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Introduction

1.1 Additive Manufacturing

Additive manufacturing, also known as 3D printing is a relatively new type of manufacturing
technology that uses a layer-by-layer addition method to produce complex objects. This is a
revolutionary approach to manufacturing that made possible the production of complex shapes
and revolutionary geometries, allowing the general public to manufacture products at home with
commercial 3D printers and companies to manufacture complex parts that couldn’t be done via
traditional methods, like casting or extrusion. Additive manufacturing has allowed the design and
production of topologically optimized components, which are designed to minimize stresses while
utilizing as less material as possible, keeping a low weight. While this manufacturing method
can still be considered expensive, the advantages are unique, making it the future of engineering
manufacturing in many fields that want to achieve high strength and low weights in their products,
such as the aerospace and automotive industries. This type of manufacturing can be achieved by
different methods [13] such as:

• Extrusion, which is the most common method for commercial 3D printers sold to the general
public, this generally uses a plastic material, such as PLA, that is melted and extruded by a
tractor-feed system through a nozzle. The print head and/or the bed is moved to the correct
X/Y/Z positions for placing the material.

• Powder bed fusion, which is one of the first commercialized methods for additive manu-
facturing. This process involves a metallic powder bed that is targeted by a thermal source,
usually a laser, in specific parts of the bed so that in only certain regions the powder melts
and fuses.

• Direct energy deposition, these type of processes enable the creation of parts by melting
the material as it is being deposited, this method is also used primarily for metal powders.
This method doesn’t use a powder bed, instead it melts with a laser the material that is being
deposited by the nozzles.

As said before, in the latest years advancements in 3D printing have been made such that complex
geometries can be designed and manufactured [22] and this does not only matter for the afore-
mentioned industries that want to keep a low weight. This has also enabled the manufacturing of
porous structures for heat transfer, which yield notable performances compared to their traditional
counterparts [10].

1.2 Porous heat exchangers

N. Delalic et al. [9] found that porous media in compact heat exchangers had many advantages,
finding high power density of the system, extremely good thermal conductivity and high thermal
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CHAPTER 1. INTRODUCTION

capacity. If this type of heat exchangers were to be used in everyday home applications, such as
boilers or central heating systems would reduce CO2 emissions and almost nullify NOx emissions,
but still their cost remains the limiting factor. This type of heat exchangers have superior turbulence
induction and heat dispersion capabilities which allows them to have better efficiencies in turbulent
flows. [6]. The heat transfer capacity of these type of 3d printed porous structures has been studied
by F. Alawwa et al, [34] finding that at high flow rates periodic surfaces outperform the traditional
fin design. Advancements in the additive manufacturing have allowed the production of complex
pure copper elements by laser-based powder bed fusion, wire arc and selective laser melting methods
[23, 27, 16], this enables the production of porous structures with the metal.
These kind of heat exchanger use forced convection to achieve higher cooling performance through
enhanced flow mixing due to the tortuosity of the passways, and due to metal foams have been
defined that can have a surface area to ratio around 1000−3000m2/m3 [12] and can be manufactured
with powder bed methods.

1.2.1 Triply Periodic Minimal Surfaces

A peculiar type of porous structure is a triply periodic minimal surface, a type of structure that is
periodic in the 3 dimensions of space. These structures already exist in nature, such as in butterfly
wings [18] and given their high surface to area ratio they have a high thermal and mechanical
performance [21] [29]. Since TPMS have these characteristics they are currently being studied in
many applications, from bone tissue scaffolding [36] to impact structures in the aerospace field [37],
finding that depending on the material and type of unit varies the mechanical properties of the
geometry: it has been found that for uniform structures a gyroid-type unit can withstand more
load and absorb more energy than the primitive type. Different type of TPMS units will be shown
in chapter 2.

Figure 1.1: Schwartz unit TPMS

2
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The heat transfer performance of TPMS lattices has been studied for some time now, ideally
the minimal surface-to-area ratio of the geometries should grant optimal heat transfer capabilities.
They have been studied as heatsinks for electronic components [28] and heat exchangers [17] using
air and fluid flows, finding that the use of TPMS can reduce their size by up to 60% [29]. Z. Cheng
et al. [28] found that under free convection conditions a TPMS-based heat exchanger dissipates
48-61% more energy than a traditional pin-fin heat sink. New TPMS based heat exchangers have
been found to have higher overall heat transfer coefficient in relation to traditional plate exchangers,
even being two times more efficient with a diamond-type unit [24]. This type of heatsink could
have a practical use in nuclear fusion generators as a new generation of cooling divertor tile in the
W7-X Stellarator.

1.3 Fusion reactors

Nuclear energy can be achieved through fission, with the splitting of an atom, or through fusion,
with the merging of two atoms. The latter process usually generates energy through the merging
of a deuterium and a tritium atom, both hydrogen isotopes, the product of the fusion has a smaller
mass than the reactant, thus converting that mass difference into energy. Since this process is
achieved through hydrogen isotopes there is a practically limitless supply of fuel and no risk of
radioactive waste or incidents with fusion reactors given that the reaction is not self-sustaining.
The last advantage listed is also the main problem with the process, sustaining a fusion reaction is
an extremely complex endeavor given the temperatures involved and the need to control the plasma
inside the reactor. Tokamak-type reactors utilize a magnetic confinement fusion [11], where the
charged particles are confined with a magnetic cage. These reactors have a relatively simple toroidal
shape that achieves a high confinement time for energy and charged particles, but this shape has
its limits, causing instabilities in the plasma current, this limits the operation of tokamaks to being
achieved only in pulse conditions.
Another type of reactor is the Stellarator, which uses a complex shape to confine the plasma
on an external magnetic field coil. The concept was devised in the 1950s [2] by Lyman Spitzer.
This type of confinement makes it so that the operation of the reactor can be continuous, and
while Tokamaks are still the most common type of reactor, Stellarator operation has been made
possible by advancements in computing power that have allowed for the optimization of magnetic
configuration [26].

1.3.1 Wendelstein 7-X Stellarator

The Wendelstein 7-X is the world’s largest stellarator-type nuclear fusion reactor built by the
Max-Planck-Institut für Plasmaphysik in Greifswald in 2014. The W7-X uses magnetic fields to
contain the hot plasma needed to sustain a controlled nuclear fusion reaction. This magnetic field
is produced by 50 non-planar superconducting magnetic coils that are cooled with liquid helium to
superconduction temperatures.

3
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Figure 1.2: Schematic diagram of Wendlestein 7-X Stellarator [15]

The divertor is a component of a nuclear reactor that carries out different critical functions, one of
which is to remove the heat produced by particle bombardment, radiation and volumetric nuclear
heating [33].

Figure 1.3: W7-X Island divertors [19]

4
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This component requires water-cooled tile elements to sustain the high thermal loads given by the
application.

Figure 1.4: Graphite tiles inside the divertor [39]

Currently produced tiles are being designed to remove stationary heat fluxes of up to 10MW/m2

[25] and to allow pulse lengths of up to 30 minutes. New, smaller size elements are also being
studied, using copper for the tile main body and tungsten for the cooling surface [35].

1.4 Aim of the thesis

The listed characteristics of TPMS based heat dissipation elements make them a good candidate
as a divertor tile element. So a new TPMS geometry has been devised, with a water cooled copper
TPMS lattice and a Plasma-facing tungsten tile. A performance study has been conducted with
OpenCFD’s open source software: OpenFOAM. This software has many advantages, with the main
one being that it is an open-source codebase that allows us to better understand its inner workings
and it also makes it interesting for future development of a code pipeline using other open-source
softwares such as MaSMaker [32] to build TPMS geometries and integrate the two codes togheter.
For the thesis a commercial software, nTopology, has been used to generate the TPMS lattice
geometry. Another aim of the thesis is to evaluate the performance of OpenFOAM compared to
more streamlined commercial meshers. A code to code benchmark has been included comparing
the latter with Siemens STAR-CCM+ and Ansys Fluent.
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Triply Periodic Minimal Surfaces

Triply periodic minimal surfaces are geometries that, as the name suggests, are periodic in the
three main directions in space. They were first devised in the 1800s by Schwarz and the concept
was later expanded on by his student Neovious [1]
These surfaces are periodic and implicit with zero mean curvature, so that they can be expressed
with mathematical equations and just by modifying parameters within these equations we can
modify these geometries.

