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Abstract 
 
 
The inverted pendulum system is a widely recognized control problem that revolves around 
the task of stabilizing a pendulum connected to a movable base. The primary objective is to 
keep the pendulum in an upright position, despite its inherent instability, by manipulating the 
movement of the cart. This system serves as a crucial benchmark for evaluating and testing 
control algorithms, finding applications in diverse domains such as robotics and industrial 
automation. Effectively controlling the inverted pendulum has far-reaching implications for the 
advancement of autonomous vehicles, bipedal robots, and other dynamic systems that rely on 
maintaining balance and stability. 
 
This master's thesis project aims to tackle the inverted pendulum problem from various 
perspectives, with three main objectives. Firstly, an environment of the inverted pendulum will 
be constructed in OpenAI Gym, and reinforcement learning techniques, specifically Proximal 
Policy Optimization (PPO), will be utilized to achieve balance. By training an agent to control 
the base, the objective is to demonstrate the capability of reinforcement learning algorithms in 
solving control problems. 
 
Secondly, a MATLAB/Simulink mathematical model of the cartpole system, representing the 
inverted pendulum, will be developed using Lagrangian mechanics. This model will provide 
insights into the dynamics of the system and serve as a foundation for designing and 
implementing control strategies. Control strategies such as PID (Proportional-Integral-
Derivative) and LQR (Linear Quadratic Regulator) will be designed and implemented in 
Simulink. The system will be controlled in simulation, and preliminary results will be obtained 
to determine parameters for the real model. 
 
Lastly, the control strategies designed before will be tested on an existing real model. A special 
HW/SW system will be designed using the PYNQ-Z1 FPGA board. The pendulum position will 
be observed using a rotary encoder with an optical interrupter, while the cart position will be 
estimated from the control output applied to the stepper motor by the processor. All input 
sensor signals will be processed by the programmable logic (PL) before being passed to the 
processor system (PS). Control algorithms, such as PID and LQR strategies, will be 
implemented in software using high-level programming languages like C through the Xilinx 
Vitis application environment. The integration of hardware and software components aims to 
showcase real-time control of the physical inverted pendulum and highlight the advantages of 
using FPGA boards in control and sensing applications. 
 
By achieving these objectives, this thesis contributes to the understanding and application of 
control strategies and reinforcement learning algorithms in the context of a problem such as 
the inverted pendulum system. The results and insights gained from the simulations, 
mathematical modeling, and physical implementation will enhance the knowledge of control 
systems and their practical implementation. Furthermore, the successful utilization of 
reinforcement learning in OpenAI Gym environments demonstrates the potential for solving 
complex control problems. 
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UNESCO Nomenclature  
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Chapter 1 
 

1. Introduction 
 
 
An inverted pendulum on a cart, also known as a cart-pole system, is a system consisting of 
a pendulum with its mass center located above its pivot point and pivoted on a rigid rod. The 
inverted pendulum is inherently unstable and highly nonlinear, requiring a control system to 
compensate for the pendulum angle deviation by applying a balancing horizontal force at its 
pivot point. 
 
In this thesis, the inverted pendulum system is implemented using a metallic rod attached to a 
wheelless cart that moves along two metallic guides. The cart is driven by a belt and pulley 
system connected to a stepper motor. The system consists of two degrees of freedom: the 
position of the cart, represented as "x," and the angular position of the pendulum, represented 
as "theta." This setup is illustrated in Figure 1.1. 
 

 
 

Figure 1.1: Inverted Pendulum  
 
Despite the inverted pendulum system having two degrees of freedom, the control input for 
the system is a single horizontal force applied to the cart. The main objective is to design an 
embedded control system, including the necessary electronics, to ensure that the pendulum 
remains in its upright position while the cart maintains its reference position. The design of the 
control system requires careful consideration to effectively achieve this goal. 
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1.1 Thesis Background 
 
 
This Master's Thesis is an extension of two previous Bachelor's Theses projects conducted at 
the Center for Industrial Electronics (CEI) within the School of Industrial Engineering (ETSII) 
at the Universidad Politécnica de Madrid (UPM). The projects focused on the physical design 
of a guided cart inverted pendulum model and the development of a control system for its 
electronic components. The CEI provided the necessary tools and the actual inverted 
pendulum model for the projects. 
 
The current Master's Thesis builds upon the previous work and aims to further advance the 
field. It is part of a double master's degree program in Mechatronics Engineering from 
Politecnico di Torino and Industrial Electronics from Universidad Politécnica de Madrid. The 
objective of this research is to design hardware and software applications for control strategies 
using System on Chip (SoC) technology, which combines a processor and FPGA (Field-
Programmable Gate Array) technology. Additionally, the thesis explores the implementation of 
both conventional control algorithms and reinforcement learning algorithms within the inverted 
pendulum system. 
 
This Master's Thesis focuses on the development of new IPs, hardware modules, and software 
functions to enhance the control system of the inverted pendulum. The PYNQ-Z1 prototyping 
board, previously used in the Bachelor's Theses projects, is also utilized in this research. 
Furthermore, the reinforcement learning algorithms applied to the inverted pendulum control 
are tested using the OpenAI Gym environment [1]. 
 
By combining FPGA technology, control theory principles, and reinforcement learning, this 
research aims to improve the stability and performance of the inverted pendulum control 
system. It contributes to the field of control systems and showcases advancements in control 
strategy design and implementation for the inverted pendulum system. 
 
 

1.2 Objectives and System Overview 
 
 
This thesis aims to achieve three main objectives: 

1. Designing a mathematical model to simulate the cart and pole system in 
Simulink/Matlab. Several controllers will be designed and tested to maintain the 
pendulum in an upright position. The control system will be based on PID and LQR 
control methods. 

2. Development of a control system using the Zynq-7020 FPGA board, based on 
preliminary results obtained from the Simulink model. This involves designing and 
testing hardware-based IPs for sensor signal processing and generation, as well as 
developing a platform and application program for controlling all signals and the 
stepper motor. The aim is to achieve pendulum balancing using the processing system 
(PS) of the board. 

3. Familiarization with the Gym OpenAI toolkit and the design of a cartpole prototype 
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environment. This involves creating a simulation model of the cart and pole system to 
test control strategies without the need for a physical model. Additionally, 
reinforcement learning techniques will be applied to a black box model of the inverted 
pendulum using Gym OpenAI in Python. The goal is to achieve cartpole balancing. 

 
Figure 1.2 illustrates a simplified sketch of the cartpole system. The wheelless cart moves 
horizontally using a belt and pulley system, with the trajectory limited by the belt length. The 
pendulum is attached to the cart and can freely rotate 360 degrees in both clockwise and 
counterclockwise directions. All sensor signals and motor control signals will be processed by 
hardware modules and the microcontroller of the Zynq-7020 FPGA device. Additionally, a 
mathematical model of the inverted pendulum will be developed to describe the mechanical 
behavior of the system and facilitate simulation using appropriate tools. 
 
The next step involves implementing the derived model in MATLAB/Simulink for simulation 
purposes and testing and validating the proposed control strategies. Simultaneously, a black 
box model of the cartpole environment will be designed and controlled using reinforcement 
learning techniques in OpenAI Gym. This approach allows the controller to learn to keep the 
pendulum upright without relying on the knowledge of underlying mathematical equations. All 
tasks within OpenAI Gym will be programmed in Python. 

 

 
 

Figure 1.2: Simplified Sketch of the Inverted Pendulum Control System  
 

Finally, after implementing the hardware and software designs using Xilinx Vivado and Xilinx 
Vitis, respectively, the inverted pendulum control system will be deployed and tested on the 
PYNQ prototyping board. Real-time experiments will be conducted to evaluate the 
performance and robustness of the implemented control strategies, including the PID 
controller and the LQR controller. The results obtained from these experiments will provide 
valuable insights into the effectiveness of the proposed control approaches and their 
applicability in practical scenarios. 
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1.3 Thesis structure 
 
 
Chapter 1 introduced the inverted pendulum control system and discusses possible control 
strategies that can be applied to it. It also provides a brief overview of the reconfigurable logic 
device, specifically the FPGA, and its characteristics. The chapter covers the goals and 
objectives of the thesis. 
 
Chapter 2 focuses on the system design and introduces the physical components of the 
system, including sensors, actuators, and the step motor. The chapter explains the overall 
working principle of the system and provides an overview of its physical model. 
 
Chapter 3 presents a mathematical model approximation for the inverted pendulum system. It 
covers the theoretical aspects of the applied methods, including tests and parameter selection 
for the proposed mathematical model. Additionally, the chapter describes the design and 
visualization of the Simulink model within the platform. 
 
Chapter 4 details the design of the inverted pendulum system model in MATLAB/Simulink and 
the development of control strategies using PID and LQR controllers. It includes the tuning of 
the controllers and an analysis of the effectiveness of the control strategy. 
 
Chapter 5 explores the OpenAI Gym platform and its application in implementing a 
reinforcement learning method for the control of the cartpole system. The chapter covers the 
theory and application of PPO reinforcement learning and provides Python scripts related to 
environment design and the reinforcement learning of the controller. 
 
Chapter 6 focuses on hardware design and provides a comprehensive explanation of the 
Hardware Block Design methodology used to configure an FPGA for signal detection, 
processing, and control input generation in a stepper motor driver carrier. It describes the 
design of Intellectual Property (IP) modules for essential components such as the optical 
interrupter, limit switch, rotary encoder, and motor driver. The chapter also includes an analysis 
of component utilization and energy consumption in the FPGA hardware design, providing 
valuable insights into resource allocation and optimization strategies. 
 
Chapter 7 focuses on the software design of the control system. It explains the development 
of special functions using the C programming language and pre-designed IP components to 
implement a PID controller. These functions enable parallel computing and generate control 
outputs that are transformed into control inputs for the stepper motor. The chapter also 
discusses the implementation of PID and LQR control strategies. 
 
Chapter 8 analyzes the results obtained from the PID and LQR controller system, evaluating 
the overall behavior and functionality of the system. The chapter also addresses the physical 
aspects and limitations of the system. 
 
Chapter 9 concludes the thesis and outlines future work. The conclusion summarizes the 
design and implementation of the system, including its hardware and software components, 
and presents the results of the analysis. The future work section identifies potential areas for 
improvement, such as enhancing accuracy and incorporating new features into the system. 
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Chapter 2 
 

2. Physical System Components 

The inverted pendulum control system model and its parts of both sensors and actuators 
architecture and functionality are described in this chapter.  The system model used in 
this thesis was developed by a former student of the Technical University of Madrid, Óscar 
Mate Castro, for his final degree project [2].  

The model consists of a pendulum hinged on a wheelless cart. The cart is driven by a belt 
and pulley system connected to the stepper motor.  The cart moves along two supporting 
metallic shafts. A rotary encoder and an optical interrupter serve as sensors to estimate 
the pendulum angular position. Four limit switches are placed at each end of the 
supporting shafts to detect when the cart reaches the bounds of its trajectory. The system 
is mounted on the supporting platform consisting of two PVC bases connected by 
aluminum rods connected with each other in “L” shape to achieve tolerance to 
perturbances during cart movements and motor vibrations. The stepper motor is placed 
in a special plastic mold which is screwed to the base. The overall system 3D model can 
be seen in the figure below.  

  
 

Figure 2.1: 3D model of the system [2] 
 

The stepper motor is controlled by the motor driver carrier which is powered from a DC Power 
supply and is connected to the PYNQ prototyping board containing the FPGA which is 
programmed by the PC. HW design is written in VHDL in Vivado by Xilinx and the PYNQ 
processor is programmed in C language on Xilinix Vitis software.  The overall control system 
signal and power intercommunication can be seen in the diagram below.  
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2.1 Optical Interrupter 
 
 
The optical interrupter is used to establish the initial reference of the angular position of the 
pendulum when it is in the downward position. Thus, when the pendulum rotates, a relative 
encoder provides signals to measure the angular displacement of the pendulum from that initial 
position. This sensor would not be necessary if an absolute encoder had been used. 
 
The optical interrupter used in the inverted pendulum system is based on the TCST2103 
optical sensor [3]. This sensor includes an infrared emitter, a phototransistor, and a logic 
circuit. Its main function is to detect the presence of an object between its optical axes and 
provide protection against external light sources. When an object is detected, the red light 
emitted by the sensor is deactivated, indicating the presence of the object to the user. Figure 
2.2 illustrates the component location and schematic of the optical interrupter within the 
system. 

 
Figure 2.2: Optical interrupter  

 

A pendulum is aggregated with an additional small rod to trigger the sensor when it passes or 
stays at downward position. As illustrated in Figure 2.3, it is located next to the coupling of the 
arm with the encoder shaft. 

 
Figure 2.3: Pendulum and optical interrupter design 
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The output signal from the Optical Interrupter IP is a 3.3V DC signal, which is directly 
connected to a pin on the PYNQ-Z1 prototyping board. Although the rising and falling edges 
of the switch signal are generally reliable, it is crucial to consider the possibility of external 
noise interference during the signal reading process. To ensure precise and accurate signal 
reading while mitigating the impact of potential noise, a hardware-based debounce filter will 
be implemented. This debounce filter, with a debounce delay set to 1ms, effectively filters out 
any undesired noise and guarantees reliable detection of the signal. By applying the debounce 
filter, the system achieves robust and accurate signal processing, enhancing the overall 
performance of the optical interrupter module. 
 
 

2.2 Rotary Encoder 
 
 
To accurately determine the current angle of the inverted pendulum, a two-channel magnetic 
relative rotary encoder has been implemented. The primary purpose of this relative encoder is 
to monitor and track the angular displacement of the pendulum. 
 
As depicted in Figure 2.4, the pendulum is connected to the relative encoder through a shaft. 
This shaft is secured to the cart using two ball bearings, ensuring stable movement. 
Additionally, the pendulum is firmly attached to the shaft via a joint that can be adjusted using 
a bolt. This arrangement allows for precise measurement of the pendulum's angle by the 
relative encoder. 

