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Summary

The colonization of Mars is an ambitious goal, but the low-cost transfer of resources
between Earth and Mars remains a major challenge. To address this, utilizing
asteroids as refueling points could significantly reduce ∆V requirements for Earth-
Mars journeys. Therefore, refueling with In-Situ Resource Utilization on asteroids
can help decrease the launch mass of spacecraft since they wouldn’t need to carry
as much propellant from Earth, which could in turn minimize the size and cost of
the launch vehicles required.

Ideally, asteroids with an abundant amount of water and volatile compounds
would be preferred. These resources could be used for propellant production or
even for onboard consumption. Selecting suitable asteroids requires that explo-
ration missions evaluate their physical properties and resources. In this thesis, we
estimate the mass and composition of asteroids, including how many and what
resources will be found on the asteroids needed to proceed with our orbital study.

This thesis focuses on trajectories from Earth to a list of candidate asteroids
and, from it, to Mars. Additionally, we select the best asteroid among these
candidates such that the total ∆V from the Earth to the asteroid and the time of
flight (TOF) from Earth to Mars are minimized, and to maximize the number of
resupplies on the asteroid.

For this mission, a double arc trajectory is studied. The first arc intercepts
one of the candidate asteroids. Then, insertion into a Sun-asteroid Distant Retro-
grade Orbit (DRO) and a landing trajectory on the asteroid are performed. Along
the second arc, the spacecraft leaves the candidate asteroid to be captured at
Martian periareion using the propellant obtained from the asteroid.

The two conics for each arc are obtained by solving Lambert’s problem, which is
computed for different TOF from Earth to the asteroid, from the asteroid to Mars
and for different waiting times on the asteroid to minimize the total TOF and the
∆V from the Earth to the asteroid.

iii



Modeling the dynamics of Sun-asteroid systems is done with the CR3BP with the
Sun and asteroid as the primary masses. It is then possible to compute periodic
orbits in the vicinity of the asteroid, such as DROs. DROs are marginally stable
periodic CR3BP orbits that are adequately distant from the asteroid surface that
can be used as parking orbits around asteroids.

The initial conditions (ICs) of a proposed Sun-asteroid DRO are obtained with
Particle Swarm Optimization (PSO). PSO is a heuristic algorithm within the
computational swarm intelligence technique which combines social, cognitive and
inertial factors of bird flocks to find the local optimal solution. PSO is also used
to compute some parameters to determine a suitable landing trajectory on the
asteroid from DROs and to compute the ∆V -optimal maneuvers to land at the
asteroid to then perform ISRU.

After using PSO to solve the problem of trajectory design, deterministic gradient-
based methods are used to understand if it can find more accurate solutions. A
Differential Correction (DC) method combined with dynamical system theory is
used to determine the ICs of a Sun-asteroid DRO, discovering that PSO can find
accurate solutions without the use of it.

The final results show that using 2009-OS5 as the asteroid for refueling gives
an Earth-Asteroid ∆V (4.4800 km{s) 27% lower than the minimum direct Earth-
Mars ∆V possible (6.1696 km{s), a TOF (386 days) for the entire mission higher
than 4 months respect of an actual Mars mission (252 days) and it has been
estimated the possibility to refuel about 83 times on it.
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Introduction

The exploration of Mars has long captured the imagination of scientists, space
enthusiasts, and dreamers alike. As Earth’s closest neighbor in the vast expanse
of the solar system, Mars has beckoned humanity with its mystique and potential
for uncovering answers to fundamental questions about our own origins and the
possibility of life beyond our home planet. Mars, often referred to as the "Earth’s
Twin", possesses remarkable similarities to our own planet. With a thin atmosphere,
polar ice caps, and a diverse terrain featuring towering volcanoes, deep canyons,
and ancient riverbeds, Mars serves as a tantalizing scientific laboratory. Through
the efforts of numerous robotic missions, including orbiters, landers, and rovers, we
have gained unprecedented insights into Mars’ geological history, climate patterns,
and the potential for habitability in the past.

In recent years, the exploration of Mars has taken on renewed momentum, fueled by
the ambitious plans of space agencies and private enterprises. Mars is viewed as a
potential destination for human colonization, with scientists and engineers envision-
ing the establishment of permanent habitats and the development of self-sustaining
ecosystems. The journey to Mars presents formidable challenges, including the
long-duration space travel, exposure to cosmic radiation, and the need for innovative
life support systems. However, the allure of discovering whether life exists beyond
Earth and the prospect of becoming a multi-planetary species provide the impetus
for overcoming these hurdles.

As mentioned above, Mars exploration faces a number of significant challenges.
One among all is the immense cost associated with interplanetary travel. The
journey to Mars demands substantial financial resources due to the complexities of
designing and launching spacecraft capable of enduring the long-duration voyage
and sustaining human life in a harsh extraterrestrial environment. The high costs
arise from the need for advanced technologies, extensive fuel requirements, and the
development of robust life support systems to ensure the safety and well-being of
astronauts throughout their mission.

xxv



In light of the significant costs involved in Mars missions, innovative approaches
are being explored to mitigate financial barriers and enhance mission sustainability.
One such approach is to leverage the exploration of asteroids, which are rich in
resources, as a means of refueling and resupplying spacecraft en route to Mars. By
mining and utilizing the resources available on asteroids, it becomes possible to
reduce the payload and fuel requirements for Mars missions, thereby decreasing
the overall costs associated with interplanetary travel.

Asteroids, the remnants of the early solar system, are rich in valuable resources
that can be extracted and utilized for space exploration purposes. These celestial
bodies contain abundant water ice, metals, and organic compounds. By harnessing
the resources present on asteroids, we can envision a future where spacecraft bound
for Mars can refuel, resupply, and potentially even manufacture necessary materials
using locally available resources.

In-situ resource utilization (ISRU) on asteroids offers several advantages for Mars
missions. Firstly, it reduces the need to transport large amounts of fuel and
supplies from Earth, thereby significantly decreasing the costs associated with
interplanetary travel. Instead, spacecraft can utilize the resources found on as-
teroids to produce propellants like liquid oxygen and liquid hydrogen, which are
essential for spacecraft propulsion. This approach not only minimizes the payload
but also enables longer-duration missions and greater flexibility in mission planning.

Moreover, ISRU on asteroids opens up possibilities for the production of other
essential materials required for Mars exploration and colonization. For instance,
asteroids can provide a source of raw materials for construction, such as metals and
minerals, which can be processed and transformed into habitats, infrastructure,
and tools. By utilizing asteroid resources, we can reduce reliance on Earth’s limited
supplies and create a sustainable infrastructure in space.

This thesis aims to investigate the potential of utilizing asteroids as a means
to diminish the costs and enhance the feasibility of Mars missions focusing on tra-
jectory design and optimization techniques for spacecraft traveling between Earth,
asteroids, and Mars. More specifically, optimal Earth-asteroid and asteroid-Mars
trajectories will be analyzed in order to find asteroids that result in fuel savings for
Earth-Mars missions. The research is structured into several chapters, each delving
into specific aspects of the mission design process.

Chapter 1 provides a comprehensive understanding of the the Circular Restricted
Three-Body Problem (CR3BP), which will later be useful for designing periodic
orbits around the asteroid.
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Chapter 2 focuses on the Lambert’s problem, which deals with determining the
trajectory between two points in space under the influence of gravitational forces.
The Lambert’s problem is one of many methods used in interplanetary mission
planning, and this chapter explores two different solutions to solve it.

Chapter 3 mentions heuristic algorithms, with a specific emphasis on the Par-
ticle Swarm Optimization (PSO) technique. PSO is an intelligent optimization
algorithm inspired by the social behavior of bird flocks, and it has shown remarkable
success in solving complex optimization problems.

Chapter 4 uses Lambert’s problem to find trajectories between Earth and a series
of asteroids, and from them to Mars. ∆V s for different launch windows will also
be calculated and the best asteroids (lowest ∆V ) will be proposed.

In Chapter 5, the focus shifts to the insertion of spacecraft into a Distant Retrograde
Orbit (DRO), which is a periodic orbit within the CR3BP. This chapter employs
the PSO algorithm to determine the initial conditions for achieving DROs.

Chapter 6 examines potential landing trajectories for spacecraft, utilizing the
PSO algorithm for trajectory optimization.

Through the study of the Circular Restricted Three-Body Problem, the solv-
ing of the Lambert’s problem and the application of heuristic algorithms such as
PSO, this thesis aims to contribute to the field of interplanetary mission design and
optimization, and more specifically to the realization of efficient missions to Mars.
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Chapter 1

The Circular Restricted
Three-Body Problem

In astrodynamics, according to the theory of universal gravitation formulated by
Isaac Newton, in Philosophiae Naturalis Principia Mathematica [1], two bodies
with mass exert an attractive force proportional to the product of their masses and
inversely proportional to the square of the distance between them. Mathematically,
the gravitational force of one body onto another is:

F⃗g “ ´
GMm

r2
r⃗

r
(1.1)

where G is the Universal Gravitational Constant equal to 6.6743 ˆ 10´11 m3

kg¨s2 ,
M is the mass of the primary body, m is the mass of the secondary mass and r is
the distance between them. In the Three-Body Problem (3BP) we consider three
bodies that gravitationally influence themselves. In the Restricted Three-Body
Problem (R3BP) there is a negligible mass, m, with respect to the primaries, m1
and m2, that represents a spacecraft and that does not influence the motions of
m1 and m2. In the Circular Restricted Three-Body Problem (CR3BP), the two
primaries describe a circular orbit around their barycenter of the system (synodic
system). The system described is shown in Fig. 1.1.

1.1 Equations of Motion
To describe the equations of motion, we start by defining the total mass of the
system, M , and the mass ratio, µ, as

M “ m1 ` m2 (1.2)
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The Circular Restricted Three-Body Problem

Figure 1.1: Geometric schematization of the CR3BP

µ “
m2

M
(1.3)

in this way the primary bodies’ masses, m1 and m2, become:

m1 “ p1 ´ µqM
m2 “ µM

(1.4)

since the distance between the primary bodies is R, in the synodic system, m1 is
placed at

X⃗m1 “

$

&

%

´µR
0
0

,

.

-

(1.5)

while m2 is placed at

X⃗m2 “

$

&

%

p1 ´ µq R
0
0

,

.

-

(1.6)

and the spacecraft, m, has the following general coordinates

X⃗sc “

$

&

%

x
y
z

,

.

-

(1.7)
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The synodic reference frame
´

îĵk̂
¯

rotates with a constant angular velocity

ω⃗ “

c

GM

R3 k̂ (1.8)

Also, the synodic period is equal to τ “ 2π
ω

, which, when combined with Eq.(1.8),
gives

τ “ 2π

c

R3

GM
(1.9)

Since ω is constant, it is possible to write the equation of motion of the spacecraft
with mass m in the synodic reference frame using the following dynamical principles

:⃗r ` ω⃗ ˆ pω⃗ ˆ r⃗q ` 2ω⃗ ˆ 9⃗r “
1
m

´

F⃗1 ` F⃗2

¯

(1.10)

where the first term is the relative acceleration in the synodic frame, the second
is the centripetal acceleration and the third is the Coriolis acceleration. The
right-hand side of the equation is the accelerations due to the gravitational forces
of m1 and m2 on m. To obtain Eq.(1.10) in each of the three coordinates, we have
to decompose the vectors into the three coordinates. It is possible to write the first
term of the left-hand side :⃗r and 9⃗r, r⃗ and ω⃗ as

:⃗r “

$

&

%

:x
:y
:z

,

.

-

9⃗r “

$

&

%

9x
9y
9z

,

.

-

r⃗ “

$

&

%

x
y
z

,

.

-

ω⃗ “

$

&

%

0
0
ω

,

.

-

(1.11)

while the second term ω⃗ ˆ pω⃗ ˆ r⃗q of Eq.(1.10) is obtained in two steps as

ω⃗ ˆ r⃗ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

î ĵ k̂
0 0 ω
x y z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

$

&

%

´ωy
ωx
0

,

.

-

(1.12)

ω⃗ ˆ pω⃗ ˆ r⃗q “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

î ĵ k̂
0 0 ω

´ωy ωx 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

$

&

%

´ω2x
´ω2y

0

,

.

-

(1.13)

Similarly, we compute the third term 2ω⃗ ˆ 9⃗r as

2ω⃗ ˆ 9⃗r “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

î ĵ k̂
0 0 2ω
9x 9y 9z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

$

&

%

´2ω 9y
2ω 9x

0

,

.

-

(1.14)
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Using Eq.(1.4), the gravitational forces of m1 on m and m2 on m, F⃗1 and F⃗2,
become

F⃗1 “ ´
Gm1m

r2
1

r⃗1

r1
“ ´G p1 ´ µq Mm

r⃗1

r3
1

(1.15)

F⃗2 “ ´
Gm2m

r2
2

r⃗2

r2
“ ´GµMm

r⃗2

r3
2

(1.16)

where r⃗1 and r⃗2 are defined as

r⃗1 “

$

&

%

x ` µR
y
z

,

.

-

r⃗2 “

$

&

%

x ´ p1 ´ µq R
y
z

,

.

-

(1.17)

and consequently their magnitudes are equal to

r1 “

b

px ` µRq
2

` y2 ` z2

r2 “

b

px ´ p1 ´ µq Rq
2

` y2 ` z2
(1.18)

Collecting all terms, we obtain
$

’

&

’

%

:x ´ 2ω 9y ´ ω2x “ ´G p1 ´ µq M x`µR
r3

1
´ GµM x´p1´µqR

r3
2

:y ` 2ω 9x ´ ω2y “ ´G p1 ´ µq M y
r3

1
´ GµM y

r3
2

:z “ ´G p1 ´ µq M z
r3

1
´ GµM z

r3
2

(1.19)

We can recast Eq.(1.19) in non-dimensional form. This allows us to identify the
characteristics of the system in a unit-independent manner, facilitating further
analysis. First, we define the dimensionless position vector, ρ⃗, and the dimensionless
time, τ , as

ρ⃗ “

$

&

%

ξ
η
ζ

,

.

-

“
r⃗

R
(1.20)

τ “ ωt (1.21)
and, using the chain rule, we can write any time derivative as

9p¨q “
d p¨q

dt
“ ω

d p¨q

dτ
“ ω p¨q

1

(1.22)

Thus, the set of Eq.(1.19) becomes:
$

’

&

’

%

Rω2ξ
2

´ 2Rω2η
1

´ Rω2ξ “ ´G p1 ´ µq M Rξ`µR
R3ρ3

1
´ GµM ξ´p1´µqR

R3ρ3
2

Rω2η
2

` 2Rω2ξ
1

´ Rω2η “ ´G p1 ´ µq M Rη
R3ρ3

1
´ GµM Rη

R3ρ3
2

Rω2ζ
2

“ ´G p1 ´ µq M Rζ
R3ρ3

1
´ GµM Rζ

R3ρ3
2

(1.23)
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From Eq.(1.8), ω2 “ GM
R3 , so Eq.(1.23) becomes:

$

’

&

’

%

ξ
2

´ 2η
1

´ ξ “ ´ p1 ´ µq
ξ`µ
ρ3

1
´ µ ξ´p1´µq

ρ3
2

η
2

` 2ξ
1

´ η “ ´ p1 ´ µq
η
ρ3

1
´ µ η

ρ3
2

ζ
2

“ ´ p1 ´ µq
ζ
ρ3

1
´ µ ζ

ρ3
2

(1.24)

where
ρ1 “

b

pξ ` µq
2

` η2 ` ζ2

ρ2 “

b

pξ ´ p1 ´ µqq
2

` η2 ` ζ2
(1.25)

1.2 Jacobi Integral
The CR3BP has one conservation law called the Jacobi integral, also known as
Jacobi constant. We start by defining a three-body potential

U “
1
2

`

ξ2
` η2˘

`
1 ´ µ

ρ1
`

µ

ρ2
(1.26)

where the first term on the right hand side is the centrifugal force, while the second
and third terms are the gravitational potentials of masses m1 and m2. We can
compute the partial derivatives of U with respect to ξ, η and ζ as

BU
Bξ

“ ξ ´
1 ´ µ

ρ2
1

Bρ1

Bξ
´

µ

ρ2
2

Bρ2

Bξ
(1.27)

BU
Bη

“ η ´
1 ´ µ

ρ2
1

Bρ1

Bη
´

µ

ρ2
2

Bρ2

Bη
(1.28)

BU
Bζ

“ ζ ´
1 ´ µ

ρ2
1

Bρ1

Bζ
´

µ

ρ2
2

Bρ2

Bζ
(1.29)

Starting from the definition of ρ1

ρ2
1 “ pξ ` µq

2
` η2

` ζ2 (1.30)

it is possible to write

2ρ1
Bρ1

Bξ
“ 2 pξ ` µq (1.31)

so that
Bρ1

Bξ
“

ξ ` µ

ρ1
(1.32)
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With the same procedure, we obtain

Bρ2

Bξ
“

ξ ´ p1 ´ µq

ρ2
(1.33)

In this way, Eq.(1.27) becomes

BU
Bξ

“ ξ ´
1 ´ µ

ρ2
1

ξ ` µ

ρ1
´

µ

ρ2
2

ξ ´ p1 ´ µq

ρ2
(1.34)

Similarly, BU
Bη

and BU
Bζ

become

BU
Bη

“ η ´
1 ´ µ

ρ2
1

η

ρ1
´

µ

ρ2
2

η

ρ2
(1.35)

BU
Bζ

“ ζ ´
1 ´ µ

ρ2
1

ζ

ρ1
´

µ

ρ2
2

ζ

ρ2
(1.36)

The set of Eq.(1.24) becomes
$

’

&

’

%

ξ
2

´ 2η
1

“ BU
Bξ

η
2

` 2ξ
1

“ BU
Bη

ζ
2

“ BU
Bζ

(1.37)

Multiplying the first equation of Eq.(1.37) by ξ
1 , the second by η

1 the third by ζ
1

and adding them together, we obtain

ξ
1

ξ
2

` η
1

η
2

` ζ
1

ζ
2

“
BU
Bξ

Bξ

Bτ
`

BU
Bη

Bη

Bτ
`

BU
Bζ

Bζ

Bτ
(1.38)

which can be rewritten as
1
2

d

dτ

´

ξ
12

` η
12

` ζ
12

¯

“
dU
dτ

(1.39)

Considering the magnitude of the non dimensional relative velocity of the mass m
equal to V “

a

ξ12 ` η12 ` ζ 12 and integrating the previous equation, we obtain

V 2
“ 2U ´ C (1.40)

where C is a constant of integration known as the Jacobi constant, or Jacobi
integral. Fig. 1.2 shows the potential U as a function of ξ, η, ζ, while Fig. 1.3
shows contour lines of U , which suggest us that there are five points at the local
minima of U . These points are called Lagrange points and will be discussed in the
following section.
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Figure 1.2: Three-body Potential U

1.3 Lagrange Points
In the CR3BP, the Lagrange points are equilibrium points where the gravitational
forces of two large bodies equal the centrifugal force felt by the smaller third body.
There are five such points in which the velocities and accelerations of the third
body must be equal to zero

ξ
2

“ ξ
1

“ η
2

“ η
1

“ ζ
2

“ ζ
1

“ 0 (1.41)

which means that
$

’

&

’

%

BU
Bξ

“ 0
BU
Bη

“ 0
BU
Bζ

“ 0 “ ´ p1 ´ µq
ζ
ρ3

1
´ µ ζ

ρ3
2

(1.42)
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Figure 1.3: Contour lines of U

The third equation of Eq.(1.42) suggests us that the only possible solution is ζ “ 0.
This means that all five equilibrium points lie on the ξ ´ η plane, which is the
plane of motion of the primary bodies.

1.3.1 Collinear Points

Using the definition of U , Eq.(1.42) can be rewritten as
$

’

&

’

%

ξ “ p1 ´ µq
ξ`µ
ρ3

1
` µ ξ´p1´µq

ρ3
2

η “ p1 ´ µq
η
ρ3

1
` µ η

ρ3
2

ζ “ 0
(1.43)

9



The Circular Restricted Three-Body Problem

From the second equation of Eq.(1.43), we can find that the first group of equilibrium
points must satisfy η “ 0 is a solution of the second equation, they are positioned
along the ξ-axis. Since η “ 0 we have

ρ1 “ ξ ` µ
ρ2 “ ξ ´ p1 ´ µq

(1.44)

Replacing ρ1 and ρ2 in Eq.(1.43) we obtain
$

&

%

ξ “ p1 ´ µq
ξ`µ

|ξ`µ|
3 ` µ ξ´p1´µq

|ξ´p1´µq|
3

η “ 0
ζ “ 0

(1.45)

where the absolute values are utilized to ensure that the terms in the denominators,
representing physical distances, are always positive. The solution to this cubic set
of equations gives three real roots which are the adimensional x-coordinates of the
libration points L1, L2 and L3.

1.3.2 Equilateral Points
There are two more equilibrium points, called equilateral points, which are the
vertices of an equilateral triangle such that ρ1 “ ρ2 “ 1. Using this information,
we get

b

pξ ` µq
2

` η2 “

b

pξ ´ p1 ´ µqq
2

` η2 (1.46)
Solving for ξ we have

ξ “
1
2 ´ µ (1.47)

So ρ1 becomes

ρ1 “

d

ˆ

1
2 ´ µ ` µ

˙2

` η2 “ 1 (1.48)

and consequently we obtain

η “ ˘

?
3

2 (1.49)

L4 and L5 have the following nondimensional coordinates

χ⃗L4 “

$

&

%

1
2 ´ µ

?
3

2
0

,

.

-

χ⃗L5 “

$

&

%

1
2 ´ µ

´
?

3
2

0

,

.

-

(1.50)

In the CR3BP, a mass placed exactly at one of these five Lagrange points will
theoretically stay there forever. However, in reality we have to consider the effects

10
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of perturbations such as solar radiation pressure, non-homogeneous gravitational
fields and other perturbations. Periodic orbits around the Lagrange points exist
and will be discussed in Sec. 1.4 and Sec. 1.5. In Fig. 1.4, the positions of the
Lagrange points with respect to the primary masses are shown.

Figure 1.4: Position of the Lagrange Point

1.3.3 Stability of Lagrange Points

The question that needs to be addressed with regards to the Lagrange points, also
known as libration points, is whether or not they are stable. The stability of an
equilibrium point is determined by the ability of a particle to return to equilibrium
if slightly perturbed. To evaluate the stability of the libration points, we slightly
perturb the exact solution at each Lagrange point as

$

&

%

ξ “ ξe ` δξ
η “ ηe ` δη

ζ “ ζe ` δζ “ δζ
(1.51)

where ξe, ηe and ζe are the coordinates of Lagrange points and δξ, δη and δζ are
small perturbations in the ξ, η and ζ directions, respectively. Now we can substitute

11
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Eq.(1.51) into Eq.(1.24) and we obtain
$

’

’

&

’

’

%

δ :ξ ´ 2δ 9η ´ ξe ´ δξ “ ´ p1 ´ µq
ξe`δξ`µ

ρ3
1

´ µ ξe`δξ´p1´µq

ρ3
2

δ:η ` 2δ 9ξ ´ ηe ´ δη “ ´ p1 ´ µq
ηe`δη

ρ3
1

´ µηe`δη
ρ3

2

δ:ζ “ ´ p1 ´ µq
δζ
ρ3

1
´ µ δζ

ρ3
2

(1.52)

where ρ1 and ρ2 become

ρ1 “

b

pξe ` δξ ` µq
2

` pηe ` δηq
2

` δζ2

ρ2 “

b

pξe ` δξ ´ p1 ´ µqq
2

` pηe ` δηq
2

` δζ2
(1.53)

To solve Eq.(1.52) in δξ, δη and δζ we collect like terms. We simplify ρ´3
1 and ρ´3

2
as

ρ´3
1 “

“

pξe ` δξ ` µq
2

` pηe ` δηq
2

` δζ2‰´ 3
2 “

“
“

pξe ` µq
2

` η2
e ` 2 pξe ` µq δξ ` 2ηeδη ` δξ2 ` δη2 ` δζ2‰´ 3

2
(1.54)

ρ´3
2 “

“

pξe ` δξ ´ p1 ´ µqq
2

` pηe ` δηq
2

` δζ2‰´ 3
2 “

“
“

pξe ´ p1 ´ µqq
2

` η2
e ` 2 pξe ´ p1 ´ µqq δξ ` 2ηeδη ` δξ2 ` δη2 ` δζ2‰´ 3

2

(1.55)
Neglecting the higher-order terms δξ2, δη2, δζ2 and applying Taylor series expan-
sions, we obtain

ρ´3
1 « rρ2

1e ` 2 pξe ` µq δξ ` 2ηeδηs
´ 3

2 «

« ρ´3
1e

“

1 ´ 3ρ´2
1e ppξe ` µq δξ ` ηeδηq

‰

ρ´3
2 « rρ2

2e ` 2 pξe ´ p1 ´ µqq δξ ` 2ηeδηs
´ 3

2 «

« ρ´3
2e

“

1 ´ 3ρ´2
2e ppξe ´ p1 ´ µqq δξ ` ηeδηq

‰

(1.56)

Thus Eq.(1.52) simplifies to
$

&

%

δ :ξ ´ 2δ 9η ´ p1 ´ Aq δξ ´ Bδη “ 0
δ:η ` 2δ 9ξ ´ Bδξ ´ p1 ´ Cq δη “ 0
δ:ζ ` Dδζ “ 0

(1.57)

where A, B, C and D are real constants such that

A “ p1 ´ µq

”

1
ρ3

1e
´ 3 pξe`µq

2

ρ5
1e

ı

` µ
”

1
ρ3

2e
´ 3 pξe´p1´µqq

2

ρ5
2e

ı

B “ 3 p1 ´ µq ηe

”

pξe`µq

ρ5
1e

`
pξe´p1´µqq

ρ5
2e

ı

C “ p1 ´ µq

”

1
ρ3

1e
´ 3 η2

e

ρ5
1e

ı

` µ
”

1
ρ3

2e
´ 3 η2

e

ρ5
2e

ı

D “
1´µ
ρ3

1e
`

µ
ρ3

2e

(1.58)
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We assume that Eq.(1.57) have a solution in the form of δx “ ceλt, so we obtain
»

–

λ2 ´ p1 ´ Aq ´B ´ 2λ 0
´B ` 2λ λ2 ´ p1 ´ Cq 0

0 0 λ2 ` D

fi

fl

$

&

%

δξ
δη
δζ

,

.

