# POLITECNICO DI TORINO 

MASTER's Degree in AEROSPACE ENGINEERING


## EMBRY-RIDDLE

Aeronautical University PRESCOTT, ARIZONA

MASTER's Degree Thesis
PARTICLE SWARM OPTIMIZATION APPLIED TO TRAJECTORY DESIGN FOR EARTH TO MARS MISSIONS USING REFUELING ISRU CANDIDATE ASTEROIDS

Supervisors
Prof. Lorenzo CASALINO
Dr. Davide CONTE

Candidate
Francesco LOPEZ

## Summary

The colonization of Mars is an ambitious goal, but the low-cost transfer of resources between Earth and Mars remains a major challenge. To address this, utilizing asteroids as refueling points could significantly reduce $\Delta V$ requirements for EarthMars journeys. Therefore, refueling with In-Situ Resource Utilization on asteroids can help decrease the launch mass of spacecraft since they wouldn't need to carry as much propellant from Earth, which could in turn minimize the size and cost of the launch vehicles required.

Ideally, asteroids with an abundant amount of water and volatile compounds would be preferred. These resources could be used for propellant production or even for onboard consumption. Selecting suitable asteroids requires that exploration missions evaluate their physical properties and resources. In this thesis, we estimate the mass and composition of asteroids, including how many and what resources will be found on the asteroids needed to proceed with our orbital study.

This thesis focuses on trajectories from Earth to a list of candidate asteroids and, from it, to Mars. Additionally, we select the best asteroid among these candidates such that the total $\Delta V$ from the Earth to the asteroid and the time of flight (TOF) from Earth to Mars are minimized, and to maximize the number of resupplies on the asteroid.

For this mission, a double arc trajectory is studied. The first arc intercepts one of the candidate asteroids. Then, insertion into a Sun-asteroid Distant Retrograde Orbit (DRO) and a landing trajectory on the asteroid are performed. Along the second arc, the spacecraft leaves the candidate asteroid to be captured at Martian periareion using the propellant obtained from the asteroid.

The two conics for each arc are obtained by solving Lambert's problem, which is computed for different TOF from Earth to the asteroid, from the asteroid to Mars and for different waiting times on the asteroid to minimize the total TOF and the $\Delta V$ from the Earth to the asteroid.

Modeling the dynamics of Sun-asteroid systems is done with the CR3BP with the Sun and asteroid as the primary masses. It is then possible to compute periodic orbits in the vicinity of the asteroid, such as DROs. DROs are marginally stable periodic CR3BP orbits that are adequately distant from the asteroid surface that can be used as parking orbits around asteroids.

The initial conditions (ICs) of a proposed Sun-asteroid DRO are obtained with Particle Swarm Optimization (PSO). PSO is a heuristic algorithm within the computational swarm intelligence technique which combines social, cognitive and inertial factors of bird flocks to find the local optimal solution. PSO is also used to compute some parameters to determine a suitable landing trajectory on the asteroid from DROs and to compute the $\Delta V$-optimal maneuvers to land at the asteroid to then perform ISRU.

After using PSO to solve the problem of trajectory design, deterministic gradientbased methods are used to understand if it can find more accurate solutions. A Differential Correction (DC) method combined with dynamical system theory is used to determine the ICs of a Sun-asteroid DRO, discovering that PSO can find accurate solutions without the use of it.

The final results show that using 2009-OS5 as the asteroid for refueling gives an Earth-Asteroid $\Delta V(4.4800 \mathrm{~km} / \mathrm{s}) 27 \%$ lower than the minimum direct EarthMars $\Delta V$ possible ( $6.1696 \mathrm{~km} / \mathrm{s}$ ), a TOF ( 386 days) for the entire mission higher than 4 months respect of an actual Mars mission (252 days) and it has been estimated the possibility to refuel about 83 times on it.

## Acknowledgements

I would like to express my genuine gratitude to all those who have been instrumental in the successful completion of my master's degree. Their unwavering support, guidance, and encouragement have made this achievement possible, and for that, I am truly grateful.

First and foremost, I extend my deepest appreciation to Doctor Davide Conte, whose mentorship during my time abroad at Embry-Riddle Aeronautical University in Arizona, Prescott has been invaluable. His comprehensive technical guidance and expertise in the field of astrodynamics have played a pivotal role in significantly expanding my knowledge within a short span of time. Doctor Conte's dedication and support throughout the thesis writing process have been truly indispensable.

I would also like to express my sincere gratitude to Embry-Riddle Aeronautical University for providing me with an enriching experience that has allowed me to grow not only academically but also as an individual. The opportunity to immerse myself in a different culture and embark on new adventures has broadened my horizons and shaped my perspective in profound ways.

Furthermore, I extend my heartfelt thanks to my home university, Politecnico di Torino, for nurturing and shaping me over the course of six years. The worldclass engineering education I received has equipped me with a solid foundation and enviable skills that are recognized worldwide. The invaluable lessons and experiences gained from my time at Politecnico di Torino have undoubtedly been instrumental in my academic and personal growth.

I am grateful to Professor Lorenzo Casalino for his guidance and expertise which have not only enhanced my understanding of the subject but have also instilled in me a passion for continuous learning and improvement.

I would also like to express my heartfelt gratitude to my family for their unwavering support throughout my academic journey. Their love, encouragement,
and belief in my abilities have been a constant source of motivation and strength. I am truly grateful for their understanding during the challenging moments, their words of wisdom, and the sacrifices they have made to ensure my success.

Their support extends beyond the emotional realm, as they have also provided invaluable financial assistance that has allowed me to pursue my education and participate in various opportunities that have shaped my academic and personal growth. Their belief in the value of education and their willingness to invest in my future have been instrumental in my achievements, and for that, I am deeply thankful.

I would like to express my overwhelming thanks to the Ente Regionale per il Diritto allo Studio Universitario del Piemonte (EDISU) for their tremendous support throughout my academic journey. Winning numerous scholarships from EDISU has been instrumental in alleviating the financial burden associated with pursuing higher education.

Their assistance has not only eased my financial worries but has also provided me with the opportunity to focus wholeheartedly on my studies and personal growth. The provision of a free accommodation has been especially invaluable, as it has allowed me to create a conducive and comfortable living environment while pursuing my academic endeavors. I will be forever grateful.

In addition, I want to express my appreciation to all my friends, professors, and individuals I have encountered throughout my university journey. Their friendship, support, and intellectual exchanges have enriched my educational experience and contributed to my personal and professional development.

To each and every person and institution mentioned above, and to all those who have supported me along the way, I extend my deepest gratitude. Your impact on my academic and personal growth is immeasurable, and I am truly honored to have had the privilege of learning from and alongside such exceptional individuals.
> "Vita facile est, si quis velit facere difficile" "La vita è facile, se uno vuole fare cose difficili"

## Table of Contents

List of Tables ..... XI
List of Figures ..... XIII
Acronyms ..... XXI
1 The Circular Restricted Three-Body Problem ..... 2
1.1 Equations of Motion ..... 2
1.2 Jacobi Integral ..... 6
1.3 Lagrange Points ..... 8
1.3.1 Collinear Points ..... 9
1.3.2 Equilateral Points ..... 10
1.3.3 Stability of Lagrange Points ..... 11
1.4 Introduction to Dynamical System Theory ..... 13
1.4.1 The State Transition Matrix ..... 13
1.4.2 Differential Correction ..... 16
1.4.3 Halo Orbit Design with Differential Correction ..... 17
1.4.4 Poincaré Maps and Poincaré Sections ..... 22
1.4.5 Invariant Manifolds ..... 23
1.5 CR3BP Orbit Families Overview ..... 24
1.5.1 CR3BP Orbit Applications ..... 30
2 Lambert's Problem ..... 32
2.1 Lambert's Problem Definition ..... 32
2.2 Classical Solution ..... 37
2.2.1 Elliptical Case ..... 40
2.2.2 Hyperbolic Case ..... 41
2.3 Universal Variable Solution ..... 42
2.3.1 Newton-Raphson Method ..... 45
3 Heuristic Algorithms ..... 48
3.1 Computational Swarm Intelligence Introduction ..... 48
3.1.1 Artificial Bee Colony Algorithm ..... 49
3.1.2 Ant Colony Optimization ..... 49
3.1.3 Fireworks Algorithm ..... 50
3.2 Particle Swarm Optimization ..... 51
3.2.1 PSO Mathematical Model ..... 51
4 Trajectory Design for Earth to Mars Missions ..... 56
4.1 Candidate Asteroid Selection ..... 56
4.2 Earth to Candidate Asteroids transfer ..... 60
4.3 Candidate Asteroids for Mars transfers ..... 62
5 Sun-Asteroid Distant Retrograde Orbit Family ..... 80
5.1 Sun-Asteroid Mass Ratio Estimation ..... 80
5.2 Distant Retrograde Orbits ..... 86
5.3 Obtaining DRO ICs with PSO ..... 86
5.4 Sun-2009 OS5 DRO design with Differential Corrections method ..... 92
5.5 Sun-2009 OS5 DROs Family ..... 95
6 Landing Trajectories Optimization on Asteroid ..... 100
6.1 PSO applied to landing trajectories on 2009-OS5 ..... 100
6.2 Future Developments ..... 110
A Porkchop Plots for Earth to each Candidate Asteroids ..... 114
B Porkchop Plots for each Candidate Asteroids to Mars ..... 132
Bibliography ..... 150

## List of Tables

4.1 Candidate Asteroids and their Orbital Parameters with respect to the J2000 Ecliptic reference frame ..... 58
4.2 Minimum $\Delta V[\mathrm{~km} / \mathrm{s}]$ and TOF [days] according to cost function $J_{1}$ ..... 69
4.3 Transfer dates according to cost function $J_{1}$ ..... 71
4.4 Minimum $\Delta V[\mathrm{~km} / \mathrm{s}]$ and TOF [days] according to cost function $J_{2}$ ..... 74
4.5 Transfer dates according to cost function $J_{2}$ ..... 76
5.1 Asteroid statistical investigation diameter vs $\mu$ ..... 81
5.2 Candidate asteroids and critical parameters for the $J_{3}$ cost function ..... 84
5.3 Lower and Upper Bounds of the two decision variables ..... 89
5.4 DROs Family main parameters and PSO Best Global Cost ..... 96
6.1 Lower and Upper Bounds of the four decision variables ..... 101
6.2 Landing maneuver main parameters and PSO Best Global Cost ( $J$ ) ..... 105

## List of Figures

1.1 Geometric schematization of the CR3BP ..... 3
1.2 Three-body Potential $\mathcal{U}$ ..... 8
1.3 Contour lines of $\mathcal{U}$ ..... 9
1.4 Position of the Lagrange Point ..... 11
1.5 Differential Correction flowchart for orbits that are symmetric about the $\xi-\zeta$ plane ..... 19
$1.6 \quad \dot{\xi}_{f}$ and $\dot{\zeta}_{f}$ evolution ..... 19
$1.7\left|\dot{\xi}_{f}\right|$ and $\left|\dot{\zeta}_{f}\right|$ evolution ..... 20
$1.8 \frac{\tau}{2}$ evolution ..... 20
$1.9 \quad \vec{X}_{0}$ evolution ..... 21
1.10 Northern Halo $\mathrm{L}_{1}$ orbit with $A_{\zeta}=0.1$ in the Earth-Moon system ..... 21
1.11 Example of a Poincaré map ..... 22
1.12 Poincaré map topology ..... 23
$1.13 \mathrm{~L}_{1}$ Lyapunov Orbits ..... 25
$1.14 \mathrm{~L}_{1}$ Halo Northern Orbits ..... 25
$1.15 \mathrm{~L}_{1}$ Vertical Orbits ..... 26
1.16 Northern Butterfly Orbits ..... 26
$1.17 \mathrm{~L}_{1}$ Axial Orbits ..... 27
1.18 Distant Prograde Orbits ..... 27
1.19 Northern Dragonfly Orbits ..... 28
1.20 Distant Retrograde Orbits ..... 28
1.21 Western Low Prograde Orbits ..... 29
$1.22 \mathrm{~L}_{4}$ Short Period Orbits ..... 29
$1.23 \mathrm{~L}_{4}$ Long Period Orbits ..... 30
1.24 JWST in Sun-Earth/Moon System. Credit: webb.nasa.gov ..... 31
2.1 Lambert's Problem Geometry ..... 33
2.2 Short and Long way ..... 34
2.3 Geometry of the Minimum Energy Solution ..... 37
2.4 Velocity vectors ..... 40
4.1 Porkchop Plot from Earth to Asteroid 2009 OS5 ..... 62
4.2 Porkchop Plot domain division ..... 64
4.3 Earth-Mars Porkchop Plot ..... 65
4.4 Porkchop Plot from asteroid 2021 C3 to Mars ..... 66
4.5 Double arc trajectory between Earth, asteroid 2022 SN21 and Mars ..... 67
4.6 Double arc trajectory between Earth, asteroid 2022 SN21 and Mars up view ..... 67
4.7 Double arc trajectory between Earth, asteroid 2013 SP19 and Mars ..... 68
4.8 Link to double arc trajectory animation (case: asteroid 2022 SN21) https://youtu.be/2reTw5fh3fw ..... 68
4.9 Link to double arc trajectory animation (case: asteroid 2013 SP19) https://youtu.be/EujpPoFwCj4 ..... 68
5.1 Diameter vs $\mu$ of some known asteroids ..... 82
5.2 Zoom in of Fig. 5.1 ..... 85
5.3 Geometric schematization of a Sun-asteroid DRO ..... 87
5.4 Schematization of PSO algorithm ..... 90
5.5 Global Best Cost evolution ..... 91
5.6 Zoom in of Fig. 5.5 ..... 91
5.7 DC flow chart ..... 93
$5.8 \quad \dot{\eta}_{0}$ evolution ..... 94
$5.9 \tau / 2$ evolution ..... 94
$5.10\left|\xi_{f}\right|$ evolution ..... 95
5.11 Sun-2009 OS5 DRO from different views ..... 96
5.12 Sun-2009 OS5 DRO Family ..... 97
5.13 Main velocities of the first trajectory arc schematization ..... 98
6.1 Main PSO parameters schematization ..... 101
6.2 Landing Positions ..... 102
6.3 Landing Trajectories and $\Delta V$ Vectors ..... 103
6.4 Zoomed version of Fig. 6.3 ..... 104
6.5 Global Best Cost evolution ..... 105
6.6 ISRU on asteroid ..... 112
A. 1 Porkchop Plot from Earth to Asteroid 2000 EA14 ..... 114
A. 2 Porkchop Plot from Earth to Asteroid 1993 KA ..... 114
A. 3 Porkchop Plot from Earth to Asteroid 2005 LC ..... 115
A. 4 Porkchop Plot from Earth to Asteroid 2006 CL9 ..... 115
A. 5 Porkchop Plot from Earth to Asteroid 2006 DQ14 ..... 115
A. 6 Porkchop Plot from Earth to Asteroid 2006 UQ216 ..... 115
A. 7 Porkchop Plot from Earth to Asteroid 2007 HL4 ..... 115
A. 8 Porkchop Plot from Earth to Asteroid 2008 CM74 ..... 115
A. 9 Porkchop Plot from Earth to Asteroid 2008 HU4 ..... 116
A. 10 Porkchop Plot from Earth to Asteroid 2009 BD ..... 116
A. 11 Porkchop Plot from Earth to Asteroid 2009 FH ..... 116
A. 12 Porkchop Plot from Earth to Asteroid 2009 OS5 ..... 116
A. 13 Porkchop Plot from Earth to Asteroid 2009 SW171 ..... 116
A. 14 Porkchop Plot from Earth to Asteroid 2010 DJ ..... 116
A. 15 Porkchop Plot from Earth to Asteroid 2010 RF12 ..... 117
A. 16 Porkchop Plot from Earth to Asteroid 2011 AA37 ..... 117
A. 17 Porkchop Plot from Earth to Asteroid 2011 CY7 ..... 117
A. 18 Porkchop Plot from Earth to Asteroid 2012 BB14 ..... 117
A. 19 Porkchop Plot from Earth to Asteroid 2012 VB37 ..... 117
A. 20 Porkchop Plot from Earth to Asteroid 2012 XM55 ..... 117
A. 21 Porkchop Plot from Earth to Asteroid 2013 HP11 ..... 118
A. 22 Porkchop Plot from Earth to Asteroid 2013 SP19 ..... 118
A. 23 Porkchop Plot from Earth to Asteroid 2013 UX2 ..... 118
A. 24 Porkchop Plot from Earth to Asteroid 2014 JR24 ..... 118
A. 25 Porkchop Plot from Earth to Asteroid 2014 LJ ..... 118
A. 26 Porkchop Plot from Earth to Asteroid 2014 WX202 ..... 118
A. 27 Porkchop Plot from Earth to Asteroid 2014 WA366 ..... 119
A. 28 Porkchop Plot from Earth to Asteroid 2015 EZ6 ..... 119
A. 29 Porkchop Plot from Earth to Asteroid 2015 HC1 ..... 119
A. 30 Porkchop Plot from Earth to Asteroid 2015 VC2 ..... 119
A. 31 Porkchop Plot from Earth to Asteroid 2015 XX128 ..... 119
A. 32 Porkchop Plot from Earth to Asteroid 2015 XD169 ..... 119
A. 33 Porkchop Plot from Earth to Asteroid 2015 XA352 ..... 120
A. 34 Porkchop Plot from Earth to Asteroid 2016 CF137 ..... 120
A. 35 Porkchop Plot from Earth to Asteroid 2016 EP84 ..... 120
A. 36 Porkchop Plot from Earth to Asteroid 2016 GL222 ..... 120
A. 37 Porkchop Plot from Earth to Asteroid 2017 BF29 ..... 120
A. 38 Porkchop Plot from Earth to Asteroid 2017 BG30 ..... 120
A. 39 Porkchop Plot from Earth to Asteroid 2017 CP1 ..... 121
A. 40 Porkchop Plot from Earth to Asteroid 2017 FJ3 ..... 121
A. 41 Porkchop Plot from Earth to Asteroid 2017 FW90 ..... 121
A. 42 Porkchop Plot from Earth to Asteroid 2017 LD ..... 121
A. 43 Porkchop Plot from Earth to Asteroid 2017 RL16 ..... 121
A. 44 Porkchop Plot from Earth to Asteroid 2017 UM52 ..... 121
A. 45 Porkchop Plot from Earth to Asteroid 2017 WM13 ..... 122
A. 46 Porkchop Plot from Earth to Asteroid 2017 YC1 ..... 122
A. 47 Porkchop Plot from Earth to Asteroid 2017 YW3 ..... 122
A. 48 Porkchop Plot from Earth to Asteroid 2018 LQ2 ..... 122
A. 49 Porkchop Plot from Earth to Asteroid 2018 RR1 ..... 122
A. 50 Porkchop Plot from Earth to Asteroid 2019 KJ2 ..... 122
A. 51 Porkchop Plot from Earth to Asteroid 2019 LV ..... 123
A. 52 Porkchop Plot from Earth to Asteroid 2019 PY ..... 123
A. 53 Porkchop Plot from Earth to Asteroid 2019 PO1 ..... 123
A. 54 Porkchop Plot from Earth to Asteroid 2019 SU3 ..... 123
A. 55 Porkchop Plot from Earth to Asteroid 2019 UO1 ..... 123
A. 56 Porkchop Plot from Earth to Asteroid 2019 UB4 ..... 123
A. 57 Porkchop Plot from Earth to Asteroid 2019 XV ..... 124
A. 58 Porkchop Plot from Earth to Asteroid 2020 BK ..... 124
A. 59 Porkchop Plot from Earth to Asteroid 2020 BV2 ..... 124
A. 60 Porkchop Plot from Earth to Asteroid 2020 CF2 ..... 124
A. 61 Porkchop Plot from Earth to Asteroid 2020 DE2 ..... 124
A. 62 Porkchop Plot from Earth to Asteroid 2020 HN ..... 124
A. 63 Porkchop Plot from Earth to Asteroid 2020 HQ4 ..... 125
A. 64 Porkchop Plot from Earth to Asteroid 2020 HL6 ..... 125
A. 65 Porkchop Plot from Earth to Asteroid 2020 OE2 ..... 125
A. 66 Porkchop Plot from Earth to Asteroid 2020 OK5 ..... 125
A. 67 Porkchop Plot from Earth to Asteroid 2020 PP1 ..... 125
A. 68 Porkchop Plot from Earth to Asteroid 2020 RT3 ..... 125
A. 69 Porkchop Plot from Earth to Asteroid 2020 SM2 ..... 126
A. 70 Porkchop Plot from Earth to Asteroid 2020 SH6 ..... 126
A. 71 Porkchop Plot from Earth to Asteroid 2020 VV ..... 126
A. 72 Porkchop Plot from Earth to Asteroid 2020 WY ..... 126
A. 73 Porkchop Plot from Earth to Asteroid 2020 WQ3 ..... 126
A. 74 Porkchop Plot from Earth to Asteroid 2020 XJ4 ..... 126
A. 75 Porkchop Plot from Earth to Asteroid 2021 CE ..... 127
A. 76 Porkchop Plot from Earth to Asteroid 2021 EN5 ..... 127
A. 77 Porkchop Plot from Earth to Asteroid 2021 GB8 ..... 127
A. 78 Porkchop Plot from Earth to Asteroid 2021 HF1 ..... 127
A. 79 Porkchop Plot from Earth to Asteroid 2021 JY5 ..... 127
A. 80 Porkchop Plot from Earth to Asteroid 2021 NV8 ..... 127
A. 81 Porkchop Plot from Earth to Asteroid 2021 RP2 ..... 128
A. 82 Porkchop Plot from Earth to Asteroid 2021 VZ8 ..... 128
A. 83 Porkchop Plot from Earth to Asteroid 2022 BT ..... 128
A. 84 Porkchop Plot from Earth to Asteroid 2022 BX5 ..... 128
A. 85 Porkchop Plot from Earth to Asteroid 2022 KL6 ..... 128
A. 86 Porkchop Plot from Earth to Asteroid 2022 NX1 ..... 128
A. 87 Porkchop Plot from Earth to Asteroid 2022 RF1 ..... 129
A. 88 Porkchop Plot from Earth to Asteroid 2022 RS1 ..... 129
A. 89 Porkchop Plot from Earth to Asteroid 2022 SZ2 ..... 129
A. 90 Porkchop Plot from Earth to Asteroid 2022 SN21 ..... 129
A. 91 Porkchop Plot from Earth to Asteroid 2022 UA5 ..... 129
A. 92 Porkchop Plot from Earth to Asteroid 2022 WS8 ..... 129
A. 93 Porkchop Plot from Earth to Asteroid 1999 CG9 ..... 130
A. 94 Porkchop Plot from Earth to Asteroid 2005 ER95 ..... 130
B. 1 Porkchop Plot from Asteroid 2000 EA14 to Mars ..... 132
B. 2 Porkchop Plot from Asteroid 1993 KA to Mars ..... 132
B. 3 Porkchop Plot from Asteroid 2005 LC to Mars ..... 133
B. 4 Porkchop Plot from Asteroid 2006 CL9 to Mars ..... 133
B. 5 Porkchop Plot from Asteroid 2006 DQ14 to Mars ..... 133
B. 6 Porkchop Plot from Asteroid 2006 UQ216 to Mars ..... 133
B. 7 Porkchop Plot from Asteroid 2007 HL4 to Mars ..... 133
B. 8 Porkchop Plot from Asteroid 2008 CM74 to Mars ..... 133
B. 9 Porkchop Plot from Asteroid 2008 HU4 to Mars ..... 134
B. 10 Porkchop Plot from Asteroid 2009 BD to Mars ..... 134
B. 11 Porkchop Plot from Asteroid 2009 FH to Mars ..... 134
B. 12 Porkchop Plot from Asteroid 2009 OS5 to Mars ..... 134
B. 13 Porkchop Plot from Asteroid 2009 SW171 to Mars ..... 134
B. 14 Porkchop Plot from Asteroid 2010 DJ to Mars ..... 134
B. 15 Porkchop Plot from Asteroid 2010 RF12 to Mars ..... 135
B. 16 Porkchop Plot from Asteroid 2011 AA37 to Mars ..... 135
B. 17 Porkchop Plot from Asteroid 2011 CY7 to Mars ..... 135
B. 18 Porkchop Plot from Asteroid 2012 BB14 to Mars ..... 135
B. 19 Porkchop Plot from Asteroid 2012 VB37 to Mars ..... 135
B. 20 Porkchop Plot from Asteroid 2012 XM55 to Mars ..... 135
B. 21 Porkchop Plot from Asteroid 2013 HP11 to Mars ..... 136
B. 22 Porkchop Plot from Asteroid 2013 SP19 to Mars ..... 136
B. 23 Porkchop Plot from Asteroid 2013 UX2 to Mars ..... 136
B. 24 Porkchop Plot from Asteroid 2014 JR24 to Mars ..... 136
B. 25 Porkchop Plot from Asteroid 2014 LJ to Mars ..... 136
B. 26 Porkchop Plot from Asteroid 2014 WX202 to Mars ..... 136
B. 27 Porkchop Plot from Asteroid 2014 WA366 to Mars ..... 137
B. 28 Porkchop Plot from Asteroid 2015 EZ6 to Mars ..... 137
B. 29 Porkchop Plot from Asteroid 2015 HC1 to Mars ..... 137
B. 30 Porkchop Plot from Asteroid 2015 VC2 to Mars ..... 137
B. 31 Porkchop Plot from Asteroid 2015 XX128 to Mars ..... 137
B. 32 Porkchop Plot from Asteroid 2015 XD169 to Mars ..... 137
B. 33 Porkchop Plot from Asteroid 2015 XA352 to Mars ..... 138
B. 34 Porkchop Plot from Asteroid 2016 CF137 to Mars ..... 138
B. 35 Porkchop Plot from Asteroid 2016 EP84 to Mars ..... 138
B. 36 Porkchop Plot from Asteroid 2016 GL222 to Mars ..... 138
B. 37 Porkchop Plot from Asteroid 2017 BF29 to Mars ..... 138
B. 38 Porkchop Plot from Asteroid 2017 BG30 to Mars ..... 138
B. 39 Porkchop Plot from Asteroid 2017 CP1 to Mars ..... 139
B. 40 Porkchop Plot from Asteroid 2017 FJ3 to Mars ..... 139
B. 41 Porkchop Plot from Asteroid 2017 FW90 to Mars ..... 139
B. 42 Porkchop Plot from Asteroid 2017 LD to Mars ..... 139
B. 43 Porkchop Plot from Asteroid 2017 RL16 to Mars ..... 139
B. 44 Porkchop Plot from Asteroid 2017 UM52 to Mars ..... 139
B. 45 Porkchop Plot from Asteroid 2017 WM13 to Mars ..... 140
B. 46 Porkchop Plot from Asteroid 2017 YC1 to Mars ..... 140
B. 47 Porkchop Plot from Asteroid 2017 YW3 to Mars ..... 140
B. 48 Porkchop Plot from Asteroid 2018 LQ2 to Mars ..... 140
B. 49 Porkchop Plot from Asteroid 2018 RR1 to Mars ..... 140
B. 50 Porkchop Plot from Asteroid 2019 KJ2 to Mars ..... 140
B. 51 Porkchop Plot from Asteroid 2019 LV to Mars ..... 141
B. 52 Porkchop Plot from Asteroid 2019 PY to Mars ..... 141
B. 53 Porkchop Plot from Asteroid 2019 PO1 to Mars ..... 141
B. 54 Porkchop Plot from Asteroid 2019 SU3 to Mars ..... 141
B. 55 Porkchop Plot from Asteroid 2019 UO1 to Mars ..... 141
B. 56 Porkchop Plot from Asteroid 2019 UB4 to Mars ..... 141
B. 57 Porkchop Plot from Asteroid 2019 XV to Mars ..... 142
B. 58 Porkchop Plot from Asteroid 2020 BK to Mars ..... 142
B. 59 Porkchop Plot from Asteroid 2020 BV2 to Mars ..... 142
B. 60 Porkchop Plot from Asteroid 2020 CF2 to Mars ..... 142
B. 61 Porkchop Plot from Asteroid 2020 DE2 to Mars ..... 142
B. 62 Porkchop Plot from Asteroid 2020 HN to Mars ..... 142
B. 63 Porkchop Plot from Asteroid 2020 HQ4 to Mars ..... 143
B. 64 Porkchop Plot from Asteroid 2020 HL6 to Mars ..... 143
B. 65 Porkchop Plot from Asteroid 2020 OE2 to Mars ..... 143
B. 66 Porkchop Plot from Asteroid 2020 OK5 to Mars ..... 143
B. 67 Porkchop Plot from Asteroid 2020 PP1 to Mars ..... 143
B. 68 Porkchop Plot from Asteroid 2020 RT3 to Mars ..... 143
B. 69 Porkchop Plot from Asteroid 2020 SM2 to Mars ..... 144
B. 70 Porkchop Plot from Asteroid 2020 SH6 to Mars ..... 144
B. 71 Porkchop Plot from Asteroid 2020 VV to Mars ..... 144
B. 72 Porkchop Plot from Asteroid 2020 WY to Mars ..... 144
B. 73 Porkchop Plot from Asteroid 2020 WQ3 to Mars ..... 144
B. 74 Porkchop Plot from Asteroid 2020 XJ4 to Mars ..... 144
B. 75 Porkchop Plot from Asteroid 2021 CE to Mars ..... 145
B. 76 Porkchop Plot from Asteroid 2021 EN5 to Mars ..... 145
B. 77 Porkchop Plot from Asteroid 2021 GB8 to Mars ..... 145
B. 78 Porkchop Plot from Asteroid 2021 HF1 to Mars ..... 145
B. 79 Porkchop Plot from Asteroid 2021 JY5 to Mars ..... 145
B. 80 Porkchop Plot from Asteroid 2021 NV8 to Mars ..... 145
B. 81 Porkchop Plot from Asteroid 2021 RP2 to Mars ..... 146
B. 82 Porkchop Plot from Asteroid 2021 VZ8 to Mars ..... 146
B. 83 Porkchop Plot from Asteroid 2022 BT to Mars ..... 146
B. 84 Porkchop Plot from Asteroid 2022 BX5 to Mars ..... 146
B. 85 Porkchop Plot from Asteroid 2022 KL6 to Mars ..... 146
B. 86 Porkchop Plot from Asteroid 2022 NX1 to Mars ..... 146
B. 87 Porkchop Plot from Asteroid 2022 RF1 to Mars ..... 147
B. 88 Porkchop Plot from Asteroid 2022 RS1 to Mars ..... 147
B. 89 Porkchop Plot from Asteroid 2022 SZ2 to Mars ..... 147
B. 90 Porkchop Plot from Asteroid 2022 SN21 to Mars ..... 147
B. 91 Porkchop Plot from Asteroid 2022 UA5 to Mars ..... 147
B. 92 Porkchop Plot from Asteroid 2022 WS8 to Mars ..... 147
B. 93 Porkchop Plot from Asteroid 1999 CG9 to Mars ..... 148
B. 94 Porkchop Plot from Asteroid 2005 ER95 to Mars ..... 148

## Acronyms

## 3BP

Three-Body Problem

## ABC

Artificial Bee Colony

## ACE

Advanced Composition Explorer

## ACO

Ant Colony Optimization

## CR3BP

Circular Restricted Three-Body Problem

## DST

Dynamical Systems Theory

## EOMs

Equations Of Motion

## FWA

Fireworks Algorithm

## IAU MPC

International Astronomical Union's Minor Planet Center

## ICs

Initial Conditions

## ISEE-3

International Sun/Earth Explorer 3

## ISRU

In-Situ Resource Utilization

## JWST

James Webb Space Telescope

## KR2BP

Keplerian Restricted 2 Body Problem

## LEO

Low Earth Orbit

## LMO

Low Mars Orbit

## LOA

Line Of Apsides

## MAP

Microwave Anisotrophy Probe

## PSO

Particle Swarm Optimization

## R3BP

Restricted Three-Body Problem

## SI

Swarm Intelligence

## SMA

Semi-Major Axis

## SOHO

Solar and Heliospheric Observatory

## STM

State Transition Matrix

## TOF

Time Of Flight

## Introduction

The exploration of Mars has long captured the imagination of scientists, space enthusiasts, and dreamers alike. As Earth's closest neighbor in the vast expanse of the solar system, Mars has beckoned humanity with its mystique and potential for uncovering answers to fundamental questions about our own origins and the possibility of life beyond our home planet. Mars, often referred to as the "Earth's Twin", possesses remarkable similarities to our own planet. With a thin atmosphere, polar ice caps, and a diverse terrain featuring towering volcanoes, deep canyons, and ancient riverbeds, Mars serves as a tantalizing scientific laboratory. Through the efforts of numerous robotic missions, including orbiters, landers, and rovers, we have gained unprecedented insights into Mars' geological history, climate patterns, and the potential for habitability in the past.

