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Abstract

In engineering applications, common problems rely on optimization: improving
system or structure design, health monitoring with damage assessment and control
problems. Modern approaches solve these problems using computer simulations to
find the best design among all the possibilities or to find the right damage param-
eters configuration. High-fidelity simulations, like the finite element in structural
design or CFD codes for fluid dynamics, have high computational cost that can
be computationally untractable.
To accelerate the optimization process two main approaches can be used to re-
duce the overall execution cost: use a small number of model evaluations and use
cheaper, but with reduced accuracy, numerical models.
In this work of thesis we combine these two techniques: we employ a surrogate
based optimization which is built along the optimization process by choosing the
most informative sample reduce the number of function evaluations. Furthermore,
the other main feature consists in using different simulation fidelity levels; the lower
and cheaper ones purpose is to extensively explore the design space, the highest
is used to improve the overall accuracy of the surrogate model in specific points.
More in detail is used a Bayesian Multi-fidelity framework where the surrogate is
modeled with a Gaussian Process, it merges and fuses the fidelities sampling in the
design space using the acquisition functions: these indicate the next point to sam-
ple with the relative fidelity to maximise information gain. In this work of thesis
we use and compare 3 different acquisition functions: Probability of Improvement,
Expected Improvement and Max value Entropy Search; then we apply them on a
damage identification problem in a composite specimen.
We consider a composite carbon fiber specimen with a modeled cut in the fiber
direction that means discontinuity in the stress transmission; composites dam-
ages are critical because often difficult to spot but reduces greatly the structural
strength hence the monitoring is crucial to ensure the health of the structure. The
problem uses the strain reference field of a damage configuration and the algo-
rithm actively builds a surrogate model that minimizes the Root Mean Square
Error between the reference and the surrogate strain fields to find the cut geomet-
rical properties.
We observe major reduction in cost, and number of evaluations, respect to the
singlefidelity counterpart.
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Chapter 1

Introduction

Across different engineering branches optimization processes cover a broad range
of problems like minimizing the drag by improving the design of an airfoil shape
[1], optimizing the design of a wind turbine plant to reduce the wave effect [2],
select the right sensor considering accuracy and cost [3]. Typically the optimiza-
tion process requires to consider lots of data outputs, with different combinations
of inputs, that can be expensive in terms of acquisition time and monetary cost:
because the data necessary can come from real experiments, previous designs, or
deterministic computer models simulations that aims to reproduce the physical
behavior of the system. All the data that flows in the optimization process per-
mits to correctly choose the best solution between many different feasible designs
reducing the overall cost of production, maintenance and usage of the system.
The higher is the data quality, in terms of representing with high precision and
fidelity the real system, the higher is the price to obtain them. Considering using
numerical models to simulate the behavior of the system, in order to reduce the
data acquisition cost, even with high computational power the time to run the
simulations can be extremely high.
One example can be taken from fluid dynamic simulations: the Reynolds Aver-
aged Navier-Stokes formulation (RANS), which consists in solving several partial
differential equations, requires an high amount of computational effort to obtain
satisfactory results. Another example relies on the large model that simulates the
oil reservoir level used by [4] that requires between 1-3 days to complete a single
evaluation: it’s clear that running an optimization process just through costly but
extremely accurate models is not feasible.
A method to reduce the cost and the evaluation time during the optimization pro-
cess is to use a surrogate model: it is an approximation of the real system, built
from numerical models evaluations with random input data points chosen from
the design domain in order to catch the global system behavior. During the opti-
mization process the surrogate is employed instead of using the costly, but more
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accurate, models leading to saving time. Two main techniques of creating a surro-
gate can be used: passive and active learning [5]. The first uses an offline/online
phase, during which the model is trained with sampled data in the offline phase
and used toward optimization in the online phase. The latter starts with a model
build from a preliminary offline/online approach and iteratively improves the sur-
rogate with new collected outputs from model evaluations [6].
Using different model fidelities, if available, permits to speed up the surrogate con-
struction by extensively exploring the design space with lower and cheaper models
and drive the sampling of the higher and costly fidelities that are used to exploit
the real response of the system. The highest fidelity is considered the representa-
tion of real physical behavior of the system and enriches the observations where
necessary to develop an appropriate surrogate [7].
Several examples of multifidelity surrogate modeling employed to speed up an op-
timization process can be found in literature. Forrester and Sóbester [8] describe
the usage of a Gaussian process to built the surrogate with several level of fidelities,
they focus on a wing optimization aiming to reduce the drag changing respectively
the taper ratio and the swept angle. In [9] multiple RANS simulations are used
to optimize the DLR wing maximizing the lift over drag ratio. The same wing
model is optimized with a co-Kriging surrogate built with a low fidelity Potential
method code and a high RANS simulation [10]: this permits to extensively explore
the design space due to the reduced computational cost of the low fidelity model.
A different set of problems is addressed by Pehlivanoglu [11], which uses a mul-
tifidelity approach to optimize the active flow control over an airfoil, optimizing
also the shape in a transonic flight condition. A further step in the optimiza-
tion process lays on considering different physical fields strongly interconnected
in a multifidelity framework. Considering the extension to the whole aircraft the
work [12] where the propulsion, structural and aerodynamic field are taken into
account to minimize the fuel burn of a regional transport aircraft modifying the
wing structural and aerodynamic characteristic. Moving to the space environment
an application can be found in [13] where the aero-thermodynamic problem of a
terrestrial reentry vehicle is addressed. An interesting application in the control
field is studied in [14] where the altitude of a spacecraft is assured using an active
learning based technique, considering the external disturbances, parameter uncer-
tainty and an eventual actuator fail.
In the aerospace context another problem, which is related to damage identifica-
tion, can be addressed leveraging a multifidelity approach. An example can be
found in [15] where a surrogate model of a cantilevered beam is build up using two
different level of fidelity finite element code to evaluate the residual strength. A
classic problem is addressed by [16] which investigates the usage of different FEM
models of an UAV wing to determine the damage location, evaluating the change
in modal response of the system. A different approach is employed by Mainini
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and Willcox [17] where the flight envelope is progressively limited considering the
damage state of an UAV vehicle, making the vehicle self-aware of its condition.
The surrogate model is built in the offline phase, i.e. using physic based aerostruc-
tural computer code considering different damage configurations, then is used and
updated (with signals from on board sensors) during flight to predict the structure
damage level.
Evaluating structural integrity, without disassembling or destructing the structure
itself, is important to schedule punctual maintenance reducing the inoperative time
of the aircraft. As stated in [18] the main achievements in the Structural Health
Monitoring (SHM) are due to the several data algorithms developed: the so-called
pattern recognition, which leverages supervised machine learning techniques, after
being instructed with several healthy and damaged samples are able to indicate
the health status of the structure [15].
Our approach will focus directly on a damage configuration and the framework
utilised will find the more reliable damage parameters. This thesis will focus on
a damage identification problem: we will evaluate the change in strain field of a
composite specimen with the presence of a fiber cut in a specific layer. With differ-
ent fidelity levels of finite element codes, the strain field is evaluated and used to
build a surrogate: this approximation will speed up the localization process of the
cut position and extension. This problem is highly multimodal, i.e. due to almost
infinite combinations of cut positions and lengths which can lead to similar strain
distribution on the specimen. It’s difficult to estimate the problem variables (cut
position) with similar outputs (the strain field). Different models, with three levels
of fidelity, will be used to verify the best suited and fastest approach to correctly
identify the damage.
In order to efficiently solve this damage identification problem a Bayesian Frame-
work will be employed. The use of a Bayesian Framework is particularly indicated
in active learning surrogate modeling because it further improves performance in
terms of reducing the surrogate creation cost and the overall number of iterations
[19]. The method is founded on the Bayes theorem that predicts the posterior
distribution of an event using the prior probability and observed data. Specifi-
cally, the data used to build the surrogate is chosen using acquisition functions
that aim to select the appropriate next point to query and the level of fidelity in
order to maximize information gain: using the resource budget correctly balanc-
ing the exploration and exploitation phases [20]. These acquisition functions are:
the Multifidelity Expected Improvement (MFEI), Multifidelity Probability of Im-
provement MFPI and the Multifidelity Max-Value Entropy Search (MFMES)
and their formulation with pros and cons will be discussed in the chapter 3.
The content of the following chapters will be indicated hereafter. Chapter 2 ex-
plores the main methods to build up a surrogate model and describes the design
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space point picking techniques employed. Chapter 3 focuses on the Bayes theo-
rem and describes its usage to build a surrogate in a single fidelity context, this
is extended in a multifidelity context in chapter 4. In chapter 5 the framework
numerical implementation is presented. In chapter 6 the damage identification
problem is extensively described along with the different fidelity models. In chap-
ter 7 the problem set up is described and finally in chapter 8 the results obtained
using different methods are presented.
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Chapter 2

Surrogate modeling

Many engineering applications need to run lots of simulations to explore exten-
sively the design space, then select the best solution among all the possibilities to
improve or to create from scratch an optimal design. Optimization processes are
very common in engineering, but using just high fidelity models would be com-
putationally infeasible. Typically during the process it would be likely to use the
best model available, in terms of accuracy in describing the physic of the analyzed
system. This choice would be made to maintain an high accuracy on the optimized
design: that would be computationally not possible due to high cost of accurate
models. Instead of using high accuracy-high cost models, an approximated version
called a surrogate model can be employed. A first classification of surrogate build-
ing methods can be made between passive and active learning: the first builds the
surrogate from an offline/online phase using sampled data or data from previous
experiment in the offline phase, and then using the built surrogate in the online
phase; the active learning uses the information about previously sampled data to
improve the seeding selection of the next point.
In particular a surrogate can be constructed in different ways that can be more
intrusive like using a reduced model, where a cheaper model is obtained by pro-
jecting data from more costly models (or high fidelities) to a reduced subspace
locally enriching the surrogate [21]. The main advantage relies on preserving the
underline physic structure of the model, hence it’s particularly indicated to prob-
lems that evolve dynamically in time. The reduction models can be used in those
situations where can be tolerated an offline expensive phase, to permit an online
faster evaluation of the airplane state [22].
Another technique is the Hierarchical models reduction that uses simpler physic
laws or reduced grid size. When there is a physic law that describes approximately
the phenomenon and it’s computationally inexpensive this technique could be ap-
plied.
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Lastly, the technique used in this work of thesis is the data-fit or regression model-
ing: typical approaches are Gaussian Process [23, 24, 25], response surfaces, radial
basis and Kriging models that uses a particular polynomial base with a series of
tunable hyperparameters, that can be modified to improve the interpolation accu-
racy. The main difference between regression methods and the reduction ones is
being non-intrusive on the data collected from the high fidelity models, that can
be considered as black-box functions [26].
A classification of the problems that can be addressed using surrogate modeling is
given by [27]:

• Uncertainty propagation: the input of the model is described as a random
variable and the output distribution is collected and analyzed. Typically,
Monte Carlo simulations are employed leading to high computational costs
due to the great number of random input needed to obtain a good domain
coverage.

• Statistical Inference it’s an inverse problem where the objective is to esti-
mate the problem input by observing noisy and random output.

• Optimization looks for a minimum of an objective function in order to obtain
the best solution, for example, obtain the shape of satellites that minimize
the drag [28], changing input variables among the entire design space. That
is the problem considered in this work with the damage identification in a
composite specimen described in 6.

2.1 Design Of Experiment (DOE)
Before choosing the right surrogate building strategy the data point selection, from
which the model is evaluated, should be considered. First, the origin of the data
should be addressed: if the sources of information are previous experiments or a
lab test, so the configuration and the combination of variables chosen can’t be
changed, the data sampled should be taken as is; instead if it is used a determin-
istic computer simulation, that yields the same output for the same set of input
variable, i.e. there is not errors on the simulation process itself, the input points
can be chosen quite freely in the design space [29]. Other differences between data
gathered with computer based simulations and real simulations rely on the absence
of noise in the signal and the repeatability of the experiment, which is due to the
lack of random errors in the computer simulations. Generally, the data gathering
process should be chosen wisely in order to reduce the number of acquisitions to
reduce the cost of this design phase[30].
Another important aspect to consider is the choice of input variables: should be
chosen that have a great influence on the output meaning that the parameter is
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essential to describe correctly the phenomenon behind the model. Otherwise one
possible issue will be in the Curse of Dimensionality [6]: for each dimension k as-
sume n sampling points are needed for each dimension in order to represent with
accuracy the response of the system, a total of nk points are needed. Increasing
the number of dimensions, i.e. the input variable, the total data points number
grows exponentially: to reduce the numerical burden the input variables of the
problem, and the sampled points, should be limited and chosen such as have a
great impact on the observed outputs of the system [31]. This selection can be
made excluding, when possible based on the nature of the problem, the variables
that have a predictable influence on the output (i.e. a linear relation persists be-
tween the variable and the output value).
Another consideration should be made regarding point spreading in the domain
that should be uniform to improve accuracy and prevent the clustering of points.
The first intuitive method of sampling is the full factorial [32] which is the se-
lection of the sample points based on all the possible combinations of the input
variables state, this permit to gasp the interconnection and influence between dif-
ferent variables. A reduced version is called fractional factorial sampling, which
considers just a portion of all the combinations. The major drawback is the limit
on the dimension of applicability due to the rapid increase of total points; another
problem rely on the overlap of the points when projected along each dimension,
meaning that the sampling could be improved by sufficiently cover the design space
and reduce the duplicate sample [33].