-

“

$

&

%

0
0
0

,

.

-

(1.59)

where

δx “

$

&

%

δξ
δη
δζ

,

.

-

(1.60)

When the matrix of Eq.(1.59) is singular, this eigenvalue problem provides us with
non-trivial solutions of the system. Thus, we derive and compute the roots of the
characteristic equation of this eigenvalue problem

λ6 ` λ4 p2 ` C ` A ` Dq ` λ2 p3 ` AC ´ B2 ` Dq `

` p1 ´ C ´ A ` AC ´ B2 ` Dq “ 0 (1.61)

which give us information regarding the stability of the system. If each value of λ
is purely imaginary and/or has negative real roots, the system is stable.
Furthermore, it should be acknowledged that although it can be proven that collinear
points are consistently unstable, eigenvalue analysis reveals that equilateral points
remain stable only when the mass ratio µ is less than approximately µ˚ “ 0.0385209
[2]. Given that µ ă µ˚ holds true for any combination of the Sun with a planet in
our Solar System, L4 and L5 points are invariably stable.

1.4 Introduction to Dynamical System Theory
Dynamical Systems Theory (DST) is a mathematical formulation used to understand
and predict the behavior of complex systems. In astrodynamics, N-body systems
are highly sensitive to initial conditions, which is why these systems are considered
to be chaotic. DST provides a systematic way to discover and classify sets of orbits
that can be used in space missions. This is a more modern approach than older
methods, such as patched conics and Lambert’s problem. However, one of the
major disadvantages of DST is that it requires significant computational power.
With the advancement of technology, this limitation is becoming less of a concern.
The Genesis mission was the first one to have its orbits entirely planned through
dynamical systems theory, utilizing a Sun-Earth/Moon L1 orbit [3].

1.4.1 The State Transition Matrix
Given the initial state of the system, a state transition matrix can be used to
calculate the state of the system at any future time. A state transition matrix can
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be used to describe the linearized dynamics of the CR3BP. Thanks to Dynamical
Systems Theory, the state transition matrix can be used to study periodic orbits
of a system. Specifically, the state transition matrix can be used to calculate
the stability of the system. For example, if a periodic trajectory is stable, small
perturbations in the initial state will not result in large changes in the final state.
This can be determined by analyzing the eigenvalues of the monodromy matrix,
which is defined as the state transition matrix evaluated at exactly one orbital
period. If all the eigenvalues have a magnitude less than 1, the orbit is stable.
If, among those, the largest eigenvalue has a magnitude equal to 1, the orbit is
marginally stable, and in case at least one eigenvalue has a magnitude greater than
1, the orbit is unstable. The state transition matrix can also be used to study the
invariant manifolds and so to determine trajectories that leave from or arrive at a
given periodic orbit.

Let’s recall the three-body potential given by Eq.(1.26) and dimensionless equations
of motion, Eq.(1.37). A Taylor series expansions of the three-body potential, U ,
can be written as

BU
Bξ

“ B

Bξ

´

BU
Bξ

¯

ξ ` B

Bη

´

BU
Bξ

¯

η ` B

Bζ

´

BU
Bξ

¯

ζ`

` B

B 9ξ

´

BU
Bξ

¯

`

dξ
dt

˘

` B

B 9η

´

BU
Bξ

¯

`

dη
dt

˘

` B

B 9ζ

´

BU
Bξ

¯

`

dζ
dt

˘

(1.62)

Since U is only a function of ξ, η and ζ, Eq.( 1.62) becomes

BU
Bξ

“ B

Bξ

´

BU
Bξ

¯

ξ ` B

Bη

´

BU
Bξ

¯

η ` B

Bζ

´

BU
Bξ

¯

ζ “

“

´

B2U
Bξ2

¯

ξ `

´

B2U
BξBη

¯

η `

´

B2U
BξBζ

¯

ζ
(1.63)

Similarly, we get

BU
Bη

“

ˆ

B2U
BξBη

˙

ξ `

ˆ

B2U
Bη2

˙

η `

ˆ

B2U
BηBζ

˙

ζ (1.64)

and
BU
Bζ

“

ˆ

B2U
BξBζ

˙

ξ `

ˆ

B2U
BηBζ

˙

η `

ˆ

B2U
Bζ2

˙

ζ (1.65)

Finally, the dimensionless equations of motion (1.37) become
$

’

’

’

&

’

’

’

%

ξ
2

´ 2η
1

“

´

B2U
Bξ2

¯

ξ `

´

B2U
BξBη

¯

η `

´

B2U
BξBζ

¯

ζ

η
2

` 2ξ
1

“

´

B2U
BξBη

¯

ξ `

´

B2U
Bη2

¯

η `

´

B2U
BηBζ

¯

ζ

ζ
2

“

´

B2U
BξBζ

¯

ξ `

´

B2U
BηBζ

¯

η `

´

B2U
Bζ2

¯

ζ

(1.66)
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We define a six element state vector, q⃗, as q⃗ “

!

ξ, η, ζ, 9ξ, 9η, 9ζ
)T

and the first-order
variational equations are derived and result in the following vector differential
equation:

9⃗q “ A pτq q⃗ (1.67)

The 6x6 matrix A pτq is typically not constant when the reference solution is an
arbitrary trajectory. However, when the reference solution is periodic, A pτq also
exhibits periodicity. A pτq can be broken down into four 3x3 sub-matrices:

A pτq “

„

03ˆ3 I3ˆ3
U Ω

ȷ

(1.68)

where 03ˆ3 is the 3x3 zero matrix, I3ˆ3 is the 3x3 identity matrix, and U and Ω
are defined as

U “

»

—

–

B2U
Bξ2

B2U
BξBη

B2U
BξBζ

B2U
BξBη

B2U
Bη2

B2U
BηBζ

B2U
BξBζ

B2U
BηBζ

B2U
Bζ2

fi

ffi

fl

(1.69)

Ω “

»

–

0 2 0
´2 0 0
0 0 0

fi

fl (1.70)

so the extended form of matrix A pτq is

A pτq “

»

—

—

—

—

—

—

—

–

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

B2U
Bξ2

B2U
BξBη

B2U
BξBζ

0 2 0
B2U
BξBη

B2U
Bη2

B2U
BηBζ

´2 0 0
B2U
BξBζ

B2U
BηBζ

B2U
Bζ2 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.71)

where
B2U
Bξ2 “ 1 ´

1´µ
ρ3

1
´

µ
ρ3

2
`

3p1´µqpξ`µq
2

ρ5
1

`
3µpξ´1`µq

2

ρ5
2

B2U
BξBη

“
3p1´µqpξ`µqη

ρ5
1

`
3µpξ´1`µqη

ρ5
2

B2U
BξBζ

“
3p1´µqpξ`µqζ

ρ5
1

`
3µpξ´1`µqζ

ρ5
2

B2U
Bη2 “ 1 ´

1´µ
ρ3

1
´

µ
ρ3

2
`

3p1´µqη2

ρ5
1

`
3µη2

ρ5
2

B2U
BηBζ

“
3p1´µqηζ

ρ5
1

`
3µηζ

ρ5
2

B2U
Bζ2 “ ´

1´µ
ρ3

1
´

µ
ρ3

2
`

3p1´µqζ2

ρ5
1

`
3µζ2

ρ5
2

(1.72)

Using a differential correction method in dynamical systems theory is useful to
calculate the initial conditions for a periodic orbit. However, we must also include
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the differential equations for the state transition matrix

9Φ pτ,0q “ A pτq Φ pτ,0q (1.73)

where A pτq is given by Eq.(1.71) and the 6x6 state transition matrix results in the
following partial derivatives

Φ pτ,0q “

»

—

—

—

—

—

—

—

—

—

–

Bξ
Bξ0

Bξ
Bη0

Bξ
Bζ0

Bξ

B 9ξ0

Bξ
B 9η0

Bξ

B 9ζ0
Bη
Bξ0

Bη
Bη0

Bη
Bζ0

Bη

B 9ξ0

Bη
B 9η0

Bη

B 9ζ0
Bζ
Bξ0

Bζ
Bη0

Bζ
Bζ0

Bζ

B 9ξ0

Bζ
B 9η0

Bζ

B 9ζ0
B 9ξ
Bξ0

B 9ξ
Bη0

B 9ξ
Bζ0

B 9ξ

B 9ξ0

B 9ξ
B 9η0

B 9ξ

B 9ζ0
B 9η
Bξ0

B 9η
Bη0

B 9η
Bζ0

B 9η

B 9ξ0

B 9η
B 9η0

B 9η

B 9ζ0
B 9ζ
Bξ0

B 9ζ
Bη0

B 9ζ
Bζ0

B 9ζ

B 9ξ0

B 9ζ
B 9η0

B 9ζ

B 9ζ0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(1.74)

with initial conditions
Φ p0,0q “ I6ˆ6 (1.75)

Thus, for a set of initial conditions, it is then possible to numerically integrate the
trajectory and the STM for any given span of time-

1.4.2 Differential Correction
In the CR3BP, there are different types of periodic orbits that can be classified
based on their symmetry, such as axis-symmetric, doubly-symmetric, and planar.
These periodic orbits will be described in Sec. 1.5. However, it is difficult to find
these periodic orbits without using a suitable numerical method. In this section, a
differential correction method is considered. Initially, we consider an estimate for
the initial conditions, q⃗0, which typically does not result in a periodic orbit. The
objective is to identify a set of initial conditions that, when integrated using the
equations of the CR3BP, will produce a periodic orbit over a given period of time
τ with a final state q⃗f , that is the same to that of the initial conditions [4]. This
means that

q⃗f “ q⃗pτq “ q⃗0 (1.76)
Expanding the equations of motion of the CR3BP, i.e. Eq.(1.24), to the first order
about pq⃗0, τq, we obtain

δq⃗f “ Φ pτ,0q δq⃗0 `
Bq⃗f

Bt
δτ (1.77)

where Φ is the state transition matrix and δ p¨q represents the incremental change
of the quantity p¨q. The design of a halo orbit is presented in Subsec. 1.4.3 to
better explain the Differential Corrections method.
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1.4.3 Halo Orbit Design with Differential Correction
Numerical algorithms for the CR3BP that utilize the differential correction scheme
make use of the properties of halo orbits to create periodic trajectories. Halo orbits
are periodic three dimensional orbit which come from L1, L2 or L3. They will be
discussed better in Sec. 1.5. These characteristics include the fact that halo orbits
pierce the ξ ´ ζ plane at right angles (occurring at a specific initial time t0). Then,
at half the period, the orbit must cross the ξ ´ ζ plane orthogonally again. As a
result, the state vectors at t0 and at half the period t τ

2
are:

q⃗ pt0q “ rξ0, 0, ζ0, 0, 9η0, 0s

q⃗
`

t τ
2

˘

“
“

ξ τ
2
, 0, ζ τ

2
, 0, 9η τ

2
, 0

‰ (1.78)

The algorithm begins with initial conditions obtained from the third order solution
proposed in [5], at the time t0. The trajectory is then propagated until it crosses
the ξ ´ ζ plane again at half the period. 9ξ and 9ζ are computed at this second
crossing. Typically, these velocity components will not be zero. The goal of the
algorithm is to iteratively adjust the initial conditions until the deviations in these
velocity components are reduced to zero, resulting in a periodic orbit. In order
to reduce the deviations in the velocity components at the second crossing of the
ξ ´ ζ plane to zero, the algorithm utilizes the state transition matrix. The STM is
initially set to the identity matrix, and is updated over time through numerical
integration of 36 differential equations and together with the 6 state equations, for
a total number of equations of 42. It’s worth noting that the state of the orbit also
changes at half period as a result of changes in the initial conditions.
In the process of reducing the deviations in the velocity components, three of the
six terminal conditions ξ τ

2
, ζ τ

2
, 9η τ

2
are free, and the η τ

2
becomes zero as a result

of the termination criteria of the trajectory propagation. This leaves only two
variables to be reduced to zero. Indeed, expanding the second element of Eq.(1.77)
we have

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

δξf

δηf

δζf

δ 9ξf

δ 9ηf

δ 9ζf

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

“

»

—

—

—

—

—

—

–

Φ11 Φ12 Φ13 Φ14 Φ15 Φ16
Φ21 Φ22 Φ23 Φ24 Φ25 Φ26
Φ31 Φ32 Φ33 Φ34 Φ35 Φ36
Φ41 Φ42 Φ43 Φ44 Φ45 Φ46
Φ51 Φ52 Φ53 Φ54 Φ55 Φ56
Φ61 Φ62 Φ63 Φ64 Φ65 Φ66

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

δξ0
δη0
δζ0

δ 9ξ0
δ 9η0

δ 9ζ0

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

`

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

9ξf

9ηf

9ζf

:ξf

:ηf

:ζf

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

δτ (1.79)

which, when simplified, becomes
δηf “ Φ21δξ0 ` Φ23δζ0 ` Φ25δ 9η0 ` 9ηfδτ “ 0 (1.80)

and solving for δτ we obtain

δτ “ ´
1

δ 9ηf

pΦ21δξ0 ` Φ23δζ0 ` Φ25δ 9η0q (1.81)
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where the subscript "f" denotes the final conditions after the integration. In this
case it corresponds to half period.
However, there are three unknowns at the initial time. To solve this underdeter-
mined system with two equations and three unknowns, one of the three unknowns
is kept fixed. In this particular study, the initial ζ-coordinate is kept unchanged,
since it is possible to classify the halo orbit by the maximum value on ζ-axis, the so
called ζ-amplitude, Aζ (halo orbits are also classified according to Jacobi constant).
A similar approach can be used by keeping the initial ξ-coordinate constant instead.
Since ζ0 is fixed, we can compute the incremental changes needed for ξ0 and 9η0
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so that replacing Eq.(1.81) in Eq.(1.82), and setting δζ0 “ 0, we obtain
"

δ 9ξf

δ 9ζf

*

“

„

Φ41 Φ45
Φ61 Φ65

ȷ "

δξ0
δ 9η0

*

´

"

δ :ξf

δ:ζf

*

1
δ 9ηf

pΦ21δξ0 ` Φ25δ 9η0q (1.83)

Solving for δξ0 and δ 9η0, we get
"

δξ0
δ 9η0

*

“

„„

Φ41 Φ45
Φ61 Φ65

ȷ

´
1

δ 9ηf

"

δ :ξf

δ:ζf

*

“

Φ21 Φ25
‰

ȷ´1 "

δ 9ξf

δ 9ζf

*

(1.84)

The revised initial conditions ξ0 ` δξ0 and 9η0 ` δ 9η0 are used to begin the next
iteration and this process is continued until 9ξf “ 9ζf “ 0 within some acceptable
tolerance. We have a set of 42 coupled, differential equations to solve simultaneously:
the first 36 equations come from Eq.(1.73) and the last 6 equations come from
Eq.(1.67).
In Fig. 1.5, a flowchart of the differential correction algorithm to find halo orbit
with ζ0 fixed is shown. For example, for the Earth-Moon system, µ “ 0.01215058561
and starting with initial conditions equal to r0.83, 0, 0.1, 0.23, 0s

T and fixing ζ0 we
find the corresponding halo in a few iterations. As shown in Fig. 1.6, after the first
fluctuation, 9ξf and 9ζf asymptotically reach zero. In Fig. 1.7 we can see better the
behavior of

ˇ

ˇ

ˇ

9ξf

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ

9ζf

ˇ

ˇ

ˇ
, they reach a value less than tolerance (set to 10´14) in

6 iterations. In Fig. 1.9 and Fig. 1.8 are shown the ICs evolution and the half
period evolution. Finally, Fig. 1.10 shows the periodic orbit obtained from using
this differential corrector method.
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Figure 1.5: Differential Correction flowchart for orbits that are symmetric about
the ξ ´ ζ plane

Figure 1.6: 9ξf and 9ζf evolution
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Figure 1.7:
ˇ

ˇ

ˇ

9ξf

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ

9ζf

ˇ

ˇ

ˇ
evolution

Figure 1.8: τ
2 evolution
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Figure 1.9: X⃗0 evolution

Figure 1.10: Northern Halo L1 orbit with Aζ “ 0.1 in the Earth-Moon system
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The example proposed here gives an example of a 3D orbit. This method will
be used to generate DRO in Chapter 5.

1.4.4 Poincaré Maps and Poincaré Sections
Poincaré maps are classical techniques for examining the stability of periodic orbits
in the N-body problem (and many other dynamical systems). By selecting an initial
state x⃗0 of an orbit, we can create a hyper-plane Σ, transverse to the orbit that
intersects the orbit at x⃗0. The first intersection of Σ by the trajectory propagated
from x⃗0 is the Poincaré point PΣ px⃗0q as shown in Fig. 1.11. Multiple iterations
of the Poincaré point are then computed by compounding the map, so we have
P p

Σ px⃗0q for p returns. A periodic state, x⃗˚, returns to the same state through a
Poincaré map for which P p

Σ px⃗˚q “ x⃗˚.

Figure 1.11: Example of a Poincaré map

The dynamical system therefore defines a mapping onto this section Σ, and a
periodic orbit corresponds to the fixed points of this mapping. Such points can be
either centers or saddles. Stable and unstable manifolds indicate the dynamical
flow into and out of periodic orbits, respectively, emerging from saddle points in
the Poincaré map. The connection between saddle points is a fundamental feature
of Poincaré map topology, where stable and unstable manifolds intersect an infinite
number of times, resulting in chaotic tangles, as shown in Fig. 1.12. The matrix
corresponding to this mapping is referred to as the monodromy matrix, Π. Π is
defined as the state-transition matrix evaluated at exactly one orbital period, or

Π “ Φ pτq (1.85)
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The stability of the orbit is determined by the 6 eigenvalues λi of the 6x6 monodromy
matrix, Π. If one or more eigenvalues have a magnitude greater than 1, the orbit
is unstable. If the magnitude of the largest eigenvalue is exactly 1, the orbit is
considered neutrally stable. And if all eigenvalues have magnitudes less than 1,
the orbit is considered stable. For instance, as demonstrated in [6], a generic halo
orbit’s monodromy matrix has the following eigenvalue set:

λ1 ą 1
λ2 “ 1

λ1
λ3 “ λ4 “ 1
|λ5| “ |λ6| “ 1

(1.86)

this means that halo orbits are generally unstable.

Figure 1.12: Poincaré map topology

1.4.5 Invariant Manifolds
The stability of periodic orbits can be determined by the eigenvalues of the mon-
odromy matrix as described in Subsec. 1.4.1. The local behavior near these orbits
is represented by these eigenspaces, which consist of eigenvalues and eigenvectors.
Invariant manifolds are time-invariant hyper-surfaces of the dynamical model, the
CR3BP in our case. Once a spacecraft is put onto an invariant manifold, assuming
no external perturbations are present, it will never depart from it as it follows the
natural progression of the dynamic system. The approximation of an unstable (or
stable) asymptotic solution, x⃗perturbed, can be obtained by slightly adjusting an
initial state x⃗0 on the periodic orbit using a small value, ϵ, in the direction of the
unstable (or stable) eigenvectors, which are the unstable (or stable) eigenvectors,

23



The Circular Restricted Three-Body Problem

λ⃗, of the monodromy matrix Π, such that

x⃗perturbed “ x⃗0 ˘ ϵλ⃗ (1.87)

This perturbed state, x⃗perturbed, can be integrated forwards in time to generate tra-
jectories that leave the periodic orbit, or backwards in time to compute trajectories
that arrive at the periodic orbit generated from the initial state x⃗0. Numerical
integration of the CR3BP EOMs from different initial values x⃗0 that lie on the same
periodic orbit produce a family of approximate asymptotic solution trajectories,
forming an invariant manifold tube. Stable and unstable manifolds, which are areas
in the phase space that converge towards specific periodic orbits of interest, are
crucial for orbital transfers. A spacecraft located on a stable manifold, even if it’s
far from a periodic orbit, will gradually move towards the orbit and can be easily
inserted into it with minimal change in velocity. It is important to note that these
invariant manifold tubes are formed by an infinite number of real trajectories that
solve the equations of motion of the CR3BP.

1.5 CR3BP Orbit Families Overview
Periodic orbit families in the CR3BP represent a group of orbits that share similar
properties, such as shape, size, and/or stability. Each periodic orbit family has
unique characteristics and applications in the CR3BP. For example, halo orbits are
often used as parking orbits for satellites, while Lyapunov orbits can be used to
transfer a spacecraft from one orbit to another. The stable and unstable manifolds
of these periodic orbits also play a crucial role in determining the feasibility of
certain orbital transfers. The following figures show some periodic orbit families in
the Earth-Moon system. The Moon shown in these figures is five times bigger than
reality to better show its location. In Fig. 1.13 Lyapunov Orbits are displayed
around the L1 point and it is possible to obtain this family in all the collinear
points. Halo orbits are divided in Northern and Southern; in Fig. 1.14 Northern
Halo Orbits are shown about the L1 point. It is possible to generate Vertical and
Axial Orbits in all Lagrangian points; in Fig. 1.15 and Fig. 1.17 Vertical and
Axial Orbit Families about the L1 point are shown. Butterfly and Dragonfly orbits
are subdivided in Northern and Southern and are displayed respectively in Fig.
1.16 and Fig. 1.19. The Distant Retrograde Orbits and Low Prograde Orbits are
centered about the second body and they are shown respectively in Fig. 1.20, Fig.
1.18 and Fig. 1.21; the last family can be Western or Eastern. The last families
presented are the Short Period and Long Period Orbits, which are placed around
the Equilateral points, L4 and L5, and they are displayed respectively in Fig. 1.22
and Fig. 1.23.
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Figure 1.13: L1 Lyapunov Orbits

Figure 1.14: L1 Halo Northern Orbits
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Figure 1.15: L1 Vertical Orbits

Figure 1.16: Northern Butterfly Orbits

26



The Circular Restricted Three-Body Problem

Figure 1.17: L1 Axial Orbits

Figure 1.18: Distant Prograde Orbits
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Figure 1.19: Northern Dragonfly Orbits

Figure 1.20: Distant Retrograde Orbits

28



The Circular Restricted Three-Body Problem

Figure 1.21: Western Low Prograde Orbits

Figure 1.22: L4 Short Period Orbits
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Figure 1.23: L4 Long Period Orbits

1.5.1 CR3BP Orbit Applications
International Sun/Earth Explorer 3 (ISEE-3 ), launched in 1978, was the first
spacecraft to be placed in a libration point orbit. Its mission was to study the
Earth’s magnetosphere, the region around the Earth that is influenced by its
magnetic field. ISEE-3 was placed in an orbit around the Sun-Earth L1 point.
WIND, launched in 1994, was a spacecraft that studied the solar wind, the stream
of charged particles emitted by the Sun. WIND was placed in a Lissajous orbit
around the Sun-Earth L1 orbit, where it studied the interaction between the
solar wind and the Earth’s magnetosphere. Solar and Heliospheric Observatory
(SOHO), launched in 1995, was a spacecraft that studied the Sun’s structure,
from its core to the extensive outer corona, including the solar wind that blows
across the Solar System. SOHO was placed in a halo orbit around the L1 point,
which allowed it to continuously observe the Sun without being blocked by the
Earth. Advanced Composition Explorer (ACE), launched in 1997, was another
spacecraft that collected and analyzed particles of solar, interplanetary, interstellar
and galactic origins. ACE was placed into a Lissajous orbit around the Sun-Earth
L1, and provided important data on the composition and behavior of the solar wind.
Microwave Anisotrophy Probe (MAP), launched in 2001, was a spacecraft designed
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to study the cosmic microwave background radiation, which is the afterglow of the
Big Bang. MAP was placed in an orbit around the Sun-Earth L2 point. Genesis,
launched in 2004, was a mission to collect samples of solar wind particles and bring
them back to Earth for study. Genesis was also placed in a Sun-Earth L1 halo
orbit. The James Webb Space Telescope (JWST ) is a telescope launched in 2021.
It is designed to study the early universe, galaxies, and stars, and was placed in
an orbit around the Sun-Earth/Moon L2 point. Fig. 1.24 shows the position of
the JWST which orbits the sun at the second Lagrange point. The Artemis I
mission, launched in 2022. As the first of a series of progressively intricate missions,
Artemis I was an unmanned space flight aimed at establishing a basis for human
deep space exploration, showcasing our commitment and proficiency in expanding
human presence to the Moon and beyond.

Figure 1.24: JWST in Sun-Earth/Moon System. Credit: webb.nasa.gov

In the next chapter, Lambert’s problem is discussed which will be applied in
Chapter 4 to find trajectories that will reach one of the periodic orbits discussed in
this chapter.
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Chapter 2

Lambert’s Problem

Lambert’s problem is a classic problem in orbital mechanics that involves determin-
ing the trajectory of a spacecraft that travels between two points in space, subject
to a gravitational force for a fixed time-of-flight (TOF). In mathematical terms,
Lambert’s problem is formulated as a two-point boundary-value problem, where the
initial and final positions, are given, and the goal is to determine the trajectory that
satisfies these constraints for a given TOF . The solution to Lambert’s problem can
be found using various numerical iterative methods. In this chapter, the Classical
Solution proposed by Lagrange in 1778 [7] and the Universal Variable Solution
proposed by Battin [8] in 1987 are used to analyze Lambert’s Problem.
Lambert’s Problem will be used in Chapter 4 to find trajectories from Earth to a
series of candidate asteroids and from them to Mars.