 
Figure 2.4: Rotary encoder 

 
The relative encoder translates the angular position into a digital signal. The most common 
type of rotary encoder is a quadrature encoder. Two output signals in quadrature (90° out of 
phase) are used to encode the position of the pendulum as shown in Figure 2.5. During 
rotation, 2 rotating tracks A and B produce square waves with 90° difference in phase. 
Channel A leads Channel B when the pendulum rotates clockwise, and Channel B leads 
Channel A when the rotation is counterclockwise. 
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Figure 2.5: Rotary encoder working principle [4]. 

 
The encoder employed in the system generates 600 pulses per rotation in each channel. 
Although this resolution may not be considered high, it is sufficient to meet the requirements 
of the model. The output signals are measured with a nominal supply voltage of 3.3VDC, and 
a pull-up resistor of 18 kΩ is connected in series with the sensor outputs. These signals 
maintain the same voltage level as the supply voltage and exhibit a phase difference of 90º 
[2]. 
 
The direction of rotation can be determined by analyzing the two-channel signals. As depicted 
in Figure 2.6, the blue signal leads the yellow signal, indicating a turning sense of 1. 
Conversely, in Figure 2.7, the yellow signal leads the blue signal, indicating a turning sense of 
2. It is worth noting that the pulse duration generated by the tracks becomes shorter as the 
rotation speed increases. 
 

 
 

Figure 2.6: Output signal of the encoder (Turning sense 1). 
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Figure 2.7: Output signal of the encoder (Turning sense 2) 
 
While the signals generated by the relative encoder do not exhibit any bounces at medium and 
high rotating speeds, it is observed that both output signals experience a significant number 
of bounces at low speeds, as depicted in Figure 2.8. This poses a challenge for accurate 
position detection, particularly when the pendulum is positioned upwards and oscillates at a 
low frequency. 
 
The presence of these bounces in the signals can lead to incorrect readings and inaccurate 
position estimation of the pendulum. Additional measures, such as implementing a debouncing 
mechanism is necessary to mitigate these bounces and improve the reliability of the position 
detection system, especially in scenarios where the pendulum oscillates at low frequencies. 
 

 
Figure 2.8: The output signal of rotary encoder containing extra bounces. 
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2.3 Limit Switches 
 
 
Limit switches are crucial components that detect the constraints limit on the rails, providing 
valuable feedback to the control system. The system incorporates the reliable SS-5GL13 limit 
switch with a simulated roller lever actuator for accurate detection. Figure 2.9 illustrates the 
location of the limit switches and the SS-5GL13 component [5], giving a visual reference to 
their placement in the system. 
 

 
 

Figure 2.9: Limit switches 
 
To ensure the safe and reliable reading of the limit switch output signal, the NC terminal of the 
switch is connected in series with an 18 kΩ pull-up resistor. This configuration allows the signal 
to be measured in the presence of a 3.3 VDC nominal supply voltage provided by the PYNQ 
board's voltage supply. By utilizing the pull-up resistor, the voltage levels of the signal are 
maintained, ensuring compatibility with the PYNQ board's input requirements. This setup 
guarantees the safety and proper functioning of the output signal, making it suitable for 
accurate reading and further processing by the PYNQ board. 
 
The output signals from the terminals of the limit switches can exhibit extra bounces, 
particularly at the rising and falling edges. These bounces can introduce errors in the signal 
readings, impacting the overall system performance. Figure 2.10 illustrates the bounces 
generated by the limit switch specifically at the rising edge. To mitigate these bounces and 
ensure reliable signal detection, a specialized anti-bounce filter with a 1 millisecond delay is 
implemented in hardware, as described in Chapter 6. This filter effectively eliminates the 
undesired bounces and improves the accuracy and stability of the signal readings. 
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Figure 2.10: The output signal of limit switches containing extra bounces. 
 
 

2.4 Stepper Motor 
 
 
To ensure precise movement and accurate position tracking, a stepper motor was chosen for 
the system. The stepper motor is connected to the cart using a pulley belt system, as depicted 
in Figure 2.11. This configuration allows for controlled and precise motion of the cart, enabling 
precise positioning and smooth operation of the system. 
 

  
 

Figure 2.11: Stepper motor 
 
To achieve continuous rotation, a stepper motor requires continuous alteration in the 
energization of its coils. This control is achieved using a stepper driver, which allows for precise 
control over the angle, angular position, and acceleration of the motor. It is important to note 
that the stepper driver controls the rotation frequency of the motor, which indirectly affects the 
torque provided by the motor. 
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During the design stage, it is crucial to consider the maximum torque produced by the motor 
and the mass of the cartpole. This consideration ensures that the system operates within safe 
limits and prevents any potential deterioration or instability. By properly accounting for these 
factors, the stepper motor can be effectively utilized to control the movement of the cartpole 
system, providing accurate positioning and control. 
 
The selection of an appropriate motor is critical in meeting the system requirements, which 
include a maximum cart acceleration of 30 m/s² and a maximum rotation speed of 100 rpm. 
The maximum acceleration value was determined based on simulations and real experiments 
conducted during the project. 
 
To estimate the maximum force and torque required from the motor, other factors such as 
friction acting on the cart are disregarded. By considering the masses of the cart and 
pendulum, as well as the pulley radius, precise calculations can be performed to determine 
the force 𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  and torque 𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  necessary to move the cartpole system accurately. 
 

𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = (𝑀𝑐𝑎𝑟𝑡 + 𝑚𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚) ∗ 𝑎 = (0.455𝑘𝑔 + 0.044𝑘𝑔) ∗ 30
𝑚

𝑠2
= 14.97 𝑁 

 
𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐹𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ∗ 𝑟𝑝𝑢𝑙𝑙𝑒𝑦 = 9.98𝑁 ∗ 25.21𝑚𝑚 = 377 𝑚𝑁𝑚 

 
The Wantai 57BYGH420-2 stepper motor has been chosen for this application as it meets all 
the mentioned requirements. Detailed specifications of the motor can be found in Table 2.1. 
 

Quantity Value Unit of measurement 
No. of Phases 4 - 
Step Angle 1.8 ±5% °/step 
Rated Voltage 3.6 V 
Rated Current 2.0 A/phase 
Phase Resistance 1.5 ±10% Ω/ phase 
Phase Inductance 2.5 ± 20% mH/phase 
Detent Torque 0.039 mNm 
No. of Channels 4 - 
Rotor inertia 300 g*cm2 
Holding torque 882.6 mNm 
Mass 0.7 Kg 

 
Table 2.1: Wantai 57BYGH420-2 stepper motor specifications [6]   

 
To ensure the motor operates correctly and remains undamaged, it is essential to regulate the 
power supply within the motor's rated voltage and current limits. Any excess voltage or current 
can cause permanent damage to the motor. Therefore, it is important to measure the output 
signals of the motor driver and configure it as necessary. The appropriate wire connection for 
the motor can be seen in Figure 2.12. 
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Figure 2.12: Stepper Motor connection 
 
 

2.5 Stepper Motor Driver Carrier 
 
Based on its desirable characteristics and functionality, the DRV8825 bipolar stepper motor 
driver board by Pololu was chosen for the system motor. This motor driver offers various 
features, including adjustable current limiting, over-temperature and over-current protection, 
and supports up to 6 microstepping modes, including 1/32 step resolution. To ensure safe 
operation, the driver board is equipped with a soldered potentiometer that allows for precise 
regulation of the current flowing to the motor, preventing potential damage. The operational 
voltage supply range for the motor driver carrier is between 8.2V and 45V, providing flexibility 
in terms of power requirements [7]. For a detailed understanding of the pin configuration and 
naming conventions, refer to Figure 2.13. 
 

 
 

Figure 2.13: Stepper motor driver DRV8825 carrier by Pololu [7]. 
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2.5.1 Control Input  
 
 
The Pololu driver carrier simplifies the interface with its 16 pins, compared to the 32 pins of 
the DRV8825 by Texas Instruments. This design choice enhances user convenience when 
connecting and operating the motor driver. Detailed information about the functions and 
internal structure of each logic input pin is provided in the comprehensive table below. It is 
important to consider the presence of internal pulldown or pullup structures for certain pins 
during the hardware design phase on the FPGA board. 
 
To initiate motor startup, a minimum wiring configuration requires connecting signals to the 
nRESET, nSLEEP, STEP, and DIR pins, which are described in detail in Table 2.2. It should 
be noted that input pins are considered "high" when their voltage falls within the range of 2.2V 
to 5.25V. 
 

Name Desciprion 

nENBL Logic high to disable device outputs and indexer 
operation, logic low to enable. Internal pulldown. 

1F  2F  

MODE0 Micro stepping mode: full step, 1/2, 1/4, 1/8, 
1/16, 1/32. Internal pulldown. MODE1 

MODE2 
nRESET High level to exit “reset” state and low level to “reset” 

“Pulldown” internal 
nSLEEP High level to exit from low consuming mode and low 

level to enter low consuming mode.  Internal pulldown. 
STEP Rising edge to advance one micro step. Internal 

pulldown. 
DIR  Level sets the direction of stepping. Internal pulldown. 

 
Table 2.2 Motor Driver control inputs description [8] 

 
When establishing the connection between the microcontroller (PYNQ board) and the motor 
driver carrier, it is crucial to ensure that the output signals from the PYNQ board pins are 
configured to 3.3V. This voltage setting guarantees accurate signal transmission, prevents 
signal distortion, and minimizes the impact of noise interference. 
 
 
2.5.2 Microstepping Modes 
 
 
The DRV8825 stepper motor driver offers 6 microstepping modes to adjust the motor 
resolution according to the specific application requirements (refer to Table 2.3). In the full step 
mode, the driver consumes less power. However, the movement of the cart is characterized 
by abrupt steps and moderate vibrations, resulting in a lower resolution. 
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On the other hand, the 1/32 step mode provides smoother motor movement, higher resolution, 
and reduced vibrations during operation. However, this mode requires a higher power 
consumption compared to the full step mode. 
 
In the case of the inverted pendulum model, maintaining a high resolution of the cart 
displacement is crucial since the system is inherently unstable in the upright position. 
Therefore, pendulum balancing is implemented using the 1/32 microstepping mode to achieve 
precise control and stability. 
 
Regarding the step frequency, the DRV8825 driver has a minimum limit of 2 microseconds in 
the full step mode. However, in the 1/32 microstepping mode, the step frequency is thirty-two 
times smaller than in the full step mode, resulting in a value of 62.5 nanoseconds. This finer 
step resolution allows for more precise movements and control of the stepper motor.  
 

MODE2 MODE1 MODE0 STEP MODE 
0 0 0 Full step (2 -phase excitation) with 71 % current 
0 0 1 Half step (1-2 phase excitation) 
0 1 0 1/4 step 
0 1 1 1/8 step 
1 0 0 1/16 step 
1 0 1 1/32 step 
1 1 0 1/32 step 
1 1 1 1/32 step 

 
Table 2.3 Motor Driver step modes 

 
 
2.5.3 Power Dissipation and Current Limiting  
 
The DRV8825 stepper motor driver board has a maximum voltage rating of 2.5 V, but due to 
the internal sense resistors, it is limited to 2.2 V. To supply more current to the motor and 
achieve higher torque, it is essential to keep the driver temperature low. The Pololu driver 
carrier can handle current demands below 1.5 A without additional cooling, but for currents 
above 1.5 A per coil, an additional cooling system should be considered. In the case of the 
stepper motor used in the inverted pendulum model, which has a current rating of 2 A, a heat 
sink was attached to the DRV8825 driver board. This allows for faster heat exchange and 
prevents permanent damage to the component [7]. Figure 2.14 illustrates the attachment of 
the heat sink. 

 

 
Figure 2.14: The heat sink attached to the motor driver.  
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One of the most important considerations when working with a stepper motor driver is to 
properly adjust the current limit. Supplying a current higher than the motor's rated value can 
result in motor damage. To ensure the current limit is set correctly, it is necessary to follow a 
minimal wiring configuration, as depicted in Figure 2.15. It is crucial not to connect the drive 
output until the current limit is appropriately adjusted. 
 
In order to safeguard the driver from motor supply spikes, it is recommended to connect a 100-
microfarad electrolytic capacitor to the motor supply pins of the driver carrier. Once the wiring 
is completed, step and direction signals are generated by the microcontroller, in this case, the 
PYNQ board. The driver is then connected to the DC power supply, while the ground of the 
microcontroller is connected to the voltage between the microcontroller ground and the surface 
of the potentiometer, as indicated in Figure 2.15. 
 

 
 

Figure 2.15:  Minimal wiring for the current limiting adjustment and connection to the motor 
[7]. 

 
To adjust the current limit, it is necessary to measure the reference voltage using a multimeter. 
The potentiometer is then rotated clockwise to increase the voltage reference value or 
counterclockwise to decrease it. Each driver model has its own specific voltage reference 
calculation formula. For the DRV8825 driver, the manufacturer provides a formula that should 
be utilized to adjust the current limiting accurately. 
 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑚𝑖𝑡[𝐴] = 𝑉𝑟𝑒𝑓[𝑉] ∙ 2  
 
Therefore, according to the driver voltage reference calculation formula, the reference voltage 
should be set to half of the rated current of the stepper motor. 
 

𝑉𝑟𝑒𝑓[𝑉] =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑚𝑖𝑡[𝐴]

2
 

 
In the case of the motor used in this work, which has a rated current of 2A, the reference 
voltage was adjusted to 0.94V, slightly below the reference value of 1V. This adjustment 
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ensures that the current supplied to the motor remains within the specified limits, preventing 
potential damage and ensuring proper motor operation. 
 
 

2.6 PYNQ – Z1 Prototyping Board 
 
 
The control system for the inverted pendulum utilizes the Digilent PYNQ-Z1 prototyping board, 
which features the ZYNQ XC7Z020-1CLG400C FPGA device from Xilinx. This device belongs 
to the Zynq-7020 family and follows the “All Programmable Systems on Chips” (APSoC) 
architecture. It consists of a programmable logic (PL) and a processor system (PS) with a 
650MHz double-core Cortex-A9 processor. 
 
For a visual representation of the PYNQ-Z1 board and its overall layout, refer to Figure 2.16. 
 

