that the pre-trained model’s weights do not explicitly contain any form of

copyrighted material that can be directly employed or extracted.

To facilitate the reproducibility of our work, we will provide pre-trained models, checkpoints,

and other intermediate artifacts that can be used to reproduce our results or build upon our

work. We will also include comprehensive documentation and tutorials on how to use and

deploy Ainur, ensuring that researchers can effectively utilize the model for their own purposes.

In our experiments, we took great care in handling random seeds and initialization to ensure

that others can reproduce our results with the same level of randomness. By providing details

on the specific random seeds used and the initialization procedures, we enable researchers to

obtain the same results under the same experimental conditions.

To further enhance reproducibility, we provide all the necessary dependencies and software

requirements needed to run our code. This includes specific libraries, frameworks, or tools and

their corresponding versions. In addition, we aim to provide a Docker container that replicates

the environment used for training and deploying Ainur, making it easier for others to set up

the necessary environment.

Despite our efforts, there may be some limitations or potential issues when attempting to

reproduce our work. It is essential for researchers to be aware of these challenges and take

appropriate measures to address or mitigate them. For instance, differences in hardware or

software configurations may lead to variations in results. In such cases, researchers should

consult the provided documentation and seek guidance from the Ainur community to help

resolve any discrepancies.

CHAPTER 6

RESULTS

In this chapter of the thesis, we dive deep into the performance analysis of our novel deep

learning model, Ainur. Our primary aim here is to understand and illustrate the efficacy of

Ainur in in the task of generating music from text, presenting a comprehensive overview of the

findings of our research.

We begin by laying out the precise steps of the evaluation procedure that were followed

to ensure the accuracy and relevance of our results. This includes a clear explanation of the

metrics used for measuring the model’s performance, the testing data and process, and the

rationale behind our approach.

Once the evaluation methodology is clearly established, we shift our focus to an intrinsic

evaluation of Ainur, diving into the model’s own characteristics and analyzing the impact of

each component on the final results. This involves ablation studies, where we progressively

remove or alter features to assess their contribution to the overall performance.

As we move further into the chapter, we broaden our lens to consider Ainur in comparison to

other state-of-the-art models in the field of text-to-music generation. This comparative analysis

provides a benchmarking of Ainur against other models, facilitating a clearer understanding of

its strengths and potential areas of improvement.

Finally, we wrap up the chapter with a discussion and commentary on the results obtained.

This includes an analysis of how different model parameters influence the output, and the

133

134

implications of these findings for future work in this area. Our goal is to provide not only raw

data but also meaningful interpretations, connecting our results back to our initial research

objectives, and paving the way for further advancements in this domain.

6.1 Evaluation Procedure

The evaluation is twofold: an intrinsic evaluation aimed at assessing Ainur’s capabilities

and the influence of different parameters on the generated results, and a comparative evaluation,

where Ainur is benchmarked against other state-of-the-art diffusion models.

In both types of evaluation, the Fréchet Audio Distance (FAD) is used as a primary metric

for assessing the quality of the music generated. For a more nuanced understanding, FAD is

computed with several different audio embedding models, each providing unique perspectives.

Specifically, VGGish and YAMNet, trained on AudioSet, facilitate an evaluation of the audio

quality, while Trill, trained on speech data, offers insights into the quality of generated vocals.

Our testing dataset comprises 456 songs, segmented into 22-second clips, each aligned with

its respective synced-lyrics. This dataset, which Ainur has not been previously trained on,

contains raw music data enhanced with metadata such as lyrics, artist, style, genre, and song

sequence information.

The CLASP Cycle Consistency (C3) metric is employed where applicable, particularly when

evaluating the coherence of generated audio in relation to the input lyrics information. However,

as not all models are capable of lyrics-to-music generation, the use of this metric is primarily

limited to instances where Ainur employs lyrics CLASP embeddings as an input conditioning

mechanism.

135

TABLE IV: INTRINSIC QUALITY EVALUATION.

Model CLASP Steps FAD VGGish # FAD YAMNet # FAD Trill # C3 "

best Lyrics 20 10.51 19.91 0.597 0.29681
best Audio 20 10.53 21.10 0.625
best None 20 10.20 19.58 0.588

best Lyrics 50 8.38 20.70 0.659 0.29412
best Audio 50 8.19 20.61 0.663
best None 50 8.40 20.86 0.636

best Lyrics 100 8.60 21.70 0.695 0.29412
best Audio 100 8.29 21.70 0.697
best None 100 8.65 21.90 0.679

last Lyrics 20 7.89 24.63 0.817 0.29413
last Audio 20 8.16 25.59 0.760
last None 20 7.86 27.01 0.791

last Lyrics 50 7.48 25.46 0.826 0.29413
last Audio 50 7.69 25.90 0.791
last None 50 7.37 26.57 0.815

last Lyrics 100 7.58 26.45 0.848 0.29413
last Audio 100 7.74 26.43 0.815
last None 100 7.45 25.42 0.829

Finally, we place substantial emphasis on the inference time of each model. We regard

this metric as critical for enabling music generation technology to be applicable in real-world

scenarios, with a focus on ensuring democratized access even in the absence of substantial

computational resources. All tests are conducted using a single Nvidia A100 GPU to ensure

results that are relatable to consumer-grade equipment. The inference times for each tested

model are reported to offer a clear comparison.

136

6.2 Intrinsic Evaluation

Our intrinsic evaluation of Ainur required us to delve into the interplay of various hyper-

parameters and their subsequent effects on the model’s performance and output quality. The

distinctive versions of Ainur tested in this evaluation were formulated based on an array of

combinations from three fundamental parameters:

1. Training Epochs: We tracked the performance of two distinct versions of Ainur, which

we refer to as best and last. The best model, as the name suggests, achieved the lowest

loss during training, peaking at a performance of 581 epochs with a loss score of 0.135.

The last model, on the other hand, represents the model’s state at the final epoch of

training. This version ran through 732 epochs, ending with an epoch loss of 0.145. The

comparison of results from these two models allows us to comprehend how variations in

training loss can influence the quality of the generated samples.

2. CLASP Conditioning: We explored three different conditioning mechanisms, each ma-

nipulating how CLASP embeddings were integrated into Ainur’s latent layer. We evalu-

ated the effect of the CLASP embeddings resulting from both Lyrics and Audio input

data. Furthermore, to gauge the overall impact of the CLASP conditioning mechanism,

we also tested a version with no conditioning on CLASP embeddings, which we refer

to as None conditioning strategy. For cases where the Lyrics input mechanism was

employed, we further calculated the C3 metric on the generated outputs to assess the

coherence between the input signal and the resulting music.

137

3. Number of Diffusion Steps: A key focus of our investigation was to understand the

performance and inference time of Ainur in relation to the number of diffusion steps

executed, both in latent diffusion and decoding diffusion. We discovered that Ainur is

capable of generating high-quality music even with a small number of 20 diffusion steps.

The music quality was subsequently evaluated with diffusion steps set at 20, 50, and 100.

Each level of diffusion steps was also associated with a measure of inference time, providing

valuable insights into the trade-off between quality and computational demands.

Table IV1 captures the detailed results of our intrinsic evaluation study. All these exper-

iments were conducted using an embedding scale factor of 7.0. This value determines the

influence of text descriptor conditioning on the results, and it was found to yield the best

performance. These results are organized based on three primary factors: the number of train-

ing epochs, the CLASP conditioning mechanism utilized, and the number of diffusion steps

employed during both latent and decoding diffusion stages.

Across the board, the best model offers the best performance. Remarkably, even with

just 20 diffusion steps, it yields the best values for FAD YAMNet, FAD Trill, and C3 metrics.

These results indicate the best model’s high caliber in terms of both audio and vocal quality.

1Evaluation of the samples generated by the Ainur model. The Fréchet Audio Distance metric is
employed to assess the quality of the audio and vocals, while CLASP Cycle Consistency (C3) measures
the coherence to the lyrics, applicable only to Ainur models utilizing CLASP lyrics conditioning. The
models are differentiated based on the number of training epochs (marked as last and best), the CLASP
conditioning mechanism (categorized as Lyrics, Audio, and None) and the number of diffusion steps
(denoted by values 20, 50, and 100).

138

Notably, this model also shows the highest C3 similarity amongst all tested models, implying

a superior coherence between the conditioning lyrics input and the generated music.

Following, the best model with 50 diffusion steps reveals very close metric values to the

20-step model, while showcasing a lower value for FAD VGGish. Both FAD VGGish and FAD

YAMNet gauge the quality of the generated audio. Therefore, comparing and averaging these

two results provides a more robust and consistent understanding of the output quality. As a

result, we regard this model as the most stable and well-rounded.

The last model displayed better evaluations in terms of FAD VGGish, but unfortunately, it

worsened significantly in other metrics. We postulate that the best model, with its lower train-

ing loss, yields better output quality – even with fewer training epochs compared to the last

model. Moreover, we observe similar C3 scores across all models using Lyrics conditioning.

We observed that simply increasing the number of diffusion steps does not necessarily trans-

late to improved metric values. This implies the model swiftly converges towards optimal results.

We suggest that the CLASP conditioning mechanism could be the driving factor behind this

phenomenon, demonstrating its influence even with a minimal number of diffusion steps.