2.1 Lambert’s Problem Definition
Lambert’s theorem states that the TOF along an elliptical arc between two points
P1 and P2, as depicted in Fig. 2.1 is solely dependent on the semi-major axis
(SMA), a, of the ellipse and the segments F̄P 1, and F̄P 2 [9]. It is important to
note that the eccentricity, e, does not appear in the formulation. Mathematically,
this can be expressed as

?
µTOF “ f pa, r1 ` r2, cq (2.1)

where c is the chord connecting P1 and P2, while r1 and r2 are the lengths of F̄P 1
and F̄P 2 respectively. As seen from the Fig. 2.1, the difference in true anomalies
between points P1 and P2 is

cos ∆θ “
r⃗1 ¨ r⃗2

r1r2
(2.2)
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Figure 2.1: Lambert’s Problem Geometry

Given the nature of the cosine function we have two solutions, ∆θ and 2π ´ ∆θ.
To eliminate the confusion caused by the quadrant ambiguity, a relationship that
involves the sine of the angular change must be established. Let’s begin by analyzing
the Z component of the cross product of pr⃗1 ˆ r⃗2q,

pr⃗1 ˆ r⃗2qz “ k̂ ¨ pr⃗1 ˆ r⃗2q “ k̂ ¨ r1r2 sin ∆θŵ (2.3)

where the inclination of the orbit, i, can be related with the unit vectors k̂ and ŵ
to get

cos i “ k̂ ¨ ŵ (2.4)
so that

sin ∆θ “
k̂ ¨ pr⃗1 ˆ r⃗2q

r1r2k̂ ¨ ŵ
“

k̂ ¨ pr⃗1 ˆ r⃗2q

r1r2 cos i
(2.5)

pr⃗1 ˆ r⃗2qz and sin ∆θ will split the problem in four different cases:
$

’

’

&

’

’

%

sin ∆θ ě 0, pr⃗1 ˆ r⃗2qz ě 0 Ñ short way, prograde orbit
sin ∆θ ě 0, pr⃗1 ˆ r⃗2qz ă 0 Ñ short way, retrograde orbit
sin ∆θ ă 0, pr⃗1 ˆ r⃗2qz ě 0 Ñ long way, prograde orbit
sin ∆θ ă 0, pr⃗1 ˆ r⃗2qz ă 0 Ñ long way, retrograde orbit

(2.6)

Transfers can be executed using any of the various conic sections, including ellipses,
parabolas, and hyperbolas. As Eq.(2.6) shows, selected the direction of the orbit
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(prograde or retrograde), there are two alternate paths for each trajectory, the short
way and the long way as shown in Fig. 2.2. These two routes have the same TOF
and usually, one is most efficient in terms of required ∆V to transfer since it moves
in the same direction of the original trajectory.

Figure 2.2: Short and Long way

Using eccentric anomaly, E, and recall the time equation in the Kepler’s problem,
we have

?
µTOF “ a

3
2 rE2 ´ E1 ´ e psin E2 ´ sin E1qs (2.7)

where E1 and E2 are the eccentric anomaly of the points P1 and P2 respectively.
Eq.(2.7) can be manipulated into Lambert’s equation, where there is no eccentricity
term in order to get an equation such as Eq.(2.1). Let’s start defining two new
variables, Emean as

Emean “
1
2 pE2 ` E1q (2.8)

and Emiddle as
Emiddle “

1
2 pE2 ´ E1q (2.9)

from the formulation of the orbit equation in terms of eccentric anomaly, we know
that

r “ a p1 ´ e cos Eq (2.10)
so that the sum of two positions, r1 and r2, can be obtained as

r1 ` r2 “ a r2 ´ e pcos E2 ` cos E1qs (2.11)
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Applying the trigonometric identity

cos E2 ` cos E1 “ 2 cos E2 ` E1

2 cos E2 ´ E1

2 (2.12)

Eq.(2.11) becomes

r1 ` r2 “ 2a r1 ´ e cos Emean cos Emiddles (2.13)

Let’s define the chord c as

c “

b

px2 ´ x1q
2

` py2 ´ y1q
2 (2.14)

where x and y are the Cartesian coordinates relative to the center of ellipse as

x1 “ a cos E1 y1 “ b sin E1 “ a
?

1 ´ e2 sin E1
x2 “ a cos E2 y2 “ b sin E2 “ a

?
1 ´ e2 sin E2

(2.15)

so using Prostapheresis formula, Eq.(2.14) becomes

c “

b

a2 pcos E2 ´ cos E1q
2

` a2 p1 ´ e2q psin E2 ´ sin E1q
2

“

b

a2 p´2 sin Emean sin Emiddleq
2

` a2 p1 ´ e2q p2 cos Emean sin Emiddleq
2

“

b

4a2 sin2 Emiddle rsin2 Emean ` cos2 Emean ´ e2 cos2 Emeans

“

b

4a2 sin2 Emiddle r1 ´ e2 cos2 Emeans

“ 2a sin Emiddle

a

1 ´ e2 cos2 Emean

(2.16)

If we consider another auxiliary variable, Ξ, defined as cos Ξ “ e cos Emean, Eq.(2.14)
becomes

c “ 2a sin Emiddle sin Ξ (2.17)

and Eq.(2.13) changes into

r1 ` r2 “ 2a r1 ´ cos Emiddle cos Ξs (2.18)

The last two auxiliary variables are α and β, which we define as

α “ Ξ ` Emiddle (2.19)

and
β “ Ξ ´ Emiddle (2.20)
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By expressing the relationships between r1, r1, and c in terms of the SMA, α, and
β, we determine that

r1 ` r2 ` c “ 2a p1 ´ cos Emiddle cos Ξ ` sin Emiddle sin Ξq

“ 2a

„

1 ´
1
2 pcos α ` cos βq ´

1
2 pcos α ´ cos βq

ȷ

“ 2a p1 ´ cos αq “ 4a sin2 α

2

(2.21)

and

r1 ` r2 ´ c “ 2a p1 ´ cos Emiddle cos Ξ ´ sin Emiddle sin Ξq

“ 2a

„

1 ´
1
2 pcos α ` cos βq `

1
2 pcos α ´ cos βq

ȷ

“ 2a p1 ´ cos βq “ 4a sin2 β

2

(2.22)

Solving Eq.(2.21) and Eq.(2.22) for α and β, respectively, and defining the perimeter
of the triangle P1FP2 as s “ r1 ` r2 ` c, we obtain

sin α

2 “

c

s

2a
(2.23)

and
sin β

2 “

c

s ´ c

2a
(2.24)

Thus, Eq.(2.7) becomes
?

µTOF “ a
3
2 r2Emiddle ´ 2e cos Emean sin Emiddles

“ 2a
3
2 rEmiddle ´ cos Ξ sin Emiddles

(2.25)

From Eq.(2.19) and Eq.(2.20) we obtain that Ξ “
α`β

2 and Emiddle “
α´β

2 , so
Eq.(2.25) becomes

?
µTOF “ a

3
2

„

α ´ β ´ 2 cos α ` β

2 sin α ´ β

2

ȷ

“ a
3
2 rα ´ β ´ psin α ´ sin βqs

(2.26)

Eq.(2.26), also known as Lambert’s equation, depends only on a, α and β, the
angles α and β are dependent solely on the SMA, the sum of r1 and r2, and c. This
demonstrates Lambert’s theorem, i.e. that Kepler’s equation can be converted into
Lambert’s equation.
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2.2 Classical Solution
The classical solution to solving Lambert’s problem, which was developed by
Lagrange [7], involves utilizing the geometry of the minimum energy transfer, as
depicted in Fig. 2.3, and the specified TOF to determine the type of conic section
the transfer must follow. Not all methods for solving Lambert’s problem require
determining the conic section beforehand, such as the universal variable solution,
which will be discussed in the Sec. 2.3. The basic structure of the minimum energy
transfer is established with points P1 and P2 being the center of circles whose
intersection is the vacant focus, F ˚, that arises from the minimum energy ellipse.
The transfer arc is represented in blue in the Fig. 2.3, along with its line of apsides,
LOA. Let’s start by defining the minimum energy ellipse which has the smallest

Figure 2.3: Geometry of the Minimum Energy Solution

SMA that connects P1 and P2, am. The chord, c, is equal to

c “ ¯P1F ˚ ` ¯P2F ˚ (2.27)

applying the properties of ellipses, we have

c “ 2am ´ r1 ` 2am ´ r2 “ 4am ´ pr1 ` r2q (2.28)
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We define the semi-perimeter of the triangle P1FP2, s, as

s “
1
2 pr1 ` r2 ` cq (2.29)

Solving Eq.(2.28) and Eq.(2.29) for am, we obtain

am “
1
2s (2.30)

After calculating the SMA of the minimum energy ellipse for given P1, P2 and ∆θ,
α and β corresponding to the minimum energy ellipse can also be calculated by
substituting Eq.(2.30) into Eq.(2.23) and Eq.(2.24), to get

αm “ π (2.31)
and

βm “ 2sgn psin ∆θq arcsin
c

s ´ c

s
(2.32)

where sgn is the signum function, such that

sgn pxq “

$

&

%

1 if x ą 0
0 if x “ 0

´1 if x ă 0
(2.33)

Replacing αm and βm in Eq.(2.26) it is possible to compute the TOF corresponding
to the minimum energy ellipse, tm, as

?
µtm “ a

3
2
m rαm ´ βm ´ psin αm ´ sin βmqs

“

´s

2

¯
3
2

pπ ´ βm ` sin βmq

(2.34)

Solving for tm, we obtain

tm “

d

s3

8µ
pπ ´ βm ` sin βmq (2.35)

To determine the type of orbit, we need to compare the given TOF with the the
parabolic time of flight, tp. This is computed by taking the limit as the SMA goes
to infinity using Eq.(2.26)

tp “ lim
aÑ8

TOF “
a

3
2

?
µ

rα ´ β ´ psin α ´ sin βqs

“ lim
aÑ8

TOF “
a

3
2

?
µ

«

2 arcsin
c

s

2a
´ sgn psin ∆θq 2 arcsin

c

s ´ c

2a
`

´

˜

sin 2 arcsin
c

s

2a
´ sgn psin ∆θq sin 2 arcsin

c

s ´ c

2a

¸ff

(2.36)
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Since a Ñ 8, we can make a substitution such that, ε, becomes

ε “
1
a

Ñ 0 (2.37)

to get

tp “ lim
εÑ0

TOF “
ε´ 3

2
?

µ

«

2 arcsin
c

sε

2 ´ sgn psin ∆θq 2 arcsin
c

ps ´ cq ε

2 `

´

˜

sin 2 arcsin
c

sε

2 ´ sgn psin ∆θq sin 2 arcsin
c

ps ´ cq ε

2

¸ff (2.38)

Using Taylor series expansions we obtain

tp “ lim
εÑ0

TOF “
ε´ 3

2
?

µ

#

2
c

sε

2 `
2
6

c

s3ε3

8 ´ sgn psin ∆θq

˜

2
c

ps ´ cq ε

2 `

`
2
6

d

ps ´ cq
3 ε3

8

˛

‚´

«

2
c

sε

2 `
2
6

c

s3ε3

8 ´
8
6

c

s3ε3

8 `

´sgn psin ∆θq

¨

˝2
c

ps ´ cq ε

2 `
2
6

d

ps ´ cq
3 ε3

8 ´
8
6

d

ps ´ cq
3 ε3

8

˛

‚

fi

fl

,

.

-

(2.39)

simplifying we get

tp “ lim
εÑ0

TOF “
ε´ 3

2
?

µ

„

?
2

3 s
3
2 ´ sgn psin ∆θq

?
2

3 ps ´ cq
3
2

ȷ

ε
3
2

“

?
2

3?
µ

”

s
3
2 ´ sgn psin ∆θq ps ´ cq

3
2

ı

(2.40)

Knowing the orbit type (prograde or retrograde, short way or long way) allows us
to split the problem into three chategories:

TOF ą tp Ñ elliptical orbit
TOF “ tp Ñ parabolic orbit
TOF ă tp Ñ hyperbolic orbit

(2.41)

The parabolic case is the simplest, since we know that in that case a Ñ 8 and
e “ 1, so we don’t need to solve the Eq.(2.26). Elliptical and hyperbolic cases
need to be further studied in order to find the corresponding SMA that solves Eq.
(2.26).
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2.2.1 Elliptical Case
Let’s fist consider the elliptical case of Lambert’s problem where TOF ą tp. The
values of α and β are based on the TOF and ∆θ values as follows

αE “

"

α if TOF ď tm

2π ´ α if TOF ą tm
(2.42)

and
βE “

"

β if 0 ď ∆θ ă π
´β if π ď ∆θ ă 2π

(2.43)

where α and β are computed from Eq.(2.23) and Eq.(2.24), respectively. So the
Lambert’s equation becomes

a
3
2 rαE paq ´ βE paq ´ psin αE paq ´ sin βE paqqs ´

?
µTOF “ 0 (2.44)

Eq.(2.44) guarantees the existence of one and only one solution. After using one of
the numerical methods existing in the literature, such as the secant method, we can
solve for a and then find other orbital parameters, such as, the semilatus rectum,
℘, and consequentially the eccentricity, e, as

℘ “
4a ps ´ r1q ps ´ r2q

c2 sin2 αE ` βE

2 (2.45)

and
e “

c

1 ´
℘

a
(2.46)

To know the velocities at the points P1 and P2, we need to introduce the versors,

Figure 2.4: Velocity vectors
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depicted in Fig. 2.4, as

û1 “ r⃗1
r1

û2 “ r⃗2
r2

ûc “ r⃗2´r⃗1
c (2.47)

Thus, the velocities at the points P1 and P2 can be written as

v⃗1 “ pA ` Bq ûc ` pB ´ Aq û1 (2.48)

and
v⃗2 “ pA ` Bq ûc ´ pB ´ Aq û2 (2.49)

where
A “

a

µ
4a

cot αE

2
B “

a

µ
4a

cot βE

2
(2.50)

2.2.2 Hyperbolic Case
Let’s now consider the hyperbolic case of Lambert’s problem where TOF ă tp.
The orbit that links P1 and P2 is classified as hyperbolic and Lambert’s equation
becomes

p´aq
3
2 rsinh αH ´ αH ´ sgn psin ∆θq psinh βH ´ βHqs ´

?
µTOF “ 0 (2.51)

where αH and βH are computed according to the Eq.(2.52) and the Eq.(2.53)
respectively, where hyperbolic trigonometric functions are used and a ă 0.

sinh αH

2 “

c

s

´2a
(2.52)

sinh βH

2 “

c

s ´ c

´2a
(2.53)

Like the elliptical case, the hyperbolic case guarantees the existence of one and only
one solution for SMA, a. After finding a using Eq.(2.51) using, e.g., the secant
method, we can find the semilatus rectum, ℘, as

℘ “
´4a ps ´ r1q ps ´ r2q

c2 sinh2 αH ` βH

2 (2.54)

and the eccentricity, e, with Eq.(2.46). To find the velocities at the points P1 and
P2 in the computed hyperbolic transfer orbit, we use the same versors introduced
in Eq.(2.47), and the same velocities of Eq.(2.48) and Eq.(2.49), but with different
values of A and B, which are

A “

b

µ
´4a

coth αH

2

B “

b

µ
´4a

coth βH

2

(2.55)
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2.3 Universal Variable Solution
Battin developed a condensed and computationally effective solution to Lambert’s
problem [8]. This version employs a universal time of flight equation, which
accommodates elliptic, parabolic, and hyperbolic orbits and functions smoothly as
a single, independent variable. Let’s start by recalling the vis-viva equation

ϵ “
v2

2 ´
µ

r
“ ´

µ

2a
(2.56)

Solving for a we obtain
a “

1
2
r

´ V 2

µ

(2.57)

We define a new variable, α, not to be confused with α used in the classical solution,
as

α “
1
a

(2.58)

This replacement removes the parabolic discontinuity since as a Ñ 8, α Ñ 0. Also,
define χ as the universal anomaly and the dimensionless universal variable, z, as

z “ αχ2 (2.59)

For t0 and t, the variable χ can be related to the classical anomalies by:

χ “

$

&

%

?
a pE ´ E0q for α ą 0

?
℘

`

tan ν
2 ´ tan ν0

2

˘

for α “ 0
?

´a pH ´ H0q for α ă 0
(2.60)

where E, ν and H are, the elliptic eccentric anomaly, the true anomaly and the
hyperbolic eccentric anomaly respectively. Let’s introduce Lagrange coefficients
f, g, 9f, 9g such that

"

r⃗2
v⃗2

*

“

„

f g
9f 9g

ȷ "

r⃗1
v⃗1

*

(2.61)

where
f “ 1 ´

µr2

h2 p1 ´ cos ∆θq (2.62)

g “
r1r2

h
sin ∆θ (2.63)

9f “
µ

h

ˆ

1 ´ cos ∆θ

sin ∆θ

˙ „

µ

h2 p1 ´ cos ∆θq ´
1
r1

´
1
r2

ȷ

(2.64)

9g “ 1 ´
µr1

h2 p1 ´ cos ∆θq (2.65)
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It is possible to write these Lagrange coefficients in terms of χ as

f “ 1 ´
χ2

r1
C2 pzq (2.66)

g “ TOF ´
χ3
?

µ
C3 pzq (2.67)

9f “

?
µ

r1r2
χ rzC3 pzq ´ 1s (2.68)

9g “ 1 ´
χ2

r2
C2 pzq (2.69)

where C2 pzq and C3 pzq are the so-called Stumpff functions, which are defined by
infinite series of the form

Ckpzq “
1
k! ´

z

pk ` 2q! `
z2

pk ` 4q! ´ ¨ ¨ ¨ “

8
ÿ

i“0

p´1q
i zi

pk ` 2iq! (2.70)

so that C2 pzq becomes

C2 pzq “

$

’

’

’

’

&

’

’

’

’

%

1 ´ cos
?

z

z
pz ą 0q

1
2 pz “ 0q

cosh
?

´z ´ 1
´z

pz ă 0q

(2.71)

while C3 pzq becomes

C3 pzq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

?
z ´ sin

?
z

p
?

zq
3 pz ą 0q

1
6 pz “ 0q

sinh
?

´z ´
?

´z

p
?

´zq
3 pz ă 0q

(2.72)

We have 4 equations, Eq.(2.66-2.69), and 3 unknowns, h, χ and z, but from the
conservation of the angular momentum we also have that

f 9g ´ 9fg “ 1 (2.73)

so we have 3 linearly independent equations and 3 unknowns. If we equate Eq.(2.63)
to Eq.(2.67), we obtaain

r1r2

h
sin ∆θ “ TOF ´

χ3

µ
C3 pzq (2.74)

43



Lambert’s Problem

while if we equate Eq.(2.62) to Eq.(2.66), we obtain

1 ´
µr2

h2 p1 ´ cos ∆θq “ 1 ´
χ2

r1
C2 pzq (2.75)

Solving for h we get

h “

d

µr1r2 p1 ´ cos ∆θq

χ2C2 pzq
(2.76)

which, when substituted into the Eq.(2.74), yields
d

r1r2χ2C2 pzq

µ p1 ´ cos ∆θq
sin ∆θ “ TOF ´

χ3
?

µ
C3 pzq

χ
a

C2 pzq

c

r1r2

p1 ´ cos ∆θq
sin ∆θ “

?
µTOF ´ χ3C3 pzq

(2.77)

and rearranging to get ?
µTOF on the left-hand side, we get

?
µTOF “ χ

a

C2 pzqA ` χ3C3 pzq (2.78)

where A is a constant given by

A “

c

r1r2

p1 ´ cos ∆θq
sin ∆θ (2.79)

Equating Eq.(2.64) to Eq.(2.68), we get

µ

h

ˆ

1 ´ cos ∆θ

sin ∆θ

˙ „

µ

h2 p1 ´ cos ∆θq ´
1
r1

´
1
r2

ȷ

“

?
µ

r1r2
χ rzC3 pzq ´ 1s (2.80)

and substituting Eq.(2.76) in Eq.(2.80), we obtain
d

χ2C2 pzq

r1r2 p1 ´ cos ∆θq

ˆ

1 ´ cos ∆θ

sin ∆θ

˙ „

µχ2C2 pzq p1 ´ cos ∆θq

µr1r2 p1 ´ cos ∆θq
´

r1 ` r2

r1r2

ȷ

“

“
χ

r1r2
rzC3 pzq ´ 1s

(2.81)

Simplifying, we get
a

χ2C2 pzq

A

`

χ2C2 pzq ´ r1 ´ r2
˘

“ χ rzC3 pzq ´ 1s (2.82)

Solving for χ, we obtain

χ “

d

y pzq

C2 pzq
(2.83)
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where
y pzq “ r1 ` r2 ` A

zC3 pzq ´ 1
a

C2 pzq
(2.84)

If we replace Eq.(2.83) into Eq.(2.78), it is possible to write

?
µTOF “

a

y pzqA `

ˆ

y pzq

C2 pzq

˙
3
2

C3 pzq (2.85)

which is Lambert’s equation in terms of the universal variable z.

2.3.1 Newton-Raphson Method
In this subsection we discuss how to solve Eq.(2.85). One of the most efficient
numerical method for this case is the Newton-Raphson method, which states that
to find the root, z, of a real-valued function, F pzq, we need to iterate using the
following equation until a certain tolerance is reached

zn “ zn´1 ´
F pzn´1q

F 1 pzn´1q
(2.86)

where F 1 pzq is the derivative of F pzq with respect to z, n is the nth iteration and
n ´ 1 is the n ´ 1th iteration. Note that Eq.(2.86) is the Taylor series expansion of
F pzq truncated at the first term. In our case, the function is

F pzq “
a

y pzqA `

ˆ

y pzq

C2 pzq

˙
3
2

C3 pzq ´
?

µTOF (2.87)

so we need to compute F 1 pzq “
dF pzq

dz
, which is split in two cases: for z ‰ 0 we have

that

dF pzq

dz

ˇ

ˇ

ˇ

ˇ

z‰0
“

ˆ

y pzq

C2 pzq

˙
3
2

„

1
2z

ˆ

C2 pzq ´
3C3 pzq

2C2 pzq

˙

`
3C2

3 pzq

4C2 pzq

ȷ

`

`
A

8

˜

3C3 pzq

C2 pzq

a

y pzq ` A

d

C2 pzq

y pzq

¸ (2.88)

and for z “ 0 we need to take the limit as z Ñ 0, which yields

dF pzq

dz

ˇ

ˇ

ˇ

ˇ

z“0
“

?
2

40 y p0q
3
2 `

A

8

˜

a

y p0q ` A

d

1
2y p0q

¸

(2.89)

Solving Eq.(2.87), and through backward substitution, we get the SMA, and
consequently the other orbital parameters. Finally, it is possible to compute the
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Lagrange coefficients which are used to calculate the velocities v⃗1 and v⃗2 using
Eq.(2.61), which simplifies to as

v⃗1 “
1
g

pr⃗2 ´ f r⃗1q (2.90)

v⃗2 “
1
g

p 9gr⃗2 ´ r⃗1q (2.91)

Compared to the classical method, the universal variable method is typically faster
in terms of computational time. Additionally, it has the advantage of only needing a
single initial guess pz0q and does not require prior determination of the conic section.

The next chapter will explore heuristic algorithms. Specifically, we will focus
on mathematical modeling of the particle swarm optimization technique, which will
then be used in Chapters 5 and 6 to find the initial conditions of a periodic orbit
in the CR3BP and a landing trajectory from that orbit to a candidate asteroid.
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Chapter 3

Heuristic Algorithms

Broadly speaking, there are two types of numerical optimization methods: deter-
ministic and stochastic. Deterministic, also known as gradient-based methods,
assume that the objective function to be optimized is continuous and differentiable.
In contrast, stochastic methods, also known as evolutionary algorithms, or heuristic
algorithms, take inspiration from natural phenomena and employ a population of
individuals to represent potential solutions. The optimal solution is then found
through competition and cooperation among these individuals. The most widely
used class of these methods is genetic algorithms, which simulate the evolution of a
species based on the principle of survival of the fittest, as proposed by Darwin [10].
In this chapter, after an overview of some of the most used heuristic algorithms,
Particle Swarm Optimization, which is then used in Chapters 5 and 6 to find the
initial conditions of a periodic orbit in the CR3BP and a landing trajectory from
that orbit to a candidate asteroid, will be discussed.

3.1 Computational Swarm Intelligence Introduc-
tion

Swarm Intelligence (SI) is a computational technique that is effective in adaptive
systems. This approach combines genetic adaptation and social observation in
problem-solving tools such as schools of fish, bird flocks, and insect colonies (e.g.,
ants, termites, and honeybees). In SI, a group of simple agents collectively solves
problems through the installation of collective intelligence. Ethnologists conducted
studies in the 1980s to model swarm behavior and observed that individual agents
have stochastic behavior in response to their environment. The emergence of
collective intelligence results from local rules that are independent of global rules,
and interactions between self-organized agents. Swarms exhibit self-organization,
and interactions on the local level lead to a global response. Trajectory tracking
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algorithms demonstrate how decentralized, self-organized patterns emerge in animal
foraging behavior. The principles that express swarm intelligence as an intelligent
behavior include the swarm’s ability to process spatial and temporal data, adapt
to changing conditions, allocate resources throughout the domain and adapting
itself when necessary.