 

Figure 2.16: Digilent PYNQ- Z1 prototyping board 

 
The PL and PS components of the Zynq device enable a powerful combination of configurable 
logic circuits and software programs. The communication between the PL and PS is 
established using the AXI protocol (“Advanced eXtensible Interface”) [9]. This communication 
allows for the design of systems that leverage the flexibility of the PL for hardware acceleration 
and the processing capabilities of the PS for executing software programs. 
 
The PYNQ-Z1 board also includes a Texas Instruments TPS65400 Phasor Measurement Unit, 
which provides multiple supply voltage options such as 3.3V, 1.8V, 1.5V, and 1.0V from the 
main power input. The power input for the PYNQ board is derived from a USB port. The power 
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switch SW4 enables or disables all on-board power supplies, while the power indicator LED 
(LD13) indicates when all the supply rails reach their nominal voltage [10]. The optical 
interrupter, rotary encoder, and limit switches are supplied with 3.3V from the PYNQ board. 
The control system design utilizes the Vivado IP integrator tool [11] to build a processor-based 
design, combining the capabilities of the PL and PS. The embedded software for the system 
is programmed and debugged using the Xilinx Vitis unified software platform. Custom IPs, 
developed in VHDL (“Very high-speed integrated circuits Hardware Description Language”) 
using Xilinx Vivado, act as peripherals that extend the processing capabilities of the Zynq 
Processing System with custom hardware logic. This enables the acceleration of application-
specific algorithms. 
 
The processing system (PS) is programmed in the C language using the Xilinx Vitis toolkit. By 
leveraging both custom IP and embedded software, the control system architecture achieves 
a flexible and efficient design for the inverted pendulum application. 
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Chapter 3 
 

3.  Mathematical Modeling and Simulink Simulation of the 
Cartpole System 

 
 
In order to efficiently design a control strategy for the inverted cartpole system, it is crucial to 
have a mathematical model that accurately represents the system's dynamics, including the 
motion equations of the cart and pendulum positions. The mathematical model should be 
designed considering the physical model's limitations and constraints. 
 
There are two main approaches to obtain the motion equations of the system: the Newtonian 
approach and the Lagrangian approach. The Newtonian approach involves applying Newton's 
laws of motion and considering the forces acting on the system. However, in combined 
systems like the cartpole, deriving the final equation requires accounting for the interaction 
between the two components [12, p.17]. 
 
On the other hand, the Lagrangian approach is more flexible for systems with multiple 
components, as it is based on the energy of each component. The motion equations can be 
derived using the Euler-Lagrange equations. Additionally, the Lagrangian approach simplifies 
the derivation process by working with scalar quantities, unlike the vector operations required 
in the Newtonian approach [12, p.17]. 
 
Once the mathematical model is obtained, it can be implemented in Simulink to simulate and 
test various control strategies. This allows for the evaluation and validation of the control 
strategies effectiveness before applying them to the real physical model. By conducting 
simulations in Simulink, potential malfunctions and risks associated with incorrect control can 
be identified and addressed, thus safeguarding the physical system. 
 
Simulink offers several advantages in this context, including time-saving benefits. Simulations 
can be performed much faster compared to real-time testing, enabling rapid iterations and 
refinement of control strategies. Additionally, using Simulink for testing purposes can help save 
energy since the physical system is not actively operated during simulation. 
 
 

3.1 Euler-Lagrange Equation  
 
 
To obtain the motion equations of the cartpole system, the Lagrangian technique can be 
applied. For a system consisting of rigid bodies that can be considered as particles, the 
Lagrangian function is defined as the difference between the system's kinetic energy 𝑇 and 
potential energy 𝑉 [12 p.19-20]. That is, 
 

𝐿 = 𝑇 − 𝑉. 
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In generalized coordinates, the position is denoted as 𝑞, while the velocity is denoted as 𝑞̇. For 
a multi-particle system, the Lagrangian function can be expressed as follows: 
 

𝐿 = 𝐿(𝑞𝑖 , 𝑞𝑖̇, 𝑡 ) , 𝑖 = 1,… , 𝑛. 
 
The Euler-Lagrange equation is then derived from this Lagrangian function: 
 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑖̇
−

𝜕𝐿

𝜕𝑞𝑖
= 0 

 
However, in a more general case where non-conservative forces, such as damping force, 
Coulomb friction, or other dissipative forces, are present, a more generalized equation can be 
obtained: 
 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑖̇
−

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 

 
Here, 𝑄𝑖  represents the generalized term for the non-conservative forces acting on the system. 
 
By incorporating non-conservative forces within the Lagrangian framework, it becomes 
feasible to analyze systems subjected to dissipative forces or external perturbations. This 
approach facilitates a comprehensive investigation of various physical systems, enabling the 
consideration of both conservative and non-conservative forces in a unified manner. However, 
in the specific case of our system, we choose to simplify the problem by neglecting non-
conservative forces such as the drag force acting on the pendulum and the force of kinetic 
friction acting on the cart. 
 
 

3.2 Modelling the Cartpole System 
 
 
The motion equations for the cartpole system are derived using the Euler-Lagrange equation, 
neglecting all non-conservative forces acting on the system, as mentioned before. 
 
When modeling the cartpole system, the first consideration should be the control input of the 
system. In the current implementation of the cartpole system, a stepper motor is used, which 
is able to provide the cart with velocity control of high precision. Thus, it is convenient to 
consider the acceleration of the cart as the control input. 
 
However, both the stepper motor and the stepper motor driver have limitations in generating 
torque at high speeds. As a result, the control input, which is the cart acceleration, will be 
bounded within a range where the torque provided by the motor would be sufficient to achieve 
the desired acceleration. This constraint applies independently of any forces from the moving 
pendulum acting on the cart, kinetic friction, or any other dissipative forces acting on the 
system [13]. 
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Figure 3.1 illustrates the cartpole system, showcasing its control input, acceleration 𝑢, and the 
relevant process variables: the pendulum's angle and the cart's position 𝑥. In the figure, point 
𝑂 designates the origin of the system coordinates, and it is important to note that the hinge 
point of the pendulum always lies on the x-axis. The cart is assigned a mass of 𝑀, while the 
pendulum has a mass of 𝑚.  

 
 

Figure 3.1: The Cartpole Control System 
 
Therefore, the differential equation of the cart position can be expressed in terms of the control 
input as following:  
 

𝑥̈ = 𝑢.    (3.1) 
 
To derive the motion equation for the pendulum angle, the Euler-Lagrange equation is utilized. 
 
For the cart, its kinetic energy is solely contributed by the translational term, given by: 
 

𝑇𝑐𝑎𝑟𝑡 = 
1

2
𝑀𝑥̇2. 

 
While the pendulum has both rotational and translational kinetic energy, the cart only 
contributes to translational kinetic energy. Denoting 𝑙 as the distance from the hinge point to 
the center of gravity of the pendulum, and 𝐼 as the moment of inertia of the pendulum around 
its center of gravity, considering the pendulum's position about the origin 𝑂 as (𝑥 + 𝑙𝑠𝑖𝑛𝜃,

𝑙𝑐𝑜𝑠𝜃), the kinetic energy equation is: 
 

𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 
1

2
𝑚𝑥̇𝑝

2 + 
1

2
𝐼𝜃̇2 

 

= 
1

2
𝑚((𝑥̇ + 𝑙𝜃̇𝑐𝑜𝑠𝜃)2 + (−𝑙𝜃̇𝑠𝑖𝑛𝜃)2) + 

1

2
𝐼𝜃̇2 

                 

=
1

2
𝑚𝑥̇2 +

1

2
𝑚𝑙2𝜃̇2 + 𝑚𝑙𝑥̇𝜃̇𝑐𝑜𝑠𝜃 + 

1

2
𝐼𝜃̇2. 

 
Therefore, the kinetic energy of the system is the sum of the kinetic energies of the pendulum 
and the cart: 
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𝑇 = 𝑇𝑐𝑎𝑟𝑡 + 𝑇𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 =
1

2
𝑀𝑥̇2 +

1

2
𝑚𝑥̇2 +

1

2
𝑚𝑙2𝜃̇2 + 𝑚𝑙𝑥̇𝜃̇𝑐𝑜𝑠𝜃 + 

1

2
𝐼𝜃̇2. 

 
Similarly, the potential energy of the system is the sum of the potential energies of the cart 
(which is zero) and the pendulum (which is gravitational potential energy): 
 

𝑉 = 𝑉𝑐𝑎𝑟𝑡 + 𝑉𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 0 + 𝑚𝑔𝑙𝑐𝑜𝑠𝜃 = 𝑚𝑔𝑙𝑐𝑜𝑠𝜃. 
 
The Lagrangian function for the cartpole system is indeed the difference between the kinetic 
energy 𝑇 and potential energy 𝑉 of the system: 
 

𝐿 = 𝑇 − 𝑉 =
1

2
𝑀𝑥̇2 +

1

2
𝑚𝑥̇2 +

1

2
𝑚𝑙2𝜃̇2 + 𝑚𝑙𝑥̇𝜃̇𝑐𝑜𝑠𝜃 + 

1

2
𝐼𝜃̇2 − 𝑚𝑔𝑙𝑐𝑜𝑠𝜃. 

 
Using the Euler-Lagrange equation, the motion equation for the pendulum position 𝜃 can be 
derived: 
 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃̇
−

𝜕𝐿

𝜕𝜃
= (𝑚𝑙2 + 𝐼)𝜃̈ + 𝑚𝑙𝑥̈𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0.  

 
Further simplification gives: 
 

𝜃̈ =  
𝑚𝑙

𝑚𝑙2 + 𝐼
(𝑔𝑠𝑖𝑛𝜃 − 𝑥̈𝑐𝑜𝑠𝜃) =

𝑚𝑙

𝑚𝑙2 + 𝐼
(𝑔𝑠𝑖𝑛𝜃 − 𝑢𝑐𝑜𝑠𝜃).    (3.2) 

       
From this differential equation of the pendulum position, it can be observed that the system 
exhibits high nonlinearity. In order to apply conventional control strategies such as PID and 
LQR, which are designed for linear systems, it is necessary to linearize the system. 
Linearization simplifies the control design process by approximating the system as linear 
around an operating point, enabling the use of linear control techniques. 
 
 

3.3 Simulink model of the Cartpole System 
 
 
To construct a reliable simulation model of the cartpole control system, it is essential to 
measure or define all the relevant system parameters. Table 3.1 provides an overview of the 
important system parameters. Notably, the table reveals that the center of gravity of the 
pendulum does not align with the midpoint of the pendulum. This discrepancy was estimated 
empirically by swinging the pendulum at various points until it reached an equilibrium position. 
 
Furthermore, the maximum speed of the cart can be calculated by considering the maximum 
rotational period per step 𝑓max of the stepper motor and its maximum step angle 𝛼𝑚𝑎𝑥, along 
with the pulley radius 𝑟pulley. By utilizing these parameters, we can determine the maximum 
achievable speed of the cart. 
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The calculation for the maximum cart speed 𝑣𝑚𝑎𝑥 is as follows: 
 

𝑣𝑚𝑎𝑥 = 
𝜋 ∙ 𝛼𝑚𝑎𝑥

180°
∙ 𝑓max ∙ 𝑟pulley = 0.01 ∗ 𝜋 ∗ 1000 ∗ 0.02521 =  0.792m/s. 

 
The moment of inertia of the pendulum 𝐼 about its center of gravity needs to be approximated 
since its structure is complicated to estimate precisely. In the model, we consider the pendulum 
as an ideal thin rod with a small diameter and similar point masses at both ends. By assuming 
this simplified configuration, we can calculate the moment of inertia of the pendulum using the 
following formula: 
 

𝐼 =
1

12
𝑀𝐿2 = 0.0047 𝑘𝑔𝑚2 

 
 Symbol Description Value 

𝑴 Cart mass 0.455 𝑘𝑔  
𝒎 Pendulum mass 0.044 𝑘𝑔 
𝑳 Pendulum length 0.353 𝑚 
𝒍 Distance from the hinge point to the center of 

gravity of the pendulum 
0.141 𝑚 

𝒈 Gravitational acceleration 9.81 𝑚/𝑠2 
𝑰 Pendulum moment of inertia about the center of 

gravity 
0.0047 𝑘𝑔𝑚2 

𝒗𝒎𝒂𝒙 Maximum cart speed 0.792 𝑚/𝑠 
𝒙𝒎𝒊𝒏, 𝒙𝒎𝒂𝒙  Cart position limits - 0.48 𝑚; 0.48 𝑚 

𝒖𝒎𝒂𝒙 Cart maximum acceleration absolute value 20 𝑚/𝑠2 
 

Table 3.1: Cartpole control system parameters 
 
The Cartpole simulation model is developed within the Simulink environment, considering the 
derived motion equations (3.1) and (3.2) without linearization. The equations are formulated 
in the continuous-time domain to simulate the dynamics of the real non-linear inverted 
pendulum control system accurately. 
 
In the cartpole system simulation block, the positions of the pendulum and cart are outputs, 
representing the measurements available in the actual system. The control input for the system 
is the acceleration of the cart, as mentioned previously. 
 
The implementation of the cartpole model in Simulink can be visualized in Figure 3.2. This 
Simulink model allows for the simulation and analysis of the cartpole system, providing insights 
into its behavior and enabling the development and testing of control strategies for stabilization 
and trajectory tracking. 
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Figure 3.2: The Cartpole model in Simulink  
 

The system parameters can be easily modified, if needed, using the Block mask feature in 
Simulink. In Figure 3.3, the Cartpole Block mask is depicted, showcasing how system 
parameters can be introduced or modified. 
 

 
 

Figure 3.3: Cartpole Block parameters 
 
To visualize the behavior of the pendulum during the control strategy application, an animation 
block from the "Inverted Pendulum with Animation" example by MathWorks [14] is used. This 
animation block is created using MATLAB® Handle Graphics® and provides a visual 
representation of the pendulum's motion. 
 