Figure 2.1: Full factorial sampling plan and a projection on the x1-x2 plane

An alternative way of sampling data with quasi-random technique is the Latin
Hypercube Sampling developed by McKay and Beckman [34] that allows an uniform
distribution along the axis, i.e. the k dimensions, of the point projections. This
method relies on splitting the design space in N (which is the total number of

12



Surrogate modeling

points that are sampled) non-overlapping intervals (bins) and select randomly one
point from each bin.

Figure 2.2: Latin Hypercube sampling plan and a projection on the x1-x2 plane

It’s clear from figure 2.2 that the projection of points over a selected dimension
(or on a plane) are more uniformly spreaded comparing that with the situation in
figure 2.1, hence is assured good coverage of the design space.

2.2 Building the surrogate
The next step after choosing the right sampling plan, paying attention selecting
the right input variables and a meaningful and representative output value for
the state of the system, is to build up the surrogate with the suitable polynomial
interpolation or regression technique (like kriging). Next, an important phase of
the development is the validation, which is made by splitting the design space into
two groups: the main one is used to build the surrogate while the second pair of
data is used to validate the model. In particular the surrogate can be built with
n− 1 sampled points and be validated on the remaining sample, this process can
be repeated with all the data. These controls are called ’cross validation’ because
no additional test points are employed [35].
Assume that the sampling point is a vector containing all the input variables
x(i) = {x(i)

1 , ..., x
(i)
k } in k dimensions and the corresponding observed objective

function value is y(i) = y(x(i)), with i = 1, ..., n and n is total number of sampled
points, the regression model that represent the objective function linking to the
input variables is [36]:

y
1
x(i)

2
=

KØ
h

βhfh

1
x(i)

2
+ ϵ(i) (2.1)
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where fh(x) is a linear or non-linear function, in the latter case the function will
be with a higher degree that is indicated by K, βh are the unknown coefficients
that need to be estimated and the ϵ(i) is the error that is considered normally
distributed with zero mean and variance σ2. In order to determine the right de-
gree of the polynomial, find the right terms that minimize the cross-correlation
error is a good choice [37]. This is to avoid using many terms losing in generaliza-
tion and with the risk of overfitting the function also catching the spurious noise
oscillations. However a polynomial regression model cannot address non-linear,
multimodal and multidimensional design space due to the high intrinsic complex
relations between the input variables and the output, so this approach can be used
in low-dimensional problems [7].
The main issue with regression models is the assumption that the errors are in-
dependent, while that’s not true for a deterministic computer code[38]: if the
function y(x) is continuous (which is a typical valid assumption with some ex-
ception regarding aerodynamic, dynamic and crash analysis [7]) also the error ϵ
is continuous because it’s the difference between the function and the regression
terms, hence, it can be said that the error is dependent from the variables input.
Taking two points relatively close x(i) and x(j) the corresponding associated errors
should be also close ϵ(x(i)) and ϵ(x(j)). Instead in a stochastic process modeled
with random variables [39], in contrast to the regression approach, more impor-
tance is attributed to correctly represent the errors: in particular is assumed that
the errors are correlated to the distance between the sampling points measured
not by the Euclidean norm, because it weights all variables equally, but using a
weighted distance which puts more attention on closer points with the assumption
of them having more influence between each other [38].

d
1
x(i),x(j)

2
=

kØ
h=1

θh

---x(i)
h − x

(j)
h

---ph (θh ≥ 0, ph ∈ [1,2]) (2.2)

In equation 2.2 the parameter θh describes the importance of the variable x, mean-
ing with a high value of θh a small change in the input produces a great change in
the distance. The ph term represents the smoothness of the function, a value close
to 2 means a smooth function [7]. The correlation between errors is given by:

Corr
è
ϵ
1
x(i)

2
, ϵ
1
x(i)

2é
= exp

è
−d

1
x(i),x(j)

2é
(2.3)

With this expression for the correlation when x(i) and x(j) are close, hence the
distance is low, the correlation is near to 1 and when two points are far away
from each other, hence the distance tend to ∞, the correlation is 0. Modeling the
correlation in this way is useful to get rid of the regression terms replacing them
with a constant value:

y
1
x(i)

2
= µ+ ϵ

1
x(i)

2
(i = 1, ..., n) (2.4)
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Where µ is the mean value of the stochastic process and ϵx(i) is the error which is
normal distributed (0, σ2).
Kriging combines linear regression (with a linear combination of the y functions)
using radial basis functions, which output value depends on the distance between
the input variable and the center of the distribution [40], and a normal distribution
of the standard error. Therefore the standard error goes to 0 in the sampled points
and is high far from the sampled points, this feature provides a useful indication
where to sample the unexplored parts of the design space to improve the interpo-
lation approximation [39].
In general, the approximation with interpolating using radial basis, which is cen-
tered around a chosen point xj, can be expressed with:

ây (x∗) =
nØ

j=1
bjφ (x∗ − xj) (2.5)

Where bj are the weights that need to be determined and the φ are the radial basis
which can have different expression such as linear φ(x) = ||x||, cubic φ(x) = ||x||3
or represent thin plate φ(x) = ||x||2log(||x||). The main difference from these bases
and the Kriging one (eq 2.2) is that the latter can be tuned with the parameters θh

and ph for each dimension, meaning a higher computational cost to determine these
parameters with the advantage of an higher accuracy of the approximation [41], so
typically kriging is used in lower-dimension problems with a high computational
time.

2.3 Multifidelity surrogate
In order to speed up the surrogate creation, and to use efficiently the computational
resources, instead of using just complex models can be employed different fidelities
models with increasing cost and accuracy. The main goal is to use the lower
fidelities to extensively explore the design space while using few high fidelity (HF)
accuracy evaluations to improve the whole model. The complexity of the problem
further increases because the criterion that guides the sampling process should
also predict the level of fidelity to use. With different fidelities used the surrogate
can be built according to [27] with several methods:

• Adaption: the lower fidelity models are enriched and "corrected" to match
better the HF ones using for example Taylor series expansion based on gra-
dients.

• Fusion: The output from the HF and LF are combined to create the sur-
rogate. A typical example is co-Kriging that is an extension of Kriging, a
regression method developed by the mining engineer Danie Krige to estimate
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the quantity of gold in an extracted block [42], that uses different sources of
information [43].

• Filtering: Using the LF extensively explore the design space and select the
appropriate points, based on some criterion based on error evaluation, to be
sampled with the HF to improve the surrogate quality [44].

Several techniques can therefore be used to combine different fidelities information
gathered from different sources (experiments, expert suggestion, past database,
and computer codes [4]). The surrogate built is essential in those applications
where the usage of high accuracy computer simulations is not possible due to high
execution times and cost. Using different fidelities permits to improve the quality
of the surrogate where necessary for the problem involved.
A further classification between different surrogate building techniques relies on
the passive and active approach.
The first kind is the offline/online approach used in the thesis of La Mantia [45]
and Ermacora [46], which both constitute the background and the prior efforts of
this work.
La Mantia in [45] addresses a delamination identification problem in a composite
plate. He developed a computer finite element code that evaluates the modal re-
sponse of the plate, then the curvatures are calculated to estimate the presence
of the damage. The presence of the damage is assessed considering the difference
between the calculated curvatures and the smoothed ones: these differences give
an indication on the damage level. To decrease the numerical burden a reduced
model, using several low fidelity code evaluations, is obtained by using the Proper
Orthogonal Decomposition (POD): this reduces the overall dimension of the prob-
lem, identifying a set of orthonormal basis such as the model can be described
as a linear combination of such bases. Then the reduced model is enriched and
corrected using a low number of high fidelity code evaluations. All this phases are
made to build the surrogate, which is trained with initial input samples and then
is used in the online phase to obtain a fast and approximated position and entity
of the delamination damage.
A different approach is used in the work of Ermacora [46]. The problem addressed
is estimating the characteristic of a cut damage in a composite specimen subject
to a traction strain. To evaluate the position and the length of the cut he uses the
strain field. He builds a surrogate based model, with the techniques of kriging,
co-kriging, regression trees and self organization maps to determine the reduced
POD coefficient for each fidelity. The space dimension of the vector of each fidelity
are incompatible, so he projects and rotates the high and mid fidelity POD basis
on the low fidelity one in order to fuse the information from the different fideli-
ties. He then uses the trained reduced model to evaluate the strain field in the
specimen: combining both the Self Organizing Maps and the Regression Trees the
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damage can be identified correctly reducing the number of false positive.
The problem that can be addressed using multifidelity surrogates can be classified
as Uncertainity propagation, Statistical inference and Optimization. In this sec-
tion we will focus on the last kind of problem, because will be used to address the
damage identification case study.

2.4 Multifidelity surrogate based optimization

The problem that we are going to solve is an optimization one: this relies on the
minimization of an objective function that depends on the problem inputs. As
shown in the previous section 2.3 to reduce the overall execution time and cost
a viable solution is to use an approximated model called surrogate. A feasible
technique is the trust region method. The search of the optimum is adapted it-
eratively by enlarging or restricting the zone. In the trust region, the quadratic
Taylor expansion of high fidelity model, is used to evaluate the further improve-
ment in optimizing the design [27]: if the effective next value obtained from the
lower fidelity model improves better than predicted, the optimization step is in-
creased otherwise is reduced, with the assumption that the model is sufficiently
good near the actual minimum found until that iteration[47]. In [48] a consistency
first order requirement is stated to ensure the convergence: at the center of the
trust region the surrogate and the high fidelity model must have the same value
of the gradient.
In case the high fidelity gradient is not available then a gradient-free approach
should be used as in [49] where the low fidelity models are interpolated using
radial basis function tailored for the specific problem [50]. This kind of search
iteratively adapts the step length to accelerate the process towards finding the
minimum. An example can be found in [51] where a profile shape optimization
problem is addressed. In this paper two different surrogates, one for each level of
fidelity considered as high and low, are built via a Kriging process using a trust
region approach. Then the low fidelity surrogate is corrected with the high fidelity
one which relies on costly CFD code simulations. Finally, the optimization pro-
cess is made using the corrected low-fidelity surrogate. A similar approach is used
by Alexander et al. [52] where a 2D profile and 3D complete wing problem are
addressed. The low fidelity code is used to build a surrogate and follows the trend
of the high fidelity code, this is granted by imposing the consistency condition
by using a multiplicative coefficient approach. Their implementation has shown,
by using the consistency condition, greater performance, and a fast convergence
speed. If the gradient can’t be calculated (for example the code works as a black
box) then gradient-free method should be employed.
The method used by Wilcox and March [53] does not compute the gradient but
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uses the low fidelity code to gain sensitivity information that speeds up the op-
timization process. This method showed to use around the same number of high
fidelity evaluations as the gradient methods, hence they have the pretty the same
performances. The main difference between the gradient-free and the finite differ-
ence gradient approximation approach rely on the convergence behavior: the first
initially starts fast and then slows down near an optimum while the latter starts
slowly and then near an optimum increases the convergence speed. The main is-
sue with trust region approaches is that the quality of the approximation strongly
depends on the set of the first high fidelity samples [27] with the downside of not
finding the local minimum due to the probability of being in a flat zone or in a
saddle point.
The co-Kriging method is an extension of Kriging models to a multifidelity ap-
proach [8, 54]. In [55] they describe how a surrogate is built to approximate the
high fidelity and computationally high cost function, by fusing information from
using information with different fidelities. The surrogate is updated iteratively
during the optimization process and leads to finding the global optimum faster
than using just the high fidelity code [55]. The main issues of this method are
that the convergence to the global optimum cannot be guaranteed, the need to
correctly balance the exploration and improve phases to avoid wasting iterations
and obtaining a representative surrogate.
An improvement to the iterative adaptation of a surrogate model is the use of a
Bayesian framework. In the single fidelity settings it was proposed as the Efficient
Global Optimization (EGO) by Jones and Welch [38] where a convergence crite-
rion is employed. In this approach the objective function is approximated as the
mean value of a Gaussian process, while the uncertainty is modeled with its vari-
ance. The main improvement relies on using an acquisition function that drives
the sampling of new points: this balances the exploitation and the exploration
phase. The EGO approach overcomes also the problem of ill conditioning of the
correlation matrix, that occurs when sampled points are close together: observing
the improvement on finding the minimum with the acquisition function, can be
translated in a stopping criterion when the improvement between two iterations is
under a certain tolerance [38]. However the biggest issue with this approach relies
on the influence on the first sampled data, from which the surrogate is initially
built and assumed as correct [41]; in the same paper the problem is addressed with
a one-stage approach: an initial guess of the minimum of the objective function is
assumed, then the "credibility" of that point being the minimum is measured to
improve the accuracy of the surrogate. The EGO approach was extended to deal
with multifidelity problems by Kennedy and O’Hagan [56] which used a Gaussian
process to model the low fidelity code in order to guide the high fidelity evalua-
tions.
In this work we move away from the works of La Mantia and Ermacora, and
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propose an active surrogate modeling technique based on a Bayesian optimiza-
tion framework to guide the damage identification process. This represents an
advancement step up in the surrogate modeling, due to the iterative process and
the capability of improving the surrogate while already using it. This approach
combined with the multifidelity nature of the problem is the key to speed up the
surrogate creation process and solve the problem addressed in a much shorter time.
In the chapter 3 the singlefidelity bayesian framework is described along with the
singlefidelity acquisition functions and then in chapter 4 the framework is illus-
trated in its multifidelity fashion, which will be employed in this work.
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Chapter 3