3.1.1 Artificial Bee Colony Algorithm
The Artificial Bee Colony (ABC) Algorithm, introduced by Karaboga [11] in 2005,
is a swarm intelligence-based optimization algorithm that is inspired by the foraging
behavior of honey bees. In this algorithm, the problem to be solved is formulated
as an optimization problem, and a group of artificial bees are used to find the
best solution. The ABC algorithm consists of three types of bees: employed bees,
onlooker bees, and scout bees. Each employed bee is associated with a particular
solution to the optimization problem. The employed bees search for new solutions
by exploring the solution space in the vicinity of their current solution using local
search strategies. Onlooker bees observe the employed bees and choose a solution
to explore based on the quality of the associated solution. The onlooker bees
also use local search strategies to explore the solution space around the chosen
solution. Scout bees are responsible for randomly searching the solution space
for new solutions. In each iteration of the ABC algorithm, the employed bees
and onlooker bees generate new solutions by modifying their current solutions
using local search strategies. The quality of the new solutions is evaluated using
an objective function, and the best solution found so far is recorded. The scout
bees randomly generate new solutions and replace any employed bee solution that
has not been improved for a certain number of iterations. The ABC algorithm
continues until a stopping criterion is met, such as reaching a maximum number of
iterations or achieving a satisfactory solution quality. The final solution obtained
by the algorithm is the best solution found during the optimization process.

3.1.2 Ant Colony Optimization
Ant Colony Optimization (ACO) is another heuristic algorithm that is inspired
by the foraging behavior of ants. ACO is typically used to solve combinatorial
optimization problems, such as the traveling salesman problem where the Traveling
Salesman Problem (TSP) is a classic optimization problem that involves finding
the shortest possible route that visits a set of cities and returns to the starting city,
where each city is visited only once. The ACO algorithm works by simulating the
behavior of ants as they search for food. Ants communicate with each other by
leaving pheromone trails on the ground. The strength of the pheromone trail is
proportional to the quality of the food source. Other ants follow the pheromone
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trails to find the food source. As more ants follow the trail, the pheromone
concentration increases, making the trail more attractive to other ants. Eventually,
the ants converge on the best food source, and the pheromone trail becomes very
strong. In the ACO algorithm, a set of artificial ants is used to search for a good
solution to the optimization problem. Each ant represents a candidate solution, and
the ants build solutions by iteratively selecting components from the solution space.
During the construction of a solution, each ant uses a probabilistic rule to select the
next component to add to the solution. The probability of selecting a particular
component is based on the pheromone trail associated with that component, as
well as the heuristic information that guides the ant’s search. As the ants build
solutions, they update the pheromone trails associated with the components in the
solution. The amount of pheromone deposited is proportional to the quality of the
solution found by the ant. Stronger solutions lead to stronger pheromone trails,
which makes those components more attractive to other ants. As the previous
algorithm, the ACO algorithm iterates until it satisfies a termination condition,
which could be either achieving a desirable level of solution quality or reaching the
maximum number of iterations. The best solution is selected as the final solution
evaluating an objective function. ACO algorithm is applied in the aerospace field,
for example, to design the multiple gravity assist trajectory [12].

3.1.3 Fireworks Algorithm
In 2010, Ying Tan [13] proposed the Fireworks Algorithm (FWA), an optimization
algorithm based on the behavior of fireworks. In the FWA, each firework represents a
potential solution to the optimization problem. The firework’s position in the search
space corresponds to the parameters of the solution. The quality of the solution
is evaluated by an objective function. The FWA uses two types of explosions:
Gaussian explosions and uniform explosions. A Gaussian explosion occurs when a
firework explodes at its current location, and the resulting sparks move away from
the center according to a Gaussian distribution. A uniform explosion occurs when
a firework explodes at a random location within a predefined range. After each
explosion, the sparks evaluate their quality using the objective function. The sparks
then compete for survival, with the weaker sparks being eliminated. The surviving
sparks become the new population for the next iteration. The FWA also employs
a mutation operator to introduce new solutions into the population. The mutation
operator randomly selects a firework and perturbs its position in the search space.
The resulting solution is then evaluated, and it replaces the weakest firework in the
population if it is better. The FWA continues iterating until a stopping criterion is
met, such as reaching a maximum number of iterations or achieving a satisfactory
solution quality. FWA is applied, for example, to trajectory design for Earth to
Lunar Halo Orbits [14].

50



Heuristic Algorithms

3.2 Particle Swarm Optimization
Particle swarm optimization (PSO) is an iterative technique that was initially
introduced in 1995 [15, 16]. PSO falls under the category of swarm intelligence
methods, drawing inspiration from the unpredictable movement of bird flocks in
their search for food. PSO leverages the concept of information sharing to influence
the overall behavior of the swarm [17].
At the beginning of the optimization process, a randomly generated initial popula-
tion of particles forms the swarm. Each particle in the swarm is associated with a
position vector and a velocity vector at a particular iteration. The position vector
contains the unknown parameter values, while the velocity vector determines the
particle’s position update after each iteration. During a single iteration, both the
position and velocity vectors are updated. Each particle represents a potential
solution to the problem and corresponds to a specific value of the cost function. By
the end of the process, the best particle is selected and it represents the solution of
the optimization problem.

3.2.1 PSO Mathematical Model
To minimize the cost (or objective) function, J , the task involves determining the
optimal values for the n unknown parameters, denoted as ϱ1, ..., ϱn. The dynamical
system’s time evolution is dependent on these parameters, which are subject to
constraints within their respective ranges, such that

lk ď ϱk ď uk for k “ 1, . . . , n (3.1)

where lk and uk are the lower and the upper bounds of the kth unknown parameter
respectively.
As mentioned earlier, the PSO technique is a population-based method, employing
a swarm of N particles to represent the population. Each particle, indexed by i with
i “ 1, . . . , N , is associated with a position vector ϱ⃗piq and a velocity vector v⃗piq. It
is important to note that in this context, the terms position and velocity refer to
the search space of the unknown parameters and hold no physical interpretation.
The position vector encompasses the values of the n unknown parameters for the
problem at hand

ϱ⃗piq “
“

ϱ1piq . . . ϱnpiq
‰T (3.2)

The velocity vector, represented by the components vkpiq for k “ 1, . . . , n, governs
the update of the particle’s position. Since the position components are bounded,
it is necessary to impose constraints on the velocity components to ensure they fall
within appropriate ranges

´ puk ´ lkq ď ϱk ď puk ´ lkq for k “ 1, . . . , n (3.3)
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The limitations presented in the Eq. (3.3) are imposed to not exceed position
limits.
Every particle in the swarm represents a potential solution to the problem and
is associated with a distinct value of the cost function. The formulas used for
updating the position and velocity dictate the evolution of the swarm, driving it
towards the globally optimal position. This optimal position corresponds to the
best possible solution for the problem at hand. It is worth noting how PSO does
not guarantee to find the global optimal solution for every problem. Instead, PSO
tends to converge towards a local optimal solution, which is the best solution within
a specific region of the search space.
To initialize the PSO algorithm, an initial population is randomly generated,
consisting of N particles. The positions and velocities of these particles are
distributed uniformly within the search space defined by the problem’s constraints.
In the first step, for each particle i (ranging from 1 to N), we evaluate the cost
function associated with that particle to the current iteration j, denoted as J pjqpiq.
This cost function represents the quality of the particle’s current position.
Next, we determine the best position ever visited by particle i up to the current
iteration j. This position, denoted as Ψ⃗pjqpiq, is obtained by selecting the position
with the minimum cost function value among all iterations from 1 to j. It is
important to note that this best position is specific to each particle and serves as a
reference for comparison and improvement. Mathematically, we have

Ψ⃗pjq
piq “ ϱ⃗plq

piq (3.4)

where l is defined as follows

l “ arg min
p“1,...,j

J ppq
piq (3.5)

Moving on to the second step, we calculate the global best position, denoted as
Υ⃗pjq, which represents the overall best position visited by any particle in the entire
swarm. Therefore, we have

Υ⃗pjq
“ Ψ⃗pjq

pqq (3.6)
where q is defined as follows

q “ arg min
i“1,...,N

F pjq
piq (3.7)

F pjqpiq denotes the cost function value associated with the best position ever
explored by particle i up to iteration j. Expressing it mathematically, this yields

F pjq
piq “ min

p“1,...,j
J ppq

piq (3.8)

Finally, we update the velocity vector for each particle. The velocity update
equation consists of three terms: the inertial term, the cognitive term, and the
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social term. The inertial term is determined by multiplying the previous velocity
vector of the kth unknown parameter, v

pj´1q

k piq, by a constant weight factor cI . The
cognitive term is calculated by multiplying a cognitive weight factor cC with the
difference between the best position of the kth unknown parameter ever visited by
particle i until the current iteration Ψpjq

k piq and the position of the kth unknown
parameter of the particle i at the current iteration ϱ

pjq

k piq. Similarly, the social term
is obtained by multiplying a social weight factor cS with the difference between the
global best position of the kth unknown parameter until the current iteration Υpjq

k

and and the position of the kth unknown parameter of the particle i at the current
iteration ϱ

pjq

k piq. In terms of mathematical formulation

v
pj`1q

k piq “ cI ¨ v
pjq

k piq ` cC ¨

´

Ψpjq

k piq ´ ϱ
pjq

k piq
¯

` cS ¨

´

Υpjq

k ´ ϱ
pjq

k piq
¯

(3.9)

The inertial, cognitive, and social weights have the following expressions [18]
$

&

%

cI “
1`r1p0,1q

2
cC “ 1.49445 ¨ r2p0,1q

cS “ 1.49445 ¨ r3p0,1q

(3.10)

where r1p0,1q, r2p0,1q, and r3p0,1q denote three separate random numbers chosen
independently from a uniform distribution ranging from 0 to 1.
Successively, if the previous velocity component, v

pj`1q

k piq, is less than a thresh-
old value, ´ puk ´ lkq, then the updated velocity component, v

pj`1q

k piq, is set to
´ puk ´ lkq. While if the previous velocity component, ´ puk ´ lkq, is greater than
puk ´ lkq, then the updated velocity component, v

pj`1q

k piq, is set to puk ´ lkq. In a
mathematical representation,

v
pj`1q

k piq “ ´ puk ´ lkq if v
pj`1q

k piq ď ´ puk ´ lkq

v
pj`1q

k piq “ puk ´ lkq if v
pj`1q

k piq ě puk ´ lkq
(3.11)

To update the position vector for each particle i and each component ϱkpiq with
k “ 1, . . . , n and i “ 1, . . . , N , at j ` 1th iteration we have

ϱ
pj`1q

k piq “ ϱ
pjq

k piq ` v
pjq

k piq (3.12)

If the previous position component, ϱ
pjq

k piq, is less than a lower bound value lk,
then the updated position component, ϱ

pj`1q

k piq, is set to lk, and the corresponding
velocity component, v

pj`1q

k piq, is set to 0. If the previous position component, ϱ
pjq

k piq,
is greater than an upper bound value uk, then the updated position component,
ϱ

pj`1q

k piq, is set to uk, and the corresponding velocity component, v
pj`1q

k piq, is set to
0. Mathematically,

ϱ
pj`1q

k piq “ lk and v
pj`1q

k piq “ 0 if ϱ
pj`1q

k piq ď lk
ϱ

pj`1q

k piq “ uk and v
pj`1q

k piq “ 0 if ϱ
pj`1q

k piq ě uk

(3.13)
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The algorithm continues iterating until the maximum number of iterations, Nitmax ,
is reached. The position vector of the global best particle, denoted as Υ⃗pNitmax q, is
expected to contain the optimal values of the unknown parameters, corresponding
to the global minimum of the objective function J . A sufficient number of iterations
are used to ensure stability and achieve an optimal solution. To determine which
N and Nitmax to use, it is necessary to employ a process of trial and error.
The core concept of the method lies in the velocity updating, which incorporates
three terms with stochastic weights. The first term, the inertial component, depends
on the particle’s velocity in the previous iteration. The second term, the cognitive
component, directs the particle towards its personal best position. The third term,
the social component, guides the particle towards the best position found by any
particle in the swarm.
By following these steps in each iteration, the particle swarm optimization algorithm
progresses towards finding a local optimal position, which corresponds to the best
solution (within the search space) for the problem being considered.

The next chapter will analyze trajectories from Earth to a series of candidate
asteroids and from them to Mars and there will be selected the asteroid that
minimize ∆V from Earth to the asteroid and the total time of flight from Earth to
Mars.
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Chapter 4

Trajectory Design for Earth
to Mars Missions

To minimize Earth-Mars total mission ∆V and consequently the overall cost of
future Mars missions, a double arc trajectory is studied. The first arc will intercept
one of the candidate asteroids studied in this section. Then, insertion into a
Sun-asteroid Distant Retrograde Orbit (DRO) is performed, and, given a landing
location on the asteroid surface, a potential landing trajectory onto the asteroid
is studied similarly to what was proposed by Baraldi and Conte for Mars’ moon,
Phobos [19]. Since in-situ refueling is considered, the lift-off ∆V from the asteroid
and the ∆V of the second arc trajectory to Mars are ‘free’.
Missions to asteroids such as Itokawa demonstrated that near Earth asteroids
with water in the form of hydrated mineral and ice exist and they are potentially
convertible in propellant useful for spacecraft for the second arc trajectory from the
asteroid to Mars [20]. Therefore, refueling with In-Situ Resource Utilization (ISRU)
on asteroids can be highly cost-effective for a mission to Mars. ISRU refueling can
help decrease the launch mass of the spacecraft as it wouldn’t need to carry as
much propellant from Earth, which in turn could minimize the size and cost of the
rocket required for its launch.

4.1 Candidate Asteroid Selection
The number of known minor planets1 has increased from less than 4000 in 1970
to over 1.2 million in 2022 [21]. Keeping track of these minor planets requires

1According to the International Astronomical Union (IAU), a minor planet is an astronomical
object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet.
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more effort from the organizations that maintain their catalogs. The process of
discovering and designating minor planets involves collecting individual observa-
tions such as right ascension, declination, time, observatory location, and apparent
magnitude and reporting them to the International Astronomical Union’s Minor
Planet Center (IAU MPC), which then publishes the observations for independent
analysis. The MPC determines the heliocentric orbits of these minor planets based
on their orbital elements such as semi-major axis, eccentricity, inclination, argument
of perihelion, longitude of the ascending node, and mean anomaly, which are fitted
to the observations. Similarly, catalogs of orbital elements are curated by various
organizations including the Solar System Dynamics group at JPL, a consortium in
Italy that began at the University of Pisa, and Lowell Observatory in Flagstaff,
Arizona. Lowell’s astorb catalog2 has evolved into a modern relational database
with associated web infrastructure.

For this study, the orbital parameters of all 1.2 million minor planets are taken
from this catalogue. To reduce the number of minor planets/asteroids considered,
we exclude all the objects with a SMA less than Earth’s SMA and greater than
Mars’ SMA and all the objects with an inclination greater than 7°, considering that

aC “ 1.000001018 raus

aD “ 1.523662310 raus

iC “ 0.00°
iD “ 1.85°

(4.1)

where iC and iD are calculated with respect to the plane of the ecliptic, C means
"Earth" and D means "Mars". A low inclination of the orbit asteroid is considered
because the mission ∆V increases considerably if we make a change of plan with a
great change of inclination ∆i

∆V “
2 sin

`∆i
2

˘

p1 ` e cos θq na
?

1 ´ e2 cos pω ` θq
(4.2)

where e is the orbital eccentricity, ω is the argument of periapsis, θ is the true
anomaly, n is the mean motion and a is the semi-major axis. We can note as for
low eccentricity orbit, the mean parameter we have to consider to minimize ∆V is
∆i.
After this first selection, the candidate asteroids become 3434. To further reduce
the number of asteroids, we solve Lambert’s problem for finding the arc trajectory
from Earth to an asteroid using the universal solution, as explained in Sec. 2.3.
Lambert’s problem is solved several times to obtain a porkchop plot, which is a

2https://asteroid.lowell.edu/main/astorb/
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∆V map with a 2-D domain composed by different TOF (y-axis) and different
departure dates (x-axis). For computational speed, a coarse mesh is considered
where TOF is equally split in 60 parts from 51 to 300 days and the departure
dates changes every 30 days per 2 years starting on January 1, 2035. Once we
have computed the total ∆V needed from Low Earth Orbit (LEO) at 400 km of
altitude to each asteroid position for each different TOF and departure date, we
select only the asteroids that have at least a total ∆V less than 4.5 km{s. How
the total ∆V is computed is explained in the next section. After this selection,
the candidate asteroids becomes 94. Tab. 4.1 summarizes their names and their
orbital parameters.

Table 4.1: Candidate Asteroids and their Orbital Parameters with respect to the
J2000 Ecliptic reference frame

Object a raus e i rdegs Ω rdegs ω rdegs M rdegs

2000 EA14 1.1169 0.2026 3.5558 203.8305 206.0565 258.6195
1993 KA 1.2556 0.1978 6.0497 235.7651 342.0531 71.4521
1999 CG9 1.0618 0.0636 5.1553 138.4994 315.5890 37.8722
2005 ER95 1.2231 0.1591 3.3423 175.8631 8.4946 89.3191

2005 LC 1.1340 0.1027 2.7992 69.7928 147.0083 275.7425
2006 CL9 1.3462 0.2367 2.9376 139.2508 10.0614 321.4413

2006 DQ14 1.0277 0.0530 6.2957 155.3006 292.6021 176.4354
2006 UQ216 1.1039 0.1625 0.4738 217.6702 247.6721 336.2392

2007 HL4 1.1201 0.0907 6.5385 30.9718 139.3254 176.1519
2008 CM74 1.0889 0.1468 0.8537 321.4739 242.8326 36.1693
2008 HU4 1.0714 0.0556 1.3916 215.2683 350.5462 68.1344
2009 BD 1.0616 0.0518 1.2673 253.2008 316.4097 299.4390
2009 FH 1.4751 0.3394 0.6898 176.5157 24.2123 269.1949
2009 OS5 1.1481 0.0993 1.7107 144.3557 122.8071 64.5593

2009 SW171 1.3311 0.2333 3.0635 187.9849 150.2385 280.1851
2010 DJ 1.2064 0.1354 0.2327 3.2255 106.6390 323.4748

2010 RF12 1.0611 0.1882 0.8825 163.7123 267.3920 84.6385
2011 AA37 1.0959 0.0167 3.8169 275.6920 131.6060 268.3744
2011 CY7 1.2867 0.2137 3.9380 327.1000 164.8968 96.3243
2012 BB14 1.0637 0.0994 2.6444 316.8737 255.4661 315.9653
2012 VB37 1.4498 0.3127 1.9068 240.3259 153.9762 326.5411
2012 XM55 1.0976 0.1306 1.0810 66.4406 68.9951 274.9393
2013 HP11 1.1853 0.1259 4.1564 208.5827 9.6319 223.2356
2013 SP19 1.2849 0.2389 2.3260 0.7755 326.0269 189.0164
2013 UX2 1.1187 0.1493 4.1064 211.4071 228.0392 284.2737
2014 JR24 1.0665 0.1183 0.9298 48.8963 246.4457 301.3195

continued on next page...
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...continued from previous page
Object a raus e i rdegs Ω rdegs ω rdegs M rdegs

2014 LJ 1.0829 0.1413 0.9521 73.3514 95.1549 353.4160
2014 WX202 1.0356 0.0588 0.4128 243.9173 214.1195 267.0106
2014 WA366 1.0343 0.0716 1.5591 67.1066 287.6513 5.9672

2015 EZ6 1.2391 0.1945 3.1163 171.0002 6.4539 272.7066
2015 HC1 1.3543 0.2168 1.9762 228.1208 343.7456 351.6140
2015 VC2 1.0530 0.0744 0.8682 186.1494 288.2653 209.0057

2015 XX128 1.2664 0.2279 3.1299 77.4548 13.2059 13.2837
2015 XD169 1.0851 0.1212 3.7495 249.1294 137.7852 176.8251
2015 XA352 1.2694 0.1690 4.1123 236.5414 15.3890 195.7015
2016 CF137 1.0905 0.1000 2.4451 132.5417 301.5044 124.4844
2016 EP84 1.1904 0.1733 0.8190 287.4413 195.5128 163.0043

2016 GL222 1.1533 0.1368 3.5316 198.1055 303.3258 245.5768
2017 BF29 1.1812 0.1341 2.6128 302.3666 203.7956 251.7030
2017 BG30 1.0554 0.1071 1.6312 304.5028 250.4197 161.4550
2017 CP1 1.4166 0.2980 2.7992 330.5242 195.1257 196.4923
2017 FJ3 1.1334 0.1184 0.9633 167.2576 26.7249 319.8884

2017 FW90 1.0334 0.1460 3.1740 10.4163 85.8292 300.7627
2017 LD 1.3945 0.2778 0.0679 79.1456 195.8211 159.9548

2017 RL16 1.0175 0.1157 4.1178 16.5854 220.7477 216.1286
2017 UM52 1.0534 0.0525 3.3575 30.8950 53.1837 289.4977
2017 WM13 1.1319 0.1188 4.8496 230.7092 161.5628 153.4009

2017 YC1 1.2923 0.2610 2.6228 205.7536 169.4893 232.2218
2017 YW3 1.0947 0.1132 2.2001 273.7125 136.9870 218.4502
2018 LQ2 1.0911 0.0575 2.1262 178.3052 142.8374 351.7668
2018 RR1 1.0754 0.1413 0.6679 352.3493 277.1517 61.9671
2019 KJ2 1.0572 0.0265 3.1454 61.6680 252.4638 95.3290
2019 LV 1.0962 0.1495 4.9328 81.1664 47.5073 195.5807
2019 PY 1.0579 0.0575 6.8914 303.6425 109.2771 3.2759
2019 PO1 1.0360 0.0611 1.1203 328.2544 250.3860 222.5062
2019 SU3 1.1204 0.1085 1.2853 3.2505 332.3668 338.4469
2019 UO1 1.0984 0.0256 2.7706 218.9153 336.2423 158.6967
2019 UB4 1.0374 0.0963 0.9207 27.6592 286.5161 123.2244
2019 XV 1.1005 0.0976 0.3439 46.0513 356.4250 310.0650
2020 BK 1.2500 0.2201 3.4822 113.7524 32.5589 61.5776
2020 BV2 1.4253 0.2950 1.2474 135.6703 339.1188 298.2451
2020 CF2 1.1947 0.1900 1.1518 329.5924 141.7391 138.1247
2020 DE2 1.2712 0.2242 0.7483 228.1697 250.4966 57.3296
2020 HN 1.0563 0.1373 0.5865 217.9934 264.2954 297.2139

continued on next page...
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...continued from previous page
Object a raus e i rdegs Ω rdegs ω rdegs M rdegs

2020 HQ4 1.2499 0.2135 0.1407 251.7393 286.4554 34.0435
2020 HL6 1.2600 0.2319 0.2397 96.3950 169.7274 329.1604
2020 OE2 1.0796 0.0850 3.3913 301.1262 59.3533 60.4691
2020 OK5 1.0806 0.0837 1.0063 295.8379 108.1058 18.2104
2020 PP1 1.0026 0.0715 5.9441 140.0328 42.6179 322.8520
2020 RT3 1.3853 0.2488 2.5051 157.2788 187.7806 183.6656
2020 SM2 1.1954 0.2045 1.1506 358.5020 48.9329 275.8776
2020 SH6 1.1018 0.0731 1.6968 23.6197 276.4618 92.1913
2020 VV 1.1178 0.1187 0.3455 19.6803 332.6592 21.9319
2020 WY 1.0202 0.0286 1.7000 107.1036 180.3156 200.7350
2020 WQ3 1.2588 0.1922 3.0165 57.3089 16.6346 207.2667
2020 XJ4 1.2280 0.1750 3.0932 24.6187 30.8846 236.9143
2021 CE 1.4625 0.3031 0.9656 107.2257 11.5597 66.6887

2021 EN5 1.1529 0.0853 0.2830 46.1368 72.6451 255.1462
2021 GB8 1.0804 0.1775 1.9803 32.2510 88.9409 301.8775
2021 HF1 1.3025 0.2025 1.3916 47.0962 183.0440 74.9362
2021 JY5 1.0402 0.0884 2.1945 233.7615 79.1069 175.7563
2021 NV8 1.2375 0.2203 2.6848 98.6579 139.2184 100.8531
2021 RP2 1.1028 0.1764 0.0322 342.4884 72.8495 43.3287
2021 VZ8 1.1279 0.1714 1.9165 216.0648 133.4790 70.8031
2022 BT 1.1796 0.1830 3.9313 303.7319 149.1573 326.5947

2022 BX5 1.0788 0.0730 0.3867 6.1962 101.2866 3.0332
2022 KL6 1.2143 0.1754 1.4431 217.2650 354.2242 225.2985
2022 NX1 1.0219 0.0250 1.0667 274.7674 169.5831 65.0875
2022 RF1 1.2453 0.1260 4.2585 162.6316 181.1685 121.5854
2022 RS1 1.0201 0.0659 4.9525 160.4172 92.6020 246.9470
2022 SZ2 1.0858 0.1336 3.1691 180.9197 244.7806 82.1613

2022 SN21 1.2142 0.1602 3.9924 2.1186 353.9410 116.1647
2022 UA5 1.1326 0.1543 1.5597 23.7841 315.2201 140.0713
2022 WS8 1.1862 0.1774 1.2073 1.6289 0.4900 116.3800

4.2 Earth to Candidate Asteroids transfer
After importing the 94 candidate asteroids’ orbital parameters, we set 3660 different
departure dates from January 1, 2035 to January 7, 2045 (one per day) and 250
different TOFs from 51 to 300 days. To compute the first ∆V from a 400 km LEO
to asteroid is necessary to know the Earth’s velocity, v⃗C, at departure and the
velocity required to initiate the transfer, which is given by Eq. (2.90), v⃗tI1 , where
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we have to know the Earth’s position on the departure day and the asteroid’s
position at arrival. Here, the subscript tI means "first transfer". Knowing the last
two velocities, v⃗tI1 and v⃗C, we obtain the speed v8C

that the spacecraft should
have at Earth’s sphere of influence on a hyperbolic transfer.

v8C
“ }v⃗tI1 ´ v⃗C} (4.3)

Using the vis viva equation, Eq. (2.56), we can find the speed, vhypC
, that the

spacecraft should have at rLEO “ RC ` h on a hyperbolic transfer, where RC is
the Earth’s radius (equal to 6371 km) and h is the altitude equal to 400 km, and
where the subscript hyp means "hyperbolic".