In Figure 3.4, the animation block is shown, which includes a playback function and the ability 
to manually select the art position reference using left and right arrows. The trajectory length 
of the cart is adjusted to match the dimensions of the physical model, set to 0.96 meters. 
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Figure 3.4: The system animation block  
 
By incorporating the animation block into the system, the user can observe the real-time 
movement of the pendulum during the control strategy application. This visualization enhances 
understanding and analysis of the system's dynamics and performance. 
 
  



  
 
 

36  
 
 

 
 

 
  



  
 
 

37  
 
 

Chapter 4 
 
 

4. Control Strategies for the Cartpole System 
 
 
This chapter focuses on the design and implementation of two control strategies, the Linear 
Quadratic Regulator (LQR) controller and the Proportional-Integral-Derivative (PID) controller, 
for the cartpole system. The nonlinear model of the system is linearized to enable the 
application of the LQR strategy, resulting in a Linear Time-Invariant (LTI) model of the cartpole 
system. 
 
The PID controller is a feedback controller that tracks the error between the desired setpoint 
and the measured process variable. It applies control action based on proportional, integral, 
and derivative terms. The PID controller parameters are tuned using Ziegler-Nichols' 
oscillation tuning method, which involves step-by-step selection of the three PID controller 
coefficients based on specific criteria. The tuning process aims to stabilize the system through 
experimentation. 
 
The LQR controller utilizes feedback gain to minimize errors and achieve the desired system 
state. It is an optimal control method that does not require extensive tuning procedures like 
the PID controller. The feedback gain is obtained by solving the Algebraic Riccati Equation. 
 
Both the PID and LQR controllers are implemented in a digital format to match the control 
system's processor, and they operate with a control period of 25 milliseconds, corresponding 
to a frequency of 40 KHz. The value for control period was selected empirically both by 
simulation and application on the real system. The control period ensures the cart velocity is 
updated appropriately to avoid aliasing effects while maintaining effective control.  
 
To determine the feedback gain of the LQR controller, the cartpole system is linearized around 
the upright position, which is the point that requires control. Additionally, a digitized linear time-
invariant model of the inverted pendulum is obtained. 
 
This chapter presents simulation results for both the LQR and PID control strategies. The 
results provide insights into the performance, stability and response time of each controller. 
The simulations allow for an evaluation of the effectiveness of the control strategies for the 
cartpole system. 
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4.1 State-space representation and Linearization of LTI 
model 

 
 
The state vector 𝐱 for the inverted pendulum control system consists of four terms: the cart 
position, cart velocity, pendulum angular position, and pendulum angular velocity. It can be 
represented as: 
 

𝐱 = [ 

𝑥
𝑥̇
𝜃
𝜃̇

] = [

𝑥1

𝑥2

𝑥3

𝑥4

] 

 
Therefore, the nonlinear model equations of the inverted pendulum can be written in matrix 
form using the state vector as follows: 
 

𝐱̇ =  

[
 
 
 
 

𝑥̇
𝑢
𝜃̇

𝑚𝑙

𝑚𝑙2 + 𝐼
(𝑔𝑠𝑖𝑛𝜃 − 𝑢𝑐𝑜𝑠𝜃)

]
 
 
 
 

=  

[
 
 
 
 

𝑥2

𝑢
𝑥4

𝑚𝑙

𝑚𝑙2 + 𝐼
(𝑔𝑠𝑖𝑛𝑥3 − 𝑢𝑐𝑜𝑠𝑥3)]

 
 
 
 

 

 
To obtain the Linear Time-Invariant (LTI) representation of the cartpole system, the model 
needs to be linearized at a specific point. In this case, we linearize the model around 𝜃 = 0, 
as the upright position is the point at which it should be maintained. The linearized model 
equation is as follows: 
 

𝐱̇ =  

[
 
 
 
 

𝑥2

𝑢
𝑥4

𝑚𝑙

𝑚𝑙2 + 𝐼
( 𝑔𝑥3 − 𝑢)

]
 
 
 
 

 

 
To represent the system in the LTI space, where x(t) is the input variables matrix and y(t) is 
the output variables matrix, the following equations are obtained: 
 

𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) 
 

𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡) 
 
The output variables matrix y(t) includes the cart position and pendulum angle, and the LTI 
equations are: 
 

𝐱̇(𝑡) =

[
 
 
 
 
0 1 0 0
0 0 0 0
0 0 0 1

0 0
𝑚𝑔𝑙

𝑚𝑙2 + 𝐼
0]
 
 
 
 

𝐱(𝑡) +

[
 
 
 
 

0
1
0

−
𝑚𝑙

𝑚𝑙2 + 𝐼]
 
 
 
 

𝐮(𝑡) 
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𝐲(𝑡) = [
1 0 0 0
0 0 1 0

] 𝐱(𝑡) + [
0
0
] 𝐮(𝑡) 

 
These equations represent the relationship between the system's state variables (cart position, 
cart velocity, pendulum angle, and pendulum angular velocity) and the output variables (cart 
position and pendulum angle) in the LTI representation. 
 
 

4.2 System Discretization and quantization error 
 
 
Once the LTI cartpole model is obtained for the pendulum, it can be discretized assuming a 
specific sampling time. The linearized LTI model in MATLAB can be passed to the “c2d” 
function, which applies the discretization process. In this case, the zero-order hold method is 
used with a discretization period of 25 milliseconds. This process converts the continuous-time 
LTI model into a discrete-time model, which can be implemented in a digital control system. 
 
Therefore, the control input, which is the acceleration, is updated and generated at each 
control period, which is set to 25 milliseconds. However, it's important to note that due to the 
discretization process, there may be errors introduced. This is because the acceleration is 
obtained by incrementing the velocity every 100 microseconds, resulting in 2500 iterations 
during one control period. It's worth mentioning that a constant acceleration would result in a 
linear increase in velocity, but the discretization process introduces a step-like behavior. These 
discretization errors should be considered when designing the control system to ensure 
accurate and effective control of the cartpole system. 
 
Similarly, the pendulum angular position, which is measured by the encoder, will also be 
subject to quantization errors. The encoder implemented in the model has 600 counts per 
revolution, resulting in a resolution of 0.01 radians for the pendulum angle measurement. While 
there may be some quantization errors, they are expected to be small and not significantly 
affect the overall performance of the control system. 
 
Figure 4.1 illustrates the quantization error in the angular position of the pendulum. 
 

 
 

Figure 4.1: Angular position quantization error [13 p.52] 



  
 
 

40  
 
 

4.3 LQR Controller Design 
 
 
The LQR controller is a type of state-feedback controller. It uses feedback from the system's 
states to compute the control input that minimizes the cost function. By measuring the current 
states of the system, the LQR controller calculates the appropriate control action u to be 
applied to drive the system towards the desired state or trajectory. 
 
The LQR controller aims to minimize the error between the actual system states and the 
desired states. This error is typically represented as the difference between the current state 
vector and the desired state vector. By continuously measuring and comparing the states, the 
LQR controller adjusts the control input to minimize this error and regulate the system's 
behavior.  
 
The control action u in the LQR controller is given by: 
 

𝑢 = −𝐊(𝐱 − 𝐱𝒅𝒆𝒔𝒊𝒓𝒆𝒅) 
 
where 𝑢 is the control input, 𝐊 is the feedback gain matrix, 𝐱 is the current state vector, and 
𝐱𝒅𝒆𝒔𝒊𝒓𝒆𝒅 is the desired state vector. The feedback gain matrix 𝐊 determines the contribution of 
each state variable to the control input. By multiplying the difference between the current state 
vector and the desired state vector by the feedback gain matrix, the control action is computed. 
The LQR control strategy is effective in handling both steady-state and transient errors. It 
provides a systematic approach to achieve stability and optimal performance by actively 
monitoring and adjusting the system's states. 
 
The feedback gain K in the discrete-time LQR control is calculated by solving the Algebraic 
Riccati equation. Since the cartpole control model is discrete-time, the Infinite Horizon 
Discrete-Time LQR control was selected for this system [15]. 
 
The discretized LTI cartpole model can be represented in state-space form as follows: 
 

𝐱(𝑘 + 1) = 𝐴𝑑𝐱(k) + 𝐵𝑑𝒖(𝑘)      (4.1) 
 
The optimal solution 𝒖∗(𝒌) for the infinite horizon linear quadratic optimal control problem is 
given by: 
 

𝒖∗(𝒌) =  −𝑲𝐱(𝑘) = −(𝑅 + 𝐵𝑑
𝑇𝑃𝐵𝑑)

−1
𝐵𝑑

𝑇𝑃𝐴𝑑𝒙(𝑘) 
 
In the above equation, P is a positive symmetric matrix, and it is the solution of the Discrete 
Algebraic Riccati Equation: 
 

𝑃 =  𝐴𝑑
𝑇𝑃𝐴𝑑 + 𝑄 − 𝐴𝑑

𝑇𝑃𝐵𝑑(𝑅 + 𝐵𝑑
𝑇𝑃𝐵𝑑)

−1
𝐵𝑇𝑃𝐴𝑑 

 
Here, 𝑄 and 𝑅 are positive semidefinite weighting matrices that determine the trade-off 
between control effort and state deviations. The solution of the Algebraic Riccati Equation 



  
 
 

41  
 
 

yields the optimal feedback gain matrix 𝐾, which is used to compute the control action 𝒖∗(𝒌) 
based on the current state 𝐱(𝑘) [15]. 
 
In MATLAB environment, the feedback gain matrix K can be calculated using the “dlqr” 
function. The “dlqr” function computes the optimal gain matrix K for the discrete-time linear 
quadratic regulator (LQR) problem. It takes as inputs the system matrices 𝐴𝑑  and 𝐵𝑑, and the 
weighting matrices 𝑄 and 𝑅. The function call to calculate 𝐾 is as follows: 
 

𝐾 = 𝑑𝑙𝑞𝑟(𝐴𝑑 , 𝐵𝑑 , 𝑄, 𝑅) 
 
 
4.3.1 Augmented LQR Control 
 
 
The LQR controller implemented in the Simulink simulation demonstrated satisfactory results 
in terms of correctly tracking the set points for both the pendulum position and the cart position. 
However, in the real-world implementation, there was an observed offset in the cart position 
relative to its set point, despite the pendulum reaching an upright position. This offset can be 
attributed to uncertainties present in the system matrices 𝐴𝑑 and 𝐵𝑑, which are part of the state 
space representation of the cartpole control system as described in equation (4.1). 
 
Additionally, step disturbances can contribute to the offset in the cart position by affecting 
either the control action (acceleration) or the system states (cart and pendulum positions and 
velocities). These disturbances introduce additional factors that can impact the overall 
performance of the system and contribute to tracking errors. 
 
To mitigate these set point tracking errors and enhance the performance of the controller, 
integral action can be incorporated into the LQR control. This is achieved by augmenting the 
existing system state with an additional discrete-time integral of the cart position tracking state. 
By incorporating integral action, the controller can effectively address steady-state errors and 
eliminate the offset in the cart position by continuously integrating and compensating for the 
tracking errors [3.1 p.69-70]. The augmented state vector, 𝒙𝒂𝒖𝒈(𝑘), is defined as follows: 
 

𝐱𝒂𝒖𝐠(𝑘) =  [
𝐱(𝑘)

𝑞(𝑘)
]   (4.2) 

 
Here, 𝐱(𝑘) represents the existing four states, and 𝑞(𝑘)  is the discrete-time integral of the cart 
position error. The integral term, 𝑞(𝑘 + 1), is updated recursively according to the following 
equation: 
 

𝑞(𝑘 + 1) = 𝑞(𝑘) + (𝑥𝑐𝑎𝑟𝑡_𝑟𝑒𝑓(𝑘) − 𝑥𝑐𝑎𝑟𝑡(𝑘))    (4.3) 
 
Considering equations (4.1), (4.2), and (4.3), the state space representation for the augmented 
system can be expressed as 
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𝐱𝒂𝒖𝐠(𝑘 + 1) =  𝐴𝑎𝑢𝑔_𝑑𝐱𝒂𝒖𝐠(𝑘) + 𝐵𝑎𝑢𝑔_𝑑𝒖(𝑘) =  [ 
𝐴𝑑 04×1

−1 01×4
 ]

[
 
 
 
 
𝑥1(𝑘)
𝑥2(𝑘)
𝑥3(𝑘)
𝑥4(𝑘)
𝑞(𝑘) ]

 
 
 
 

+ [
𝐵𝑑

0
]𝒖(𝑘)  

 
In this representation, 𝐴𝑎𝑢𝑔_𝑑 is the augmented system matrix that combines the original 
system matrix 𝐴𝑑  with additional rows and columns to account for the integral term. 𝐵𝑎𝑢𝑔_𝑑 is 
the augmented input matrix, and 𝒖(𝑘) represents the control input. By augmenting the state 
vector and updating the system matrices, the LQR control system with integral action can 
effectively address steady-state errors, eliminate the cart position offset, and enhance the 
overall performance of the control system. 
 
 
4.3.2 LQR Controller Tuning 
 
Once the state space representation is defined, the feedback gain K of the control input 𝒖(𝑘) 
is calculated in the same way as was described previously is calculated in MATLAB 
environment using “dlqr” function but with augmented states space matrixes 𝐴𝑑 and 𝐵𝑑 and 
the cost function matrices 𝑄 and 𝑅.  
 
The tuning procedure for the 𝑄 and 𝑅 matrices of the LQR involves selecting appropriate 
weighting factors that determine the trade-off between control effort and state deviations. The 
𝑄 matrix represents the weights assigned to the state variables, determining their importance 
in the control objective. 
 
In the case of the cartpole system, a higher weight of 100 is assigned to the pendulum angular 
position in order to prioritize its control. Conversely, the cart position is assigned a smaller 
weight of 4. The cart velocity and pendulum variables have even smaller weights compared to 
the positions. The integral error tracking state is assigned the smallest weight to minimize 
steady-state errors. This choice is made to balance the response speed with the stability of 
the pendulum, as larger weights destabilized its equilibrium. 
 