Bayesian Optimization

In chapter 2 the methods to build up a surrogate are described, and one main
distinction is made between passive and active learning: in this chapter we will
focus on the latter describing in particular the statistical inference model with
Bayesian technique. This is particularly well suited to find the minimum of an
objective function which expression is not known, for example black-box func-
tions that are common in aerospace applications. The peculiarity of the Bayesian
method consists in using particular functions called acquisition functions (or also
Utility function as they measure the utility of sampling in specific points) that
drive the search of the next point to sample: the objective is to reduce the overall
number of sampling points while maximizing the accuracy of the surrogate model,
this is iteratively updated with the new selected point. These acquisition functions
try to balance the exploration of the domain space, spreading the sampled points
to catch the global function shape and general behavior, and local exploitation
to improve the accuracy of the model in specific areas. Typically, the acquisition
functions assume a high value where there is high uncertainty in the model (ex-
ploitation) and where the actual model predicts a high value of the acquisition
function (exploration) hence the next sampled point is selected accordingly.
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Figure 3.1: Example of a 1D problem optimization [57]

Figure 3.1 taken from [57], as the main considerations of this chapter, represents
a 1D function approximated with a Gaussian process (GP) and in the lower part
of the graph there is the acquisition function. The function is initially sampled in
two points and between them the posterior uncertainty is high. The next point is
sampled where the acquisition function assumes its maximum value and the model
is updated. This process is repeated until a fixed number of iterations is reached,
or all the computational budget is spent.
The Bayesian approach takes the name from the Bayes theorem that links the
posterior probability of an event or theory called M given some data observation
E and says that is proportional to the likelihood of the data E given M multiplied
for the prior probability of M .

P (M |E) ∝ P (E|M)P (M)

Where the prior indicates the information based on the belief of plausible objective
functions: choosing a smooth function and noise-free across all possibilities permits
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to consider less likely the data with high variance and oscillations [57]. Considering
that, accumulating the data from various objective function observations D1:t =
{×1:t, f( x1:t)} the prior distribution is combined with the likelihood P (D1:t|f)
hence the posterior probability is updated:

P (f |D1:t) ∝ P (D1:t|f)P (f)

The Bayesian process can be summarized as reported in [57]:

Figure 3.2: Bayes optimization process

The problem state is a maximizing one using x⋆ = argrmaxxf(x) but can be
transformed in a minimization problem using g(x) = −f(x). A further assumption
is that the objective function is Lipschitz-continuous meaning that there is some
positive constant C typically unknown, such given x1, x2 ∈ A then ||f(x1) − f(x2)|| ≤
C||x1 −x2||. Another assumption about the bounds of search space is made stating
that are axis-aligned, the search space itself is an hyperrectangle of dimension d.
With all these assumptions to guarantee the best observation f(x+) ≥ f(x⋆) − ϵ
requires (C/2ϵ)d samples which can be extremely costly: this "worst case" assur-
ance about the max value identified could be relaxed due to its unlikely probability
to occur. The main goal is to maximize the posterior probability at each step re-
ducing the distance between the real global maximum and the value given from
the model. From figure 3.2 with the letter u is indicated the utility (acquisition)
function, so the problem shifts from finding the maximum value on the objective
function to finding the maximum value of the acquisition function, with the main
advantage that the latter is typically easy in its formulation and cheap to compute.

3.1 Gaussian Process

3.1.1 Priors distribution
As reported in the previous section the Bayes theorem updates the prior prob-
ability distribution, but this distribution initially should be carefully chosen to
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guarantee the problem convergence toward the optimum. Typically, a Gaussian
Process Regression is employed as is well suited for this application [19]. In partic-
ular the author states these conditions to use the GP (i) the acquisition function
is continuous and approximately minimizes the risk (defined as the expected de-
viation from the global minimum at a fixed point x); (ii) conditional variance
converges to zero, or to a minimum value in presence of noise, if the distance
to the nearest observation is zero; (iii) the objective function is continuous; (iv)
the prior probabilities are homogeneous meaning do not depend on the coordinate
origin; (v) the optimization is independent of the mth differences, meaning these
can be considered as discrete mth order derivatives, hence the sample functions
are nearly non-derivable everywhere. A Gaussian Process is an extension to an
infinite dimension stochastic process where every finite collection of variables has
a multivariate normal distribution: it gives a mean m and a covariance k over the
possible functions f at location x

f(x) ∼ GP(m(x), k(x,x′))

The mean value is initially assumed 0 and then updated in further evaluations,
with this assumption the focus is entirely on the covariance function.

3.1.2 Covariance function
The main characteristic of a Gaussian Process is the choice of the right covariance
function as that determines the properties of samples drawn from it, such as their
overall smoothness. A popular type is the squared distance:

k(xi,xj) = exp
3

−1
2 ||xi − xj||2

4
which assumes a value near 1 when the two points xi and xj get closer and reaches
0 as the points distance increases. This is a necessary condition to assure the
convergence as stated in [19]: the influence between points is greater if they are
close to each other. Choosing to sample from the prior, the points {x1:t} are picked
with the relative objective function values f1:t = f(x1;t) creating the pair {x1:t, f1:t}.
The functions value are chosen using a multivariate normal distribution N (0,K)
where the K is the covariance matrix:

K−


k(x1,x1) · · · k(x1,xt)
... . . .
k(xt,x1) · · · k(xt,xt)


The values on the diagonal are equal to 1 just in a noise-free environment. The
GP is fitted using data from an external model in our case, so the pair {x1:t, f1:t}
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of previous samples are known. Then the objective is to choose the next point to
query denoted with xt+1 with the associate objective function value ft+1 = f(xt+1),
by the property of the Gaussian processes f1;t and ft+1 are jointly Gaussian:C

f1:t
ft+1

D
∼ N

A
0,
C

K k
kT k (xt+1,xt+1)

DB

where k = [k(xt+1,x1) k(xt+1,x2) · · · k(xt+1,xt)] using the Sherman-Morrison-
Woodbury formula [58] the predictive posterior distribution can be obtained:

P (ft+1|D1;t,xt+1) = N
1
µt(xt+1), σ2

t (xt+1)
2

where
µt(xt+1) = kT K−1f1;t

σ2
t (xt+1) = k(xt+1,xt+1) − kT K−1k

In order to generalize and change the influence of each x in the covariance (also
called kernel) for an isotropic model just one hyperparameter θ is necessary:

k(xi,xj) = exp
3

− 1
2θ2 ||xi − xj||2

4
and for an anisotropic model:

k(xi,xj) = exp
1
−1

2(xi − xj)T diag(θ)−2(x − x′)
2

where diag(θ) is a diagonal matrix with d entries θ on the diagonal. It can be
seen that if a particular value of θl is small, the covariance is also close to 0
becoming independent from lth input value hence automatically discarding that.
The hyperparameters are typically obtained by "seeding" some random samples
and then maximizing the log-likelihood of the evidence given θ [59]. Another
important kernel in Bayesian Optimization problems is the Matérn kernel [60, 61]
which defines a smoothness parameter ζ that permits great flexibility in modeling:

k (xi,xj) = 1
2ς−1Γ(ς) (2

√
ς ∥xi − xj∥)ς

Hς (2
√
ς ∥xi − xj∥)

where Γ (·) is the Gamma function and the Hς(·) is the Bessel function of order ς.
When ς −→ ∞ the kernel reduces to the squared exponential and when ς = 0.5 it
degenerates in the unsquared exponential kernel.
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3.2 Acquisition functions

As stated in the previous chapter the search of new sampling points is guided by
an appropriate acquisition function. In this section the main type, in their single
fidelity fashion, will be analyzed and described.

3.2.1 Probability of Improvement(PI)

This acquisition function suggests maximizing the probability of improvement over
the f(x+) with x+ = argmaxxi∈x1:tf(xi):

PI(x) = P (f(x) ≥ f(x+))

= Φ
A
µ(x) − f(x+)

σ(x)

B

where Φ(·) is the normal cumulative probability distribution function. The main
issue with this formulation is that it relies on pure exploitation: will be chosen
points that have a f(x) value slightly higher than the actual maximum but with
high probability instead of point that will provide a higher objective function
increase but with less certainty,i.e. further from the actual maximum point. This
formulation can be improved by inserting a trade-off parameter ξ ≥ 0 that is set
with high value at the start of the process and then reduced towards 0 as the
iterations increase, this modification permits to select initial points that assure a
certain amount of improvement:

PI(x) = P
1
f(x) ≥ f

1
x+
2

+ ξ
2

= Φ
A
µ(x) − f (x+) − ξ

σ(x)

B (3.1)

In [41] Jones clearly indicates that this approach is very dependent on the selection
of the target: if the parameter ξ is small, i.e. the desired improvement is small,
than the search process is highly local and tends to be more global after extensively
searching around the current maximum; meanwhile if the parameter is settled
with a high value, i.e. a desired high improvement, than the search is almost just
global which means a slower overall algorithm in fine searching. Finding the right
starting value of ξ is really important and on the other hand hard to accomplish: is
necessary to balance the performance of the code with the accuracy of the surrogate
model built.
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Figure 3.3: A 1D function approximated with a Gaussian Process, the actual max
value is for the sample x+ and the shaded green area over the dashed horizontal line
indicates the improvement of sampling at x3: it can be clearly seen that sampling
at x1 or x2 doesn’t give any improvement finding the max value.[57]

3.2.2 Expected Improvement (EI)
A viable solution to improve the acquisition criterion is to consider the magnitude
of improvement that a specific sampling point can lead to, i.e. minimizing the
expected deviation from the actual maximum value:

xt+1 = argmin
x

E (|ft+1(x) − f (x⋆) | | D1:t)

= argmin
x

Ú
∥ft+1(x) − f (x⋆)∥P (ft+1 | D1:t) dft+1

(3.2)

This formulation considers just one step ahead, but it can be applied recursively
to extend to further iterations. Instead [19] proposed a new formulation for the
improvement criterion:

I(x) = max{0, ft+1(x) − f(x+)} (3.3)

The improvement is positive if the expected value of the function is greater than
the actual maximum, otherwise will be zero. The next point to sample is identified
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by maximizing the expected value of the improvement:

x = argmax
x

E
1
max

î
0, ft+1(x) − f

1
x+
2ï

| Dt

2
(3.4)

The likelihood of improvement I(x) of a normal distribution with mean µx and
variance σ(x)2 can be calculated with the normal density function:

1√
2πσ(x)

exp
A

−(µ(x) − f (x+) − I)2

2σ2(x)

B
(3.5)

The Expected Improvement is obtained integrating by part this quantity:

E(I) =
Ú I=∞

I=0
I 1√

2πσ(x)
exp

A
−(µ(x) − f (x+) − I)2

2σ2(x)

B
dI

= σ(x)
C
µ(x) − f (x+)

σ(x) Φ
A
µ(x) − f (x+)

σ(x)

B
+ ϕ

A
µ(x) − f (x+)

σ(x)

BD (3.6)

That can be evaluated analytically as reported in [38]:

EI(x) =
(µ(x) − f (x+)) Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

Z = µ(x) − f (x+)
σ(x)

(3.7)

where ϕ(·) denotes the Probability Density Function (PDF) and the Φ(·) indicates
the Cumulative Density Function (CDF). To balance exploitation and exploration
a parameter ξ can be introduced as in the previous section for Probability of
Improvement.