ϵ “
v2

hypC

2 ´
µC

rLEO

“
v2

8C

2 (4.4)

where ϵ is the specific orbital energy and µC “ 398600 km3s´2. Solving for vhypC
,

we obtain
vhypC

“

c

v2
8C

` 2 µC

rLEO

(4.5)

Therefore the first ∆V for the Earth-Asteroid transfer, ∆V1CÑA
, becomes

∆V1CÑA
“ vhypC

´ vLEO (4.6)

where
vLEO “

c

µC

rLEO

(4.7)

To compute the second ∆V from LEO to the asteroid, it is necessary to know the
asteroid’s velocity, v⃗A, at arrival and the velocity computed from Eq. (2.91), v⃗tI2 ,
where we have to know the Earth’s position on the departure day and the asteroid’s
position on the arrival day.

∆V2CÑA
“ }v⃗A ´ v⃗tI2} (4.8)

The total ∆V for the Earth-Asteroid transfer is computed as the sum of ∆V1CÑA

and ∆V2CÑA

∆VtotCÑA
“ ∆V1CÑA

` ∆V2CÑA
(4.9)

Solving Lambert’s problem several times for each departure date and for each
TOF, and computing ∆VtotCÑA

, we obtain 94 different porkchop plots. In Fig.
(4.1) a porkchop plot from Earth to asteroid 2009 OS5 is shown, while all the
Earth-asteroid porkchop plots are shown in App. A.
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Figure 4.1: Porkchop Plot from Earth to Asteroid 2009 OS5

4.3 Candidate Asteroids for Mars transfers
Once the spacecraft arrives close enough to the asteroid, an insertion into a Sun-
asteroid Distant Retrograde Orbit (DRO) is performed, and a landing trajectory is
executed. The departure from the asteroid is set from 10 to 30 days after insertion
into a DRO. As for the first case, 250 different TOFs, from 51 to 300 days are set.
To compute the first ∆V from the asteroid to a 400 km Low Mars Orbit (LMO),
it is necessary to know the asteroid’s velocity, v⃗A, at departure and the velocity
computed from Eq. (2.90), v⃗tII1 , where we have to know the asteroid’s position at
departure and Mars’ position at arrival

∆V1AÑD
“ }v⃗tII1 ´ v⃗A} (4.10)

where the subscript tII means "second transfer". To compute the second ∆V from
the asteroid to a 400 km LMO, it is necessary to know Mars’ velocity, v⃗D, at arrival
and the velocity computed from Eq. (2.91), v⃗tII2 , where we have to know the
asteroid’s position at departure and Mars’ position at arrival. Knowing the last
two velocities, v⃗D and v⃗tII2 we obtain, v8D

, which is the speed that the spacecraft
has at the asteroid’s sphere of influence.

v8D
“ }v⃗D ´ v⃗tII2} (4.11)
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Using the vis viva equation, we can find the speed, vhypD
, i.e. the speed that the

spacecraft should have at rLMO “ RD ` h in an hyperbolic transfer. Here, RD is
the Mars’ radius equal to 3389.5 km and h is the altitude equal to 400 km and the
subscript hyp means "hyperbolic"

ϵ “
v2

hypD

2 ´
µD

rLMO

“
v2

8D

2 (4.12)

where µD “ 42828 km3s´2 is the gravitational parameter of Mars. Solving for vhypD
,

we obtain

vhypD
“

c

v2
8D

` 2 µD

rLMO

(4.13)

Therefore, the second ∆V for the Asteroid-Mars transfer, ∆V2AÑD
, becomes

∆V2AÑD
“ vhypD

´ vLMO (4.14)

where

vLMO “

c

µD

rLMO

(4.15)

is the circular orbit velocity corresponding to the targeted LMO. The total ∆V for
the Asteroid-Mars transfer is computed as the sum of ∆V1AÑD

and ∆V2AÑD

∆VtotAÑD
“ ∆V1AÑD

` ∆V2AÑD
(4.16)

Every Asteroid-Mars transfer depends on all the possible Earth-Asteroid conics
evaluated, i.e. 3,660 ˆ 250 “ 915,000 possible transfers. Considering that the
possible Asteroid-Mars transfers are 21 ˆ 250 “ 5,250, the total transfers computed
from Earth to Mars are 915,000 ˆ 5,250 “ 4,803,750,000 per asteroid possible
mission scenarios. Assuming a computational time to solve Lambert’s problem
equal to 0.2 ms per solution, all cases for all 94 asteroids would take about 2 years
and 10 months of continuous computation. Note that for this study a MSI GE66
Raider with a Intel(R) Core(TM) Processor i7-10875H CPU @ 2.30GHz, a 32 GB
RAM and a 64 bit operating system, x-64-based processor was used. MATLAB
R2022b was used as the programming software.
To avoid this problem, we find different local minima in the first Earth-Asteroid
conics. Then, we divide the domain into 300 sub-domains. Departure dates are
divided in 60 parts while TOFs are divided in 5 parts. Fig. 4.2 shows the subdivision
of the domain considering only 60 sub-domains for simplicity for Earth to Asteroid
2017 RL16 porkchop plot.
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Figure 4.2: Porkchop Plot domain division

For each of these subdomains, we find the minimum ∆V . We start from each
departure day and TOF, and look for the best case per asteroid using the following
cost function, J1, such that

J1 “

#

∆VtotCÑA
if ∆VtotAÑD

∆VtotCÑA
ď 1.10

8 if ∆VtotAÑD

∆VtotCÑA
ą 1.10

(4.17)

It should be noted that the propellant tanks are sized based on the largest mission
∆V (which could be the ∆V for Earth-asteroid or asteroid-Mars transfers) since the
spacecraft refuels at the asteroid. Furthermore. we assume that the ∆VtotAÑD

may
be at maximum 10% greater than ∆VtotCÑA

in order to not oversize the mass of the
tanks structure since they would be more voluminous to contain more propellant or
more massive (the thickness of the tank walls will be greater) to support a greater
pressure (more propellant in the same volume). In this way the Asteroid-Mars
transfers analyzed are 300 ˆ 21 ˆ 250 “ 1,575,000 per asteroid. Assuming the same
computing time as before, all cases for all 94 asteroids were analyzed in about 8
h 13 min. The best ∆V case according to the cost function for each asteroid is
summarized in Tab. 4.2.
Note that ∆VtotCÑA

is not the minimum ∆V possible for the first arc of the
trajectory, but is the minimum ∆V such that ∆VtotAÑD

ă 1.10 ¨ ∆VtotCÑA
. Thus,

the best asteroid case (2022 SN21) results in a ∆V equal to 3.9079 km{s which is
36.7% lower than minimum ∆V (6.1696 km{s) for a direct Earth-Mars transfer in
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the span of 10 years of departures starting from January 1, 2035. Fig. 4.3 shows
an Earth-Mars porkchop plot where the departure dates are stopped at the first
four years since the Earth-Mars synodic period is about 26 months.

Figure 4.3: Earth-Mars Porkchop Plot

Tab. 4.3 shows combinations of departure days from Earth, arrival days on
asteroid, departure days from the asteroid and arrival days on Mars. Tab. 4.2
shows that almost all TOFs exceed 1 year and more specifically they exceed the
TOF for which we obtain the minimum ∆V in 10 years of possible Earth-Mars
transfers. Also, TOF∆Vmin,CÑD

is equal to 252 days. Since total mission time is a
critical parameter to minimize, e.g. for crewed missions, we give more importance
to TOF and change the cost function J2 as follows

J2 “

$

&

%

∆VtotCÑA

∆Vmin,CÑD
`

T OFCÑAÑD

T OF∆Vmin,CÑD

if ∆VtotAÑD

∆VtotCÑA
ď 1.10

8 if ∆VtotAÑD

∆VtotCÑA
ą 1.10

(4.18)

where
∆Vmin,CÑD “ 6.1696 km/s
TOF∆Vmin,CÑD

“ 252 days (4.19)

Using this new cost function, Tab. 4.2 and Tab. 4.3 become Tab. 4.4 and Tab.
4.5, respectively. Solving Lambert’s problem several times for each departure
date and for each TOF, we obtain 94 different porkchop plots. In Fig. (4.4) is
shown a porkchop plot from asteroid 2021 C3 to Mars, while all the asteroid-Mars
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Figure 4.4: Porkchop Plot from asteroid 2021 C3 to Mars

porkchop plots are shown in App. B. Asteroid 2013 SP19 has best compromise
from the minimum ∆V from the Earth to asteroid and the minimum total TOF
from Earth to Mars (passing by the asteroid). So a spacecraft that leaves the Earth
on September 12, 2035 will arrive on this asteroid on December 21, 2035 using a
∆V equal to 4.8673 km/s. After a stay on the asteroid of 10 days, until December
31, 2035 to complete the ISRU refueling, the spacecraft will reach Mars on March
5, 2036 using a "free" ∆V equal to 3.4714 km/s. In this way, 21.1% of ∆V is saved
with respect to the best case of a direct Earth-Mars transfer (6.1696 km{s). This
result is obtained spending 77 days less of mission time (175 days) respect to the
best case of a direct Earth-Mars transfer (252 days). Therefore, we can think that
when ISRU refueling missions will be consolidated, a human mission will prefer this
second case, to reduce astronauts’ risks linked to radiation exposure and to save on
mass of consumables such as food and water brought from Earth. Fig. 4.5 and Fig.
4.7 show a double arc trajectory between Earth, asteroid and Mars for the two
cases considered. Fig. 4.6 shows the first case from a different view. The cyan line
represents Earth’s orbit, the orange one depicts Mars’ orbit, the red line shows the
asteroid’s orbit and finally the violet one represents the spacecraft trajectory. Note
that the violet and red lines overlap for a short part (10 days) when the spacecraft
is landed on the asteroid for ISRU. A double arc trajectory animation is provided
for both cases scanning the QR code present in the Fig.4.8 and Fig. 4.9.
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Figure 4.5: Double arc trajectory between Earth, asteroid 2022 SN21 and Mars

Figure 4.6: Double arc trajectory between Earth, asteroid 2022 SN21 and Mars
up view
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Figure 4.7: Double arc trajectory between Earth, asteroid 2013 SP19 and Mars

Figure 4.8: Link to double arc
trajectory animation (case: aster-
oid 2022 SN21) https://youtu.be/
2reTw5fh3fw

Figure 4.9: Link to double arc
trajectory animation (case: aster-
oid 2013 SP19) https://youtu.be/
EujpPoFwCj4
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Table 4.2: Minimum ∆V rkm{ss and TOF [days] according to cost function J1

Object ∆VtotCÑA
∆VtotAÑD

∆VtotAÑD

∆VtotCÑA
∆VtotCÑD

TOF
2000 EA14 7.1792 7.2514 1.0101 14.4306 610
1993 KA 8.7925 8.6007 0.9782 17.3932 581
1999 CG9 6.2195 5.2220 0.8396 11.4415 477
2005 ER95 5.8374 5.3865 0.9228 11.2239 614

2005 LC 4.1310 3.9877 0.9653 8.1187 621
2006 CL9 6.9006 3.6433 0.5280 10.5439 630

2006 DQ14 6.7429 6.0021 0.8901 12.7450 477
2006 UQ216 6.1226 6.2058 1.0136 12.3284 509

2007 HL4 9.1215 7.2089 0.7903 16.3304 630
2008 CM74 6.6615 6.1845 0.9284 12.8461 563
2008 HU4 7.7178 8.2441 1.0682 15.9618 493
2009 BD 5.3838 5.3700 0.9974 10.7537 610
2009 FH 19.3465 21.0920 1.0902 40.4385 560
2009 OS5 4.1960 4.4742 1.0663 8.6702 400

2009 SW171 4.4733 4.1712 0.9325 8.6446 326
2010 DJ 8.2434 6.9209 0.8396 15.1643 531

2010 RF12 4.5960 4.9778 1.0831 9.5738 560
2011 AA37 6.5176 5.4685 0.8390 11.9860 396
2011 CY7 8.8709 8.0692 0.9096 16.9401 581
2012 BB14 5.2818 4.6725 0.8846 9.9543 377
2012 VB37 9.4828 9.7795 1.0313 19.2623 554
2012 XM55 6.5975 5.7957 0.8785 12.3932 610
2013 HP11 6.8970 7.5177 1.0900 14.4147 580
2013 SP19 4.4168 4.1874 0.9481 8.6042 522
2013 UX2 5.6104 5.4370 0.9691 11.0474 494
2014 JR24 6.5279 6.2608 0.9591 12.7887 494

2014 LJ 7.0773 7.4215 1.0486 14.4988 461
2014 WX202 6.4383 5.9849 0.9296 12.4232 530
2014 WA366 4.4867 4.6855 1.0443 9.1722 488

2015 EZ6 5.9032 6.4817 1.0980 12.3848 630
2015 HC1 6.8417 5.8701 0.8580 12.7118 630
2015 VC2 7.1580 5.7037 0.7968 12.8617 584

2015 XX128 7.6913 7.0279 0.9137 14.7192 525
2015 XD169 7.3484 4.6099 0.6273 11.9584 595
2015 XA352 10.0564 10.1552 1.0098 20.2116 526
2016 CF137 5.4005 4.7027 0.8708 10.1032 531
2016 EP84 4.6218 4.7910 1.0366 9.4128 630
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Object ∆VtotCÑA

∆VtotAÑD

∆VtotAÑD

∆VtotCÑA
∆VtotCÑD

TOF
2016 GL222 5.1578 5.1835 1.0050 10.3413 519
2017 BF29 6.7992 6.9312 1.0194 13.7305 495
2017 BG30 7.3813 5.2598 0.7126 12.6411 599
2017 CP1 10.7812 8.9085 0.8263 19.6896 603
2017 FJ3 5.7507 6.0302 1.0486 11.7809 560

2017 FW90 5.1874 5.2820 1.0182 10.4694 566
2017 LD 7.2928 7.6853 1.0538 14.9782 451

2017 RL16 5.7491 5.3656 0.9333 11.1147 630
2017 UM52 5.0144 5.1971 1.0364 10.2115 624
2017 WM13 7.4433 4.1106 0.5523 11.5539 590

2017 YC1 6.1692 5.7148 0.9263 11.8840 457
2017 YW3 5.9897 5.6480 0.9430 11.6377 548
2018 LQ2 5.2521 5.4897 1.0452 10.7418 492
2018 RR1 4.9588 4.8760 0.9833 9.8348 306
2019 KJ2 4.8080 5.1739 1.0761 9.9818 463
2019 LV 5.1132 4.6134 0.9023 9.7265 513
2019 PY 6.5645 6.7852 1.0336 13.3497 360
2019 PO1 5.4025 5.2993 0.9809 10.7017 630
2019 SU3 4.8097 4.2320 0.8799 9.0417 333
2019 UO1 5.5053 4.8423 0.8796 10.3476 627
2019 UB4 5.4233 4.5524 0.8394 9.9757 318
2019 XV 5.6671 5.5434 0.9782 11.2105 493
2020 BK 7.3098 7.1133 0.9731 14.4231 525
2020 BV2 11.6595 9.7429 0.8356 21.4024 630
2020 CF2 7.0719 7.3440 1.0385 14.4159 572
2020 DE2 5.3926 5.6864 1.0545 11.0790 610
2020 HN 6.2123 5.0681 0.8158 11.2804 520
2020 HQ4 7.3867 7.4138 1.0037 14.8006 510
2020 HL6 6.8797 6.9599 1.0117 13.8396 410
2020 OE2 5.2497 5.7200 1.0896 10.9697 393
2020 OK5 5.3845 5.5696 1.0344 10.9541 595
2020 PP1 5.2384 5.7346 1.0947 10.9731 626
2020 RT3 6.3195 6.7862 1.0738 13.1057 630
2020 SM2 11.8383 12.9408 1.0931 24.7791 554
2020 SH6 4.1919 4.5241 1.0793 8.7160 342
2020 VV 6.0688 6.3477 1.0460 12.4165 460
2020 WY 5.0434 5.1754 1.0262 10.2187 339
2020 WQ3 6.3347 6.7478 1.0652 13.0826 630
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Object ∆VtotCÑA

∆VtotAÑD

∆VtotAÑD

∆VtotCÑA
∆VtotCÑD

TOF
2020 XJ4 5.7469 4.6529 0.8096 10.3998 524
2021 CE 7.0312 4.7125 0.6702 11.7436 558

2021 EN5 4.5182 4.3506 0.9629 8.8688 596
2021 GB8 6.7476 4.7015 0.6968 11.4490 630
2021 HF1 11.1259 10.0569 0.9039 21.1828 430
2021 JY5 5.7325 6.0855 1.0616 11.8180 303
2021 NV8 7.9323 8.4852 1.0697 16.4175 384
2021 RP2 4.0472 4.4004 1.0873 8.4476 431
2021 VZ8 6.7584 6.8244 1.0098 13.5829 365
2022 BT 10.1197 10.3357 1.0213 20.4555 454

2022 BX5 5.3645 5.7564 1.0731 11.1209 430
2022 KL6 6.6573 6.2360 0.9367 12.8933 581
2022 NX1 5.4890 5.9298 1.0803 11.4187 563
2022 RF1 5.3093 5.1348 0.9671 10.4441 356
2022 RS1 7.2044 7.2631 1.0081 14.4676 478
2022 SZ2 5.8386 6.0021 1.0280 11.8407 378

2022 SN21 3.9079 3.8458 0.9841 7.7537 512
2022 UA5 5.2942 4.6771 0.8834 9.9713 620
2022 WS8 5.4414 4.8754 0.8960 10.3169 490

Table 4.3: Transfer dates according to cost function J1

Object DD from C AD on A DD from A AD on D

2000 EA14 08-Nov-2043 03-Sep-2044 13-Sep-2044 10-Jul-2045
1993 KA 09-Jul-2043 16-Mar-2044 15-Apr-2044 09-Feb-2045
1999 CG9 05-Feb-2035 24-Aug-2035 03-Sep-2035 27-May-2036
2005 ER95 11-Jun-2043 06-Apr-2044 20-Apr-2044 14-Feb-2045

2005 LC 22-May-2041 18-Mar-2042 08-Apr-2042 02-Feb-2043
2006 CL9 22-May-2041 18-Mar-2042 17-Apr-2042 11-Feb-2043

2006 DQ14 07-Mar-2035 04-Aug-2035 31-Aug-2035 26-Jun-2036
2006 UQ216 01-Jan-2044 27-Oct-2044 06-Nov-2044 24-May-2045

2007 HL4 09-May-2043 04-Mar-2044 03-Apr-2044 28-Jan-2045
2008 CM74 15-May-2037 03-Jan-2038 02-Feb-2038 29-Nov-2038
2008 HU4 08-Mar-2043 13-Nov-2043 23-Nov-2043 13-Jul-2044
2009 BD 03-Mar-2037 28-Dec-2037 07-Jan-2038 03-Nov-2038
2009 FH 04-Sep-2038 12-May-2039 22-May-2039 17-Mar-2040
2009 OS5 02-Jul-2035 21-Nov-2035 01-Dec-2035 05-Aug-2036
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Object DD from C AD on A DD from A AD on D

2009 SW171 14-Sep-2035 10-Feb-2036 20-Feb-2036 05-Aug-2036
2010 DJ 24-Mar-2043 28-Nov-2043 08-Dec-2043 05-Sep-2044

2010 RF12 07-Mar-2037 12-Nov-2037 22-Nov-2037 18-Sep-2038
2011 AA37 01-Jan-2035 20-Jul-2035 13-Aug-2035 01-Feb-2036
2011 CY7 06-May-2039 12-Jan-2040 11-Feb-2040 07-Dec-2040
2012 BB14 17-Jan-2035 05-Aug-2035 15-Aug-2035 29-Jan-2036
2012 VB37 03-Mar-2041 02-Nov-2041 12-Nov-2041 08-Sep-2042
2012 XM55 26-Dec-2042 22-Oct-2043 01-Nov-2043 27-Aug-2044
2013 HP11 02-Mar-2035 07-Nov-2035 07-Dec-2035 02-Oct-2036
2013 SP19 10-Sep-2035 20-Mar-2036 19-Apr-2036 13-Feb-2037
2013 UX2 06-Nov-2043 01-Sep-2044 11-Sep-2044 14-Mar-2045
2014 JR24 06-Aug-2037 22-Feb-2038 04-Mar-2038 13-Dec-2038

2014 LJ 04-Jul-2037 20-Jan-2038 30-Jan-2038 08-Oct-2038
2014 WX202 03-Mar-2035 19-Sep-2035 19-Oct-2035 14-Aug-2036
2014 WA366 01-Jan-2035 09-Sep-2035 19-Sep-2035 03-May-2036

2015 EZ6 23-Mar-2043 17-Jan-2044 16-Feb-2044 12-Dec-2044
2015 HC1 28-Jun-2041 24-Apr-2042 24-May-2042 20-Mar-2043
2015 VC2 11-Dec-2044 11-Sep-2045 21-Sep-2045 18-Jul-2046

2015 XX128 11-May-2043 04-Dec-2043 22-Dec-2043 17-Oct-2044
2015 XD169 04-Mar-2037 10-Dec-2037 24-Dec-2037 20-Oct-2038
2015 XA352 04-Jul-2038 11-Mar-2039 21-Mar-2039 12-Dec-2039
2016 CF137 03-Mar-2035 20-Sep-2035 20-Oct-2035 15-Aug-2036
2016 EP84 22-Mar-2041 16-Jan-2042 15-Feb-2042 12-Dec-2042

2016 GL222 03-May-2035 08-Nov-2035 08-Dec-2035 03-Oct-2036
2017 BF29 05-Jul-2039 05-Jan-2040 16-Jan-2040 11-Nov-2040
2017 BG30 07-Jan-2045 03-Oct-2045 02-Nov-2045 29-Aug-2046
2017 CP1 09-Jul-2043 07-Apr-2044 07-May-2044 03-Mar-2045
2017 FJ3 06-May-2041 11-Jan-2042 21-Jan-2042 17-Nov-2042

2017 FW90 27-Mar-2039 02-Dec-2039 18-Dec-2039 13-Oct-2040
2017 LD 01-Jan-2035 26-Jun-2035 06-Jul-2035 27-Mar-2036

2017 RL16 23-Apr-2043 17-Feb-2044 18-Mar-2044 12-Jan-2045
2017 UM52 02-Jan-2037 29-Oct-2037 22-Nov-2037 18-Sep-2038
2017 WM13 18-Nov-2040 22-Aug-2041 06-Sep-2041 01-Jul-2042

2017 YC1 01-Sep-2035 26-Jan-2036 05-Feb-2036 01-Dec-2036
2017 YW3 09-Nov-2043 04-Sep-2044 14-Sep-2044 10-May-2045
2018 LQ2 17-Mar-2037 04-Oct-2037 03-Nov-2037 22-Jul-2038
2018 RR1 02-Jul-2035 10-Oct-2035 03-Nov-2035 03-May-2036
2019 KJ2 01-Jan-2035 06-Sep-2035 16-Sep-2035 08-Apr-2036
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2019 LV 13-Jun-2043 03-Jan-2044 13-Jan-2044 07-Nov-2044
2019 PY 03-Mar-2035 19-Jul-2035 18-Aug-2035 26-Feb-2036
2019 PO1 05-Mar-2039 30-Dec-2039 29-Jan-2040 24-Nov-2040
2019 SU3 02-May-2035 27-Aug-2035 06-Sep-2035 30-Mar-2036
2019 UO1 09-Jul-2043 04-May-2044 31-May-2044 27-Mar-2045
2019 UB4 02-Mar-2035 10-Jun-2035 02-Jul-2035 14-Jan-2036
2019 XV 03-Mar-2035 13-Aug-2035 12-Sep-2035 08-Jul-2036
2020 BK 02-Jul-2039 02-Feb-2040 12-Feb-2040 08-Dec-2040
2020 BV2 07-Jan-2045 03-Nov-2045 03-Dec-2045 29-Sep-2046
2020 CF2 02-Mar-2043 10-Dec-2043 20-Dec-2043 24-Sep-2044
2020 DE2 15-Apr-2043 09-Feb-2044 19-Feb-2044 15-Dec-2044
2020 HN 04-May-2037 20-Nov-2037 10-Dec-2037 06-Oct-2038
2020 HQ4 29-Jul-2039 14-Feb-2040 24-Feb-2040 20-Dec-2040
2020 HL6 01-Jan-2035 07-Jun-2035 17-Jun-2035 15-Feb-2036
2020 OE2 24-Jan-2035 12-Aug-2035 22-Aug-2035 21-Feb-2036
2020 OK5 13-Jan-2043 15-Oct-2043 04-Nov-2043 30-Aug-2044
2020 PP1 09-Mar-2043 30-Dec-2043 29-Jan-2044 24-Nov-2044
2020 RT3 05-Sep-2041 02-Jul-2042 01-Aug-2042 28-May-2043
2020 SM2 25-Sep-2038 27-May-2039 06-Jun-2039 01-Apr-2040
2020 SH6 02-Jul-2035 15-Oct-2035 25-Oct-2035 08-Jun-2036
2020 VV 20-Sep-2037 17-Feb-2038 27-Feb-2038 24-Dec-2038
2020 WY 03-Mar-2035 15-Jul-2035 31-Jul-2035 05-Feb-2036
2020 WQ3 13-Jan-2039 09-Nov-2039 09-Dec-2039 04-Oct-2040
2020 XJ4 13-Apr-2039 13-Nov-2039 23-Nov-2039 18-Sep-2040
2021 CE 09-Apr-2041 03-Feb-2042 05-Mar-2042 19-Oct-2042