In recent years, the exploration of Mars has taken on renewed momentum, fueled by the ambitious plans of space agencies and private enterprises. Mars is viewed as a potential destination for human colonization, with scientists and engineers envisioning the establishment of permanent habitats and the development of self-sustaining ecosystems. The journey to Mars presents formidable challenges, including the long-duration space travel, exposure to cosmic radiation, and the need for innovative life support systems. However, the allure of discovering whether life exists beyond Earth and the prospect of becoming a multi-planetary species provide the impetus for overcoming these hurdles.

As mentioned above, Mars exploration faces a number of significant challenges. One among all is the immense cost associated with interplanetary travel. The journey to Mars demands substantial financial resources due to the complexities of designing and launching spacecraft capable of enduring the long-duration voyage and sustaining human life in a harsh extraterrestrial environment. The high costs arise from the need for advanced technologies, extensive fuel requirements, and the development of robust life support systems to ensure the safety and well-being of astronauts throughout their mission.

In light of the significant costs involved in Mars missions, innovative approaches are being explored to mitigate financial barriers and enhance mission sustainability. One such approach is to leverage the exploration of asteroids, which are rich in resources, as a means of refueling and resupplying spacecraft en route to Mars. By mining and utilizing the resources available on asteroids, it becomes possible to reduce the payload and fuel requirements for Mars missions, thereby decreasing the overall costs associated with interplanetary travel.

Asteroids, the remnants of the early solar system, are rich in valuable resources that can be extracted and utilized for space exploration purposes. These celestial bodies contain abundant water ice, metals, and organic compounds. By harnessing the resources present on asteroids, we can envision a future where spacecraft bound for Mars can refuel, resupply, and potentially even manufacture necessary materials using locally available resources.

In-situ resource utilization (ISRU) on asteroids offers several advantages for Mars missions. Firstly, it reduces the need to transport large amounts of fuel and supplies from Earth, thereby significantly decreasing the costs associated with interplanetary travel. Instead, spacecraft can utilize the resources found on asteroids to produce propellants like liquid oxygen and liquid hydrogen, which are essential for spacecraft propulsion. This approach not only minimizes the payload but also enables longer-duration missions and greater flexibility in mission planning.

Moreover, ISRU on asteroids opens up possibilities for the production of other essential materials required for Mars exploration and colonization. For instance, asteroids can provide a source of raw materials for construction, such as metals and minerals, which can be processed and transformed into habitats, infrastructure, and tools. By utilizing asteroid resources, we can reduce reliance on Earth's limited supplies and create a sustainable infrastructure in space.

This thesis aims to investigate the potential of utilizing asteroids as a means to diminish the costs and enhance the feasibility of Mars missions focusing on trajectory design and optimization techniques for spacecraft traveling between Earth, asteroids, and Mars. More specifically, optimal Earth-asteroid and asteroid-Mars trajectories will be analyzed in order to find asteroids that result in fuel savings for Earth-Mars missions. The research is structured into several chapters, each delving into specific aspects of the mission design process.

Chapter 1 provides a comprehensive understanding of the the Circular Restricted Three-Body Problem (CR3BP), which will later be useful for designing periodic orbits around the asteroid.

Chapter 2 focuses on the Lambert's problem, which deals with determining the trajectory between two points in space under the influence of gravitational forces. The Lambert's problem is one of many methods used in interplanetary mission planning, and this chapter explores two different solutions to solve it.

Chapter 3 mentions heuristic algorithms, with a specific emphasis on the Particle Swarm Optimization (PSO) technique. PSO is an intelligent optimization algorithm inspired by the social behavior of bird flocks, and it has shown remarkable success in solving complex optimization problems.

Chapter 4 uses Lambert's problem to find trajectories between Earth and a series of asteroids, and from them to Mars. $\Delta V \mathrm{~s}$ for different launch windows will also be calculated and the best asteroids (lowest $\Delta V$ ) will be proposed.

In Chapter 5, the focus shifts to the insertion of spacecraft into a Distant Retrograde Orbit (DRO), which is a periodic orbit within the CR3BP. This chapter employs the PSO algorithm to determine the initial conditions for achieving DROs.

Chapter 6 examines potential landing trajectories for spacecraft, utilizing the PSO algorithm for trajectory optimization.

Through the study of the Circular Restricted Three-Body Problem, the solving of the Lambert's problem and the application of heuristic algorithms such as PSO, this thesis aims to contribute to the field of interplanetary mission design and optimization, and more specifically to the realization of efficient missions to Mars.

## Chapter 1

## The Circular Restricted Three-Body Problem

In astrodynamics, according to the theory of universal gravitation formulated by Isaac Newton, in Philosophiae Naturalis Principia Mathematica [1], two bodies with mass exert an attractive force proportional to the product of their masses and inversely proportional to the square of the distance between them. Mathematically, the gravitational force of one body onto another is:

$$
\begin{equation*}
\vec{F}_{g}=-\frac{G M m}{r^{2}} \frac{\vec{r}}{r} \tag{1.1}
\end{equation*}
$$

where $G$ is the Universal Gravitational Constant equal to $6.6743 \times 10^{-11} \frac{m^{3}}{k g \cdot s^{2}}$, $M$ is the mass of the primary body, $m$ is the mass of the secondary mass and $r$ is the distance between them. In the Three-Body Problem (3BP) we consider three bodies that gravitationally influence themselves. In the Restricted Three-Body Problem (R3BP) there is a negligible mass, $m$, with respect to the primaries, $m_{1}$ and $m_{2}$, that represents a spacecraft and that does not influence the motions of $m_{1}$ and $m_{2}$. In the Circular Restricted Three-Body Problem (CR3BP), the two primaries describe a circular orbit around their barycenter of the system (synodic system). The system described is shown in Fig. 1.1.

### 1.1 Equations of Motion

To describe the equations of motion, we start by defining the total mass of the system, $M$, and the mass ratio, $\mu$, as

$$
\begin{equation*}
M=m_{1}+m_{2} \tag{1.2}
\end{equation*}
$$



Figure 1.1: Geometric schematization of the CR3BP

$$
\begin{equation*}
\mu=\frac{m_{2}}{M} \tag{1.3}
\end{equation*}
$$

in this way the primary bodies' masses, $m_{1}$ and $m_{2}$, become:

$$
\begin{gather*}
m_{1}=(1-\mu) M \\
m_{2}=\mu M \tag{1.4}
\end{gather*}
$$

since the distance between the primary bodies is $R$, in the synodic system, $m_{1}$ is placed at

$$
\vec{X}_{m_{1}}=\left\{\begin{array}{c}
-\mu R  \tag{1.5}\\
0 \\
0
\end{array}\right\}
$$

while $m_{2}$ is placed at

$$
\vec{X}_{m_{2}}=\left\{\begin{array}{c}
(1-\mu) R  \tag{1.6}\\
0 \\
0
\end{array}\right\}
$$

and the spacecraft, $m$, has the following general coordinates

$$
\vec{X}_{s c}=\left\{\begin{array}{l}
x  \tag{1.7}\\
y \\
z
\end{array}\right\}
$$

The synodic reference frame $(\hat{i} \hat{j} \hat{k})$ rotates with a constant angular velocity

$$
\begin{equation*}
\vec{\omega}=\sqrt{\frac{G M}{R^{3}}} \hat{k} \tag{1.8}
\end{equation*}
$$

Also, the synodic period is equal to $\tau=\frac{2 \pi}{\omega}$, which, when combined with Eq.(1.8), gives

$$
\begin{equation*}
\tau=2 \pi \sqrt{\frac{R^{3}}{G M}} \tag{1.9}
\end{equation*}
$$

Since $\omega$ is constant, it is possible to write the equation of motion of the spacecraft with mass $m$ in the synodic reference frame using the following dynamical principles

$$
\begin{equation*}
\ddot{\vec{r}}+\vec{\omega} \times(\vec{\omega} \times \vec{r})+2 \vec{\omega} \times \dot{\vec{r}}=\frac{1}{m}\left(\vec{F}_{1}+\vec{F}_{2}\right) \tag{1.10}
\end{equation*}
$$

where the first term is the relative acceleration in the synodic frame, the second is the centripetal acceleration and the third is the Coriolis acceleration. The right-hand side of the equation is the accelerations due to the gravitational forces of $m_{1}$ and $m_{2}$ on $m$. To obtain Eq.(1.10) in each of the three coordinates, we have to decompose the vectors into the three coordinates. It is possible to write the first term of the left-hand side $\ddot{\vec{r}}$ and $\dot{\vec{r}}, \vec{r}$ and $\vec{\omega}$ as

$$
\ddot{\vec{r}}=\left\{\begin{array}{c}
\ddot{x}  \tag{1.11}\\
\ddot{y} \\
\ddot{z}
\end{array}\right\} \quad \dot{\vec{r}}=\left\{\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right\} \quad \vec{r}=\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\} \quad \vec{\omega}=\left\{\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right\}
$$

while the second term $\vec{\omega} \times(\vec{\omega} \times \vec{r})$ of Eq.(1.10) is obtained in two steps as

$$
\begin{align*}
\vec{\omega} \times \vec{r} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 0 & \omega \\
x & y & z
\end{array}\right|=\left\{\begin{array}{c}
-\omega y \\
\omega x \\
0
\end{array}\right\}  \tag{1.12}\\
\vec{\omega} \times(\vec{\omega} \times \vec{r}) & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 0 & \omega \\
-\omega y & \omega x & 0
\end{array}\right|=\left\{\begin{array}{c}
-\omega^{2} x \\
-\omega^{2} y \\
0
\end{array}\right\} \tag{1.13}
\end{align*}
$$

Similarly, we compute the third term $2 \vec{\omega} \times \dot{\vec{r}}$ as

$$
2 \vec{\omega} \times \dot{\vec{r}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}  \tag{1.14}\\
0 & 0 & 2 \omega \\
\dot{x} & \dot{y} & \dot{z}
\end{array}\right|=\left\{\begin{array}{c}
-2 \omega \dot{y} \\
2 \omega \dot{x} \\
0
\end{array}\right\}
$$

Using Eq.(1.4), the gravitational forces of $m_{1}$ on $m$ and $m_{2}$ on $m, \vec{F}_{1}$ and $\vec{F}_{2}$, become

$$
\begin{gather*}
\overrightarrow{F_{1}}=-\frac{G m_{1} m}{r_{1}^{2}} \frac{\overrightarrow{r_{1}}}{r_{1}}=-G(1-\mu) M m \frac{\overrightarrow{r_{1}}}{r_{1}^{3}}  \tag{1.15}\\
\overrightarrow{F_{2}}=-\frac{G m_{2} m}{r_{2}^{2}} \frac{\overrightarrow{r_{2}}}{r_{2}}=-G \mu M m \frac{\overrightarrow{r_{2}}}{r_{2}^{3}} \tag{1.16}
\end{gather*}
$$

where $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ are defined as

$$
\overrightarrow{r_{1}}=\left\{\begin{array}{c}
x+\mu R  \tag{1.17}\\
y \\
z
\end{array}\right\} \quad \overrightarrow{r_{2}}=\left\{\begin{array}{c}
x-(1-\mu) R \\
y \\
z
\end{array}\right\}
$$

and consequently their magnitudes are equal to

$$
\begin{gather*}
r_{1}=\sqrt{(x+\mu R)^{2}+y^{2}+z^{2}} \\
r_{2}=\sqrt{(x-(1-\mu) R)^{2}+y^{2}+z^{2}} \tag{1.18}
\end{gather*}
$$

Collecting all terms, we obtain

$$
\left\{\begin{array}{l}
\ddot{x}-2 \omega \dot{y}-\omega^{2} x=-G(1-\mu) M \frac{x+\mu R}{r_{1}^{3}}-G \mu M \frac{x-(1-\mu) R}{r_{2}^{3}}  \tag{1.19}\\
\ddot{y}+2 \omega \dot{x}-\omega^{2} y=-G(1-\mu) M \frac{y}{r_{1}^{3}}-G \mu M \frac{y}{r_{2}^{3}} \\
\ddot{z}=-G(1-\mu) M \frac{z}{r_{1}^{3}}-G \mu M \frac{z}{r_{2}^{3}}
\end{array}\right.
$$

We can recast Eq.(1.19) in non-dimensional form. This allows us to identify the characteristics of the system in a unit-independent manner, facilitating further analysis. First, we define the dimensionless position vector, $\vec{\rho}$, and the dimensionless time, $\tau$, as

$$
\begin{gather*}
\vec{\rho}=\left\{\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right\}=\frac{\vec{r}}{R}  \tag{1.20}\\
\tau=\omega t \tag{1.21}
\end{gather*}
$$

and, using the chain rule, we can write any time derivative as

$$
\begin{equation*}
(\cdot)=\frac{d(\cdot)}{d t}=\omega \frac{d(\cdot)}{d \tau}=\omega(\cdot)^{\prime} \tag{1.22}
\end{equation*}
$$

Thus, the set of Eq.(1.19) becomes:

$$
\left\{\begin{array}{l}
R \omega^{2} \xi^{\prime \prime}-2 R \omega^{2} \eta^{\prime}-R \omega^{2} \xi=-G(1-\mu) M \frac{R \xi+\mu R}{R^{3} \rho_{1}^{3}}-G \mu M \frac{\xi-(1-\mu) R}{R^{3} \rho_{2}^{3}}  \tag{1.23}\\
R \omega^{2} \eta^{\prime \prime}+2 R \omega^{2} \xi^{\prime}-R \omega^{2} \eta=-G(1-\mu) M \frac{R \eta}{R^{3} \rho_{1}^{3}}-G \mu M \frac{R \eta}{R^{3} \rho_{2}^{3}} \\
R \omega^{2} \zeta^{\prime \prime}=-G(1-\mu) M \frac{R \zeta}{R^{3} \rho_{1}^{3}}-G \mu M \frac{R \zeta}{R^{3} \rho_{2}^{3}}
\end{array}\right.
$$

From Eq.(1.8), $\omega^{2}=\frac{G M}{R^{3}}$, so Eq.(1.23) becomes:

$$
\left\{\begin{array}{l}
\xi^{\prime \prime}-2 \eta^{\prime}-\xi=-(1-\mu) \frac{\xi+\mu}{\rho_{1}^{3}}-\mu \frac{\xi-(1-\mu)}{\rho_{2}^{3}}  \tag{1.24}\\
\eta^{\prime \prime}+2 \xi^{\prime}-\eta=-(1-\mu) \frac{\eta}{\rho_{1}^{3}}-\mu \frac{\eta}{\rho_{2}^{3}} \\
\zeta^{\prime \prime}=-(1-\mu) \frac{\zeta}{\rho_{1}^{3}}-\mu \frac{\zeta}{\rho_{2}^{3}}
\end{array}\right.
$$

where

$$
\begin{gather*}
\rho_{1}=\sqrt{(\xi+\mu)^{2}+\eta^{2}+\zeta^{2}}  \tag{1.25}\\
\rho_{2}=\sqrt{(\xi-(1-\mu))^{2}+\eta^{2}+\zeta^{2}}
\end{gather*}
$$

### 1.2 Jacobi Integral

The CR3BP has one conservation law called the Jacobi integral, also known as Jacobi constant. We start by defining a three-body potential

$$
\begin{equation*}
\mathcal{U}=\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)+\frac{1-\mu}{\rho_{1}}+\frac{\mu}{\rho_{2}} \tag{1.26}
\end{equation*}
$$

where the first term on the right hand side is the centrifugal force, while the second and third terms are the gravitational potentials of masses $m_{1}$ and $m_{2}$. We can compute the partial derivatives of $\mathcal{U}$ with respect to $\xi, \eta$ and $\zeta$ as

$$
\begin{align*}
& \frac{\partial \mathcal{U}}{\partial \xi}=\xi-\frac{1-\mu}{\rho_{1}^{2}} \frac{\partial \rho_{1}}{\partial \xi}-\frac{\mu}{\rho_{2}^{2}} \frac{\partial \rho_{2}}{\partial \xi}  \tag{1.27}\\
& \frac{\partial \mathcal{U}}{\partial \eta}=\eta-\frac{1-\mu}{\rho_{1}^{2}} \frac{\partial \rho_{1}}{\partial \eta}-\frac{\mu}{\rho_{2}^{2}} \frac{\partial \rho_{2}}{\partial \eta}  \tag{1.28}\\
& \frac{\partial \mathcal{U}}{\partial \zeta}=\zeta-\frac{1-\mu}{\rho_{1}^{2}} \frac{\partial \rho_{1}}{\partial \zeta}-\frac{\mu}{\rho_{2}^{2}} \frac{\partial \rho_{2}}{\partial \zeta} \tag{1.29}
\end{align*}
$$

Starting from the definition of $\rho_{1}$

$$
\begin{equation*}
\rho_{1}^{2}=(\xi+\mu)^{2}+\eta^{2}+\zeta^{2} \tag{1.30}
\end{equation*}
$$

it is possible to write

$$
\begin{equation*}
2 \rho_{1} \frac{\partial \rho_{1}}{\partial \xi}=2(\xi+\mu) \tag{1.31}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{\partial \rho_{1}}{\partial \xi}=\frac{\xi+\mu}{\rho_{1}} \tag{1.32}
\end{equation*}
$$

With the same procedure, we obtain

$$
\begin{equation*}
\frac{\partial \rho_{2}}{\partial \xi}=\frac{\xi-(1-\mu)}{\rho_{2}} \tag{1.33}
\end{equation*}
$$

In this way, Eq.(1.27) becomes

$$
\begin{equation*}
\frac{\partial \mathcal{U}}{\partial \xi}=\xi-\frac{1-\mu}{\rho_{1}^{2}} \frac{\xi+\mu}{\rho_{1}}-\frac{\mu}{\rho_{2}^{2}} \frac{\xi-(1-\mu)}{\rho_{2}} \tag{1.34}
\end{equation*}
$$

Similarly, $\frac{\partial \mathcal{U}}{\partial \eta}$ and $\frac{\partial \mathcal{U}}{\partial \zeta}$ become

$$
\begin{align*}
& \frac{\partial \mathcal{U}}{\partial \eta}=\eta-\frac{1-\mu}{\rho_{1}^{2}} \frac{\eta}{\rho_{1}}-\frac{\mu}{\rho_{2}^{2}} \frac{\eta}{\rho_{2}}  \tag{1.35}\\
& \frac{\partial \mathcal{U}}{\partial \zeta}=\zeta-\frac{1-\mu}{\rho_{1}^{2}} \frac{\zeta}{\rho_{1}}-\frac{\mu}{\rho_{2}^{2}} \frac{\zeta}{\rho_{2}} \tag{1.36}
\end{align*}
$$

The set of Eq.(1.24) becomes

$$
\left\{\begin{array}{l}
\xi^{\prime \prime}-2 \eta^{\prime}=\frac{\partial u}{\partial \xi}  \tag{1.37}\\
\eta^{\prime \prime}+2 \xi^{\prime}=\frac{\partial u}{\partial \eta} \\
\zeta^{\prime \prime}=\frac{\partial u}{\partial \zeta}
\end{array}\right.
$$

Multiplying the first equation of Eq.(1.37) by $\xi^{\prime}$, the second by $\eta^{\prime}$ the third by $\zeta^{\prime}$ and adding them together, we obtain

$$
\begin{equation*}
\xi^{\prime} \xi^{\prime \prime}+\eta^{\prime} \eta^{\prime \prime}+\zeta^{\prime} \zeta^{\prime \prime}=\frac{\partial \mathcal{U}}{\partial \xi} \frac{\partial \xi}{\partial \tau}+\frac{\partial \mathcal{U}}{\partial \eta} \frac{\partial \eta}{\partial \tau}+\frac{\partial \mathcal{U}}{\partial \zeta} \frac{\partial \zeta}{\partial \tau} \tag{1.38}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d \tau}\left(\xi^{\prime 2}+\eta^{\prime 2}+\zeta^{\prime 2}\right)=\frac{d \mathcal{U}}{d \tau} \tag{1.39}
\end{equation*}
$$

Considering the magnitude of the non dimensional relative velocity of the mass $m$ equal to $V=\sqrt{\xi^{\prime 2}+\eta^{\prime 2}+\zeta^{\prime 2}}$ and integrating the previous equation, we obtain

$$
\begin{equation*}
V^{2}=2 \mathcal{U}-C \tag{1.40}
\end{equation*}
$$

where $C$ is a constant of integration known as the Jacobi constant, or Jacobi integral. Fig. 1.2 shows the potential $\mathcal{U}$ as a function of $\xi, \eta, \zeta$, while Fig. 1.3 shows contour lines of $\mathcal{U}$, which suggest us that there are five points at the local minima of $\mathcal{U}$. These points are called Lagrange points and will be discussed in the following section.


Figure 1.2: Three-body Potential $\mathcal{U}$

### 1.3 Lagrange Points

In the CR3BP, the Lagrange points are equilibrium points where the gravitational forces of two large bodies equal the centrifugal force felt by the smaller third body. There are five such points in which the velocities and accelerations of the third body must be equal to zero

$$
\begin{equation*}
\xi^{\prime \prime}=\xi^{\prime}=\eta^{\prime \prime}=\eta^{\prime}=\zeta^{\prime \prime}=\zeta^{\prime}=0 \tag{1.41}
\end{equation*}
$$

which means that

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{U}}{\partial \xi}=0  \tag{1.42}\\
\frac{\partial \mathcal{U}}{\partial \eta}=0 \\
\frac{\partial \mathcal{U}}{\partial \zeta}=0=-(1-\mu) \frac{\zeta}{\rho_{1}^{3}}-\mu \frac{\zeta}{\rho_{2}^{3}}
\end{array}\right.
$$



Figure 1.3: Contour lines of $\mathcal{U}$

The third equation of Eq.(1.42) suggests us that the only possible solution is $\zeta=0$. This means that all five equilibrium points lie on the $\xi-\eta$ plane, which is the plane of motion of the primary bodies.

### 1.3.1 Collinear Points

Using the definition of $\mathcal{U}$, Eq.(1.42) can be rewritten as

$$
\left\{\begin{array}{l}
\xi=(1-\mu) \frac{\frac{\xi+\mu}{\rho_{1}^{3}}}{}+\mu \frac{\xi-(1-\mu)}{\rho_{2}^{3}}  \tag{1.43}\\
\eta=(1-\mu) \frac{\eta}{\rho_{1}^{3}}+\mu \frac{\eta}{\rho_{2}^{3}} \\
\zeta=0
\end{array}\right.
$$

From the second equation of Eq.(1.43), we can find that the first group of equilibrium points must satisfy $\eta=0$ is a solution of the second equation, they are positioned along the $\xi$-axis. Since $\eta=0$ we have

$$
\begin{gather*}
\rho_{1}=\xi+\mu  \tag{1.44}\\
\rho_{2}=\xi-(1-\mu)
\end{gather*}
$$

Replacing $\rho_{1}$ and $\rho_{2}$ in Eq.(1.43) we obtain

$$
\left\{\begin{array}{l}
\xi=(1-\mu) \frac{\xi+\mu}{|\xi+\mu|^{3}}+\mu \frac{\xi-(1-\mu)}{|\xi-(1-\mu)|^{3}}  \tag{1.45}\\
\eta=0 \\
\zeta=0
\end{array}\right.
$$

where the absolute values are utilized to ensure that the terms in the denominators, representing physical distances, are always positive. The solution to this cubic set of equations gives three real roots which are the adimensional $x$-coordinates of the libration points $L_{1}, L_{2}$ and $L_{3}$.

### 1.3.2 Equilateral Points

There are two more equilibrium points, called equilateral points, which are the vertices of an equilateral triangle such that $\rho_{1}=\rho_{2}=1$. Using this information, we get

$$
\begin{equation*}
\sqrt{(\xi+\mu)^{2}+\eta^{2}}=\sqrt{(\xi-(1-\mu))^{2}+\eta^{2}} \tag{1.46}
\end{equation*}
$$

Solving for $\xi$ we have

$$
\begin{equation*}
\xi=\frac{1}{2}-\mu \tag{1.47}
\end{equation*}
$$

So $\rho_{1}$ becomes

$$
\begin{equation*}
\rho_{1}=\sqrt{\left(\frac{1}{2}-\mu+\mu\right)^{2}+\eta^{2}}=1 \tag{1.48}
\end{equation*}
$$

and consequently we obtain

$$
\begin{equation*}
\eta= \pm \frac{\sqrt{3}}{2} \tag{1.49}
\end{equation*}
$$

$L_{4}$ and $L_{5}$ have the following nondimensional coordinates

$$
\vec{\chi}_{L_{4}}=\left\{\begin{array}{c}
\frac{1}{2}-\mu  \tag{1.50}\\
\frac{\sqrt{3}}{2} \\
0
\end{array}\right\} \quad \vec{\chi}_{L_{5}}=\left\{\begin{array}{c}
\frac{1}{2}-\mu \\
-\frac{\sqrt{3}}{2} \\
0
\end{array}\right\}
$$

In the CR3BP, a mass placed exactly at one of these five Lagrange points will theoretically stay there forever. However, in reality we have to consider the effects
of perturbations such as solar radiation pressure, non-homogeneous gravitational fields and other perturbations. Periodic orbits around the Lagrange points exist and will be discussed in Sec. 1.4 and Sec. 1.5. In Fig. 1.4, the positions of the Lagrange points with respect to the primary masses are shown.


Figure 1.4: Position of the Lagrange Point

### 1.3.3 Stability of Lagrange Points

The question that needs to be addressed with regards to the Lagrange points, also known as libration points, is whether or not they are stable. The stability of an equilibrium point is determined by the ability of a particle to return to equilibrium if slightly perturbed. To evaluate the stability of the libration points, we slightly perturb the exact solution at each Lagrange point as

$$
\left\{\begin{array}{c}
\xi=\xi_{e}+\delta \xi  \tag{1.51}\\
\eta=\eta_{e}+\delta \eta \\
\zeta=\zeta_{e}+\delta \zeta=\delta \zeta
\end{array}\right.
$$

where $\xi_{e}, \eta_{e}$ and $\zeta_{e}$ are the coordinates of Lagrange points and $\delta \xi, \delta \eta$ and $\delta \zeta$ are small perturbations in the $\xi, \eta$ and $\zeta$ directions, respectively. Now we can substitute

Eq.(1.51) into Eq.(1.24) and we obtain

$$
\left\{\begin{array}{l}
\delta \ddot{\xi}-2 \delta \dot{\eta}-\xi_{e}-\delta \xi=-(1-\mu) \frac{\xi_{e}+\delta \xi+\mu}{\rho_{1}^{3}}-\mu \frac{\xi_{e}+\delta \xi-(1-\mu)}{\rho_{2}^{3}}  \tag{1.52}\\
\delta \ddot{\eta}+2 \delta \dot{\xi}-\eta_{e}-\delta \eta=-(1-\mu) \frac{\eta_{e}+\delta \eta}{\rho_{1}^{3}}-\mu \frac{\eta_{e}+\delta \frac{\eta_{2}}{\rho_{2}^{3}}}{\delta \ddot{\zeta}=-(1-\mu) \frac{\delta \zeta}{\rho_{1}^{3}}-\mu \frac{\delta \zeta}{\rho_{2}^{3}}}
\end{array}\right.
$$

where $\rho_{1}$ and $\rho_{2}$ become

$$
\begin{gather*}
\rho_{1}=\sqrt{\left(\xi_{e}+\delta \xi+\mu\right)^{2}+\left(\eta_{e}+\delta \eta\right)^{2}+\delta \zeta^{2}} \\
\rho_{2}=\sqrt{\left(\xi_{e}+\delta \xi-(1-\mu)\right)^{2}+\left(\eta_{e}+\delta \eta\right)^{2}+\delta \zeta^{2}} \tag{1.53}
\end{gather*}
$$

To solve Eq.(1.52) in $\delta \xi, \delta \eta$ and $\delta \zeta$ we collect like terms. We simplify $\rho_{1}^{-3}$ and $\rho_{2}^{-3}$ as

$$
\begin{gather*}
\rho_{1}^{-3}=\left[\left(\xi_{e}+\delta \xi+\mu\right)^{2}+\left(\eta_{e}+\delta \eta\right)^{2}+\delta \zeta^{2}\right]^{-\frac{3}{2}}= \\
=\left[\left(\xi_{e}+\mu\right)^{2}+\eta_{e}^{2}+2\left(\xi_{e}+\mu\right) \delta \xi+2 \eta_{e} \delta \eta+\delta \xi^{2}+\delta \eta^{2}+\delta \zeta^{2}\right]^{-\frac{3}{2}}  \tag{1.54}\\
\rho_{2}^{-3}=\left[\left(\xi_{e}+\delta \xi-(1-\mu)\right)^{2}+\left(\eta_{e}+\delta \eta\right)^{2}+\delta \zeta^{2}\right]^{-\frac{3}{2}}= \\
=\left[\left(\xi_{e}-(1-\mu)\right)^{2}+\eta_{e}^{2}+2\left(\xi_{e}-(1-\mu)\right) \delta \xi+2 \eta_{e} \delta \eta+\delta \xi^{2}+\delta \eta^{2}+\delta \zeta^{2}\right]^{-\frac{3}{2}} \tag{1.55}
\end{gather*}
$$

Neglecting the higher-order terms $\delta \xi^{2}, \delta \eta^{2}, \delta \zeta^{2}$ and applying Taylor series expansions, we obtain

$$
\begin{gather*}
\rho_{1}^{-3} \approx\left[\rho_{1 e}^{2}+2\left(\xi_{e}+\mu\right) \delta \xi+2 \eta_{e} \delta \eta\right]^{-\frac{3}{2}} \approx \\
\approx \rho_{1 e}^{-3}\left[1-3 \rho_{1 e}^{-2}\left(\left(\xi_{e}+\mu\right) \delta \xi+\eta_{e} \delta \eta\right)\right]  \tag{1.56}\\
\rho_{2}^{-3} \approx\left[\rho_{2 e}^{2}+2\left(\xi_{e}-(1-\mu)\right) \delta \xi+2 \eta_{e} \delta \eta\right]^{-\frac{3}{2}} \approx \\
\approx \rho_{2 e}^{-3}\left[1-3 \rho_{2 e}^{-2}\left(\left(\xi_{e}-(1-\mu)\right) \delta \xi+\eta_{e} \delta \eta\right)\right]
\end{gather*}
$$

Thus Eq.(1.52) simplifies to

$$
\left\{\begin{array}{l}
\delta \ddot{\xi}-2 \delta \dot{\eta}-(1-A) \delta \xi-B \delta \eta=0  \tag{1.57}\\
\delta \ddot{\eta}+2 \delta \dot{\xi}-B \delta \xi-(1-C) \delta \eta=0 \\
\delta \ddot{\zeta}+D \delta \zeta=0
\end{array}\right.
$$

where $A, B, C$ and $D$ are real constants such that

$$
\begin{align*}
& A=(1-\mu)\left[\frac{1}{\rho_{1 e}^{3}}-3 \frac{\left(\xi_{e}+\mu\right)^{2}}{\rho_{1 e}^{5}}\right]+\mu\left[\frac{1}{\rho_{2 e}^{3}}-3 \frac{\left(\xi_{e}-(1-\mu)\right)^{2}}{\rho_{2 e}^{5}}\right] \\
& B=3(1-\mu) \eta_{e}\left[\frac{\left(\frac{\left(e_{e}+\mu\right)}{\rho_{1 e}^{5}}+\frac{\left(\xi_{e}-(1-\mu)\right)}{\rho_{2 e}^{5}}\right]}{C=(1-\mu)\left[\frac{1}{\rho_{1 e}^{3}}-3 \frac{\eta_{e}^{2}}{\rho_{1 e}^{5}}\right]+\mu\left[\frac{1}{\rho_{2 e}^{3}}-33 \frac{\eta_{e}^{2}}{\rho_{2 e}^{5}}\right]}\right.  \tag{1.58}\\
& D=\frac{1-\mu}{\rho_{1 e}^{3}}+\frac{\mu}{\rho_{2 e}^{3}}
\end{align*}
$$

We assume that Eq.(1.57) have a solution in the form of $\delta x=c e^{\lambda t}$, so we obtain

$$
\left[\begin{array}{ccc}
\lambda^{2}-(1-A) & -B-2 \lambda & 0  \tag{1.59}\\
-B+2 \lambda & \lambda^{2}-(1-C) & 0 \\
0 & 0 & \lambda^{2}+D
\end{array}\right]\left\{\begin{array}{l}
\delta \xi \\
\delta \eta \\
\delta \zeta
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

where

$$
\delta x=\left\{\begin{array}{l}
\delta \xi  \tag{1.60}\\
\delta \eta \\
\delta \zeta
\end{array}\right\}
$$

When the matrix of Eq.(1.59) is singular, this eigenvalue problem provides us with non-trivial solutions of the system. Thus, we derive and compute the roots of the characteristic equation of this eigenvalue problem

$$
\begin{array}{r}
\lambda^{6}+\lambda^{4}(2+C+A+D)+\lambda^{2}\left(3+A C-B^{2}+D\right)+ \\
+\left(1-C-A+A C-B^{2}+D\right)=0 \tag{1.61}
\end{array}
$$

which give us information regarding the stability of the system. If each value of $\lambda$ is purely imaginary and/or has negative real roots, the system is stable.
Furthermore, it should be acknowledged that although it can be proven that collinear points are consistently unstable, eigenvalue analysis reveals that equilateral points remain stable only when the mass ratio $\mu$ is less than approximately $\mu^{*}=0.0385209$ [2]. Given that $\mu<\mu^{*}$ holds true for any combination of the Sun with a planet in our Solar System, $\mathrm{L}_{4}$ and $\mathrm{L}_{5}$ points are invariably stable.