Since TPMS are implicit surfaces their geometry can be expressed with algebraic equations
where

f(x, y, z) = C

There are two methods to express TPMS:

• Enneper-Weierstrass parametrical representation:



x = ℜ
(
eiθ
∫ ω

ω0

(1− τ2)R(τ)dτ

)
y = ℜ

(
eiθ
∫ ω

ω0

i(1 + τ2)R(τ)dτ

)
z = ℜ

(
eiθ
∫ ω

ω0

2τR(τ)dτ

)
Where i2 = −1, τ is a complex variable, θ is the Bonnet angle and ℜ is the real part of a
complex variable. R(τ) is the Weirestrass function for different kinds of TPMS units, for the
Gyroid, Primitive and Diamond surface its value is:

R(τ) =
1√

τ8 − 14τ4 + 1

• TPMS can also be generated by the following equation:

ϕ(r) =

K∑
k=1

Ak cos

[
2π (hk · r)

λk
+ Pk

]
= C

Where Ak is the amplitude, λk is the period factor and Pk is the function phase.

From these equations we can extrapolate that ω influences the TPMS period and C influences the
curvature:
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CHAPTER 2. TRIPLY PERIODIC MINIMAL SURFACES

(a) ωx = 1 ωy = 1 ωz = 1

(b) ωx = 1 ωy = 1 ωz = 0.4

(c) ωx = 1.3 ωy = 1.2 ωz = 0.92

Figure 2.1: Schwarz-P TPMS with different values of ω
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Different equations can express different types of TPMS:

• Gyroid, devised by Alan Schoen in 1970[3]

f(x, y, z) = sin(ωxx) + cos(ωyy) + sin(ωzz) cos(ωxx) + sin(ωyy) sin(ωzz) = C

Bonnet angle = 38.0147°

Figure 2.2: 10x10x10 mm Gyroid Cell

• Primitive

f(x, y, z) = cos(ωxx) + cos(ωyy) + cos(ωzz) = C

Bonnet angle = 90°

Figure 2.3: 10x10x10 mm Primitive Cell
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• Diamond

f(x, y, z) = cos(ωxx) cos(ωyy) cos(ωzz)− sin(ωxx) sin(ωyy) sin(ωzz)

Bonnet angle = 0°

Figure 2.4: 10x10x10 mm Diamond Cell

• Neovious

3 · (cos(ωxx) + cos(ωyy) + cos(ωzz)) + 4 · cos(ωxx) · cos(ωyy) · cos(ωzz)

Figure 2.5: 10x10x10 mm Neovious Cell
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CHAPTER 2. TRIPLY PERIODIC MINIMAL SURFACES

2.1 TPMS Geometry generation with nTopology

For the generation of our TPMS Geometry we will be using nTopology, which contains the necessary
utilities to generate the TPMS lattice. The software can generate both walled and solid TPMS:

(a) Gyroid Solid (b) Gyroid Sheet

Figure 2.6: Gyroid Solid and Gyroid Sheet Images

The sheet configuration allows for two different fluid channels to exist, meanwhile the solid con-
figuration allows for only one flow channel. For our geometry we are going to be using the solid
geometry shown in figure 2.6a which has a 10x10x10 mm cell dimension and no surface offset,
so that we can achieve a porosity of 50% meaning that the empty volume is equal to the lattice
volume.
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OpenFOAM

OpenFOAM is an open-source CFD software developed by released by OpenCFD in 2004. It has an
extensive range of features to solve anything from complex fluid flows involving chemical reactions,
turbulence and heat transfer, to solid dynamics and electromagnetics.

The models are implemented using an equation syntax that closely follow the mathematical
notation, builidng from the operators for:

• Time rate of change: ∂
∂t(ϕ)

• Gradient: ∇ϕ

• Divegence: ∇ · ϕ

• Laplacian: ∇2ϕ

• Linearised source: sϕ

Complex equations can also be written in a human readable form, the above examples use finite
volume calculus. Implicit terms are represented using the finite volume method using ”fvm::” form,
for example we can render the transport equation to evolve the P-1 radiation model:

∇ · (Γ∇G)− aG = −4εσT 4 − E

is represented by the code

solve

(

fvm::laplacian(gamma, G_)

- fvm::Sp(a_, G_)

==

- 4.0*(e_*physicoChemical::sigma*pow4(T_))-E_

);

3.1 Meshing

3.1.1 BlockMesh

The blockMesh utility generates parametric meshes with grading and curved edges, as the name
suggests, the mesh is generated by defining multiple blocks defined by 8 vertices, one at each corner
of a hexahedron. In our case we will be defining a single block which will be snapped to the
geometry with the SnappyHexMesh mesher.
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3.1.2 SnappyHexMesh

The snappyHexMesh utility generates 3D meshes containing hexahedra and split-hexahedra from
surface geometries in STL format. To start we will be needing a background mesh generated with
the blockmesh utility. The meshing process is divided in steps:

• Cell splitting
Cell splitting is performed is done accordingly to the edge features specified by the user near
the edges of the STL surface.

Figure 3.1: Cell splitting around a circle surface

• Cell removal
Once the splitting is complete, also according to user input, the cells outside the domain of
interest are removed.

Figure 3.2: Cell removal around a circle surface

• Region refinement
If we want a finer mesh in a certain regions, assuming a fluid flow from the left in figure 3.3
we can refine the wake region behind the circle:
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Figure 3.3: Region refinement around a circle surface

• Snapping
The next stage is snapping to the surface, the software does so with the following steps:

1. Displace the vertices in the castellated boundary onto the STL surface

2. Solver for relaxation of the internal mesh with the latest displaced boundary vertices

3. find the vertices that cause mesh quality parameters to be violated

4. Reduce the displacement of those vertices from their initial value and repeat from 2 until
mesh quality is satisfied.

Figure 3.4: Cell snapping around a circle surface

3.2 Solvers

OpenFOAM has many different solvers to be used for different cases, in our we’re going to use the
”chtMultiRegionSimpleFoam” solver which uses the SIMPLE algorithm to generate a steady state
solution with conjugate heat transfer.

13
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3.2.1 The SIMPLE algorithm

The Semi Implicit Method for Pressure Linked Equations (SIMPLE) combines the u,p momentum
and mass conservation equations in a sequential solution. [5] The equations are coupled with an
algorithm which uses the following notation to describe the terms in the momentum equation:

Au−H(u) ≡ ∂u

∂t
+∇ · (uu)−∇ · (ν∇u)− ρ(T, p)

ρ0
g

where Au is a linear term in u and −H(u) is a function of u and other sources. The SIMPLE
algorithm is used in CFD for flows that reach a steady state, when the flow variables have reached
a constant state and are not changing. This state makes it so that the time derivative terms can
be ignored. The algorithm uses an iterative sequence which is the following:

1. Construct a matrix equation for energy, with an under relaxation factor αt.

2. Solve the energy equation for T

3. Update ρ(T, p) according to an equation of state

4. Construct a matrix equation from the momentum equation excluding ∇ · p, with under-
relaxation factor αu:

A · u− b ≡ ∇ · (uu)−∇ · (ν∇u)− ρ(T, p)

ρ0
g

5. The second term is equated with −∇ · p and the matrix equation is solved for u

6. The first term is used to evaluate Au and H(u)

7. Solve the pressure equation with the evaluated terms

∇ · 1
A
∇p = ∇ ·

[
H(u)

A

]
8. Correct the flux φf so that it obeys mass conservation using also a

ϕf := Sf ·
(
H(u)

A

)
f

−
(
|Sf |
A

)
f

∇npf

This flux corrector equation interpolates u to cell faces and evaluates ϕf = Sf · uf .

9. Correct u using the momentum corrector equation and an under-relaxation factor αp:

u :=
H(u)

A
− 1

A
∇p

Which updates u based on the latest values of u and p.