2021 EN5 03-Mar-2035 24-Nov-2035 24-Dec-2035 19-Oct-2036
2021 GB8 11-Nov-2042 07-Sep-2043 07-Oct-2043 02-Aug-2044
2021 HF1 23-Jul-2044 31-Oct-2044 30-Nov-2044 26-Sep-2045
2021 JY5 02-Mar-2035 07-Jul-2035 17-Jul-2035 30-Dec-2035
2021 NV8 01-Jan-2035 12-May-2035 22-May-2035 20-Jan-2036
2021 RP2 22-Sep-2043 09-Apr-2044 19-Apr-2044 26-Nov-2044
2021 VZ8 16-Nov-2041 24-Feb-2042 26-Mar-2042 16-Nov-2042
2022 BT 03-Jan-2039 10-Sep-2039 20-Sep-2039 01-Apr-2040

2022 BX5 29-May-2037 06-Sep-2037 06-Oct-2037 02-Aug-2038
2022 KL6 06-Jul-2039 13-Mar-2040 12-Apr-2040 06-Feb-2041
2022 NX1 04-Mar-2037 09-Nov-2037 22-Nov-2037 18-Sep-2038
2022 RF1 07-Sep-2035 16-Dec-2035 26-Dec-2035 28-Aug-2036
2022 RS1 02-Mar-2035 30-Jul-2035 27-Aug-2035 22-Jun-2036
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2022 SZ2 22-Sep-2043 19-Feb-2044 29-Feb-2044 04-Oct-2044
2022 SN21 26-Sep-2039 13-Apr-2040 25-Apr-2040 19-Feb-2041
2022 UA5 06-Jul-2041 02-May-2042 22-May-2042 18-Mar-2043
2022 WS8 01-Jan-2035 23-Sep-2035 03-Oct-2035 05-May-2036

Table 4.4: Minimum ∆V rkm{ss and TOF [days] according to cost function J2

Object ∆VtotCÑA
∆VtotAÑD

∆VtotAÑD

∆VtotCÑA
∆VtotCÑD

TOF
2000 EA14 7.1792 7.2514 1.0101 14.4306 610
1993 KA 9.6250 10.5276 1.0938 20.1526 396
1999 CG9 7.9294 6.1425 0.7747 14.0720 385
2005 ER95 6.9274 5.9813 0.8634 12.9087 480

2005 LC 5.7552 5.3828 0.9353 11.1380 540
2006 CL9 8.7572 5.1200 0.5847 13.8772 530

2006 DQ14 6.7429 6.0021 0.8901 12.7450 477
2006 UQ216 8.1518 8.8162 1.0815 16.9681 339

2007 HL4 9.1918 9.0776 0.9876 18.2694 479
2008 CM74 6.6615 6.1845 0.9284 12.8461 563
2008 HU4 7.7178 8.2441 1.0682 15.9618 493
2009 BD 6.8680 6.6815 0.9729 13.5495 419
2009 FH 19.3465 21.0920 1.0902 40.4385 560
2009 OS5 4.4800 4.6218 1.0316 9.1018 386

2009 SW171 4.5424 3.7633 0.8285 8.3057 289
2010 DJ 8.3379 6.2893 0.7543 14.6272 520

2010 RF12 5.7991 5.9989 1.0345 11.7980 480
2011 AA37 7.8285 7.0617 0.9021 14.8902 316
2011 CY7 8.8709 8.0692 0.9096 16.9401 581
2012 BB14 5.2818 4.6725 0.8846 9.9543 377
2012 VB37 10.4177 8.8125 0.8459 19.2302 510
2012 XM55 8.0595 8.0232 0.9955 16.0827 476
2013 HP11 9.9795 10.1917 1.0213 20.1712 325
2013 SP19 4.8673 3.4714 0.7132 8.3386 175
2013 UX2 5.6136 5.5184 0.9830 11.1320 493
2014 JR24 6.5279 6.2608 0.9591 12.7887 494

2014 LJ 7.0773 7.4215 1.0486 14.4988 461
2014 WX202 7.9827 6.4940 0.8135 14.4767 436
2014 WA366 6.5629 4.8550 0.7398 11.4179 401
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∆VtotAÑD

∆VtotAÑD

∆VtotCÑA
∆VtotCÑD

TOF
2015 EZ6 9.8934 9.9570 1.0064 19.8504 422
2015 HC1 7.9636 8.5970 1.0795 16.5606 510
2015 VC2 9.3318 6.3793 0.6836 15.7110 339

2015 XX128 7.6913 7.0279 0.9137 14.7192 525
2015 XD169 8.2444 5.6867 0.6898 13.9312 535
2015 XA352 13.7398 12.4198 0.9039 26.1596 369
2016 CF137 5.4005 4.7027 0.8708 10.1032 531
2016 EP84 5.9139 6.1560 1.0409 12.0699 547

2016 GL222 5.1578 5.1835 1.0050 10.3413 519
2017 BF29 8.3740 7.2544 0.8663 15.6285 405
2017 BG30 12.5428 7.3787 0.5883 19.9216 345
2017 CP1 10.9605 10.5579 0.9633 21.5184 574
2017 FJ3 5.9713 6.2517 1.0470 12.2230 460

2017 FW90 6.3206 6.3657 1.0071 12.6863 410
2017 LD 8.3711 6.4422 0.7696 14.8133 365

2017 RL16 8.7937 5.5630 0.6326 14.3568 306
2017 UM52 5.7730 5.6745 0.9829 11.4475 500
2017 WM13 8.7637 7.1691 0.8180 15.9328 457

2017 YC1 8.4034 8.2871 0.9862 16.6905 281
2017 YW3 6.9712 7.1040 1.0190 14.0752 430
2018 LQ2 6.3414 5.1472 0.8117 11.4886 348
2018 RR1 4.9588 4.8760 0.9833 9.8348 306
2019 KJ2 4.9554 4.6738 0.9432 9.6292 309
2019 LV 5.2364 5.6234 1.0739 10.8598 487
2019 PY 6.9847 6.5997 0.9449 13.5844 299
2019 PO1 10.8223 5.9753 0.5521 16.7976 393
2019 SU3 4.9401 3.8837 0.7861 8.8238 311
2019 UO1 7.0114 6.4745 0.9234 13.4859 345
2019 UB4 5.4233 4.5524 0.8394 9.9757 318
2019 XV 5.6849 5.9911 1.0539 11.6760 480
2020 BK 7.5331 6.7688 0.8985 14.3018 510
2020 BV2 11.6595 9.7429 0.8356 21.4024 630
2020 CF2 7.6096 8.0677 1.0602 15.6773 510
2020 DE2 6.0488 5.4075 0.8940 11.4563 560
2020 HN 6.9690 6.7300 0.9657 13.6990 480
2020 HQ4 7.3867 7.4138 1.0037 14.8006 510
2020 HL6 6.9472 6.5502 0.9428 13.4974 401
2020 OE2 6.1016 5.6127 0.9199 11.7143 293
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∆VtotAÑD

∆VtotAÑD

∆VtotCÑA
∆VtotCÑD

TOF
2020 OK5 5.5139 6.0050 1.0891 11.5189 337
2020 PP1 5.9938 6.4484 1.0758 12.4422 493
2020 RT3 8.2922 8.7540 1.0557 17.0462 530
2020 SM2 11.8383 12.9408 1.0931 24.7791 554
2020 SH6 4.1949 4.3826 1.0447 8.5775 328
2020 VV 7.4838 5.2993 0.7081 12.7831 348
2020 WY 5.0434 5.1754 1.0262 10.2187 339
2020 WQ3 7.5909 7.6041 1.0017 15.1951 530
2020 XJ4 6.2585 4.5080 0.7203 10.7665 489
2021 CE 10.4749 5.8739 0.5608 16.3488 252

2021 EN5 4.5182 4.3506 0.9629 8.8688 596
2021 GB8 8.3042 5.6839 0.6845 13.9881 410
2021 HF1 11.1259 10.0569 0.9039 21.1828 430
2021 JY5 5.7325 6.0855 1.0616 11.8180 303
2021 NV8 7.9323 8.4852 1.0697 16.4175 384
2021 RP2 4.1603 4.5150 1.0853 8.6753 406
2021 VZ8 6.7584 6.8244 1.0098 13.5829 365
2022 BT 10.1263 10.1478 1.0021 20.2741 294

2022 BX5 5.3645 5.7564 1.0731 11.1209 430
2022 KL6 6.6573 6.2360 0.9367 12.8933 581
2022 NX1 5.4890 5.9298 1.0803 11.4187 563
2022 RF1 5.3291 4.9446 0.9279 10.2737 355
2022 RS1 10.9451 7.2985 0.6668 18.2436 259
2022 SZ2 5.8386 6.0021 1.0280 11.8407 378

2022 SN21 6.4634 5.8872 0.9109 12.3506 382
2022 UA5 6.0829 3.7651 0.6190 9.8479 387
2022 WS8 6.1739 4.3038 0.6971 10.4777 356

Table 4.5: Transfer dates according to cost function J2

Object DD from C AD on A DD from A AD on D

2000 EA14 08-Nov-2043 03-Sep-2044 13-Sep-2044 10-Jul-2045
1993 KA 07-Sep-2039 08-Mar-2040 18-Mar-2040 07-Oct-2040
1999 CG9 02-May-2035 12-Sep-2035 22-Sep-2035 21-May-2036
2005 ER95 30-Sep-2043 27-Feb-2044 28-Mar-2044 22-Jan-2045

2005 LC 02-Mar-2035 07-Nov-2035 07-Dec-2035 23-Aug-2036
2006 CL9 13-Jul-2041 29-Jan-2042 28-Feb-2042 25-Dec-2042
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2006 DQ14 07-Mar-2035 04-Aug-2035 31-Aug-2035 26-Jun-2036
2006 UQ216 02-Jul-2035 10-Oct-2035 20-Oct-2035 05-Jun-2036

2007 HL4 06-Mar-2041 11-Nov-2041 21-Nov-2041 28-Jun-2042
2008 CM74 15-May-2037 03-Jan-2038 02-Feb-2038 29-Nov-2038
2008 HU4 08-Mar-2043 13-Nov-2043 23-Nov-2043 13-Jul-2044
2009 BD 01-Jan-2035 20-Jul-2035 30-Jul-2035 24-Feb-2036
2009 FH 04-Sep-2038 12-May-2039 22-May-2039 17-Mar-2040
2009 OS5 03-Jul-2035 11-Oct-2035 10-Nov-2035 23-Jul-2036

2009 SW171 05-Sep-2035 14-Dec-2035 24-Dec-2035 20-Jun-2036
2010 DJ 08-Mar-2043 13-Nov-2043 23-Nov-2043 09-Aug-2044

2010 RF12 24-Mar-2037 21-Aug-2037 20-Sep-2037 17-Jul-2038
2011 AA37 02-May-2035 19-Sep-2035 29-Sep-2035 13-Mar-2036
2011 CY7 06-May-2039 12-Jan-2040 11-Feb-2040 07-Dec-2040
2012 BB14 17-Jan-2035 05-Aug-2035 15-Aug-2035 29-Jan-2036
2012 VB37 08-Mar-2043 24-Sep-2043 04-Oct-2043 30-Jul-2044
2012 XM55 04-Jul-2037 20-Jan-2038 30-Jan-2038 23-Oct-2038
2013 HP11 07-Nov-2043 15-Feb-2044 16-Mar-2044 27-Sep-2044
2013 SP19 12-Sep-2035 21-Dec-2035 31-Dec-2035 05-Mar-2036
2013 UX2 08-Nov-2043 03-Sep-2044 13-Sep-2044 15-Mar-2045
2014 JR24 06-Aug-2037 22-Feb-2038 04-Mar-2038 13-Dec-2038

2014 LJ 04-Jul-2037 20-Jan-2038 30-Jan-2038 08-Oct-2038
2014 WX202 03-May-2035 19-Nov-2035 29-Nov-2035 12-Jul-2036
2014 WA366 03-Mar-2035 06-Aug-2035 05-Sep-2035 07-Apr-2036

2015 EZ6 05-Jul-2039 12-Jan-2040 05-Feb-2040 30-Aug-2040
2015 HC1 01-Jul-2044 17-Jan-2045 27-Jan-2045 23-Nov-2045
2015 VC2 03-Jul-2035 11-Oct-2035 30-Oct-2035 06-Jun-2036

2015 XX128 11-May-2043 04-Dec-2043 22-Dec-2043 17-Oct-2044
2015 XD169 03-May-2037 08-Jan-2038 18-Jan-2038 20-Oct-2038
2015 XA352 30-Sep-2039 08-Jan-2040 07-Feb-2040 03-Oct-2040
2016 CF137 03-Mar-2035 20-Sep-2035 20-Oct-2035 15-Aug-2036
2016 EP84 07-May-2041 10-Dec-2041 09-Jan-2042 05-Nov-2042

2016 GL222 03-May-2035 08-Nov-2035 08-Dec-2035 03-Oct-2036
2017 BF29 04-Sep-2039 13-Dec-2039 12-Jan-2040 13-Oct-2040
2017 BG30 02-Sep-2035 11-Dec-2035 21-Dec-2035 12-Aug-2036
2017 CP1 09-Jul-2043 15-Mar-2044 14-Apr-2044 02-Feb-2045
2017 FJ3 23-Aug-2041 20-Jan-2042 30-Jan-2042 26-Nov-2042

2017 FW90 25-Jun-2037 03-Oct-2037 13-Oct-2037 09-Aug-2038
2017 LD 02-Mar-2035 10-Jun-2035 20-Jun-2035 01-Mar-2036

continued on next page...
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...continued from previous page
Object DD from C AD on A DD from A AD on D

2017 RL16 01-Jan-2035 21-Apr-2035 21-May-2035 03-Nov-2035
2017 UM52 06-Apr-2037 12-Dec-2037 22-Dec-2037 19-Aug-2038
2017 WM13 18-Apr-2041 04-Nov-2041 14-Nov-2041 19-Jul-2042

2017 YC1 02-Jun-2035 10-Sep-2035 20-Sep-2035 09-Mar-2036
2017 YW3 17-Mar-2035 25-Jun-2035 25-Jul-2035 20-May-2036
2018 LQ2 03-Sep-2037 12-Dec-2037 22-Dec-2037 17-Aug-2038
2018 RR1 02-Jul-2035 10-Oct-2035 03-Nov-2035 03-May-2036
2019 KJ2 02-May-2035 10-Aug-2035 22-Aug-2035 06-Mar-2036
2019 LV 30-May-2043 05-Feb-2044 06-Mar-2044 28-Sep-2044
2019 PY 11-May-2035 19-Aug-2035 06-Sep-2035 05-Mar-2036
2019 PO1 01-Jan-2035 31-May-2035 10-Jun-2035 29-Jan-2036
2019 SU3 02-May-2035 10-Aug-2035 20-Aug-2035 08-Mar-2036
2019 UO1 02-May-2035 29-Sep-2035 09-Oct-2035 11-Apr-2036
2019 UB4 02-Mar-2035 10-Jun-2035 02-Jul-2035 14-Jan-2036
2019 XV 03-Mar-2035 31-Jul-2035 30-Aug-2035 25-Jun-2036
2020 BK 04-Jul-2039 20-Jan-2040 30-Jan-2040 25-Nov-2040
2020 BV2 07-Jan-2045 03-Nov-2045 03-Dec-2045 29-Sep-2046
2020 CF2 23-Jun-2043 09-Jan-2044 19-Jan-2044 14-Nov-2044
2020 DE2 13-May-2043 18-Jan-2044 28-Jan-2044 23-Nov-2044
2020 HN 04-May-2037 01-Oct-2037 31-Oct-2037 27-Aug-2038
2020 HQ4 29-Jul-2039 14-Feb-2040 24-Feb-2040 20-Dec-2040
2020 HL6 01-Jan-2035 31-May-2035 10-Jun-2035 06-Feb-2036
2020 OE2 02-May-2035 10-Aug-2035 20-Aug-2035 19-Feb-2036
2020 OK5 03-May-2035 13-Sep-2035 27-Sep-2035 04-Apr-2036
2020 PP1 14-Aug-2043 01-Mar-2044 11-Mar-2044 19-Dec-2044
2020 RT3 29-Oct-2041 17-May-2042 16-Jun-2042 12-Apr-2043
2020 SM2 25-Sep-2038 27-May-2039 06-Jun-2039 01-Apr-2040
2020 SH6 02-Jul-2035 10-Oct-2035 20-Oct-2035 25-May-2036
2020 VV 31-Dec-2043 09-Apr-2044 19-Apr-2044 13-Dec-2044
2020 WY 03-Mar-2035 15-Jul-2035 31-Jul-2035 05-Feb-2036
2020 WQ3 31-Mar-2039 17-Oct-2039 16-Nov-2039 11-Sep-2040
2020 XJ4 06-May-2039 30-Oct-2039 11-Nov-2039 06-Sep-2040
2021 CE 09-Jan-2042 08-Jun-2042 18-Jun-2042 18-Sep-2042

2021 EN5 03-Mar-2035 24-Nov-2035 24-Dec-2035 19-Oct-2036
2021 GB8 26-Jun-2035 04-Oct-2035 14-Oct-2035 09-Aug-2036
2021 HF1 23-Jul-2044 31-Oct-2044 30-Nov-2044 26-Sep-2045
2021 JY5 02-Mar-2035 07-Jul-2035 17-Jul-2035 30-Dec-2035
2021 NV8 01-Jan-2035 12-May-2035 22-May-2035 20-Jan-2036

continued on next page...
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2021 RP2 27-Sep-2043 24-Feb-2044 25-Mar-2044 06-Nov-2044
2021 VZ8 16-Nov-2041 24-Feb-2042 26-Mar-2042 16-Nov-2042
2022 BT 02-Jul-2035 10-Oct-2035 20-Oct-2035 21-Apr-2036

2022 BX5 29-May-2037 06-Sep-2037 06-Oct-2037 02-Aug-2038
2022 KL6 06-Jul-2039 13-Mar-2040 12-Apr-2040 06-Feb-2041
2022 NX1 04-Mar-2037 09-Nov-2037 22-Nov-2037 18-Sep-2038
2022 RF1 01-Sep-2035 10-Dec-2035 20-Dec-2035 21-Aug-2036
2022 RS1 03-Mar-2035 11-Jun-2035 21-Jun-2035 17-Nov-2035
2022 SZ2 22-Sep-2043 19-Feb-2044 29-Feb-2044 04-Oct-2044

2022 SN21 02-Jul-2035 10-Oct-2035 20-Oct-2035 18-Jul-2036
2022 UA5 21-Feb-2035 21-Jul-2035 20-Aug-2035 14-Mar-2036
2022 WS8 29-Mar-2035 26-Aug-2035 05-Sep-2035 19-Mar-2036

79



Chapter 5

Sun-Asteroid Distant
Retrograde Orbit Family

In this chapter, Sun-Asteroid Distant Retrograde Orbits family will be found. After
the estimation of the asteroid mass and discussing about DROs importance, the
guess for the initial conditions of the orbit will be obtained using Particle Swarm
Optimization. Then, with the differential correction method, the exact initial
conditions will be found. The procedure will be repeated for all DROs of the family
of varying size. Finally the ∆V for orbit insertion will be calculated.

5.1 Sun-Asteroid Mass Ratio Estimation
Future missions using an asteroid for in situ refueling will need an initial recon-
naissance mission. It will be useful to understand better the surface morphology
and consequently the best landing site along with estimating the asteroid mass
and other of its physical characteristics. Of course, the reconnaissance mission will
have to search for resources and prove that there are enough supplies, for a given
number (N) of resupplies.
In our case, we don’t have the asteroid mass and consequently the gravitational
parameter µA. For this reason we have selected1 some minor planets (asteroids
and comets) whose µ is known. To carry out a statistical investigation we need to
know how µ varies as a function of another parameter. The parameter chosen is
the diameter of the asteroid, intended as the mean diameter between the diameters
along the x, y and z axes centered in the barycenter of the asteroid. Asteroids

1https://ssd.jpl.nasa.gov/tools/sbdb_query.html
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considered are shown in Tab. 5.1. We interpolate the data with a cubic function

Table 5.1: Asteroid statistical investigation diameter vs µ

Object Diameter rkms µ rkm3{s2s

16 Psyche (A852 FA) 226 1.53
22 Kalliope (A852 WA) 167.536 0.491
107 Camilla (A868 WA) 210.370 0.7475
243 Ida (A884 SB) 32 0.00275
253 Mathilde (A885 VA) 52.8 0.00689
433 Eros (A898 PA) 16.84 4.463e-04
704 Interamnia (A910 TC) 306.313 5.
25143 Itokawa (1998 SF36) 0.33 2.1e-9
101955 Bennu (1999 RQ36) 0.482 4.8904e-9
162173 Ryugu (1999 JU3) 0.896 3.00e-8
185851 (2000 DP107) 0.863 3.224e-8
67P/Churyumov-Gerasimenko 3.4 662.2e-9

like fpxq “ A ¨ x3 ` B ¨ x2 ` C ¨ x ` D, obtaining the blue line shown in Fig. 5.1.
The reason why we have selected the function aforementioned is that we need to
find a function like µ “ fpdq. Therefore, we have

µ “ G ¨ m “ G ¨ ρV “ G ¨ ρ
4
3πr3

“ G ¨ ρ
1
6πd3 (5.1)

where m, ρ, V , r, d are respectively the mass, density, volume, mean radius and
mean diameter of the asteroid, while G is the gravitational constant. Finally we
have that the interpolating function is as the following

µ “ fpdq “ a ¨ d3 (5.2)

We need to estimate the diameter of the asteroid to use in the interpolating function
aforementioned. The estimation can be derived using the absolute magnitude H,
representing the visual magnitude an observer would perceive if the asteroid were
positioned 1 Astronomical Unit away from both the Sun and the observer, with
a zero phase angle2. Additionally, the estimation can be based on the albedo a,
which signifies the ratio of light received by a celestial body to the light it reflects.
Albedo values span from 0 (complete darkness) to 1 (ideal reflector)3. As suggested
by Harris [22], the diameter can be calculated as follow

dpH, aq “ 103.1236´0.5 logpaq´0.2H (5.3)

2https://cneos.jpl.nasa.gov/glossary/h.html
3https://cneos.jpl.nasa.gov/glossary/albedo.html
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Figure 5.1: Diameter vs µ of some known asteroids

Considering that among all selected asteroids the only available physical parameter
is the absolute magnitude H, for the diameter estimation we consider an albedo
range between 0.01 and 0.9 and we calculate the mean diameter as follow:

dmeanpHq “
dpH,0.01q ` dpH,0.9q

2 (5.4)

If we consider the best asteroid shown in Tab. 4.4, the object 2013 SP19, we
discover that using the Eq. (5.4) and the Eq. (5.3), the mean diameter is equal to
11 m. This means that there will be not enough resources for multiple resupplies.
While if we consider the best asteroid shown in Tab. 4.2, the object 2022 SN21, the
mean diameter is equal to 34 m, but at the same time we note that TOF in that case
is almost two times bigger than a direct Earth-Mars transfer. Therefore we need a
new cost function J3 such as J3 p∆VtotCÑA

, TOF, dmeanq. For simplicity, we take into
account a maximum excavation depth of approximately 20 meters. We can suppose
to treat asteroids of Type I that, according the chemical-petrologic classification
proposed by [23, 24], have a bulk water content equal to 20.08%. Conservatively,
we assume that the mass percentage is equal to the volume percentage. Therefore
we have that the extractable volume is equal to

Vextractable “
4
3πr3

asteroid ´
4
3π prasteroid ´ hextractableq

3 (5.5)
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where
rasteroid “ dmean

2
hextractable “ 20 m

(5.6)

Considering that only the 20.08% can be used as propellant, we obtain

Vep “ 0.2008Vextractable (5.7)

where the subscript "ep" means extractable propellant. Note that we assume a
perfectly spherical asteroid.
After the mission phase in which H2O is split into LOX and LH2 (not discussed in
this study) the tanks are assumed to be filled to their maximum capacity. Therefore,
it is necessary to estimate the volume capacity of the tanks. We assume to use
a SpaceX spacecraft: Starship. The second stage of the Starship system has a
propellant capacity equal to 1.2 ¨ 106 kg4. To compute an approximation of the
volume capacity of the tanks, we need to compute the propellant density ρp. To
do it, we use the Eq. (5.8), function of the mixture ratio, MR, equal to 3.65, the
liquid oxygen density, ρLOX , equal to 1141 kg{m3 and the methane density, ρCH4 ,
equal to 430 kg{m3.

ρp “ ρLOXρCH4

MR ` 1
ρCH4MR ` ρLOX

(5.8)

With the aforementioned values, we obtain a capacity of the propellant tank, Vtank,
equal to 1430 m3. This way, by supposing that the SpaceX Raptor, the rocket
engines used by Starship, could be converted from LOX{CH4 propellant engines
to LOX{LH2 propellant engines and that the volume capacity of the propellant
tank remains the same, we can compute the number of supplies, Nsupplies, that an
asteroid can guarantee as follows

Nsupplies “ Vep{Vtank (5.9)

Finally we can write the new function cost J3 to select a new asteroid among those
presented in Tab. 4.1 to maximize the number of supplies, minimize the ∆Vtot from
Earth to the asteroid and minimize the TOF .