Taking all these insights into account, we designate the best model with 50 diffusion

steps as Ainur: the model that best balances all the evaluation metrics.

From this point forward, the best model will be used as the reference for Ainur. We also

want to draw attention to the time Ainur requires for inference when generating music samples.

139

TABLE V: INTRINSIC INFERENCE TIME BENCHMARK.

Diffusion Steps CLASP Conditioning Inference Time # [mean ± std. dev.]

20 Lyrics 5.75 s ± 33 ms
20 Audio 5.92 s ± 36 ms
20 None 5.89 s ± 26 ms

50 Lyrics 14.5 s ± 24 ms
50 Audio 14.7 s ± 92 ms
50 None 14.7 s ± 103 ms

100 Lyrics 28.8 s ± 59 ms
100 Audio 29.3 s ± 162 ms
100 None 29.3 s ± 120 ms

In Table V1, we have compiled the results of Ainur’s performance benchmarks with an increasing

number of diffusion steps and various conditioning mechanisms.

It is noticeable that the Lyrics conditioning mechanism consistently delivers a marginally

faster inference time for generation. We suggest that this could be because the lyrics CLASP

embedding acts as a guiding force, speeding up the diffusion process in the latent space. Addi-

tionally, as seen in Table IV, there is not a significant difference in output quality among the

various conditioning mechanisms. Given these findings, we have chosen to make the Lyrics

CLASP conditioning the default input conditioning mechanism for Ainur during inference.

1Inference time benchmark for the Ainur model. Results are presented according to varying numbers
of diffusion steps (20, 50, and 100) and the type of CLASP conditioning mechanism employed (Lyrics,
Audio, and None). Each inference time reported is the average of 7 test runs, with each run executing
one loop. The reported time is presented as the mean plus/minus the standard deviation across these
runs.

140

The inference times we observed tend to scale linearly with the number of diffusion steps.

It is impressive to see that Ainur can generate high-quality music with as few as 20 diffusion

steps. While 50 diffusion steps lead to more consistent results, Ainur also can be switched

to fast inference mode that uses 20 diffusion steps, significantly reducing the inference time

without compromising the quality of the generated samples to a significant degree.

6.3 Model Analysis

The lyrics CLASP conditioning mechanism of Ainur represents a unique feature, offering a

way to direct music generation according to specific lyrics. The impact of this mechanism on

both the quality of the generated music and the model’s performance has been evaluated to

fully understand its role within the Ainur model.

Comparing different CLASP conditioning mechanisms, it is evident that the lyrics condi-

tioning offers a notable advantage in terms of inference time (see Table V). On average, models

employing lyrics CLASP conditioning consistently exhibited faster generation times, regardless

of the number of diffusion steps employed. This suggests that lyrics embeddings might provide

stronger guidance during the diffusion process in the latent space, accelerating the generation

of music samples.

From a quality perspective, the lyrics CLASP conditioning mechanism proves its worth

when observing the evaluation metrics in the intrinsic evaluation study (see Table IV). While

the differences between the three conditioning mechanisms (Lyrics, Audio, None) are not

particularly stark, the Lyrics conditioning shows competitive results in all FAD metrics. More

importantly, the C3 metric, employed to gauge the coherence between input lyrics and output

141

music, confirms the effectiveness of the lyrics CLASP conditioning. A statistical significance

paired bootstrap test, which can be found in Appendix B, further supports these findings,

confirming the impactful and significant contribution of the CLASP embedding conditioning

technique.

Generally, the lyrics CLASP conditioning mechanism demonstrates its value, contributing

to faster generation times and upholding high-quality standards in the produced music. The

coherence between the input lyrics and the generated music, as measured by the C3 metric,

underscores the success of the lyrics CLASP conditioning in ensuring relevance between the

input and the output. Therefore, the lyrics CLASP conditioning mechanism emerges as a vital

feature for the Ainur model.

6.4 Comparative Evaluation

Following the same modus operandi of the intrinsic evaluation, we decided to juxtapose

Ainur’s performance with that of other state-of-the-art music generation models, specifically

those specializing in the task of converting text to music. We handpicked these models based

on their demonstrated prowess in the field and their accessibility, as the models and pre-trained

checkpoints are readily available online. The models featured in this comparative evaluation

are:

• AudioLDM [60]: a deep generative model that leverages the power of language models

for audio synthesis. AudioLDM treats audio synthesis akin to a language modeling task,

functioning within a discrete representation space. It uses a progression of discrete audio

units (tokens), from a rough to a refined level for the generation process. This method en-

142

ables AudioLDM to maintain high-quality and long-term consistency for periods spanning

dozens of seconds. The model can create realistic audio from corpora consisting solely of

audio, whether it’s speech or piano music, without the need for any annotations.

• Jukebox [13]: a generative model that produces music in various genres in the raw audio

domain. It uses a VQ-VAE to compress raw audio to discrete tokens, and then uses a

transformer model to generate music autoregressively. The model is capable of generating

high-quality music with long-term coherence, but it may display noticeable artifacts.

• MusicLM1 [1]: a model has been designed to create high-quality music based on textual

descriptions. This model interprets conditional music generation as a multi-level sequence-

to-sequence modeling task, demonstrating the capability to generate music at 24 kHz that

preserves its continuity over an extended period. Furthermore, it exhibits the versatility

to be conditioned on both textual descriptions and a melody, allowing it to modify tunes,

whether whistled or hummed, to align with the style conveyed by a text caption.

• Riffusion [63]: a generative model that uses Stable Diffusion to generate images of

spectrograms from text prompts. These spectrograms can then be converted into audio

clips. The model can generate infinite variations of a prompt by varying the seed, and

supports image-to-image conditioning and interpolation in the latent space of the model

for smooth transitions between different prompts.

1While the exact version of the MusicLM model is not publicly accessible, a comparable implemen-
tation used in our study is available on GitHub. This alternate version employs CLAP embeddings as
opposed to the MuLAN embedding used in the original MusicLM. The open-source project can be found
on the user zhvng’s open-musiclm GitHub repository (github.com/zhvng/open-musiclm).

https://github.com/zhvng/open-musiclm

143

TABLE VI: COMPARATIVE EVALUATION.

Model Sample Length [s] Inference [s] # FAD VGGish # FAD YAMNet # FAD Trill #

Ainur 22 14.5 8.38 20.70 0.659
Ainur (fast) 22 5.8 10.51 19.91 0.597
AudioLDM 22 2.2 15.50 784.17 0.521
Jukebox 12 538.1 20.41 178.10 1.586
MusicLM 5 153.1 15.00 61.58 0.471
Riffusion 5 6.9 5.24 15.96 0.696

The results of our comparative evaluation are displayed in Table VI1. What stands out

immediately is that AudioLDM tops the list in terms of speed, able to generate 22 seconds

of music in a scant 2.2 seconds. Following closely behind are Riffusion and Ainur in terms of

inference time, while MusicLM and Jukebox trail behind significantly, falling short of real-time

generation capabilities. It is noteworthy that Jukebox takes a staggering 9 minutes to generate

a single second of music, highlighting its substantial computational requirements. Yet, in its

fast inference mode, Ainur secures the second spot for generation speed.

Despite its impressive speed, AudioLDM disappointingly underperforms in sample quality.

With a staggering FAD YAMNet score of 784.17, it suggests poor audio quality, even though

1Comparative evaluation of samples generated by various text-to-music models. Metrics used include
inference time in seconds and Fréchet Audio Distance (FAD) to assess the quality of generated music.
Note that certain models, due to their computational constraints or design, were unable to match the
sample length of the music generated by Ainur, resulting in shorter sample durations.

2Jukebox, the oldest model in our comparison, carries substantial computational demands and re-
quires extended inference times. Despite its autoregressive functionality allowing it to generate songs
up to 22 seconds long, the sheer amount of time it takes to generate even a single second of music is
substantial. On a typical consumer-grade GPU, we were only able to generate one second of music.
Consequently, the results we present may not fully encapsulate the true capabilities of Jukebox.

144

its FAD VGGish score is reasonably low. This vividly illustrates the pitfalls of relying solely on

one metric to evaluate the quality of generated music, and highlights the inherent limitations

of using only objective metrics. These metrics, though useful, may not align with human

perception or capture all facets of generated music.

Riffusion stands out with the best FAD VGGish and FAD YAMNet scores, while MusicLM

excels in producing quality vocals, resulting in the lowest FAD Trill score of 0.471. Ainur

exhibits strong performance, producing results on par with these leading models, but with the

added advantage of having a significantly shorter inference time and being capable of generating

longer samples in a fraction of the time. This combination of attributes establishes Ainur as a

competitive player in the text-to-music generation domain, delivering near real-time generation

with quality comparable to the industry’s best. The convergence of these factors makes Ainur

the most balanced choice for music generation, optimally blending speed and quality.

6.5 Summary of the Results

In the course of our comprehensive assessment of Ainur, we undertook an intrinsic evalua-

tion, scrutinizing the impact of various parameters and settings on the model’s performance,

followed by a comparative evaluation against some of the top text-to-music generation models.

Our findings yield meaningful insights into the performance of Ainur and how it measures up

against the state-of-the-art in music generation.