Thus, the following 𝑄 matrix was selected to control the cartpole: 
 
 

𝑄 =

[
 
 
 
 
4 0 0 0 0
0 2 0 0 0
0 0 100 0 0
0 0 0 4 0
0 0 0 0 1]

 
 
 
 

 

 
The 𝑅 matrix represents the weight assigned to the control effort or input. Increasing the values 
in the 𝑅 matrix penalizes larger control efforts if excessive control action is undesirable. On 
the other hand, decreasing the values in the 𝑅 matrix allows for more aggressive control action 
if a faster response is desired. In this case, 𝑅 is selected to be 0.005. 
 
With the chosen 𝑄 and 𝑅 matrices, the feedback gain matrix 𝐾 for the system is obtained as: 
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𝐾 =  [  −10.6101  −11.4893  −64.5583 −10.0341 3.1604 ] 

 
 
4.3.3 Simulink model of the cartpole control model with LQR controller 
 
 
The Cartpole control model with augmented LQR controller is implemented in Simulink to test 
the response of the model to the applied control input. This allows for preliminary controller 
tuning before applying it to the real physical model. Figure 4.2 shows the Simulink model, 
which includes the non-linear cartpole model with animation described in detail in Chapter 3. 
 

 
 

Figure 4.2: Simulink model of the LQR control system 
 
The outputs of the cartpole model block, namely the pendulum and cart positions, are 
connected to a discrete state estimator. This estimator generates the state vector, which is 
then used to calculate the control input, specifically the acceleration. The acceleration is limited 
within a certain range by the saturation block, which ensures it does not exceed the lower and 
upper saturation values. 
 
Additionally, the user has the option to define the reference cart position in the reference block, 
allowing for flexibility in setting the desired position for the control system. To simulate 
disturbances that can occur in real-world applications, a square noise with low frequency and 
small amplitude is added to the reference cart position. 
 
Figure 4.3 provides an insight into the internals of the state observer. It takes two continuous 
input signals, cart, and pendulum position, and utilizes a preconfigured discrete state space 
block to estimate an augmented state vector of 5 elements. This augmented state vector 
includes the cart and pendulum velocities, as well as the integral of the cart position error. 
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Figure 4.3: Discrete time cartpole state observer block 
 
 
Simulation of the augmented LQR controller, as depicted in Figure 4.4, involves modeling and 
analyzing the four states of the inverted pendulum control system. The figure illustrates the 
cart position, cart velocity, pendulum angle, pendulum angular velocity, and the control input, 
which corresponds to the acceleration applied to the system. 
 
In this simulation, the reference position for the cart is set to 0.2m, representing the desired 
position of the cart. The augmented LQR controller is designed to regulate the system and 
maintain the pendulum in this upright position, even in the presence of disturbances or external 
forces. 
 
Through the simulation, the performance and effectiveness of the augmented LQR controller 
can be evaluated, ensuring stable and precise control of the inverted pendulum system. 
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Figure 4.4: Pendulum Balancing with Augmented LQR and Cart Reference Position at 0.2m. 
 
 

4.4 PID Controller Design 
 
 
As an alternative to the augmented LQR controller, the PID control strategy is applied to 
balance the inverted pendulum at the upright position. The design of the PID control strategy 
is based on the previous thesis work of Francisco Javier Collado Valero, a former student from 
the Technical University of Madrid [22 p. 37-41]. However, several modifications were made 
to the PID parameters selection, and the control input was changed from cart velocity to cart 
acceleration. This change was made due to the better stability characteristics observed with 
acceleration control input compared to velocity, which exhibited oscillation and stability 
problems. 
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The PID control strategy involves applying two independent PID controllers, one for the cart 
position and another for the pendulum position. The control outputs generated by each PID 
block are summed before being applied to the cartpole model, as shown in Figure 4.5. Unlike 
the LQR controller, the PID controller does not require state vectors; instead, it tracks the error 
between the desired and actual values of the process variable. Therefore, a state estimator is 
not necessary. Instead, the output signals of the cartpole model are discretized using a zero-
order hold block available in the Simulink library. The same discretization process is applied 
to the control output using the zero-order hold block. All three signals, including the model 
outputs, control output, and reference signals, are discretized with a discretization period equal 
to the control period of 25 milliseconds. This is done to simulate the implementation of the 
discrete PID controller in real-world applications, where it would be implemented in C code. 
 

 
 

Figure 4.5: Simulink model of the PID control system 
 

Similar to the Simulink model of the cartpole control model implemented with the LQR 
controller, control input saturation, the cart position reference, and the introduction of a square 
disturbance are included in the PID control model. 
 
The PID controllers prioritize the pendulum angular position error while giving less importance 
to the cart position. The tuning of the PID parameters is performed using the Zeigler-Nichols 
technique. Initially, the PID controller for the pendulum position is tuned by setting the cart 
position PID parameters to zero. Once the pendulum position is maintained at the upright 
position, mutual tuning of both control loops is performed. 

The tuning procedure for the PID controller using the Zeigler-Nichols technique involves the 
following steps: 

1. In the initial step, a P (Proportional) controller is utilized. The value of 𝑲𝒖, representing 
the gain at which the closed-loop system exhibits steady oscillations, is determined. 
Additionally, the oscillation period, 𝑻𝒖, is identified. Obtaining 𝑲𝒖 can be accomplished 
through closed-loop simulations or real system experiments. 

2. Once 𝑲𝒖  and 𝑻𝒖 are known, the parameters of the PID controller can be selected 
based on Table 4.1. 
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Controller type  𝑲𝒑  𝑲𝑰 𝑲𝑫 
P 0.5𝑲𝒖   -  - 
PI 0.45𝑲𝒖   1.2𝑲𝒑/𝑻𝒖 - 

PD 0.8𝑲𝒖   -  𝑲𝒑𝑻𝒖/8 
PID 0.6𝑲𝒖   2𝑲𝒑/𝑻𝒖 𝑲𝒑 𝑻𝒖/8 

 
Table 4.1 PID tuning parameters  

 
3. The selection of the suitable controller relies on the desired performance criteria. The 

effects of independently increasing the PID parameters can be observed in Table 4.2. 

 
Parameter Rise time Overshoot Steady-state 

error 

Stability 

𝑲𝒑 decrease increase decrease degrade 
𝑲𝑰 decrease increase eliminate degrade 
𝑲𝑫 minor change decrease no effect improve if “small” 

 
Table 4.2 PID parameters increase effect.  

 

By selecting the appropriate PID controller parameters based on the system response 
characteristics and desired performance, the PID controllers can be tuned to effectively control 
the system. 

Finally, the model is simulated, and the results of the PID controller are shown in Figure 4.6. 
The simulation demonstrates the behavior of both the cart position and pendulum position as 
the control input, which is the acceleration, is applied. It can be observed that both the cart 
and pendulum positions converge to their respective reference values. 

During the simulation, the reference position for the cart is set to 0.2m, representing the 
desired position for the cart. The PID controller adjusts the control input based on the error 
between the current positions and the reference position, aiming to minimize this error and 
achieve accurate positioning of both the cart and the pendulum. 

The simulation results validate the effectiveness of the PID controller in regulating the cart and 
pendulum positions, highlighting its capability to achieve the desired reference values. 
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Figure 4.6: Pendulum Balancing with PID Controllers and Cart Reference Position at 0.2m. 
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Chapter 5 
 

5. Development of a reinforcement learning based control 
system in OpenAI Gym 

 
 
Gym OpenAI [16] is a toolkit for reinforcement learning research that provides a simple 
interface to various environments simulating real-world problems, including robotics and game 
playing. While most environments in the OpenAI platform are designed for gaming, there is an 
exception called “MuJoCo” that offers a library of physics-based environments, such as the 
“Inverted Double Pendulum” shown in Figure 5.1. This environment demonstrates the 
capabilities of the MuJoCo library in providing realistic physics simulations for reinforcement 
learning and control tasks. 
 

 
 

Figure 5.1: Inverted Double Pendulum of MuJoCo library. 
 
Among the environments in OpenAI Gym, there is the "CartPole" system, where the objective 
is to balance a pole attached to a moving cart. The "CartPole" environment is selected to 
simulate the physical model of an inverted pendulum. This environment serves as a testbench 
for developing and evaluating reinforcement learning algorithms and control systems. 
 
In this research, the existing “Cart Pole” model from Gym OpenAI is adapted to the real 
physical cart pole control model. This adaptation allows the application and evaluation of a 
specific type of reinforcement learning algorithm for controlling the physical cart pole system. 
By bridging the gap between simulation and reality, the effectiveness and transferability of 
reinforcement learning techniques in real-world control tasks are explored. The insights gained 
from this study can contribute to the development of robust and adaptive control systems 
across various domains. 
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Programming and code executions for this research are conducted in Jupyter Notebook [17] 
using the IPython (“Interactive Python”) command shell. This setup provides a convenient and 
interactive environment for implementing, testing, and analyzing reinforcement learning 
algorithms and control strategies for the cart pole system. 
 
 

5.1 Reinforcement learning  
 
 
The concept of reinforcement learning involves determining the optimal mapping from 
situations to actions in order to maximize a reward signal. These problems are considered 
closed-loop as the actions taken by the learning system affect its subsequent inputs. Unlike 
traditional machine learning approaches where actions are explicitly defined, reinforcement 
learning requires the system to explore and determine the actions that lead to the greatest 
reward. In complex and challenging scenarios, actions can not only impact immediate reward 
but also affect subsequent rewards through their impact on future situations. [18] 
 
In reinforcement learning, an agent interacts with its environment by taking actions and 
receiving rewards. In the case of the “Cart Pole” system, the agent must control the movement 
of the cart to balance the pole, and it receives a reward for keeping the pole upright. By using 
machine learning techniques, the agent can learn from its experience and improve its control 
over time. 
  
One of the main advantages of using Gym OpenAI and the “Cart Pole” (CP) environment is 
that it provides a standard platform for comparing different reinforcement learning algorithms 
and control systems. It also offers a simple and convenient way to design, implement, and 
evaluate these algorithms. By utilizing OpenAI Gym, researchers can focus on the 
development of new and innovative reinforcement learning techniques, rather than on the 
design of the environment and the underlying physical system, which in turns significantly 
decrease time dedication to recreating the model.  
 
Thus the “Cart Pole” environment provides a valuable resource for reinforcement learning 
research, particularly in the areas of control systems and machine learning. By offering a 
standard platform and a simplified environment, researchers can concentrate on the 
development of new algorithms and approaches to solving problems in AI. 
 
 

5.2 OpenAI Gym Cart Pole environment description 
 
 
This environment is based on a version of the cart-pole problem originally developed by Barto, 
Sutton, and Anderson in their work titled "Neuronlike Adaptive Elements That Can Solve 
Difficult Learning Control Problem". It involves a freely rotating pole attached to a cart via a 
hinge, allowing the pole to move along a track. The system assumes the neglect of static and 
Coulomb frictions. [19] 
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At the beginning of each episode, the pendulum starts in an upright position on the cart. The 
primary objective is to balance the pole by applying forces in horizontal directions to the cart. 
The agent must select actions from a simple action array, which only has two possible values. 
These values correspond to the direction of the fixed force to be applied on the cart, as 
indicated in the table below. 
 

Num Action 

0 Push a cart to the left 

1 Push a cart to the right 

 
Table 5.1: Action space of the “Cart Pole” environment [20] 

 
The observation space in the OpenAI CartPole model provides information about the system's 
variables. It is represented as a 4-dimensional array, which includes the current values of the 
cart's position, cart's velocity, pole's angle, and pole's angular velocity. These variables 
collectively define the state of the system at any given time. The range of permissible values 
for each quantity within the observation space can be found in Table 5.2. 
 

Num Observation Minimum value Maximum value 

0 Cart Position -4.8 m 4.8 m 

1 Cart Velocity -Infinity Infinity 

2 Pole Angle ~ -0.418 rad (-24°) ~ 0.418 rad (24°) 

3 Pole Angular Velocity -Infinity Infinity 

 
Table 5.2: Observation space of the “Cart Pole” environment [20] 

 
The ranges mentioned above represent the possible values for each element of the 
observation space. However, it's important to note that these ranges don't necessarily reflect 
the permissible values for the state space during an ongoing episode. 
 
Specifically, for the cart position on the x-axis (index 0 of the observation array), it can take 
values between -4.8 m and 4.8 m. However, if the cart position exceeds the range of -2.4 m 
to 2.4 m, the episode will automatically terminate. 
 
Similarly, the pole angle has an observation value range between ±24°. Nevertheless, if the 
pole angle goes beyond the range of ±12°, the episode will be terminated. These limits ensure 
that the system remains within a stable and controllable range during the learning process. 
[20] 
 
When a new episode starts in the "Cart Pole" environment, the initial state of all observations 
is assigned a uniformly random value within the range of (-0.05, 0.05). This initialization places 
the cart close to the center and the origin, while the pole remains in an upright position, and 
all velocities are negligible. 
 
Throughout each step of the episode, the agent receives a reward of +1 for successfully 
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balancing the pendulum. In the "v1" version of the model, the episode is limited to a maximum 
of 500 steps. Therefore, in the best-case scenario where the agent maintains balance for the 
entire episode, the total reward value can reach a maximum of 500. 
 
These settings ensure that the initial state provides a neutral starting point for each episode, 
and the reward mechanism encourages the agent to strive for optimal performance by 
balancing the pendulum over multiple steps. 
 
 

5.3 Custom environment design in OpenAI Gym 
 
 
Designing an environment in OpenAI Gym is important for solving problems effectively. There 
are several important elements to consider when designing a custom environment, such as: 

1. State representation: This defines the current state of the environment and should 
accurately capture relevant information for the problem. 

2. Action space: The available actions the agent can take must be defined. 
3. Reward function: Feedback for the agent's actions should be provided and encourage 

a successful outcome by rewarding or penalizing depending on the outcome of the 
applied action. 

4. Observation space: The information available to the agent at each step should be 
defined. 

5. Episode termination: The environment should define when an episode ends, for 
example, when the pole falls, or a time limit is reached. 

 
By taking these elements into consideration, a well-designed environment that accurately 
represents the problem and provides useful information to the reinforcement learning algorithm 
can be created.  
 