### 1.4 Introduction to Dynamical System Theory

Dynamical Systems Theory (DST) is a mathematical formulation used to understand and predict the behavior of complex systems. In astrodynamics, N -body systems are highly sensitive to initial conditions, which is why these systems are considered to be chaotic. DST provides a systematic way to discover and classify sets of orbits that can be used in space missions. This is a more modern approach than older methods, such as patched conics and Lambert's problem. However, one of the major disadvantages of DST is that it requires significant computational power. With the advancement of technology, this limitation is becoming less of a concern. The Genesis mission was the first one to have its orbits entirely planned through dynamical systems theory, utilizing a Sun-Earth/Moon $\mathrm{L}_{1}$ orbit [3].

### 1.4.1 The State Transition Matrix

Given the initial state of the system, a state transition matrix can be used to calculate the state of the system at any future time. A state transition matrix can
be used to describe the linearized dynamics of the CR3BP. Thanks to Dynamical Systems Theory, the state transition matrix can be used to study periodic orbits of a system. Specifically, the state transition matrix can be used to calculate the stability of the system. For example, if a periodic trajectory is stable, small perturbations in the initial state will not result in large changes in the final state. This can be determined by analyzing the eigenvalues of the monodromy matrix, which is defined as the state transition matrix evaluated at exactly one orbital period. If all the eigenvalues have a magnitude less than 1 , the orbit is stable. If, among those, the largest eigenvalue has a magnitude equal to 1 , the orbit is marginally stable, and in case at least one eigenvalue has a magnitude greater than 1 , the orbit is unstable. The state transition matrix can also be used to study the invariant manifolds and so to determine trajectories that leave from or arrive at a given periodic orbit.

Let's recall the three-body potential given by Eq.(1.26) and dimensionless equations of motion, Eq.(1.37). A Taylor series expansions of the three-body potential, $\mathcal{U}$, can be written as

$$
\begin{gather*}
\frac{\partial U}{\partial \xi}=\frac{\partial}{\partial \xi}\left(\frac{\partial U}{\partial \xi}\right) \xi+\frac{\partial}{\partial \eta}\left(\frac{\partial U}{\partial \xi}\right) \eta+\frac{\partial}{\partial \zeta}\left(\frac{\partial U}{\partial \xi}\right) \zeta+ \\
+\frac{\partial}{\partial \dot{\xi}}\left(\frac{\partial U}{\partial \xi}\right)\left(\frac{d \xi}{d t}\right)+\frac{\partial}{\partial \dot{\eta}}\left(\frac{\partial U}{\partial \xi}\right)\left(\frac{d \eta}{d t}\right)+\frac{\partial}{\partial \dot{\zeta}}\left(\frac{\partial U}{\partial \xi}\right)\left(\frac{d \zeta}{d t}\right) \tag{1.62}
\end{gather*}
$$

Since $\mathcal{U}$ is only a function of $\xi, \eta$ and $\zeta$, Eq.( 1.62) becomes

$$
\begin{align*}
\frac{\partial \mathcal{U}}{\partial \xi}= & \frac{\partial}{\partial \xi}\left(\frac{\partial u}{\partial \xi}\right) \xi+\frac{\partial}{\partial \eta}\left(\frac{\partial u}{\partial \xi}\right) \eta+\frac{\partial}{\partial \zeta}\left(\frac{\partial \mathcal{U}}{\partial \xi}\right) \zeta=  \tag{1.63}\\
& =\left(\frac{\partial^{2} u}{\partial \xi^{2}}\right) \xi+\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \eta}\right) \eta+\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \zeta}\right) \zeta
\end{align*}
$$

Similarly, we get

$$
\begin{equation*}
\frac{\partial \mathcal{U}}{\partial \eta}=\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \eta}\right) \xi+\left(\frac{\partial^{2} \mathcal{U}}{\partial \eta^{2}}\right) \eta+\left(\frac{\partial^{2} \mathcal{U}}{\partial \eta \partial \zeta}\right) \zeta \tag{1.64}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathcal{U}}{\partial \zeta}=\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \zeta}\right) \xi+\left(\frac{\partial^{2} \mathcal{U}}{\partial \eta \partial \zeta}\right) \eta+\left(\frac{\partial^{2} \mathcal{U}}{\partial \zeta^{2}}\right) \zeta \tag{1.65}
\end{equation*}
$$

Finally, the dimensionless equations of motion (1.37) become

$$
\left\{\begin{align*}
\xi^{\prime \prime}-2 \eta^{\prime} & =\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi^{2}}\right) \xi+\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \eta}\right) \eta+\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \zeta \bar{\zeta}}\right) \zeta  \tag{1.66}\\
\eta^{\prime \prime}+2 \xi^{\prime} & =\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \eta}\right) \xi+\left(\frac{\partial^{2} \mathcal{U}}{\partial \eta^{2}}\right) \eta+\left(\frac{\partial^{2} \mathcal{U}}{\partial \eta \partial \zeta}\right) \zeta \\
\zeta^{\prime \prime} & =\left(\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \zeta}\right) \xi+\left(\frac{\partial^{2} \mathcal{U}}{\partial \eta \partial \zeta}\right) \eta+\left(\frac{\partial^{2} \mathcal{U}}{\partial \zeta^{2}}\right) \zeta
\end{align*}\right.
$$

We define a six element state vector, $\vec{q}$, as $\vec{q}=\{\xi, \eta, \zeta, \dot{\xi}, \dot{\eta}, \dot{\zeta}\}^{T}$ and the first-order variational equations are derived and result in the following vector differential equation:

$$
\begin{equation*}
\dot{\vec{q}}=A(\tau) \vec{q} \tag{1.67}
\end{equation*}
$$

The 6 x 6 matrix $A(\tau)$ is typically not constant when the reference solution is an arbitrary trajectory. However, when the reference solution is periodic, $A(\tau)$ also exhibits periodicity. $A(\tau)$ can be broken down into four 3 x 3 sub-matrices:

$$
A(\tau)=\left[\begin{array}{cc}
0_{3 \times 3} & \mathbb{I}_{3 \times 3}  \tag{1.68}\\
U & \Omega
\end{array}\right]
$$

where $0_{3 \times 3}$ is the $3 \times 3$ zero matrix, $\mathbb{I}_{3 \times 3}$ is the $3 \times 3$ identity matrix, and $U$ and $\Omega$ are defined as

$$
\begin{gather*}
U=\left[\begin{array}{lll}
\frac{\partial^{2} U}{\partial \xi^{2}} & \frac{\partial^{2} U}{\partial \xi \partial \eta} & \frac{\partial^{2} U}{\partial \partial \partial \zeta} \\
\frac{\partial^{2} U}{\partial \xi \tau \eta} & \frac{\partial^{2} U}{\partial \eta^{2}} & \frac{\partial^{2} U}{\partial \eta \partial \zeta} \\
\frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \zeta} & \frac{\partial^{2} U}{\partial \eta \zeta \zeta} & \frac{\partial^{2} U}{\partial \zeta^{2}}
\end{array}\right]  \tag{1.69}\\
\Omega=\left[\begin{array}{ccc}
0 & 2 & 0 \\
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \tag{1.70}
\end{gather*}
$$

so the extended form of matrix $A(\tau)$ is

$$
A(\tau)=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0  \tag{1.71}\\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\frac{\partial^{2} U}{\partial \xi^{2}} & \frac{\partial^{2} U}{\partial \xi \partial \eta} & \frac{\partial^{2} U}{\partial \xi \zeta \zeta \zeta} & 0 & 2 & 0 \\
\frac{\partial^{2} U}{\partial \xi \partial \eta} & \frac{\partial^{2} U}{\partial \eta^{2}} & \frac{\partial^{2} U}{\partial \eta \partial \zeta} & -2 & 0 & 0 \\
\frac{\partial^{2} U}{\partial \xi \partial \zeta} & \frac{\partial^{2} u}{\partial \eta \partial \zeta} & \frac{\partial^{2} u}{\partial \zeta^{2}} & 0 & 0 & 0
\end{array}\right]
$$

where

$$
\begin{align*}
& \frac{\partial^{2} U}{\partial \xi^{2}}=1-\frac{1-\mu}{\rho_{1}^{3}}-\frac{\mu}{\rho_{2}^{3}}+\frac{3(1-\mu)(\xi+\mu)^{2}}{\rho_{1}^{5}}+\frac{3 \mu(\xi-1+\mu)^{2}}{\rho_{2}^{5}} \\
& \frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \eta}=\frac{3(1-\mu)(\xi+\mu) \eta}{\rho_{\rho}^{5}}+\frac{3 \mu(\xi-1+\mu) \eta}{\rho_{2}^{5}} \\
& \frac{\partial^{2} \mathcal{U}}{\partial \xi \partial \bar{\zeta}}=\frac{3(1-\mu)(\xi+\mu) \zeta}{\rho_{1}^{5}}+\frac{3 \mu(\xi-1+\mu) \zeta}{\rho_{2}^{5}}  \tag{1.72}\\
& \frac{\partial^{2} \mathcal{U}}{\partial \eta^{2}}=1-\frac{1-\mu}{\rho_{1}^{3}}-\frac{\mu}{\rho_{2}^{3}}+\frac{3(1-\mu) \eta^{2}}{\rho_{1}^{5}}+\frac{3 \mu \eta^{2}}{\rho_{2}^{5}} \\
& \frac{\partial^{2} U}{\partial \eta \partial \zeta}=\frac{3(1-\mu) \eta \zeta}{\rho_{1}^{\zeta}}+\frac{3 \mu \eta \zeta}{\rho_{2}^{\dot{5}}} \\
& \frac{\partial^{2} \mathcal{U}}{\partial \zeta^{2}}=-\frac{1-\mu}{\rho_{1}^{3}}-\frac{\mu}{\rho_{2}^{3}}+\frac{3(1-\mu) \zeta^{2}}{\rho_{1}^{5}}+\frac{3 \mu \zeta^{2}}{\rho_{2}^{5}}
\end{align*}
$$

Using a differential correction method in dynamical systems theory is useful to calculate the initial conditions for a periodic orbit. However, we must also include
the differential equations for the state transition matrix

$$
\begin{equation*}
\dot{\Phi}(\tau, 0)=A(\tau) \Phi(\tau, 0) \tag{1.73}
\end{equation*}
$$

where $A(\tau)$ is given by Eq.(1.71) and the 6 x 6 state transition matrix results in the following partial derivatives
with initial conditions

$$
\begin{equation*}
\Phi(0,0)=\mathbb{I}_{6 \times 6} \tag{1.75}
\end{equation*}
$$

Thus, for a set of initial conditions, it is then possible to numerically integrate the trajectory and the STM for any given span of time-

### 1.4.2 Differential Correction

In the CR3BP, there are different types of periodic orbits that can be classified based on their symmetry, such as axis-symmetric, doubly-symmetric, and planar. These periodic orbits will be described in Sec. 1.5. However, it is difficult to find these periodic orbits without using a suitable numerical method. In this section, a differential correction method is considered. Initially, we consider an estimate for the initial conditions, $\vec{q}_{0}$, which typically does not result in a periodic orbit. The objective is to identify a set of initial conditions that, when integrated using the equations of the CR3BP, will produce a periodic orbit over a given period of time $\tau$ with a final state $\vec{q}_{f}$, that is the same to that of the initial conditions [4]. This means that

$$
\begin{equation*}
\vec{q}_{f}=\vec{q}(\tau)=\vec{q}_{0} \tag{1.76}
\end{equation*}
$$

Expanding the equations of motion of the CR3BP, i.e. Eq.(1.24), to the first order about $\left(\vec{q}_{0}, \tau\right)$, we obtain

$$
\begin{equation*}
\delta \vec{q}_{f}=\Phi(\tau, 0) \delta \vec{q}_{0}+\frac{\partial \vec{q}_{f}}{\partial t} \delta \tau \tag{1.77}
\end{equation*}
$$

where $\Phi$ is the state transition matrix and $\delta(\cdot)$ represents the incremental change of the quantity (.). The design of a halo orbit is presented in Subsec. 1.4.3 to better explain the Differential Corrections method.

### 1.4.3 Halo Orbit Design with Differential Correction

Numerical algorithms for the CR3BP that utilize the differential correction scheme make use of the properties of halo orbits to create periodic trajectories. Halo orbits are periodic three dimensional orbit which come from $\mathrm{L}_{1}, \mathrm{~L}_{2}$ or $\mathrm{L}_{3}$. They will be discussed better in Sec. 1.5. These characteristics include the fact that halo orbits pierce the $\xi-\zeta$ plane at right angles (occurring at a specific initial time $t_{0}$ ). Then, at half the period, the orbit must cross the $\xi-\zeta$ plane orthogonally again. As a result, the state vectors at $t_{0}$ and at half the period $t_{\frac{\tau}{2}}$ are:

$$
\begin{align*}
& \vec{q}\left(t_{0}\right)=\left[\xi_{0}, 0, \zeta_{0}, 0, \dot{\eta}_{0}, 0\right]  \tag{1.78}\\
& \vec{q}\left(t_{\frac{\tau}{2}}\right)=\left[\xi_{\frac{\tau}{2}}, 0, \zeta_{\frac{\tau}{2}}, 0, \dot{\eta}_{\frac{\tau}{2}}, 0\right]
\end{align*}
$$

The algorithm begins with initial conditions obtained from the third order solution proposed in [5], at the time $t_{0}$. The trajectory is then propagated until it crosses the $\xi-\zeta$ plane again at half the period. $\dot{\xi}$ and $\dot{\zeta}$ are computed at this second crossing. Typically, these velocity components will not be zero. The goal of the algorithm is to iteratively adjust the initial conditions until the deviations in these velocity components are reduced to zero, resulting in a periodic orbit. In order to reduce the deviations in the velocity components at the second crossing of the $\xi-\zeta$ plane to zero, the algorithm utilizes the state transition matrix. The STM is initially set to the identity matrix, and is updated over time through numerical integration of 36 differential equations and together with the 6 state equations, for a total number of equations of 42. It's worth noting that the state of the orbit also changes at half period as a result of changes in the initial conditions.
In the process of reducing the deviations in the velocity components, three of the six terminal conditions $\xi_{\frac{\tau}{2}}, \zeta_{\frac{\tau}{2}}, \dot{\eta}_{\frac{\tau}{2}}$ are free, and the $\eta_{\frac{\tau}{2}}$ becomes zero as a result of the termination criteria of the trajectory propagation. This leaves only two variables to be reduced to zero. Indeed, expanding the second element of Eq.(1.77) we have
which, when simplified, becomes

$$
\begin{equation*}
\delta \eta_{f}=\Phi_{21} \delta \xi_{0}+\Phi_{23} \delta \zeta_{0}+\Phi_{25} \delta \dot{\eta}_{0}+\dot{\eta}_{f} \delta \tau=0 \tag{1.80}
\end{equation*}
$$

and solving for $\delta \tau$ we obtain

$$
\begin{equation*}
\delta \tau=-\frac{1}{\delta \dot{\eta}_{f}}\left(\Phi_{21} \delta \xi_{0}+\Phi_{23} \delta \zeta_{0}+\Phi_{25} \delta \dot{\eta}_{0}\right) \tag{1.81}
\end{equation*}
$$

where the subscript " $f$ " denotes the final conditions after the integration. In this case it corresponds to half period.
However, there are three unknowns at the initial time. To solve this underdetermined system with two equations and three unknowns, one of the three unknowns is kept fixed. In this particular study, the initial $\zeta$-coordinate is kept unchanged, since it is possible to classify the halo orbit by the maximum value on $\zeta$-axis, the so called $\zeta$-amplitude, $A_{\zeta}$ (halo orbits are also classified according to Jacobi constant). A similar approach can be used by keeping the initial $\xi$-coordinate constant instead. Since $\zeta_{0}$ is fixed, we can compute the incremental changes needed for $\xi_{0}$ and $\dot{\eta}_{0}$
so that replacing Eq.(1.81) in Eq.(1.82), and setting $\delta \zeta_{0}=0$, we obtain

$$
\left\{\begin{array}{c}
\delta \dot{\xi}_{f}  \tag{1.83}\\
\delta \dot{\zeta}_{f}
\end{array}\right\}=\left[\begin{array}{cc}
\Phi_{41} & \Phi_{45} \\
\Phi_{61} & \Phi_{65}
\end{array}\right]\left\{\begin{array}{c}
\delta \xi_{0} \\
\delta \dot{\eta}_{0}
\end{array}\right\}-\left\{\begin{array}{c}
\delta \ddot{\xi}_{f} \\
\delta \ddot{\zeta}_{f}
\end{array}\right\} \frac{1}{\delta \dot{\eta}_{f}}\left(\Phi_{21} \delta \xi_{0}+\Phi_{25} \delta \dot{\eta}_{0}\right)
$$

Solving for $\delta \xi_{0}$ and $\delta \dot{\eta}_{0}$, we get

$$
\left\{\begin{array}{c}
\delta \xi_{0}  \tag{1.84}\\
\delta \dot{\eta}_{0}
\end{array}\right\}=\left[\left[\begin{array}{cc}
\Phi_{41} & \Phi_{45} \\
\Phi_{61} & \Phi_{65}
\end{array}\right]-\frac{1}{\delta \dot{\eta}_{f}}\left\{\begin{array}{c}
\delta \ddot{\xi}_{f} \\
\delta \ddot{\zeta}_{f}
\end{array}\right\}\left[\begin{array}{ll}
\Phi_{21} & \Phi_{25}
\end{array}\right]\right]^{-1}\left\{\begin{array}{c}
\delta \dot{\xi}_{f} \\
\delta \dot{\zeta}_{f}
\end{array}\right\}
$$

The revised initial conditions $\xi_{0}+\delta \xi_{0}$ and $\dot{\eta}_{0}+\delta \dot{\eta}_{0}$ are used to begin the next iteration and this process is continued until $\dot{\xi}_{f}=\dot{\zeta}_{f}=0$ within some acceptable tolerance. We have a set of 42 coupled, differential equations to solve simultaneously: the first 36 equations come from Eq.(1.73) and the last 6 equations come from Eq.(1.67).
In Fig. 1.5, a flowchart of the differential correction algorithm to find halo orbit with $\zeta_{0}$ fixed is shown. For example, for the Earth-Moon system, $\mu=0.01215058561$ and starting with initial conditions equal to $[0.83,0,0.1,0.23,0]^{T}$ and fixing $\zeta_{0}$ we find the corresponding halo in a few iterations. As shown in Fig. 1.6, after the first fluctuation, $\dot{\xi}_{f}$ and $\dot{\zeta}_{f}$ asymptotically reach zero. In Fig. 1.7 we can see better the behavior of $\left|\dot{\xi}_{f}\right|$ and $\left|\dot{\zeta}_{f}\right|$, they reach a value less than tolerance (set to $10^{-14}$ ) in 6 iterations. In Fig. 1.9 and Fig. 1.8 are shown the ICs evolution and the half period evolution. Finally, Fig. 1.10 shows the periodic orbit obtained from using this differential corrector method.


Figure 1.5: Differential Correction flowchart for orbits that are symmetric about the $\xi-\zeta$ plane


Figure 1.6: $\dot{\xi}_{f}$ and $\dot{\zeta}_{f}$ evolution


Figure 1.7: $\left|\dot{\xi}_{f}\right|$ and $\left|\dot{\zeta}_{f}\right|$ evolution


Figure 1.8: $\frac{\tau}{2}$ evolution


Figure 1.9: $\vec{X}_{0}$ evolution


Figure 1.10: Northern Halo $\mathrm{L}_{1}$ orbit with $A_{\zeta}=0.1$ in the Earth-Moon system

The example proposed here gives an example of a 3D orbit. This method will be used to generate DRO in Chapter 5.

### 1.4.4 Poincaré Maps and Poincaré Sections

Poincaré maps are classical techniques for examining the stability of periodic orbits in the N-body problem (and many other dynamical systems). By selecting an initial state $\vec{x}_{0}$ of an orbit, we can create a hyper-plane $\Sigma$, transverse to the orbit that intersects the orbit at $\vec{x}_{0}$. The first intersection of $\Sigma$ by the trajectory propagated from $\vec{x}_{0}$ is the Poincaré point $P_{\Sigma}\left(\vec{x}_{0}\right)$ as shown in Fig. 1.11. Multiple iterations of the Poincaré point are then computed by compounding the map, so we have $P_{\Sigma}^{p}\left(\vec{x}_{0}\right)$ for $p$ returns. A periodic state, $\vec{x}^{*}$, returns to the same state through a Poincaré map for which $P_{\Sigma}^{p}\left(\vec{x}^{*}\right)=\vec{x}^{*}$.


Figure 1.11: Example of a Poincaré map

The dynamical system therefore defines a mapping onto this section $\Sigma$, and a periodic orbit corresponds to the fixed points of this mapping. Such points can be either centers or saddles. Stable and unstable manifolds indicate the dynamical flow into and out of periodic orbits, respectively, emerging from saddle points in the Poincaré map. The connection between saddle points is a fundamental feature of Poincaré map topology, where stable and unstable manifolds intersect an infinite number of times, resulting in chaotic tangles, as shown in Fig. 1.12. The matrix corresponding to this mapping is referred to as the monodromy matrix, $\Pi . \Pi$ is defined as the state-transition matrix evaluated at exactly one orbital period, or

$$
\begin{equation*}
\Pi=\Phi(\tau) \tag{1.85}
\end{equation*}
$$

The stability of the orbit is determined by the 6 eigenvalues $\lambda_{i}$ of the $6 \times 6$ monodromy matrix, $\Pi$. If one or more eigenvalues have a magnitude greater than 1 , the orbit is unstable. If the magnitude of the largest eigenvalue is exactly 1 , the orbit is considered neutrally stable. And if all eigenvalues have magnitudes less than 1, the orbit is considered stable. For instance, as demonstrated in [6], a generic halo orbit's monodromy matrix has the following eigenvalue set:

$$
\begin{align*}
& \lambda_{1}>1 \\
& \lambda_{2}=\frac{1}{\lambda_{1}}  \tag{1.86}\\
& \lambda_{3}=\lambda_{4}=1 \\
& \left|\lambda_{5}\right|=\left|\lambda_{6}\right|=1
\end{align*}
$$

this means that halo orbits are generally unstable.


Figure 1.12: Poincaré map topology

### 1.4.5 Invariant Manifolds

The stability of periodic orbits can be determined by the eigenvalues of the monodromy matrix as described in Subsec. 1.4.1. The local behavior near these orbits is represented by these eigenspaces, which consist of eigenvalues and eigenvectors. Invariant manifolds are time-invariant hyper-surfaces of the dynamical model, the CR3BP in our case. Once a spacecraft is put onto an invariant manifold, assuming no external perturbations are present, it will never depart from it as it follows the natural progression of the dynamic system. The approximation of an unstable (or stable) asymptotic solution, $\vec{x}_{\text {perturbed }}$, can be obtained by slightly adjusting an initial state $\vec{x}_{0}$ on the periodic orbit using a small value, $\epsilon$, in the direction of the unstable (or stable) eigenvectors, which are the unstable (or stable) eigenvectors,
$\vec{\lambda}$, of the monodromy matrix $\Pi$, such that

$$
\begin{equation*}
\vec{x}_{\text {perturbed }}=\vec{x}_{0} \pm \epsilon \vec{\lambda} \tag{1.87}
\end{equation*}
$$

This perturbed state, $\vec{x}_{\text {perturbed }}$, can be integrated forwards in time to generate trajectories that leave the periodic orbit, or backwards in time to compute trajectories that arrive at the periodic orbit generated from the initial state $\vec{x}_{0}$. Numerical integration of the CR3BP EOMs from different initial values $\vec{x}_{0}$ that lie on the same periodic orbit produce a family of approximate asymptotic solution trajectories, forming an invariant manifold tube. Stable and unstable manifolds, which are areas in the phase space that converge towards specific periodic orbits of interest, are crucial for orbital transfers. A spacecraft located on a stable manifold, even if it's far from a periodic orbit, will gradually move towards the orbit and can be easily inserted into it with minimal change in velocity. It is important to note that these invariant manifold tubes are formed by an infinite number of real trajectories that solve the equations of motion of the CR3BP.

### 1.5 CR3BP Orbit Families Overview

Periodic orbit families in the CR3BP represent a group of orbits that share similar properties, such as shape, size, and/or stability. Each periodic orbit family has unique characteristics and applications in the CR3BP. For example, halo orbits are often used as parking orbits for satellites, while Lyapunov orbits can be used to transfer a spacecraft from one orbit to another. The stable and unstable manifolds of these periodic orbits also play a crucial role in determining the feasibility of certain orbital transfers. The following figures show some periodic orbit families in the Earth-Moon system. The Moon shown in these figures is five times bigger than reality to better show its location. In Fig. 1.13 Lyapunov Orbits are displayed around the $\mathrm{L}_{1}$ point and it is possible to obtain this family in all the collinear points. Halo orbits are divided in Northern and Southern; in Fig. 1.14 Northern Halo Orbits are shown about the $\mathrm{L}_{1}$ point. It is possible to generate Vertical and Axial Orbits in all Lagrangian points; in Fig. 1.15 and Fig. 1.17 Vertical and Axial Orbit Families about the $\mathrm{L}_{1}$ point are shown. Butterfly and Dragonfly orbits are subdivided in Northern and Southern and are displayed respectively in Fig. 1.16 and Fig. 1.19. The Distant Retrograde Orbits and Low Prograde Orbits are centered about the second body and they are shown respectively in Fig. 1.20, Fig. 1.18 and Fig. 1.21; the last family can be Western or Eastern. The last families presented are the Short Period and Long Period Orbits, which are placed around the Equilateral points, $\mathrm{L}_{4}$ and $\mathrm{L}_{5}$, and they are displayed respectively in Fig. 1.22 and Fig. 1.23.


Figure 1.13: $\mathrm{L}_{1}$ Lyapunov Orbits


Figure 1.14: $\mathrm{L}_{1}$ Halo Northern Orbits


Figure 1.15: $\mathrm{L}_{1}$ Vertical Orbits


Figure 1.16: Northern Butterfly Orbits


Figure 1.17: $\mathrm{L}_{1}$ Axial Orbits


Figure 1.18: Distant Prograde Orbits


Figure 1.19: Northern Dragonfly Orbits


Figure 1.20: Distant Retrograde Orbits


Figure 1.21: Western Low Prograde Orbits


Figure 1.22: $\mathrm{L}_{4}$ Short Period Orbits


Figure 1.23: $\mathrm{L}_{4}$ Long Period Orbits

### 1.5.1 CR3BP Orbit Applications

International Sun/Earth Explorer 3 (ISEE-3), launched in 1978, was the first spacecraft to be placed in a libration point orbit. Its mission was to study the Earth's magnetosphere, the region around the Earth that is influenced by its magnetic field. ISEE-3 was placed in an orbit around the Sun-Earth $\mathrm{L}_{1}$ point. WIND, launched in 1994, was a spacecraft that studied the solar wind, the stream of charged particles emitted by the Sun. WIND was placed in a Lissajous orbit around the Sun-Earth $\mathrm{L}_{1}$ orbit, where it studied the interaction between the solar wind and the Earth's magnetosphere. Solar and Heliospheric Observatory ( SOHO ), launched in 1995, was a spacecraft that studied the Sun's structure, from its core to the extensive outer corona, including the solar wind that blows across the Solar System. SOHO was placed in a halo orbit around the $\mathrm{L}_{1}$ point, which allowed it to continuously observe the Sun without being blocked by the Earth. Advanced Composition Explorer (ACE), launched in 1997, was another spacecraft that collected and analyzed particles of solar, interplanetary, interstellar and galactic origins. ACE was placed into a Lissajous orbit around the Sun-Earth $\mathrm{L}_{1}$, and provided important data on the composition and behavior of the solar wind. Microwave Anisotrophy Probe (MAP), launched in 2001, was a spacecraft designed
to study the cosmic microwave background radiation, which is the afterglow of the Big Bang. MAP was placed in an orbit around the Sun-Earth $\mathrm{L}_{2}$ point. Genesis, launched in 2004, was a mission to collect samples of solar wind particles and bring them back to Earth for study. Genesis was also placed in a Sun-Earth $\mathrm{L}_{1}$ halo orbit. The James Webb Space Telescope (JWST) is a telescope launched in 2021. It is designed to study the early universe, galaxies, and stars, and was placed in an orbit around the Sun-Earth/Moon $L_{2}$ point. Fig. 1.24 shows the position of the JWST which orbits the sun at the second Lagrange point. The Artemis I mission, launched in 2022. As the first of a series of progressively intricate missions, Artemis I was an unmanned space flight aimed at establishing a basis for human deep space exploration, showcasing our commitment and proficiency in expanding human presence to the Moon and beyond.


Figure 1.24: JWST in Sun-Earth/Moon System. Credit: webb.nasa.gov
In the next chapter, Lambert's problem is discussed which will be applied in Chapter 4 to find trajectories that will reach one of the periodic orbits discussed in this chapter.