3.2.3 Predictive Entropy Search (PES)
This method proposed by Lobato [62] uses the entropy to obtain global utility
information. In particular the objective is to find the global maximizer x∗ =
arg maxx∈X f(x) where the function f(x) is sampled from a Gaussian Process.
The global parameter that encloses information about x∗ is the negative differential
entropy of p(x∗|Dt), hence to query the next point to sample the technique is to
maximize the expected reduction of this quantity:

αn(x) = H [p (y | Dt,x)] − Ep(x∗|Dn) [H [p (y | Dt,x,x∗)]] (3.8)

Calculating the p(x∗|Dt) and approximating the various terms in the expression
of the acquisition function can be difficult, computationally infeasible due to nu-
merous iterations needed and the optimum could be not unique increasing the
complexity of the problem[63].
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3.2.4 Max-Value entropy search
To overcame the difficulties of the PES algorithm Wang & Jegelka [63] developed a
new approach leveraging the information on the maximum objective function value
f∗ := maxx f(x): this reduces the computational cost because f(x) is certainly
in one dimension space. The information gain is measured between the actual
maximum value of the function y∗ = f(x∗) and the candidate point to sample,
which can be approximated by evaluating the entropy of the predictive distribution:

αt(x) = I ({x, y}; y∗ | Dt)
= H (p (y | Dt,x)) − E [H (p (y | Dt,x, y∗))]

≈ 1
K

Ø
y∗∈Y∗

C
γy∗(x)ψ (γy∗(x))

2Ψ (γy∗(x)) − log (Ψ (γy∗(x)))
D (3.9)

where ψ is PDF and Ψ is the CDF and γy⋆ (D) = y∗−µt(x)
σt(x) . The expectation of

the probability p(y∗|Dn) is calculated with Monte Carlo estimation based on K
values sampling. The probability term p(y|Dt, α) is a Gaussian distributed with
mean value µt(x) and variance kt(x, x) while the term p(y|Dn, α, y∗) is distributed
as a truncated Gaussian: given y∗ the distribution of y needs to satisfy y < y∗.
Sampling the y∗ can be done in two ways according to [62] with an approximation
Gumbel distribution and maximizing the function from the posterior Gaussian dis-
tribution. Sampling using the Gumbel distribution means approximating p̂(y∗|Dn)
via its CFD ãPr[y∗ < z] = r

x∈X̂ Ψ (γz(x)) where X̂ is a finite discrete dense subset
of representative points that replace the continuous set X. This means that is
needed to sample r uniformly from [0,1] to find z such that Pr[y∗ < z] = r. A
faster and cheaper way to sample is to approximate the CFD with a Gumbel distri-
bution: ãPr[y∗ < z] ≈ G(a, b) = e−e

− x−a
b . This approximation is motivated by the

Fisher-Tippett-Gnedenko theorem [64] which states that the maximum of a set of
(Independent and Identically Distributed random variable) Gaussian variables is
asymptotically described by a Gumbel distribution. To sample from the Gumbel
distribution the Gumbel quantile function is used and the parameters a and b are
estimated with percentile matching. An alternative sampling method consists of
using the posterior GP functions and maximizing those functions.
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Chapter 4

Multifidelity Bayesian
optimization

In order to speed up the optimization process a feasible option is to gain infor-
mation from multiple fidelities sources; the complexity of the problem formulation
further increase, considering the counterpart of single fidelity implementation, be-
cause also the fidelity levels play a role in the sampling plan hence should be
carefully chosen. More in detail the next point chosen the lower fidelity functions
(which are used in the exploration phase) is selected maximizing the information
gain with that fidelity. In order to accomplish that considering also the ratio be-
tween the gain and the cost of evaluation (to ensure that is preferred using low
fidelity instead of an higher fidelity) and on the other hand preserve some budget
for the exploitation phase with the higher fidelity models[65]. The first step con-
sists in expanding the GP in a multifidelity approach, each observation embeds
also a fidelity level y(1)

x , · · · , y(M)
x where the highest fidelity level is (M) and the

lowest is (1). These function evaluations are taken considering the input from the
design space ∈ X ⊂ Rd. The function evaluations are modeled with a GP
y(m)

x = f (m)
x + ϵ where the term ϵ is random noise modeled with a normal distribu-

tion ϵ ∼ N (0, σ2
noise ). Each fidelity level is associated with a corresponding evalua-

tion cost indicated with λ(m) that follows this inequality λ(1) ≤ λ(2)... ≤ λ(M)[66]:
if M = 1 the problem goes back to single fidelity. The dataset is now composed by
3 variables: the inputs xi, the fidelities mi and the outputs y(mi)

xi
constituting the

n, that indicate the number of total samples, groups Dn = {(xi, y
(mi)
xi

,mi)}i∈[n].
Considering an autoregressive method [56] with the fundamental assumption of
the Markov Property:

cov{fm(x), fm−1(x′)| fm−1(x)} = 0 ∀ x′ /= x
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indicates that given the fm−1(x) nothing more can be learnt about fm(x) for every
possible cheap evaluation fm−1 (x′), this means that the highest fidelity is assumed
correct, and the errors lie just in the lower fidelities models. The higher fidelity is
modeled recursively using the lower fidelity and an associate error δ both modeled
with a GP with zero mean and a kernel associated function k:

f (m)(x) = f (m−1)(x) + δ(m)(x) m = 2, ...,M

In order to integrate all the fidelities in one GP model a Kernel Matrix K ∈ Rn×n

is defined with each element i,j as k ((xi, mi), (xj, mj)) the mean and the variance
of the GP unified model are respectively:

µ(m)
x = k(m)

n (x)⊤C−1y

σ2(m)
x = k((x,m), (x,m)) − k(m)

n (x)⊤C−1k(m)
n (x)

where each term is:
I := Identity matrix

C := K + σ2
noiseI

y := (y(m1)
x1 , · · ·, y(mn)

xn
)−1

k(m)
n (x) := (k((x,m), (x1,m1)), · · ·, k((x,m), (xn,mn)))⊤

The next step consists in changing the acquisition functions in a multifidelity
context, in order to consider also the cost of the single fidelities and accordingly
choose the next point to query with an associated level of fidelity.

4.1 Multidifelity Probability of Improvement
The expression of the single fidelity Probability of Improvement is expanded ac-
cording to [67] introducing new terms:

MFPI(x,m) = PI(x) · Corr(x,m) · CR(m) · η(x,m) m = 1, . . . ,M

where the single terms are defined as:

PI(x) = Φ
A
f(x+)m − f(x)m

σ(x)m

B
Corr(x,m) = Corr

è
f(x)M , f(x)m

é
CR(m) = λM

λm

η
1
x,m

2
=

nÙ
i=1

è
1 −R

3
x, x

(m)
i

2é
(4.1)
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The contribution in the term of the PI for the same input value is maximized
when using the higher fidelity available. This behaviour is also reflected on the
correlation term that links two different fidelities and measure how much is reduced
the PI when selecting the lower fidelities. Hence if the highest fidelity is used the
correlation term assumes value 1 so the PI isn’t penalized. If exists already a
sample in the x location, then the correlation is 0 (if there isn’t random error
conducting the experiment) this discard sampling in the same point twice.
The term CR(m) refers to the Cost Ratio and indicates the necessary number of
lower fidelity evaluations that have the same cost as one highest fidelity model run.
This term weights the cost of the available fidelities and if the same value of PI can
be obtained then the cheaper model is evaluated: the CR(m) is 1 if the highest
fidelity is employed, while assumes a value greater than 1, that tends to increase
the overall MFPI value, for each lower fidelities that have a lower computational
cost.
The term η(x,m) is the sample data density function and is used to prevent
clustering of sample around a point. To model the distance between sampled data
and the next query point the GP covariance function is employed, hence due to
that formulation this term drops rapidly when the selected point moves toward an
already sampled point.

4.2 Multifidelity Expected Improvement
In a similar manner the Expected Improvement for single fidelity introduced by
Jones [38] is extended to multifidelity problems [68]:

MFEI(x,m) ≡ E
è

max
1
f (m)(x)−f (m)(x+),0

2é
·αm(x,m) ·α2(x,m) ·α3(l) (4.2)

where the single α terms indicate:

α1(x,m) = corr
5
f (m)(x), f (M)(x)

6

α2(x,m) =
1 − σεñ

σ2(m)(x) + σ2
ε

where σ (x)2(m) = cov [fm (x) , fm (x)]

α3(m) = λM

λm

(4.3)

The term α1(x, l) indicated as the correlation between the highest fidelity M and
the lower fidelity m sampled at the same x, it reduces the Expected Improvement
when sampling using the lower fidelity models (the correlation is exactly 1 if the
model used is the highest fidelity available). Hence it avoids sampling just from the
lowest fidelity because it’s cheaper. This term also prevents sampling in points that
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have been already sampled avoiding wasting computational resources. The term
α2(x, l) modifies the EI when the simulations from the lower fidelity m contains
random errors, as the prediction become more accurate it reduces the posterior
standard deviation when a duplicate data point is added; hence it reduces the
overall number of duplicates when the models are affected by random errors. This
factor assumes value equal 1 when the variance of the random error is zero. The
term α3(l) adjust the EI to the evaluation cost of the model choosing, with the
same information gain, the cheaper model available. This ratio is greater than 1
so it augments the EI if a cheaper model is used, avoiding using just the highest
fidelity one.

4.3 Multifidelity Predictive Entropy Search
This acquisition function allows to balance between exploration and exploitation
naturally without using parameters and discretization information which are diffi-
cult to estimate and also influences greatly the model. This goal can be achieved
using an acquisition function that maximize the information gain only on the global
target maximizer x+t observing the next sampling point which include the input
and a corresponding fidelity ⟨x,m⟩:

α(yX , ⟨x,m⟩) = H(ym(x)|yX) − Ep(x+t,|yX)[H(ym(x)|yX , x+)]

Due to the Gaussian Process posterior approximation the first term on the right
hand side can be calculated as:

H(ym(x|yX) ≜ 0.5log(2πe(σ2
⟨x,m⟩|X+σ2

nm
)) with σ2

⟨x,i⟩|X ≜ Σ{⟨x,m⟩}{⟨x,m⟩}|X

The second term can be calculated considering the cross correlation between the
target and auxiliary function exploiting just the target maximizer from p(x∗t |yX).
As reported in [69] the expectation can be approximated with:

Ep(x+t,|yX)[H(ym(x)|yX , x+)] ≈ − 1
2S

SØ
s=1

log
1
υ

(s)
fm + σ2

n m

2

4.4 Multifidelity Max-value Entropy Search
The multifidelity extension of the Max-value Entropy Search is founded on its sin-
glefidelity approach: the goal is to maximize the information gain of the maximum
value in the highest fidelity function using lower fidelities f+ := maxxinXf(x)(M).
This approach, in opposition to the MES where the objective is to maximize the
information gain about x+ := argmaxx f(x) that is a global utility indicator
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and automatically balances between exploration and exploitation, has the main
advantage that f+ is in one dimension-space which reduces the problem to sim-
pler calculations. The extension is taken from [66] where the sampling due to the
different fidelity cost can be extended in a paralleled way, but our implementation
uses sequential querying. The acquisition function integrates also the evaluation
cost of the mth fidelity:

MFMES(x,m) := I(f∗; f ( m )
x | Dt)/λ(m) (4.4)

where Dt is the already sampled data and the Information term is defined be-
tween the actual maximum value f ∗ and the next considered candidate with its
fidelity f (m)

x , hence the Information term can be formalized considering the entropy
reduction:

I =
1
f∗; f (m)

x | Dt

2
= H(f (m)

x | Dt) − Ef+ |Dt

è
H(f (m)

x | f+,Dt)
é

(4.5)

The first term in on the right hand side can be calculated analytically:

H
1
f (m)

x | Dt

2
= log

1
σ(m)

x

√
2πe

2
(4.6)

The Expectation can’t be analytically calculated hence it is approximated using
Monte Carlo estimation sampling the f∗ from the GP:

Ef+|Dt

è
H(f (m)

x | f+,Dt)
é

≈
Ø

f+∈F+

H(f (m)
x | f+,Dt)

|F+|
(4.7)

where F is a collection of previously sampled f∗ and because it’s one dimensional
the number of samples needed is small. In [66] is clearly reported how to manip-
ulate the Entropy formulation to obtain a computationally tractable version. In
particular the entropy of p

1
f (m)

x | f+,Dt

2
is needed in ?? but is substituted with

p
1
f (m)

x | f (M)
x ≤ f+,Dt

2
, in this second expression the conditioning is given only

on the x and when the m = M then the density function is Truncated Normal
Distribution and the entropy according to Michalowicz [70]:

H
1
f (M)

x | f (M)
x ≤ f+,Dt

2
= log

1√
2πeσ(M)

x Φ
1
γ

(M)
f+ (x)

22
−
γ

(M)
f+ (x)ϕ

1
γ

(M)
f+ (x)

2
2Φ

1
γ

(M)
f+ (x)

2
(4.8)

where the term γ
(m)
ζ (x) :=

1
ζ − µ(m)

x

2
/σ(m)

x indicate a function normalization with
ζ ∈ R, ϕ and Φ represent the probability density function and the cumulative dis-
tribution function of the normal distribution.
Considering a case wherem /= M the density distribution of p

1
f (m)

x | f (M)
x ≤ f+,Dt

2
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is not truncated normal hence the probability distribution can be obtained using
the predictive distribution from the GP:

f (M)
x | f (m)

x ,Dt ∼ N
1
u(x), s2(x)

2
(4.9)

where
u(x) = σ2(mM)

x

1
f (m)

x − µ(m)
x

2
/σ2(m)

x + µ(M)
x

s2(x) = σ2(M)

x −
1
σ2(mM)

x

22
/σ2(m)

x

(4.10)

Finally, the entropy can be calculated solving a one dimension integral, simplifying
the problem:

H
1
f (m)

x | f (M)
x ≤ f+,Dt

2
= −

Ú
ZΨ

1
f (m)

x

2
log

1
ZΨ

1
f (m)

x

22
df (m)

x (4.11)

where the single terms are:

Z := 1/σ(m)
x Φ

1
γ

(M)
f+ (x)

2
Ψ
1
f (m)

x

2
:= Φ ((f+ − u(x)) /s(x))ϕ

3
γ

(m)
f

(m)
x

(x)
4 (4.12)

This simple 1-Dimension integral can be computed using standard numerical meth-
ods, improving the overall performance of the algorithm.
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Chapter 5

Numerical implementation
of Bayesian Framework

This chapter describes the general implementation of the framework in Matlab will
be discussed. Both the single and multifidelity approach are reported: the main
difference relies on the acquisition functions as reported in chapters 3 and 4.

5.1 Single fidelity Bayesian Optimization
The code starts with setting the framework parameters in the opt data structure.
In particular the dimension of the problem, the range in which the problem vari-
ables can be selected, the maximum number of iterations, the budget, the number
of tests to run to build a statistic and the number of points to use for the initial
surrogate are defined. After this initial phase the effective optimization process
can start.
An initial Latin Hypercube Sampling with the parameters in the opt structure is
run. From this LHS an initial group of samples is selected randomly to build the
initial surrogate.
After selecting the input point xi the objective function of the problem is calculated
f(xi). The calculated output values are collected and stored in a y vector. Be-
fore starting the optimization loop the initial budget spent to evaluate the various
f(xi) is calculated. The minimum value are calculated and collected in a vector
minvalues with their corresponding input values minsamples. The surrogate with
these initial sampled points is built.
Then the optimization for loop can start. The surrogate is built by fitting a Gaus-
sian process regression that uses a square kernel. The posterior is obtained in
terms of µ and σ2 from the Gaussian Process. Then the acquisition function is
calculated and maximized to select the next point xi+1 from the LHS samples set.

35



Numerical implementation of Bayesian Framework

The objective function is evaluated on the selected point which is then removed
from the design space in order to avoid its reuse.
After each iteration the minimum value of the objective function is calculated and
the vectors minvalues and minsamples are updated along with the budget. Then
the cycle is repeated until the maximum iterations are reached, or the budget is
terminated (typically the second condition is stricter than the first one) and the
surrogate is updated iteratetively with the new evaluations.

Singlefidelity EGO algorithm
1. Sample points with a LHS and create a Design of Experiment
2. Evaluate the f(xi)
3. Calculate the minimum value f(x+) and store in minvalues and the x+ in

minsamples
4. For i=1:max iterations or end of budget
5. Update the GP surrogate
6. Obtain µ and σ2 from GP
7. Calculate EI=max{f(x)-f(x+)} Eq. 3.3
8. Select next query point xi+1=argmax(EI)
9. Remove the point xi+1 from the design of experiment
10. Evaluate the objective function on the xi+1 point
11. Calculate the minimum of the objective function and update

the minvalues and minsamples and calculate used budget
12. end for

Table 5.1: Single fidelity framework
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5.2 Multifidelity Bayesian Optimization
The multifidelity code implementation is an extension of the singlefidelity as de-
scribed in chapter 4. The first phase of the code consists in setting the framework
parameters, which have more terms considering the single fidelity case. In par-
ticular the parameters are: the dimension of the problem, the range in which the
problem variables can be selected, the maximum number of iterations, the budget,
the number of tests to run to build a statistic, the number of points from the design
space to use for the initial surrogate and the cost of each level of code λm (the
highest fidelity equals 1 and the lower fidelities cost is calculated accordingly).
An initial set of input points are selected from the LHS and the objective function
is evaluated with the code of different fidelities indicated as m. The values are
stored in a vector ym = f(x1)m...f(xN)m for each level of fidelity. The minimum
value of the objective function is calculated between the evaluation on the highest
fidelity code and stored in the vector minvalues and the relative input data in
minsamples.
The evaluated objective function is then used to fit a Multifidelity Gaussian Pro-
cess regression model and then the optimization process starts.
The mean value µ and the variance σ2 are obtained from the posterior and are
used in the calculation of the acquisition functions. Maximizing those, that are
an extension of the acquisition functions for the single fidelity case, the next input
point xm

i+1 along with an appropriate fidelity level m are selected.
Then the objective function is evaluated on the selected point xm

i+1 using the code
of selected m− th fidelity level.
The xm

i+1 point is removed from the design space to prevent replicates. The minval-
ues and minsamples vectors are updated with the minimum value of the objective
function, along with the calculation of the total evaluations cost.
Then the code is repeated until the budget or the maximum number of iterations
is reached.
In the next tables the pseudocode implemented for the 3 multifidelity acquisition
functions are reported (table ??).
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MFEI algorithm

1 Sample point with a LHS
1 Evaluate the f(xi) from random points selected from LHS
3 Calculate the minimum value f(x+) and store in minvalues and the x+ in

minsamples
4 for i=1:max iterations or end of budget
5 Update the GP surrogate
6 Extract µ(m) and σ2(m) from GP
7 Calculate the minimum value f(x+) and store in minvalues and the x+ in

minsamples
8 for m=1:M th fidelity

9 Calculate α1(x,m) = corr
5
f (m)(x), f (M)(x)

6
10 Calculate α2(x,m) =

3
1 − σε√

σ2(m)(x)+σ2
ε

4
11 Calculate α3(m) = λM

λm

12 end for
13 Calculate EI=max{f(x)(M)-f(x+)(M)} (calculated on the highest fidelity

code)
14 Calculate MFEI(x,m)=EI·α1(x,m) · α2(x,m) · α3(m) 4.2
15 Select next query point [xi+1,m

th]=argmax(MFEI) (the mth is selected
between all the available fidelities)

16 Remove the point xi+1 from the design of experiment
17 Evaluate the objective function on the xi+1 point
18 Update the minvalues and minsamples
19 end for

Table 5.2: MFEI pseudocode implementation
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MFEI algorithm

1 Sample point with a LHS
1 Evaluate the f(xi) from random points selected from LHS
3 Calculate the minimum value f(x+) and store in minvalues and the x+ in

minsamples
4 For i=1:max iterations or end of budget
5 Update the GP surrogate
6 Extract µ(m) and σ2(m) from GP
7 Calculate the minimum value f(x+) and store in minvalues and the x+ in

minsamples
8 for m=1:Mthfidelity

9 Calculate Corr(x,m) = Corr
è
f(x)M , f(x)m

é
10 Calculate CR(m) = λM

λm

12 end for

13 Calculate η
1
x,m

2
14 Calculate PI(x) = Φ

1
f(x+)M −f(x)M

σ(x)M

2
??

15 Calculate MFPI(x,m)=PI(x) · Corr(x,m) · CR(m) · η(x,m)
16 Select next query point [xi+1,m

th]=argmax(MFPI) (the mth is selected
between all the available fidelities)

17 Remove the point xi+1 from the design of experiment
18 Evaluate the objective function on the xi+1 point
19 Update the minvalues and minsamples and budget
20 end for

Table 5.3: MFPI pseudocode implementation
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MFEI algorithm

1 Sample point with a LHS
2 Evaluate the f(xi) from random points selected from LHS
3 For i=1:max iterations or end of budget
4 Update the GP surrogate
5 Extract µ(m) and σ2(m) from GP
6 Calculate the minimum value f(x+) and store in minvalues and the x+ in

minsamples
7 Calculate H0=H

1
f (m)

x | Dt

2
= log

1
σ(m)

x

√
2πe

2
eq. 4.6 and λ(m)

8 for m=1:Mthfidelity

9 for k=1:Max num Montecarlo iterations
10 Calculate γ(M)

f+ (x), ϕ
1
γ

(M)
f+ (x)

2
,Φ
1
γ

(M)
f+ (x)

2
11 if m=M

12 Calculate H1=qf+∈F+

H(f (M)
x |f (M)

+ ,Dt)
|F+| eq 4.7 and eq 4.8

13 else

14 Z, u(x), s2(x), γ(m)
f

(m)
x

,Ψ
1
f (m)

x

2
eq. ??

15 H1=qf+∈F+

H(f (m)
x |f (M)

+ ,Dt)
|F+| eq4.7 and eq 4.11

16 end if
17 end for
18 Calculate MFMES=(H0 −H1)/λ(m) eq. ??
19 Select next query point [xi+1,m

th]=argmax(MFMES) (the mth is selected
between all the available fidelities)

20 Remove the point xi+1 from the design of experiment
21 Evaluate the objective function on the xi+1 point
22 Update the minvalues and minsamples and budget
23 end for

Table 5.4: MFMES pseudo code
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Chapter 6

Composite specimen
damage identification

The goal of this work of thesis consists in using previously discussed technique to
correctly identify a cut in a composite specimen. Health monitoring of engineering
structures is a complex, but important branch that allows using structures and
systems for many years, ensuring a high level of safety which is normally requested
by the normative. In particular the concept of safety in the aerospace engineering
field is crucial and strictly regulated because it should be minimized the occurrence
of catastrophic events, that will cause the damage or loss of airplanes, involved
structures and people. In the last decades composite materials have become widely
used due to their excellent mechanical properties and their reduced weights. The
major drawback of composites, which is also a strength point, lies in their complex
and in some cases unpredictable mechanical behavior. Hence also their failure
modes differ greatly from an isotropic material. We will focus on the fiber cut
damage, which is critical because is difficult to detect (especially if that regards
the inner plies of the composite) and deteriorates the mechanical performance.
This is due to the discontinuity of the fiber itself which causes the discontinuity
of stress transfer. Hence in the region of the cut just the matrix, which has lower
mechanical properties than the whole laminate, will transfer the load across the
structure. Moreover a fibercut can lead to matrix cracking and delamination, that
further reduces the mechanical properties of the laminate [71]. In order to monitor
the damage level of the structure and identify the position of the cut, the strain
field will be calculated and analyzed because it’s a common parameter employed
in health monitoring and damage assessment. The strain max value can be used to
evaluate structural failure and it’s a quite easy measure to take in laboratory, with
the goal of using different sources of information building the surrogate model
[72, 73]. In those cited works the strain field is read in discrete points using a
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finite number of Fiber Bratt gratings, while in recent advance SHM techniques
the complete strain field is evaluated even on complex structure using optical
image correlation [74, 75]. These newer approaches are particularly suited dealing
with the complex strain field that is present in a damaged composite structure.
The dimensions and material of the specimen is taken from the work of professor
Mainini1. In particular we are using 4 layers of plain-weave prepreg carbon fiber
composite (IM7/8552) with a stacking sequence [45°/0°/0°/45°] with dimension
456X102 mm and the thickness of each ply 0.76 mm.