From our intrinsic evaluation, it was evident that the best Ainur model, defined as the one

which achieved the lowest training loss, offered the most balanced performance across various

metrics. This model was able to generate high-quality music with impressive audio and vocal

145

qualities, even with a limited number of diffusion steps. The inference time was also very

reasonable, which is vital for practical, real-world application.

Notably, the variation in the number of diffusion steps used during latent and decoding

stages had a surprisingly marginal impact on the quality of the generated music. This suggests

that Ainur converges quickly towards optimal results, potentially due to the influence of the

CLASP conditioning mechanism, which assists in the generation even with a limited number

of diffusion steps.

In the comparative evaluation, Ainur emerged as a compelling model for music genera-

tion, demonstrating performance on par with leading models such as Riffusion and MusicLM,

while outpacing these models in terms of inference time. Particularly noteworthy was Ainur’s

superiority to Jukebox in both quality of results and computational efficiency.

The findings also underlined the criticality of leveraging multiple evaluation metrics. This

was highlighted by the results from AudioLDM, which despite demonstrating incredible speed,

failed in generating high-quality samples, as indicated by its high FAD YAMNet score.

These results position Ainur as a significant contender in the realm of music generation.

It stands out as a model that does not just match its competitors in the quality of generated

music, but also excels in delivering this performance within a practical timeframe, which is a

decisive factor for real-world deployment.

The implications of these findings are far-reaching. They underscore the importance of

achieving an optimal balance between quality, computational efficiency, and generation speed

in music generation models. They also provide a roadmap for future work, underscoring the

146

potential benefits of leveraging effective conditioning mechanisms like CLASP and optimizing

the number of diffusion steps to achieve high-quality music generation without undue compu-

tational demands. For further insight and quantitative visualizations of these results, please

refer to Appendix A.

CHAPTER 7

FUTURE WORK

This chapter revisits the key findings from the previous chapters, providing a brief synopsis

while also outlining the areas of potential improvement and exploration for the Ainur model.

The Ainur model has proven to be a significant advancement in the field of music generation

AI, and this chapter will serve as a roadmap for future research and development, pushing the

boundaries of what has been achieved so far.

Ainur has convincingly demonstrated its knack for crafting high-quality music, spanning a

broad array of genres and styles. A key to its success lies in its unique hierarchical structure and

the incorporation of a latent diffusion prior. These innovative design elements empower Ainur

to model high-dimensional audio data and master the art of generating music within a compact,

low-dimensional space. This process culminates in creating high-fidelity stereo music, courtesy

of the diffusion decoding mechanism that restores the audio to its original high-dimensional

form.

Another notable feature of Ainur is its adept use of CLASP embeddings. These embed-

dings have showcased their potential in encoding multimodal information, providing a sturdy

launching pad for the music generation process. Coupled with the guiding influence of the text

descriptor’s cross-attention embeddings, Ainur has proven its adaptability to various real-world

applications and a range of downstream tasks. This conditionality ability to steer music gener-

147

148

ation based on the user’s multimodal input is a crucial aspect of Ainur. It takes Ainur beyond

being just an unconditional music generator, making it a valuable tool in the hands of its users.

While Ainur represents a commendable step towards generating music that’s virtually in-

distinguishable from compositions crafted by human hands, it’s clear that there is room for

improvement. In pursuing this higher standard, we identify several areas for potential enhance-

ment that we believe will further unlock Ainur’s capabilities in the future.

1. Improvements in model architecture:

• Improvements in the Ainur model’s architecture are potential avenues for future

exploration. One aspect that could benefit from further enhancement is the CLASP

embeddings. In this project, we utilized pre-trained CLASP embeddings, but fine-

tuning them more specifically on lyrics-audio tuples could potentially enhance the

model’s performance. This would result in a closer relationship between the lyrics

and the corresponding music, which is crucial for creating coherent musical pieces.

• Moreover, integrating different types of training optimization procedures could lead

to better results. For instance, exploring various loss functions for the diffusion

model, such as perceptual loss, may be beneficial [92]. This loss function could be

better suited for the characteristics of mel-spectrogram representations, thus poten-

tially improving the quality of generated music.

• Further, the diffusion model employed in Ainur could be replaced or distilled with

novel consistency models [97]. These models have the capability to perform the

diffusion process in a significantly fewer number of steps, thereby improving the speed

149

of the model without compromising on the quality. Additionally, the introduction of

different forms of noise during the diffusion process could be considered. For instance,

replacing Gaussian noise with pink noise [23], which exhibits a power intensity that is

perceptually more relevant and correlates with the mel-spectrogram representation,

might yield better results.

• Additionally, an exploration of varied input conditioning strategies could potentially

enhance multimodal feature learning capabilities. The impact of different methods

for integrating multimodal information, such as using solely cross-attention in a

unified embedding space or latent injection alone, warrants further investigation.

• Finally, there is potential to leverage the hierarchical design of Ainur further. By

incorporating additional levels, we could potentially further enhance the quality of

the music generated. This expanded structure might also provide an opportunity to

exploit various sequential stages of latent diffusion, akin to the hierarchical approach

used in Hierarchical VAE [105]. This could open up new avenues for refining the

performance of our model.

2. Expansion of training data:

• The capacity of the Ainur model can be further improved by utilizing a larger and

more diverse dataset. The current dataset, while sufficient for our study, is relatively

small. With a more comprehensive dataset, the model’s understanding of various

musical genres, languages, and cultural music forms can be enhanced.

150

• Moreover, there is scope for extending the CLASP framework to languages other

than English, which would significantly broaden the model’s applicability and reach.

3. Enhancements in evaluation metrics:

• We are keen on conducting a comprehensive subjective evaluation of Ainur’s perfor-

mance. While objective evaluations provide critical insights, they have their inherent

limitations, particularly in the field of audio generation. It is standard practice in

our domain to involve human participants in subjective evaluations, asking them to

score the perceived quality of the generated audio samples. This Mean Opinion Score

(MOS) [85], gathered via a Likert scale, offers valuable feedback from the end user’s

perspective. Therefore, we’re mapping out plans to conduct such human-centric

evaluations to refine further and assess the capabilities of Ainur.

• We also see an opportunity for introducing additional metrics to evaluate the model’s

performance. The current evaluation methods have their limitations, and integrating

multi-modal evaluation techniques could present a more holistic view of the model’s

capabilities. This, in turn, would inform better strategies for model improvement

and refinement.

4. Scalability and efficiency:

• The scalability and efficiency of the Ainur model present areas for further improve-

ment. By optimizing the model for distributed environments, the training time could

be reduced substantially, thereby increasing the model’s efficiency. Techniques for

151

improving the scalability of the model could be developed and explored in future

research.

• In our pursuit of heightened efficiency, we’re eager to delve into the potentials of

consistency models [97] as a substitute for our current diffusion model. By their

nature, consistency models could offer significant reductions in both training and

inference time without compromising the quality of Ainur’s musical output. Addi-

tionally, they present promising opportunities for better memory efficiency, allowing

for larger batch sizes during training and potentially leading to improved model per-

formance. All in all, this exploration constitutes a promising avenue for refining the

architectural design of Ainur and optimizing its algorithmic efficiency.

• On a similar note, we aim to increase the model’s efficiency in terms of energy con-

sumption. With the growing concerns around the environmental impact of machine

learning models, it’s imperative to develop more energy-efficient models. This could

involve exploring energy-efficient hardware or implementing software solutions to

optimize energy usage.

• Finally, we plan to explore hardware improvements that could further accelerate the

training process. This could include utilizing more powerful GPUs or exploring other

emerging hardware technologies.

5. Ethical and social considerations:

152

• The deployment of music generation AI like Ainur also brings forth several ethical

and social considerations. Issues related to copyright, authorship, and cultural ap-

propriation are some of the potential challenges that must be addressed. Future

work in this area should not only be focused on improving the technical aspects

of the model but also on developing guidelines to navigate these ethical and social

challenges.

CHAPTER 8

CONCLUSION

In this concluding chapter, we encapsulate the journey of our research, providing a succinct

overview of the problem we set out to solve, the means we employed to tackle it, and the

outcomes we achieved.

8.1 Summary of Research

Our investigation was prompted by the need to improve the quality of vocals generated

in the field of deep music generation. Despite the significant progress made in the realm of

image and text generation, music generation remains relatively underexplored and riddled with

challenges, particularly those related to data availability, high-dimensionality of audio data,

and the computational resources required. The main questions that shaped our exploration

were:

1. Which deep learning techniques can enhance the quality of generated vocals?

2. How can multimodal input conditioning strategies be used to create vocals congruent with

the theme and mood of the generated music?

3. Can transfer learning or pre-trained models ameliorate the quality of generated vocals,

and what would be the optimal approach for their application?

153

154

4. How do different multimodal input conditioning strategies, like amalgamating text, image,

and symbolic musical representations, influence the quality and diversity of the music

produced?

Addressing these research questions, we conducted an extensive empirical study, employing

various deep learning techniques and multimodal input conditioning strategies.