## Chapter 2

## Lambert's Problem

Lambert's problem is a classic problem in orbital mechanics that involves determining the trajectory of a spacecraft that travels between two points in space, subject to a gravitational force for a fixed time-of-flight (TOF). In mathematical terms, Lambert's problem is formulated as a two-point boundary-value problem, where the initial and final positions, are given, and the goal is to determine the trajectory that satisfies these constraints for a given TOF. The solution to Lambert's problem can be found using various numerical iterative methods. In this chapter, the Classical Solution proposed by Lagrange in 1778 [7] and the Universal Variable Solution proposed by Battin [8] in 1987 are used to analyze Lambert's Problem.
Lambert's Problem will be used in Chapter 4 to find trajectories from Earth to a series of candidate asteroids and from them to Mars.

### 2.1 Lambert's Problem Definition

Lambert's theorem states that the TOF along an elliptical arc between two points $P_{1}$ and $P_{2}$, as depicted in Fig. 2.1 is solely dependent on the semi-major axis (SMA), $a$, of the ellipse and the segments $\overline{F P_{1}}$, and $\overline{F P_{2}}$ [9]. It is important to note that the eccentricity, $e$, does not appear in the formulation. Mathematically, this can be expressed as

$$
\begin{equation*}
\sqrt{\mu} T O F=f\left(a, r_{1}+r_{2}, c\right) \tag{2.1}
\end{equation*}
$$

where $c$ is the chord connecting $P_{1}$ and $P_{2}$, while $r_{1}$ and $r_{2}$ are the lengths of $\overline{F P_{1}}$ and $\overline{F P_{2}}$ respectively. As seen from the Fig. 2.1, the difference in true anomalies between points $P_{1}$ and $P_{2}$ is

$$
\begin{equation*}
\cos \Delta \theta=\frac{\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}}{r_{1} r_{2}} \tag{2.2}
\end{equation*}
$$



Figure 2.1: Lambert's Problem Geometry

Given the nature of the cosine function we have two solutions, $\Delta \theta$ and $2 \pi-\Delta \theta$. To eliminate the confusion caused by the quadrant ambiguity, a relationship that involves the sine of the angular change must be established. Let's begin by analyzing the Z component of the cross product of $\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)$,

$$
\begin{equation*}
\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)_{z}=\hat{k} \cdot\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)=\hat{k} \cdot r_{1} r_{2} \sin \Delta \theta \hat{w} \tag{2.3}
\end{equation*}
$$

where the inclination of the orbit, $i$, can be related with the unit vectors $\hat{k}$ and $\hat{w}$ to get

$$
\begin{equation*}
\cos i=\hat{k} \cdot \hat{w} \tag{2.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sin \Delta \theta=\frac{\hat{k} \cdot\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)}{r_{1} r_{2} \hat{k} \cdot \hat{w}}=\frac{\hat{k} \cdot\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)}{r_{1} r_{2} \cos i} \tag{2.5}
\end{equation*}
$$

$\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)_{z}$ and $\sin \Delta \theta$ will split the problem in four different cases:

$$
\left\{\begin{array}{lll}
\sin \Delta \theta \geqslant 0, & \left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)_{z} \geqslant 0 \rightarrow & \text { short way, prograde orbit }  \tag{2.6}\\
\sin \Delta \theta \geqslant 0, \quad\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right) \\
\sin & 0 \rightarrow & \text { short way, retrograde orbit } \\
\sin \Delta \theta<0, \quad\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right) z 0 \rightarrow & \text { long way, prograde orbit } \\
\sin \Delta \theta<0, \quad\left(\overrightarrow{r_{1}} \times \overrightarrow{r_{2}}\right)_{z}<0 \rightarrow & \text { long way, retrograde orbit }
\end{array}\right.
$$

Transfers can be executed using any of the various conic sections, including ellipses, parabolas, and hyperbolas. As Eq.(2.6) shows, selected the direction of the orbit
(prograde or retrograde), there are two alternate paths for each trajectory, the short way and the long way as shown in Fig. 2.2. These two routes have the same TOF and usually, one is most efficient in terms of required $\Delta V$ to transfer since it moves in the same direction of the original trajectory.


Figure 2.2: Short and Long way
Using eccentric anomaly, $E$, and recall the time equation in the Kepler's problem, we have

$$
\begin{equation*}
\sqrt{\mu} T O F=a^{\frac{3}{2}}\left[E_{2}-E_{1}-e\left(\sin E_{2}-\sin E_{1}\right)\right] \tag{2.7}
\end{equation*}
$$

where $E_{1}$ and $E_{2}$ are the eccentric anomaly of the points $P_{1}$ and $P_{2}$ respectively. Eq.(2.7) can be manipulated into Lambert's equation, where there is no eccentricity term in order to get an equation such as Eq.(2.1). Let's start defining two new variables, $E_{\text {mean }}$ as

$$
\begin{equation*}
E_{\text {mean }}=\frac{1}{2}\left(E_{2}+E_{1}\right) \tag{2.8}
\end{equation*}
$$

and $E_{\text {middle }}$ as

$$
\begin{equation*}
E_{\text {middle }}=\frac{1}{2}\left(E_{2}-E_{1}\right) \tag{2.9}
\end{equation*}
$$

from the formulation of the orbit equation in terms of eccentric anomaly, we know that

$$
\begin{equation*}
r=a(1-e \cos E) \tag{2.10}
\end{equation*}
$$

so that the sum of two positions, $r_{1}$ and $r_{2}$, can be obtained as

$$
\begin{equation*}
r_{1}+r_{2}=a\left[2-e\left(\cos E_{2}+\cos E_{1}\right)\right] \tag{2.11}
\end{equation*}
$$

Applying the trigonometric identity

$$
\begin{equation*}
\cos E_{2}+\cos E_{1}=2 \cos \frac{E_{2}+E_{1}}{2} \cos \frac{E_{2}-E_{1}}{2} \tag{2.12}
\end{equation*}
$$

Eq.(2.11) becomes

$$
\begin{equation*}
r_{1}+r_{2}=2 a\left[1-e \cos E_{\text {mean }} \cos E_{\text {middle }}\right] \tag{2.13}
\end{equation*}
$$

Let's define the chord $c$ as

$$
\begin{equation*}
c=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{2.14}
\end{equation*}
$$

where $x$ and $y$ are the Cartesian coordinates relative to the center of ellipse as

$$
\begin{array}{ll}
x_{1}=a \cos E_{1} & y_{1}=b \sin E_{1}=a \sqrt{1-e^{2}} \sin E_{1} \\
x_{2}=a \cos E_{2} & y_{2}=b \sin E_{2}=a \sqrt{1-e^{2}} \sin E_{2} \tag{2.15}
\end{array}
$$

so using Prostapheresis formula, Eq.(2.14) becomes

$$
\begin{align*}
c & =\sqrt{a^{2}\left(\cos E_{2}-\cos E_{1}\right)^{2}+a^{2}\left(1-e^{2}\right)\left(\sin E_{2}-\sin E_{1}\right)^{2}} \\
& =\sqrt{a^{2}\left(-2 \sin E_{\text {mean }} \sin E_{\text {middle }}\right)^{2}+a^{2}\left(1-e^{2}\right)\left(2 \cos E_{\text {mean }} \sin E_{\text {middle }}\right)^{2}} \\
& =\sqrt{4 a^{2} \sin ^{2} E_{\text {middle }}\left[\sin ^{2} E_{\text {mean }}+\cos ^{2} E_{\text {mean }}-e^{2} \cos ^{2} E_{\text {mean }}\right]}  \tag{2.16}\\
& =\sqrt{4 a^{2} \sin ^{2} E_{\text {middle }}\left[1-e^{2} \cos ^{2} E_{\text {mean }}\right]} \\
& =2 a \sin E_{\text {middle }} \sqrt{1-e^{2} \cos ^{2} E_{\text {mean }}}
\end{align*}
$$

If we consider another auxiliary variable, $\Xi$, defined as $\cos \Xi=e \cos E_{\text {mean }}$, Eq. (2.14) becomes

$$
\begin{equation*}
c=2 a \sin E_{\text {middle }} \sin \Xi \tag{2.17}
\end{equation*}
$$

and Eq.(2.13) changes into

$$
\begin{equation*}
r_{1}+r_{2}=2 a\left[1-\cos E_{\text {middle }} \cos \Xi\right] \tag{2.18}
\end{equation*}
$$

The last two auxiliary variables are $\alpha$ and $\beta$, which we define as

$$
\begin{equation*}
\alpha=\Xi+E_{\text {middle }} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\Xi-E_{\text {middle }} \tag{2.20}
\end{equation*}
$$

By expressing the relationships between $r_{1}, r_{1}$, and $c$ in terms of the SMA, $\alpha$, and $\beta$, we determine that

$$
\begin{align*}
r_{1}+r_{2}+c & =2 a\left(1-\cos E_{\text {middle }} \cos \Xi+\sin E_{\text {middle }} \sin \Xi\right) \\
& =2 a\left[1-\frac{1}{2}(\cos \alpha+\cos \beta)-\frac{1}{2}(\cos \alpha-\cos \beta)\right]  \tag{2.21}\\
& =2 a(1-\cos \alpha)=4 a \sin ^{2} \frac{\alpha}{2}
\end{align*}
$$

and

$$
\begin{align*}
r_{1}+r_{2}-c & =2 a\left(1-\cos E_{\text {middle }} \cos \Xi-\sin E_{\text {middle }} \sin \Xi\right) \\
& =2 a\left[1-\frac{1}{2}(\cos \alpha+\cos \beta)+\frac{1}{2}(\cos \alpha-\cos \beta)\right]  \tag{2.22}\\
& =2 a(1-\cos \beta)=4 a \sin ^{2} \frac{\beta}{2}
\end{align*}
$$

Solving Eq.(2.21) and Eq.(2.22) for $\alpha$ and $\beta$, respectively, and defining the perimeter of the triangle $P_{1} F P_{2}$ as $s=r_{1}+r_{2}+c$, we obtain

$$
\begin{equation*}
\sin \frac{\alpha}{2}=\sqrt{\frac{s}{2 a}} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \frac{\beta}{2}=\sqrt{\frac{s-c}{2 a}} \tag{2.24}
\end{equation*}
$$

Thus, Eq.(2.7) becomes

$$
\begin{align*}
\sqrt{\mu} T O F & =a^{\frac{3}{2}}\left[2 E_{\text {middle }}-2 e \cos E_{\text {mean }} \sin E_{\text {middle }}\right]  \tag{2.25}\\
& =2 a^{\frac{3}{2}}\left[E_{\text {middle }}-\cos \Xi \sin E_{\text {middle }}\right]
\end{align*}
$$

From Eq.(2.19) and Eq.(2.20) we obtain that $\Xi=\frac{\alpha+\beta}{2}$ and $E_{\text {middle }}=\frac{\alpha-\beta}{2}$, so Eq.(2.25) becomes

$$
\begin{align*}
\sqrt{\mu} T O F & =a^{\frac{3}{2}}\left[\alpha-\beta-2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}\right]  \tag{2.26}\\
& =a^{\frac{3}{2}}[\alpha-\beta-(\sin \alpha-\sin \beta)]
\end{align*}
$$

Eq.(2.26), also known as Lambert's equation, depends only on $a, \alpha$ and $\beta$, the angles $\alpha$ and $\beta$ are dependent solely on the SMA, the sum of $r_{1}$ and $r_{2}$, and $c$. This demonstrates Lambert's theorem, i.e. that Kepler's equation can be converted into Lambert's equation.

### 2.2 Classical Solution

The classical solution to solving Lambert's problem, which was developed by Lagrange [7], involves utilizing the geometry of the minimum energy transfer, as depicted in Fig. 2.3, and the specified TOF to determine the type of conic section the transfer must follow. Not all methods for solving Lambert's problem require determining the conic section beforehand, such as the universal variable solution, which will be discussed in the Sec. 2.3. The basic structure of the minimum energy transfer is established with points $P_{1}$ and $P_{2}$ being the center of circles whose intersection is the vacant focus, $F^{*}$, that arises from the minimum energy ellipse. The transfer arc is represented in blue in the Fig. 2.3, along with its line of apsides, LOA. Let's start by defining the minimum energy ellipse which has the smallest


Figure 2.3: Geometry of the Minimum Energy Solution
SMA that connects $P_{1}$ and $P_{2}, a_{m}$. The chord, $c$, is equal to

$$
\begin{equation*}
c=\overline{P_{1}} \overline{F^{*}}+\overline{P_{2}} \overline{F^{*}} \tag{2.27}
\end{equation*}
$$

applying the properties of ellipses, we have

$$
\begin{equation*}
c=2 a_{m}-r_{1}+2 a_{m}-r_{2}=4 a_{m}-\left(r_{1}+r_{2}\right) \tag{2.28}
\end{equation*}
$$

We define the semi-perimeter of the triangle $P_{1} F P_{2}, s$, as

$$
\begin{equation*}
s=\frac{1}{2}\left(r_{1}+r_{2}+c\right) \tag{2.29}
\end{equation*}
$$

Solving Eq.(2.28) and Eq.(2.29) for $a_{m}$, we obtain

$$
\begin{equation*}
a_{m}=\frac{1}{2} s \tag{2.30}
\end{equation*}
$$

After calculating the SMA of the minimum energy ellipse for given $P_{1}, P_{2}$ and $\Delta \theta$, $\alpha$ and $\beta$ corresponding to the minimum energy ellipse can also be calculated by substituting Eq.(2.30) into Eq.(2.23) and Eq.(2.24), to get

$$
\begin{equation*}
\alpha_{m}=\pi \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{m}=2 \operatorname{sgn}(\sin \Delta \theta) \arcsin \sqrt{\frac{s-c}{s}} \tag{2.32}
\end{equation*}
$$

where sgn is the signum function, such that

$$
\operatorname{sgn}(x)=\left\{\begin{array}{cc}
1 & \text { if } x>0  \tag{2.33}\\
0 & \text { if } x=0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

Replacing $\alpha_{m}$ and $\beta_{m}$ in Eq.(2.26) it is possible to compute the TOF corresponding to the minimum energy ellipse, $t_{m}$, as

$$
\begin{align*}
\sqrt{\mu} t_{m} & =a_{m}^{\frac{3}{2}}\left[\alpha_{m}-\beta_{m}-\left(\sin \alpha_{m}-\sin \beta_{m}\right)\right] \\
& =\left(\frac{s}{2}\right)^{\frac{3}{2}}\left(\pi-\beta_{m}+\sin \beta_{m}\right) \tag{2.34}
\end{align*}
$$

Solving for $t_{m}$, we obtain

$$
\begin{equation*}
t_{m}=\sqrt{\frac{s^{3}}{8 \mu}}\left(\pi-\beta_{m}+\sin \beta_{m}\right) \tag{2.35}
\end{equation*}
$$

To determine the type of orbit, we need to compare the given $T O F$ with the the parabolic time of flight, $t_{p}$. This is computed by taking the limit as the SMA goes to infinity using Eq.(2.26)

$$
\begin{align*}
t_{p} & =\lim _{a \rightarrow \infty} T O F=\frac{a^{\frac{3}{2}}}{\sqrt{\mu}}[\alpha-\beta-(\sin \alpha-\sin \beta)] \\
& =\lim _{a \rightarrow \infty} T O F=\frac{a^{\frac{3}{2}}}{\sqrt{\mu}}\left[2 \arcsin \sqrt{\frac{s}{2 a}}-\operatorname{sgn}(\sin \Delta \theta) 2 \arcsin \sqrt{\frac{s-c}{2 a}}+\right.  \tag{2.36}\\
& \left.-\left(\sin 2 \arcsin \sqrt{\frac{s}{2 a}}-\operatorname{sgn}(\sin \Delta \theta) \sin 2 \arcsin \sqrt{\frac{s-c}{2 a}}\right)\right]
\end{align*}
$$

Since $a \rightarrow \infty$, we can make a substitution such that, $\varepsilon$, becomes

$$
\begin{equation*}
\varepsilon=\frac{1}{a} \rightarrow 0 \tag{2.37}
\end{equation*}
$$

to get

$$
\begin{align*}
t_{p} & =\lim _{\varepsilon \rightarrow 0} T O F=\frac{\varepsilon^{-\frac{3}{2}}}{\sqrt{\mu}}\left[2 \arcsin \sqrt{\frac{s \varepsilon}{2}}-\operatorname{sgn}(\sin \Delta \theta) 2 \arcsin \sqrt{\frac{(s-c) \varepsilon}{2}}+\right. \\
& \left.-\left(\sin 2 \arcsin \sqrt{\frac{s \varepsilon}{2}}-\operatorname{sgn}(\sin \Delta \theta) \sin 2 \arcsin \sqrt{\frac{(s-c) \varepsilon}{2}}\right)\right] \tag{2.38}
\end{align*}
$$

Using Taylor series expansions we obtain

$$
\begin{align*}
t_{p} & =\lim _{\varepsilon \rightarrow 0} T O F=\frac{\varepsilon^{-\frac{3}{2}}}{\sqrt{\mu}}\left\{2 \sqrt{\frac{s \varepsilon}{2}}+\frac{2}{6} \sqrt{\frac{s^{3} \varepsilon^{3}}{8}}-\operatorname{sgn}(\sin \Delta \theta)\left(2 \sqrt{\frac{(s-c) \varepsilon}{2}}+\right.\right. \\
& \left.+\frac{2}{6} \sqrt{\frac{(s-c)^{3} \varepsilon^{3}}{8}}\right)-\left[2 \sqrt{\frac{s \varepsilon}{2}}+\frac{2}{6} \sqrt{\frac{s^{3} \varepsilon^{3}}{8}}-\frac{8}{6} \sqrt{\frac{s^{3} \varepsilon^{3}}{8}}+\right.  \tag{2.39}\\
& \left.\left.-\operatorname{sgn}(\sin \Delta \theta)\left(2 \sqrt{\frac{(s-c) \varepsilon}{2}}+\frac{2}{6} \sqrt{\frac{(s-c)^{3} \varepsilon^{3}}{8}}-\frac{8}{6} \sqrt{\frac{(s-c)^{3} \varepsilon^{3}}{8}}\right)\right]\right\}
\end{align*}
$$

simplifying we get

$$
\begin{align*}
t_{p} & =\lim _{\varepsilon \rightarrow 0} T O F=\frac{\varepsilon^{-\frac{3}{2}}}{\sqrt{\mu}}\left[\frac{\sqrt{2}}{3} s^{\frac{3}{2}}-\operatorname{sgn}(\sin \Delta \theta) \frac{\sqrt{2}}{3}(s-c)^{\frac{3}{2}}\right] \varepsilon^{\frac{3}{2}}  \tag{2.40}\\
& =\frac{\sqrt{2}}{3 \sqrt{\mu}}\left[s^{\frac{3}{2}}-\operatorname{sgn}(\sin \Delta \theta)(s-c)^{\frac{3}{2}}\right]
\end{align*}
$$

Knowing the orbit type (prograde or retrograde, short way or long way) allows us to split the problem into three chategories:

$$
\begin{align*}
& \text { TOF }>t_{p} \rightarrow \text { elliptical orbit } \\
& T O F=t_{p} \rightarrow \text { parabolic orbit }  \tag{2.41}\\
& T O F<t_{p} \rightarrow \text { hyperbolic orbit }
\end{align*}
$$

The parabolic case is the simplest, since we know that in that case $a \rightarrow \infty$ and $e=1$, so we don't need to solve the Eq.(2.26). Elliptical and hyperbolic cases need to be further studied in order to find the corresponding $S M A$ that solves Eq. (2.26).

### 2.2.1 Elliptical Case

Let's fist consider the elliptical case of Lambert's problem where TOF $>t_{p}$. The values of $\alpha$ and $\beta$ are based on the TOF and $\Delta \theta$ values as follows

$$
\alpha_{E}=\left\{\begin{array}{cl}
\alpha & \text { if } T O F \leqslant t_{m}  \tag{2.42}\\
2 \pi-\alpha & \text { if } T O F>t_{m}
\end{array}\right.
$$

and

$$
\beta_{E}=\left\{\begin{array}{cl}
\beta & \text { if } 0 \leqslant \Delta \theta<\pi  \tag{2.43}\\
-\beta & \text { if } \pi \leqslant \Delta \theta<2 \pi
\end{array}\right.
$$

where $\alpha$ and $\beta$ are computed from Eq.(2.23) and Eq.(2.24), respectively. So the Lambert's equation becomes

$$
\begin{equation*}
a^{\frac{3}{2}}\left[\alpha_{E}(a)-\beta_{E}(a)-\left(\sin \alpha_{E}(a)-\sin \beta_{E}(a)\right)\right]-\sqrt{\mu} T O F=0 \tag{2.44}
\end{equation*}
$$

Eq.(2.44) guarantees the existence of one and only one solution. After using one of the numerical methods existing in the literature, such as the secant method, we can solve for $a$ and then find other orbital parameters, such as, the semilatus rectum, $\wp$, and consequentially the eccentricity, $e$, as

$$
\begin{equation*}
\wp=\frac{4 a\left(s-r_{1}\right)\left(s-r_{2}\right)}{c^{2}} \sin ^{2} \frac{\alpha_{E}+\beta_{E}}{2} \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
e=\sqrt{1-\frac{\wp}{a}} \tag{2.46}
\end{equation*}
$$

To know the velocities at the points $P_{1}$ and $P_{2}$, we need to introduce the versors,


Figure 2.4: Velocity vectors
depicted in Fig. 2.4, as

$$
\begin{equation*}
\hat{u}_{1}=\frac{\overrightarrow{r_{1}}}{r_{1}} \quad \hat{u}_{2}=\frac{\overrightarrow{r_{2}}}{r_{2}} \quad \hat{u}_{c}=\frac{\overrightarrow{r_{2}}-\overrightarrow{r_{1}}}{c} \tag{2.47}
\end{equation*}
$$

Thus, the velocities at the points $P_{1}$ and $P_{2}$ can be written as

$$
\begin{equation*}
\vec{v}_{1}=(A+B) \hat{u}_{c}+(B-A) \hat{u}_{1} \tag{2.48}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{v}_{2}=(A+B) \hat{u}_{c}-(B-A) \hat{u}_{2} \tag{2.49}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\sqrt{\frac{\mu}{4 a}} \cot \frac{\alpha_{E}}{2}  \tag{2.50}\\
& B=\sqrt{\frac{\mu}{4 a}} \cot \frac{\beta_{E}}{2}
\end{align*}
$$

### 2.2.2 Hyperbolic Case

Let's now consider the hyperbolic case of Lambert's problem where $T O F<t_{p}$. The orbit that links $P_{1}$ and $P_{2}$ is classified as hyperbolic and Lambert's equation becomes

$$
\begin{equation*}
(-a)^{\frac{3}{2}}\left[\sinh \alpha_{H}-\alpha_{H}-\operatorname{sgn}(\sin \Delta \theta)\left(\sinh \beta_{H}-\beta_{H}\right)\right]-\sqrt{\mu} T O F=0 \tag{2.51}
\end{equation*}
$$

where $\alpha_{H}$ and $\beta_{H}$ are computed according to the Eq.(2.52) and the Eq.(2.53) respectively, where hyperbolic trigonometric functions are used and $a<0$.

$$
\begin{align*}
& \sinh \frac{\alpha_{H}}{2}=\sqrt{\frac{s}{-2 a}}  \tag{2.52}\\
& \sinh \frac{\beta_{H}}{2}=\sqrt{\frac{s-c}{-2 a}} \tag{2.53}
\end{align*}
$$

Like the elliptical case, the hyperbolic case guarantees the existence of one and only one solution for $S M A$, $a$. After finding $a$ using Eq.(2.51) using, e.g., the secant method, we can find the semilatus rectum, $\wp$, as

$$
\begin{equation*}
\wp=\frac{-4 a\left(s-r_{1}\right)\left(s-r_{2}\right)}{c^{2}} \sinh ^{2} \frac{\alpha_{H}+\beta_{H}}{2} \tag{2.54}
\end{equation*}
$$

and the eccentricity, $e$, with Eq.(2.46). To find the velocities at the points $P_{1}$ and $P_{2}$ in the computed hyperbolic transfer orbit, we use the same versors introduced in Eq.(2.47), and the same velocities of Eq.(2.48) and Eq.(2.49), but with different values of $A$ and $B$, which are

$$
\begin{align*}
& A=\sqrt{\frac{\mu}{-4 a}} \operatorname{coth} \frac{\alpha_{H}}{2} \\
& B=\sqrt{\frac{\mu}{-4 a}} \operatorname{coth} \frac{\beta_{H}}{2} \tag{2.55}
\end{align*}
$$

### 2.3 Universal Variable Solution

Battin developed a condensed and computationally effective solution to Lambert's problem [8]. This version employs a universal time of flight equation, which accommodates elliptic, parabolic, and hyperbolic orbits and functions smoothly as a single, independent variable. Let's start by recalling the vis-viva equation

$$
\begin{equation*}
\epsilon=\frac{v^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a} \tag{2.56}
\end{equation*}
$$

Solving for $a$ we obtain

$$
\begin{equation*}
a=\frac{1}{\frac{2}{r}-\frac{V^{2}}{\mu}} \tag{2.57}
\end{equation*}
$$

We define a new variable, $\alpha$, not to be confused with $\alpha$ used in the classical solution, as

$$
\begin{equation*}
\alpha=\frac{1}{a} \tag{2.58}
\end{equation*}
$$

This replacement removes the parabolic discontinuity since as $a \rightarrow \infty, \alpha \rightarrow 0$. Also, define $\chi$ as the universal anomaly and the dimensionless universal variable, $z$, as

$$
\begin{equation*}
z=\alpha \chi^{2} \tag{2.59}
\end{equation*}
$$

For $t_{0}$ and $t$, the variable $\chi$ can be related to the classical anomalies by:

$$
\chi= \begin{cases}\sqrt{a}\left(E-E_{0}\right) & \text { for } \alpha>0  \tag{2.60}\\ \sqrt{\natural}\left(\tan \frac{\nu}{2}-\tan \frac{\nu_{0}}{2}\right) & \text { for } \alpha=0 \\ \sqrt{-a}\left(H-H_{0}\right) & \text { for } \alpha<0\end{cases}
$$

where $E, \nu$ and $H$ are, the elliptic eccentric anomaly, the true anomaly and the hyperbolic eccentric anomaly respectively. Let's introduce Lagrange coefficients $f, g, \dot{f}, \dot{g}$ such that

$$
\left\{\begin{array}{c}
\overrightarrow{r_{2}}  \tag{2.61}\\
\overrightarrow{v_{2}}
\end{array}\right\}=\left[\begin{array}{cc}
f & g \\
\dot{f} & \dot{g}
\end{array}\right]\left\{\begin{array}{c}
\overrightarrow{r_{1}} \\
\overrightarrow{v_{1}}
\end{array}\right\}
$$

where

$$
\begin{gather*}
f=1-\frac{\mu r_{2}}{h^{2}}(1-\cos \Delta \theta)  \tag{2.62}\\
g=\frac{r_{1} r_{2}}{h} \sin \Delta \theta  \tag{2.63}\\
\dot{f}=\frac{\mu}{h}\left(\frac{1-\cos \Delta \theta}{\sin \Delta \theta}\right)\left[\frac{\mu}{h^{2}}(1-\cos \Delta \theta)-\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]  \tag{2.64}\\
\dot{g}=1-\frac{\mu r_{1}}{h^{2}}(1-\cos \Delta \theta) \tag{2.65}
\end{gather*}
$$

It is possible to write these Lagrange coefficients in terms of $\chi$ as

$$
\begin{gather*}
f=1-\frac{\chi^{2}}{r_{1}} C_{2}(z)  \tag{2.66}\\
g=T O F-\frac{\chi^{3}}{\sqrt{\mu}} C_{3}(z)  \tag{2.67}\\
\dot{f}=\frac{\sqrt{\mu}}{r_{1} r_{2}} \chi\left[z C_{3}(z)-1\right]  \tag{2.68}\\
\dot{g}=1-\frac{\chi^{2}}{r_{2}} C_{2}(z) \tag{2.69}
\end{gather*}
$$

where $C_{2}(z)$ and $C_{3}(z)$ are the so-called Stumpff functions, which are defined by infinite series of the form

$$
\begin{equation*}
C_{k}(z)=\frac{1}{k!}-\frac{z}{(k+2)!}+\frac{z^{2}}{(k+4)!}-\cdots=\sum_{i=0}^{\infty} \frac{(-1)^{i} z^{i}}{(k+2 i)!} \tag{2.70}
\end{equation*}
$$

so that $C_{2}(z)$ becomes

$$
C_{2}(z)= \begin{cases}\frac{1-\cos \sqrt{z}}{z} & (z>0)  \tag{2.71}\\ \frac{1}{2} & (z=0) \\ \frac{\cosh \sqrt{-z}-1}{-z} & (z<0)\end{cases}
$$

while $C_{3}(z)$ becomes

$$
C_{3}(z)= \begin{cases}\frac{\sqrt{z}-\sin \sqrt{z}}{(\sqrt{z})^{3}} & (z>0)  \tag{2.72}\\ \frac{1}{6} & (z=0) \\ \frac{\sinh \sqrt{-z}-\sqrt{-z}}{(\sqrt{-z})^{3}} & (z<0)\end{cases}
$$

We have 4 equations, Eq.(2.66-2.69), and 3 unknowns, $h, \chi$ and $z$, but from the conservation of the angular momentum we also have that

$$
\begin{equation*}
f \dot{g}-\dot{f} g=1 \tag{2.73}
\end{equation*}
$$

so we have 3 linearly independent equations and 3 unknowns. If we equate Eq.(2.63) to Eq.(2.67), we obtaain

$$
\begin{equation*}
\frac{r_{1} r_{2}}{h} \sin \Delta \theta=T O F-\frac{\chi^{3}}{\mu} C_{3}(z) \tag{2.74}
\end{equation*}
$$

while if we equate Eq.(2.62) to Eq.(2.66), we obtain

$$
\begin{equation*}
1-\frac{\mu r_{2}}{h^{2}}(1-\cos \Delta \theta)=1-\frac{\chi^{2}}{r_{1}} C_{2}(z) \tag{2.75}
\end{equation*}
$$

Solving for $h$ we get

$$
\begin{equation*}
h=\sqrt{\frac{\mu r_{1} r_{2}(1-\cos \Delta \theta)}{\chi^{2} C_{2}(z)}} \tag{2.76}
\end{equation*}
$$

which, when substituted into the Eq.(2.74), yields

$$
\begin{array}{r}
\sqrt{\frac{r_{1} r_{2} \chi^{2} C_{2}(z)}{\mu(1-\cos \Delta \theta)}} \sin \Delta \theta=T O F-\frac{\chi^{3}}{\sqrt{\mu}} C_{3}(z)  \tag{2.77}\\
\chi \sqrt{C_{2}(z)} \sqrt{\frac{r_{1} r_{2}}{(1-\cos \Delta \theta)}} \sin \Delta \theta=\sqrt{\mu T O F-\chi^{3} C_{3}(z)}
\end{array}
$$

and rearranging to get $\sqrt{\mu} T O F$ on the left-hand side, we get

$$
\begin{equation*}
\sqrt{\mu} T O F=\chi \sqrt{C_{2}(z)} A+\chi^{3} C_{3}(z) \tag{2.78}
\end{equation*}
$$

where $A$ is a constant given by

$$
\begin{equation*}
A=\sqrt{\frac{r_{1} r_{2}}{(1-\cos \Delta \theta)}} \sin \Delta \theta \tag{2.79}
\end{equation*}
$$

Equating Eq.(2.64) to Eq.(2.68), we get

$$
\begin{equation*}
\frac{\mu}{h}\left(\frac{1-\cos \Delta \theta}{\sin \Delta \theta}\right)\left[\frac{\mu}{h^{2}}(1-\cos \Delta \theta)-\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]=\frac{\sqrt{\mu}}{r_{1} r_{2}} \chi\left[z C_{3}(z)-1\right] \tag{2.80}
\end{equation*}
$$

and substituting Eq.(2.76) in Eq.(2.80), we obtain

$$
\begin{array}{r}
\sqrt{\frac{\chi^{2} C_{2}(z)}{r_{1} r_{2}(1-\cos \Delta \theta)}}\left(\frac{1-\cos \Delta \theta}{\sin \Delta \theta}\right)\left[\frac{\mu \chi^{2} C_{2}(z)(1-\cos \Delta \theta)}{\mu r_{1} r_{2}(1-\cos \Delta \theta)}-\frac{r_{1}+r_{2}}{r_{1} r_{2}}\right]=  \tag{2.81}\\
=\frac{\chi}{r_{1} r_{2}}\left[z C_{3}(z)-1\right]
\end{array}
$$

Simplifying, we get

$$
\begin{equation*}
\frac{\sqrt{\chi^{2} C_{2}(z)}}{A}\left(\chi^{2} C_{2}(z)-r_{1}-r_{2}\right)=\chi\left[z C_{3}(z)-1\right] \tag{2.82}
\end{equation*}
$$

Solving for $\chi$, we obtain

$$
\begin{equation*}
\chi=\sqrt{\frac{y(z)}{C_{2}(z)}} \tag{2.83}
\end{equation*}
$$

where

$$
\begin{equation*}
y(z)=r_{1}+r_{2}+A \frac{z C_{3}(z)-1}{\sqrt{C_{2}(z)}} \tag{2.84}
\end{equation*}
$$

If we replace Eq.(2.83) into Eq.(2.78), it is possible to write

$$
\begin{equation*}
\sqrt{\mu} T O F=\sqrt{y(z)} A+\left(\frac{y(z)}{C_{2}(z)}\right)^{\frac{3}{2}} C_{3}(z) \tag{2.85}
\end{equation*}
$$

which is Lambert's equation in terms of the universal variable $z$.