Figure 6.1: Specimen dimensions and lamination stacking sequence

The material properties of the specimen are taken from [76]:

E11 64120 MPa Em 4600 MPa
E22 64120 MPa ρm 1300 kg/m3

G12 5777 MPa
ν12 0.031
ρ 1700 kg/m3

Table 6.1: Hexcel IM7/8552 AS4 Plain Weave mechanical properties

1Visiting professor program project: "A surrogate modeling approach to support real-time
structural assessment and decision-making: Integrating data from experiments and numerical
simulations"
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6.1 Theoretical background
The finite element code used to solve the structural problem is NASTRAN. In
particular the element chosen is a quadrilateral isoparametric shell element with
linear shape functions. There are 6 degree of freedom (DOF) for each node (3
translations and 3 rotations) for a total of 20 DOF for each element. The code is
employed to solve a linear static analysis, i.e. solve the typical structural problem
stated as [K]{u} = {f} where [K] is the stiffness matrix of the entire structure,
{u} is the vector containing all the DOF of the structure. The stiffness matrix
is calculated for each element in its coordinate system, then is rotated in the
global reference system and finally all the matrix from each element is assembled
together considering the connection between single elements. In Nastran the First
Order Shear Deformation plate theory is implemented, which is an extension of the
Reissner Mindlin to multilayered structure. This theory consists in an extension of
the Kirchoff plate theory considering also the transverse shear. Solving the system
leads to obtaining the displacement, for each DOF, in the nodes. The strains, which
is the quantity monitored, are calculated with a post process routine knowing that
are the derivative of the displacements. The displacement field is linear across the
thickness of the laminate hence the strain is also linear through the thickness of
all the laminate. This can be a limitation for our application because the sudden
discontinuity in the strain field can be hard to catch. This limitation is in the low
and mid fidelity models, due to the shell element employed.

Figure 6.2: Example of strain distribution thought the thickness of a laminate [77]
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6.2 Patran modeling
Specifically different fidelities will be employed to speed up the optimization pro-
cess. The models should be created considering variables that greatly influence the
strain field in the specimen such as geometric dimensions, cut characteristics and
different load levels; to permit this flexibility the models are developed leveraging
the Patran Command Language (PCL) which is a programming language devel-
oped to code the interactions with the software and automate the modelization,
maintaining the ability to tune the model parameters of interest. In order to avoid
the Curse of Dimensionality the models were developed with a fixed geometry and
lamination sequence in order to focus only on the damage problems. The variable
chosen to model the damage are the cut location xc and yc, the cut extension in
the x direction lc. The strain recorded in a report file is in the y direction, the ϵyy.

6.3 Low fidelity model
The low fidelity model is modeled with a quad4 shell element that has 4 nodes
with 6 DOF each. The boundary conditions are chosen to simulate a tensile test
in accordance with the ASTM D3039 [78] imposing a clamp in the lower section
and a displacement in the upper position; the boundary conditions are applied on
an area that is extended by the 10% of the specimen total length. The remaining
80% of the central part of the specimen is discretized and used to calculate the
strain field.
The cut is modeled as a rectangular zone. The extension of the cut in the y
direction is fixed at 2 mm while in the x direction goes from 0 (there isn’t any
cut) and 60 mm (the cut is extended for more than half the specimen width). The
cut zone moves across the entire specimen (excluding the clamp and load area).
The damaged zone is modeled with a laminate property that assigns the matrix
material in the damaged ply: in this zone the load is not carried by the fibre. In
our case we chose to consider the cut on the 3rd layer, because internally positioned
in the laminate is more difficult to observe and catch. The stiffness of elements
in the cut region is reduced, the displacement increases, and the strain expected
in this region should also increase. Laminated property is assigned to the other
regions around the cut and has the composite material applied on all 4 layers.
The discretization of the specimen is made with a one-way bias mesh seed, starting
from the cut region through the borders of the specimen: this method permits to
increase mesh density in the cut region, which is a critical zone due to the sudden
change in the strain field that should be caught. In addition to that, the mesh
dimensions (the minor dimension of the elements is placed near the cut while the
coarser is far from the cut) could be changed with different combinations to obtain
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a sort of continuous variable fidelity model. The mesh dimensions could also be
considered as model variable.

(a) Yellow area clamp, green area
imposed displacement, red area in-
dicates the cut position

(b) Mesh on the specimen

Figure 6.3: Specimen boundary conditions and mesh

From figure 6.3b can be clearly seen that in the cut zone the elements shrink and
are coarser far from the damaged zone. While the mesh bias is shown on the next
figure6.4. The xc and yc positions are given between the origin of the specimen
(the lower left corner) and the lower left corner of the cut region. Moving away
from the cut zone the dimension of the elements increase in both the x and y
directions.
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Figure 6.4: Mesh bias on the specimen direction of increasing dimension on the
specimen

The mesh discretization for the low fidelity model is with a min mesh dimension
of 1mm and a max of 2mm.

Figure 6.5: Low fidelity 2D model mesh

6.4 Mid fidelity model

The mid fidelity model uses the same quad4 elements and the same material def-
inition and lamination of the low fidelity model. Also, the boundaries condition
applied are the same from both the lower section, where a clamp is applied and
the upper where an imposed displacement of 5mm is applied. The main difference,
with the objective to focus the attention on the cut zone, is the mesh discretization
with a min dimension of 0.5mm and a max dimension of the grid of 1mm.
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6.5 High fidelity model
In order to further increase the fidelity of our model we choose to use solid elements,
the HEX8 that for our application where the load condition is mainly tension is
appropriate. The HEX8 solid element is a brick with 8 nodes, one for each corner,
and there are 3 DOF for each node: the 3 translations in the different directions for
a total of 24 DOF for each element. The model is created using the 2D geometry
of the specimen, used for the low and mid fidelity models, and extruding that in
the transverse direction. Each layer is discretized using 3 elements in the thickness
direction, in order to improve the accuracy in the calculation of the strain field and
catch the discontinuity. In the preliminary phase was used more elements in the
thickness direction and then was reduced due to the lack of strain field significative
change. The elements material is modeled as a 3D orthotropic material, where the
transverse property is the same of the matrix E33 = 4600MPa. The elements
in the cut region are associated with homogeneous material, associated with the
elastic modulus of the matrix. The boundary conditions are the same applied in
the 2D models: the 10% lower part is clamped (the 3 DOF are imposed equal 0)
while the upper 10% section imposes a vertical displacement of 5mm. The higher
computational cost, in opposition to the low and mid fidelity models, is due the
overall higher number of nodes and hence total DOF: in the 2D model each element
represent the mechanical characteristic of the whole laminate, while with the solid
model each layer has 3 different elements linked together. The assumption of these
layer, which is typical for the FSDT theory, leads in the perfect bond between
different layers.

Figure 6.6: Higher fidelity model with 3D elements

The highest fidelity model is obtained using a grid on the 3D model with dimension
1×3mm (intended as minimum and maximum mesh dimension), this is considered
the "ground truth", approximating with high accuracy the specimen behavior. In
the next sections the strain field is evaluated and discussed on 3 peculiar cut
conditions: a cut on the border of the specimen, a small cut and a large cut.
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6.6 Border cut damage

The cut positioned on the border is Case 17 reported in table 7.3 with the position
xc = 74.66mm yc = 258.58mm and the length of lc = 25.74mm.

Figure 6.7: Strain field for a cut on the border of specimen with positions xc =
74.66mm yc = 258.58mm and length of lc = 25.74mm

From the image 6.7 that reports the strain field in the 3rd layer, where the damage
is located, can be seen that for each level of fidelity the cut is visible: for the low
and mid fidelity is barely visible while is clear and easy to detect from the high
fidelity model. In particular in the cut region the strain for each fidelity, which are
also the maximum strain recorded in the specimen, are 2.19% for the Low fidelity
code, 2.21% for the Mid fidelity code, 4.99% for the High fidelity code. The strain
field in the other regions of the specimen are 1.32% for the low fidelity, 1.37% for
the mid fidelity and 1.36%. The difference between the strain catched from the
low and mid fidelity models is negligible but are slightly higher for the mid fidelity
model: this behavior can be addressed to the overall reduction of stiffness for the
mid fidelity model due to the usage of a higher number of nodes, while it’s clear
the greater ability of the solid model to catch the sudden jump in material and
strength change. The presence of the border seems to have little effect on the
overall strain field.
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6.7 Small cut damage

The small cut damage considered is Case 4 reported in table 7.3 with the position
xc = 86.11mm yc = 189.30mm and the length of lc = 0.96mm

Figure 6.8: Strain field of a small cut on the specimen with position xc = 86.11mm
yc = 189.30mm and length of lc = 0.96mm

The image, as for the previous case reported, shows the strain field of the 3rd

layer of the specimen for each fidelity. In particular in the cut region the strain for
each fidelity, which are also the maximum strain in the specimen, are 1.59% for the
Low fidelity code, 1.71% for the Mid fidelity code, 2.04% for the High fidelity code.
The strain field in the other parts of the specimen are 1.39% for the low fidelity,
1.38% for the mid fidelity and 1.38%. As for the case discussed previously, the
highest fidelity catches the greater strain discontinuity, while the mid and more the
low fidelity struggle a bit more on. The difference for each level of code between
the cut region and the remaining part of the specimen is small, this is because the
cut length is short hence the reduction of the overall stiffness influences a small
region on the specimen. This lack of reduction in the stiffness doesn’t allow the
cut region to deform much, hence the strain is similar to a "healthy" specimen.
This complicates and stresses out the capability of the code to individuate small
cuts.
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6.8 Large cut damage
The largest cut extension is Case 25 reported in table 7.3 with the position xc =
11.86mm yc = 203.97mm and the length of lc = 59.34mm

Figure 6.9: Strain field of a large cut on the specimen xc = 11.86mm yc =
203.97mm and length of lc = 59.34mm

The image, as for the previous case reported, shows the strain field of the 3rd layer
of the specimen for each fidelity. In particular in the cut region the strain for each
fidelity, which are also the maximum strain in the specimen, are 2.13% for the Low
fidelity code, 2.14% for the Mid fidelity code, 4.06% for the High fidelity code. The
strain field in the other parts of the specimen are 1.37% for the low fidelity, 1.37%
for the mid fidelity and 1.37%. With a larger cut the difference between the strain
field in the cut region and on the remaining part of the specimen is higher leading
to easily catch the strain discontinuity hence individuate the damaged zone. From
the 3 test cases analyzed we can conclude that bigger is the cut damage, a greater
part of the specimen will be affected by a reduced strength allowing the specimen
to deform more, hence a higher discontinuity in the strain field is present. Then
the mid fidelity model has a strain field that is slightly higher in value compared
to the low fidelity model. Finally, the highest fidelity model is able to catch a
greater discontinuity in the material, hence permits to identify the damage easily.
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Chapter 7

Problem set up

With the set of previous models, we want to tune the mesh dimensions to obtain
and investigate different cases focusing the attention on two key factors: using 3
fidelities to see if that speeds up the optimization process and using a fixed load,
imposed on the upper part of the specimen equals to 5mm. These assumptions are
made to limit the curse of dimensionality, that is due to the multimodality of the
problem which is typical of inverse problems. In particular we choose this case: the
high fidelity uses the 3D model with min dimension of the mesh equals 1 mm and
max dimension equals 3 mm, the mid fidelity uses a 2D model with a minimum
dimension of the mesh equals 0.5 mm and the max dimension equals 1 mm and
finally the lowest fidelity employs a 2D model with a minimal mesh dimension
equals 1 mm and the maximum equals 2 mm. The cost of each model is calculated
using the ratio between the number of DOF of each fidelity and the number of DOF
in the model with the highest fidelity (for an arbitrary cut position taken). Also,
the time to completely calculate the strain field and generate the report is used,
because are taken into account the IO operations and gives a real estimation of
the overall costs. While the model with their level of fidelities can be summarized
as: To summarize the whole strain field and gain information about the position
of the cut the RMSE between the strains on the highest fidelity model which is
settled in a reference condition (that represents the "real" damage condition, and
the optimization process should indicate the cut position and dimensions) and
the model of an iteration is calculated; in particular due to the different mesh
dimensions and cut positions, to calculate the error the nearest elements between
the two models are considered. To emphasize the different strains between different
configurations a normalization with the reference strain is made.