J3 “
∆VtotCÑA

∆Vmin,CÑD

`
TOFCÑAÑD

TOF∆Vmin,CÑD

`
Ntarget

Nsupplies

(5.10)

4https://www.spacex.com/vehicles/starship/
5https://www.faa.gov/space/stakeholder_engagement/spacex_starship/media/

Appendix_G_Exhaust_Plume_Calculations.pdf
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where
∆Vmin,CÑD “ 6.1696 km/s
TOF∆Vmin,CÑD

“ 252 days
Ntarget “ 50 supplies

(5.11)

Ntarget is set as the number of supplies that an asteroid has to guarantee. Using the
data from Tab. 4.2 and Tab. 4.4, and showing only the asteroids with ∆VtotCÑA

ă 5
km{s, we obtain Tab. 5.2. The speed given in the table is referred in km{s, the

Table 5.2: Candidate asteroids and critical parameters for the J3 cost function

Object ∆VtotCÑA
TOF RmeanA

Nsupplies J3
2005 LC 4.1310 621 16.0 2 28.1
2009 OS5 4.1960 400 58.2 83 2.87

2009 SW171 4.4733 326 21.5 6 10.4
2010 RF12 4.5960 560 7.7 1 53.0
2013 SP19 4.4168 522 5.3 2 27.8

2014 WA366 4.4867 488 17.7 3 19.3
2016 EP84 4.6218 630 12.2 1 53.2
2018 RR1 4.9588 306 3.7 3 18.7
2019 KJ2 4.8080 463 13.6 2 27.6
2019 SU3 4.8097 333 12.8 1 52.1
2020 SH6 4.1919 342 38.1 29 3.76
2021 EN5 4.5182 596 17.9 3 19.8
2021 RP2 4.0472 431 3.3 3 19.0
2022 SN21 3.9079 512 17.1 3 19.3
2009 OS5 4.4800 386 58.2 83 2.86

2009 SW171 4.5424 289 21.5 6 10.2
2013 SP19 4.8673 175 5.3 2 26.5
2018 RR1 4.9588 306 3.7 3 18.7
2019 KJ2 4.9554 309 13.6 2 27.0
2019 SU3 4.9401 311 12.8 1 52.0
2020 SH6 4.1949 328 38.1 29 3.71
2021 EN5 4.5182 596 17.9 3 19.8
2021 RP2 4.1603 406 3.3 3 19.0

time of flight in days and the mean radius of the asteroid in m. Note that some
asteroids are repeated in the table because different combinations of ∆VtotCÑA

and TOF are considered. Using the cost function J3, asteroid 2009 OS5 has been
selected. It is the best compromise from the minimum ∆V from the Earth to
asteroid the minimum total TOF from Earth to Mars (passing by the asteroid) and
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the maximum number of supplies possible (under the aforementioned assumptions).
So a spacecraft that leaves the Earth on July 3, 2035 will arrive on asteroid 2009
OS5 on October 11, 2035 using ∆V of 4.4800 km/s, it will stay on it for 30 days,
until November 10, 2035 to complete the ISRU refueling and it will reach Mars
on July 23, 2036 with a "free" ∆V of 4.6218 km/s. In this way, 27.4% of ∆V is
saved with respect to the best case of a direct Earth-Mars transfer. This result
is obtained spending more than 134 days of mission time respect of the best case
of a direct Earth-Mars transfer. The number of possible propellant resupplies on
asteroid 2009 OS5 are fixed to 83.
Finally, we can estimate µA, interpolating data from Tab. 5.1 and using as reference
diameter 2 ¨ 58.2 m. The interpolating function used is the following

µ “ fpdq “ 1.598 ¨ 10´7
¨ d3 (5.12)

Zooming into Fig. 5.1 , we obtain Fig. 5.2 where is shown a reference µA equal
to 2.520204112512 ¨ 10´10 km3{s2. As a result we can compute the mass ratio of

Figure 5.2: Zoom in of Fig. 5.1

the system Sun-asteroid 2009 0S5, µA{d, as in Eq. 5.13, where d means "Sun".
Considering µd equal to 132,712,440,018 km3{s2 we obtain

µA{d “
µA

µd ` µA

“ 1.898996139450213 ¨ 10´21 (5.13)

Since the gravitational parameter of the asteroid is very small, its gravitational
influence is negligible compared to that of the Sun. However, in its vicinity, the
gravity of the asteroid can generate significant perturbative effects.
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5.2 Distant Retrograde Orbits

As shown in Sec. 1.5 Distant Retrograde Orbits (DROs) are large orbits encir-
cling a smaller primary celestial body in the CR3BP. The word "distant" in the
term "Distant Retrograde Orbit" indicates that the orbit is positioned at a cer-
tain distance from the celestial body, while the word "retrograde" means that the
spacecraft moves in the opposite direction to the rotational motion of the celestial
body. In the CR3BP, DROs can exhibit perfect periodicity, meaning their motion
repeats exactly after a certain period. However, due to various factors such as
the gravitational influence of other celestial bodies or non-spherical shape of the
primary body, maintaining a perfectly periodic DRO can be challenging. Thus, in
practice, slight perturbations in the in-plane velocity are often present, leading to
quasi-periodic orbits. These quasi-periodic orbits closely resemble periodic motion,
but exhibit small variations over time. Nevertheless, quasi-periodic DROs are still
highly advantageous, especially for applications such as quarantine orbits, as their
stability showcases their ability to withstand perturbations and maintain their
intended purpose [25].
DROs are particularly favored for locating in-space infrastructures due to their
outstanding stability and the ease of accessing them in terms of the gravitational
potential energy. Their stability is characterized by their resistance to perturba-
tions, making them reliable for long-duration missions and operations.

To find a periodic DRO, several parameters are used. One of these parame-
ters is the ξ-amplitude, Aξ, which represents the maximum distance from the
smaller primary body in the positive ξ-axis direction, using a coordinate frame
centered at the barycenter of the Sun-asteroid system as shown in Fig. 5.3. In
this reference frame, the periapsis radius and its corresponding velocity Vη at the
intersection of the ξζ-plane (where η “ 0) are crucial in creating a periodic orbit.
The periapse radius determines the closest distance between the spacecraft and the
smaller primary body, while the corresponding velocity ensures that the spacecraft
follows a periodic orbit.

5.3 Obtaining DRO ICs with PSO

In this specific section, a Particle Swarm Optimization algorithm will be employed
to determine a Sun-Asteroid DRO based on Aξ and Vη. These serve as the starting
point for optimizing the landing trajectory, which will be discussed in Chapter
6. Since DROs lie on the ξη-plane, we can use the CR3BP equations of motion
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Figure 5.3: Geometric schematization of a Sun-asteroid DRO

neglecting the ζ-component. Therefore, the EOMs become
$

&

%

ξ
2

´ 2η
1

´ ξ “ ´
`

1 ´ µA{d

˘ ξ`µA{d

ρ3
1

´ µA{d

ξ´p1´µA{dq
ρ3

2

η
2

` 2ξ
1

´ η “ ´
`

1 ´ µA{d

˘

η
ρ3

1
´ µA{d

η
ρ3

2

(5.14)

where
ρ1 “

b

`

ξ ` µA{d

˘2
` η2

ρ2 “

b

`

ξ ´
`

1 ´ µA{d

˘˘2
` η2

(5.15)

The PSO algorithm is used to research the ICs of the CR3BP EOMs ξ0, η0, 9ξ0 and
9η0, that lead to a periodic DRO. Starting by integrating the Eq.(5.14) at the point
farthest from the sun on the ξ-axis, we obtain the following ICs

$

’

’

&

’

’

%

ξ0 “ ´Aξ ` 1 ´ µA{d

η0 “ 0
9ξ0 “ 0
9η0 “ Vη

(5.16)

The velocity in rξ0, η0s has no ξ-component while the η-component is called Vη. In
the CR3BP, when using the synodic coordinate system, an orbit is called periodic
if it is indefinitely repeated. This implies that after a period of rotation denoted as
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τ , the variables ξ, η, 9ξ and 9η return to their original values:
$

’

’

&

’

’

%

ξpτq “ ξp0q “ ξ0
ηpτq “ ηp0q “ η0
9ξpτq “ 9ξp0q “ 9ξ0
9ηpτq “ 9ηp0q “ 9η0

(5.17)

Therefore PSO is performed using the following cost function J to minimize

J “ |ξpτq ´ ξp0q| ` |ηpτq ´ ηp0q| ` | 9ξpτq ´ 9ξp0q| ` | 9ηpτq ´ 9ηp0q| (5.18)

which becomes

J “ |ξpτq ` Aξ ´ 1 ` µA{d| ` |ηpτq| ` | 9ξpτq| ` | 9ηpτq ´ Vη| (5.19)

If we want to obtain a quasi-circular DRO, it’s necessary that ξpτ{2q is almost
equal to Aξ ` 1 ´ µA{d. Therefore, J changes as

J “ |ξpτq ` Aξ ´ 1 ` µA{d| ` |ηpτq| ` | 9ξpτq| ` | 9ηpτq ´ Vη|`

`|ξpτ{2q ´ Aξ ´ 1 ` µA{d|
(5.20)

In this way the number of decision variables become two: τ and Vη. By following
the schematization of PSO shown in Fig. 5.4, we initialize the number of particles
and the maximum number of iterations. In this study, for reasons of computational
cost, we set up

Nparticles “ 30
Niterationsmax “ 200 (5.21)

To set the variables bounds, we need to reference values. In this case we can
simplify the problem using the Keplerian Restricted 2 Body Problem (KR2BP).
We suppose to have a circular orbit with asteroid 2000 OS5 as primary body. We
consider a SMA equal to Aξ ¨ LU “ 0.5 km. Where LU is the length unit used
in the characterization of the physical properties of the system Sun-Asteroid in
the CR3BP. LU represents the distance between the Sun and the asteroid 2009
OS5. From Tab. 4.1, we can use the 2009 OS5 SMA as LU. Subsequently will be
useful the time unit TU of the system Sun-Asteroid in the CR3BP. It indicates the
inverse of the relative angular frequency between the Sun and the asteroid 2009
OS5. Therefore, we obtain

LU “ aA “ 171,747,349 km

TU “
TA

2π
“

b

a3
A

µd
“ 6,178,445 s

(5.22)

Finally we can compute the dimensionless speed, Vsc, that a spacecraft would have
if it orbited in a circular orbit around the asteroid 2009 OS5 and the dimensionless
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period, T , of that orbit using the equations of KR2BP.

Vsc “
b

µA

Aξ¨LU
¨ T U

LU
“ 2.26 ¨ 10´2

T “

c

pAξ¨LUq
3

µA
¨ 1

T U
“ 8.08 ¨ 10´7

(5.23)

We can set the variables bounds as follow After that we set up the inertial weight, cI ,

Table 5.3: Lower and Upper Bounds of the two decision variables

# Variable Lower Bound Upper Bound
1 Vη 0.9 ¨ Vsc 1.1 ¨ Vsc

2 τ 0.9 ¨ T 1.1 ¨ T

the cognitive weight, cC , and the social weight, cS. The PSO Stochastic Parameters
expressions [26] are

$

&

%

cI “
1`r1p0,1q

2
cC “ 1.49445 ¨ r2p0,1q

cS “ 1.49445 ¨ r3p0,1q

(5.24)

where r1p0,1q, r2p0,1q, and r3p0,1q denote three separate random numbers chosen
independently from a uniform distribution ranging from 0 to 1. Finally, we set up
the particles velocity limits as the difference between the upper bound and the
lower bound of the each decision variables. By continuing to follow the flow chart
shown in Fig. 5.4, we initialize the particles positions with the Matlab function
unifrnd which returns an array of random numbers chosen from the continuous
uniform distribution over the interval between the previously set bounds. After
this step, we compute the best positions ever visited by particle i up to the current
iteration j, Ψpjq

k piq, where k indicates the kth decision variable and we compute its
respective minimum cost according the Eq. (5.20). Consequently the best global
positions of the whole swarm until jth iteration, Υpjq

k , is calculated. If the cost
of the positions Υpjq

k is less of a value called Jmin, the main loop is stopped and
the algorithm reports the best particles positions Υpjq

1 “ Vη and Υpjq

1 “ τ . In this
algorithm, Jmin is set equal to 10´15. If the cost of the global best positions is more
than Jmin the main loop continues and updates the ith particle velocities v

pj`1q

k piq
at j ` 1th iteration of the kth decision variable as

v
pj`1q

k piq “ cI ¨ v
pjq

k piq ` cC ¨

´

Ψpjq

k piq ´ ϱ
pjq

k piq
¯

` cS ¨

´

Υpjq

k ´ ϱ
pjq

k piq
¯

(5.25)

where ϱ
pjq

k piq indicates the position of the ith particle at the jth iteration of the kth

decision variable. After this we apply the velocities limits and compute the new
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Figure 5.4: Schematization of PSO algorithm

particle positions as in Eq. (3.12).
We apply position limits in the event that the particle positions exceeds the limits
imposed. At this point we re-evaluate the new position and the main loop restarts.
The main loop ends when the the iteration jth reaches the number maximum of
the iterations or when, as aforementioned, the cost of the global best positions,
Gbest, is more than Jmin.
If the global best doesn’t change for 20 iterations consecutively, a re-initialization
is performed. The position bounds are re-set as follows

lk “ p1 ´ 10´s´5q ¨ Υpjq

k

uk “ p1 ` 10´s´5q ¨ Υpjq

k

(5.26)

Where lk and uk are the lower and upper bounds of the kth decision variable
respectively. s indicates the sth re-initialization.

Fig. 5.2 shows the Global Best Cost evolution until the number of the jth-iteration
reached Niterationsmax . We can note that as the first best particle position already
has a low cost (2 ¨ 10´8). This means that the bounds are consistent. After less
than 9 iterations the Global Best Cost decreases by an order of magnitude. After
the 9th iteration, the Global Best Cost is reduced by 18% from the last iteration,
which results to 2.23 ¨ 10´9. If we zoom into Fig. 5.2, we obtain Fig. 5.5, which
shows 20 iterations in which the Global Best Cost is not updated, so the algorithm
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Figure 5.5: Global Best Cost evolution

re-initialize the particle positions obtaining the end of the "stall".

Figure 5.6: Zoom in of Fig. 5.5
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The values obtained from the PSO are
"

Vη “ 8.357933214810436 ¨ 10´7

τ “ 2.4891604948189 ¨ 10´2 (5.27)

The values units become
"

Vy “ Vη ¨ LU
T U

“ 0.0232 m{s
T “ τ ¨ TU “ 42.7198 h

(5.28)

5.4 Sun-2009 OS5 DRO design with Differential
Corrections method

By starting from the values presented in 5.27, we apply the Differential Corrections
method to design the right DRO. We will confront the results between DC method
and PSO and we will evaluate if it is opportune to use only PSO to find the entire
Sun-2009 OS5 DRO family. Using the Eq. (1.79), and adapting it to our case, we
have
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Indeed, in this case, compared with the halo design explained in Sec. 1.4.3, δξ0 can
be neglected, as well as all the ζ-components because DROs lie on the ξη-plane.
Recalling Eq. (1.81), and inserting it in the Eq.(5.29), we obtain

δ 9ξf “ Φ45δ 9η0 ´ :ξf
Φ25δ 9η0

δ 9ηf

(5.30)

Solving for δ 9η0, we have

δ 9η0 “
δ 9ξf

Φ45 ´ Φ25
:ξf

δ 9ηf

(5.31)
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Figure 5.7: DC flow chart

The revised initial condition 9η0 ` δ 9η0 is used to begin the next iteration and
this process is continued until 9ξf stays within some acceptable tolerance, set equal
to 1 ¨ 10´10 or until a maximum number of iterations, set equal to 40, is achieved.
In Fig. 5.7 a flowchart of the differential correction algorithm to find DRO orbit
with fixed Aξ, is shown. The dimensionless half period, τ{2, is found, using the
symmetry of DRO with respect to ξ-axis. Indeed the integration of the CR3BP
equations of motion are stopped when the orbit reaches the value η “ 0.

We can note from the Fig. 5.8 as 9η0, changes only its 13th decimal place. At
the same time, Fig. 5.9 shows us as τ{2 changes only its 7th decimal place. It
means that we are computationally close to the solution. The relative error be-
tween the solution proposed by PSO and the solution proposed by DC method is
1.4769 ¨ 10´5 for Vη and 6.0876 ¨ 10´4 for τ . The DC method does not falls below
the set tolerance in 40 iterations as we can see from the Fig. 5.10. Finally, Fig.
5.11 shows the DRO obtained from using the differential corrector method. We can
note that the reference frame is shifted of a value equal to 1 ´ µ, in the center of
the asteroid. The plots have been reported in dimensional form for ease of reading.
In addition it is to be noted that the asteroid shown in the figure is not 2009 OS5,
but Psyche 16 with the diameter of 2009 OS5.
Psyche 16 is a fascinating asteroid that has garnered significant attention in the
field of astronomy. Discovered in 1852 by the Italian astronomer Annibale de
Gasparis, Psyche 16 is located in the main asteroid belt between Mars and Jupiter.
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Figure 5.8: 9η0 evolution

Figure 5.9: τ{2 evolution
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Figure 5.10: | 9ξf | evolution

What makes Psyche 16 particularly intriguing is its composition, as it is believed to
be primarily made of metal, primarily nickel and iron. In fact, it is estimated that
Psyche 16 could contain more metal than all the known asteroids in the asteroid
belt combined. NASA is planning a mission called Psyche, set to launch on October
10, 2023, which aims to explore this intriguing asteroid up close6.

5.5 Sun-2009 OS5 DROs Family
Since the results obtained from the two different methods explained above are quite
similar to each other, the Sun-2009 OS5 DROs family will be obtained using only
the PSO.
The Sun-2009 OS5 DROs family is obtained with different Aξ ¨ LU . They vary from
500 m to 2500 m every 250 m. In Tab. 5.4 are summarized all the main parameters
linked with DROs family such as Aξ, Vη and τ and with the PSO algorithm such
as the Best Global Cost of Eq.(5.20). While in Fig. 5.12 are shown all the DROs
obtained from PSO.

6https://www.nasa.gov/mission_pages/psyche/overview/index.html

95

https://www.nasa.gov/mission_pages/psyche/overview/index.html


Sun-Asteroid Distant Retrograde Orbit Family

Figure 5.11: Sun-2009 OS5 DRO from different views

Table 5.4: DROs Family main parameters and PSO Best Global Cost

Aξ Vη τ Gbest

2.91e-09 8.13891358563799e-07 0.022854256836790 2.38e-09
4.37e-09 6.61020059810958e-07 0.040855665395517 3.87e-09
5.82e-09 5.79476336590143e-07 0.064311562605193 5.35e-09
7.28e-09 5.15967840571650e-07 0.087341829308445 7.07e-09
8.73e-09 4.75350601136578e-07 0.115831098076684 7.19e-09
1.02e-08 4.43528953094944e-07 0.146573698802440 9.17e-09
1.16e-08 4.15041954569664e-07 0.175706672013026 9.32e-09
1.31e-08 3.93213223717243e-07 0.208111182644281 1.02e-08
1.46e-08 3.77522018290711e-07 0.247002715276282 1.08e-08

It is necessary to update the ∆V from the Earth to the asteroid 2009 OS5,
∆VCÑA, because the velocity that the spacecraft should equalize is no more equal to
V⃗2009´OS5. Considering that the asteroid’s velocity, V⃗2009´OS5, is computed respect
to the J2000 Ecliptic reference frame, Vη ¨ LU

T U
has been rotated according to that
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Figure 5.12: Sun-2009 OS5 DRO Family

reference system. Recalling the concepts discussed in Sec. 4.2, the velocity that
the spacecraft should have in J2000 Ecliptic reference frame for DRO insertion,
here called V⃗DRO, is equal to

V⃗DRO “ V⃗2009´OS5 ` V⃗η|ERF
¨

LU

TU
(5.32)

∆V2CÑA
is computed, as norm of the vector difference between V⃗DRO and the

velocity, v⃗tI2 , at which the spacecraft arrives from a transfer orbit, started from a
400 km LEO and ended in a Sun-2009 OS5 DRO.

∆V2CÑA
“

›

›

›
V⃗DRO ´ v⃗tI2

›

›

›
(5.33)

We note that for this analysis we have considered that the arrival position is the
center of the asteroid and not the correct DRO position, since we are talking of
hundreds of meters of difference on a scale of hundreds of billions of meters. All
velocities aforementioned are shown in Fig. 5.13.
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Figure 5.13: Main velocities of the first trajectory arc schematization

Applying Eq.(5.32) and Eq.(5.33) and considering ∆V1CÑA
equal to 3.4051 km{s,

we obtain new ∆VtotCÑA
similar to the previous computed, which was equal to

4.4800 km{s. They changes from each other in the order of mm{s, for this reason
we have not reported the results, but we still conducted the study for completeness.
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Chapter 6

Landing Trajectories
Optimization on Asteroid

This chapter examines the process of optimizing landing trajectories from a Sun-
asteroid DRO using one impulsive maneuver. The spacecraft starts on a marginally
stable parking orbit around the asteroid 2009-OS5, and the goal is to determine
the required ∆V to achieve a specified landing location. Given the limited size
and gravitational influence of the asteroid, the challenge lies in determining the
optimal approach to safely land a spacecraft on its surface. To accomplish this,
various factors need to be considered, such as the asteroid’s shape, rotation, surface,
gravitational field, and terrain characteristics. These elements greatly impact the
planning and execution of a successful landing. Since this problem is extremely
complex, we restrict our study to achieving a point on an imaginary sphere which
contains the asteroid. After reaching that point, other accurate models can be
considered. These models will consider all disturbance, and a three dimensional
model of the spacecraft which will need multiple continuous impulses to landing
safe on the asteroid.

6.1 PSO applied to landing trajectories on 2009-
OS5

Particle Swarm Optimization has been employed to iteratively refine the landing
trajectories as proposed by Baraldi and Conte for Mars’ moon, Phobos [19]. Choos-
ing the parameters to optimize is a complex task, and there are various approaches
to tackling the optimization. In the subsequent analysis, the parameters selected
are: ∆V , α, X⃗DRO and TOF . The first one indicates the magnitude of the ∆V
needed to achieve the given landing location, the second parameter (α) gives the
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∆V ’s direction; the parameter X⃗DRO indicates a point on the parking orbit where
the landing maneuver starts, while TOF indicates the landing trajectory time
of flight. As shown in Fig. 6.1, α is the angle with respect the ξ-axis (which is
collinear with the Sun-asteroid line) at which the ∆V is applied, while X⃗DRO are
the coordinates (ξ, η) given from one of the DRO of the family analyzed in the
previous chapter.

Figure 6.1: Main PSO parameters schematization

We can set the variables bounds as shown in Tab. 6.1, where Vη and τ are
the values found in Chapter 5, for the specific parking DRO here considered
(Aξ ¨ LU “ 2.5 km). Since the DRO has been discretized in p points, the lower
bound of X⃗DRO is the first point (X⃗DROp1q), while the upper bound is the last
point (X⃗DROppq). For the reasons stated above, we decided not to reach directly the

Table 6.1: Lower and Upper Bounds of the four decision variables

# Variable Lower Bound Upper Bound
1 ∆V 0 Vη

2 α 0 2π

3 X⃗DRO X⃗DROp1q X⃗DROppq

4 TOF 0.15 ¨ τ 0.8 ¨ τ

surface of the asteroid, but a point on an imaginary sphere of radius 3 times that
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of the asteroid. The positions are placed on the ξη-plane and they are distributed
each 45° as shown in Fig. 6.2.

Figure 6.2: Landing Positions

As explained in the previous chapter, we initialize the particle positions with
the Matlab function unifrnd, which returns an array of random numbers chosen
from the continuous uniform distribution over the interval between the set bounds.
Therefore the first iteration begins and the new initial conditions for the Eq. (5.14)
and Eq. (5.15) become

$

’

’

&

’

’

%

ξ0 “ ξDROpiq
η0 “ ηDROpiq
9ξ0 “ 9ξDROpiq ` ∆V ¨ cos α
9η0 “ 9ηDROpiq ` ∆V ¨ sin α

(6.1)

where i indicates the ith discretization point of DRO with 1 ă i ă N .

The cost function, J , to minimize is modeled as follows

J “
||r⃗final ´ r⃗landing|| ¨ LU

0.005 `
∆V

Vη

(6.2)

where r⃗final indicates the final coordinates (ξf ηf) at which the integration is
stopped, while r⃗landing indicates the landing coordinates set previously. The latter
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are transformed into kilometers and divided for 0.005, because we want to have
an error close to 5 m. In the last term we have the ∆V used for the landing
maneuver compared with Vη. We want to minimize also the ∆V , but we have to
remember that the order of magnitude is cm{s ´ mm{s, so it does not influence
the mission ∆V -budget significantly. The cost function is built to approach infinity
if the trajectory enters into the sphere shown in Fig. 6.2.

To optimize computational cost, the number of particles and the maximum number
of iterations are set up as follows

Nparticles “ 50
Niterationsmax “ 200 (6.3)

The procedure follows the procedures explained in Chapters 3 and 5. Therefore,
after updating particles’ positions, velocities and global best cost, we obtain the 8
landing trajectories with their respective ∆V vectors shown in Fig. 6.3 and Fig.
6.4. The white orbit is the parking DRO from which ∆V s are applied.