### 2.3.1 Newton-Raphson Method

In this subsection we discuss how to solve Eq.(2.85). One of the most efficient numerical method for this case is the Newton-Raphson method, which states that to find the root, $z$, of a real-valued function, $F(z)$, we need to iterate using the following equation until a certain tolerance is reached

$$
\begin{equation*}
z_{n}=z_{n-1}-\frac{F\left(z_{n-1}\right)}{F^{\prime}\left(z_{n-1}\right)} \tag{2.86}
\end{equation*}
$$

where $F^{\prime}(z)$ is the derivative of $F(z)$ with respect to $z, n$ is the $n^{\text {th }}$ iteration and $n-1$ is the $n-1^{\text {th }}$ iteration. Note that Eq.(2.86) is the Taylor series expansion of $F(z)$ truncated at the first term. In our case, the function is

$$
\begin{equation*}
F(z)=\sqrt{y(z)} A+\left(\frac{y(z)}{C_{2}(z)}\right)^{\frac{3}{2}} C_{3}(z)-\sqrt{\mu} T O F \tag{2.87}
\end{equation*}
$$

so we need to compute $F^{\prime}(z)=\frac{d F(z)}{d z}$, which is split in two cases: for $z \neq 0$ we have that

$$
\begin{array}{r}
\left.\frac{d F(z)}{d z}\right|_{z \neq 0}=\left(\frac{y(z)}{C_{2}(z)}\right)^{\frac{3}{2}}\left[\frac{1}{2 z}\left(C_{2}(z)-\frac{3 C_{3}(z)}{2 C_{2}(z)}\right)+\frac{3 C_{3}^{2}(z)}{4 C_{2}(z)}\right]+ \\
 \tag{2.88}\\
+\frac{A}{8}\left(\frac{3 C_{3}(z)}{C_{2}(z)} \sqrt{y(z)}+A \sqrt{\frac{C_{2}(z)}{y(z)}}\right)
\end{array}
$$

and for $z=0$ we need to take the limit as $z \rightarrow 0$, which yields

$$
\begin{equation*}
\left.\frac{d F(z)}{d z}\right|_{z=0}=\frac{\sqrt{2}}{40} y(0)^{\frac{3}{2}}+\frac{A}{8}\left(\sqrt{y(0)}+A \sqrt{\frac{1}{2 y(0)}}\right) \tag{2.89}
\end{equation*}
$$

Solving Eq.(2.87), and through backward substitution, we get the SMA, and consequently the other orbital parameters. Finally, it is possible to compute the

Lagrange coefficients which are used to calculate the velocities $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ using Eq.(2.61), which simplifies to as

$$
\begin{align*}
& \overrightarrow{v_{1}}=\frac{1}{g}\left(\overrightarrow{r_{2}}-f \overrightarrow{r_{1}}\right)  \tag{2.90}\\
& \overrightarrow{v_{2}}=\frac{1}{g}\left(\vec{g} \overrightarrow{r_{2}}-\overrightarrow{r_{1}}\right) \tag{2.91}
\end{align*}
$$

Compared to the classical method, the universal variable method is typically faster in terms of computational time. Additionally, it has the advantage of only needing a single initial guess $\left(z_{0}\right)$ and does not require prior determination of the conic section.

The next chapter will explore heuristic algorithms. Specifically, we will focus on mathematical modeling of the particle swarm optimization technique, which will then be used in Chapters 5 and 6 to find the initial conditions of a periodic orbit in the CR3BP and a landing trajectory from that orbit to a candidate asteroid.

## Chapter 3

## Heuristic Algorithms

Broadly speaking, there are two types of numerical optimization methods: deterministic and stochastic. Deterministic, also known as gradient-based methods, assume that the objective function to be optimized is continuous and differentiable. In contrast, stochastic methods, also known as evolutionary algorithms, or heuristic algorithms, take inspiration from natural phenomena and employ a population of individuals to represent potential solutions. The optimal solution is then found through competition and cooperation among these individuals. The most widely used class of these methods is genetic algorithms, which simulate the evolution of a species based on the principle of survival of the fittest, as proposed by Darwin [10]. In this chapter, after an overview of some of the most used heuristic algorithms, Particle Swarm Optimization, which is then used in Chapters 5 and 6 to find the initial conditions of a periodic orbit in the CR3BP and a landing trajectory from that orbit to a candidate asteroid, will be discussed.

### 3.1 Computational Swarm Intelligence Introduction

Swarm Intelligence (SI) is a computational technique that is effective in adaptive systems. This approach combines genetic adaptation and social observation in problem-solving tools such as schools of fish, bird flocks, and insect colonies (e.g., ants, termites, and honeybees). In SI, a group of simple agents collectively solves problems through the installation of collective intelligence. Ethnologists conducted studies in the 1980s to model swarm behavior and observed that individual agents have stochastic behavior in response to their environment. The emergence of collective intelligence results from local rules that are independent of global rules, and interactions between self-organized agents. Swarms exhibit self-organization, and interactions on the local level lead to a global response. Trajectory tracking
algorithms demonstrate how decentralized, self-organized patterns emerge in animal foraging behavior. The principles that express swarm intelligence as an intelligent behavior include the swarm's ability to process spatial and temporal data, adapt to changing conditions, allocate resources throughout the domain and adapting itself when necessary.

### 3.1.1 Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) Algorithm, introduced by Karaboga [11] in 2005, is a swarm intelligence-based optimization algorithm that is inspired by the foraging behavior of honey bees. In this algorithm, the problem to be solved is formulated as an optimization problem, and a group of artificial bees are used to find the best solution. The ABC algorithm consists of three types of bees: employed bees, onlooker bees, and scout bees. Each employed bee is associated with a particular solution to the optimization problem. The employed bees search for new solutions by exploring the solution space in the vicinity of their current solution using local search strategies. Onlooker bees observe the employed bees and choose a solution to explore based on the quality of the associated solution. The onlooker bees also use local search strategies to explore the solution space around the chosen solution. Scout bees are responsible for randomly searching the solution space for new solutions. In each iteration of the ABC algorithm, the employed bees and onlooker bees generate new solutions by modifying their current solutions using local search strategies. The quality of the new solutions is evaluated using an objective function, and the best solution found so far is recorded. The scout bees randomly generate new solutions and replace any employed bee solution that has not been improved for a certain number of iterations. The ABC algorithm continues until a stopping criterion is met, such as reaching a maximum number of iterations or achieving a satisfactory solution quality. The final solution obtained by the algorithm is the best solution found during the optimization process.

### 3.1.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is another heuristic algorithm that is inspired by the foraging behavior of ants. ACO is typically used to solve combinatorial optimization problems, such as the traveling salesman problem where the Traveling Salesman Problem (TSP) is a classic optimization problem that involves finding the shortest possible route that visits a set of cities and returns to the starting city, where each city is visited only once. The ACO algorithm works by simulating the behavior of ants as they search for food. Ants communicate with each other by leaving pheromone trails on the ground. The strength of the pheromone trail is proportional to the quality of the food source. Other ants follow the pheromone
trails to find the food source. As more ants follow the trail, the pheromone concentration increases, making the trail more attractive to other ants. Eventually, the ants converge on the best food source, and the pheromone trail becomes very strong. In the ACO algorithm, a set of artificial ants is used to search for a good solution to the optimization problem. Each ant represents a candidate solution, and the ants build solutions by iteratively selecting components from the solution space. During the construction of a solution, each ant uses a probabilistic rule to select the next component to add to the solution. The probability of selecting a particular component is based on the pheromone trail associated with that component, as well as the heuristic information that guides the ant's search. As the ants build solutions, they update the pheromone trails associated with the components in the solution. The amount of pheromone deposited is proportional to the quality of the solution found by the ant. Stronger solutions lead to stronger pheromone trails, which makes those components more attractive to other ants. As the previous algorithm, the ACO algorithm iterates until it satisfies a termination condition, which could be either achieving a desirable level of solution quality or reaching the maximum number of iterations. The best solution is selected as the final solution evaluating an objective function. ACO algorithm is applied in the aerospace field, for example, to design the multiple gravity assist trajectory [12].

### 3.1.3 Fireworks Algorithm

In 2010, Ying Tan [13] proposed the Fireworks Algorithm (FWA), an optimization algorithm based on the behavior of fireworks. In the FWA, each firework represents a potential solution to the optimization problem. The firework's position in the search space corresponds to the parameters of the solution. The quality of the solution is evaluated by an objective function. The FWA uses two types of explosions: Gaussian explosions and uniform explosions. A Gaussian explosion occurs when a firework explodes at its current location, and the resulting sparks move away from the center according to a Gaussian distribution. A uniform explosion occurs when a firework explodes at a random location within a predefined range. After each explosion, the sparks evaluate their quality using the objective function. The sparks then compete for survival, with the weaker sparks being eliminated. The surviving sparks become the new population for the next iteration. The FWA also employs a mutation operator to introduce new solutions into the population. The mutation operator randomly selects a firework and perturbs its position in the search space. The resulting solution is then evaluated, and it replaces the weakest firework in the population if it is better. The FWA continues iterating until a stopping criterion is met, such as reaching a maximum number of iterations or achieving a satisfactory solution quality. FWA is applied, for example, to trajectory design for Earth to Lunar Halo Orbits [14].

### 3.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is an iterative technique that was initially introduced in 1995 [15, 16]. PSO falls under the category of swarm intelligence methods, drawing inspiration from the unpredictable movement of bird flocks in their search for food. PSO leverages the concept of information sharing to influence the overall behavior of the swarm [17].
At the beginning of the optimization process, a randomly generated initial population of particles forms the swarm. Each particle in the swarm is associated with a position vector and a velocity vector at a particular iteration. The position vector contains the unknown parameter values, while the velocity vector determines the particle's position update after each iteration. During a single iteration, both the position and velocity vectors are updated. Each particle represents a potential solution to the problem and corresponds to a specific value of the cost function. By the end of the process, the best particle is selected and it represents the solution of the optimization problem.

### 3.2.1 PSO Mathematical Model

To minimize the cost (or objective) function, $J$, the task involves determining the optimal values for the $n$ unknown parameters, denoted as $\varrho_{1}, \ldots, \varrho_{n}$. The dynamical system's time evolution is dependent on these parameters, which are subject to constraints within their respective ranges, such that

$$
\begin{equation*}
l_{k} \leqslant \varrho_{k} \leqslant u_{k} \quad \text { for } \quad k=1, \ldots, n \tag{3.1}
\end{equation*}
$$

where $l_{k}$ and $u_{k}$ are the lower and the upper bounds of the $k^{t h}$ unknown parameter respectively.
As mentioned earlier, the PSO technique is a population-based method, employing a swarm of $N$ particles to represent the population. Each particle, indexed by $i$ with $i=1, \ldots, N$, is associated with a position vector $\vec{\varrho}(i)$ and a velocity vector $\vec{v}(i)$. It is important to note that in this context, the terms position and velocity refer to the search space of the unknown parameters and hold no physical interpretation. The position vector encompasses the values of the $n$ unknown parameters for the problem at hand

$$
\vec{\varrho}(i)=\left[\begin{array}{lll}
\varrho_{1}(i) & \ldots & \varrho_{n}(i) \tag{3.2}
\end{array}\right]^{T}
$$

The velocity vector, represented by the components $v_{k}(i)$ for $k=1, \ldots, n$, governs the update of the particle's position. Since the position components are bounded, it is necessary to impose constraints on the velocity components to ensure they fall within appropriate ranges

$$
\begin{equation*}
-\left(u_{k}-l_{k}\right) \leqslant \varrho_{k} \leqslant\left(u_{k}-l_{k}\right) \quad \text { for } \quad k=1, \ldots, n \tag{3.3}
\end{equation*}
$$

The limitations presented in the Eq. (3.3) are imposed to not exceed position limits.
Every particle in the swarm represents a potential solution to the problem and is associated with a distinct value of the cost function. The formulas used for updating the position and velocity dictate the evolution of the swarm, driving it towards the globally optimal position. This optimal position corresponds to the best possible solution for the problem at hand. It is worth noting how PSO does not guarantee to find the global optimal solution for every problem. Instead, PSO tends to converge towards a local optimal solution, which is the best solution within a specific region of the search space.
To initialize the PSO algorithm, an initial population is randomly generated, consisting of $N$ particles. The positions and velocities of these particles are distributed uniformly within the search space defined by the problem's constraints. In the first step, for each particle $i$ (ranging from 1 to $N$ ), we evaluate the cost function associated with that particle to the current iteration $j$, denoted as $J^{(j)}(i)$. This cost function represents the quality of the particle's current position.
Next, we determine the best position ever visited by particle $i$ up to the current iteration $j$. This position, denoted as $\vec{\Psi}^{(j)}(i)$, is obtained by selecting the position with the minimum cost function value among all iterations from 1 to $j$. It is important to note that this best position is specific to each particle and serves as a reference for comparison and improvement. Mathematically, we have

$$
\begin{equation*}
\vec{\Psi}^{(j)}(i)=\varrho^{(l)}(i) \tag{3.4}
\end{equation*}
$$

where $l$ is defined as follows

$$
\begin{equation*}
l=\arg \min _{p=1, \ldots, j} J^{(p)}(i) \tag{3.5}
\end{equation*}
$$

Moving on to the second step, we calculate the global best position, denoted as $\vec{\Upsilon}(j)$, which represents the overall best position visited by any particle in the entire swarm. Therefore, we have

$$
\begin{equation*}
\vec{\Upsilon}^{(j)}=\vec{\Psi}^{(j)}(q) \tag{3.6}
\end{equation*}
$$

where $q$ is defined as follows

$$
\begin{equation*}
q=\arg \min _{i=1, \ldots, N} \mathcal{F}^{(j)}(i) \tag{3.7}
\end{equation*}
$$

$\mathcal{F}^{(j)}(i)$ denotes the cost function value associated with the best position ever explored by particle $i$ up to iteration $j$. Expressing it mathematically, this yields

$$
\begin{equation*}
\mathcal{F}^{(j)}(i)=\min _{p=1, \ldots, j} J^{(p)}(i) \tag{3.8}
\end{equation*}
$$

Finally, we update the velocity vector for each particle. The velocity update equation consists of three terms: the inertial term, the cognitive term, and the
social term. The inertial term is determined by multiplying the previous velocity vector of the $\mathrm{k}^{\text {th }}$ unknown parameter, $v_{k}^{(j-1)}(i)$, by a constant weight factor $c_{I}$. The cognitive term is calculated by multiplying a cognitive weight factor $c_{C}$ with the difference between the best position of the $\mathrm{k}^{\text {th }}$ unknown parameter ever visited by particle $i$ until the current iteration $\Psi_{k}^{(j)}(i)$ and the position of the $\mathrm{k}^{t h}$ unknown parameter of the particle $i$ at the current iteration $\varrho_{k}^{(j)}(i)$. Similarly, the social term is obtained by multiplying a social weight factor $c_{S}$ with the difference between the global best position of the $\mathrm{k}^{\text {th }}$ unknown parameter until the current iteration $\Upsilon_{k}^{(j)}$ and and the position of the $\mathrm{k}^{\text {th }}$ unknown parameter of the particle $i$ at the current iteration $\varrho_{k}^{(j)}(i)$. In terms of mathematical formulation

$$
\begin{equation*}
v_{k}^{(j+1)}(i)=c_{I} \cdot v_{k}^{(j)}(i)+c_{C} \cdot\left(\Psi_{k}^{(j)}(i)-\varrho_{k}^{(j)}(i)\right)+c_{S} \cdot\left(\Upsilon_{k}^{(j)}-\varrho_{k}^{(j)}(i)\right) \tag{3.9}
\end{equation*}
$$

The inertial, cognitive, and social weights have the following expressions [18]

$$
\left\{\begin{array}{c}
c_{I}=\frac{1+r_{1}(0,1)}{2}  \tag{3.10}\\
c_{C}=1.49445 \cdot r_{2}(0,1) \\
c_{S}=1.49445 \cdot r_{3}(0,1)
\end{array}\right.
$$

where $r_{1}(0,1), r_{2}(0,1)$, and $r_{3}(0,1)$ denote three separate random numbers chosen independently from a uniform distribution ranging from 0 to 1 .
Successively, if the previous velocity component, $v_{k}^{(j+1)}(i)$, is less than a threshold value, $-\left(u_{k}-l_{k}\right)$, then the updated velocity component, $v_{k}^{(j+1)}(i)$, is set to $-\left(u_{k}-l_{k}\right)$. While if the previous velocity component, $-\left(u_{k}-l_{k}\right)$, is greater than $\left(u_{k}-l_{k}\right)$, then the updated velocity component, $v_{k}^{(j+1)}(i)$, is set to $\left(u_{k}-l_{k}\right)$. In a mathematical representation,

$$
\begin{align*}
v_{k}^{(j+1)}(i)=-\left(u_{k}-l_{k}\right) & \text { if } \quad v_{k}^{(j+1)}(i) \leqslant-\left(u_{k}-l_{k}\right) \\
v_{k}^{(j+1)}(i)=\left(u_{k}-l_{k}\right) & \text { if } \quad v_{k}^{(j+1)}(i) \geqslant\left(u_{k}-l_{k}\right) \tag{3.11}
\end{align*}
$$

To update the position vector for each particle $i$ and each component $\varrho_{k}(i)$ with $k=1, \ldots, n$ and $i=1, \ldots, N$, at $j+1^{\text {th }}$ iteration we have

$$
\begin{equation*}
\varrho_{k}^{(j+1)}(i)=\varrho_{k}^{(j)}(i)+v_{k}^{(j)}(i) \tag{3.12}
\end{equation*}
$$

If the previous position component, $\varrho_{k}^{(j)}(i)$, is less than a lower bound value $l_{k}$, then the updated position component, $\varrho_{k}^{(j+1)}(i)$, is set to $l_{k}$, and the corresponding velocity component, $v_{k}^{(j+1)}(i)$, is set to 0 . If the previous position component, $\varrho_{k}^{(j)}(i)$, is greater than an upper bound value $u_{k}$, then the updated position component, $\varrho_{k}^{(j+1)}(i)$, is set to $u_{k}$, and the corresponding velocity component, $v_{k}^{(j+1)}(i)$, is set to 0. Mathematically,

$$
\begin{array}{rllll}
\varrho_{k}^{(j+1)}(i)=l_{k} & \text { and } & v_{k}^{(j+1)}(i)=0 & \text { if } & \varrho_{k}^{(j+1)}(i) \leqslant l_{k}  \tag{3.13}\\
\varrho_{k}^{(j+1)}(i)=u_{k} & \text { and } & v_{k}^{(j+1)}(i)=0 & \text { if } & \varrho_{k}^{(j+1)}(i) \geqslant u_{k}
\end{array}
$$

The algorithm continues iterating until the maximum number of iterations, $N_{i t_{\text {max }}}$, is reached. The position vector of the global best particle, denoted as $\vec{\Upsilon}^{\left(N_{\left.i t_{\max }\right)}\right)}$, is expected to contain the optimal values of the unknown parameters, corresponding to the global minimum of the objective function $J$. A sufficient number of iterations are used to ensure stability and achieve an optimal solution. To determine which $N$ and $N_{i t_{\max }}$ to use, it is necessary to employ a process of trial and error.
The core concept of the method lies in the velocity updating, which incorporates three terms with stochastic weights. The first term, the inertial component, depends on the particle's velocity in the previous iteration. The second term, the cognitive component, directs the particle towards its personal best position. The third term, the social component, guides the particle towards the best position found by any particle in the swarm.
By following these steps in each iteration, the particle swarm optimization algorithm progresses towards finding a local optimal position, which corresponds to the best solution (within the search space) for the problem being considered.

The next chapter will analyze trajectories from Earth to a series of candidate asteroids and from them to Mars and there will be selected the asteroid that minimize $\Delta V$ from Earth to the asteroid and the total time of flight from Earth to Mars.

## Chapter 4

## Trajectory Design for Earth to Mars Missions

To minimize Earth-Mars total mission $\Delta V$ and consequently the overall cost of future Mars missions, a double arc trajectory is studied. The first arc will intercept one of the candidate asteroids studied in this section. Then, insertion into a Sun-asteroid Distant Retrograde Orbit (DRO) is performed, and, given a landing location on the asteroid surface, a potential landing trajectory onto the asteroid is studied similarly to what was proposed by Baraldi and Conte for Mars' moon, Phobos [19]. Since in-situ refueling is considered, the lift-off $\Delta V$ from the asteroid and the $\Delta V$ of the second arc trajectory to Mars are 'free'.
Missions to asteroids such as Itokawa demonstrated that near Earth asteroids with water in the form of hydrated mineral and ice exist and they are potentially convertible in propellant useful for spacecraft for the second arc trajectory from the asteroid to Mars [20]. Therefore, refueling with In-Situ Resource Utilization (ISRU) on asteroids can be highly cost-effective for a mission to Mars. ISRU refueling can help decrease the launch mass of the spacecraft as it wouldn't need to carry as much propellant from Earth, which in turn could minimize the size and cost of the rocket required for its launch.

### 4.1 Candidate Asteroid Selection

The number of known minor planets ${ }^{1}$ has increased from less than 4000 in 1970 to over 1.2 million in 2022 [21]. Keeping track of these minor planets requires

[^0]more effort from the organizations that maintain their catalogs. The process of discovering and designating minor planets involves collecting individual observations such as right ascension, declination, time, observatory location, and apparent magnitude and reporting them to the International Astronomical Union's Minor Planet Center (IAU MPC), which then publishes the observations for independent analysis. The MPC determines the heliocentric orbits of these minor planets based on their orbital elements such as semi-major axis, eccentricity, inclination, argument of perihelion, longitude of the ascending node, and mean anomaly, which are fitted to the observations. Similarly, catalogs of orbital elements are curated by various organizations including the Solar System Dynamics group at JPL, a consortium in Italy that began at the University of Pisa, and Lowell Observatory in Flagstaff, Arizona. Lowell's astorb catalog ${ }^{2}$ has evolved into a modern relational database with associated web infrastructure.

For this study, the orbital parameters of all 1.2 million minor planets are taken from this catalogue. To reduce the number of minor planets/asteroids considered, we exclude all the objects with a SMA less than Earth's SMA and greater than Mars' SMA and all the objects with an inclination greater than $7^{\circ}$, considering that

$$
\begin{align*}
& a_{\oplus}=1.000001018[\mathrm{au}] \\
& a_{\delta}= 1.523662310[a u]  \tag{4.1}\\
& i_{\oplus}=0.00^{\circ} \\
& i_{\delta}=1.85^{\circ}
\end{align*}
$$

where $i_{\oplus}$ and $i_{\delta}$ are calculated with respect to the plane of the ecliptic, $\oplus$ means "Earth" and $\boldsymbol{\sigma}^{\circ}$ means "Mars". A low inclination of the orbit asteroid is considered because the mission $\Delta V$ increases considerably if we make a change of plan with a great change of inclination $\Delta i$

$$
\begin{equation*}
\Delta V=\frac{2 \sin \left(\frac{\Delta i}{2}\right)(1+e \cos \theta) n a}{\sqrt{1-e^{2}} \cos (\omega+\theta)} \tag{4.2}
\end{equation*}
$$

where $e$ is the orbital eccentricity, $\omega$ is the argument of periapsis, $\theta$ is the true anomaly, $n$ is the mean motion and $a$ is the semi-major axis. We can note as for low eccentricity orbit, the mean parameter we have to consider to minimize $\Delta V$ is $\Delta i$.
After this first selection, the candidate asteroids become 3434. To further reduce the number of asteroids, we solve Lambert's problem for finding the arc trajectory from Earth to an asteroid using the universal solution, as explained in Sec. 2.3. Lambert's problem is solved several times to obtain a porkchop plot, which is a

[^1]$\Delta V$ map with a 2-D domain composed by different TOF ( $y$-axis) and different departure dates ( $x$-axis). For computational speed, a coarse mesh is considered where TOF is equally split in 60 parts from 51 to 300 days and the departure dates changes every 30 days per 2 years starting on January 1, 2035. Once we have computed the total $\Delta V$ needed from Low Earth Orbit (LEO) at 400 km of altitude to each asteroid position for each different TOF and departure date, we select only the asteroids that have at least a total $\Delta V$ less than $4.5 \mathrm{~km} / \mathrm{s}$. How the total $\Delta V$ is computed is explained in the next section. After this selection, the candidate asteroids becomes 94 . Tab. 4.1 summarizes their names and their orbital parameters.

Table 4.1: Candidate Asteroids and their Orbital Parameters with respect to the J2000 Ecliptic reference frame

| Object | $a[a u]$ | $e$ | $i[\mathrm{deg}]$ | $\Omega[\mathrm{deg}]$ | $\omega[\mathrm{deg}]$ | $M[\mathrm{deg}]$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 EA14 | 1.1169 | 0.2026 | 3.5558 | 203.8305 | 206.0565 | 258.6195 |  |  |  |
| 1993 KA | 1.2556 | 0.1978 | 6.0497 | 235.7651 | 342.0531 | 71.4521 |  |  |  |
| 1999 CG9 | 1.0618 | 0.0636 | 5.1553 | 138.4994 | 315.5890 | 37.8722 |  |  |  |
| 2005 ER95 | 1.2231 | 0.1591 | 3.3423 | 175.8631 | 8.4946 | 89.3191 |  |  |  |
| 2005 LC | 1.1340 | 0.1027 | 2.7992 | 69.7928 | 147.0083 | 275.7425 |  |  |  |
| 2006 CL9 | 1.3462 | 0.2367 | 2.9376 | 139.2508 | 10.0614 | 321.4413 |  |  |  |
| 2006 DQ14 | 1.0277 | 0.0530 | 6.2957 | 155.3006 | 292.6021 | 176.4354 |  |  |  |
| 2006 UQ216 | 1.1039 | 0.1625 | 0.4738 | 217.6702 | 247.6721 | 336.2392 |  |  |  |
| 2007 HL4 | 1.1201 | 0.0907 | 6.5385 | 30.9718 | 139.3254 | 176.1519 |  |  |  |
| 2008 CM74 | 1.0889 | 0.1468 | 0.8537 | 321.4739 | 242.8326 | 36.1693 |  |  |  |
| 2008 HU4 | 1.0714 | 0.0556 | 1.3916 | 215.2683 | 350.5462 | 68.1344 |  |  |  |
| 2009 BD | 1.0616 | 0.0518 | 1.2673 | 253.2008 | 316.4097 | 299.4390 |  |  |  |
| 2009 FH | 1.4751 | 0.3394 | 0.6898 | 176.5157 | 24.2123 | 269.1949 |  |  |  |
| 2009 OS5 | 1.1481 | 0.0993 | 1.7107 | 144.3557 | 122.8071 | 64.5593 |  |  |  |
| 2009 SW171 | 1.3311 | 0.2333 | 3.0635 | 187.9849 | 150.2385 | 280.1851 |  |  |  |
| 2010 DJ | 1.2064 | 0.1354 | 0.2327 | 3.2255 | 106.6390 | 323.4748 |  |  |  |
| 2010 RF12 | 1.0611 | 0.1882 | 0.8825 | 163.7123 | 267.3920 | 84.6385 |  |  |  |
| 2011 AA37 | 1.0959 | 0.0167 | 3.8169 | 275.6920 | 131.6060 | 268.3744 |  |  |  |
| 2011 CY7 | 1.2867 | 0.2137 | 3.9380 | 327.1000 | 164.8968 | 96.3243 |  |  |  |
| 2012 BB14 | 1.0637 | 0.0994 | 2.6444 | 316.8737 | 255.4661 | 315.9653 |  |  |  |
| 2012 VB37 | 1.4498 | 0.3127 | 1.9068 | 240.3259 | 153.9762 | 326.5411 |  |  |  |
| 2012 XM55 | 1.0976 | 0.1306 | 1.0810 | 66.4406 | 68.9951 | 274.9393 |  |  |  |
| 2013 HP11 | 1.1853 | 0.1259 | 4.1564 | 208.5827 | 9.6319 | 223.2356 |  |  |  |
| 2013 SP19 | 1.2849 | 0.2389 | 2.3260 | 0.7755 | 326.0269 | 189.0164 |  |  |  |
| 2013 UX2 | 1.1187 | 0.1493 | 4.1064 | 211.4071 | 228.0392 | 284.2737 |  |  |  |
| 2014 JR24 | 1.0665 | 0.1183 | 0.9298 | 48.8963 | 246.4457 | 301.3195 |  |  |  |
|  |  |  |  | continued on |  |  |  | $n e x t$ | $p a g e \ldots$ |