Our primary methodological approach was centered around developing Ainur, a deep learn-

ing model that leverages the power of a hierarchical structure and a latent diffusion prior. This

was supplemented with the utilization of Contrastive Lyrics-Audio Spectrogram Pre-training

(CLASP) embeddings, which enabled us to fuse multimodal information effectively.

The results of our research have been promising. Ainur demonstrated its ability to generate

high-quality raw music spanning various genres and styles. This was made possible by the

model’s capacity to handle high-dimensional audio data, a result of the hierarchical architecture

it employs, and the latent diffusion prior, which facilitates music generation in a compressed,

low-dimensional space. The incorporation of CLASP embeddings was instrumental in enabling

Ainur to encode multimodal information, initiating the music generation process.

While Ainur does not completely resolve the challenges of the lyrics-to-music generation

task, given the vocals remain somewhat unintelligible, its results nonetheless suggest that the

multimodal integration of lyrics-audio embeddings is a promising approach for enhancing the

quality and coherence of the generated music.

In light of these findings, we have made strides in addressing our research questions. We have

successfully employed deep learning techniques and multimodal input conditioning strategies to

155

improve the quality of vocals in music generation. We have also demonstrated the effectiveness

of transfer learning through the use of pre-trained models like CLASP embeddings. Finally,

our study has provided insights into the impact of multimodal input conditioning strategies on

the quality and diversity of generated music.

As a final note, it is important to mention that all the products of this research, including

pre-trained models and user interfaces, are made publicly available on a GitHub repository. This

initiative fosters openness and collaboration in the field of deep music generation, empowering

other researchers, practitioners, and users to build upon our work.

8.2 Discussion of the Results

As we move towards the conclusion of this research project, it is crucial to reflect upon and

synthesize the wealth of insights we have gleaned from our exploration and evaluation of Ainur,

a state-of-the-art model for text-to-music generation. It is important to tie these findings back

to our initial research questions, understand their broader implications, and trace how they

contribute to the field of deep music generation.

One of the primary areas of focus was the application of deep learning techniques to enhance

the quality of vocals. The results from our intrinsic evaluation provide a clear affirmation for

this approach. The best model distinguished itself through a balanced performance, produc-

ing vocals that were both high in quality and coherent with the input lyrics. These findings

speak volumes to the effectiveness of deep learning techniques, such as the CLASP conditioning

mechanism, in refining the vocal component of music generation, addressing our first research

question.

156

The second research question pertained to the role of multimodal input conditioning strate-

gies in shaping the theme and mood of the generated music. Here, the Lyrics CLASP con-

ditioning emerged as a significant player. Our evaluation demonstrated that embedding the

strength of text descriptors had a profound impact on the generation process, guiding the

diffusion in the latent space and accelerating the process to produce more coherent outputs.

Addressing our third research question, we examined the impact of transfer learning and

the application of pre-trained models on the quality of generated vocals. In our exploration,

Ainur serves as an exemplary testament to the effectiveness of this approach. The model is

founded on a series of pre-trained components: the CLASP is based on pre-trained CLIP, and

the base DAE of Ainur is also pre-trained. Furthermore, the text encoder is a frozen pre-

trained T5 transformer. By extensively and successfully integrating pre-trained models and

transfer learning, Ainur not only accelerates its training process but also significantly reduces

its environmental impact, underscoring the potent benefits of these methods in the realm of

deep music generation.

In terms of our fourth research question - the effect of diverse multimodal input conditioning

strategies on the quality and diversity of generated music - our evaluation threw light on several

significant insights. The intrinsic evaluation demonstrated that even with varying conditioning

mechanisms, the quality of results did not fluctuate dramatically, suggesting that the model

could maintain a steady performance across different multimodal inputs. However, it is essential

to note that the Lyrics conditioning did stand out, yielding slightly better inference time.

157

The evaluation of Ainur presented a profound understanding of the model’s capabilities and

demonstrated its promising potential in the field of text-to-music generation. As outlined in the

intrinsic evaluation, Ainur showcases both high-quality generation performance and a distinct

capability to balance various factors such as quality, coherence, and inference time.

A remarkable highlight from the intrinsic evaluation was the impressive performance of the

best model. By reaching its peak at 581 training epochs, this model achieved a loss of 0.135

and exhibited high performance even with just 20 diffusion steps. What sets this model apart is

its ability to provide high audio quality and vocal fidelity, whilst ensuring a strong correlation

between input lyrics and the music generated. This balance is a testament to the efficacy of

the model’s architecture and the CLASP conditioning mechanism.

The varying number of diffusion steps tested revealed that the model performs optimally

at 50 steps. Despite increasing the number of steps further to 100, there were no significant

improvements to the quality of the music generated. This suggests that the model quickly con-

verges to producing high-quality results and indicates that the CLASP conditioning mechanism

can influence the generation even with a relatively small number of diffusion steps.

The comparative evaluation further consolidated Ainur’s standing in the realm of music

generation. It displayed strong results, competing with state-of-the-art models while outper-

forming them in terms of inference time. Remarkably, Ainur managed to generate high-quality

music in near-real-time, a feat unmatched by many of the tested models.

158

However, the evaluation also illuminated areas for potential improvement. For instance,

the FAD VGGish and FAD YAMNet metrics for Ainur were not the lowest among the models

tested. Future work could, therefore, aim to enhance the model’s performance in these areas.

These results hold significant implications for Ainur and the broader field of music gener-

ation. Firstly, Ainur’s ability to rapidly generate high-quality music, while ensuring coherence

with the input lyrics, makes it a powerful tool for various applications, from aiding composers

to providing a unique user-driven music experience. Secondly, the evaluations have shown that

Ainur’s novel architecture and the use of the CLASP conditioning mechanism could serve as a

blueprint for future models in the domain. Finally, the findings also highlight the importance

of a balanced evaluation framework, considering not only objective quality metrics but also

coherence and inference time.

The implications of these findings extend far beyond the realm of Ainur. They pave the way

for a better understanding of how deep learning techniques and multimodal input conditioning

strategies can be harnessed to improve music generation. This research also underlines the

importance of a balanced model, one that can negotiate the delicate act of producing high-

quality output while ensuring efficient generation times.

8.3 Key Contributions

This research has made notable strides in the arena of deep music generation, introducing

innovative methodologies and expanding the horizons of the field. Each contribution, outlined

below, marks a step forward in the quest for high-quality music generation and provides a

robust foundation for future investigations.

159

• CLASP model and embeddings: The cornerstone of our work is the adaptation and

application of the Contrastive LyricsAudio Spectrogram Pre-training (CLASP) model and

embeddings for multimodal conditioning. CLASP, a specialized adaptation of CLIP for

the music domain, efficiently processes lyrics as natural language and audio spectrograms

to create a comprehensive multimodal representation of the data. This novel approach

breaks new ground in the field, allowing for the synthesis of diverse data modalities to

enhance the music generation process.

• Hierarchical diffusion model: We have introduced a novel extension of a diffusion

autoencoder architecture into a hierarchical diffusion model. This innovative model uses

conditional information to guide the generation process in the latent space and then se-

quentially cascades the reconstructed information to yield high-dimensional, high-quality

output. This pioneering approach enriches the quality of the generated music, bringing

an added layer of sophistication to the music generation process.

• Single GPU inference and training: Ainur’s implementation signifies a major step

towards making advanced music generation techniques more accessible. Specifically de-

signed to be trained and utilized on single, consumer-grade GPUs, our model mitigates

the necessity for colossal computational resources often associated with such tasks. This

design choice not only makes the model practically deployable, but also ensures its ac-

cessibility to a wider research community. The goal is to foster further research and

improvements in this area, making state-of-the-art music generation models not just a

theoretical possibility, but a practical reality. Despite these constraints, Ainur still deliv-

160

ers impressively low inference times and high-quality outputs, reinforcing its value as a

robust and efficient tool for music generation.

• Lyrics-to-music generation: Our research has birthed Ainur, one of the few existing

deep learning models that specifically target improving the quality of vocals in the field of

deep music generation. By focusing on the challenging task of lyrics-to-music generation,

Ainur is a significant contribution to the field. We anticipate that our work with Ainur

will inspire further exploration in this direction, catalyzing advancements in the field.

• C3 and FAD evaluation metrics: Our research introduces the C3 evaluation metric

and the FAD evaluation with the YAMNet model serving as an embedding model refer-

ence. These objective metrics correlate with human perception, providing a solid base

for evaluating deep music generation models. Introducing these evaluation methods es-

tablishes a common platform for comparison and assessment, promoting uniformity and

accuracy in the evaluation process.

In summary, our research paves the way for further advancements in the field of deep music

generation, contributing innovative approaches, practical tools, and standardized evaluation

methods. We hope that these contributions will stimulate ongoing innovation and exploration

in this exciting domain.

8.4 Limitations

Despite the accomplishments and breakthroughs achieved by this research, it is critical to

openly acknowledge and address its limitations and the ethical considerations inherent to deep

music generation and the use of the Ainur model.

161

Firstly, Ainur’s performance, like any deep learning model, depends on the quality and

diversity of the data it is trained on. While we have endeavored to provide as varied and

extensive a dataset as possible, inherent biases in the data could potentially limit the diversity

of the music Ainur can generate. Furthermore, the quality of the generated audio is limited by

the resolution of the audio data in the training set.