RMSE =

öõõõô 1
N

NØ
i=1

1
S(i) − S

(i)
ref

22

Si
ref

(7.1)
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High fidelity Mid fidelity Low fidelity
Max mesh
Dimension 3 mm 0.5 mm 1 mm

Min mesh
Dimension 2 mm 1 mm 2 mm

Cost 1 0.54 0.12
Element

Type
Solid
HEX8

Shell
QUAD4

Shell
QUAD4

Peculiarity
in models

3 element for
layer in the

thickness direction

Lamination with orthotropic
material and isotropic in the

cut region

Table 7.1: Model fidelities description

The cut damage properties boundaries and test cases are presented in the table:

Table 7.2: Cut damage properties

Test
Case

X cut
(xc)

Y cut
(yc)

Cut length
(lc)

Test
Case

X cut
(xc)

Ycut
(yc)

Cut length
(lc)

Limits 0-102 60-400 0-60 Case 13 61.5 137.14 15.32
Case 1 81.42 123.33 0.09 Case 14 16.1 392.53 18.17
Case 2 44.15 282.41 0.25 Case 15 24.07 66.09 20.61
Case 3 96.33 73.97 0.56 Case 16 11.84 105.99 21.73
Case 4 86.11 189.3 0.96 Case 17 74.66 258.58 25.74
Case 5 83.92 377.98 1.65 Case 18 50.96 240.2 29.1
Case 6 56.56 91.35 3.3 Case 19 37.49 362.51 32.04
Case 7 28.9 334.21 3.68 Case 20 61.09 172.46 37.33
Case 8 16.7 266.24 5.17 Case 21 58.34 295.1 39.41
Case 9 46.91 164.31 6.59 Case 22 32.65 150.25 45.28

Case 10 25.99 218.81 9.51 Case 23 1.81 305.67 49.22
Case 11 72.06 347.87 10.16 Case 24 38.05 235.1 52.28
Case 12 6.57 318.68 12.8 Case 25 11.86 203.97 59.34

Table 7.3: Damage test conditions, measures expressed in mm

The cut vertical position yc is chosen between the constrained zones, while the
cut dimension could be between 0 (the specimen is not damaged) and 60 (the cut
relies on more than half the specimen width). In order to ensure the geometric
consistency of the model if the sum of xc and lc exceeds the specimen width an
arbitrary high value of the RMSE is assumed, leading the optimization process
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to search the minimum value of the RMSE with other cut parameters. A visual
representation of the damage test cases sample considered is reported.

Figure 7.1: Damage test samples distribution. Orange circle small cut. Yellow
circle large cut. Red dot cut on the border.

From figure 7.1 and more in detail from table 7.3 can be seen that the cut lengths
are shifted to the lower bound, i.e. smaller cuts are considered because ideally
the framework should be able to catch the damage in its incubating phase: this
is in order to prevent its propagation and perform a repair on the structure in a
short period of time. This shift of the cut length toward zero is possible due to
the modified LHS presented in [79], the points sampled are closer to the origin of
the damage length values distribution. This is possible due to raising the typical
latin hypercube terms to a fixed power: this shifts the center of the sampling
distribution towards the origin of the damage length value. The bigger dots in
the figure indicate 3 damage test conditions which will be monitored to evaluate
the performance of the code due to their representativeness of the different cases
of possible damage position and dimensions. In particular the orange point is a
small cut damage with length equal 0.96mm (the case 4 in table 7.3). The yellow
point is a larger cut damage, with a cut length of 59.34mm (the case 25 in table
7.3) The red dot is a cut near the border of the specimen, with a distance of 2mm
from the right border (the case 17 in table 7.3).
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Figure 7.2: Diagram showing the optimization framework
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The diagram in figure 7.2 illustrates the generic code implementation on the dam-
age identification problem. The code starts by setting the damage parameters
boundaries which will be imposed during the model creation. Then an initial LHS
is used to randomly select the 25 different damage conditions with a focus on
small cuts. The reference strain field is calculated for a damage condition from
the 25 different cases. Then a LHS is used to sample the design space, which will
be used during the optimization process. Initially the strain fields are evaluated
using 20 Low fidelity code runs, 10 Mid fidelity runs, and 2 High fidelity runs
selecting the damage parameters from the LHS. For each evaluation the RMSE is
calculated using the reference strain as reported in 7.1. With this evaluation the
initial surrogate, which uses a Gaussian Process regression is built. The minimum
value of the RMSE along with the corresponding damage parameters are stored
in the minvalues and minsamples vectors (the values are stored calculating the
minimum of the RMSE on the high fidelity evaluations). Then the optimization
process begins. The posterior is evaluated in terms of the mean µ and variance σ2

of the Multifidelity Gaussian Process. These quantities are used to calculate the
acquisition functions: by maximizing them the fidelity level and the next damage
parameters are selected in order to improve the surrogate accuracy. Then the
model with the queried fidelity and damage parameters is run. This new evalu-
ation is used to update the surrogate. The minimum of the RMSE is evaluated
again and the vector minvalues and minsamples are updated. The total cost is
calculated and if is lower than the budget or the number of iterations is lower
than the maximum the code is repeated. For each damage condition this opti-
mization process is repeated 10 times to build a suitable statistic, this is due to
the stochastic nature of the optimization process. Then the optimization process
is repeated considering each of the 25 damage conditions using the different acqui-
sition functions: Multifidelity Expected Improvement, Multifidelity Probability of
Improvement, Multifidelity Max value Entropy Search.
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Chapter 8

Results

In this section the results of the damage identification problem are presented. In
order to obtain meaningful results, due to the intrinsic stochastic nature of the
process, 25 different damage conditions are picked randomly with a Latin Hyper-
cube sampling which is shifted towards short cut length: with this modification
the damage considered is relatively small and allow to stress to code and verify if
it is capable of identifying such small damages.
Then to build a suitable statistic for the problem 10 different tests for each damage
condition, which means building 10 different surrogates and running 10 different
optimization processes, are considered. This approach is repeated for the 3 differ-
ent acquisition functions, considering the same 25 damages and the same sampling
points to initially build the surrogate: this is made to have a common baseline for
each method. Finally, the median value, of the minimum value of the RMSE taken
from the High Fidelity evaluation, is calculated from the total 250 optimization
runs and is represented as a solid line. The shaded area around each median repre-
sents the collected values in the confidence interval between the 15th and the 75th

percentile.
The graphs representing the normalized errors on the estimation of the parameters
xc, yc and lc between the reference cut damage and the actual estimatimation of
the code are reported: these are the real quantities of interest that needs to be
found. These quantities representation is the same as the RMSE: the solid line
indicates the median calculated from the 250 optimization runs and the shaded
area shows the confidence interval between the 15th and the 75th percentile.
After reporting the overall results, where the median and the confidence boundary
are calculated on all the 25 damage samples, the results on 3 peculiar cut damages
are selected to show the performance of the code with different conditions. In
particular from the 25 samples, we will select a cut condition where the damage
is near the border of the specimen, a cut with short and another cut with large
length.
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8.1 Aggregated results

Figure 8.1: RMSE minimizing process results for each acquisition function

In the graph are represented the 3 multifidelity acquisition functions and the sin-
glefidelity Efficient Global Optimization (EGO). It’s clear the advantage on using
the multifidelity approach since the EGO is the only case where the RMSE doesn’t
drop to zero. It can also be noted that the EGO curve doesn’t fall as fast as the
other ones. This can be explained with the limited exploration of the EGO due to
the usage of just high fidelity code, hence with the same budget of other methods
(fixed at 50) the number of sampled points is exactly 50. The fastest code to
bring the RMSE to zero is the MFPI that has a higher number of High Fidelity
evaluations meaning that more focus is brought on the exploitation that, in a low
dimension problem, leads to rapidly find the minimum. On the opposite end, the
slowest code is the MFEI. The MFEI is the most balanced algorithm with the right
balance between exploration and exploitation. This characteristic doesn’t lead to
great performance due to the nature of the inverse problem: a more exploitative
approach for a low dimensions problem greatly speeds up the optimization process.
The MFMES performance relies between the other two. The exploration phase can
be seen between budget 10 and 23 where the graph is mostly flat (which means that
are made mainly low and mid fidelity evaluations) and then suddenly the slope of
the curve is similar to the MFPI. This more explorative behavior can be addressed
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to the formulation: it calculates the entropy to measure the accuracy between the
surrogate and the high fidelity code. A closed form to calculate the entropy is
not available, hence Monte Carlo simulations are used. With this method, which
is an approximation of the real entropy, the accuracy term is underestimated in
favor of focusing on reducing the evaluations cost hence using much low fidelity
evaluations. Considering that the mean duration of a test is 4.2 hours the mean
time for each acquisition functions to bring the RMSE to 0 can be calculated.

Time to reach
RMSE=0 [min]

Evaluation
High

Evaluation
Mid

Evaluation
Low

EGO - 50 - -
MFEI 206.4 10.5 47.8 97.5

MFMES 160 11.7 22.6 189.4
MFPI 80.4 18.1 36.4 88.1

Table 8.1: Mean evaluations times and mean number of evaluations for each fidelity

It’s clear from the table 8.1 the superiority, in this particular application, of the
MFPI that is twice as faster as the MFEI and more than that considering the
MFMES. In order to further appreciate the difference between the methods the
mean number of evaluations for each fidelity can be observed. It’s clear, as stated
previously, that the MFMES acquisition function selects the lower fidelity, and
cheaper, hence it extensively explores the design space. The MFPI has a more
aggressive approach on the exploitation phase, which in a low dimension problem
helps to fast drive the optimization towards the optimum. While the MFEI is
a balanced mix of exploration and exploitation and leads to poorer performance.
Finally, another consideration can be made observing the relative errors that are
measured considering the cut parameters between the damaged specimen and the
high fidelity current evaluation.
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Figure 8.2: Error estimating the xc position

Figure 8.3: Error estimating the yc position
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Figure 8.4: Error estimating the lc position

For the multifidelity frameworks the errors drop to zero when the RMSE also drops
to zero meaning that the right cut configuration parameters are found. Observing
the normalized errors it can be seen, in contrast to the RMSE value, that don’t
decrease monotonically but in some regions increase their value. This means that
the damage identification case, which is an inverse problem, is ill-conditioned due
to its probably natural multimodality nature. In the next sections we will discuss
the 3 particular cases, a small, large and near the border cut, which strain field are
analyzed in the previous chapter. Reporting these results permit to understand the
robustness and the overall performance of the code in finding the correct damage
parameters. In the next sections the results are presented for the peculiar cases
of a cut on the border, a small and large cut selected from the sampled damage
parameters and highlighted in table 7.3.
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8.2 Cut damage on border
In this section the results of the cut damage positioned near the border are ana-
lyzed. The reported graphs are similar to those in the section on the aggregated
results but in these cases the data utilized is referred to a single damage case (in
this section we are referring to the cut near the border case 17 in table 7.3 with
xc = 74.66mm, yc = 258.58mm and lc = 25.74). We are considering the 10 test
evaluated, used to obtain a suitable statistic. The solid line indicates the median
value of the RMSE calculated with the 10 test cases data while the shaded areas
indicate the distribution of data between the 15th and 75th percentile. The initial
points sampling to build the surrogate are different between each of the 10 tests
but are shared between different methods in order to start the comparison from
the same surrogate baseline.

Figure 8.5: RMSE minimizing process results for each acquisition function cut on
the border xc = 74.66mm, yc = 258.58mm lc = 25.74

As shown in the previous overall RMSE reduction graph on fig 8.1 the difference
in performance between each method is similar. The single fidelity EGO model
doesn’t reach the RMSE zero, meaning that the singlefidelity approach will need
ah higher budget in contrast to the multifidelity cases. The fastest acquisition
function that leads to bring toward zero the RMSE is the MFPI, which in this case
has a little more exploration phase between budget 14 and 17 which leads to a
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higher budget to reach the solution. The other 2 multifidelity acquisition functions,
MFEI and MFMES, explore also intensively between budget 17 and 30 indicating
the difficulty of the code in individuating the right damage characteristics. The
MFMES is the second acquisition function that reach the convergence while the
MFEI that balances exploitation and exploration is the last acquisition function
that reaches convergence, and that can be due to the nature of the problem that
leads to a more exploitative approach due to the low dimension problem. The
times to reach convergence for each acquisition function can be reported:

EGO MFEI MFMES MFPI
Time to reach

RMSE=0 [min] - 229.62 172.39 109.79

Table 8.2: Mean evaluations times and mean number of evaluations for each fidelity
level

The next figures report the errors in estimating the damage parameters.

Figure 8.6: Error estimating the xc damage parameter cut on the border
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Figure 8.7: Error estimating the yc damage parameter cut on the border

Figure 8.8: Error estimating the lc damage parameter cut on the border
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The error on the cut position is immediately reduced for the MFPI while the error
on estimating the cut length in figure 8.8 is initially flat and then suddenly reduces.
Then in the zone of budget between 20 and 30 as the models selected for the other
acquisition functions are the lower and middle fidelity, the errors remain flat to
then suddenly reduce, non monotonically during the next iterations.

8.2.1 Strain field evolution
The evolution of strain field is presented for each acquisition function in order to
visually show the considerations made in the previous chapter.

Figure 8.9: HF Border cut strain field evolution using EI acquisition function

The singlefidelity EI shows that for the damage on the border the estimation of the
cut position gets pretty accurate. At the beginning of the optimization framework
the cut length estimated is shorter that the real one, also the position is close to
the center of the specimen. After some iterations the length of the cut, hence the
strain in that zone, increases moving toward the right edge. This can be due to the
little interaction between the cut and border that slightly modify the strain field

64



Results

distribution. Finally, the last parameter to correctly catch is the yc position and
finally the right position and length are nearly obtained. This shows how the large
cut properties can be identified with just the singlefidelity code with the downside
of employing all the available budget.