Convergence

Since a steady-state solver doesn’t use time derivatives the matrix equation convergence is reduced
because of the absence of a diagonal dominance. That is the main reason as to why we apply the
discussed under relaxation factors to the algorithm. The T and u fields commonly use values for α
of 0.7, sometimes reaching 0.3 for compressible flow cases. The p field is different, the flux corrector
requires that p is not under-relaxed to ensure that the flux ϕf satisfies the mass conservation. To
find the optimal αp for the momentum corrector a series of consideration has been made [31] which
finds that αp = 1− αu.
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Figure 3.5: SIMPLE Algorithm
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3.2.2 chtMultiRegionSimpleFoam structure

The solver calls for a chtMultiRegionSimpleFoam.C file which includes the following lines:

Line Function

fvCFD.H Loads finite volume method

rhoThermo.H Loads thermophysical properties of the fluid regions

turbulentFluidThermoModel.H Loads user specified turbulent or laminar model

regionProperties.H Specifies solid and fluid regions

solidThermo.H Loads the thermophysical properties of the solid region

radiationModel.H Radiation modelling

fvOptions.H User specified solver options, e.g. temperature limits

createTime.H Initiates time variables based on the controlDict file

createMeshes.H Loads the fluid and solid meshes

createFields.H Loads the fields for fluid and solid regions

Table 3.1: chtMultiRegionSimpleFoam structure

We can see now the solver loop code in detail:

while (runTime.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

#include "readFluidMultiRegionSIMPLEControls.H"

#include "solveFluid.H"

}

forAll(solidRegions, i)

{

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionSIMPLEControls.H"

#include "solveSolid.H"

}

}

As we can see the code takes the run time and solves for each fluid and solid regions setting
the fields from the last timestep, then readFluidMultiRegionsSIMPLEControls checks the SIMPLE
algorithm and with the equations are solved, solveFluid is structured so that it includes:
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// Pressure-velocity SIMPLE corrector

{

if (frozenFlow)

{

#include "EEqn.H"

}

else

{

p_rgh.storePrevIter();

rho.storePrevIter();

#include "UEqn.H"

#include "EEqn.H"

if (!coupled)

{

#include "pEqn.H"

turb.correct();

}

}

}

The frozenFlow utility use is specified in the fvSolution dictionary for our case, it can be used
once the flow in our case is converged but temperature is not, so that the solvers only solves the
energy equation as we can see in the code.

Otherwise we proceed normally solving for the transport equation with UEqn.h:

UEqn =

(

fvm::div(phi, U)

+ MRF.DDt(rho, U)

+ turb.divDevRhoReff(U)

==

fvOptions(rho, U)

);

Which solves the general transport equation for u:

∂(ρu)

∂t
+∇ · (ρφu)−∇ · (ρU) = Sφ

The first term is the rate of change of property φ, the second term is responsible for the advection
of property φ by the fluid flow and the third term shows the diffusion of property φ meanwhile Sϕ
is the source term.
For the energy equation we are going to solve with the Eeqn.H:

{

volScalarField& he = thermo.he();
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fvScalarMatrix EEqn

(

fvm::div(phi, he)

+ (

he.name() == "e"

? fvc::div(phi, volScalarField("Ekp", 0.5*magSqr(U) + p/rho))

: fvc::div(phi, volScalarField("K", 0.5*magSqr(U)))

)

- fvm::laplacian(turb.alphaEff(), he)

==

rho*(U&g)

+ rad.Sh(thermo, he)

+ fvOptions(rho, he)

);

}

here the he term represents either h or e switching the 5th term of the equation depending on
the chosen variable.

∂ρe

∂t
+∇ · (ρUe) + ∂ρK

∂t
+∇ · (ρUK)−∇ · (Up) = −∇ · q +∇ · (τ · U) + ρr + ρg ·U

∂ρh

∂t
+∇ · (ρUh) + ∂ρK

∂t
+∇ · (ρUK)− ∂p

∂t
= −∇ · q +∇ · (τ · U) + ρr + ρg ·U

3.3 Numerical Schemes

OpenFOAM utilizes collocated variable arrangements that mostly focus on the Finite Volume
Method for which the conservative form of the general scalar transport equation of the generic
property φ takes the form:

∂

∂t
(ρϕ) +∇ · (ρϕu) = ∇ · (Γ∇φ) + Sφ

The first term is the unsteady term, the second is convection that are equal to the diffusion
term plus a source term.

This is integrated over the volume such that:∫
V

∂

∂t
(ρϕ)dV +

∫
V
∇ · (ρϕu) dV =

∫
V
∇ · (Γ∇ϕ) dV +

∫
V
SϕdV

And this equation is discretised to produce a system of algebraic equations of the form:
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
...

...
. . .

...
an1 an2 . . . ann



x1
x2
...
xn

 =


b1
b2
...
1


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That we can express as:

Ax = b

Where we define A as the coefficient matrix, x as the vector of unknowns and b as the source
vector. The discretization process employs user defined schemes to build the A and b vectors which
are selected in the fvSchemes dictionary.

Temporal schemes

The time schemes define how a property is integrated as a function of time, we can define this
function as

∂

∂t
(φ)

We have different options to use, in the case of a steady state time scheme we can use the steadyState
option which sets the temporal derivative contributions to zero:

∂

∂t
(φ) = 0

Spatial Schemes

Spatial schemes use interpolation schemes and the Gauss theorem to convert cell based quantiteties
to cell faces, and volume integrals to surface integrals. There are different types:

• Gradient schemes
The gradient of the generic property φ is:

∇ϕ = e1
∂

∂x1
ϕ+ e2

∂

∂x2
ϕ+ e3

∂

∂x3
ϕ

where the e vectors are the unit vectors. We use the Gauss scheme which uses the Gauss
theorem to calculate the cell gradient:∫

V
(∇·u) dV =

∮
S
(n·u) dS

And we use a cell-based linear interpolation scheme. We can also use limiters to limit the
gradient and bound the face value of a cell to the neighboring cell values. We are going to
mainly use cell-limited gradient schemes where the cell gradient is limited so that the cell
faces using the gradient are bounded by neighboring cells minimum and maximum limits.
For example, we can consider a limiter between cells P and N that bounds the property φ in
P to cell N as in figure 3.6:
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Figure 3.6: Cell based limiter

This helps to solve grids with relatively high non-orthogonality and we are going to use these
type of limiters.

• Divergence schemes
Divergence schemes handle how the divergence of property φ is handled:

∇ · φ

∇ · φ =
∂φx

∂x

∂φy

∂y

∂φz

∂z

. We are going to use mainly first order upwind schemes and linear/ linear-upwind second
order schemes so that our solution is stable since we will be dealing with a complex mesh for
our geometry. Upwind is a first order bounded scheme, which sets the face value according to
the upstream value, it assumes that the cell values are isotropic with a value that represents
the average value.

φf = φc
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Figure 3.7: Normalized variable scheme for first order upwind scheme

Otherwise linear upwind uses upwind interpolation weights, but uses a correction based on
the local cell gradient, it is a second order unbounded scheme.

Figure 3.8: Normalized variable scheme for second order upwind scheme
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• Laplacian schemes Laplacian schemes handle how the Laplacian of the generic property φ is
solved:

∇2φ =
∂2

∂x21
φ
∂2

∂x22
φ
∂2

∂x23
φ

which can also be expressed as a combination of divergence and gradient operators using a
diffusion coefficient Γ:

∇ · (Γ∇φ)

These Laplacian schemes are all based on the application of the Gauss theorem and the use
the specified interpolation scheme to transform coefficients from cell values to the faces.

• Surface-normal gradient schemes The full gradient of property Q can be interpolated from
the cell based gradient. The surface normal contribution is represented by:

∇⊥
f Q = n · (∇Q)f

where n is the face unit normal.

Figure 3.9: Gradient calculation

From 3.9 we can see that there is that the degree of non-orthogonality is given by the angle
between d and n vectors, we can choose our scheme based on that degree. Non-orthogonality
is a very important factor in solution stability and accuracy, the diffusion term needs an
orthogonal mesh, otherwise the boundedness of the solution cannot be guaranteed. To stabi-
lize the solution non orthogonal corrections are applied, using limited or corrected schemes.
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These schemes are governed by a coefficient ψ that determines how heavily corrected is the
scheme, a more stable scheme yields less accurate results.

ψ =


0 corresponds to uncorrected,
0.333 non− orthogonal correction ≤ 0.5× orthogonal part,
0.5 non− orthogonal correction ≤ orthogonal part,
1 corresponds to correction

3.4 Turbulence Model

For the turbulence model there are two main models that we can utilize which are both two equation
models.

3.4.1 k − ε model

The k − ε model utilizes the transport equations of the turbulent kinetic energy k and of the
turbulent dissipation rate ε. The conservation equation for turbulent kinetic energy is:

ρ
Dk

Dt
= ∇ · (ρDk∇k) + ρG− 2

3
ρk(∇ · u)− ρε

And the transport equation for ε is

ρ
Dε

Dt
= ∇ · (ρDε∇ε) + c1ρG

ε

k
− 2

3
c1ρε(∇ · u)− c2ρ

ε2

k

G is the turbulence generation:
G = 2νt devD : ∇u

We assume constant ρ and replace the material derivatives in conservative form, for the steady
state solution the time derivatives will be equal to zero so the equations will become:

∇ · (uk)−∇ · (Dk∇k) = G− 2

3
k(∇ · u)− ε

∇ · (uε)−∇ · (Dε∇ε) = c1G
ε

k
− 2

3
c1ε(∇ · u)− c2

ε2

k

We are going to utilize the standard model values which have been chosen from a large series of
simulations of free shear flows[4]:

• Dk = ν + νt/σk this term represent the diffusion generated by the molecular and turbulent
motions, adjusted with the coefficient σk.