Secondly, the scalability and efficiency of Ainur, though considerably improved, still pose

a challenge. The computational requirements for training such a model are substantial, ne-

cessitating high-performance hardware, which might not be readily available to all researchers.

Additionally, Ainur requires a considerable amount of time to generate music, which might limit

its use in real-time applications.

From an ethical perspective, the possibility of generating indistinguishable music from

human-composed music raises important questions. On the one hand, Ainur can be a valu-

able tool for music creation, enabling artists to explore new musical ideas or aiding in music

education. However, on the other hand, it is crucial to ensure that such technology is not used

to infringe on the rights of artists by plagiarizing their work or devaluing their creative efforts

by flooding the market with AI-generated music. The responsibility to use Ainur ethically rests

with the end users, and proper guidelines and safeguards must be in place to prevent misuse.

Lastly, the open-source nature of Ainur, while promoting collaboration and transparency in

research, also opens the door for potential misuse. In the wrong hands, this technology could

be used unethically or maliciously. Therefore, it is imperative that the use of Ainur is governed

by a comprehensive set of ethical guidelines.

162

In summary, while this research has made significant strides in the field of deep music gener-

ation, there is still a clear path ahead filled with challenges and opportunities. By recognizing

and addressing these limitations and ethical considerations, we can ensure that our journey

forward is not only scientifically rigorous but also ethically sound.

APPENDICES

163

164

Appendix A

AUXILIARY RESULTS

In light of the results discussed in Table IV, we supplement these findings with additional

plots to better illustrate the intrinsic comparison between different iterations of the Ainur model.

Our evaluation of the quality of generated music and vocals was grounded in the FAD metric,

using different reference embedding models, namely VGGish, Trill, and YAMNet. To streamline

the understanding of these results, we introduce a metric called the normalized FAD (NFAD),

which offers a straightforward and insightful gauge of the overall quality of the produced music.

NFAD is a normalized average of the ensemble of reference embedding models used. It

yields a value between 0 and 1, with a lower NFAD indicating superior overall quality of the

generated music. Given m configurations cj (defined by model type, conditioning mechanism,

number of diffusion steps) and n reference embedding models used to compute the FADEi
(e.g.,

E0 = VGGish), we compute the NFAD for a given music sample x as follows:

NFADcj =
1

n

nX

i=0

S

WWWU
FAD

cj
Ei
(x)

max
cú
j œc

(FAD
cú
j

Ei
(x))

T

XXXV (A.1)

In this equation, NFADcj represents the value of the normalized FAD with the configuration of

parameters cj, and FAD
cj
Ei

represents the value of the FAD metric using the reference embedding

model Ei and the configuration of parameters cj. To put it concisely, NFAD is a normalized and

165

Appendix A (continued)

Figure 17: Intrinsic quality evaluation of Ainur.

averaged version of the FAD across different embedding models and configurations, offering a

user-friendly, comprehensive indicator of overall music quality.

Figure 17 and Figure 18 present the intrinsic evaluation measures NFAD and C3, respec-

tively. In Figure 17, we compare the best (model that achieved the lowest loss during training)

and the last (model that underwent the maximum number of training epochs) in terms of

the computed NFAD, as described in Equation A.1. The models are grouped according to the

type of conditioning mechanism employed (lyrics, audio, or no CLASP conditioning), and the

results are represented for an escalating number of diffusion steps (20, 50, and 100). The figure

166

Appendix A (continued)

Figure 18: Intrinsic coherence evaluation of Ainur.

reveals that the best model consistently outperforms the last model in each configuration,

as evidenced by a lower NFAD. Of all configurations, the best model with 50 diffusion steps

demonstrates the highest performance. Intriguingly, an increase in the number of diffusion steps

does not correlate directly with an enhancement in generated music quality.

Figure 18 concentrates on the model’s performance concerning the coherence of the gen-

erated music, as measured by the C3 metric. The model scrutinized here employs the lyrics

CLASP conditioning mechanism. The C3 value is computed between the text embeddings of

conditioning lyrics and the audio embeddings of the music generated using this conditioning

167

Appendix A (continued)

Figure 19: Intrinsic inference time benchmark of Ainur.

mechanism. This visualization demonstrates that the highest similarity is achieved with just

20 diffusion steps, contradicting the assumption that increasing the number of diffusion steps

leads to improved coherence in the results.

In the subsequent analysis, we focused on gauging the inference speed needed for various

Ainur models to generate a single music sample. Using the data provided in Table V, Figure 19

and Figure 20 provide an overview and a more detailed account, respectively, of the intrinsic

inference time benchmark. Figure 19 displays the time in seconds required for Ainur to generate

168

Appendix A (continued)

Figure 20: Detailed intrinsic inference time benchmark of Ainur.

music. The results are grouped by different conditioning mechanisms and an increasing number

of diffusion steps. As can be anticipated, the time required for generating a music sample

increases linearly with the number of diffusion steps.

For a more granular analysis, Figure 20 presents the inference time using different time scales

for each group of diffusion steps. The CLASP lyrics conditioning mechanism consistently results

in a shorter inference time, suggesting that this approach facilitates faster model convergence,

and thus, more time-efficient sample production.

169

Appendix A (continued)

Based on the aforementioned results, we have distinguished two optimal configurations of

the Ainur model. These are:

• Ainur:

– Utilizes the best model variant

– Incorporates 50 diffusion steps

– Distinguished for generating samples of superior quality

• Ainur (FAST):

– Employs the best model variant

– Incorporates 20 diffusion steps

– Noted for its exceptional efficiency in terms of inference time

Next, we undertook a comparative analysis of the inference time and quality of our proposed

Ainur models against several contemporary leaders in the field of text-to-music generation. This

analysis is predicated on the data highlighted in Table VI, from which we formulated the plots

exhibited in Figure 21 and Figure 22.

Interestingly, Ainur’s efficiency becomes particularly apparent when considering the genera-

tion of music samples of 22 seconds in duration. Many leading models in the field are challenged

in generating music of this length in a timely manner. For instance, OpenAI’s Jukebox requires

approximately 9 minutes to produce just a single second of music. Similarly, Google’s Musi-

cLM demands in excess of 3 minutes to generate a mere 5 seconds of audio. As illustrated in

170

Appendix A (continued)

Figure 21: Inference time comparative benchmark.

Figure 21, when it comes to speed, Ainur (FAST) is only outpaced by AudioLDM. Although

Riffusion is faster than Ainur, its capabilities are limited to generating songs of only 5 seconds

in length.

When evaluating audio quality, Figure 22 demonstrates that Riffusion is currently unsur-

passed. However, both the Ainur and Ainur (FAST) models outperform all other contenders.

This remarkable balance of speed and quality positions Ainur as a leading choice in the current

landscape of state-of-the-art models for text-to-music generation.

171

Appendix A (continued)

Figure 22: Quality comparative evaluation.

172

Appendix B

CLASP STATISTICAL SIGNIFICANCE

The paired bootstrap test [45] is a robust statistical procedure designed to measure the

significance of differences between two models. The test is based on the concept of resampling

and provides an empirical estimate of the sampling distribution of a statistic, notably when the

theoretical distribution is unknown or hard to derive.

In a paired bootstrap test, the test statistic of interest is calculated on a large number

of bootstrap samples, which are created by randomly sampling pairs of observations (with

replacement) from the original dataset. This process, performed numerous times, allows us to

form an approximation of the sampling distribution of the statistic and calculate confidence

intervals or p-values.

The basic mechanism of the paired bootstrap test can be expressed as follows:

1. We draw a random sample of paired observations (xi, yi) with replacement from our

original data of size n.

2. We calculate the statistic (e.g., mean, median) of interest on this bootstrap sample and

record it.

3. We repeat this process B times to form a bootstrap distribution of our statistic of interest.

4. From this distribution, we calculate the p-value or confidence interval.

173

Appendix B (continued)

Mathematically, the p-value is defined as the proportion of times the observed test statistic

in the bootstrap sample exceeds the test statistic calculated from the original sample:

p-value =
1

B

BX

i=1

!
δ(x(i))- δ(x) Ø 0

"
(B.1)

where δ(x) represents the difference in the observed test statistic of the two models and

δ(x(i)) is the difference in the bootstrap test statistic, (·) is the indicator function, and B is

the number of bootstrap samples.

In a paired bootstrap test, the test statistic of interest is calculated on a large number

of bootstrap samples, which are created by randomly sampling pairs of observations (with

replacement) from the original dataset. This process, performed numerous times, allows us to

form an approximation of the sampling distribution of the statistic and calculate confidence

intervals or p-values.

In the case of a paired bootstrap test, the p-value is computed differently than the conven-

tional procedure. The paired bootstrap p-value is calculated using the following formula:

p-value =
1

B

BX

i=1

!
δ(x(i)) Ø 2δ(x)

"
(B.2)

In this study, we focus on the hypothesis test defined as follows:

H0: Model A (Ainur model with lyrics CLASP conditioning) is not better than

Model B (Ainur model with no CLASP conditioning)

174

Appendix B (continued)

To evaluate the quality of the generated samples, we have used the FAD Trill metric, and we

have computed the differences (or deltas) of the FAD Trill between the two models over the

evaluation dataset.