Figure 6.3: Landing Trajectories and ∆V Vectors
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Figure 6.4: Zoomed version of Fig. 6.3

Fig. 6.5 summarizes the evolutions of the global best bost as iterations change
for each landing location. Note that 0° indicates the point placed at the maximum
x, and the other points are obtained by rotating it counterclockwise by 45°. In
addition, the color of each case of the plot of the Global Best Cost evolution is the
same as the landing trajectory. We can see as in all cases, J reaches a value less
than or about equal to 1. It means that the final point of the landing trajectory is
closer than 5 m respect of the arrival location and that the ∆V is less than Vη. Tab.
6.2 summarizes all the main parameters useful for finding the landing trajectory.
In this case, the angle θ indicates the arrival point on the imaginary sphere. As
we expected, ∆V s are on the order of a few mm{s. X⃗DRO indicates the starting
position in meter in a reference frame shifted to the center of the asteroid. The
landing trajectory TOF is between 2 and 4 day, which are acceptable times, because
the total waiting time from the insertion into parking DRO to departure for Mars
is equal to 30 days for the asteroid 2009-OS5. This means that a spacecraft would
have up to 20 days to perform all necessary ISRU operations while at the asteroids.
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Figure 6.5: Global Best Cost evolution

Table 6.2: Landing maneuver main parameters and PSO Best Global Cost (J)

θ ∆V rmm{ss α X⃗DRO rm, ms TOF rdays J
0° 7.23 292.78° [-2493.50, 181.25] 2.70 0.69
45° 6.55 292.22° [-2358.89, -839.35] 3.40 0.62
90° 7.63 282.29° [-2500.34, 25.31] 2.88 0.73
135° 8.93 285.13° [-2500.00, 0] 2.65 0.85
180° 7.38 108.97° [2481.19, -5193.30] 2.65 1.08
225° 7.84 69.52° [1840.60, -1743.62] 2.65 0.75
270° 6.99 149.16° [1912.03, 1660.23] 2.92 0.67
315° 6.59 203.94° [-632.32, 2438.09] 3.23 0.63
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To successfully land on an asteroid, an autonomous landing navigation and
guidance scheme could be considered [27]. It involves planning desired descent
landing trajectories while considering initial and terminal constraints, and designing
guidance control laws to track the reference descent trajectory [28].
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Conclusions

This thesis has explored the potential of utilizing asteroids as refueling points
for Earth-Mars missions to minimize the ∆V requirements and overall cost. By
implementing In-Situ Resource Utilization (ISRU) techniques, the spacecraft can
extract and utilize resources from asteroids, such as water for propellant production
or direct consumption (e.g. drinking).

The study focused on trajectories from Earth to candidate asteroids and from
there to Mars. The objective was to minimize the total ∆V from Earth to the
asteroid and the time of flight from Earth to Mars, while maximizing the number
of resupplies on the asteroid. A double arc trajectory was investigated, involving
the interception of a candidate asteroid, insertion into a Sun-asteroid Distant
Retrograde Orbit (DRO), a landing trajectory on the asteroid, and then departure
towards Mars using the propellant obtained from the asteroid.

The dynamics of Sun-asteroid systems were modeled using the Circular Restricted
Three-Body Problem, enabling the computation of periodic orbits such as DROs.
Particle Swarm Optimization was employed to determine the initial conditions of
the proposed DRO, and PSO was also used to compute optimal landing trajectories
on the asteroid.

The results indicate that utilizing the asteroid 2009-OS5 for refueling can lead to a
27% reduction in Earth-Asteroid ∆V (4.4800 km{s) compared to the minimum
direct Earth-Mars ∆V possible (6.1696 km{s). The estimated number of refueling
opportunities on this asteroid is approximately 83 times, making it a promising
candidate for future missions. Consider that in the case of the asteroid 2009 OS5,
the 83 refueling opportunities should not be seen as 83 distinct missions, but
rather as a few missions where fleets of spacecraft refuel on the asteroid. This is
because the alignment of Earth-Asteroid-Mars, which allows for significant ∆V
savings, may occur only once every decade, making the planning of Earth-Mars
missions complex. However, there might be asteroids with periodic alignments that
incur slightly higher ∆V costs, which need to be taken into consideration. In any
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case, the study suggests the existence of numerous asteroids with potential ∆V
savings. As a result, one possible solution for future Earth-Mars missions could
involve utilizing all the available resources on a single asteroid over a short series
of missions, and subsequently shifting to another asteroid for future missions.

Furthermore, this research delved into the optimization of landing trajectories
on the asteroid’s surface using impulsive maneuvers. While the study focused
on reaching a point on an imaginary sphere encompassing the asteroid, future
work can explore more accurate models considering disturbances, three-dimensional
spacecraft model, the asteroid’s shape, rotation, surface, gravitational field, and
terrain characteristics, which would require multiple continuous impulses for a safe
landing.

Overall, this thesis demonstrates the feasibility and potential benefits of utilizing as-
teroids as refueling points for Earth-Mars missions. By leveraging in-situ resources
and optimizing trajectories, significant reductions in launch mass and mission costs
can be achieved, bringing us closer to the realization of human colonization of
Mars.

To estimate the reduction of mission costs, we introduce some concepts from
fondamental rocketry. In the chemical propulsion, the relevant masses are: the
payload mass, mu, the propellant mass, mp, and the structural mass, ms. So we
have the initial mass of the rocket as follows

m0 “ mu ` mp ` ms (6.4)

where m0 is the total initial mass. Considering that all the propellant is used, the
final mass, mf , becomes

mf “ m0 ´ mp “ mu ` ms (6.5)

We introduce the payload fraction, λ

λ “
mu

m0
(6.6)

and the structural fraction
ϵ “

ms

ms ` mp

(6.7)

Recalling Tsiolkovsky’s rocket equation, we have

∆V “ c ¨ ln
ˆ

m0

mf

˙

“ c ¨ ln
ˆ

mu ` mp ` ms

mu ` ms

˙

“ ´c ¨ ln rλ ` ϵ p1 ´ λqs (6.8)
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where c is the effective exhaust velocity. Solving for λ, we have

λ “
e´ ∆V

c ´ ϵ

1 ´ ϵ
(6.9)

In multistage rocket with N stages, and with the same c and ϵ for each stage, Eq.
(6.9) becomes

λtot “

«

e´
∆Vtot

Nc ´ ϵ

1 ´ ϵ

ffN

(6.10)

where λtot “
pmuqN

pm0q1
.

Considering a rocket with N “ 3 stages, ∆V to reach a 400 km LEO equal to 10
km{s, the structural fraction ϵ “ 0.1 and the effective exhaust velocity c “ 4.5
km{s we have that in case of direct Earth-Mars transfer (∆Vmin,CÑD “ 6.1696
km{s)

λtot “ 0.0113 (6.11)

It means that the payload mass is 1.13% of the structural and propellant mass of
the first stage.

In case of Earth-Mars transfers via asteroid 2009-OS5 (∆Vmin,CÑD “ 4.4800 km{s)
we have

λtot “ 0.0195 (6.12)

It means that the payload mass is 1.95% of the structural and propellant mass of
the first stage. Therefore, we can send the same rocket configuration to Mars with
1.73 times the payload mass than in direct Earth-Mars transfer case, with obvious
economic advantages related to launch costs. On the other hand, it is necessary to
establish an ISRU station on the asteroid, or to develop technology that will allow
the spacecraft to do resource extraction on its own.

By further exploring and refining these concepts, we can pave the way for successful
and cost-effective human missions to Mars, opening up new possibilities for space
exploration and colonization.

6.2 Future Developments
Building upon the findings and methodologies presented in this thesis, there are
several areas of research that hold promise for further exploration and advancement
in utilizing asteroids as refueling points for Earth-Mars missions.
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To gain a more comprehensive understanding of the dynamics involved in uti-
lizing asteroids as refueling points, future studies should consider the influence
of perturbations, such as gravitational interactions with other celestial bodies,
solar radiation pressure, and non-uniform mass distributions. By incorporating
these factors into modeling frameworks, more accurate and realistic models can be
developed to analyze long-term dynamics, stability, and trajectory planning under
complex celestial interactions.

Further improvement in mission planning and resource utilization can be achieved
through advanced asteroid characterization. Thorough investigations of shape,
rotation, surface properties, gravitational fields, and terrain characteristics will
enable precise landing trajectory planning, landing site selection, and resource
extraction operations. Utilizing high-resolution imaging, radar mapping, and in-
situ measurements will provide valuable insights into the geological composition,
topography, and subsurface structures of asteroids.

Future research should explore the development and optimization of techniques
for extracting water, metals, minerals, gases, and other valuable substances from
asteroids. Advancements in mining technologies, refining processes, and resource
utilization strategies tailored to the unique properties of different asteroids will
enhance the self-sustainability of space missions.

In-situ manufacturing and utilization of materials obtained from asteroids of-
fer significant benefits. Future work should focus on developing technologies for
producing components, structures, and consumables directly in space. Additive
manufacturing, 3D printing, and regenerative life support systems can reduce
reliance on Earth-based resupply missions and enhance mission sustainability.

Advancements in guidance, navigation, and control (GNC) are crucial for safe
and precise operations in proximity to asteroids. Future efforts should explore
advanced algorithms for autonomous navigation, hazard avoidance, and spacecraft
rendezvous and docking with asteroids. Incorporating machine learning, computer
vision, and sensor fusion approaches can improve the reliability and adaptability of
GNC systems in challenging and dynamic environments.

By addressing these future research directions, we can unlock the full potential of
utilizing asteroids as refueling points for Earth-Mars missions. Advancements in
modeling accuracy, resource extraction techniques, in-situ manufacturing, and GNC
systems will contribute to reducing mission costs, enhancing mission sustainability,
and paving the way for long-term human presence and colonization of Mars and
beyond. The journey towards a new era of space exploration and settlement is filled
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with opportunities for innovation and collaboration among space agencies, research
institutions, and commercial entities. Together, we can explore and leverage the
vast resources available in our solar system, driving humanity towards a future of
interplanetary exploration and habitation.

Fig. 6.6 shows a visual concept of ISRU on asteroids product by Aitubo, an
artificial intelligence art generator. To generate the figure we use the prompt
"Extracting minerals on an asteroid to refuel spacecraft in human space missions".

Figure 6.6: ISRU on asteroid
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Appendix A

Porkchop Plots for Earth to
each Candidate Asteroids

This appendix presents a compilation of all 94 Porkchop Plots Earth-asteroid
missions within a specific range of time of flight and departure dates. The catalog
encompasses a period of 10 years, starting from January 1st, 2035, and includes
Earth-asteroid trajectories with TOF ranging from 51 to 300 days.

Figure A.1: Porkchop Plot from Earth
to Asteroid 2000 EA14

Figure A.2: Porkchop Plot from Earth
to Asteroid 1993 KA
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Figure A.3: Porkchop Plot from Earth
to Asteroid 2005 LC

Figure A.4: Porkchop Plot from Earth
to Asteroid 2006 CL9

Figure A.5: Porkchop Plot from Earth
to Asteroid 2006 DQ14

Figure A.6: Porkchop Plot from Earth
to Asteroid 2006 UQ216

Figure A.7: Porkchop Plot from Earth
to Asteroid 2007 HL4

Figure A.8: Porkchop Plot from Earth
to Asteroid 2008 CM74
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.9: Porkchop Plot from Earth
to Asteroid 2008 HU4

Figure A.10: Porkchop Plot from Earth
to Asteroid 2009 BD

Figure A.11: Porkchop Plot from Earth
to Asteroid 2009 FH

Figure A.12: Porkchop Plot from Earth
to Asteroid 2009 OS5

Figure A.13: Porkchop Plot from Earth
to Asteroid 2009 SW171

Figure A.14: Porkchop Plot from Earth
to Asteroid 2010 DJ
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.15: Porkchop Plot from Earth
to Asteroid 2010 RF12

Figure A.16: Porkchop Plot from Earth
to Asteroid 2011 AA37

Figure A.17: Porkchop Plot from Earth
to Asteroid 2011 CY7

Figure A.18: Porkchop Plot from Earth
to Asteroid 2012 BB14

Figure A.19: Porkchop Plot from Earth
to Asteroid 2012 VB37

Figure A.20: Porkchop Plot from Earth
to Asteroid 2012 XM55

117



Porkchop Plots for Earth to each Candidate Asteroids

Figure A.21: Porkchop Plot from Earth
to Asteroid 2013 HP11

Figure A.22: Porkchop Plot from Earth
to Asteroid 2013 SP19

Figure A.23: Porkchop Plot from Earth
to Asteroid 2013 UX2

Figure A.24: Porkchop Plot from Earth
to Asteroid 2014 JR24

Figure A.25: Porkchop Plot from Earth
to Asteroid 2014 LJ

Figure A.26: Porkchop Plot from Earth
to Asteroid 2014 WX202
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.27: Porkchop Plot from Earth
to Asteroid 2014 WA366

Figure A.28: Porkchop Plot from Earth
to Asteroid 2015 EZ6

Figure A.29: Porkchop Plot from Earth
to Asteroid 2015 HC1

Figure A.30: Porkchop Plot from Earth
to Asteroid 2015 VC2

Figure A.31: Porkchop Plot from Earth
to Asteroid 2015 XX128

Figure A.32: Porkchop Plot from Earth
to Asteroid 2015 XD169
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.33: Porkchop Plot from Earth
to Asteroid 2015 XA352

Figure A.34: Porkchop Plot from Earth
to Asteroid 2016 CF137

Figure A.35: Porkchop Plot from Earth
to Asteroid 2016 EP84

Figure A.36: Porkchop Plot from Earth
to Asteroid 2016 GL222

Figure A.37: Porkchop Plot from Earth
to Asteroid 2017 BF29

Figure A.38: Porkchop Plot from Earth
to Asteroid 2017 BG30
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.39: Porkchop Plot from Earth
to Asteroid 2017 CP1

Figure A.40: Porkchop Plot from Earth
to Asteroid 2017 FJ3

Figure A.41: Porkchop Plot from Earth
to Asteroid 2017 FW90

Figure A.42: Porkchop Plot from Earth
to Asteroid 2017 LD

Figure A.43: Porkchop Plot from Earth
to Asteroid 2017 RL16

Figure A.44: Porkchop Plot from Earth
to Asteroid 2017 UM52
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.45: Porkchop Plot from Earth
to Asteroid 2017 WM13

Figure A.46: Porkchop Plot from Earth
to Asteroid 2017 YC1

Figure A.47: Porkchop Plot from Earth
to Asteroid 2017 YW3

Figure A.48: Porkchop Plot from Earth
to Asteroid 2018 LQ2

Figure A.49: Porkchop Plot from Earth
to Asteroid 2018 RR1

Figure A.50: Porkchop Plot from Earth
to Asteroid 2019 KJ2

122



Porkchop Plots for Earth to each Candidate Asteroids

Figure A.51: Porkchop Plot from Earth
to Asteroid 2019 LV

Figure A.52: Porkchop Plot from Earth
to Asteroid 2019 PY

Figure A.53: Porkchop Plot from Earth
to Asteroid 2019 PO1

Figure A.54: Porkchop Plot from Earth
to Asteroid 2019 SU3

Figure A.55: Porkchop Plot from Earth
to Asteroid 2019 UO1

Figure A.56: Porkchop Plot from Earth
to Asteroid 2019 UB4
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.57: Porkchop Plot from Earth
to Asteroid 2019 XV

Figure A.58: Porkchop Plot from Earth
to Asteroid 2020 BK

Figure A.59: Porkchop Plot from Earth
to Asteroid 2020 BV2

Figure A.60: Porkchop Plot from Earth
to Asteroid 2020 CF2

Figure A.61: Porkchop Plot from Earth
to Asteroid 2020 DE2

Figure A.62: Porkchop Plot from Earth
to Asteroid 2020 HN
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.63: Porkchop Plot from Earth
to Asteroid 2020 HQ4

Figure A.64: Porkchop Plot from Earth
to Asteroid 2020 HL6

Figure A.65: Porkchop Plot from Earth
to Asteroid 2020 OE2

Figure A.66: Porkchop Plot from Earth
to Asteroid 2020 OK5

Figure A.67: Porkchop Plot from Earth
to Asteroid 2020 PP1

Figure A.68: Porkchop Plot from Earth
to Asteroid 2020 RT3
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.69: Porkchop Plot from Earth
to Asteroid 2020 SM2

Figure A.70: Porkchop Plot from Earth
to Asteroid 2020 SH6

Figure A.71: Porkchop Plot from Earth
to Asteroid 2020 VV

Figure A.72: Porkchop Plot from Earth
to Asteroid 2020 WY

Figure A.73: Porkchop Plot from Earth
to Asteroid 2020 WQ3

Figure A.74: Porkchop Plot from Earth
to Asteroid 2020 XJ4
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.75: Porkchop Plot from Earth
to Asteroid 2021 CE

Figure A.76: Porkchop Plot from Earth
to Asteroid 2021 EN5

Figure A.77: Porkchop Plot from Earth
to Asteroid 2021 GB8

Figure A.78: Porkchop Plot from Earth
to Asteroid 2021 HF1

Figure A.79: Porkchop Plot from Earth
to Asteroid 2021 JY5

Figure A.80: Porkchop Plot from Earth
to Asteroid 2021 NV8
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.81: Porkchop Plot from Earth
to Asteroid 2021 RP2

Figure A.82: Porkchop Plot from Earth
to Asteroid 2021 VZ8

Figure A.83: Porkchop Plot from Earth
to Asteroid 2022 BT

Figure A.84: Porkchop Plot from Earth
to Asteroid 2022 BX5

Figure A.85: Porkchop Plot from Earth
to Asteroid 2022 KL6

Figure A.86: Porkchop Plot from Earth
to Asteroid 2022 NX1

128



Porkchop Plots for Earth to each Candidate Asteroids

Figure A.87: Porkchop Plot from Earth
to Asteroid 2022 RF1

Figure A.88: Porkchop Plot from Earth
to Asteroid 2022 RS1

Figure A.89: Porkchop Plot from Earth
to Asteroid 2022 SZ2

Figure A.90: Porkchop Plot from Earth
to Asteroid 2022 SN21

Figure A.91: Porkchop Plot from Earth
to Asteroid 2022 UA5

Figure A.92: Porkchop Plot from Earth
to Asteroid 2022 WS8
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Porkchop Plots for Earth to each Candidate Asteroids

Figure A.93: Porkchop Plot from Earth
to Asteroid 1999 CG9

Figure A.94: Porkchop Plot from Earth
to Asteroid 2005 ER95

If some porkchop plots are completely black, it means that no solutions with a
∆V less than 11 km{s was found.
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Appendix B

Porkchop Plots for each
Candidate Asteroids to Mars

This appendix presents a collection of all 94 Porkchop Plots asteroid-Mars trajecto-
ries within a specific range of flight time and departure dates. The catalog covers
a 30-day period, starting from the day of arrival on the asteroid, and includes
asteroid-Mars trajectories with TOFs between 51 and 300 days.

Figure B.1: Porkchop Plot from Aster-
oid 2000 EA14 to Mars

Figure B.2: Porkchop Plot from Aster-
oid 1993 KA to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.3: Porkchop Plot from Aster-
oid 2005 LC to Mars

Figure B.4: Porkchop Plot from Aster-
oid 2006 CL9 to Mars

Figure B.5: Porkchop Plot from Aster-
oid 2006 DQ14 to Mars

Figure B.6: Porkchop Plot from Aster-
oid 2006 UQ216 to Mars

Figure B.7: Porkchop Plot from Aster-
oid 2007 HL4 to Mars

Figure B.8: Porkchop Plot from Aster-
oid 2008 CM74 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.9: Porkchop Plot from Aster-
oid 2008 HU4 to Mars

Figure B.10: Porkchop Plot from As-
teroid 2009 BD to Mars

Figure B.11: Porkchop Plot from As-
teroid 2009 FH to Mars

Figure B.12: Porkchop Plot from As-
teroid 2009 OS5 to Mars

Figure B.13: Porkchop Plot from As-
teroid 2009 SW171 to Mars

Figure B.14: Porkchop Plot from As-
teroid 2010 DJ to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.15: Porkchop Plot from As-
teroid 2010 RF12 to Mars

Figure B.16: Porkchop Plot from As-
teroid 2011 AA37 to Mars

Figure B.17: Porkchop Plot from As-
teroid 2011 CY7 to Mars

Figure B.18: Porkchop Plot from As-
teroid 2012 BB14 to Mars

Figure B.19: Porkchop Plot from As-
teroid 2012 VB37 to Mars

Figure B.20: Porkchop Plot from As-
teroid 2012 XM55 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.21: Porkchop Plot from As-
teroid 2013 HP11 to Mars

Figure B.22: Porkchop Plot from As-
teroid 2013 SP19 to Mars

Figure B.23: Porkchop Plot from As-
teroid 2013 UX2 to Mars

Figure B.24: Porkchop Plot from As-
teroid 2014 JR24 to Mars

Figure B.25: Porkchop Plot from As-
teroid 2014 LJ to Mars

Figure B.26: Porkchop Plot from As-
teroid 2014 WX202 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.27: Porkchop Plot from As-
teroid 2014 WA366 to Mars

Figure B.28: Porkchop Plot from As-
teroid 2015 EZ6 to Mars

Figure B.29: Porkchop Plot from As-
teroid 2015 HC1 to Mars

Figure B.30: Porkchop Plot from As-
teroid 2015 VC2 to Mars

Figure B.31: Porkchop Plot from As-
teroid 2015 XX128 to Mars

Figure B.32: Porkchop Plot from As-
teroid 2015 XD169 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.33: Porkchop Plot from As-
teroid 2015 XA352 to Mars

Figure B.34: Porkchop Plot from As-
teroid 2016 CF137 to Mars

Figure B.35: Porkchop Plot from As-
teroid 2016 EP84 to Mars

Figure B.36: Porkchop Plot from As-
teroid 2016 GL222 to Mars

Figure B.37: Porkchop Plot from As-
teroid 2017 BF29 to Mars

Figure B.38: Porkchop Plot from As-
teroid 2017 BG30 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.39: Porkchop Plot from As-
teroid 2017 CP1 to Mars

Figure B.40: Porkchop Plot from As-
teroid 2017 FJ3 to Mars

Figure B.41: Porkchop Plot from As-
teroid 2017 FW90 to Mars

Figure B.42: Porkchop Plot from As-
teroid 2017 LD to Mars

Figure B.43: Porkchop Plot from As-
teroid 2017 RL16 to Mars

Figure B.44: Porkchop Plot from As-
teroid 2017 UM52 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.45: Porkchop Plot from As-
teroid 2017 WM13 to Mars

Figure B.46: Porkchop Plot from As-
teroid 2017 YC1 to Mars

Figure B.47: Porkchop Plot from As-
teroid 2017 YW3 to Mars

Figure B.48: Porkchop Plot from As-
teroid 2018 LQ2 to Mars

Figure B.49: Porkchop Plot from As-
teroid 2018 RR1 to Mars

Figure B.50: Porkchop Plot from As-
teroid 2019 KJ2 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.51: Porkchop Plot from As-
teroid 2019 LV to Mars

Figure B.52: Porkchop Plot from As-
teroid 2019 PY to Mars

Figure B.53: Porkchop Plot from As-
teroid 2019 PO1 to Mars

Figure B.54: Porkchop Plot from As-
teroid 2019 SU3 to Mars

Figure B.55: Porkchop Plot from As-
teroid 2019 UO1 to Mars

Figure B.56: Porkchop Plot from As-
teroid 2019 UB4 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.57: Porkchop Plot from As-
teroid 2019 XV to Mars

Figure B.58: Porkchop Plot from As-
teroid 2020 BK to Mars

Figure B.59: Porkchop Plot from As-
teroid 2020 BV2 to Mars

Figure B.60: Porkchop Plot from As-
teroid 2020 CF2 to Mars

Figure B.61: Porkchop Plot from As-
teroid 2020 DE2 to Mars

Figure B.62: Porkchop Plot from As-
teroid 2020 HN to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.63: Porkchop Plot from As-
teroid 2020 HQ4 to Mars

Figure B.64: Porkchop Plot from As-
teroid 2020 HL6 to Mars

Figure B.65: Porkchop Plot from As-
teroid 2020 OE2 to Mars

Figure B.66: Porkchop Plot from As-
teroid 2020 OK5 to Mars

Figure B.67: Porkchop Plot from As-
teroid 2020 PP1 to Mars

Figure B.68: Porkchop Plot from As-
teroid 2020 RT3 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.69: Porkchop Plot from As-
teroid 2020 SM2 to Mars

Figure B.70: Porkchop Plot from As-
teroid 2020 SH6 to Mars

Figure B.71: Porkchop Plot from As-
teroid 2020 VV to Mars

Figure B.72: Porkchop Plot from As-
teroid 2020 WY to Mars

Figure B.73: Porkchop Plot from As-
teroid 2020 WQ3 to Mars

Figure B.74: Porkchop Plot from As-
teroid 2020 XJ4 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.75: Porkchop Plot from As-
teroid 2021 CE to Mars

Figure B.76: Porkchop Plot from As-
teroid 2021 EN5 to Mars

Figure B.77: Porkchop Plot from As-
teroid 2021 GB8 to Mars

Figure B.78: Porkchop Plot from As-
teroid 2021 HF1 to Mars

Figure B.79: Porkchop Plot from As-
teroid 2021 JY5 to Mars

Figure B.80: Porkchop Plot from As-
teroid 2021 NV8 to Mars

145



Porkchop Plots for each Candidate Asteroids to Mars

Figure B.81: Porkchop Plot from As-
teroid 2021 RP2 to Mars

Figure B.82: Porkchop Plot from As-
teroid 2021 VZ8 to Mars

Figure B.83: Porkchop Plot from As-
teroid 2022 BT to Mars

Figure B.84: Porkchop Plot from As-
teroid 2022 BX5 to Mars

Figure B.85: Porkchop Plot from As-
teroid 2022 KL6 to Mars

Figure B.86: Porkchop Plot from As-
teroid 2022 NX1 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.87: Porkchop Plot from As-
teroid 2022 RF1 to Mars

Figure B.88: Porkchop Plot from As-
teroid 2022 RS1 to Mars

Figure B.89: Porkchop Plot from As-
teroid 2022 SZ2 to Mars

Figure B.90: Porkchop Plot from As-
teroid 2022 SN21 to Mars

Figure B.91: Porkchop Plot from As-
teroid 2022 UA5 to Mars

Figure B.92: Porkchop Plot from As-
teroid 2022 WS8 to Mars
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Porkchop Plots for each Candidate Asteroids to Mars

Figure B.93: Porkchop Plot from As-
teroid 1999 CG9 to Mars

Figure B.94: Porkchop Plot from As-
teroid 2005 ER95 to Mars

If some porkchop plots are completely black, it means that no solutions with a
∆V less than 14 km{s was found.
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