• Dε = ν + νt/σε this term represent the diffusion generated by the molecular and turbulent
motions, adjusted with the coefficient σε

• cµ = 0.09

• c1 = 1.44

• c2 = 1.92

• σk = 1.0

• σε = 1.3
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3.4.2 Realizable k-ε

The realizable k− ε turbulence model is a model that satisfies certain mathematical constraints on
the Reynolds stresses consistent with the physics of turbulent flows. [28] The model combines the
Boussinesq relationship and the eddy viscosity definition to obtain the normal Reynolds stress in
an incompressible strained mean flow

u2 =
2

3
k − 2 νℓ

∂U

∂x

.
The model becomes non realizable when the normal stress u2, which should be positive by

definition becomes negative, this corresponds to the following:

k

ε

∂U

∂x
>

1

3Cµ
≈ 3.7

So to achieve realizability Cµ becomes a variable depending on mean flow and turbulence i.e. this
becomes 0.05 for a strong homogeneous shear flow and 0.09 for the inertial sublayer of equilibrium
in boundary layers.

The realizable k− ε model predicts the spreading rate of planar and round jets more accurately
with respect to the standard model, also having superior performance with flows involving rotation,
boundary layers under strong adverse pressure gradients, separation and recirculation.

The turbulence kinetic energy equation is given by:

D

Dt
(ρk) = ∇ · (ρDk∇k) + ρG− 2

3
ρ (∇ · u) k − ρε+ Sk

and the dissipation rate is:

D

Dt
(ρε) = ∇ · (ρDε∇ε) + C1ρ|S|ε− C2ρ

ε2

k + (νε)0.5
+ Sε

The turbulent viscosity is calculated with:

νt = Cµ
k2

ε

Where Cµ is:

Cµ =
1

A0 +AsU∗ k
ε

3.4.3 Wall functions

At the walls the tangential flow speed increases rapidly across a thin boundary layer, we can plot
a dimensionless velocity and distance to the wall:
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Figure 3.10: Dimensionless velocity profile

u+ =
ux
uτ

y+ =
uτy

ν

Where uτ is a friction velocity which is correlated to the wall shear stress τw by

τw = ρu2τ

The u+ profile is defined by the value of y+:

• u+ = y+ for y+ < 5, known as the viscous sub-layer

• lm = κy [1− exp(−y+/26)] describes the mixing length in the buffer layer, for 5 < y+ < 40

• u+ = 1
κ ln(y+) + B is the logarithmic law of the wall that is used in the inertial sub-layer,

where the flow is turbulent, for y+ > 40

κ = 0.41 and B = 5.0− 5.5 are constants
To alleviate the computational cost of calculating τw with sufficient accuracy, wall functions are

used to provide a reasonable prediction of τw from a relatively inaccurate ∂ux
∂y calculation at the

wall.
The main problem is that with turbulent boundary layers the ∂ux

∂y requires cells with very small
lengths normal to the wall to be accurate, resulting inevitably in a large mesh. [31]

Wall functions use the distance yp to the wall from the center of each cell so that we have

y+p =
uτyp
ν

The calculated ∂ux
∂y is significantly lower than its real value so wall function models compensate

for the resulting error in prediction of τw by increasing the viscosity at the wall, making it so that
νt ̸= 0.

The turbulence generation G influences the distribution of turbulence fields near a wall.

25



CHAPTER 3. OPENFOAM

Figure 3.11: Properties evolution with dimensionless distance

As we can estimate τw from its wall function, when using a turbulence model we have to specify
the boundary conditions at the wall for the turbulent values, i.e. k and ε. The distribution of
dimensionless k+ = k/µ2τ is represented in figure 3.12.

Figure 3.12: k evolution with dimensionless distance

Epsilon wall function

The epsilon wall function is expressed as ”epsilonWallFunction” in the boundary conditions. This
condition provides a wall constraint on the turbulent kinetic energy dissipation rate, and the tur-
bulent kinetic energy production for low and high Reynolds number turbulence models.

The model expressions are the following:

εvis = 2wk
νw
y2

εlog = wCµ
k3/2

νtwy
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G = w(νtv + νw)|n · (∇u)f |C1/4
µ

√
k

κy
if y+ ≥ y+tam

Where εvis and εlog is the turbulent kinetic energy dissipation rate for the viscous and inertial
sub-layers respectively. w are the cell corner weights. The epsilon prediction for the viscous and
inertial sublayers can be blended with four different methods:

• Stepwise switch
The different estimations are switched at y+ = ylam

ϵ = ϵvis if y+ < y+lam

ϵ = ϵlog if y+ ≥= y+lam

where y+l am is the estimated intersection of the viscous and inertial sublayers in wall units.

• Maximum value switch
ε = max(εvis, εlog)

• Binomial blending
ϵ = ((ϵvis)

n + (ϵlog)
n)1/n

where n is the binomial blending exponent.

• Exponential blending
ϵ = ϵυis exp[−Γ] + ϵlog exp[−1/Γ]

The epsilon estimation is blended between the sublayers using an exponential function. Γ is
a blending expression: Γ = 0.001(y+)4/(1.0 + y+)

G predictions are always blended with the stepwise method, G below y+lam is assumed to be zero.

Choice of turbulence model

The k−εmodel has been chosen for the case study due to its general applicability, it is rather simple
and widely used in many application and given the high number of cells in our mesh, the relatively
low computational cost of the model is another advantage. Its realizable variant eliminates many
of its disadvantages and it is more appropriate than the standard k− ε model which struggles with
severe curvatures in the flow field [14] that we find in the TPMS. The k − ω SST model was also
considered initially but ultimately, while yielding similar results, the Realizable k − ε model was
chosen because of better stability in the other softwares used in the code-to-code benchmark.
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Case study

4.1 Case and geometry

Our geometry is comprised by a box of 100x100 mm with a height of 10 mm, inside this box there
is a TPMS lattice with gyroid units of 10x10 mm:

Figure 4.1: Lattice inside the geometry

At the manifold entrance the geometry is cut with an ellipsoid to avoid problems with the interaction
of the flux directly with the TPMS geometry.

28



CHAPTER 4. CASE STUDY

Figure 4.2: Manifold area

Connected to the box there are four manifolds where fluid enters and exits:

Figure 4.3: Solid region
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4.2 Meshing

For meshing the snappyHexMesh utility described in section 3.1.2 is utilized, an initial 100x100x25
mm blockMesh is generated from which the mesher will snap on the stl file:

Figure 4.4: Background blockmesh compared with the stl

While the blockmesh in figure 4.4 has a 1 mm background mesh size the actual size of the elements
generated in the background mesh utilized is of 0.36 mm. After generating the background mesh
we setup the snappyHexMesh through the snappyHexMeshDict file. We set a level of refinement
in the fluid region of 2, meaning the tetrahedral mesh gets split in 2 levels:

Figure 4.5: Refinement levels

Our interest is in having a finer mesh at the surface, where turbulent phenomena and interactions
between the boundary layers is more complex.
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Figure 4.6: Mesh generated with SnappyHexMesh

4.3 Boundary Conditions

In our case we will be evaluating the cooling performance of these TPMS geometries. we will have
a mass flow of water at the different manifolds, we will be studying two cases, one with laminar
flow and one with turbulent flow with the following mass flow and heat flux:

Laminar Turbulent

ṁ [kg/s] 0.0004 0.833

Q̇
[
kW/m2

]
10 2500

Table 4.1: Mass flow and heat flux boundary conditions

The heat flux is applied directly on a 50x50 mm tungsten plate placed on top of the solid
geometry.
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Figure 4.7: Heat Load on the tungsten plate

Figure 4.8: Inlet-outlet disposition in the fluid region

Let’s see now how to set the proper boundary conditions in OpenFOAM:
Boundary conditions are setup in the ”0” folder, where the problem is defined at the starting time,
in this folder there are multiple files, where the boundary conditions are defined:

• Velocity
Velocity boundary conditions are defined in the ”U” file, for our case we are setting up a mass
flow at the inlet, and the ”zeroGradient” type at the outlets which imposes

∂U

∂n
= 0

at the outlet patch so that we avoid backflow. At the walls we use the ”noSlip” type to set
up = 0 at the walls.