Following the paired bootstrap methodology, we performed the bootstrap process B = 100

times to obtain a p-value. For this hypothesis test, we considered a significance level of 0.05,

corresponding to 95% confidence. The resulting p-value from our bootstrap test was 0.0314.

Given that this p-value is less than our significance level of 0.05, we have sufficient evidence

to reject the null hypothesis. Therefore, we can confidently conclude that Model A (Ainur

model with lyrics CLASP conditioning) is indeed superior to Model B (Ainur model with no

CLASP conditioning).

CITED LITERATURE

1. Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A., Huang, Q.,
Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M., Zeghidour, N., and Frank,
C.: MusicLM: Generating Music From Text, January 2023. arXiv:2301.11325 [cs,
eess].

2. Andreev, P., Alanov, A., Ivanov, O., and Vetrov, D.: HiFi++: a Unified Frame-
work for Bandwidth Extension and Speech Enhancement, September 2022.
arXiv:2203.13086 [cs, eess] version: 2.

3. Belikov, I.: Mubert - Thousands of Staff-Picked Royalty-Free Music Tracks for Streaming,
Videos, Podcasts, Commercial Use and Online Content, January 2023.

4. Bertin-Mahieux, T., Ellis, D. P. W., Whitman, B., and Lamere, P.: The Million Song
Dataset. pages 591–596, 2011.

5. Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E., Pietquin, O., Sharifi, M., Teboul,
O., Grangier, D., Tagliasacchi, M., and Zeghidour, N.: AudioLM: a Language
Modeling Approach to Audio Generation, September 2022. arXiv:2209.03143 [cs,
eess].

6. Briot, J.-P., Hadjeres, G., and Pachet, F.-D.: Deep Learning Techniques for Music Gen-
eration – A Survey, August 2019. arXiv:1709.01620 [cs] version: 4.

7. Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., and Lerchner,
A.: Understanding disentangling in β-VAE, April 2018. arXiv:1804.03599
[cs, stat].

8. Caillon, A. and Esling, P.: RAVE: A variational autoencoder for fast and high-quality
neural audio synthesis, December 2021. arXiv:2111.05011 [cs, eess].

9. Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and Chan, W.: WaveGrad:
Estimating Gradients for Waveform Generation, October 2020. arXiv:2009.00713
[cs, eess, stat].

175

176

CITED LITERATURE (continued)

10. Decorsière, R., Søndergaard, P. L., MacDonald, E. N., and Dau, T.: Inversion of Au-
ditory Spectrograms, Traditional Spectrograms, and Other Envelope Represen-
tations. IEEE/ACM Transactions on Audio, Speech, and Language Processing ,
23(1):46–56, January 2015. Conference Name: IEEE/ACM Transactions on Audio,
Speech, and Language Processing.

11. Defferrard, M., Benzi, K., Vandergheynst, P., and Bresson, X.: FMA: A Dataset For
Music Analysis, September 2017. arXiv:1612.01840 [cs].

12. Deltorn, J.-M.: Deep Creations: Intellectual Property and the Automata. Frontiers in
Digital Humanities , 4, February 2017.

13. Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I.: Jukebox:
A Generative Model for Music, April 2020. arXiv:2005.00341 [cs, eess, stat].

14. Dhariwal, P. and Nichol, A.: Diffusion Models Beat GANs on Image Synthesis, June 2021.
arXiv:2105.05233 [cs, stat].

15. Dinh, L., Sohl-Dickstein, J., and Bengio, S.: Density estimation using Real NVP, February
2017. arXiv:1605.08803 [cs, stat].

16. Donahue, C., Mao, H. H., and McAuley, J.: The NES Music Database: A
multi-instrumental dataset with expressive performance attributes, June 2018.
arXiv:1806.04278 [cs, eess] version: 1.

17. Donahue, C., McAuley, J., and Puckette, M.: Adversarial Audio Synthesis, February 2019.
arXiv:1802.04208 [cs] version: 3.

18. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N.: An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale, June 2021. arXiv:2010.11929 [cs] version: 2.

19. Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and Roberts, A.: GAN-
Synth: Adversarial Neural Audio Synthesis, April 2019. arXiv:1902.08710 [cs, eess,
stat] version: 2.

20. Engel, J., Hantrakul, L., Gu, C., and Roberts, A.: DDSP: Differentiable Digital Signal
Processing, January 2020. arXiv:2001.04643 [cs, eess, stat] version: 1.

177

CITED LITERATURE (continued)

21. Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., and Norouzi,
M.: Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders, April
2017. arXiv:1704.01279 [cs].

22. Falcon, W. and team, T. P. L.: PyTorch Lightning, April 2023.

23. Fernandez, J. D. and Vico, F.: AI Methods in Algorithmic Composition: A Comprehensive
Survey. Journal of Artificial Intelligence Research , 48:513–582, November 2013.
arXiv:1402.0585 [cs].

24. Franceschelli, G. and Musolesi, M.: Copyright in generative deep learning. Data & Policy
, 4:e17, 2022.

25. Freivalds, K., Ozoli, E., and ostaks, A.: Neural Shuffle-Exchange Networks – Sequence
Processing in O(n log n) Time, October 2019. arXiv:1907.07897 [cs] version: 3.

26. Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C.,
Plakal, M., and Ritter, M.: Audio Set: An ontology and human-labeled dataset
for audio events. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) , pages 776–780, New Orleans, LA, March 2017.
IEEE.

27. Germain, M., Gregor, K., Murray, I., and Larochelle, H.: MADE: Masked Autoencoder
for Distribution Estimation, June 2015. arXiv:1502.03509 [cs, stat].

28. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y.: Generative Adversarial Networks, June 2014.
arXiv:1406.2661 [cs, stat].

29. Hadjeres, G. and Crestel, L.: Vector Quantized Contrastive Predictive Coding for
Template-based Music Generation, April 2020. arXiv:2004.10120 [cs, eess] ver-
sion: 1.

30. Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., Elsen,
E., Engel, J., and Eck, D.: Enabling Factorized Piano Music Modeling and Gen-
eration with the MAESTRO Dataset, January 2019. arXiv:1810.12247 [cs, eess,
stat].

31. Heichler, J.: Introduction to BeeGFS. November 2014.

178

CITED LITERATURE (continued)

32. Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C.,
Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J., and
Wilson, K.: CNN Architectures for Large-Scale Audio Classification, January
2017. arXiv:1609.09430 [cs, stat].

33. Hiller, J. and Isaacson, L. M.: Musical Composition with a High-Speed Digital Computer.
Journal of the Audio Engineering Society , 6(3):154–160, July 1958. Publisher:
Audio Engineering Society.

34. Hilmkil, A., Thomé, C., and Arpteg, A.: Perceiving Music Quality with GANs, April
2021. arXiv:2006.06287 [cs, eess] version: 2.

35. Ho, J., Jain, A., and Abbeel, P.: Denoising Diffusion Probabilistic Models, December
2020. arXiv:2006.11239 [cs, stat] version: 2.

36. Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and Salimans, T.: Cascaded Diffu-
sion Models for High Fidelity Image Generation, December 2021. arXiv:2106.15282
[cs].

37. Ho, J. and Salimans, T.: Classifier-Free Diffusion Guidance, July 2022. arXiv:2207.12598
[cs].

38. Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling, M.: Argmax Flows
and Multinomial Diffusion: Learning Categorical Distributions, October 2021.
arXiv:2102.05379 [cs, stat].

39. Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai,
A. M., Hoffman, M. D., Dinculescu, M., and Eck, D.: Music Transformer, Decem-
ber 2018. arXiv:1809.04281 [cs, eess, stat].

40. Huang, Q., Jansen, A., Lee, J., Ganti, R., Li, J. Y., and Ellis, D. P. W.: MuLan: A Joint
Embedding of Music Audio and Natural Language, August 2022. arXiv:2208.12415
[cs, eess, stat].

41. Huang, Q., Park, D. S., Wang, T., Denk, T. I., Ly, A., Chen, N., Zhang, Z., Zhang,
Z., Yu, J., Frank, C., Engel, J., Le, Q. V., Chan, W., Chen, Z., and Han, W.:
Noise2Music: Text-conditioned Music Generation with Diffusion Models, March
2023. arXiv:2302.03917 [cs, eess].

179

CITED LITERATURE (continued)

42. Huang, R., Lam, M. W. Y., Wang, J., Su, D., Yu, D., Ren, Y., and Zhao, Z.: FastDiff: A
Fast Conditional Diffusion Model for High-Quality Speech Synthesis, April 2022.
arXiv:2204.09934 [cs, eess] version: 1.

43. Hung, H.-T., Wang, C.-Y., Yang, Y.-H., and Wang, H.-M.: Improving Auto-
matic Jazz Melody Generation by Transfer Learning Techniques, August 2019.
arXiv:1908.09484 [cs, eess] version: 1.

44. Ji, S., Luo, J., and Yang, X.: A Comprehensive Survey on Deep Music Generation: Multi-
level Representations, Algorithms, Evaluations, and Future Directions, November
2020. arXiv:2011.06801 [cs, eess].