Figure 8.10: HF Border cut strain field evolution using MFEI acquisition function

Using the acquisition function MFEI the progression of the strain field starts with
the position of the cut near the border and then further moves toward the border.
In the initial phase to approximately budget 35 the code extensively explores
the design space hence the predicted position of the cut doesn’t change a lot.
Then between budget 35 and 40 using high fidelity evaluation the right damage
parameters are identified. This shows the advantage of using the multifidelity
version of the Expected Improvement: a reduction in the necessary budget to
correctly identify the damage parameters.
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Figure 8.11: HF Border cut strain field evolution using MFPI acquisition function

The MFPI acquisition function shows its superiority in this application: within a
small number of high fidelity evaluations the cut parameters are correctly identified
for a budget around 18. The cut position moves towards the border while the
length of the damage is estimated correctly after few iterations.
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Figure 8.12: HF Border cut strain field evolution using MFMES acquisition func-
tion

The MFMES acquisition function uses a higher budget, considering the MFPI, to
correctly identify the damage parameters. In the first iterations through budget
22 the cut length is overestimated and slightly moves toward the border. With
further iterations the cut finally reaches the border with an approximate budget
of 28. The behaviour of the different acquisition functions is similar with slight
differences and budget used.
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8.3 Small cut damage
In this section the result of the cut damage of small dimension is analyzed. In
particular the damage condition is reported in table 7.3 as Case 4 (with xc =
86.11mm, yc = 189.30mm and lc = 0.96mm).

Figure 8.13: RMSE minimizing process results for each acquisition functions small
cut xc = 86.11mm yc = 189.30mm lc = 0.96mm

From the figure 8.13 is immediately noticeable that the Budget used from each
fidelity to reach RMSE zero is way higher than in previous case. This can be
addressed to the peculiar strain field and the difficulty to catch strain disconti-
nuity, as reported in paragraph 6.7. The singlefidelity EGO code doesn’t reach
convergence and the value of the RMSE when the budget is finished is higher than
the previous case: the surrogate needs an even higher budget to overcome the
difficulty on finding the right damage parameters. The difference in performance
between the MFEI and the MFEI is closer than previously: the higher number
of low fidelity evaluations can help to find the damage characteristics quickly but
a more exploitative approach in this scenario, such as the MFPI, still wins. The
MFPI which puts more emphasis on the exploitation, in this particular case needs
to explore also more extensively before reaching RMSE zero: this indicates that
this peculiar cut condition stresses the code and requires a higher budget to find
the right cut parameters.
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EGO MFEI MFMES MFPI
Time to reach

RMSE=0 [min] - 229.62 200.17 156.26

Table 8.3: Mean evaluations times and mean number of evaluations for each fidelity

The table 8.3 further represents the difference between each acquisition function
and is clear the increase in time to find the cut parameters considering the overall
mean times from table 8.1. To understand which parameter is more difficult to
find the errors associated with each of them are presented.

Figure 8.14: Error estimating the xc damage parameter small cut
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Figure 8.15: Error estimating the yc damage parameter small cut

Figure 8.16: Error estimating the lc damage parameter small cut
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As expected the main time consuming element to search is the cut length as
reported in figure 8.16. For the MFPI the graph is mainly flat, meaning that
in those zones even if the RMSE is decreasing, the model doesn’t improve its
estimate on the damage parameter. The other multifidelity acquisition functions
have a similar decrease but the MFEI and more the MFMES can leverage more
exploration and a stepper reduction in the errors (more relaxed). From all the
figures can be noted that the EGO residual level of error is higher considering the
cut positioned on the border: this means, and is clear from the large flat zones,
that the performance of the EGO is worse due to the higher budget needed to
reach convergence.

8.3.1 Strain field evolution

Figure 8.17: HF Small cut strain field evolution using EI acquisition function

The cut damage is indicated in the red circle due to its low dimension hence the
difficulty to spot. From figure 8.17 can be seen that initially the cut length is
overestimated: this due to the difficulty to catch the strain field with a smaller
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damage. Between budget 20 and 30 the dimension of the cut estimated decreases
along with the position that moves toward the border. Then thought budget 40
and 50 the length further decreases and moves near the border, but there is a
bigger difference between the final parameter estimated at budget 50 with the
reference, that are the right parameters. This case highlights the low performance
of the singlefidelity code with a difficult strain field to be spotted. With a higher
budget the singlefidelity code will reach convergence due to the necessity of an
extensive search of the right damage parameters.

Figure 8.18: HF Small cut strain field evolution using MFEI acquisition function

The MFEI acquisition function starts with an estimation of a larger cut dimension
and progressively reduces that through budget 19. Between budget 19 and 38 the
cut length is further reduced and finally also the position is correctly identified.
This acquisition function shows an initial greater uncertainty on the cut dimension
and employs the highest budget to reach convergence (as indicated by the mean
times reported in table 8.3).
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Figure 8.19: HF Small cut strain field evolution using MFMES acquisition function

With the MFMES acquisition function due to the extensive exploration phase
the cut dimension is shorter than in the MFEI case in figure 8.18 and the reduction
is noticeable from the first iterations. Also, the estimated cut position is close to
the actual position of damage. The prediction of the cut position is correctly
estimated at around budget 37 after an exploration phase between budget 25 and
37. At around budget 27 the position of the cut is really close to the effective
position. This acquisition function shows that for a demanding case, such as with
a small damage, using a more explorative approach as the MFMES can reduce the
used budget.
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Figure 8.20: HF Small cut strain field evolution using MFPI acquisition function

Using the MFPI acquisition function within budget 17 the cut position and dimen-
sion are close to the effective damage characteristics. Leveraging the exploitation
phase the code is able to approach the correct damage condition rapidly. Then
between budget 17 and 27 the code continues to improve the accuracy on the
estimation of the parameters that are correctly identified.
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8.4 Large cut damage

In this section the results of the cut damage with large length are analyzed. The
damage case considered is Case 25 in table 7.3 (xc = 11.86mm, yc = 203.97mm
and lc = 59.34mm) considering the 10 tests evaluated.

Figure 8.21: RMSE minimizing process results for each acquisition function large
cut

The time to reach RMSE zero for a large cut is drastically reduced. The com-
parison between different acquisition functions is the same as the other cases an-
alyzed. The singlefidelity EGO doesn’t reach RMSE zero but its value is inferior
to previous small and border cut conditions: this means that this condition is
easier to spot and leads to a lower RMSE residual. Moreover, there is a great
reduction in the RMSE in the initial phase meaning that is not necessary much
exploration to reduce the overall solution time. This trend can be seen also in the
MFEI which reduction comes mainly in the first phase while the MFMES tends
to have more explorative zones with slight reduction in the RMSE. In particular
the fastest method to reach convergence is the MFPI with a budget near 15, with
a big RMSE reduction in the first phase. The times to reach convergence for each
acquisition function can be reported:
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EGO MFEI MFMES MFPI
Time to reach

RMSE=0 [min] - 173.04 147.87 77.14

Table 8.4: Mean evaluations times for each fidelity

Figure 8.22: Error estimating the xc damage parameter large cut

76



Results

Figure 8.23: Error estimating the yc damage parameter large cut

Figure 8.24: Error estimating the lc damage parameter large cut
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The trend for the errors are similar to the RMSE trends: the biggest reduction in
the errors, especially for the cut length lc, are in the first phase. This means that to
catch this large cut, which strain field distribution deviate greatly from a "healthy"
specimen, more details in chapter 6.8, is easier than the other peculiar short and
border cut. The decrease of the error on estimating the various parameters is
fast for the MFPI, showing that an exploitative approach doesn’t waste much
budget in exploration for a situation where is not needed. It can also be noted
that the residual error for the EGO code is way lower than for the small cut
case, meaning that the code is closer to reach convergence on finding the right
damage parameters. Also, the confidence bound around the EGO (and also the
other acquisition functions) errors is tight, meaning that there is less dispersion
of values that indicate the capability of the framework to, in this condition, catch
rapidly the correct damage parameters.

8.4.1 Strain field evolution

Figure 8.25: HF Large cut strain field evolution using EI acquisition function
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The initial iterations from budget 10 to 30 immediately estimate a large cut on
the specimen due to the easily catchable strain field. From budget 40 to 50 the
extension and the position of the damage are fine adjusted. Comparing the final
guess of the damage parameters between budget 50 and the reference can be seen
a great similarity between the strain fields: this means that in this case with a
large cut even a singlefidelity code is able to identify damage parameters that are
close to the real damage condition.

Figure 8.26: HF Large cut strain field evolution using MFEI acquisition function

The strain field evolution using the MFEI acquisition function reported in figure
8.26 immediately catches the right length magnitude of the real damage, due to
the easier strain field pattern. Then the estimated position of the cut is adjusted
with more iterations to reach the right position around budget 28.
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Figure 8.27: HF Large cut strain field evolution using MFMES acquisition function

The strain field evolution using the MFMES acquisition function reported in
figure 8.27 within the first iterations correctly catches approximately the right
strain field both with position and length. Then between budget 14 and 28 the
further exploration brings to correctly identify the damage parameters.
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Figure 8.28: HF Large cut strain field evolution using MFPI acquisition function

The strain field evolution using the MFPI acquisition function is reported in
figure 8.28. The cut length estimated is progressively increased through budget
16 where the correct position and extension are reached. The progression is faster
than the other acquisition functions indicating the superior performance of the
MFPI, especially in this case with a large cut where the strain field differs greatly
from a "healthy" condition.
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Chapter 9

Conclusions

The objective of this work of thesis is to investigate and implement a Bayesian sur-
rogate multifidelity framework to speed up an optimization process. In particular
the surrogate is built iteratetively using different fidelities; the points to build the
surrogate are selected by using acquisition functions that have the purpose of max-
imising the accuracy of the surrogate itself. The acquisition functions taken into
account are the Multifidelity Expected Improvement MFEI, Multifidelity Proba-
bility of Improvement MFPI and Multifidelity Max value Entropy Search MFMES.
These methods are applied to a damage identification problem on a composite
specimen. Health monitoring problems are a fundamental aspect on assuring the
integrity of structures in different engineering field such as aeronautical, civil,
automotive and mechanical. The ability to develop a fast code that processes data
from different sources to identify the damages is crucial to be able to repair the
structure promptly.
In particular the problem addressed considers the modelization of a fibre cut dam-
age in a carbon fibre composite specimen with fixed dimensions 102 mm× 456 mm
and stacking sequence [45°/0°/0°/45°]. The specimen is modeled with 3 different
levels of fidelity: the low and mid use quad4 shell element with different mesh dis-
cretization and the high fidelity model employs 3D HEX8 elements. The models
creation is automatized by using the Patran Command Language code. The pa-
rameters to be identified are the position and the extension of the cut considering
a reference damage condition with an imposed fixed load. The quantity evaluated
with Nastran models is the strain field in the direction of the load on the specimen,
due to its noticeable interaction with the damaged cut region.
The Objective function to be minimized is the normalized root mean square error,
calculated between the reference strain and the current code iteration. To find the
right cut configuration the objective function needs to reach zero. This is verified
for all the multifidelity acquisition functions, while the single fidelity Expected Im-
provement doesn’t reach zero, hence the effective damage condition is not correctly
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identified. This shows the power of using a multifidelity framework that greatly
speeds up the optimization process finding the minimum of the objective function
using a lower budget.
The codes consider 25 different damage conditions and run several different tests
to build a suitable statistic. An initial surrogate is built using 20 low fidelity itera-
tions, 10 mid fidelity iterations and 2 high fidelity iterations, then the optimization
process starts and is guided by the surrogate information.
Considering the 3 different acquisition functions the performance differences are
due to the different formulations. MFPI is the fastest code to reach convergence
due to its main focus on exploitation, i.e. extensive use of high fidelity code to
greatly improve the surrogate accuracy, that brings good results in a low dimension
problem such as ours. MFEI is the slowest code to reach convergence between the
three and that is due to its balance between exploitation and exploration that is
not optimal for our application. MFMES has performance between the other two
acquisition functions due to its extensive exploration phase which in this case helps
to find faster the optimum.
Future development of this work can be seen by enriching the surrogate using
data from lab experiments by using a real damaged specimen, impose a constant
displacement using a tensile testing machine and record the strain field using the
Digital Image Correlation techniques.
Another interesting aspect can rely on increase the dimensionality of the problem
to evaluate the change in performance of the code: for example, can be considered
new variables the dimensions of the specimen, the number of layers, the stacking
sequence, the layer where the cut is positioned and the type of damage.
Further future challenges can be seen on extending this approach to complex struc-
tures such a wing or a portion the airplane with the aim to apply the code on real
application.
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