• Pressure
Pressure boundary conditions are specified in the ”p” and ”p rgh”, but the solver actually
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solves for p rgh, which is defined as p′ in:

p′ = p− ρ(g · h)

and the momentum equation is solved using this term. So for the ”p” we set the boundary
conditions to ”calculated” across the whole domain. Meanwhile the p rgh boundary condi-
tions are set to ”fixedValue” at the outlets where the value is 7.5 bar and ”fixedFluxPressure”
at the inlets, where the pressure is specified by the velocity boundary condition.

• Temperature
The temperature boundary conditions are specified in the ”T” file, where we set a ”fixedValue”
condition at the inlets with a temperature of 300 K, so that the fluid enters at the inlet with
a constant temperature of 300 K. For the heat transfer at the walls we are going to use the
”turbulentTemperatureRadCoupledMixed” boundary condition, which combines conduction
and radiation.

4.4 Material Properties

The solid region material is copper, while the top plate that receives the heat load is tungsten, the
properties are the following:

Properties Copper Tungsten

Density (kg/m3) 8940.0 19300.0

Specific heat (J/kg ·K) 386.0 134.0

Conductivity (W/m ·K) 398.0 163.2

Table 4.2: Copper and tungsten properties

The fluid is water, with variable properties extrapolated with a polynomial fit of data from the
U.S. National Institute of Standards and Technologies[40] :
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(a) Density (b) Viscosity

(c) Thermal Conductivity (d) Specific Heat

Figure 4.9: Variable properties of water
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4.5 Grid independence study

Before presenting our results we need to establish the numerical error on our result, but what
generates the numerical error? In our case we have to do solution verification, only estimating the
error since we don’t know our exact solution.

Solution Verification

To estimate this error we’re going to do a grid-refinement study. There is a difference between an
error estimate and an uncertainty estimate: if we have a value f and an error estimate ε for example
we are going to get an improved value f−ε that is closer to the exact value ftrue. Meanwhile if we’re
using an uncertainty estimate Ux% we’re going to have an interval f ± Ux% where ftrue probably
falls. Our problem is quantifying that probability x%. To determine the probability of 95% we are
going to use the Grid Convergence Index (GCI) that utilizes a factor of safety Fs that converts
an error estimate, that we calculate with a Richardson Extrapolation (RE), into an uncertainty
estimate.

Least Squares GCI

For convergence rates that aren’t optimal a least squares method that provides better uncertainty
estimation has been developed. [8] that limits the maximum p used in the GCI to the theoretical
p. The one term expansion of the discretization error is assumed as:

fi − f∞ ≈ α∆p
i

. Then we minimize the function:

S (f∞α, p) =

√√√√Ng∑
i=1

[fi − (f∞ + α∆p
i )]

2

The number of grids Ng must be ¿3 and f∞ suggests the limit of fine resolution. If the derivatives
of S are zero we find:

f∞ =
1

Ng

{
Ng∑
i=1

fi − α

Ng∑
i=1

∆p
i

}

α =

Ng
Ng∑
i=1

fi∆
p
i −

(
Ng∑
i=1

fi

)(
Ng∑
i=1

∆p
i

)

Ng
Ng∑
i=1

∆2p
i −

(
Ng∑
i=1

∆p
i

)(
Ng∑
i=1

∆p
i

)
Ng∑
i=1

fi∆
p
i log(∆i)− f∞

Ng∑
i=1

∆p
i log(∆i)− α

Ng∑
i=1

∆2p
i log(∆i)

This last equation is nonlinear and solved iteratively by a false position method for observed p.
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Uncertainty Estimation

The RE assumes that discrete solutions, f , have a power series representation in the grid spacing,
h, which for our nonstructured grid is equal to

h =

[(
N∑
i=1

∆Vi

)
/N

]1/3
where N is the total number of cells used for the computations and ∆Vi is the volume of the ith

cell. Our four grids have the following data:

Grid 1 2 3 4

Number of Cells 42055640 18780149 8399334 3837821

∆Vi[mm3] 52898.703 52888.904 52875.738 52867.138

h [m] 0.1079 0.1412 0.1846 0.2397

Table 4.3: Grids’ parameters

Since we are going to do a least squares approach we are going to use the minimum of four grids,
the desirable refinement factor is

r =
hcoarse
hfine

> 1.3

to keep an acceptable grid size we’re going to stay around the 1.3 value:

Grids 1/2 2/3 3/4

r 1.2984 1.3075 1.3082

Table 4.4: r values for different grids

This value is based on experience and not a formal derivation. In any case the refinement of
the grid should be systematical, if we decrease cell size, we should do that in all directions and not
just one, even if the grid is unstructured. We can calculate the relative and absolute error against
the grid:

e21r =

∣∣∣∣φ1 − φ2

φ1

∣∣∣∣
e21a = |φ1 − φ2|

As said before p and the extrapolated values φext is determined with a least squares method and
used to calculated the extrapolated error:

e21ext =

∣∣∣∣φ21
ext − φ1

φ21
ext

∣∣∣∣
At this point we can find the fine Grid Convergence Index using the factor of safety of Fs = 1.25
for obtaining a GCI with a 95% confidence interval for structured refinement:

GCI21fine =
Fs · e21a
r21p − 1
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(a) Refinement level 1 (b) Refinement level 2

(c) Refinement level 3 (d) Refinement level 4

Figure 4.10: Mesh refinement levels
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Finally we can find the unum using an expansion factor k = 1.15

unum =
GCI

k

Let’s take for example the laminar case, for our four meshes we find the following data:

∆p [Pa] ∆TSolid [K] ∆TFluid [K]

Mesh 1 3.58617372e-01 57.67067 57.58696

Mesh 2 3.57239478e-01 57.83928 57.74929

Mesh 3 3.55650062e-01 57.98901 57.90084

Mesh 4 3.53467269e-01 58.08218 58.00067

Table 4.5: Values found for laminar case

These values can then be used to find the GCI of the various results and the relative numerical
error:

GCI unum

∆p 0.0337 0.0293

∆TSolid 0.0546 0.0475

∆TFluid 0.0551 0.0479

Table 4.6: Grid convergence index and relative numerical error
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4.6 Results

4.6.1 Turbulent Flow with heat transfer

For our simulations we will be using a combination of first and second order schemes. At the start
we will be using 1st order upwind schemes for both U and the turbulent variables k and ε, this
yields low residuals and stable results:

Figure 4.11: Residuals for first order upwind discretization schemes

If we monitor the temperature in a point in the solid region and the pressure difference between
the inlet and the outlet we can see the results for in figure 4.12

(a) ∆p [Pa] (b) TW [K]

Figure 4.12: First order upwind discretization schemes results

Although these results are stable first order discretization for the velocity field is generally not
acceptable, so we will switch to second order linear-upwind discretization schemes which yield the
pressure results in figure 4.13
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Figure 4.13: ∆p [Pa] for 2nd order schemes

As we can see we have high residuals for p introduced by the second order discretization and also
a behavior with very high pressure oscillations, to reintroduce stability in our solution we can use
a bounded linear-upwind discretization scheme. This type of scheme is related to how the material
time derivative is solved, for a generic field e:

De

Dt
=
∂e

∂t
+U · ∇e = ∂e

∂t
+∇ · (Ue)− (∇ ·U)e

The numerical solution gives ∇ · U = 0 at convergence, but before the convergence is reached
∇ · U ̸= 0. For steady state simulations including the third term within a numerical solution gives
better convergence and maintains the boundedness of the solution variable. [30] This is done by
the bounded variant of the Gauss scheme by automatically including the discretization of the third
term with the advection term.

(a) ∆p [Pa] (b) TW [K]

Figure 4.14: 2nd order linear-upwind discretization schemes results

As we can see from figure 4.23 while we still have oscillations for our results, but they are much
less pronounced than the unbounded discretization scheme. Note that the under-relaxation factors
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for this case and the following ones are the following:

URFprgh = 0.3 URFU = 0.7 URFk = 0.7 URFε = 0.7

With the following y+ values being found on the mesh:

y+min = 0.016 y+max = 58.51 y+avg = 10.34

Heat distribution map

In figure 5.7 we can observe the heat distribution on the tungsten top, as we can see there is a clear
heat distribution pattern given by the TPMS geometry. This shows that the convection given by
the turbulent flow prevails on conduction and there is a hotspot of around ≈ 425K.