In this thesis proper cart pole environment is designed taking as a reference already existing 
“Cart Pole” model by Barto, Sutton, and Anderson. Several parameters such as cart and pole 
dimensions, permissible values for pole angle and cart position, force magnitude and various 
rendering parameters are modified to meet some requirements of the existing physical model. 
During the design of a custom environment, physical parameters such as the mass of the cart 
and pendulum, their lengths, the track length, the maximum frequency of the stepper motor, 
the sampling time of sensors and controllers, and the capacities of the FPGA board are all 
taken into consideration. 
 
The cart position value has an observation value range between ±4.8 (in meters) and its 
permissible values are in the range between ±0.48, which gives the distance equal to 0.96 
meters that corresponds to the trajectory limitations of the real model.  The pole angle 
observation value range remained unchanged while its permissible values for the state space 
is between ±7.5°.  The environment initiation and the permissible value range definition can 
be seen in Listing 5.2.  
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Listing 5.2: Cart position and pole angle permissible values definition in Python 
 
The control system is configured with a sampling time of 25 milliseconds, and the maximum 
force applied by the belt and pulley system to the cart is set to 15 𝑁, as determined in Chapter 
2. These values, along with other relevant physical dimensions of the cart and pole, are 
declared in Listing 5.3. 

 

 
 

Listing 5.3: The physical parameters definition 
 
As shown in Listing 5.4, the Python code implements the equations for cart displacement and 
pole rotation, which are derived from the initial model. The control input is represented by a 
force with a constant magnitude, as defined earlier, and its sign (positive or negative) depends 
on the action value. The cart and pole accelerations (“thetaacc” and “xacc”) are calculated 
based on the force applied during each control period. After determining the accelerations, the 
system's four states, namely the cart position “x” and velocity “x_dot”, and the pole position 
“theta” and velocity “theta_dot”, are computed using the equations provided in Listing 5.4. 
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Listing 5.4: System equations 
 
In the OpenAI Gym Cart Pole environment, two rendering modes are available: "human" and 
“rgb_array”. For this thesis, the “human” rendering mode was chosen, and a 3x1 scale was 
applied to the linear dimensions of the cart and pole, as illustrated in Listing 5.5. The purpose 
of this adjustment was to enhance the visualization of the objects within the environment.  
 

 
 

Listing 5.5: Rendering and parameters for the model visualization.  
 
Additionally, the custom environment includes visual representations of the cart and pole, 
along with the corresponding position and angle indicators. These visual elements provide a 
clear and intuitive display of the system's state during simulation. The custom environment of 
the Cartpole system is depicted in Figure 5.2. 
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Figure 5.2 Custom environment visualization 
 
 
To validate the custom environment, random actions are applied to the pendulum by moving 
the cart either to the left or right at each sampling time. These actions are assigned using the 
function "env.action_space.sample()", as depicted in Listing 5.6. The environment is then 
tested for 10 episodes, with each episode limited to 500 sampling time periods, which is 
equivalent to 12.5 seconds.  During each episode, the cumulative rewards, also known as the 
score, are recorded. By comparing the scores across episodes, the performance and 
effectiveness of the custom environment can be evaluated. 
 

 

 
 

Listing 5.6 Custom environment validation 
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Listing 5.7 displays the cartpole score values, which are notably low compared to the maximum 
reward value of 500 per episode. This observation suggests that the considered cart pole 
system is unstable in the upright position. The low scores indicate that the pendulum frequently 
deviates from its balanced state, indicating the need for a robust control strategy to stabilize 
the system and improve its performance. 
 

 
 

Listing 5.7: Scores of Episodes with Random Actions Applied 
 

The cart pole environment testing process can be seen accessing the link provided below:  
https://upm365-
my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EYfRTkfhRVtBhYDa6f
XtL4oBxikjUu6GjSgSIueV4JdnmQ?e=dEYlZB 
 
It is important to note that the episode ends when the angle value goes out of range. Therefore, 
the falling of the pendulum is not shown in the video above. 
 
 

5.4 PPO type Reinforcement learning with a black box 
model of pendulum.  

 
 
PPO, or Proximal Policy Optimization, is a type of reinforcement learning algorithm that was 
developed in 2017 by OpenAI. It combines ideas from both value-based and policy-based 
methods. It is designed to be both effective and computationally efficient, making it a popular 
choice for many real-world applications. PPO reaches a balance between ease of 
implementation, complexity of the sample to be learned and simple tuning. It computes an 
update at each step that in turn leads the minimization of the cost function value and 
guarantees relatively small values of the deviation from the previous policy [21] 
 
In the context of an inverted pendulum on a cart, PPO can be used to train an agent to control 
the cart and keep the pendulum upright. The agent receives a reward signal based on the 
position of the pendulum and the velocity of the cart, and it must learn to take actions that 
maximize this reward signal. 
 
Several libraries, such as “baselines3” and “pyglet”, need to be installed to use PPO 
reinforcement learning. To apply PPO to the Custom Cart Pole environment designed in this 

https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EYfRTkfhRVtBhYDa6fXtL4oBxikjUu6GjSgSIueV4JdnmQ?e=dEYlZB
https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EYfRTkfhRVtBhYDa6fXtL4oBxikjUu6GjSgSIueV4JdnmQ?e=dEYlZB
https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EYfRTkfhRVtBhYDa6fXtL4oBxikjUu6GjSgSIueV4JdnmQ?e=dEYlZB
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thesis, the environment should be defined and vectorized using the “DummyVecEnv” policy 
provided by the “stable_baselines3” library as shown in Listing 5.8. The state representation, 
action space, reward function, and observation space should be defined in a way that 
accurately reflects the problem to be solved. The next step is to define the model and indicate 
the policy. “MlpPolicy” is chosen for PPO model training, which takes the current state as the 
input variable and estimates an appropriate action. 
 

 
 

Listing 5.8 PPO model  
 
PPO reinforcement learning will preliminarily test the Cart Pole environment with a random 
control strategy to provide a functionality reference. This involves collecting a batch of 
experience data by executing actions in the environment and observing the resulting rewards 
and state transitions. The agent then updates its policy using the experience data and the PPO 
algorithm, in order to improve its performance and optimize the reward signal. [19] 
 
The process of training the agent and refining its policy is repeated iteratively until a 
satisfactory level of performance is achieved. This involves running reinforcement learning 
algorithms over multiple iterations. Once the training is complete, the resulting policy can be 
applied in real-time to control the inverted pendulum on a cart, showcasing the agent's 
proficiency in the task. 
 
For the reinforcement learning of the custom Cart Pole model, a time period of 40,000 
timesteps was selected. It was found that training the model with fewer timesteps yielded 
inferior performance results. Listing 5.9 provides details of the calculations involved in training 
the model, which were performed using the CPU device. 
 
Once the model is trained, various data related to time consumption and the applied policy are 
presented. This includes the following: 

1. Clip Fraction: A parameter used in Proximal Policy Optimization (PPO) algorithms to 
limit the update of policy parameters. It determines the portion of the ratio between the 
new and old policies that is utilized during the update step. 

2. Clip Range: Another parameter in PPO algorithms that defines the range within which 
the ratio of new and old policies is clipped. It ensures that the update to the policy 
parameters remains within a specific range to prevent drastic changes. 

3. Entropy Loss: A component of the PPO algorithm that encourages exploration and 
prevents the policy from becoming too deterministic. It is a measure of the uncertainty 
or randomness in the policy's output distribution. 

4. Loss: The overall loss value computed during the training process. It represents the 
discrepancy between the predicted and expected values and is used to update the 



  
 
 

59  
 
 

policy parameters. 
5. N_updates: The number of policy update steps performed during the training process. 

Each update step involves collecting new data, computing gradients, and adjusting the 
policy parameters. 

These metrics and parameters provide insights into the training process and can be used to 
evaluate the effectiveness and efficiency of the trained model. 

 

 
 

Listing 5.9 PPO model training 
 
Overall, PPO is an effective choice for solving the inverted pendulum problem using 
reinforcement learning, and it provides a flexible and efficient framework for training agents in 
complex environments. By combining ideas from both value-based and policy-based methods, 
it can help to ensure that the agent is able to learn effectively and make meaningful decisions 
based on the information it has available. 
 
Finally, the trained model is tested to evaluate the agent’s performance.  For testing the custom 
environment random actions are applied to the trained model.   As each episode can last only 
500 sampling time 10 episodes of the action are analyzed. High score value for each episode 
proves the effectiveness of PPO reinforcement training technique. 
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Listing 5.6 Trained model validation 
 

The trained model testing episodes can be seen accessing the link provided below: 
https://upm365-
my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/Edb1sH4b4XFKl3GXh
KbchNYB9GNDQcPAhwaRNJktu8GnOg?e=RoNBGr 
 

 

  

https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/Edb1sH4b4XFKl3GXhKbchNYB9GNDQcPAhwaRNJktu8GnOg?e=RoNBGr
https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/Edb1sH4b4XFKl3GXhKbchNYB9GNDQcPAhwaRNJktu8GnOg?e=RoNBGr
https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/Edb1sH4b4XFKl3GXhKbchNYB9GNDQcPAhwaRNJktu8GnOg?e=RoNBGr
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Chapter 6 
 
 

6. Hardware Block Design 
 
 
This chapter focuses on the design and integration of Hardware Intellectual Properties (IP) 
within the block design framework. The objective is to receive and process signals using VHDL 
code, simulate them with a testbench in Vivado, and integrate them in the PL seamlessly using 
the Vitis toolkit. Additionally, the chapter explores the utilization of ILA (Integrated Logic 
Analyzer) for debugging purposes. 
 
The design process involves employing the Vivado design suite by Xilinx and the Zynq 
processing system. Various IPs are developed specifically for fast signal processing and 
filtering tasks, including the optical interrupter, rotary encoder, limit switches, and motor driver 
control input generator. These IPs are responsible for signal detection, information processing, 
and generating output signals within the Zynq system. The chapter provides an explanation of 
the design details for these IPs, encompassing the functional blocks and their 
interdependencies.  
 
Furthermore, the chapter discusses the simulation of the IPs using a testbench in Vivado to 
ensure their functionality. The integration of these IPs into the block design is also discussed, 
emphasizing the utilization of the Vitis toolkit. This integration process ensures smooth 
collaboration and interaction among the different IP modules. It is worth noting that certain 
conceptual ideas utilized in the design of the “Rotary Encoder” IP and “Limit Switches” IP were 
derived from the final degree thesis of a former student, Francisco Javier Collado Valero, from 
the Technical University of Madrid [22]. 
 
Moreover, the chapter highlights the significance of ILA debugging. By employing ILA, it 
becomes possible to monitor and analyze internal signals in real-time within the IPs and the 
overall system. This debugging capability aids in identifying and resolving potential issues, 
thereby enhancing the reliability and efficiency of the block design. 
 
Thus, this chapter provides a comprehensive exploration of the design, simulation, integration, 
and debugging processes involved in creating custom IPs within the block design framework. 
Following these processes enables the development of a robust and efficient system capable 
of effectively receiving, processing, and generating signals for various applications. 
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6.1 Optical Interrupter IP 
 
 
The IP of Optical interrupter serves for filtering the input signal generated by sensor applying 
debouncing filter. The output signal “debounced_intr” is 1 bit signal and takes the value of 1 
when an object is detected by the sensor, and 0 when no object is detected. This signal is 
used to indicate the presence or absence of an object and is referred to as a “debounced” 
signal because it is used to eliminate any “bouncing” or false signals that may be generated 
by the sensor. 
 
As shown in Figure 6.1, the optical interrupter sensor is connected to the input signal “intr”, 
which is read from the Digital IO pin of the PYNQ Prototyping board. The “s00_axi_aclk” 
signal is used to synchronize the operation of the IP with the Processing System clock 
frequency and to control the timing of various operations within the IP. The “s00_axi_aresetn” 
is an active-low reset signal used to reset the internal state of the IP. 
 
Additionally, in the hardware design, there is a slave interface called “S00_AXI” that enables 
data transfer between the IP and the FPGA processing system. This interface allows 
communication between the IP and the processor. In this particular case, the output signal 
“debounced_intr” is connected to the processor through the “S00_AXI” slave register. This 
enables the processor to read the status of the debounced interrupt signal from the IP. The 
slave register acts as a communication bridge, allowing the processor to access and control 
various parameters and signals within the IP module. 
 

 
Figure 6.1: IP of the Optical Interrupter 

 
 
Simulation of Optical Interrupter IP  
 
To ensure the accuracy of the Optical Interrupter IP's functionality, a simulation tool provided 
within the Vivado toolkit is utilized. A specialized testbench, written in VHDL, is created to 
simulate the IP module. The testbench module is specifically designed to test the Device Under 
Test (DUT), which, in this case, is the Optical Interrupter IP. Its primary objective is to verify 
the correct operation of the DUT by applying input stimuli and validating the expected outputs 
[23]. By utilizing the testbench in Vivado, designers can simulate different scenarios and 
evaluate the performance of the IP before deploying it. This process aids in the detection and 
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resolution of potential issues or bugs prior to implementing the IP in real-world applications. 
 
In the context of input signal “intr”, a debounce mechanism is applied to filter out bounces, 
considering a debounce time of 1ms. This ensures that the input signal is considered stable 
after the bouncing has stopped. Consequently, the output signal “debounced_intr” takes on 
a value of 1 when the duration of the input signal is longer than 1ms, as shown in Figure 6.2. 
 
In addition, it is important to note that in the simulations of all IPs, the “reset” signal is 
generated by inverting the “s00_axi_aresetn” input signal. The “reset” signal is active high, 
which means it is in its active state when it is at a high voltage level. 
 

 
Figure 6.2: Simulation of the Optical Interrupter IP 

 
 

6.2 Rotary Encoder IP 
 
 
The relative angle encoder is the sensor used to measure the angular displacement of the 
pendulum. This encoder provides a digital output, which means that the output signal takes 
the form of a square wave with 600 pulses per revolution. The optical interrupter's output 
signal, referred to as “intr_pos”, is used as a reference signal to indicate the stable position 
of the pendulum when it is in the downward position. 
 