45. Jurafsky, D. and Martin, J. H.: Speech and language processing (3rd (draft) ed.), 2019.

46. Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E.,
Stimberg, F., Oord, A. v. d., Dieleman, S., and Kavukcuoglu, K.: Efficient Neural
Audio Synthesis, June 2018. arXiv:1802.08435 [cs, eess] version: 2.

47. Karras, T., Laine, S., and Aila, T.: A Style-Based Generator Architecture for Generative
Adversarial Networks, March 2019. arXiv:1812.04948 [cs, stat].

48. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T.: Analyzing and
Improving the Image Quality of StyleGAN. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) , pages 8107–8116, Seattle,
WA, USA, June 2020. IEEE.

49. Kilgour, K., Zuluaga, M., Roblek, D., and Sharifi, M.: Fr\’echet Audio Distance: A Metric
for Evaluating Music Enhancement Algorithms, January 2019. arXiv:1812.08466
[cs, eess].

50. Kingma, D. P. and Dhariwal, P.: Glow: Generative Flow with Invertible 1x1 Convolutions,
July 2018. arXiv:1807.03039 [cs, stat].

51. Kingma, D. P. and Welling, M.: Auto-Encoding Variational Bayes, December 2022.
arXiv:1312.6114 [cs, stat].

52. Kong, J., Kim, J., and Bae, J.: HiFi-GAN: Generative Adversarial Networks for Efficient
and High Fidelity Speech Synthesis, October 2020. arXiv:2010.05646 [cs, eess]
version: 2.

180

CITED LITERATURE (continued)

53. Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.: DiffWave: A Versatile
Diffusion Model for Audio Synthesis, March 2021. arXiv:2009.09761 [cs, eess, stat]
version: 3.

54. Kreuk, F., Synnaeve, G., Polyak, A., Singer, U., Défossez, A., Copet, J., Parikh, D., Taig-
man, Y., and Adi, Y.: AudioGen: Textually Guided Audio Generation, September
2022. arXiv:2209.15352 [cs, eess].

55. Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing
Systems , volume 25. Curran Associates, Inc., 2012.

56. Kumar, K., Kumar, R., de Boissiere, T., Gestin, L., Teoh, W. Z., Sotelo, J., de Brebisson,
A., Bengio, Y., and Courville, A.: MelGAN: Generative Adversarial Networks
for Conditional Waveform Synthesis, December 2019. arXiv:1910.06711 [cs, eess]
version: 3.

57. Law, E., West, K., and Mandel, M.: EVALUATION OF ALGORITHMS USING GAMES:
THE CASE OF MUSIC TAGGING. Oral Session , 2009.

58. Lee, C. Y., Toffy, A., Jung, G. J., and Han, W.-J.: Conditional WaveGAN, September
2018. arXiv:1809.10636 [cs] version: 1.

59. Lipton, Z. C., Berkowitz, J., and Elkan, C.: A Critical Review of Recurrent Neural
Networks for Sequence Learning, October 2015. arXiv:1506.00019 [cs] version: 4.

60. Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D., Wang, W., and Plumbley,
M. D.: AudioLDM: Text-to-Audio Generation with Latent Diffusion Models, Jan-
uary 2023. arXiv:2301.12503 [cs, eess].

61. Lu, W.-T., Wu, M.-H., Chiu, Y.-M., and Su, L.: Actions Speak Louder than Listening:
Evaluating Music Style Transfer based on Editing Experience. In Proceedings
of the 29th ACM International Conference on Multimedia , pages 3936–3944,
October 2021. arXiv:2110.12855 [cs, eess].

62. Maina, K.: Msanii: High Fidelity Music Synthesis on a Shoestring Budget, January 2023.
arXiv:2301.06468 [cs, eess] version: 1.

63. Martiros, S. F. a. H.: Riffusion, December 2022.

181

CITED LITERATURE (continued)

64. Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A., and
Bengio, Y.: SampleRNN: An Unconditional End-to-End Neural Audio Generation
Model, February 2017. arXiv:1612.07837 [cs] version: 2.

65. Meng, C., Rombach, R., Gao, R., Kingma, D. P., Ermon, S., Ho, J., and Salimans, T.: On
Distillation of Guided Diffusion Models, November 2022. arXiv:2210.03142 [cs].

66. Michelashvili, M. and Wolf, L.: Hierarchical Timbre-Painting and Articulation Generation,
September 2020. arXiv:2008.13095 [cs, eess] version: 2.

67. Murphy, K. P.: Probabilistic machine learning: an introduction . Adaptive computation
and machine learning series. Cambridge, Massachusetts, The MIT Press, 2022.

68. Nagarajan, S., Nettimi, S. S. S., Kumar, L. S., Nath, M. K., and Kanhe, A.: Speech emo-
tion recognition using cepstral features extracted with novel triangular filter banks
based on bark and ERB frequency scales. Digital Signal Processing , 104:102763,
September 2020.

69. Natsiou, A. and O’Leary, S.: Audio representations for deep learning in sound synthesis:
A review, January 2022. arXiv:2201.02490 [cs, eess].

70. Nichol, A. and Dhariwal, P.: Improved Denoising Diffusion Probabilistic Models, February
2021. arXiv:2102.09672 [cs, stat].

71. Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,
N., Senior, A., and Kavukcuoglu, K.: WaveNet: A Generative Model for Raw
Audio, September 2016. arXiv:1609.03499 [cs] version: 2.

72. Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K.: Pixel Recurrent Neural Networks,
August 2016. arXiv:1601.06759 [cs].

73. Oord, A. v. d., Vinyals, O., and Kavukcuoglu, K.: Neural Discrete Representation Learn-
ing, May 2018. arXiv:1711.00937 [cs].

74. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, Shazeer, N., Ku, A., and Tran, D.: Image
Transformer, June 2018. arXiv:1802.05751 [cs].

75. Pasini, M. and Schlüter, J.: Musika! Fast Infinite Waveform Music Generation, August
2022. arXiv:2208.08706 [cs, eess] version: 1.

182

CITED LITERATURE (continued)

76. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.:
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Ad-
vances in Neural Information Processing Systems , volume 32. Curran Associates,
Inc., 2019.

77. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., and Lischinski, D.: StyleCLIP:
Text-Driven Manipulation of StyleGAN Imagery. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) , pages 2065–2074, Montreal, QC,
Canada, October 2021. IEEE.

78. Ping, W., Peng, K., Gibiansky, A., Arik, S. O., Kannan, A., Narang, S., Raiman, J., and
Miller, J.: Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence
Learning, February 2018. arXiv:1710.07654 [cs, eess].

79. Preechakul, K., Chatthee, N., Wizadwongsa, S., and Suwajanakorn, S.: Diffusion
Autoencoders: Toward a Meaningful and Decodable Representation. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
, pages 10609–10619, June 2022. ISSN: 2575-7075.

80. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I.: Learning
Transferable Visual Models From Natural Language Supervision, February 2021.
arXiv:2103.00020 [cs].

81. Raffel, C.: Learning-Based Methods for Comparing Sequences, with Applications to
Audio-to-MIDI Alignment and Matching. 2016.

82. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., and Liu, P. J.: Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer, July 2020. arXiv:1910.10683 [cs, stat].

83. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.: Hierarchical Text-
Conditional Image Generation with CLIP Latents, April 2022. arXiv:2204.06125
[cs].

84. Razavi, A., Oord, A. v. d., and Vinyals, O.: Generating Diverse High-Fidelity Images
with VQ-VAE-2, June 2019. arXiv:1906.00446 [cs, stat].

183

CITED LITERATURE (continued)

85. Rec, I.: P. 800: Methods for subjective determination of transmission quality. International
Telecommunication Union, Geneva , 22, 1996.

86. Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y.: FastSpeech 2: Fast
and High-Quality End-to-End Text to Speech, August 2022. arXiv:2006.04558 [cs,
eess] version: 8.

87. Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y.: FastSpeech:
Fast, Robust and Controllable Text to Speech, November 2019. arXiv:1905.09263
[cs, eess] version: 5.

88. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B.: High-Resolution
Image Synthesis with Latent Diffusion Models, April 2022. arXiv:2112.10752 [cs].

89. Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomed-
ical Image Segmentation, May 2015. arXiv:1505.04597 [cs].

90. Salimans, T. and Ho, J.: Progressive Distillation for Fast Sampling of Diffusion Models,
June 2022. arXiv:2202.00512 [cs, stat].

91. Schneider, F.: ArchiSound: Audio Generation with Diffusion. January 2023.

92. Schneider, F., Jin, Z., and Schölkopf, B.: Mo\^usai: Text-to-Music Generation with
Long-Context Latent Diffusion, January 2023. arXiv:2301.11757 [cs, eess].

93. Serrà, J., Pascual, S., and Segura, C.: Blow: a single-scale hyperconditioned flow for
non-parallel raw-audio voice conversion, September 2019. arXiv:1906.00794 [cs,
eess, stat] version: 2.

94. Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y.,
Wang, Y., Skerry-Ryan, R. J., Saurous, R. A., Agiomyrgiannakis, Y., and Wu, Y.:
Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions,
February 2018. arXiv:1712.05884 [cs] version: 2.