Figure 4.15: Heat distribution in the tungsten top

Figure 4.16: Heat distribution in the fluid

The numerical results are the following:

∆TmaxW 116.258± 12.498 K

∆Tmaxf
94.817± 11.293 K

∆p 123146.523± 7167.1 Pa

Table 4.7: Conjugate heat transfer turbulent regime results

In figure 4.26 we can see the flow profile with a linear integral convolution: we can see that in
the turbulent case the temperature distribution inside the flow is concentrated mostly on the center
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portion, directly below the hot spot on the tungsten plate. The ∆T generally much lower than the
one in the solid, this happens because the flow is flowing through the TPMS at an average speed of
approximately 0.83m/s in the center section. We can observe the flow behavior in the highlighted
sections:

Figure 4.17: Indication of center section

Figure 4.18: Center section LIC of the geometry with temperature distribution

This behavior can also be seen if we take a slice that goes through an inlet-outlet connecting plane:
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Figure 4.19: Inlet-Outlet LIC of the geometry with temperature distribution

If we compare the temperature profile with the velocities inside the section we can see a direct
correlation:

Figure 4.20: Velocity distribution inside the TPMS

As we can see the velocity of the fluid is lower in the center of the TPMS and faster on the side,
generating the hotspot we see in figure 5.7.
We can better observe the velocity profile in the TPMS with the temperature in the fluid using
the streamlines represented in figure 4.21, these type of representation takes different points and
follows the vectors that pass through them. Figure 4.19 once again shows the same concept, as
the fluid passes through the geometry the ∆T in the fluid remains relatively low due to the high
speeds, we can compare this to the laminar flow in the next section.
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(a) Velocity scaled streamlines

(b) Temperature scaled streamlines

Figure 4.21: Streamlines in the fluid region
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4.6.2 Laminar Flow with heat transfer

As for the case with laminar flow, since there is no turbulence and the velocities involved are much
lower we get lower residuals overall and no oscillation on the solution:

Figure 4.22: Residuals for bounded 2nd order linear-upwind discretization schemes

(a) ∆p [Pa] (b) TW [K]

Figure 4.23: 2nd order linear-upwind discretization schemes results

Heat distribution map

For the laminar case velocities are much lower, this diminishes the convection heat transfer and
conduction dominates, making the heat profile much more evenly spread compared to the turbulent
case.
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Figure 4.24: Heat distribution in the Tungsten top

Figure 4.25: Heat distribution in the fluid region

The numerical results are the following:

∆TmaxW 59.73± 2.7583 K

∆Tmaxf
59.66± 2.7791 K

∆p 0.3553± 0.0581 Pa

Table 4.8: Conjugate heat transfer laminar regime results

As we can see, given the much lower heat load applied temperatures are generally lower and in
general the results have a lower numerical error. This is given by the fact that the solver ignores
the turbulent variables equations and also the speed of the flow is lower and this yields more stable
results.
We can observe the internal flow pattern and temperature as done in the turbulent case:
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Figure 4.26: Center section LIC of the geometry with temperature distribution

Once again we see direct correlation between temperature and velocity

Figure 4.27: Velocity in the center section

Figure 4.28: Inlet-Outlet LIC of the geometry with temperature distribution

4.6.3 Incompressible flow

To use the same mesh doing the code to code benchmark the simpleFoam incompressible solver
is used, this follows the same SIMPLE algorithm described in section 3.2.1. This is done because
OpenFOAM doesn’t handle polyhedral meshes well and heat transfer makes the problem unstable,
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so a simpler, incompressible flow solver is used. For the incompressible case using the STAR-
CCM+ mesh we have higher residuals overall and even for bounded second order schemes we have
high oscillations in the pressure result. The schemes being used involve the cell and face limiters
discussed in section 3.3, with high blending factors specified by the following entries in the scheme
dictionary:

gradSchemes

{

default cellLimited Gauss linear 0.5;

grad(U) faceLimited Gauss linear 1.0;

}

Diffusive terms also use a blending factor and limited scheme:

laplacianSchemes

{

default Gauss linear limited 0.333;

}

snGradSchemes

{

default limited 0.333;

}

The pressure variable for the incompressible solver ”simpleFoam” is intended as kinematic
pressure [41], ρ for water at 300K and 7.5 bar is ρ = 996.85kg/m3 so at the outlet the kinematic
pressure is set as:

pk =
ps
ρ

=
750000 [Pa]

996.85 [kg/m3]
= 752.37[m2/s2]

So the interpret the results from the incompressible solver they should be multiplied for the constant
density.
In this section only the stability of the solver will be discussed, the results will be shown in a later
section along with the other codes.
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Turbulent case

In the turbulent case residuals are high and the pressure difference oscillates, so we use bounded
schemes once again.

(a) Residuals (b) ∆p[m2/s2]

Figure 4.29: Results for turbulent flow using second order bounded schemes

Since the STAR-CCM+ generated mesh has boundary layers the average y+ value is lower:

y+min = 5 · 10−5 y+max = 57.48 y+avg = 1.29

Laminar case

For the laminar flow once again we see that the results have better convergence and are less
oscillatory:

(a) Residuals (b) ∆p

Figure 4.30: Results for laminar flow using second order bounded schemes
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Code to code benchmark

In the following chapter we will compare the results of different software on the same and on their
native grid. In our case we will be pitting OpenFOAM against Siemens Star-CCM+ and Ansys
Fluent, both commercial softwares.

5.1 Star-CCM+

Star-CCM+ is a commercial CFD software developed by Siemens, the whole workflow, from stl
management to meshing and solving, can be handled on Star-CCM+. We are going to use the
software to generate polyhedral meshes of our geometry which we’re going to use in the other
softwares to do a code-to-code benchmark.

5.1.1 Polyhedral meshes

A polyhedral mesh is a type of mesh that uses polyhedra instead of the more traditional hexahedral
and tetrahedral meshes. Hexahedral type meshes achieve results with lower diffusion and also a
lower discretization error but can generate problems and actually increase the error when the flow
isn’t perpendicular to the cell faces. [20] Tetrahedral meshes solve these problems, with their main
advantage being that the meshing process can be mostly automated, the problem in this case is
the high number of elements given the shape of the cell:

(a) Tetrahedral cell (b) Hexahedral cell (c) Polyhedral cell

Figure 5.1: Different types of cell elements

So to combine the best of both worlds polyhedral meshes have been devised. In these type of
meshes the cells have many neighbors, this allows them to estimate gradients more accurately.
Unfortunately these type of meshes also have high non-orthogonality which is well managed by
commercial softwares which use high diffusivity schemes, but is not handled well by OpenFOAM,
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causing high numerical errors and simulation divergence, so we are going to run a incompressible
simulation and compare the pressure difference to simplify the problem.

5.1.2 Mesh generation

The mesh we are going to be using for the code to code benchmark is a polyhedral mesh generated
by STAR-CCM+, with the following characteristics:

• Number of cells: 16.5 Million

• Core flow average cell size: 0.6 mm

• Prism layers: 10

• First layer thickness: 0.01 mm

Figure 5.2: Polyhedral mesh generated by Star-CCM+

5.1.3 Solvers and models

The Star-CCM+ algorithm for solving the conjugate heat transfer has two different model references
that solve the energy equation:

∂

∂t

∫
ρEdV +

∮
A
ρHv · da = −

∮
A
q̇′′ · da︸ ︷︷ ︸

Conduction

+

∮
A
T · vda︸ ︷︷ ︸

Viscous Work

+

∫
V
fb · vdV +

∮
A

∑
i

hiJida+

∫
V
SudV

where:

• E is the total energy

• H is the total enthalpy

• q̇′′ is the heat flux vector

• T is the viscous stress tensor

• v is the velocity vector

• fb is the body force vector representing the combined body forces.

• hi is the enthalpy of component i

• Ji is the diffusive flux of component i

• Su is the source term
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Segregated energy model

STAR-CCM+ has three different segregated fluid energy models which are companions to the
segregated flow model:

• Segregated fluid enthalpy Solves the total energy equation

E = H − p

ρ

where H = h + |v|2/2 and h is the static enthalpy. The equation is solved for the chemi-
cal thermal enthalpy and the the temperature is computed from enthalpy according to the
equation of state. Ideal for cases that involve combustion.

• Segregated fluid Temperature This solves again the total energy equation but the temperature
is the solved variable which is then used to compute the enthalpy with the equation of state.

• Segregated fluid isothermal This model keeps the temperature constant, ideal for small tem-
perature variations.

The solver is a segregated energy solver that controls the solution update for the chosen segregated
model.