The encoder IP module has two external inputs, namely “ch_a” and “ch_b”, which are 
connected to Digital IO pins on the FPGA board. These signals are generated by the relative 
encoder and have a phase difference of 90 degrees during the rotation of the pendulum.  
 
As depicted in Figure 6.3, the encoder IP module contains two output signals: “dir” and 
“pos_ctr”. Both of them are connected to the processor via the “S00_AXI” slave register.  
The “dir” signal indicates the turning sense, with a value of '1' representing clockwise rotation 
and '0' representing counterclockwise rotation. On the other hand, the “pos_ctr” signal is a 
32-bit value that serves as the position counter, keeping track of the angular position of the 
pendulum. 
 
To provide a finer resolution for position tracking, the counter module is designed to count up 
to 2399. In this configuration, the rest position of the pendulum corresponds to a count of '0', 
while the upright position corresponds to a count of 1199. This division of the counter's range 
allows for more precise monitoring and control of the pendulum's position. 
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Figure 6.3:  IP of angle encoder 

 
 
Simulation of Rotary Encoder IP  
 
The input signals from the encoder exhibit debounces, which can make it challenging to 
accurately observe the signals. To address this issue, dedicated debounce mechanisms are 
implemented for both the “ch_a” and “ch_b” signals. These mechanisms store the previous 
states of the signals, “a_prev” and “b_prev”, respectively, with a 250-microsecond delay. 
Although the debounce filter introduces a delay into the observation, its impact is negligible 
within the control system's period, which is equal to 25 milliseconds. Therefore, it will not 
negatively affect the control system's performance. 
 
By implementing the debounce filtering, transient signal states with durations shorter than 250 
microseconds, which are considered as bounces, are effectively eliminated. This ensures that 
only stable and reliable signal states are registered and used for further processing and 
analysis. 
 
Once the external input signals are filtered, the “dir” and “pos_ctr” signals can be generated. 
As illustrated in Figure 6.4, the “pos_ctr” value increments or decrements depending on 
whether the “a_prev” or “b_prev” signal is ahead at both the rising and falling edges of the 
signals. Additionally, when the interrupt signal “intr_pos” takes a value of 1, indicating that 
the pendulum has reached the downturn point, the position counter “pos_ctr” is reset to 0. 
It's important to note the priority of the “intr_pos” signal over the “a_prev” and “b_prev” 
signals. 
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Figure 6.4: Simulation of the Rotary Encoder IP 

 
 

6.3 Limit Switch IP 
 
 
The limit switch functionality is a critical component for ensuring the accurate positioning of 
the cart within the system. The IP module receives four input signals, namely “ls_left_1”, 
“ls_left_2”, “ls_right_1” and “ls_right_2”, as depicted in Figure 6.5. These limit switches 
are strategically positioned to detect the end-of-travel positions of the cart, providing vital 
information to the control system. 
 
The Limit Switch IP has only one external output called “ls_out”, which is connected to the 
Motor Driver IP. This output signal likely controls the motor driver to stop the cart when the 
limit switch is triggered. 
 
Additionally, there are two output signals, “out_right” and “out_left”, which are sent to the 
Processing System via the “S00_AXI” interface. These signals indicate whether the cart is on 
the right or left side of the shaft, providing positional information to the system. 
 

 
Figure 6.5: IP of limit switches 
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Simulation of Limit Switch IP 
 
To mitigate the issues caused by the extra bounces in the limit switch signals, a debounce 
filter is employed. A debounce filter similar to the one used for a rotary encoder is chosen, with 
a debounce delay of 1ms. This filter effectively removes the noise and fluctuations present at 
the rising and falling edges of the limit switch signals, ensuring reliable and stable detection of 
the end-of-travel positions. 
 
The filtered values of the input signals are labeled as “db_left_1”, “db_left_2”, “db_right_1” 
and “db_right_2”. As illustrated in Figure 6.6, these filtered signals exhibit the elimination of 
the extra bounces observed in the original signals. While the filtered signals introduce a 1ms 
delay compared to the original signals, this delay is inconsequential to the control system as 
its control period is significantly greater. 
 
The signals “out_left” and “out_right” are derived from the filtered input limit switch signals 
by applying an OR function. These signals indicate the current status of the cart's position, 
specifically whether it is on the left or right side. On the other hand, the “ls_out” signal detects 
if any of the limit switches have been triggered, providing valuable information to the control 
system. 
 

 
Figure 6.6: Simulation of the Limit Switch IP 

 
 

6.4 Stepper Motor Driver IP 
 
 
The Stepper Motor Driver IP is responsible for controlling the motor driver within the system. 
Similar to the previous IP blocks, it receives several input signals, including “en_n” from the 
Limit Switch IP, “s00_axi_clk”, and “s00_axi_aresetn” for synchronization and reset 
purposes. The “en_n” signal is an active low enable signal connected to the “ls_out” output 
port, which enables or disables the generation of the step signal when one of the limit switches 
is pressed. 
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Furthermore, the IP module receives two input signals, namely “register_dr” and 
“step_period”, from the Processing System through the “S00_AXI” interface. The 
“register_dr” signal is a 8-bit signal that contains all the driver output signals. This allows for 
the control and configuration of various aspects of the motor driver's operation. 
 
The “step_period” input signal is utilized to modify the maximum count number of the 
frequency divider. By adjusting this value, the corresponding output signal “step” can be 
generated to control the stepper motor driver effectively. This enables precise control over the 
motor's movement and speed within the system. 
 
Furthermore, the Motor Driver IP has 8 output ports that correspond to the number of control 
input ports of the DRV8825 motor driver carrier by Pololu. These output ports are used to 
control various aspects of the motor driver's operation and can be seen in Figure 6.7. 
 

 
 

Figure 6.7:  IP of the stepper motor driver 
 
 
Simulation of Stepper Motor Driver IP  
 
 Six out of the eight output signals, namely “mode0”, “mode1”, “mode2”, “reset_n”, 
“slp_n”, “dir” directly mirror the value received from the Processor unit through the 
“register_dr” signal. However, the motor driver enable signal, “enbl_n”, is a combination of 
the input signal “en_n” from the Limit Switch IP and another value from the “register_dr” 
signal of the Processor. This configuration enables two modes of control for the stepper motor 
drive. 
 
In the security mode, “enbl_n” is set equal to the value of “en_n”. This ensures that when 
the cartpole reaches the end of the carrier or if any of the limit switches are disconnected or 
malfunctioning, the motor is disabled by the “en_n” signal from the Limit Switch IP. In 
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autonomous mode, “enbl_n” is controlled directly by the processor unit. This allows the motor 
to be used even in the event of limit switch damage or connection problems. 
 
Another output signal, “step”, is generated using a frequency divider based on the value of 
“step_period” received from the processor. The main reason to generate the “step” signal 
by hardware but directly from the processor is that its implementation requires timer counters 
which adds unwanted latency and delays to the inverted pendulum control system. Figure 6.8 
illustrates that the “step” signal becomes zero when one of the limit switches is pressed. 
 

 
 

Figure 6.8: Simulation of the Stepper Motor Driver IP 
 
 

6.5 Control System Hardware Block Design   
 
 
The hardware block design of the control system consists of several IPs, including the Optical 
Interrupter, Rotary Encoder, Limit Switch, Stepper Motor Driver, Zynq7 Processing System IP, 
AXI Interconnect, and Processor System Reset. This configuration is illustrated in Figure 6.9. 
 
In this design, all IPs, except the Processing System, are considered programmable logic (PL) 
components. They are interconnected using the AXI GP (General Purpose) interface, and the 
communication between them is managed by the AXI Interconnect IP. Acting as a central 
hub, the AXI Interconnect IP facilitates communication between the different IPs in the system. 
The Zynq7 Processing System IP serves as the master interface, while the other IPs function 
as slave interfaces. 
As the master interface, the Processing System IP has the ability to request and send data to 
the slave IPs. On the other hand, the slave IPs can only receive and send data when requested 
by the Processing System. This arrangement allows for efficient data transfer and control 
between the various components in the system. 
 
The AXI Interconnect IP provides an advanced and extensible interface for communication 
between the IP blocks. It enables scalable and flexible communication, allowing the IP blocks 
to share data and control signals. This integration of multiple functionalities in a single system 
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leads to improved efficiency and optimized designs. The AXI Interconnect IP supports multiple 
masters and slaves, enabling concurrent communication between IP blocks, which is essential 
for complex designs with diverse functionalities. 
 
The Zynq7 Processing System IP is a pre-packaged IP block provided by Xilinx Vivado 
Design Suite. It allows for easy integration of a processing system into the FPGA design. The 
IP includes the dual-core ARM Cortex-A9 processor, memory controllers, peripheral 
controllers, and other system components necessary for creating a complete processing 
system. 
 
The Processor System Reset IP provides a controlled and synchronized reset mechanism 
for the processing system. It ensures that all the components within the processing system, 
including the processor cores, memory controllers, and peripheral interfaces, are properly 
reset and brought to a known state during system startup or when a reset condition occurs. 
The PS Reset IP helps maintain the stability and reliability of the processing system. 
 

 

 

Figure 6.9: Hardware Block Diagram of the Control System 
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6.6 Hardware Debugging with ILA  
 
 
In order to ensure the correct functionality and identify potential errors in the Programmable 
Logic (PL) design, the use of debugging techniques is essential. Xilinx Vivado offers a powerful 
tool called the Integrated Logic Analyzer (ILA) for this purpose. The ILA enables real-time 
observation and analysis of internal signals within IPs during simulation or hardware 
debugging, providing detailed insights into their functionality. 
 
The Vivado ILA empowers designers to select specific signals of interest, set triggers, and 
capture waveforms for analysis. With features like waveform display, navigation, and cross-
probing, designers can visually analyze signal behavior and correlate it with other design 
views. Additionally, the ILA offers signal analysis tools such as measurements, bus decoding, 
and protocol analysis, facilitating a deeper understanding of the signals. 
 
During the design stage of the IPs, it is crucial to select and mark the desired signals to be 
observed using the “mark_debug” attribute in the VHDL logic of the control system IPs. This 
ensures that the relevant signals are available for effective debugging of the PL. Figure 6.10 
provides an overview of some of the 90 selected nets designated for debugging purposes. 
 

  

Figure 6.10: HW nets to debug with ILA.  

 
During the debugging process of the inverted control system, errors related to the Rotary 
Encoder IP were discovered. It was found that the position counter occasionally displayed 
incorrect values, which were attributed to immediate counter incrementation or decrementation 
when the pendulum was at rest or moving at a low frequency. Further investigation revealed 
that the rotary encoder device generated additional bounces at low frequencies. 
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To address this issue, a specialized debounce filter was implemented in the input signals of 
the Rotary Encoder IP. This filter effectively mitigated the extra bounces, resulting in more 
accurate and reliable position readings from the rotary encoder device. 
 
 

6.7 Layout and source consumption 
 
 
In the hardware design view layout of the control system, as depicted in Figure 6.11, the 
physical arrangement of the design components and the routing resources employed to 
establish connections between them can be observed. This view offers a visual representation 
of how the various elements of the system are positioned and interconnected in a physical 
sense. 
 

 

Figure 6.11: Implemented HW Design View Layout 

 
The implemented hardware (HW) design demonstrates relatively low resource utilization, as 
indicated in Figure 6.12. The utilization percentages of the major resources are as follows: IO 
utilization is 13%, BUFG (Clock Buffer) and LUT (Look-Up Table) utilization are both 6%, while 
the least utilized resources are LUTRAM (Look-Up Table RAM) and BRAM (Block RAM) with 
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a utilization of 2%. These utilization percentages provide insights into the efficient allocation 
and utilization of hardware resources within the design. 
 

  

 
Figure 6.12: Implemented HW Design Resource Utilization 

 
Upon analyzing the total power consumption of the control system, it is evident that the 
Processing System (PS7) accounts for the majority of the power consumption, amounting to 
95% of the total. In contrast, the Programmable Logic portion consumes only 5% of the total 
power, with a significant portion attributed to clock-related components. This can be observed 
in Figure 6.13, which provides a visual representation of the power distribution within the 
system, highlighting the substantial contribution of clocks to the overall power consumption. 
 

 

Figure 6.13: Implemented HW Design Power Consumption 

  



  
 
 

74  
 
 

 

  



  
 
 

75  
 
 

Chapter 7 
 
 

7. System Software design 
 
 
Once the hardware design is completed, it is exported to Xilinx Vitis to create the platform. 
This platform serves as the foundation for creating the application project, which involves 
designing system software. The signal received from the previously designed IPs is processed 
using the processing system within the Pynq-Z1 board. The software design is implemented 
in the C programming language. 
 
The processor operates at a frequency of 125MHz, and the control period of the cartpole 
system is set to 40 Hz, as defined in Chapter 4. The acceleration block updates the cart velocity 
value at a frequency of 10kHz. This ensures that the updates of variables and other iterations 
occur frequently enough to prevent any detrimental latency or delays in the controller's 
performance. 
 
In this chapter, the software design for both the PID and LQR control systems will be explored. 
These control strategies were implemented as separate applications using the same hardware 
platform. While they share common features such as the system state machine and motor 
control, they differ in terms of the state observer, error tracking, and controller type. 
 
The system state machine consists of three states: cart centering, pendulum balancing, and 
stop. In the cart centering state, the cart starts from a random position and is then moved to 
the center of the shafts, representing the midpoint of its available trajectory. In the pendulum 
balancing state, the control strategy is applied, and the stepper motor is activated to maintain 
the pendulum in a balanced position. Finally, in the stop state, the motor is stopped, and this 
state is activated when the cart reaches the end switches. 
 
Throughout this chapter, a detailed explanation of the functions utilized in the software design 
for both the PID and LQR control systems will be provided. 
 
 

7.1 Cart centering function 
 
 
At the beginning of the cartpole control experiment, the cart should be positioned at the center. 
The cart centering block is designed to move the cart to the midpoint of the shaft, aligning it 
with the reference of the cart's position. A flow chart illustrating the cart centering function is 
depicted in Figure 7.1. 
 