...continued from previous page

| Object | $a[a u]$ | $e$ | $i[d e g]$ | $\Omega[d e g]$ | $\omega[d e g]$ | $M[d e g]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2014 LJ | 1.0829 | 0.1413 | 0.9521 | 73.3514 | 95.1549 | 353.4160 |
| 2014 WX202 | 1.0356 | 0.0588 | 0.4128 | 243.9173 | 214.1195 | 267.0106 |
| 2014 WA366 | 1.0343 | 0.0716 | 1.5591 | 67.1066 | 287.6513 | 5.9672 |
| 2015 EZ6 | 1.2391 | 0.1945 | 3.1163 | 171.0002 | 6.4539 | 272.7066 |
| 2015 HC1 | 1.3543 | 0.2168 | 1.9762 | 228.1208 | 343.7456 | 351.6140 |
| 2015 VC2 | 1.0530 | 0.0744 | 0.8682 | 186.1494 | 288.2653 | 209.0057 |
| 2015 XX128 | 1.2664 | 0.2279 | 3.1299 | 77.4548 | 13.2059 | 13.2837 |
| 2015 XD169 | 1.0851 | 0.1212 | 3.7495 | 249.1294 | 137.7852 | 176.8251 |
| 2015 XA352 | 1.2694 | 0.1690 | 4.1123 | 236.5414 | 15.3890 | 195.7015 |
| 2016 CF137 | 1.0905 | 0.1000 | 2.4451 | 132.5417 | 301.5044 | 124.4844 |
| 2016 EP84 | 1.1904 | 0.1733 | 0.8190 | 287.4413 | 195.5128 | 163.0043 |
| 2016 GL222 | 1.1533 | 0.1368 | 3.5316 | 198.1055 | 303.3258 | 245.5768 |
| 2017 BF29 | 1.1812 | 0.1341 | 2.6128 | 302.3666 | 203.7956 | 251.7030 |
| 2017 BG30 | 1.0554 | 0.1071 | 1.6312 | 304.5028 | 250.4197 | 161.4550 |
| 2017 CP1 | 1.4166 | 0.2980 | 2.7992 | 330.5242 | 195.1257 | 196.4923 |
| 2017 FJ3 | 1.1334 | 0.1184 | 0.9633 | 167.2576 | 26.7249 | 319.8884 |
| 2017 FW90 | 1.0334 | 0.1460 | 3.1740 | 10.4163 | 85.8292 | 300.7627 |
| 2017 LD | 1.3945 | 0.2778 | 0.0679 | 79.1456 | 195.8211 | 159.9548 |
| 2017 RL16 | 1.0175 | 0.1157 | 4.1178 | 16.5854 | 220.7477 | 216.1286 |
| 2017 UM52 | 1.0534 | 0.0525 | 3.3575 | 30.8950 | 53.1837 | 289.4977 |
| 2017 WM13 | 1.1319 | 0.1188 | 4.8496 | 230.7092 | 161.5628 | 153.4009 |
| 2017 YC1 | 1.2923 | 0.2610 | 2.6228 | 205.7536 | 169.4893 | 232.2218 |
| 2017 YW3 | 1.0947 | 0.1132 | 2.2001 | 273.7125 | 136.9870 | 218.4502 |
| 2018 LQ2 | 1.0911 | 0.0575 | 2.1262 | 178.3052 | 142.8374 | 351.7668 |
| 2018 RR1 | 1.0754 | 0.1413 | 0.6679 | 352.3493 | 277.1517 | 61.9671 |
| 2019 KJ2 | 1.0572 | 0.0265 | 3.1454 | 61.6680 | 252.4638 | 95.3290 |
| 2019 LV | 1.0962 | 0.1495 | 4.9328 | 81.1664 | 47.5073 | 195.5807 |
| 2019 PY | 1.0579 | 0.0575 | 6.8914 | 303.6425 | 109.2771 | 3.2759 |
| 2019 PO1 | 1.0360 | 0.0611 | 1.1203 | 328.2544 | 250.3860 | 222.5062 |
| 2019 SU3 | 1.1204 | 0.1085 | 1.2853 | 3.2505 | 332.3668 | 338.4469 |
| 2019 UO1 | 1.0984 | 0.0256 | 2.7706 | 218.9153 | 336.2423 | 158.6967 |
| 2019 UB4 | 1.0374 | 0.0963 | 0.9207 | 27.6592 | 286.5161 | 123.2244 |
| 2019 XV | 1.1005 | 0.0976 | 0.3439 | 46.0513 | 356.4250 | 310.0650 |
| 2020 BK | 1.2500 | 0.2201 | 3.4822 | 113.7524 | 32.5589 | 61.5776 |
| 2020 BV2 | 1.4253 | 0.2950 | 1.2474 | 135.6703 | 339.1188 | 298.2451 |
| 2020 CF2 | 1.1947 | 0.1900 | 1.1518 | 329.5924 | 141.7391 | 138.1247 |
| 2020 DE2 | 1.2712 | 0.2242 | 0.7483 | 228.1697 | 250.4966 | 57.3296 |
| 2020 HN | 1.0563 | 0.1373 | 0.5865 | 217.9934 | 264.2954 | 297.2139 |

continued on next page...
...continued from previous page

| Object | $a[a u]$ | $e$ | $i[\mathrm{deg}]$ | $\Omega[\mathrm{deg}]$ | $\omega[\mathrm{deg}]$ | $M[\mathrm{deg}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 HQ4 | 1.2499 | 0.2135 | 0.1407 | 251.7393 | 286.4554 | 34.0435 |
| 2020 HL6 | 1.2600 | 0.2319 | 0.2397 | 96.3950 | 169.7274 | 329.1604 |
| 2020 OE2 | 1.0796 | 0.0850 | 3.3913 | 301.1262 | 59.3533 | 60.4691 |
| 2020 OK5 | 1.0806 | 0.0837 | 1.0063 | 295.8379 | 108.1058 | 18.2104 |
| 2020 PP1 | 1.0026 | 0.0715 | 5.9441 | 140.0328 | 42.6179 | 322.8520 |
| 2020 RT3 | 1.3853 | 0.2488 | 2.5051 | 157.2788 | 187.7806 | 183.6656 |
| 2020 SM2 | 1.1954 | 0.2045 | 1.1506 | 358.5020 | 48.9329 | 275.8776 |
| 2020 SH6 | 1.1018 | 0.0731 | 1.6968 | 23.6197 | 276.4618 | 92.1913 |
| 2020 VV | 1.1178 | 0.1187 | 0.3455 | 19.6803 | 332.6592 | 21.9319 |
| 2020 WY | 1.0202 | 0.0286 | 1.7000 | 107.1036 | 180.3156 | 200.7350 |
| 2020 WQ3 | 1.2588 | 0.1922 | 3.0165 | 57.3089 | 16.6346 | 207.2667 |
| 2020 XJ4 | 1.2280 | 0.1750 | 3.0932 | 24.6187 | 30.8846 | 236.9143 |
| 2021 CE | 1.4625 | 0.3031 | 0.9656 | 107.2257 | 11.5597 | 66.6887 |
| 2021 EN5 | 1.1529 | 0.0853 | 0.2830 | 46.1368 | 72.6451 | 255.1462 |
| 2021 GB8 | 1.0804 | 0.1775 | 1.9803 | 32.2510 | 88.9409 | 301.8775 |
| 2021 HF1 | 1.3025 | 0.2025 | 1.3916 | 47.0962 | 183.0440 | 74.9362 |
| 2021 JY5 | 1.0402 | 0.0884 | 2.1945 | 233.7615 | 79.1069 | 175.7563 |
| 2021 NV8 | 1.2375 | 0.2203 | 2.6848 | 98.6579 | 139.2184 | 100.8531 |
| 2021 RP2 | 1.1028 | 0.1764 | 0.0322 | 342.4884 | 72.8495 | 43.3287 |
| 2021 VZ8 | 1.1279 | 0.1714 | 1.9165 | 216.0648 | 133.4790 | 70.8031 |
| 2022 BT | 1.1796 | 0.1830 | 3.9313 | 303.7319 | 149.1573 | 326.5947 |
| 2022 BX5 | 1.0788 | 0.0730 | 0.3867 | 6.1962 | 101.2866 | 3.0332 |
| 2022 KL6 | 1.2143 | 0.1754 | 1.4431 | 217.2650 | 354.2242 | 225.2985 |
| 2022 NX1 | 1.0219 | 0.0250 | 1.0667 | 274.7674 | 169.5831 | 65.0875 |
| 2022 RF1 | 1.2453 | 0.1260 | 4.2585 | 162.6316 | 181.1685 | 121.5854 |
| 2022 RS1 | 1.0201 | 0.0659 | 4.9525 | 160.4172 | 92.6020 | 246.9470 |
| 2022 SZ2 | 1.0858 | 0.1336 | 3.1691 | 180.9197 | 244.7806 | 82.1613 |
| 2022 SN21 | 1.2142 | 0.1602 | 3.9924 | 2.1186 | 353.9410 | 116.1647 |
| 2022 UA5 | 1.1326 | 0.1543 | 1.5597 | 23.7841 | 315.2201 | 140.0713 |
| 2022 WS8 | 1.1862 | 0.1774 | 1.2073 | 1.6289 | 0.4900 | 116.3800 |

### 4.2 Earth to Candidate Asteroids transfer

After importing the 94 candidate asteroids' orbital parameters, we set 3660 different departure dates from January 1, 2035 to January 7, 2045 (one per day) and 250 different TOFs from 51 to 300 days. To compute the first $\Delta V$ from a 400 km LEO to asteroid is necessary to know the Earth's velocity, $\vec{v}_{\oplus}$, at departure and the velocity required to initiate the transfer, which is given by Eq. (2.90), $\vec{v}_{t I_{1}}$, where
we have to know the Earth's position on the departure day and the asteroid's position at arrival. Here, the subscript $t I$ means "first transfer". Knowing the last two velocities, $\vec{v}_{t I_{1}}$ and $\vec{v}_{\oplus}$, we obtain the speed $v_{\infty \oplus}$ that the spacecraft should have at Earth's sphere of influence on a hyperbolic transfer.

$$
\begin{equation*}
v_{\infty_{\oplus}}=\left\|\vec{v}_{t I_{1}}-\vec{v}_{\oplus}\right\| \tag{4.3}
\end{equation*}
$$

Using the vis viva equation, Eq. (2.56), we can find the speed, $v_{h y p_{\oplus}}$, that the spacecraft should have at $r_{L E O}=R_{\oplus}+h$ on a hyperbolic transfer, where $R_{\oplus}$ is the Earth's radius (equal to 6371 km ) and $h$ is the altitude equal to 400 km , and where the subscript hyp means "hyperbolic".

$$
\begin{equation*}
\epsilon=\frac{v_{h y p_{\oplus} \oplus}^{2}}{2}-\frac{\mu_{\oplus}}{r_{L E O}}=\frac{v_{\infty \oplus}^{2}}{2} \tag{4.4}
\end{equation*}
$$

where $\epsilon$ is the specific orbital energy and $\mu_{\oplus}=398600 \mathrm{~km}^{3} \mathrm{~s}^{-2}$. Solving for $v_{h y p_{\oplus}}$, we obtain

$$
\begin{equation*}
v_{h y p_{\oplus}}=\sqrt{v_{\infty_{\oplus}}^{2}+2 \frac{\mu_{\oplus}}{r_{L E O}}} \tag{4.5}
\end{equation*}
$$

Therefore the first $\Delta V$ for the Earth-Asteroid transfer, $\Delta V_{1_{\oplus \rightarrow A}}$, becomes

$$
\begin{equation*}
\Delta V_{1_{\oplus \rightarrow A}}=v_{h y p_{\oplus}}-v_{L E O} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{L E O}=\sqrt{\frac{\mu_{\oplus}}{r_{L E O}}} \tag{4.7}
\end{equation*}
$$

To compute the second $\Delta V$ from LEO to the asteroid, it is necessary to know the asteroid's velocity, $\vec{v}_{A}$, at arrival and the velocity computed from Eq. (2.91), $\vec{v}_{t I_{2}}$, where we have to know the Earth's position on the departure day and the asteroid's position on the arrival day.

$$
\begin{equation*}
\Delta V_{2 \oplus \rightarrow A}=\left\|\vec{v}_{A}-\vec{v}_{t I_{2}}\right\| \tag{4.8}
\end{equation*}
$$

The total $\Delta V$ for the Earth-Asteroid transfer is computed as the sum of $\Delta V_{1_{\oplus \rightarrow A}}$ and $\Delta V_{2_{\oplus \rightarrow A}}$

$$
\begin{equation*}
\Delta V_{t o t_{\oplus \rightarrow A}}=\Delta V_{1_{\oplus \rightarrow A}}+\Delta V_{2_{\oplus \rightarrow A}} \tag{4.9}
\end{equation*}
$$

Solving Lambert's problem several times for each departure date and for each TOF, and computing $\Delta V_{t o t_{\oplus \rightarrow A}}$, we obtain 94 different porkchop plots. In Fig. (4.1) a porkchop plot from Earth to asteroid 2009 OS5 is shown, while all the Earth-asteroid porkchop plots are shown in App. A.


Figure 4.1: Porkchop Plot from Earth to Asteroid 2009 OS5

### 4.3 Candidate Asteroids for Mars transfers

Once the spacecraft arrives close enough to the asteroid, an insertion into a Sunasteroid Distant Retrograde Orbit (DRO) is performed, and a landing trajectory is executed. The departure from the asteroid is set from 10 to 30 days after insertion into a DRO. As for the first case, 250 different TOFs, from 51 to 300 days are set. To compute the first $\Delta V$ from the asteroid to a 400 km Low Mars Orbit (LMO), it is necessary to know the asteroid's velocity, $\vec{v}_{A}$, at departure and the velocity computed from Eq. (2.90), $\vec{v}_{t I I_{1}}$, where we have to know the asteroid's position at departure and Mars' position at arrival

$$
\begin{equation*}
\Delta V_{1_{A \rightarrow \delta}}=\left\|\vec{v}_{t I I_{1}}-\vec{v}_{A}\right\| \tag{4.10}
\end{equation*}
$$

where the subscript $t I I$ means "second transfer". To compute the second $\Delta V$ from the asteroid to a 400 km LMO, it is necessary to know Mars' velocity, $\vec{v}_{\delta}$, at arrival and the velocity computed from Eq. (2.91), $\vec{v}_{t I I_{2}}$, where we have to know the asteroid's position at departure and Mars' position at arrival. Knowing the last two velocities, $\vec{v}_{\delta}$ and $\vec{v}_{t I I_{2}}$ we obtain, $v_{\infty_{\delta}}$, which is the speed that the spacecraft has at the asteroid's sphere of influence.

$$
\begin{equation*}
v_{\infty \infty_{\delta}}=\left\|\vec{v}_{\delta}-\vec{v}_{t I I_{2}}\right\| \tag{4.11}
\end{equation*}
$$

Using the vis viva equation, we can find the speed, $v_{h y p_{\delta}}$, i.e. the speed that the spacecraft should have at $r_{L M O}=R_{\delta}+h$ in an hyperbolic transfer. Here, $R_{\delta}$ is the Mars' radius equal to 3389.5 km and $h$ is the altitude equal to 400 km and the subscript hyp means "hyperbolic"

$$
\begin{equation*}
\epsilon=\frac{v_{h y p_{\delta}}^{2}}{2}-\frac{\mu_{\delta}}{r_{L M O}}=\frac{v_{\infty_{\delta}}^{2}}{2} \tag{4.12}
\end{equation*}
$$

where $\mu_{\delta}=42828 \mathrm{~km}^{3} \mathrm{~s}^{-2}$ is the gravitational parameter of Mars. Solving for $v_{h y p_{\delta}}$, we obtain

$$
\begin{equation*}
v_{h y p_{\delta}}=\sqrt{v_{\infty_{\delta}}^{2}+2 \frac{\mu_{\delta}}{r_{L M O}}} \tag{4.13}
\end{equation*}
$$

Therefore, the second $\Delta V$ for the Asteroid-Mars transfer, $\Delta V_{2_{A \rightarrow \delta}}$, becomes

$$
\begin{equation*}
\Delta V_{2_{A \rightarrow \delta}}=v_{h y p_{\delta}}-v_{L M O} \tag{4.14}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{L M O}=\sqrt{\frac{\mu_{\mathrm{\delta}}}{r_{L M O}}} \tag{4.15}
\end{equation*}
$$

is the circular orbit velocity corresponding to the targeted LMO. The total $\Delta V$ for the Asteroid-Mars transfer is computed as the sum of $\Delta V_{1_{A \rightarrow \delta}}$ and $\Delta V_{2_{A \rightarrow \delta}}$

$$
\begin{equation*}
\Delta V_{t o t_{A \rightarrow \delta}}=\Delta V_{1_{A \rightarrow \delta}}+\Delta V_{2_{A \rightarrow \delta}} \tag{4.16}
\end{equation*}
$$

Every Asteroid-Mars transfer depends on all the possible Earth-Asteroid conics evaluated, i.e. $3,660 \times 250=915,000$ possible transfers. Considering that the possible Asteroid-Mars transfers are $21 \times 250=5,250$, the total transfers computed from Earth to Mars are $915,000 \times 5,250=4,803,750,000$ per asteroid possible mission scenarios. Assuming a computational time to solve Lambert's problem equal to 0.2 ms per solution, all cases for all 94 asteroids would take about 2 years and 10 months of continuous computation. Note that for this study a MSI GE66 Raider with a $\operatorname{Intel}(\mathrm{R})$ Core(TM) Processor i7-10875H CPU @ 2.30 GHz , a 32 GB RAM and a 64 bit operating system, $x$ - 64 -based processor was used. MATLAB R2022b was used as the programming software.
To avoid this problem, we find different local minima in the first Earth-Asteroid conics. Then, we divide the domain into 300 sub-domains. Departure dates are divided in 60 parts while TOFs are divided in 5 parts. Fig. 4.2 shows the subdivision of the domain considering only 60 sub-domains for simplicity for Earth to Asteroid 2017 RL16 porkchop plot.


Figure 4.2: Porkchop Plot domain division
For each of these subdomains, we find the minimum $\Delta V$. We start from each departure day and TOF, and look for the best case per asteroid using the following cost function, $J_{1}$, such that

$$
J_{1}=\left\{\begin{array}{cl}
\Delta V_{t_{t o t} \rightarrow A} & \text { if } \frac{\Delta V_{\text {tot }_{A \rightarrow \delta}}}{\Delta V_{\text {tot }_{\oplus \rightarrow A}}} \leqslant 1.10  \tag{4.17}\\
\infty & \text { if } \frac{\Delta V_{\text {tot }_{A \rightarrow \delta}} V_{\text {tot }_{\oplus \rightarrow A}}>1.10}{}
\end{array}\right.
$$

It should be noted that the propellant tanks are sized based on the largest mission $\Delta V$ (which could be the $\Delta V$ for Earth-asteroid or asteroid-Mars transfers) since the spacecraft refuels at the asteroid. Furthermore. we assume that the $\Delta V_{\text {tot }_{A \rightarrow 0}}$ may be at maximum $10 \%$ greater than $\Delta V_{t o t \oplus \rightarrow A}$ in order to not oversize the mass of the tanks structure since they would be more voluminous to contain more propellant or more massive (the thickness of the tank walls will be greater) to support a greater pressure (more propellant in the same volume). In this way the Asteroid-Mars transfers analyzed are $300 \times 21 \times 250=1,575,000$ per asteroid. Assuming the same computing time as before, all cases for all 94 asteroids were analyzed in about 8 h 13 min . The best $\Delta V$ case according to the cost function for each asteroid is summarized in Tab. 4.2.
Note that $\Delta V_{\text {tot }_{\oplus \rightarrow A}}$ is not the minimum $\Delta V$ possible for the first arc of the trajectory, but is the minimum $\Delta V$ such that $\Delta V_{\text {tot }_{A \rightarrow \delta}}<1.10 \cdot \Delta V_{\text {tot }_{\oplus \rightarrow A}}$. Thus, the best asteroid case ( 2022 SN 21 ) results in a $\Delta V$ equal to $3.9079 \mathrm{~km} / \mathrm{s}$ which is $36.7 \%$ lower than minimum $\Delta V(6.1696 \mathrm{~km} / \mathrm{s})$ for a direct Earth-Mars transfer in
the span of 10 years of departures starting from January 1, 2035. Fig. 4.3 shows an Earth-Mars porkchop plot where the departure dates are stopped at the first four years since the Earth-Mars synodic period is about 26 months.


Figure 4.3: Earth-Mars Porkchop Plot
Tab. 4.3 shows combinations of departure days from Earth, arrival days on asteroid, departure days from the asteroid and arrival days on Mars. Tab. 4.2 shows that almost all TOFs exceed 1 year and more specifically they exceed the TOF for which we obtain the minimum $\Delta V$ in 10 years of possible Earth-Mars transfers. Also, $T O F_{\Delta V_{m i n, \oplus \rightarrow \delta}}$ is equal to 252 days. Since total mission time is a critical parameter to minimize, e.g. for crewed missions, we give more importance to TOF and change the cost function $J_{2}$ as follows

$$
J_{2}=\left\{\begin{array}{cl}
\frac{\Delta V_{\text {tot }_{\oplus \rightarrow A}}}{\Delta V_{\text {min }, \oplus \rightarrow \delta}}+\frac{T O F_{\oplus \rightarrow A \rightarrow \delta}}{T O F_{\Delta V_{m i n}, \oplus \rightarrow \delta}} & \text { if } \frac{\Delta V_{\text {tot }_{A \rightarrow \delta}}}{\Delta V_{\text {tot }_{\oplus \rightarrow A}}} \leqslant 1.10  \tag{4.18}\\
\infty & \text { if } \frac{\Delta V_{\text {tot }_{A \rightarrow \delta}}}{\Delta V_{\text {tot }}^{\oplus \rightarrow A}}
\end{array}>1.10\right.
$$

where

$$
\begin{align*}
& \Delta V_{\min , \oplus \rightarrow \delta^{\circ}}=6.1696 \mathrm{~km} / \mathrm{s}  \tag{4.19}\\
& T O F_{\Delta V_{m i n}, \oplus \rightarrow \delta}=252 \text { days }
\end{align*}
$$

Using this new cost function, Tab. 4.2 and Tab. 4.3 become Tab. 4.4 and Tab. 4.5, respectively. Solving Lambert's problem several times for each departure date and for each TOF, we obtain 94 different porkchop plots. In Fig. (4.4) is shown a porkchop plot from asteroid 2021 C3 to Mars, while all the asteroid-Mars


Figure 4.4: Porkchop Plot from asteroid 2021 C3 to Mars
porkchop plots are shown in App. B. Asteroid 2013 SP19 has best compromise from the minimum $\Delta V$ from the Earth to asteroid and the minimum total TOF from Earth to Mars (passing by the asteroid). So a spacecraft that leaves the Earth on September 12, 2035 will arrive on this asteroid on December 21, 2035 using a $\Delta V$ equal to $4.8673 \mathrm{~km} / \mathrm{s}$. After a stay on the asteroid of 10 days, until December 31, 2035 to complete the ISRU refueling, the spacecraft will reach Mars on March 5,2036 using a "free" $\Delta V$ equal to $3.4714 \mathrm{~km} / \mathrm{s}$. In this way, $21.1 \%$ of $\Delta V$ is saved with respect to the best case of a direct Earth-Mars transfer $(6.1696 \mathrm{~km} / \mathrm{s})$. This result is obtained spending 77 days less of mission time ( 175 days) respect to the best case of a direct Earth-Mars transfer (252 days). Therefore, we can think that when ISRU refueling missions will be consolidated, a human mission will prefer this second case, to reduce astronauts' risks linked to radiation exposure and to save on mass of consumables such as food and water brought from Earth. Fig. 4.5 and Fig. 4.7 show a double arc trajectory between Earth, asteroid and Mars for the two cases considered. Fig. 4.6 shows the first case from a different view. The cyan line represents Earth's orbit, the orange one depicts Mars' orbit, the red line shows the asteroid's orbit and finally the violet one represents the spacecraft trajectory. Note that the violet and red lines overlap for a short part (10 days) when the spacecraft is landed on the asteroid for ISRU. A double arc trajectory animation is provided for both cases scanning the QR code present in the Fig.4.8 and Fig. 4.9.


Figure 4.5: Double arc trajectory between Earth, asteroid 2022 SN21 and Mars


Figure 4.6: Double arc trajectory between Earth, asteroid 2022 SN21 and Mars up view


Figure 4.7: Double arc trajectory between Earth, asteroid 2013 SP19 and Mars


Figure 4.8: Link to double arc trajectory animation (case: asteroid 2022 SN21) https://youtu.be/ 2reTw5fh3fw


Figure 4.9: Link to double arc trajectory animation (case: asteroid 2013 SP19) https://youtu.be/ EujpPoFwCj4

Table 4.2: Minimum $\Delta V[k \mathrm{~m} / \mathrm{s}]$ and TOF [days] according to cost function $J_{1}$

| Object | $\Delta V_{t o t \rightarrow A}$ | $\Delta V_{\text {tot }_{A \rightarrow \delta}}$ |  | $\Delta V_{\text {tot }}^{\text {( } \rightarrow \text { S }}$ | TOF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 EA14 | 7.1792 | 7.2514 | 1.0101 | 14.4306 | 610 |
| 1993 KA | 8.7925 | 8.6007 | 0.9782 | 17.3932 | 581 |
| 1999 CG9 | 6.2195 | 5.2220 | 0.8396 | 11.4415 | 477 |
| 2005 ER95 | 5.8374 | 5.3865 | 0.9228 | 11.2239 | 614 |
| 2005 LC | 4.1310 | 3.9877 | 0.9653 | 8.1187 | 621 |
| 2006 CL9 | 6.9006 | 3.6433 | 0.5280 | 10.5439 | 630 |
| 2006 DQ14 | 6.7429 | 6.0021 | 0.8901 | 12.7450 | 477 |
| 2006 UQ216 | 6.1226 | 6.2058 | 1.0136 | 12.3284 | 509 |
| 2007 HL4 | 9.1215 | 7.2089 | 0.7903 | 16.3304 | 630 |
| 2008 CM74 | 6.6615 | 6.1845 | 0.9284 | 12.8461 | 563 |
| 2008 HU4 | 7.7178 | 8.2441 | 1.0682 | 15.9618 | 493 |
| 2009 BD | 5.3838 | 5.3700 | 0.9974 | 10.7537 | 610 |
| 2009 FH | 19.3465 | 21.0920 | 1.0902 | 40.4385 | 560 |
| 2009 OS5 | 4.1960 | 4.4742 | 1.0663 | 8.6702 | 400 |
| 2009 SW171 | 4.4733 | 4.1712 | 0.9325 | 8.6446 | 326 |
| 2010 DJ | 8.2434 | 6.9209 | 0.8396 | 15.1643 | 531 |
| 2010 RF12 | 4.5960 | 4.9778 | 1.0831 | 9.5738 | 560 |
| 2011 AA37 | 6.5176 | 5.4685 | 0.8390 | 11.9860 | 396 |
| 2011 CY7 | 8.8709 | 8.0692 | 0.9096 | 16.9401 | 581 |
| 2012 BB14 | 5.2818 | 4.6725 | 0.8846 | 9.9543 | 377 |
| 2012 VB37 | 9.4828 | 9.7795 | 1.0313 | 19.2623 | 554 |
| 2012 XM55 | 6.5975 | 5.7957 | 0.8785 | 12.3932 | 610 |
| 2013 HP11 | 6.8970 | 7.5177 | 1.0900 | 14.4147 | 580 |
| 2013 SP19 | 4.4168 | 4.1874 | 0.9481 | 8.6042 | 522 |
| 2013 UX2 | 5.6104 | 5.4370 | 0.9691 | 11.0474 | 494 |
| 2014 JR24 | 6.5279 | 6.2608 | 0.9591 | 12.7887 | 494 |
| 2014 LJ | 7.0773 | 7.4215 | 1.0486 | 14.4988 | 461 |
| 2014 WX202 | 6.4383 | 5.9849 | 0.9296 | 12.4232 | 530 |
| 2014 WA366 | 4.4867 | 4.6855 | 1.0443 | 9.1722 | 488 |
| 2015 EZ6 | 5.9032 | 6.4817 | 1.0980 | 12.3848 | 630 |
| 2015 HC1 | 6.8417 | 5.8701 | 0.8580 | 12.7118 | 630 |
| 2015 VC2 | 7.1580 | 5.7037 | 0.7968 | 12.8617 | 584 |
| 2015 XX128 | 7.6913 | 7.0279 | 0.9137 | 14.7192 | 525 |
| 2015 XD169 | 7.3484 | 4.6099 | 0.6273 | 11.9584 | 595 |
| 2015 XA352 | 10.0564 | 10.1552 | 1.0098 | 20.2116 | 526 |
| 2016 CF137 | 5.4005 | 4.7027 | 0.8708 | 10.1032 | 531 |
| 2016 EP84 | 4.6218 | 4.7910 | 1.0366 | 9.4128 | 630 |


| Object | $\Delta V_{\text {tot }}^{\text {¢ }}$ ( ${ }_{\text {a }}$ | $\Delta V_{\text {tot }_{A \rightarrow \text { o }}}$ | $\frac{\Delta V_{\text {tot }}^{A \rightarrow \delta}}{} \Delta V_{\text {tot }}$ | $\Delta V_{\text {tot } t_{\oplus \rightarrow \delta}}$ | TOF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 GL222 | 5.1578 | 5.1835 | 1.0050 | 10.3413 | 519 |
| 2017 BF29 | 6.7992 | 6.9312 | 1.0194 | 13.7305 | 495 |
| 2017 BG30 | 7.3813 | 5.2598 | 0.7126 | 12.6411 | 599 |
| 2017 CP1 | 10.7812 | 8.9085 | 0.8263 | 19.6896 | 603 |
| 2017 FJ3 | 5.7507 | 6.0302 | 1.0486 | 11.7809 | 560 |
| 2017 FW90 | 5.1874 | 5.2820 | 1.0182 | 10.4694 | 566 |
| 2017 LD | 7.2928 | 7.6853 | 1.0538 | 14.9782 | 451 |
| 2017 RL16 | 5.7491 | 5.3656 | 0.9333 | 11.1147 | 630 |
| 2017 UM52 | 5.0144 | 5.1971 | 1.0364 | 10.2115 | 624 |
| 2017 WM13 | 7.4433 | 4.1106 | 0.5523 | 11.5539 | 590 |
| 2017 YC1 | 6.1692 | 5.7148 | 0.9263 | 11.8840 | 457 |
| 2017 YW3 | 5.9897 | 5.6480 | 0.9430 | 11.6377 | 548 |
| 2018 LQ2 | 5.2521 | 5.4897 | 1.0452 | 10.7418 | 492 |
| 2018 RR1 | 4.9588 | 4.8760 | 0.9833 | 9.8348 | 306 |
| 2019 KJ2 | 4.8080 | 5.1739 | 1.0761 | 9.9818 | 463 |
| 2019 LV | 5.1132 | 4.6134 | 0.9023 | 9.7265 | 513 |
| 2019 PY | 6.5645 | 6.7852 | 1.0336 | 13.3497 | 360 |
| 2019 PO1 | 5.4025 | 5.2993 | 0.9809 | 10.7017 | 630 |
| 2019 SU3 | 4.8097 | 4.2320 | 0.8799 | 9.0417 | 333 |
| 2019 UO1 | 5.5053 | 4.8423 | 0.8796 | 10.3476 | 627 |
| 2019 UB4 | 5.4233 | 4.5524 | 0.8394 | 9.9757 | 318 |
| 2019 XV | 5.6671 | 5.5434 | 0.9782 | 11.2105 | 493 |
| 2020 BK | 7.3098 | 7.1133 | 0.9731 | 14.4231 | 525 |
| 2020 BV2 | 11.6595 | 9.7429 | 0.8356 | 21.4024 | 630 |
| 2020 CF2 | 7.0719 | 7.3440 | 1.0385 | 14.4159 | 572 |
| 2020 DE2 | 5.3926 | 5.6864 | 1.0545 | 11.0790 | 610 |
| 2020 HN | 6.2123 | 5.0681 | 0.8158 | 11.2804 | 520 |
| 2020 HQ4 | 7.3867 | 7.4138 | 1.0037 | 14.8006 | 510 |
| 2020 HL6 | 6.8797 | 6.9599 | 1.0117 | 13.8396 | 410 |
| 2020 OE2 | 5.2497 | 5.7200 | 1.0896 | 10.9697 | 393 |
| 2020 OK5 | 5.3845 | 5.5696 | 1.0344 | 10.9541 | 595 |
| 2020 PP1 | 5.2384 | 5.7346 | 1.0947 | 10.9731 | 626 |
| 2020 RT3 | 6.3195 | 6.7862 | 1.0738 | 13.1057 | 630 |
| 2020 SM2 | 11.8383 | 12.9408 | 1.0931 | 24.7791 | 554 |
| 2020 SH6 | 4.1919 | 4.5241 | 1.0793 | 8.7160 | 342 |
| 2020 VV | 6.0688 | 6.3477 | 1.0460 | 12.4165 | 460 |
| 2020 WY | 5.0434 | 5.1754 | 1.0262 | 10.2187 | 339 |
| 2020 WQ3 | 6.3347 | 6.7478 | 1.0652 | 13.0826 | 630 |