Coupled energy model reference

The coupled energy model uses a coupled solver for steadt state simulations. If we write the
governing equations in integral form for a volume V and a differential surface area da we get:

∂

∂t

∫
V
WdV +

∮
[F−G] · da =

∫
V

HdV

Where the vectors are:

W =


ρ

ρV

ρE



F =


ρv

ρvv + pI

ρvH + pv



G =


0

T

T · v + q̇



H =


Su

fr + fg + fp + fu + fω + fL

Su


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STAR-CCM+ introduces a preconditioning matrix Γ that multiplies the transient term:

Γ
∂

∂t

∫
V
WdV +

∮
[F−G] · da =

∫
V

HdV

Which is:

Γ =


θ 0 ρT

θv ρI ρTv

θH − δ ρv ρTH + ρCp


Which uses ρT = ∂ρ

∂T

∣∣∣
p
and θ = 1

U2
r
− ρT

ρCp
where Ur is a reference velocity that is chosen such that

the eigenvalues of the system remain well conditioned. If we apply the governing equation to a cell
centered control volume the following discretized system is obtained:

V0 Γ0
∂Q0

∂t
+
∑
f

(ff − gf ) · a = hV0

where the sum is over the total number of faces of the cell, ff is the convective flux and gf is the
diffuse flux through the face. V0 is the cell volume and Γ0 is the preconditioning matrix for the
cell. Then for steady state simulation the coupled system of equations is discretized in time and
time-stepping is performed until a quasi steady-state solution is obtained.

5.1.4 Turbulence model

For the turbulence model we will be using the realizable k-epsilon turbulence model for consistency
with the other softwares. Star-CCM+ uses a two layer approach, devised by Rodi [7] that enables
the application of the K-Epsilon model to the viscous-affected layer. The two layers used in the
method are the following:

• Layer next to the wall in which the turbulent viscosity µt and the turbulent dissipation rate
ε are specified as functions of wall distance.

• Layer far from the wall in which the equation for the turbulent dissipation rate is solved.

The values of ε specified in the near wall layer are blended smoothly with the values computed
from solving the transport equation far from the wall. The equation for the turbulent kinetic energy
k is solved across the whole domain.
The realizable two layer approach combines the realizable K-epsilon model, which contains a new
transport equation for the turbulent dissipation rate ε and a variable damping function, and the
two layer approach.

5.1.5 Results

For this simulation we are going to use the same boundary conditions as the OpenFOAM case, that
means a laminar and a turbulent case with different mass flow and heat flux:
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Laminar Turbulent

ṁ [kg/s] 0.0004 0.833

Q̇
[
kW/m2

]
10 2500

Table 5.1: Mass flow and heat flux boundary conditions

Turbulent case with heat transfer

For STAR-CCM+ second order upwind discretization schemes for convection and a first order
central scheme for the diffusion scheme are being used. The realizable two-layer k − ε model will
be used for turbulence modeling. In the following heat maps we can see the differences between
the turbulent and laminar case:

Figure 5.3: Heat distribution in the Tungsten top

Figure 5.4: Heat distribution in the fluid
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The results are the following:

∆TmaxW 125.163± 2.7583 K

∆Tmaxf
102.994± 15.799 K

∆p 144622± 4078.3 Pa

Table 5.2: Conjugate heat transfer turbulent regime results

Generally residuals and stability are much better than OpenFOAM, and we can see that the
results differ, this is mainly given by the difference in mesh type, as said before the polyhedral
mesh yields more diffusive results. Just as the OpenFOAM simulation we see the same behavior,
with temperatures being more uniform in the laminar case. We can also observe the behavior in
the center section:

Figure 5.5: Center section LIC of the geometry with temperature distribution

Once again, the high flow speed inside the TPMS allows the temperature in the fluid to be lower
overall.

Figure 5.6: Inlet-Outlet LIC of the geometry with temperature distribution

Laminar case with heat transfer

For low speed flows the laminar solver has been used, ignoring the turbulent variables. The lower
speeds make a bigger number of iterations to reach the steady-state solution.
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Figure 5.7: Heat distribution in the Tungsten top

Figure 5.8: Heat distribution in the fluid

And in figure 5.9 and 5.10 we can appreciate the same behavior seen in OpenFOAM also for the
laminar flow.

Figure 5.9: Center section LIC of the geometry with temperature distribution
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Figure 5.10: Inlet-Outlet LIC of the geometry with temperature distribution

Here the maximum ∆T between the solid and the fluid is similar:

∆TmaxW 60.234± 0.1747 K

∆Tmaxf
60.177± 0.0602 K

∆p 0.3717± 0.0118 Pa

Table 5.3: Conjugate heat transfer turbulent regime results

As we can see we have very small numerical errors at this mesh size, given by the fact that the
simulation is more stable. We can compare the streamlines between the laminar and compressible
case in figure 5.11 to see how the velocity profile differs. We can see the how in both cases the current
permeates the whole TPMS geometry, with lower velocities toward the center of the geometry in
both cases. This happens when the two inlet flows collide at the center and get diverted at the
outlets.
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(a) Streamlines for the turbulent flow

(b) Streamlines for the laminar flow

Figure 5.11: Streamlines in the fluid region
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5.1.6 Incompressible flow

To achieve a better comparison an incompressible flow model without heat transfer has been imple-
mented, this is necessary because the polyhedral meshes generated by Star-CCM+ cause simulation
divergence in other codes and thus a simpler, more stable simulation is included.

5.1.7 Turbulent case

In the turbulent case we can observe the results for velocity and viscosity ratio:

(a) Turbulent viscosity ratio in center section

(b) Velocity in center section

Figure 5.12: STAR-CCM+ Turbulent case results

The average velocity in the center section is around 0.88m/s, which is very similar to the one
found for the compressible case. The viscosity ratio given by νt/ν is relatively low, with values
under 500, this indicates that the flow has a low turbulence.

5.1.8 Laminar case

In STAR-CCM+ the average velocity in the center section for the laminar case is 1.81565 ·10−4m/s,
which is generally lower than the averages found in the other softwares.
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Figure 5.13: Velocity profile in laminar flow

5.2 Fluent

Fluent is a commercial CFD software developed in the 1980s and acquired by Ansys in 2006, it was
the first CFD software with a GUI.

5.2.1 Solvers and models

Fluent can use a density based solver or pressure based solver. For the incompressible case we are
going to use the pressure based solver. This solver is based on a control volume where the general
scalar transport equation is converted to an algebraic equation that can be solved numerically. For
the arbitrary control volume V the following transport equation for the generic scalar quantity ϕ
is written in integral form:∫

V

∂ρϕ

∂t
dV +

∮
ρϕ v⃗ · dA⃗ =

∮
Γϕ∇ϕ · dA⃗+

∫
V
Sϕ dV

Which is applied to every control cell in the computational domain. Discretization on a cell gives
the following equation:

∂ρϕ

∂t
V +

Ntheos∑
f

ρf v⃗fϕf · A⃗f =

Ntheos∑
f

Γϕ∇ϕf · A⃗f + Sϕ V
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Figure 5.14: Control volume in which the discretized transport equation is applied

An under-relaxation factor alpha is used to control the change of the variables. This factor alters
the computed change in the generic variable ϕ as follows:

ϕ = ϕold + α∆ϕ

The transport equations are also under relaxed introducing selective amounts of ϕ in the system of
discretized equations:

apϕ

α
=
∑
nb

anbϕnb + b+
1− α

α
apϕold

Pressure-based Segregated algorithm

This solver uses a sequential algorithm where the equations are solved one after the other. The
governing equations are non linear and coupled so the solution loop must be carried out iteratively.
In figure 5.15 the segregated algorithm is shown, and we can see that we solve the Uvel, Vvel,Wvel

momentum equations one after the other, then we can solve for the pressure correction equation
using the velocity field and the mass flux.
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Figure 5.15: Pressure based segregated algorithm

Pressure-based Coupled Algorithm

There is also a coupled algorithm that solves the momentum and continuity equations at the
same time and then proceeds like the segregated algorithm. The convergence is better than the
segregated method but the memory requirement increases by 1.5-2 times since the discrete system
of all momentum and pressure based equations needs to be stored in the memory when solving the
pressure and velocity field. [38]
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Figure 5.16: Pressure based coupled algorithm

Turbulence model and wall functions

Ansys is once again set to utilize the realizable k − ε. Standard wall functions are used, with the
following structure:

u∗ = y∗ for y∗ < 11.225

u∗ =
1

κ
ln (Ey∗) for y∗ ≥ 11.225

Where

u∗ ≡
UPC

1/4
µ k

1/2
P

τw/ρ

y∗ ≡
ρC

1/4
µ k

1/2
P yP
µ

For the turbulent variables the k equation is solved in the whole domain, with the boundary
condition for k at the wall being:

∂k

∂n
= 0
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Meanwhile the production of kinetic energy Gk and the turbulent dissipation rate ε are computed
with the local equilibrium hypothesis which states that the production of k and its dissipation rate
are assumed to be equal in wall-adjacent control volume.
The production of k is based on the log law:

Gk = τw
∂U

∂y
= τw

τw

κρk
1/2
P yP

ε is computed in the wall-adjacent cells with the following equation:

εP =
C

3/4
µ k

3/2
P

κyP

5.3 Results

In the following section we will see the results computed by Fluent for the two different cases

5.3.1 Turbulent case

In the turbulent case we can observe the results for velocity and viscosity ratio:

(a) Turbulent viscosity ratio in center section

(b) Velocity in center section

Figure 5.17: Fluent Turbulent case results

The average velocity in the center section is around 0.85, in line with the results found in
previous cases. As we can see once again the turbulent viscosity ratio is relatively low and follows
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the ones found in the other cases. We can also see the streamlines inside the fluid field in figure
5.18

Figure 5.18: Streamlines in the fluid region

5.3.2 Laminar case

For the laminar section we are going to have lower velocities, in Fluent the average velocity in the
center section for the laminar case is around 2.2 · 10−4m/s.