95. Shor, J., Jansen, A., Maor, R., Lang, O., Tuval, O., Quitry, F. d. C., Tagliasacchi, M.,
Shavitt, I., Emanuel, D., and Haviv, Y.: Towards Learning a Universal Non-
Semantic Representation of Speech. In Interspeech 2020 , pages 140–144, October
2020. arXiv:2002.12764 [cs, eess, stat].

184

CITED LITERATURE (continued)

96. Song, J., Meng, C., and Ermon, S.: Denoising Diffusion Implicit Models, October 2022.
arXiv:2010.02502 [cs] version: 4.

97. Song, Y., Dhariwal, P., Chen, M., and Sutskever, I.: Consistency Models, March 2023.
arXiv:2303.01469 [cs, stat] version: 1.

98. Stoller, D., Tian, M., Ewert, S., and Dixon, S.: Seq-U-Net: A One-Dimensional Causal
U-Net for Efficient Sequence Modelling, November 2019. arXiv:1911.06393 [cs,
eess, stat] version: 1.

99. Sturm, B. L.: The GTZAN dataset: Its contents, its faults, their effects on evaluation,
and its future use. Journal of New Music Research , 43(2):147–172, April 2014.
arXiv:1306.1461 [cs].

100. Tensorflow: YAMNet, 2020.

101. Theis, L., Oord, A. v. d., and Bethge, M.: A note on the evaluation of generative models,
November 2015. arXiv:1511.01844 [cs, stat] version: 1.

102. Tokui, N.: Towards democratizing music production with AI-Design of Varia-
tional Autoencoder-based Rhythm Generator as a DAW plugin, April 2020.
arXiv:2004.01525 [cs, eess] version: 1.

103. Tomczak, J. M.: Deep Generative Modeling . Cham, Springer International Publishing,
2022.

104. Uria, B., Côté, M.-A., Gregor, K., Murray, I., and Larochelle, H.: Neural Autoregressive
Distribution Estimation, May 2016. arXiv:1605.02226 [cs].

105. Vahdat, A. and Kautz, J.: NVAE: A Deep Hierarchical Variational Autoencoder, January
2021. arXiv:2007.03898 [cs, stat].

106. Vasquez, S. and Lewis, M.: MelNet: A Generative Model for Audio in the Frequency
Domain, June 2019. arXiv:1906.01083 [cs, eess, stat] version: 1.

107. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I.: Attention Is All You Need, December 2017. arXiv:1706.03762
[cs].

185

CITED LITERATURE (continued)

108. Wang, Y., Skerry-Ryan, R. J., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z.,
Xiao, Y., Chen, Z., Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark, R., and
Saurous, R. A.: Tacotron: Towards End-to-End Speech Synthesis, April 2017.
arXiv:1703.10135 [cs] version: 2.

109. Watcharasupat, K. N. and Lerch, A.: Evaluation of Latent Space Disentanglement in the
Presence of Interdependent Attributes, October 2021. arXiv:2110.05587 [cs, eess,
math] version: 1.

110. Yamamoto, R., Song, E., and Kim, J.-M.: Parallel WaveGAN: A fast waveform generation
model based on generative adversarial networks with multi-resolution spectrogram,
February 2020. arXiv:1910.11480 [cs, eess] version: 2.

111. Yang, D., Yu, J., Wang, H., Wang, W., Weng, C., Zou, Y., and Yu, D.: Diffsound: Discrete
Diffusion Model for Text-to-sound Generation, July 2022. arXiv:2207.09983 [cs,
eess].

112. Yoo, A. B., Jette, M. A., and Grondona, M.: Slurm: Simple linux utility for resource
management. In Job Scheduling Strategies for Parallel Processing: 9th Interna-
tional Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper
9 , pages 44–60. Springer, 2003.

113. Youngberg, J. and Boll, S.: Constant-Q signal analysis and synthesis. In ICASSP ’78.
IEEE International Conference on Acoustics, Speech, and Signal Processing ,
volume 3, pages 375–378, Tulsa, Oklahoma, 1978. Institute of Electrical and Elec-
tronics Engineers.

114. Yu, F. and Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions, April
2016. arXiv:1511.07122 [cs].

115. Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M.: SoundStream:
An End-to-End Neural Audio Codec, July 2021. arXiv:2107.03312 [cs, eess].

116. Zhao, J. and Xia, G.: AccoMontage: Accompaniment Arrangement via Phrase Selection
and Style Transfer, August 2021. arXiv:2108.11213 [cs, eess] version: 1.

117. Zhao, S., Song, J., and Ermon, S.: InfoVAE: Balancing Learning and Inference in Varia-
tional Autoencoders. Proceedings of the AAAI Conference on Artificial Intelligence
, 33(01):5885–5892, July 2019.

186

CITED LITERATURE (continued)

118. Zhu, P., Pang, C., Wang, S., Chai, Y., Sun, Y., Tian, H., and Wu, H.: ERNIE-
Music: Text-to-Waveform Music Generation with Diffusion Models, February
2023. arXiv:2302.04456 [cs, eess].

119. Ziegler, Z. M. and Rush, A. M.: Latent Normalizing Flows for Discrete Sequences, June
2019. arXiv:1901.10548 [cs, stat] version: 4.

VITA

NAME Giuseppe Concialdi

EDUCATION

Alta Scuola Politecnica, Polytechnic of Milan, Italy, Sep 2023

Master of Science in Computer Science, University of Illinois at
Chicago, USA, Jul 2023

Master of Science in Data Science and Engineering, Polytechnic of
Turin, Italy, Jul 2023

Bachelor of Science in Computer Engineering, Polytechnic of Turin,
Italy, Jul 2021

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2021 - IELTS Academic 7.5

A.Y. 2022/23 One year of study abroad in Chicago, Illinois

A.Y. 2021/22. Lectures and exams attended exclusively in English

SCHOLARSHIPS

2022-2023 Alta Scuola Politecnica honour program tuition waiver for the entire
duration of the MSc at Polytechnic University of Turin

August 2022 TOP-UIC tuition waiver as best student of the Computer Science de-
partment

March 2022 Italian scholarship for TOP-UIC students

187

	to1 Introduction
	 Research Questions
	 Contribution
	 Open Source
	 Structure of the Thesis

	to2 Background
	 Deep Music Generation
	 Timeline

	 Limitations and Challenges
	 Originality
	 Variability
	 Controllability
	 Coherence
	 Discussion

	 Data Representation
	 Raw Waveform
	 2D Representation
	 Latent
	 Symbolic
	 Acoustic Features

	 Deep Generative Models
	 Autogressive Models
	 Markov Model
	 Recurrent Neural Network
	 Convolutional Neural Network
	 Transformer

	 Non-Autoregressive Models
	 Deep Latent Variable Models
	 Variational Autoencoder
	 Normalizing Flows
	 Generative Adversarial Network
	 Diffusion Model

	 Hybrid Models
	 Transfer Learning

	 Controllable Generation
	 Text-to-Music
	 Lyrics-to-Music
	 Music-to-Music
	 Symbolic Conditioning
	 Image-to-Music

	 Music Dataset
	 Raw Music Dataset
	 Symbolic Music Dataset
	 Music Metadata Dataset

	 Commercial Proprietary Software
	 Deep Generation and Copyright
	 Dealing with Protected Data
	 Research and Fair Use
	 Limitations

	to3 Related Work
	 Literature Overview
	 AR Models
	 Image and Raw Music Generation
	 Text-to-Speech Synthesis
	 Recent Advances in Audio Synthesis

	 VAE Models
	 Vector-Quantized VAE
	 Non-Vector-Quantized VAE

	 NFs Models
	 GAN Models
	 Transformer Models
	 Applications in Audio Generation

	 Diffusion Models
	 Image Generation
	 Audio Generation

	 Multimodal Embedding Models

	to4 Ainur
	 Architecture
	 Three-Stage Architecture
	 Hierarchical Model
	 Lyrics-Audio Pre-Training
	 Diffusion Prior
	 Diffusion Autoencoder

	 Encoders
	 Text Transformer
	 Vision Transformer
	 T5
	 Spectrogram Encoder

	 Diffusion
	 Modularity

	 Multimodal Control
	 Lyrics
	 Text Descriptors
	 Audio
	 Image

	 Input Representation
	 Text Embeddings
	 Lyrics Embeddings
	 Audio Embeddings

	 Workflow
	 Training
	 Inference

	 Model Comparison

	to5 Experimental Setup
	 Dataset
	 Evaluation Dataset

	 Training Setup
	 Pre-Processing
	 Loss Functions
	 Training Procedure
	 Hyperparameter Tuning
	 Validation Strategy

	 Metrics
	 Fréchet Audio Distance
	 CLASP Cycle Consistency

	 Implementation Details
	 Software Frameworks
	 Data Handling and Storage

	 Hardware Requirements
	 Computing Resources
	 Hardware Limitations and Challenges

	 Reproducibility

	to6 Results
	 Evaluation Procedure
	 Intrinsic Evaluation
	 Model Analysis
	 Comparative Evaluation
	 Summary of the Results

	to7 Future Work
	to8 Conclusion
	 Summary of Research
	 Discussion of the Results
	 Key Contributions
	 Limitations

	to APPENDICES
	to Appendix A
	to Appendix B
	to CITED LITERATURE
	to VITA