...continued from previous page

| Object | $\Delta V_{\text {tot }_{\oplus \rightarrow A}}$ | $\Delta V_{\text {tot }_{A \rightarrow \delta}}$ | $\frac{\Delta V_{\text {tot }_{A \rightarrow \delta}}}{\Delta V_{\text {tot }}^{\oplus \rightarrow A}}$ | $\Delta V_{\text {tot }_{\oplus \rightarrow \delta}}$ | TOF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2020 XJ4 | 5.7469 | 4.6529 | 0.8096 | 10.3998 | 524 |
| 2021 CE | 7.0312 | 4.7125 | 0.6702 | 11.7436 | 558 |
| 2021 EN5 | 4.5182 | 4.3506 | 0.9629 | 8.8688 | 596 |
| 2021 GB8 | 6.7476 | 4.7015 | 0.6968 | 11.4490 | 630 |
| 2021 HF1 | 11.1259 | 10.0569 | 0.9039 | 21.1828 | 430 |
| 2021 JY5 | 5.7325 | 6.0855 | 1.0616 | 11.8180 | 303 |
| 2021 NV8 | 7.9323 | 8.4852 | 1.0697 | 16.4175 | 384 |
| 2021 RP2 | 4.0472 | 4.4004 | 1.0873 | 8.4476 | 431 |
| 2021 VZ8 | 6.7584 | 6.8244 | 1.0098 | 13.5829 | 365 |
| 2022 BT | 10.1197 | 10.3357 | 1.0213 | 20.4555 | 454 |
| 2022 BX5 | 5.3645 | 5.7564 | 1.0731 | 11.1209 | 430 |
| 2022 KL6 | 6.6573 | 6.2360 | 0.9367 | 12.8933 | 581 |
| 2022 NX1 | 5.4890 | 5.9298 | 1.0803 | 11.4187 | 563 |
| 2022 RF1 | 5.3093 | 5.1348 | 0.9671 | 10.4441 | 356 |
| 2022 RS1 | 7.2044 | 7.2631 | 1.0081 | 14.4676 | 478 |
| 2022 SZ2 | 5.8386 | 6.0021 | 1.0280 | 11.8407 | 378 |
| 2022 SN21 | 3.9079 | 3.8458 | 0.9841 | 7.7537 | 512 |
| 2022 UA5 | 5.2942 | 4.6771 | 0.8834 | 9.9713 | 620 |
| 2022 WS8 | 5.4414 | 4.8754 | 0.8960 | 10.3169 | 490 |

Table 4.3: Transfer dates according to cost function $J_{1}$

| Object | DD from $\oplus$ | AD on $A$ | DD from $A$ | AD on $\delta$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 EA14 | 08-Nov-2043 | 03-Sep-2044 | 13-Sep-2044 | 10-Jul-2045 |  |
| 1993 KA | 09-Jul-2043 | 16-Mar-2044 | 15-Apr-2044 | 09-Feb-2045 |  |
| 1999 CG9 | 05-Feb-2035 | 24-Aug-2035 | 03-Sep-2035 | 27-May-2036 |  |
| 2005 ER95 | 11-Jun-2043 | 06-Apr-2044 | 20-Apr-2044 | 14-Feb-2045 |  |
| 2005 LC | 22-May-2041 | 18-Mar-2042 | 08-Apr-2042 | 02-Feb-2043 |  |
| 2006 CL9 | 22-May-2041 | 18-Mar-2042 | 17-Apr-2042 | 11-Feb-2043 |  |
| 2006 DQ14 | 07-Mar-2035 | 04-Aug-2035 | 31-Aug-2035 | 26-Jun-2036 |  |
| 2006 UQ216 | 01-Jan-2044 | 27-Oct-2044 | 06-Nov-2044 | 24-May-2045 |  |
| 2007 HL4 | 09-May-2043 | 04-Mar-2044 | 03-Apr-2044 | 28-Jan-2045 |  |
| 2008 CM744 | 15-May-2037 | 03-Jan-2038 | 02-Feb-2038 | 29-Nov-2038 |  |
| 2008 HU4 | 08-Mar-2043 | 13-Nov-2043 | 23-Nov-2043 | 13-Jul-2044 |  |
| 2009 BD | 03-Mar-2037 | 28-Dec-2037 | 07-Jan-2038 | 03-Nov-2038 |  |
| 2009 FH | 04-Sep-2038 | 12-May-2039 | 22-May-2039 | 17-Mar-2040 |  |
| 2009 OS5 | 02-Jul-2035 | 21-Nov-2035 | 01-Dec-2035 | 05-Aug-2036 |  |
|  |  |  | continued on next page... |  |  |

...continued from previous page

...continued from previous page

| Object | DD from $\oplus$ | AD on $A$ | DD from $A$ | AD on ${ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2019 LV | 13-Jun-2043 | 03-Jan-2044 | 13-Jan-2044 | 07-Nov-2044 |
| 2019 PY | 03-Mar-2035 | 19-Jul-2035 | 18-Aug-2035 | 26-Feb-2036 |
| 2019 PO1 | 05-Mar-2039 | 30-Dec-2039 | 29-Jan-2040 | 24-Nov-2040 |
| 2019 SU3 | 02-May-2035 | 27-Aug-2035 | 06-Sep-2035 | 30-Mar-2036 |
| 2019 UO1 | 09-Jul-2043 | 04-May-2044 | 31-May-2044 | 27-Mar-2045 |
| 2019 UB4 | 02-Mar-2035 | 10-Jun-2035 | 02-Jul-2035 | 14-Jan-2036 |
| 2019 XV | 03-Mar-2035 | 13-Aug-2035 | 12-Sep-2035 | 08-Jul-2036 |
| 2020 BK | 02-Jul-2039 | 02-Feb-2040 | 12-Feb-2040 | 08-Dec-2040 |
| 2020 BV2 | 07-Jan-2045 | 03-Nov-2045 | 03-Dec-2045 | 29-Sep-2046 |
| 2020 CF2 | 02-Mar-2043 | 10-Dec-2043 | 20-Dec-2043 | 24-Sep-2044 |
| 2020 DE2 | 15-Apr-2043 | 09-Feb-2044 | 19-Feb-2044 | 15-Dec-2044 |
| 2020 HN | 04-May-2037 | 20-Nov-2037 | 10-Dec-2037 | 06-Oct-2038 |
| 2020 HQ4 | 29-Jul-2039 | 14-Feb-2040 | 24-Feb-2040 | 20-Dec-2040 |
| 2020 HL6 | 01-Jan-2035 | 07-Jun-2035 | 17-Jun-2035 | 15-Feb-2036 |
| 2020 OE2 | 24-Jan-2035 | 12-Aug-2035 | 22-Aug-2035 | 21-Feb-2036 |
| 2020 OK5 | 13-Jan-2043 | 15-Oct-2043 | 04-Nov-2043 | 30-Aug-2044 |
| 2020 PP1 | 09-Mar-2043 | 30-Dec-2043 | 29-Jan-2044 | 24-Nov-2044 |
| 2020 RT3 | 05-Sep-2041 | 02-Jul-2042 | 01-Aug-2042 | 28-May-2043 |
| 2020 SM2 | 25-Sep-2038 | 27-May-2039 | 06-Jun-2039 | 01-Apr-2040 |
| 2020 SH6 | 02-Jul-2035 | 15-Oct-2035 | 25-Oct-2035 | 08-Jun-2036 |
| 2020 VV | 20-Sep-2037 | 17-Feb-2038 | 27-Feb-2038 | 24-Dec-2038 |
| 2020 WY | 03-Mar-2035 | 15-Jul-2035 | 31-Jul-2035 | 05-Feb-2036 |
| 2020 WQ3 | 13-Jan-2039 | 09-Nov-2039 | 09-Dec-2039 | 04-Oct-2040 |
| 2020 XJ4 | 13-Apr-2039 | 13-Nov-2039 | 23-Nov-2039 | 18-Sep-2040 |
| 2021 CE | 09-Apr-2041 | 03-Feb-2042 | 05-Mar-2042 | 19-Oct-2042 |
| 2021 EN5 | 03-Mar-2035 | 24-Nov-2035 | 24-Dec-2035 | 19-Oct-2036 |
| 2021 GB8 | 11-Nov-2042 | 07-Sep-2043 | 07-Oct-2043 | 02-Aug-2044 |
| 2021 HF1 | 23-Jul-2044 | 31-Oct-2044 | 30-Nov-2044 | 26-Sep-2045 |
| 2021 JY5 | 02-Mar-2035 | 07-Jul-2035 | 17-Jul-2035 | 30-Dec-2035 |
| 2021 NV8 | 01-Jan-2035 | 12-May-2035 | 22-May-2035 | 20-Jan-2036 |
| 2021 RP2 | 22-Sep-2043 | 09-Apr-2044 | 19-Apr-2044 | 26-Nov-2044 |
| 2021 VZ8 | 16-Nov-2041 | 24-Feb-2042 | 26-Mar-2042 | 16-Nov-2042 |
| 2022 BT | 03-Jan-2039 | 10-Sep-2039 | 20-Sep-2039 | 01-Apr-2040 |
| 2022 BX5 | 29-May-2037 | 06-Sep-2037 | 06-Oct-2037 | 02-Aug-2038 |
| 2022 KL6 | 06-Jul-2039 | 13-Mar-2040 | 12-Apr-2040 | 06-Feb-2041 |
| 2022 NX1 | 04-Mar-2037 | 09-Nov-2037 | 22-Nov-2037 | 18-Sep-2038 |
| 2022 RF1 | 07-Sep-2035 | 16-Dec-2035 | 26-Dec-2035 | 28-Aug-2036 |
| 2022 RS1 | 02-Mar-2035 | 30-Jul-2035 | 27-Aug-2035 | 22-Jun-2036 |

...continued from previous page

| Object | DD from $\oplus$ | AD on $A$ | DD from $A$ | AD on ठ |
| :---: | :---: | :---: | :---: | :---: |
| 2022 SZ2 | 22-Sep-2043 | 19-Feb-2044 | 29-Feb-2044 | 04-Oct-2044 |
| 2022 SN21 | 26-Sep-2039 | 13-Apr-2040 | 25-Apr-2040 | 19-Feb-2041 |
| 2022 UA5 | 06-Jul-2041 | 02-May-2042 | 22-May-2042 | 18-Mar-2043 |
| 2022 WS8 | 01-Jan-2035 | 23-Sep-2035 | 03-Oct-2035 | 05-May-2036 |

Table 4.4: Minimum $\Delta V[k \mathrm{~m} / \mathrm{s}]$ and TOF [days] according to cost function $J_{2}$

| Object | $\Delta V_{\text {tot } \oplus \rightarrow A}$ | $\Delta V_{\text {tot }_{A \rightarrow \delta}}$ | $\frac{\Delta V_{\text {tot }_{A \rightarrow \delta}}}{\Delta V_{\text {tot }_{\oplus \rightarrow A}}}$ | $\Delta V_{\text {tot }_{\oplus \rightarrow \delta}}$ | TOF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 EA14 | 7.1792 | 7.2514 | 1.0101 | 14.4306 | 610 |
| 1993 KA | 9.6250 | 10.5276 | 1.0938 | 20.1526 | 396 |
| 1999 CG9 | 7.9294 | 6.1425 | 0.7747 | 14.0720 | 385 |
| 2005 ER95 | 6.9274 | 5.9813 | 0.8634 | 12.9087 | 480 |
| 2005 LC | 5.7552 | 5.3828 | 0.9353 | 11.1380 | 540 |
| 2006 CL9 | 8.7572 | 5.1200 | 0.5847 | 13.8772 | 530 |
| 2006 DQ14 | 6.7429 | 6.0021 | 0.8901 | 12.7450 | 477 |
| 2006 UQ216 | 8.1518 | 8.8162 | 1.0815 | 16.9681 | 339 |
| 2007 HL4 | 9.1918 | 9.0776 | 0.9876 | 18.2694 | 479 |
| 2008 CM74 | 6.6615 | 6.1845 | 0.9284 | 12.8461 | 563 |
| 2008 HU4 | 7.7178 | 8.2441 | 1.0682 | 15.9618 | 493 |
| 2009 BD | 6.8680 | 6.6815 | 0.9729 | 13.5495 | 419 |
| 2009 FH | 19.3465 | 21.0920 | 1.0902 | 40.4385 | 560 |
| 2009 OS5 | 4.4800 | 4.6218 | 1.0316 | 9.1018 | 386 |
| 2009 SW171 | 4.5424 | 3.7633 | 0.8285 | 8.3057 | 289 |
| 2010 DJ | 8.3379 | 6.2893 | 0.7543 | 14.6272 | 520 |
| 2010 RF12 | 5.7991 | 5.9989 | 1.0345 | 11.7980 | 480 |
| 2011 AA37 | 7.8285 | 7.0617 | 0.9021 | 14.8902 | 316 |
| 2011 CY7 | 8.8709 | 8.0692 | 0.9096 | 16.9401 | 581 |
| 2012 BB14 | 5.2818 | 4.6725 | 0.8846 | 9.9543 | 377 |
| 2012 VB37 | 10.4177 | 8.8125 | 0.8459 | 19.2302 | 510 |
| 2012 XM55 | 8.0595 | 8.0232 | 0.9955 | 16.0827 | 476 |
| 2013 HP11 | 9.9795 | 10.1917 | 1.0213 | 20.1712 | 325 |
| 2013 SP19 | 4.8673 | 3.4714 | 0.7132 | 8.3386 | 175 |
| 2013 UX2 | 5.6136 | 5.5184 | 0.9830 | 11.1320 | 493 |
| 2014 JR24 | 6.5279 | 6.2608 | 0.9591 | 12.7887 | 494 |
| 2014 LJ | 7.0773 | 7.4215 | 1.0486 | 14.4988 | 461 |
| 2014 WX202 | 7.9827 | 6.4940 | 0.8135 | 14.4767 | 436 |
| 2014 WA366 | 6.5629 | 4.8550 | 0.7398 | 11.4179 | 401 |
|  |  |  | continued $0 n$ | $n e x t$ | $p a g e .$. |


| Object | $\Delta V_{\text {tot }}{ }_{\text {¢ }}$ | $\Delta V_{\text {tot }}{ }_{\text {A }}$ |  | $\Delta V_{\text {tot }}{ }_{\text {¢ }}$ | TOF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2015 EZ6 | 9.8934 | 9.9570 | 1.0064 | 19.8504 | 422 |
| 2015 HC1 | 7.9636 | 8.5970 | 1.0795 | 16.5606 | 510 |
| 2015 VC2 | 9.3318 | 6.3793 | 0.6836 | 15.7110 | 339 |
| 2015 XX128 | 7.6913 | 7.0279 | 0.9137 | 14.7192 | 525 |
| 2015 XD169 | 8.2444 | 5.6867 | 0.6898 | 13.9312 | 535 |
| 2015 XA352 | 13.7398 | 12.4198 | 0.9039 | 26.1596 | 369 |
| 2016 CF137 | 5.4005 | 4.7027 | 0.8708 | 10.1032 | 531 |
| 2016 EP84 | 5.9139 | 6.1560 | 1.0409 | 12.0699 | 547 |
| 2016 GL222 | 5.1578 | 5.1835 | 1.0050 | 10.3413 | 519 |
| 2017 BF29 | 8.3740 | 7.2544 | 0.8663 | 15.6285 | 405 |
| 2017 BG30 | 12.5428 | 7.3787 | 0.5883 | 19.9216 | 345 |
| 2017 CP1 | 10.9605 | 10.5579 | 0.9633 | 21.5184 | 574 |
| 2017 FJ3 | 5.9713 | 6.2517 | 1.0470 | 12.2230 | 460 |
| 2017 FW90 | 6.3206 | 6.3657 | 1.0071 | 12.6863 | 410 |
| 2017 LD | 8.3711 | 6.4422 | 0.7696 | 14.8133 | 365 |
| 2017 RL16 | 8.7937 | 5.5630 | 0.6326 | 14.3568 | 306 |
| 2017 UM52 | 5.7730 | 5.6745 | 0.9829 | 11.4475 | 500 |
| 2017 WM13 | 8.7637 | 7.1691 | 0.8180 | 15.9328 | 457 |
| 2017 YC1 | 8.4034 | 8.2871 | 0.9862 | 16.6905 | 281 |
| 2017 YW3 | 6.9712 | 7.1040 | 1.0190 | 14.0752 | 430 |
| 2018 LQ2 | 6.3414 | 5.1472 | 0.8117 | 11.4886 | 348 |
| 2018 RR1 | 4.9588 | 4.8760 | 0.9833 | 9.8348 | 306 |
| 2019 KJ2 | 4.9554 | 4.6738 | 0.9432 | 9.6292 | 309 |
| 2019 LV | 5.2364 | 5.6234 | 1.0739 | 10.8598 | 487 |
| 2019 PY | 6.9847 | 6.5997 | 0.9449 | 13.5844 | 299 |
| 2019 PO1 | 10.8223 | 5.9753 | 0.5521 | 16.7976 | 393 |
| 2019 SU3 | 4.9401 | 3.8837 | 0.7861 | 8.8238 | 311 |
| 2019 UO1 | 7.0114 | 6.4745 | 0.9234 | 13.4859 | 345 |
| 2019 UB4 | 5.4233 | 4.5524 | 0.8394 | 9.9757 | 318 |
| 2019 XV | 5.6849 | 5.9911 | 1.0539 | 11.6760 | 480 |
| 2020 BK | 7.5331 | 6.7688 | 0.8985 | 14.3018 | 510 |
| 2020 BV2 | 11.6595 | 9.7429 | 0.8356 | 21.4024 | 630 |
| 2020 CF2 | 7.6096 | 8.0677 | 1.0602 | 15.6773 | 510 |
| 2020 DE2 | 6.0488 | 5.4075 | 0.8940 | 11.4563 | 560 |
| 2020 HN | 6.9690 | 6.7300 | 0.9657 | 13.6990 | 480 |
| 2020 HQ4 | 7.3867 | 7.4138 | 1.0037 | 14.8006 | 510 |
| 2020 HL6 | 6.9472 | 6.5502 | 0.9428 | 13.4974 | 401 |
| 2020 OE2 | 6.1016 | 5.6127 | 0.9199 | 11.7143 | 293 |

...continued from previous page

| Object | $\Delta V_{\text {tot }_{\oplus \rightarrow A}}$ | $\Delta V_{\text {tot }_{A \rightarrow \delta}}$ | $\frac{\Delta V_{\text {tot }_{A \rightarrow \delta}}}{\Delta V_{\text {tot }}^{\boldsymbol{\delta}} \boldsymbol{A}}$ | $\Delta V_{\text {to }_{\oplus \rightarrow \delta}}$ |
| :---: | :---: | :---: | :---: | :---: | TOF

Table 4.5: Transfer dates according to cost function $J_{2}$

| Object | DD from $\oplus$ | AD on $A$ | DD from $A$ | AD on $\delta$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 EA14 | 08-Nov-2043 | 03-Sep-2044 | 13-Sep-2044 | 10-Jul-2045 |  |  |
| 1993 KA | 07-Sep-2039 | 08-Mar-2040 | 18-Mar-2040 | 07-Oct-2040 |  |  |
| 1999 CG9 | 02-May-2035 | 12-Sep-2035 | 22-Sep-2035 | 21-May-2036 |  |  |
| 2005 ER95 | 30-Sep-2043 | 27-Feb-2044 | 28-Mar-2044 | 22-Jan-2045 |  |  |
| 2005 LC | 02-Mar-2035 | 07-Nov-2035 | 07-Dec-2035 | 23-Aug-2036 |  |  |
| 2006 CL9 | 13-Jul-2041 | 29-Jan-2042 | 28-Feb-2042 | 25-Dec-2042 |  |  |
| continued on next page... |  |  |  |  |  |  |


| continued from previous page |  |  |  |
| :---: | :---: | :---: | :---: |
| Object | DD from $\oplus$ | AD on $A$ | DD from A |
| 2006 DQ14 | 07-Mar-2035 | 04-Aug-2035 | 31-Aug-2035 |
| 26-Jun-2036 |  |  |  |
| 2006 UQ216 | 02-Jul-2035 | 10-Oct-2035 | 20-Oct-2035 |
| 05-Jun-2036 |  |  |  |
| 2007 HL4 | 06-Mar-2041 | 11-Nov-2041 | 21-Nov-2041 | 28-Jun-2042

...continued from previous page

| Object | DD from $\oplus$ | AD on $A$ | DD from $A$ | D on ${ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2017 RL16 | 01-Jan-2035 | 21-Apr-2035 | 21-May-2035 | 03-Nov-2035 |
| 2017 UM52 | 06-Apr-2037 | 12-Dec-2037 | 22-Dec-2037 | 19-Aug-2038 |
| 2017 WM13 | 18-Apr-2041 | 04-Nov-2041 | 14-Nov-2041 | 19-Jul-2042 |
| 2017 YC1 | 02-Jun-2035 | 10-Sep-2035 | 20-Sep-2035 | 09-Mar-2036 |
| 2017 YW3 | 17-Mar-2035 | 25-Jun-2035 | 25-Jul-2035 | 20-May-2036 |
| 2018 LQ2 | 03-Sep-2037 | 12-Dec-2037 | 22-Dec-2037 | 17-Aug-2038 |
| 2018 RR1 | 02-Jul-2035 | 10-Oct-2035 | 03-Nov-2035 | 03-May-2036 |
| 2019 KJ2 | 02-May-2035 | 10-Aug-2035 | 22-Aug-2035 | 06-Mar-2036 |
| 2019 LV | 30-May-2043 | 05-Feb-2044 | 06-Mar-2044 | 28-Sep-2044 |
| 2019 PY | 11-May-2035 | 19-Aug-2035 | 06-Sep-2035 | 05-Mar-2036 |
| 2019 PO1 | 01-Jan-2035 | 31-May-2035 | 10-Jun-2035 | 29-Jan-2036 |
| 2019 SU3 | 02-May-2035 | 10-Aug-2035 | 20-Aug-2035 | 08-Mar-2036 |
| 2019 UO1 | 02-May-2035 | 29-Sep-2035 | 09-Oct-2035 | 11-Apr-2036 |
| 2019 UB4 | 02-Mar-2035 | 10-Jun-2035 | 02-Jul-2035 | 14-Jan-2036 |
| 2019 XV | 03-Mar-2035 | 31-Jul-2035 | 30-Aug-2035 | 25-Jun-2036 |
| 2020 BK | 04-Jul-2039 | 20-Jan-2040 | 30-Jan-2040 | 25-Nov-2040 |
| 2020 BV2 | 07-Jan-2045 | 03-Nov-2045 | 03-Dec-2045 | 29-Sep-2046 |
| 2020 CF2 | 23-Jun-2043 | 09-Jan-2044 | 19-Jan-2044 | 14-Nov-2044 |
| 2020 DE2 | 13-May-2043 | 18-Jan-2044 | 28-Jan-2044 | 23-Nov-2044 |
| 2020 HN | 04-May-2037 | 01-Oct-2037 | 31-Oct-2037 | 27-Aug-2038 |
| 2020 HQ4 | 29-Jul-2039 | 14-Feb-2040 | 24-Feb-2040 | 20-Dec-2040 |
| 2020 HL6 | 01-Jan-2035 | 31-May-2035 | 10-Jun-2035 | 06-Feb-2036 |
| 2020 OE2 | 02-May-2035 | 10-Aug-2035 | 20-Aug-2035 | 19-Feb-2036 |
| 2020 OK5 | 03-May-2035 | 13-Sep-2035 | 27-Sep-2035 | 04-Apr-2036 |
| 2020 PP1 | 14-Aug-2043 | 01-Mar-2044 | 11-Mar-2044 | 19-Dec-2044 |
| 2020 RT3 | 29-Oct-2041 | 17-May-2042 | 16-Jun-2042 | 12-Apr-2043 |
| 2020 SM2 | 25-Sep-2038 | 27-May-2039 | 06-Jun-2039 | 01-Apr-2040 |
| 2020 SH6 | 02-Jul-2035 | 10-Oct-2035 | 20-Oct-2035 | 25-May-2036 |
| 2020 VV | 31-Dec-2043 | 09-Apr-2044 | 19-Apr-2044 | 13-Dec-2044 |
| 2020 WY | 03-Mar-2035 | 15-Jul-2035 | 31-Jul-2035 | 05-Feb-2036 |
| 2020 WQ3 | 31-Mar-2039 | 17-Oct-2039 | 16-Nov-2039 | 11-Sep-2040 |
| 2020 XJ4 | 06-May-2039 | 30-Oct-2039 | 11-Nov-2039 | 06-Sep-2040 |
| 2021 CE | 09-Jan-2042 | 08-Jun-2042 | 18-Jun-2042 | 18-Sep-2042 |
| 2021 EN5 | 03-Mar-2035 | 24-Nov-2035 | 24-Dec-2035 | 19-Oct-2036 |
| 2021 GB8 | 26-Jun-2035 | 04-Oct-2035 | 14-Oct-2035 | 09-Aug-2036 |
| 2021 HF1 | 23-Jul-2044 | 31-Oct-2044 | 30-Nov-2044 | 26-Sep-2045 |
| 2021 JY5 | 02-Mar-2035 | 07-Jul-2035 | 17-Jul-2035 | 30-Dec-2035 |
| 2021 NV8 | 01-Jan-2035 | 12-May-2035 | 22-May-2035 | 20-Jan-2036 |
| continued on next page.. |  |  |  |  |

...continued from previous page

| Object | DD from $\oplus$ | AD on $A$ | DD from $A$ | AD on ס |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 2 1}$ RP2 | 27-Sep-2043 | 24-Feb-2044 | 25-Mar-2044 | 06-Nov-2044 |
| $\mathbf{2 0 2 1}$ VZ8 | 16-Nov-2041 | 24-Feb-2042 | 26-Mar-2042 | 16-Nov-2042 |
| 2022 BT | 02-Jul-2035 | 10-Oct-2035 | 20-Oct-2035 | 21-Apr-2036 |
| 2022 BX5 | 29-May-2037 | 06-Sep-2037 | 06-Oct-2037 | 02-Aug-2038 |
| $\mathbf{2 0 2 2}$ KL6 | 06-Jul-2039 | 13-Mar-2040 | 12-Apr-2040 | 06-Feb-2041 |
| $\mathbf{2 0 2 2}$ NX1 | 04-Mar-2037 | 09-Nov-2037 | 22-Nov-2037 | 18-Sep-2038 |
| $\mathbf{2 0 2 2}$ RF1 | 01-Sep-2035 | 10-Dec-2035 | 20-Dec-2035 | 21-Aug-2036 |
| $\mathbf{2 0 2 2}$ RS1 | 03-Mar-2035 | 11-Jun-2035 | 21-Jun-2035 | 17-Nov-2035 |
| $\mathbf{2 0 2 2}$ SZ2 | 22-Sep-2043 | 19-Feb-2044 | 29-Feb-2044 | 04-Oct-2044 |
| $\mathbf{2 0 2 2}$ SN21 | 02-Jul-2035 | 10-Oct-2035 | 20-Oct-2035 | 18-Jul-2036 |
| $\mathbf{2 0 2 2}$ UA5 | 21-Feb-2035 | 21-Jul-2035 | 20-Aug-2035 | 14-Mar-2036 |
| $\mathbf{2 0 2 2}$ WS8 | 29-Mar-2035 | 26-Aug-2035 | 05-Sep-2035 | 19-Mar-2036 |

## Chapter 5

## Sun-Asteroid Distant Retrograde Orbit Family

In this chapter, Sun-Asteroid Distant Retrograde Orbits family will be found. After the estimation of the asteroid mass and discussing about DROs importance, the guess for the initial conditions of the orbit will be obtained using Particle Swarm Optimization. Then, with the differential correction method, the exact initial conditions will be found. The procedure will be repeated for all DROs of the family of varying size. Finally the $\Delta V$ for orbit insertion will be calculated.