Figure 5.19: Velocity profile in laminar flow
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5.4 Comparison

In this final section we will compare the various results that we found with different solvers, every
result has a numerical error found with the process explained in section 4.5.

5.4.1 Conjugate Heat Transfer Turbulent

As we can see in the CHT cases in the comparison between Star-CCM+ and OpenFOAM the
hotspots are in the same location if not slightly shifted, the temperatures and pressure in Open-
FOAM are generally lower. Generally the STAR-CCM+ results are much more stable, having lower
residuals and a lower numerical error. These results will be discussed in the final conclusion but we
can anticipate that the mesh is the key difference here and the way these softwares handle meshing
and solving is very different.

(a) STAR CCM+ Result

(b) OpenFOAM Result

Figure 5.20: Temperature Profile in the tungsten plates

We can also observe the slightly lower temperatures in proximity of the inlets and outlets for the
OpenFOAM case, as said before, the main difference here is given by the meshes, the commercial
software utilizes a polyhedral mesh which generally requires more diffusion, that means a solution
with more numerical dissipation and generally a more uniform heat distribution. For the results
presented in the following page we can see that the numerical error is greater for OpenFOAM but
that the results generally align with each other.
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(a) ∆p in the fluid (b) ∆T in the fluid region (c) ∆T in the solid region

Figure 5.21: Results for the turbulent heat transfer case

(a) STAR CCM+ Result

(b) OpenFOAM Result

Figure 5.22: Temperature Profile in the fluid
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5.4.2 Conjugate Heat Transfer Laminar

In the laminar case the results are much more similar, this is because the laminar case is less
complex. We have less variables to solve for and lower velocities and gradients, the temperature
is more uniform since conduction heat transfer prevails on convection. These present low residuals
and numerical errors in both cases.

(a) STAR CCM+ Result

(b) OpenFOAM Result

Figure 5.23: Temperature Profile in the tungsten plates

As shown the numerical results are very similar with a much lower numerical error and GCI in
respect to the turbulent case. Another difference is the slower convergence, in OpenFOAM the
number of iterations to reach convergence in the turbulent case is around 2000 iterations, mean-
while in the laminar we reach more than 20000 iterations. Also the temperature under relaxation
factor needs to be 1 in both softwares otherwise the convergence requires a much larger number of
iterations, this behavior can once again be connected to the low velocity inside the TPMS. The heat
transfer is mainly conducted through conduction, so the whole fluid volume has to reach a certain
temperature and doesn’t manage to exit the TPMS before heating up to the solid temperature.
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(a) ∆p in the fluid (b) ∆T in the fluid region (c) ∆T in the solid region

Figure 5.24: Results for the laminar heat transfer case

(a) STAR CCM+ Result

(b) OpenFOAM Result

Figure 5.25: Temperature Profile in the fluid
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5.4.3 Incompressible Turbulent

For the hydraulic turbulent case we see that while the velocity profile is similar, there are still
some difference, mainly the flow swirl on the rightmost unit in figure 5.26 and lower velocities
in OpenFOAM. The viscosity ratio is also lower in OpenFOAM, in accordance with these lower
speeds. Meanwhile the high numerical errors in averaged values in the section could be given by
the numerical nature of the average in the section, that gives quite different results for calculating
the GCI.

(a) Velocity in STAR-CCM+ Section

(b) Velocity in Fluent Section

(c) Velocity in OpenFOAM Section

Figure 5.26: Turbulent case velocity comparison
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(a) ∆p in the fluid (b) Average Velocity (c) Average Wall shear stress

Figure 5.27: Results for the turbulent incompressible case

(a) Viscosity ratio in STAR-CCM+ Section

(b) Viscosity ratio in Fluent Section

(c) Viscosity ratio in OpenFOAM Section

Figure 5.28: Turbulent case viscosity ratio comparison
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5.4.4 Incompressible Laminar

For the laminar case results are much more similar, this is another confirmation of the much better
behavior of these flow in simulations, as we can see while we still have high numerical error in the
section averages the flow in the section is qualitatively the same.

(a) ∆p in the fluid (b) Average Velocity

(a) Average Velocity in STAR-CCM+ Section

(b) Velocity in Fluent Section

(c) Velocity in OpenFOAM Section

Figure 5.30: Laminar case velocity comparison
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6.1 Heat transfer performance

The main difference in the heat we can see is the difference between a lower flow velocity and a
higher one. In the first case conduction prevails, the fluid is evenly heated reaching the temperatures
of the solid this gives slower convergence but the absence of turbulence also gives a more accurate
and more stable solution. In the turbulent case the heat profile of the solid tungsten plate follows
the TPMS geometry, with the spots where the copper TPMS touches the plate being 10-20 K
hotter than the ones over water. This happens because convection prevails over conduction, given
the high velocity of the flow the water mixes and swirls, passing through the entire TPMS in little
time, without having the opportunity of heating up to solid temperatures.

(a) Turbulent heat distribution (b) Laminar heat distribution

Figure 6.1: Turbulent and laminar heat distribution comparison

While we’re still far from the 10MW/m2 applied by the Stellarator the concept that can be studied
are still many, a taller or shorter TPMS could be implemented, sheet gyroid units could be used
and different mass fluxes could be applied. With full heat load on the plasma-facing tungsten tile,
the solid part can sustain higher temperatures [35] but, given that for 7.5 bar of pressure at around
440 K water changes phase to vapor, further studies with higher heat loads should consider this
aspect.

6.2 Software performance

The different results given by OpenFOAM and Star-CCM+ are tied to the type of mesh and
this aspect is the most important on the comparison between softwares. The hexahedral mesh is
simpler to use and has a smaller degree of non-orthogonality and mesh skewness, which is absolutely
necessary for OpenFOAM solvers. These solvers don’t produce acceptable results around a non
orthogonality degree of 85 making even first-order simulations unstable. Commercial softwares can
solve for high non orthogonality and skewness with high stability, having residuals that are 1 to 2
orders of magnitude lower than OpenFOAM.
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Mesher STAR-CCM+ SnappyHexMesh

Max non-Orthogonality 85.24 64

Max skewness 16.93 3.45

Table 6.1: Mesh quality characteristics

A boundary layer generation approach has also been tried but yielded unsatisfactory results since
the snappyhexmesh utility generated collapsing layers on the complex geometry and high degrees
of non-orthogonality. Many different meshing approaches have been tried in OpenFOAM, with
different levels of refinement or base mesh sizes, while the temperature distribution is substantially
the same, temperatures change, with some meshes generating higher peak ∆T results, some reaching
even 10-15 K more.

Figure 6.2: Unutilized mesh with boundary layers

(a) Unutilized mesh with 3
refinement levels

(b) Utilized mesh with 2 re-
finment levels

(c) Unutilized mesh with shorter
refinement distance from the
edge

Figure 6.3: Mesh comparison

While SnappyHexMesh is a powerful tool, it lacks consistency, and for complex geometries the tool
has to be fine tuned using a trial and error process to allow the generation of a high quality mesh.
The lack of boundary layers in this case forced the use of a higher refinement near the edges of the
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geometries, increasing the number of cells.
This is all shown to emphasize mesh structure and its importance for OpenFOAM. Commercial
softwares like STAR-CCM+ or Fluent are built for polyhedral meshes with high non-orthogonality
and can be utilized to find stable solutions to these type of meshes. These type of meshes can be
run in OpenFOAM but, as seen in the previous pages, they require limiters and under-relaxation
to avoid solution divergence.
As we can see we have comparable results for the different softwares, but OpenFOAM generally
has a higher numerical error, and STAR-CCM+, which is the software that generated the mesh
is the one with the lowest. Still, the results are comparable, indicating that OpenFOAM can give
appropriate results for this problem.
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