At the start of the experiment, the system checks if the left switch has already been pressed. 
If not, the cart will be moved to the left with maximum velocity until the left end switch is 
pressed. If the left end switch is already triggered, the cart will be slightly moved to the right. 
The position of the left switch is taken as 0.48 m, which corresponds to half of the trajectory. 
Then, the cart is moved to the right with maximum speed until it reaches the center position 
with a value of zero. 
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Figure 7.1: Cart centering flowchart 
 
 

7.2 Acceleration Block 
 
 
The control input of the cartpole control system is acceleration, which is received from the 
controller block at each control period of 25 milliseconds. Acceleration is used to adjust the 
motor speed during each velocity modification period, which is set to 100 microseconds 
(10kHz). This short duration ensures precise and incremental changes in velocity, minimizing 
discretization errors in the acceleration value and preventing unwanted oscillations in the cart 
and pendulum movement. By maintaining stability and minimizing errors, the overall 
performance of the system is improved. 
 
To determine the motor step period, denoted as 𝑠𝑡𝑒𝑝𝑠, it is derived based on the cart speed, 
v, using the following formula: 
 

𝑠𝑡𝑒𝑝𝑠 =   
0.01𝜋 ∗ 𝑅𝑝𝑢𝑙𝑙𝑒𝑦[𝑚] ∗ 𝑓𝐹𝑃𝐺𝐴[𝐻𝑧]

v[m/s] ∗ 𝑚𝑜𝑑𝑒
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Here, 𝑓𝐹𝑃𝐺𝐴 represents the frequency of the FPGA board, which is included in the formula as 
it is sent to the Stepper Motor Driver IP. The value 0.01𝜋 corresponds to the angle made by 
one step of the motor, and 𝑚𝑜𝑑𝑒 represents the microstepping mode number of the motor as 
defined in section 2.5.2.  
 
After calculating the steps value, it is checked whether it falls within the range of the maximum 
and minimum period values. If the calculated value exceeds these limits, it is adjusted to the 
corresponding maximum or minimum value. 
 
Finally, the position of the cart is incremented or decremented based on the velocity update 
period 𝑇 and the direction of movement. If the cart moves right, the direction is set to 1; if it 
moves left, the direction is set to -1. The formula for calculating the position increment is as 
follows: 
 

∆ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑎𝑟𝑡[𝑚]  =   
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 0.01𝜋 ∗ 𝑅𝑝𝑢𝑙𝑙𝑒𝑦[𝑚] ∗ 𝑓𝐹𝑃𝐺𝐴[𝐻𝑧]

𝑠𝑡𝑒𝑝𝑠 ∗ 𝑚𝑜𝑑𝑒
∗ 𝑇[𝑠] 

 
In the Acceleration Block, the values of all variables are updated during each velocity update 
period 𝑇. During other times, the block remains switched off using the usleep() function, which 
is a sleep function that pauses program execution for a specified amount of time. This allows 
the system to synchronize the update of variables and control actions with the desired timing 
and ensures that the block operates according to the defined control strategy. 
 
 

7.3 LQR Controller 
 
 
The LQR (Linear Quadratic Regulator) controller is designed to balance the pendulum at the 
upright position. However, it is only activated after the cart centering process is completed, 
and the pendulum is manually positioned in the upright position. Since the swing-up strategy 
was not implemented in this thesis, the pendulum is manually set to the upright position. 
 
As the rotary encoder used in the system is relative, it is crucial to establish the correct 
reference point to accurately define the pendulum's upright position. To achieve this, the initial 
position of the pendulum is set to 0 when it is in the downward position.  
Once the angle of the pendulum reaches 𝜋 radians, it is reset to 0, representing the upright 
position. At this point, the LQR controller is activated to maintain the upright position and 
balance the pendulum. 
 
The position of the pendulum in radians is determined using the “pos_ctr” signal received from 
the Rotary Encoder IP, as described in Chapter 6. Considering that the maximum count 
number corresponding to 2𝜋 is equal to 2399, the following formula can be used to calculate 
the pendulum position: 
 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚[𝑟𝑎𝑑] =   
𝑝𝑜𝑠 𝑐𝑡𝑟 − 1199

1200
∗ 𝜋 
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This formula normalizes the “pos_ctr” value by subtracting 1199 and dividing it by 1200 to 
obtain a range of values from  −𝜋  to 𝜋. Multiplying this normalized value by 𝜋 gives the 
pendulum position in radians. This calculation allows for mapping the rotary encoder counts to 
the corresponding angular position of the pendulum. 
 
The control input calculations in augmented LQR control strategy requires 5 system states.  In 
addition to the pendulum position, which was discussed earlier, the pendulum velocity needs 
to be estimated at each control period. The calculation for the pendulum velocity is as follows: 
 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 [
𝑟𝑎𝑑

𝑠
] =  

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚[𝑟𝑎𝑑] − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚[𝑟𝑎𝑑] 

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

 
The cart position and velocity, on the other hand, are calculated in the acceleration block, as 
mentioned previously. The integral of the cart position error is also calculated, taking into 
account the reference position of the cart 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑐𝑎𝑟𝑡 and its current 
position 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑎𝑟𝑡(𝑘). The integral is updated using the following equation: 
 

𝑞(𝑘) = 𝑞(𝑘 − 1) + (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑐𝑎𝑟𝑡 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐𝑎𝑟𝑡(𝑘)) ∗ 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙  
 
These calculations of system states is crucial for the augmented LQR control strategy to 
effectively balance the pendulum and maintain stability in the system. 
 
 

7.4 PID controller 
 
 
The PID (Proportional-Integral-Derivative) controller is chosen as an alternative to the LQR 
control system and is used to balance the pendulum at the upright position. Similar to the LQR 
controller, the pendulum needs to be manually positioned in the upright position to initialize 
the control procedure for the PID controller. 
 
The PID controller implementation involves tracking the error between the reference position 
and the actual positions of the cart and pendulum. The control input is generated based on 
proportional, derivative, and integral states. 
 
The error at time instant k is calculated as the difference between the reference position and 
the measured position: 
 

𝑒𝑟𝑟𝑜𝑟(𝑘) = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑘) 
 
The proportional term 𝑃 is determined by multiplying the error by the proportional gain 𝐾𝑃: 
 

𝑃 = 𝐾𝑃 ∗ 𝑒𝑟𝑟𝑜𝑟(𝑘) 
 
The integral term 𝐼(𝑘) takes into account the accumulated error over time. It is calculated by 
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integrating the error with respect to time, multiplied by the integral gain 𝐾𝐼 and the control 
period 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙: 
 

𝐼(𝑘) = 𝐼(𝑘 − 1) + 𝐾𝐼 ∗ 𝑒𝑟𝑟𝑜𝑟(𝑘) ∗ 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙  
 
Thus control input is the sum of proportional, integral and derivative terms.  
 
The derivative term 𝐷(𝑘) considers the rate of change of the error. It is obtained by taking the 
difference between the current error 𝑒𝑟𝑟𝑜𝑟(𝑘) and the previous error 𝑒𝑟𝑟𝑜𝑟(𝑘 − 1), divided by 
the control period 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , and multiplied by the derivative gain 𝐾𝐷: 
 

𝐷(𝑘) = 𝐾𝐷 ∗
(𝑒𝑟𝑟𝑜𝑟(𝑘) − 𝑒𝑟𝑟𝑜𝑟(𝑘 − 1))

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

 
By summing the PID terms for both positions, the control input value is obtained, which 
represents the acceleration applied to the cart. This control input is continuously adjusted by 
the PID controllers based on the errors in both positions. This allows the PID controllers to 
effectively balance the pendulum and maintain the desired position.  
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Chapter 8 
 
 

Obtained Results 
 
 
Both the LQR and PID control strategies were tested on the real physical system, and their 
results differed. The augmented LQR controller demonstrated satisfactory performance by 
successfully maintaining the pendulum in its upright position. However, the PID controller failed 
to achieve the same stability, resulting in the pendulum eventually falling from its upright 
position and the cart exhibiting large oscillations. 
 
One of the main reasons for the PID controller's failure could be attributed to the lack of a 
proper tuning procedure. Since there are differences between the simulated model and the 
real model, the PID parameters may not have been appropriately adjusted to account for these 
variations. Furthermore, the PID controller is not considered an optimal control strategy, and 
it may struggle to handle even small deviations from the linearization point, which is the upright 
position of the pendulum. 
 
In the case of the augmented LQR controller, both the cart and pendulum positions closely 
align with their reference position values, as depicted in Figure 8.1. The figure shows all five 
states of the inverted pendulum control system, including the control input, which is the 
acceleration. The reference position for the cart is set to 0, representing the desired position 
of the cart. 
 
It can be observed that the pendulum position has a slight negative offset from the reference 
value when it is stabilized at the upright position. This offset could be attributed to several 
factors. Firstly, the usage of a relative rotary encoder instead of an absolute encoder 
introduces precision errors in the pendulum position detection. Secondly, the optical interrupter 
used to detect the initial value of the pendulum when it is in the downward position may 
introduce a delay in counting the angular increment, affecting the accuracy of the position 
detection. Lastly, the offset can be caused by the fact that the center of gravity of the pendulum 
is not perfectly centered but slightly shifted to one side. 
 
The cart position reaches its reference value in 10 seconds, while the pendulum angular 
position stabilizes within less than 1 second, as shown in Figure 8.1. Initially, the pendulum is 
balanced at the upright position with a significant difference from the cart reference position. 
The integral of the cart position error contributes to eliminating the cart position deviation, and 
it reaches a negative steady-state value. Increasing the cost function of the integral state could 
lead to quicker convergence of the cart position to its reference value, but it may also increase 
the overshoot in the pendulum angular position, leading to instability. 
 
In addition, the cart exhibits a small, insignificant back-and-forth movement when the 
pendulum is balanced at the upright position.This movement is insignificant and does not affect 
the overall stability of the system. 
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Considering these factors, the augmented LQR controller proves to be a more effective choice 
for balancing the pendulum in this system. It provides stable control and mitigates the 
deviations caused by inherent system limitations and measurement errors. 
 

 

Figure 8.1: Pendulum Balancing with Augmented LQR Controller and Cart Reference 
Position at 0. 

 
In addition, the LQR system has the capability to attenuate disturbance forces up to a certain 
limit. When a disturbance force is applied to the pendulum, the cart responds with oscillations 
of high frequency. However, these oscillations are eventually damped, and the cart settles 
back to its initial reference position. The system's ability to handle different disturbances and 
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its overall performance can be observed in the video provided at the following link: 
https://upm365-
my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EcCMuMleDXFLnQcB
TkaCM5sBFpfxer8MPqbuN4CfVXYdQQ?e=FgvgJK 
 
 
 
 
   

https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EcCMuMleDXFLnQcBTkaCM5sBFpfxer8MPqbuN4CfVXYdQQ?e=FgvgJK
https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EcCMuMleDXFLnQcBTkaCM5sBFpfxer8MPqbuN4CfVXYdQQ?e=FgvgJK
https://upm365-my.sharepoint.com/:v:/g/personal/a_abdusamadov_alumnos_upm_es/EcCMuMleDXFLnQcBTkaCM5sBFpfxer8MPqbuN4CfVXYdQQ?e=FgvgJK
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Chapter 9 
 
 
 

9.1 Conclusion 
 
 
In conclusion, this master's thesis successfully tackled the challenge of balancing the inverted 
pendulum in the upright position through various approaches. The development of the OpenAI 
Gym environment provided a reliable platform for simulating the pendulum system, and the 
Proximal Policy Optimization reinforcement learning technique demonstrated effective control 
and maintenance of the upright position. 
 
The design and implementation of control strategies, such as PID and LQR, within the Simulink 
environment showcased their potential in achieving stable pendulum balancing. While the PID 
controller faced challenges in adapting to the system's nonlinear dynamics and exhibited 
limitations in tuning, the augmented LQR controller leveraged optimal control theory and 
successfully addressed system limitations and measurement errors, resulting in robust and 
precise control performance. The LQR system also demonstrated the capability to attenuate 
disturbance forces up to a certain limit, ensuring stable performance at steady state. 
 
The integration of a specialized hardware design utilizing the PYNQ-Z1 SoC board showcased 
the advantages of FPGA boards in real-time control and sensing applications. The ability to 
filter sensor signals and generate accurate control signals highlighted the practical benefits of 
using FPGA technology. 
 
Through the exploration and analysis of different control strategies and reinforcement learning 
algorithms, this thesis provides valuable insights into the field of control systems and their 
practical implementation. The successful utilization of the OpenAI Gym environment 
exemplifies the potential of reinforcement learning techniques in solving complex control 
problems. 
 
Overall, this research contributes to the advancement of control methodologies in the context 
of the inverted pendulum system, paving the way for further developments and improvements 
in the field of control systems and robotics. 
 
 

9.2 Future Work 
 
 
Future work for this thesis can cover various areas of development and improvement. Firstly, 
there is a need to further investigate the implementation of the PPO reinforcement learning 
model on the physical pendulum system. This would involve designing a specialized hardware 
system that seamlessly integrates with the model, allowing for real-time control and improved 
signal accuracy, thus enhancing pendulum control effectiveness. 
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Another aspect to consider for future work is the implementation of the "pendulum swings up" 
strategy. This strategy aims to regulate the pendulum's energy to achieve a swinging-up 
motion. By incorporating this strategy into the reinforcement learning framework, control 
performance can be enhanced, leading to a more efficient and dynamic pendulum balance. 
 
Furthermore, extending the reinforcement learning solution to other types of systems, such as 
double and triple pendulum models available in the OpenAI Gym libraries, would provide 
valuable insights and broaden the scope of the research. 
 
Additionally, exploring the potential of remote control for the pendulum system would be 
valuable. This could be achieved by incorporating wireless protocols and introducing new 
functionalities for wireless communications. Remote control would enable the manipulation 
and monitoring of the pendulum's behavior from a distance, offering convenience and the 
ability to control multiple pendulum systems simultaneously or integrate the system into larger 
networks or systems. 
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