### 5.1 Sun-Asteroid Mass Ratio Estimation

Future missions using an asteroid for in situ refueling will need an initial reconnaissance mission. It will be useful to understand better the surface morphology and consequently the best landing site along with estimating the asteroid mass and other of its physical characteristics. Of course, the reconnaissance mission will have to search for resources and prove that there are enough supplies, for a given number $(N)$ of resupplies.
In our case, we don't have the asteroid mass and consequently the gravitational parameter $\mu_{A}$. For this reason we have selected ${ }^{1}$ some minor planets (asteroids and comets) whose $\mu$ is known. To carry out a statistical investigation we need to know how $\mu$ varies as a function of another parameter. The parameter chosen is the diameter of the asteroid, intended as the mean diameter between the diameters along the $x, y$ and $z$ axes centered in the barycenter of the asteroid. Asteroids

[^2]considered are shown in Tab. 5.1. We interpolate the data with a cubic function
Table 5.1: Asteroid statistical investigation diameter vs $\mu$

| Object | Diameter $[\mathrm{km}]$ | $\mu\left[\mathrm{km}^{3} / \mathrm{s}^{2}\right]$ |
| :--- | :---: | :---: |
| 16 Psyche (A852 FA) | 226 | 1.53 |
| 22 Kalliope (A852 WA) | 167.536 | 0.491 |
| 107 Camilla (A868 WA) | 210.370 | 0.7475 |
| 243 Ida (A884 SB) | 32 | 0.00275 |
| 253 Mathilde (A885 VA) | 52.8 | 0.00689 |
| 433 Eros (A898 PA) | 16.84 | $4.463 \mathrm{e}-04$ |
| 704 Interamnia (A910 TC) | 306.313 | 5. |
| 25143 Itokawa (1998 SF36) | 0.33 | $2.1 \mathrm{e}-9$ |
| 101955 Bennu (1999 RQ36) | 0.482 | $4.8904 \mathrm{e}-9$ |
| 162173 Ryugu (1999 JU3) | 0.896 | $3.00 \mathrm{e}-8$ |
| 185851 (2000 DP107) | 0.863 | $3.224 \mathrm{e}-8$ |
| 67P /Churyumov-Gerasimenko | 3.4 | $662.2 \mathrm{e}-9$ |

like $f(x)=A \cdot x^{3}+B \cdot x^{2}+C \cdot x+D$, obtaining the blue line shown in Fig. 5.1. The reason why we have selected the function aforementioned is that we need to find a function like $\mu=f(d)$. Therefore, we have

$$
\begin{equation*}
\mu=G \cdot m=G \cdot \rho V=G \cdot \rho \frac{4}{3} \pi r^{3}=G \cdot \rho \frac{1}{6} \pi d^{3} \tag{5.1}
\end{equation*}
$$

where $m, \rho, V, r, d$ are respectively the mass, density, volume, mean radius and mean diameter of the asteroid, while $G$ is the gravitational constant. Finally we have that the interpolating function is as the following

$$
\begin{equation*}
\mu=f(d)=a \cdot d^{3} \tag{5.2}
\end{equation*}
$$

We need to estimate the diameter of the asteroid to use in the interpolating function aforementioned. The estimation can be derived using the absolute magnitude $H$, representing the visual magnitude an observer would perceive if the asteroid were positioned 1 Astronomical Unit away from both the Sun and the observer, with a zero phase angle ${ }^{2}$. Additionally, the estimation can be based on the albedo $a$, which signifies the ratio of light received by a celestial body to the light it reflects. Albedo values span from 0 (complete darkness) to 1 (ideal reflector) ${ }^{3}$. As suggested by Harris [22], the diameter can be calculated as follow

$$
\begin{equation*}
d(H, a)=10^{3.1236-0.5 \log (a)-0.2 H} \tag{5.3}
\end{equation*}
$$

[^3]

Figure 5.1: Diameter vs $\mu$ of some known asteroids

Considering that among all selected asteroids the only available physical parameter is the absolute magnitude $H$, for the diameter estimation we consider an albedo range between 0.01 and 0.9 and we calculate the mean diameter as follow:

$$
\begin{equation*}
d_{\text {mean }}(H)=\frac{d(H, 0.01)+d(H, 0.9)}{2} \tag{5.4}
\end{equation*}
$$

If we consider the best asteroid shown in Tab. 4.4, the object 2013 SP19, we discover that using the Eq. (5.4) and the Eq. (5.3), the mean diameter is equal to 11 m . This means that there will be not enough resources for multiple resupplies. While if we consider the best asteroid shown in Tab. 4.2, the object 2022 SN21, the mean diameter is equal to 34 m , but at the same time we note that TOF in that case is almost two times bigger than a direct Earth-Mars transfer. Therefore we need a new cost function $J_{3}$ such as $J_{3}\left(\Delta V_{\text {tot }{ }_{\oplus \rightarrow A}}, T O F, d_{\text {mean }}\right)$. For simplicity, we take into account a maximum excavation depth of approximately 20 meters. We can suppose to treat asteroids of Type $I$ that, according the chemical-petrologic classification proposed by [23, 24], have a bulk water content equal to $20.08 \%$. Conservatively, we assume that the mass percentage is equal to the volume percentage. Therefore we have that the extractable volume is equal to

$$
\begin{equation*}
V_{\text {extractable }}=\frac{4}{3} \pi r_{\text {asteroid }}^{3}-\frac{4}{3} \pi\left(r_{\text {asteroid }}-h_{\text {extractable }}\right)^{3} \tag{5.5}
\end{equation*}
$$

where

$$
\begin{align*}
& r_{\text {asteroid }}=\frac{d_{\text {mean }}}{2}  \tag{5.6}\\
& h_{\text {extractable }}=20 \quad m
\end{align*}
$$

Considering that only the $20.08 \%$ can be used as propellant, we obtain

$$
\begin{equation*}
V_{e p}=0.2008 V_{\text {extractable }} \tag{5.7}
\end{equation*}
$$

where the subscript "ep" means extractable propellant. Note that we assume a perfectly spherical asteroid.
After the mission phase in which $\mathrm{H}_{2} \mathrm{O}$ is split into LOX and $\mathrm{LH}_{2}$ (not discussed in this study) the tanks are assumed to be filled to their maximum capacity. Therefore, it is necessary to estimate the volume capacity of the tanks. We assume to use a SpaceX spacecraft: Starship. The second stage of the Starship system has a propellant capacity equal to $1.2 \cdot 10^{6} \mathrm{~kg}^{4}$. To compute an approximation of the volume capacity of the tanks, we need to compute the propellant density $\rho_{p}$. To do it, we use the Eq. (5.8), function of the mixture ratio, $M R$, equal to $3.6^{5}$, the liquid oxygen density, $\rho_{\text {LOX }}$, equal to $1141 \mathrm{~kg} / \mathrm{m}^{3}$ and the methane density, $\rho_{C H_{4}}$, equal to $430 \mathrm{~kg} / \mathrm{m}^{3}$.

$$
\begin{equation*}
\rho_{p}=\rho_{L O X} \rho_{C H_{4}} \frac{M R+1}{\rho_{C H_{4}} M R+\rho_{L O X}} \tag{5.8}
\end{equation*}
$$

With the aforementioned values, we obtain a capacity of the propellant tank, $V_{\text {tank }}$, equal to $1430 \mathrm{~m}^{3}$. This way, by supposing that the SpaceX Raptor, the rocket engines used by Starship, could be converted from $L O X / C H_{4}$ propellant engines to $\mathrm{LOX} / \mathrm{LH}_{2}$ propellant engines and that the volume capacity of the propellant tank remains the same, we can compute the number of supplies, $N_{\text {supplies }}$, that an asteroid can guarantee as follows

$$
\begin{equation*}
N_{\text {supplies }}=V_{\text {ep }} / V_{\text {tank }} \tag{5.9}
\end{equation*}
$$

Finally we can write the new function cost $J_{3}$ to select a new asteroid among those presented in Tab. 4.1 to maximize the number of supplies, minimize the $\Delta V_{t o t}$ from Earth to the asteroid and minimize the TOF.

$$
\begin{equation*}
J_{3}=\frac{\Delta V_{\text {tot } \oplus \rightarrow A}}{\Delta V_{\text {min }, \oplus \rightarrow \delta}}+\frac{T O F_{\oplus \rightarrow A \rightarrow \delta}}{T O F_{\Delta V_{\text {min }, \oplus \rightarrow \delta}}}+\frac{N_{\text {target }}}{N_{\text {supplies }}} \tag{5.10}
\end{equation*}
$$

[^4]where
\[

$$
\begin{align*}
& \Delta V_{\min , \oplus \rightarrow \delta^{\circ}}=6.1696 \mathrm{~km} / \mathrm{s} \\
& T O F_{\Delta V_{\text {min }, \oplus \rightarrow \delta}}=252 \text { days }  \tag{5.11}\\
& N_{\text {target }}=50 \text { supplies }
\end{align*}
$$
\]

$N_{\text {target }}$ is set as the number of supplies that an asteroid has to guarantee. Using the data from Tab. 4.2 and Tab. 4.4, and showing only the asteroids with $\Delta V_{t_{t o t}^{\oplus \rightarrow A}}<5$ $\mathrm{km} / \mathrm{s}$, we obtain Tab. 5.2. The speed given in the table is referred in $\mathrm{km} / \mathrm{s}$, the

Table 5.2: Candidate asteroids and critical parameters for the $J_{3}$ cost function

| Object | $\Delta V_{\text {tot }_{\oplus \rightarrow A}}$ | $T O F$ | $R_{\text {mean }_{A}}$ | $N_{\text {supplies }}$ | $J_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 LC | 4.1310 | 621 | 16.0 | 2 | 28.1 |
| 2009 OS5 | 4.1960 | 400 | 58.2 | 83 | 2.87 |
| 2009 SW171 | 4.4733 | 326 | 21.5 | 6 | 10.4 |
| 2010 RF12 | 4.5960 | 560 | 7.7 | 1 | 53.0 |
| 2013 SP19 | 4.4168 | 522 | 5.3 | 2 | 27.8 |
| 2014 WA366 | 4.4867 | 488 | 17.7 | 3 | 19.3 |
| 2016 EP84 | 4.6218 | 630 | 12.2 | 1 | 53.2 |
| 2018 RR1 | 4.9588 | 306 | 3.7 | 3 | 18.7 |
| 2019 KJ2 | 4.8080 | 463 | 13.6 | 2 | 27.6 |
| 2019 SU3 | 4.8097 | 333 | 12.8 | 1 | 52.1 |
| 2020 SH6 | 4.1919 | 342 | 38.1 | 29 | 3.76 |
| 2021 EN5 | 4.5182 | 596 | 17.9 | 3 | 19.8 |
| 2021 RP2 | 4.0472 | 431 | 3.3 | 3 | 19.0 |
| 2022 SN21 | 3.9079 | 512 | 17.1 | 3 | 19.3 |
| 2009 OS5 | 4.4800 | 386 | 58.2 | 83 | 2.86 |
| 2009 SW171 | 4.5424 | 289 | 21.5 | 6 | 10.2 |
| 2013 SP19 | 4.8673 | 175 | 5.3 | 2 | 26.5 |
| 2018 RR1 | 4.9588 | 306 | 3.7 | 3 | 18.7 |
| 2019 KJ2 | 4.9554 | 309 | 13.6 | 2 | 27.0 |
| 2019 SU3 | 4.9401 | 311 | 12.8 | 1 | 52.0 |
| 2020 SH6 | 4.1949 | 328 | 38.1 | 29 | 3.71 |
| 2021 EN5 | 4.5182 | 596 | 17.9 | 3 | 19.8 |
| 2021 RP2 | 4.1603 | 406 | 3.3 | 3 | 19.0 |

time of flight in days and the mean radius of the asteroid in $m$. Note that some asteroids are repeated in the table because different combinations of $\Delta V_{t o t_{\oplus \rightarrow A}}$ and TOF are considered. Using the cost function $J_{3}$, asteroid 2009 OS5 has been selected. It is the best compromise from the minimum $\Delta V$ from the Earth to asteroid the minimum total TOF from Earth to Mars (passing by the asteroid) and
the maximum number of supplies possible (under the aforementioned assumptions). So a spacecraft that leaves the Earth on July 3, 2035 will arrive on asteroid 2009 OS5 on October 11, 2035 using $\Delta V$ of $4.4800 \mathrm{~km} / \mathrm{s}$, it will stay on it for 30 days, until November 10, 2035 to complete the ISRU refueling and it will reach Mars on July 23,2036 with a "free" $\Delta V$ of $4.6218 \mathrm{~km} / \mathrm{s}$. In this way, $27.4 \%$ of $\Delta V$ is saved with respect to the best case of a direct Earth-Mars transfer. This result is obtained spending more than 134 days of mission time respect of the best case of a direct Earth-Mars transfer. The number of possible propellant resupplies on asteroid 2009 OS5 are fixed to 83.
Finally, we can estimate $\mu_{A}$, interpolating data from Tab. 5.1 and using as reference diameter $2 \cdot 58.2 \mathrm{~m}$. The interpolating function used is the following

$$
\begin{equation*}
\mu=f(d)=1.598 \cdot 10^{-7} \cdot d^{3} \tag{5.12}
\end{equation*}
$$

Zooming into Fig. 5.1, we obtain Fig. 5.2 where is shown a reference $\mu_{A}$ equal to $2.520204112512 \cdot 10^{-10} \mathrm{~km}^{3} / \mathrm{s}^{2}$. As a result we can compute the mass ratio of


Figure 5.2: Zoom in of Fig. 5.1
the system Sun-asteroid 2009 0S5, $\mu_{A / \odot}$, as in Eq. 5.13, where $\odot$ means "Sun". Considering $\mu_{\odot}$ equal to $132,712,440,018 \mathrm{~km}^{3} / \mathrm{s}^{2}$ we obtain

$$
\begin{equation*}
\mu_{A / \odot}=\frac{\mu_{A}}{\mu_{\odot}+\mu_{A}}=1.898996139450213 \cdot 10^{-21} \tag{5.13}
\end{equation*}
$$

Since the gravitational parameter of the asteroid is very small, its gravitational influence is negligible compared to that of the Sun. However, in its vicinity, the gravity of the asteroid can generate significant perturbative effects.

### 5.2 Distant Retrograde Orbits

As shown in Sec. 1.5 Distant Retrograde Orbits (DROs) are large orbits encircling a smaller primary celestial body in the CR3BP. The word "distant" in the term "Distant Retrograde Orbit" indicates that the orbit is positioned at a certain distance from the celestial body, while the word "retrograde" means that the spacecraft moves in the opposite direction to the rotational motion of the celestial body. In the CR3BP, DROs can exhibit perfect periodicity, meaning their motion repeats exactly after a certain period. However, due to various factors such as the gravitational influence of other celestial bodies or non-spherical shape of the primary body, maintaining a perfectly periodic DRO can be challenging. Thus, in practice, slight perturbations in the in-plane velocity are often present, leading to quasi-periodic orbits. These quasi-periodic orbits closely resemble periodic motion, but exhibit small variations over time. Nevertheless, quasi-periodic DROs are still highly advantageous, especially for applications such as quarantine orbits, as their stability showcases their ability to withstand perturbations and maintain their intended purpose [25].
DROs are particularly favored for locating in-space infrastructures due to their outstanding stability and the ease of accessing them in terms of the gravitational potential energy. Their stability is characterized by their resistance to perturbations, making them reliable for long-duration missions and operations.

To find a periodic DRO, several parameters are used. One of these parameters is the $\xi$-amplitude, $A_{\xi}$, which represents the maximum distance from the smaller primary body in the positive $\xi$-axis direction, using a coordinate frame centered at the barycenter of the Sun-asteroid system as shown in Fig. 5.3. In this reference frame, the periapsis radius and its corresponding velocity $V_{\eta}$ at the intersection of the $\xi \zeta$-plane (where $\eta=0$ ) are crucial in creating a periodic orbit. The periapse radius determines the closest distance between the spacecraft and the smaller primary body, while the corresponding velocity ensures that the spacecraft follows a periodic orbit.

### 5.3 Obtaining DRO ICs with PSO

In this specific section, a Particle Swarm Optimization algorithm will be employed to determine a Sun-Asteroid DRO based on $A_{\xi}$ and $V_{\eta}$. These serve as the starting point for optimizing the landing trajectory, which will be discussed in Chapter 6. Since DROs lie on the $\xi \eta$-plane, we can use the CR3BP equations of motion


Figure 5.3: Geometric schematization of a Sun-asteroid DRO
neglecting the $\zeta$-component. Therefore, the EOMs become

$$
\left\{\begin{array}{l}
\xi^{\prime \prime}-2 \eta^{\prime}-\xi=-\left(1-\mu_{A / \odot}\right) \frac{\xi+\mu_{A / \odot}}{\rho_{1}^{3}}-\mu_{A / \odot} \frac{\xi-\left(1-\mu_{A / \odot}\right)}{\rho_{2}^{3}}  \tag{5.14}\\
\eta^{\prime \prime}+2 \xi^{\prime}-\eta=-\left(1-\mu_{A / \odot}\right) \frac{\eta}{\rho_{1}^{3}}-\mu_{A / \odot \frac{\eta}{\rho_{2}^{3}}}
\end{array}\right.
$$

where

$$
\begin{align*}
\rho_{1} & =\sqrt{\left(\xi+\mu_{A / \odot}\right)^{2}+\eta^{2}}  \tag{5.15}\\
\rho_{2} & =\sqrt{\left(\xi-\left(1-\mu_{A / \odot}\right)\right)^{2}+\eta^{2}}
\end{align*}
$$

The PSO algorithm is used to research the ICs of the CR3BP EOMs $\xi_{0}, \eta_{0}, \dot{\xi}_{0}$ and $\dot{\eta}_{0}$, that lead to a periodic DRO. Starting by integrating the Eq.(5.14) at the point farthest from the sun on the $\xi$-axis, we obtain the following ICs

$$
\left\{\begin{array}{l}
\xi_{0}=-A_{\xi}+1-\mu_{A / \odot}  \tag{5.16}\\
\eta_{0}=0 \\
\dot{\xi}_{0}=0 \\
\dot{\eta}_{0}=V_{\eta}
\end{array}\right.
$$

The velocity in $\left[\xi_{0}, \eta_{0}\right.$ ] has no $\xi$-component while the $\eta$-component is called $V_{\eta}$. In the CR3BP, when using the synodic coordinate system, an orbit is called periodic if it is indefinitely repeated. This implies that after a period of rotation denoted as
$\tau$, the variables $\xi, \eta, \dot{\xi}$ and $\dot{\eta}$ return to their original values:

$$
\left\{\begin{array}{l}
\xi(\tau)=\xi(0)=\xi_{0}  \tag{5.17}\\
\eta(\tau)=\eta(0)=\eta_{0} \\
\dot{\xi}(\tau)=\dot{\xi}(0)=\dot{\xi}_{0} \\
\dot{\eta}(\tau)=\dot{\eta}(0)=\dot{\eta}_{0}
\end{array}\right.
$$

Therefore PSO is performed using the following cost function $J$ to minimize

$$
\begin{equation*}
J=|\xi(\tau)-\xi(0)|+|\eta(\tau)-\eta(0)|+|\dot{\xi}(\tau)-\dot{\xi}(0)|+|\dot{\eta}(\tau)-\dot{\eta}(0)| \tag{5.18}
\end{equation*}
$$

which becomes

$$
\begin{equation*}
J=\left|\xi(\tau)+A_{\xi}-1+\mu_{A / \odot}\right|+|\eta(\tau)|+|\dot{\xi}(\tau)|+\left|\dot{\eta}(\tau)-V_{\eta}\right| \tag{5.19}
\end{equation*}
$$

If we want to obtain a quasi-circular DRO, it's necessary that $\xi(\tau / 2)$ is almost equal to $A_{\xi}+1-\mu_{A / \odot}$. Therefore, $J$ changes as

$$
\begin{array}{r}
J=\left|\xi(\tau)+A_{\xi}-1+\mu_{A / \odot}\right|+|\eta(\tau)|+|\dot{\xi}(\tau)|+\left|\dot{\eta}(\tau)-V_{\eta}\right|+  \tag{5.20}\\
+\left|\xi(\tau / 2)-A_{\xi}-1+\mu_{A / \odot}\right|
\end{array}
$$

In this way the number of decision variables become two: $\tau$ and $V_{\eta}$. By following the schematization of PSO shown in Fig. 5.4, we initialize the number of particles and the maximum number of iterations. In this study, for reasons of computational cost, we set up

$$
\begin{align*}
& N_{\text {particles }}=30  \tag{5.21}\\
& N_{\text {iterations }_{\max }}=200
\end{align*}
$$

To set the variables bounds, we need to reference values. In this case we can simplify the problem using the Keplerian Restricted 2 Body Problem (KR2BP). We suppose to have a circular orbit with asteroid 2000 OS5 as primary body. We consider a SMA equal to $A_{\xi} \cdot L U=0.5 \mathrm{~km}$. Where $L U$ is the length unit used in the characterization of the physical properties of the system Sun-Asteroid in the CR3BP. $L U$ represents the distance between the Sun and the asteroid 2009 OS5. From Tab. 4.1, we can use the 2009 OS5 SMA as LU. Subsequently will be useful the time unit $T U$ of the system Sun-Asteroid in the CR3BP. It indicates the inverse of the relative angular frequency between the Sun and the asteroid 2009 OS5. Therefore, we obtain

$$
\begin{align*}
L U & =a_{A}=171,747,349 \quad \mathrm{~km} \\
T U=\frac{T_{A}}{2 \pi} & =\sqrt{\frac{a_{A}^{3}}{\mu_{\odot}}}=6,178,445 \mathrm{~s} \tag{5.22}
\end{align*}
$$

Finally we can compute the dimensionless speed, $\mathcal{V}_{s c}$, that a spacecraft would have if it orbited in a circular orbit around the asteroid 2009 OS5 and the dimensionless
period, $\mathcal{T}$, of that orbit using the equations of KR2BP.

$$
\begin{align*}
& \mathcal{V}_{s c}=\sqrt{\frac{\mu_{A}}{A_{\xi} \cdot L U}} \cdot \frac{T U}{L U}=2.26 \cdot 10^{-2} \\
& \mathcal{T}=\sqrt{\frac{\left(A_{\xi} \cdot L U\right)^{3}}{\mu_{A}}} \cdot \frac{1}{T U}=8.08 \cdot 10^{-7} \tag{5.23}
\end{align*}
$$

We can set the variables bounds as follow After that we set up the inertial weight, $c_{I}$,
Table 5.3: Lower and Upper Bounds of the two decision variables

| $\#$ | Variable | Lower Bound | Upper Bound |
| :---: | :---: | :---: | :---: |
| 1 | $V_{\eta}$ | $0.9 \cdot \mathcal{V}_{s c}$ | $1.1 \cdot \mathcal{V}_{s c}$ |
| 2 | $\tau$ | $0.9 \cdot \mathcal{T}$ | $1.1 \cdot \mathcal{T}$ |

the cognitive weight, $c_{C}$, and the social weight, $c_{S}$. The PSO Stochastic Parameters expressions [26] are

$$
\left\{\begin{array}{c}
c_{I}=\frac{1+r_{1}(0,1)}{2}  \tag{5.24}\\
c_{C}=1.49445 \cdot r_{2}(0,1) \\
c_{S}=1.49445 \cdot r_{3}(0,1)
\end{array}\right.
$$

where $r_{1}(0,1), r_{2}(0,1)$, and $r_{3}(0,1)$ denote three separate random numbers chosen independently from a uniform distribution ranging from 0 to 1 . Finally, we set up the particles velocity limits as the difference between the upper bound and the lower bound of the each decision variables. By continuing to follow the flow chart shown in Fig. 5.4, we initialize the particles positions with the Matlab function unifrnd which returns an array of random numbers chosen from the continuous uniform distribution over the interval between the previously set bounds. After this step, we compute the best positions ever visited by particle $i$ up to the current iteration $j, \Psi_{k}^{(j)}(i)$, where $k$ indicates the $k^{\text {th }}$ decision variable and we compute its respective minimum cost according the Eq. (5.20). Consequently the best global positions of the whole swarm until $j^{\text {th }}$ iteration, $\Upsilon_{k}^{(j)}$, is calculated. If the cost of the positions $\Upsilon_{k}^{(j)}$ is less of a value called $J_{\text {min }}$, the main loop is stopped and the algorithm reports the best particles positions $\Upsilon_{1}^{(j)}=V_{\eta}$ and $\Upsilon_{1}^{(j)}=\tau$. In this algorithm, $J_{\min }$ is set equal to $10^{-15}$. If the cost of the global best positions is more than $J_{\text {min }}$ the main loop continues and updates the $i^{\text {th }}$ particle velocities $v_{k}^{(j+1)}(i)$ at $j+1^{\text {th }}$ iteration of the $k^{t h}$ decision variable as

$$
\begin{equation*}
v_{k}^{(j+1)}(i)=c_{I} \cdot v_{k}^{(j)}(i)+c_{C} \cdot\left(\Psi_{k}^{(j)}(i)-\varrho_{k}^{(j)}(i)\right)+c_{S} \cdot\left(\Upsilon_{k}^{(j)}-\varrho_{k}^{(j)}(i)\right) \tag{5.25}
\end{equation*}
$$

where $\varrho_{k}^{(j)}(i)$ indicates the position of the $i^{\text {th }}$ particle at the $j^{\text {th }}$ iteration of the $k^{\text {th }}$ decision variable. After this we apply the velocities limits and compute the new


Figure 5.4: Schematization of PSO algorithm
particle positions as in Eq. (3.12).
We apply position limits in the event that the particle positions exceeds the limits imposed. At this point we re-evaluate the new position and the main loop restarts. The main loop ends when the the iteration $j^{\text {th }}$ reaches the number maximum of the iterations or when, as aforementioned, the cost of the global best positions, $G_{\text {best }}$, is more than $J_{\text {min }}$.
If the global best doesn't change for 20 iterations consecutively, a re-initialization is performed. The position bounds are re-set as follows

$$
\begin{align*}
& l_{k}=\left(1-10^{-s-5}\right) \cdot \Upsilon_{k}^{(j)} \\
& u_{k}=\left(1+10^{-s-5}\right) \cdot \Upsilon_{k}^{(j)} \tag{5.26}
\end{align*}
$$

Where $l_{k}$ and $u_{k}$ are the lower and upper bounds of the $k^{t h}$ decision variable respectively. $s$ indicates the $s^{\text {th }}$ re-initialization.

Fig. 5.2 shows the Global Best Cost evolution until the number of the $j^{t h}$-iteration reached $N_{\text {iterations }_{\max }}$. We can note that as the first best particle position already has a low cost $\left(2 \cdot 10^{-8}\right)$. This means that the bounds are consistent. After less than 9 iterations the Global Best Cost decreases by an order of magnitude. After the $9^{\text {th }}$ iteration, the Global Best Cost is reduced by $18 \%$ from the last iteration, which results to $2.23 \cdot 10^{-9}$. If we zoom into Fig. 5.2, we obtain Fig. 5.5, which shows 20 iterations in which the Global Best Cost is not updated, so the algorithm


Figure 5.5: Global Best Cost evolution
re-initialize the particle positions obtaining the end of the "stall".


Figure 5.6: Zoom in of Fig. 5.5

The values obtained from the PSO are

$$
\left\{\begin{array}{l}
V_{\eta}=8.357933214810436 \cdot 10^{-7}  \tag{5.27}\\
\tau=2.4891604948189 \cdot 10^{-2}
\end{array}\right.
$$

The values units become

$$
\left\{\begin{array}{l}
V_{y}=V_{\eta} \cdot \frac{L U}{T U}=0.0232 \mathrm{~m} / \mathrm{s}  \tag{5.28}\\
T=\tau \cdot T U=42.7198 \mathrm{~h}
\end{array}\right.
$$

### 5.4 Sun-2009 OS5 DRO design with Differential Corrections method

By starting from the values presented in 5.27, we apply the Differential Corrections method to design the right DRO. We will confront the results between DC method and PSO and we will evaluate if it is opportune to use only PSO to find the entire Sun-2009 OS5 DRO family. Using the Eq. (1.79), and adapting it to our case, we have


Indeed, in this case, compared with the halo design explained in Sec. 1.4.3, $\delta \xi_{0}$ can be neglected, as well as all the $\zeta$-components because DROs lie on the $\xi \eta$-plane. Recalling Eq. (1.81), and inserting it in the Eq.(5.29), we obtain

$$
\begin{equation*}
\delta \dot{\xi}_{f}=\Phi_{45} \delta \dot{\eta}_{0}-\ddot{\xi}_{f} \frac{\Phi_{25} \delta \dot{\eta}_{0}}{\delta \dot{\eta}_{f}} \tag{5.30}
\end{equation*}
$$

Solving for $\delta \dot{\eta}_{0}$, we have

$$
\begin{equation*}
\delta \dot{\eta}_{0}=\frac{\delta \dot{\xi}_{f}}{\Phi_{45}-\Phi_{25} \frac{\ddot{\xi}_{f}}{\delta \dot{\eta}_{f}}} \tag{5.31}
\end{equation*}
$$



Figure 5.7: DC flow chart

The revised initial condition $\dot{\eta}_{0}+\delta \dot{\eta}_{0}$ is used to begin the next iteration and this process is continued until $\dot{\xi}_{f}$ stays within some acceptable tolerance, set equal to $1 \cdot 10^{-10}$ or until a maximum number of iterations, set equal to 40 , is achieved. In Fig. 5.7 a flowchart of the differential correction algorithm to find DRO orbit with fixed $A_{\xi}$, is shown. The dimensionless half period, $\tau / 2$, is found, using the symmetry of DRO with respect to $\xi$-axis. Indeed the integration of the CR3BP equations of motion are stopped when the orbit reaches the value $\eta=0$.

We can note from the Fig. 5.8 as $\dot{\eta}_{0}$, changes only its $13^{\text {th }}$ decimal place. At the same time, Fig. 5.9 shows us as $\tau / 2$ changes only its $7^{\text {th }}$ decimal place. It means that we are computationally close to the solution. The relative error between the solution proposed by PSO and the solution proposed by DC method is $1.4769 \cdot 10^{-5}$ for $V_{\eta}$ and $6.0876 \cdot 10^{-4}$ for $\tau$. The DC method does not falls below the set tolerance in 40 iterations as we can see from the Fig. 5.10. Finally, Fig. 5.11 shows the DRO obtained from using the differential corrector method. We can note that the reference frame is shifted of a value equal to $1-\mu$, in the center of the asteroid. The plots have been reported in dimensional form for ease of reading. In addition it is to be noted that the asteroid shown in the figure is not 2009 OS5, but Psyche 16 with the diameter of 2009 OS5.
Psyche 16 is a fascinating asteroid that has garnered significant attention in the field of astronomy. Discovered in 1852 by the Italian astronomer Annibale de Gasparis, Psyche 16 is located in the main asteroid belt between Mars and Jupiter.


Figure 5.8: $\dot{\eta}_{0}$ evolution


Figure 5.9: $\tau / 2$ evolution


Figure 5.10: $\left|\dot{\xi}_{f}\right|$ evolution

What makes Psyche 16 particularly intriguing is its composition, as it is believed to be primarily made of metal, primarily nickel and iron. In fact, it is estimated that Psyche 16 could contain more metal than all the known asteroids in the asteroid belt combined. NASA is planning a mission called Psyche, set to launch on October 10,2023 , which aims to explore this intriguing asteroid up close ${ }^{6}$.

### 5.5 Sun-2009 OS5 DROs Family

Since the results obtained from the two different methods explained above are quite similar to each other, the Sun-2009 OS5 DROs family will be obtained using only the PSO.
The Sun-2009 OS5 DROs family is obtained with different $A_{\xi} \cdot L U$. They vary from 500 m to 2500 m every 250 m . In Tab. 5.4 are summarized all the main parameters linked with DROs family such as $A_{\xi}, V_{\eta}$ and $\tau$ and with the PSO algorithm such as the Best Global Cost of Eq.(5.20). While in Fig. 5.12 are shown all the DROs obtained from PSO.

[^5]

Figure 5.11: Sun-2009 OS5 DRO from different views

Table 5.4: DROs Family main parameters and PSO Best Global Cost

| $A_{\xi}$ | $V_{\eta}$ | $\tau$ | $G_{\text {best }}$ |
| :---: | :---: | :---: | :---: |
| $2.91 \mathrm{e}-09$ | $8.13891358563799 \mathrm{e}-07$ | 0.022854256836790 | $2.38 \mathrm{e}-09$ |
| $4.37 \mathrm{e}-09$ | $6.61020059810958 \mathrm{e}-07$ | 0.040855665395517 | $3.87 \mathrm{e}-09$ |
| $5.82 \mathrm{e}-09$ | $5.79476336590143 \mathrm{e}-07$ | 0.064311562605193 | $5.35 \mathrm{e}-09$ |
| $7.28 \mathrm{e}-09$ | $5.15967840571650 \mathrm{e}-07$ | 0.087341829308445 | $7.07 \mathrm{e}-09$ |
| $8.73 \mathrm{e}-09$ | $4.75350601136578 \mathrm{e}-07$ | 0.115831098076684 | $7.19 \mathrm{e}-09$ |
| $1.02 \mathrm{e}-08$ | $4.43528953094944 \mathrm{e}-07$ | 0.146573698802440 | $9.17 \mathrm{e}-09$ |
| $1.16 \mathrm{e}-08$ | $4.15041954569664 \mathrm{e}-07$ | 0.175706672013026 | $9.32 \mathrm{e}-09$ |
| $1.31 \mathrm{e}-08$ | $3.93213223717243 \mathrm{e}-07$ | 0.208111182644281 | $1.02 \mathrm{e}-08$ |
| $1.46 \mathrm{e}-08$ | $3.77522018290711 \mathrm{e}-07$ | 0.247002715276282 | $1.08 \mathrm{e}-08$ |

It is necessary to update the $\Delta V$ from the Earth to the asteroid 2009 OS5, $\Delta V_{\oplus \rightarrow A}$, because the velocity that the spacecraft should equalize is no more equal to $\vec{V}_{2009-O S 5}$. Considering that the asteroid's velocity, $\vec{V}_{2009-O S 5}$, is computed respect to the J2000 Ecliptic reference frame, $V_{\eta} \cdot \frac{L U}{T U}$ has been rotated according to that


Figure 5.12: Sun-2009 OS5 DRO Family
reference system. Recalling the concepts discussed in Sec. 4.2, the velocity that the spacecraft should have in J2000 Ecliptic reference frame for DRO insertion, here called $\vec{V}_{D R O}$, is equal to

$$
\begin{equation*}
\vec{V}_{D R O}=\vec{V}_{2009-O S 5}+\vec{V}_{\left.\eta\right|_{E R F}} \cdot \frac{L U}{T U} \tag{5.32}
\end{equation*}
$$

$\Delta V_{2 \oplus \rightarrow A}$ is computed, as norm of the vector difference between $\vec{V}_{D R O}$ and the velocity, $\vec{v}_{t I_{2}}$, at which the spacecraft arrives from a transfer orbit, started from a 400 km LEO and ended in a Sun-2009 OS5 DRO.

$$
\begin{equation*}
\Delta V_{2 \oplus \rightarrow A}=\left\|\vec{V}_{D R O}-\vec{v}_{t I_{2}}\right\| \tag{5.33}
\end{equation*}
$$

We note that for this analysis we have considered that the arrival position is the center of the asteroid and not the correct DRO position, since we are talking of hundreds of meters of difference on a scale of hundreds of billions of meters. All velocities aforementioned are shown in Fig. 5.13.


Figure 5.13: Main velocities of the first trajectory arc schematization
Applying Eq.(5.32) and Eq.(5.33) and considering $\Delta V_{1_{\oplus \rightarrow A}}$ equal to $3.4051 \mathrm{~km} / \mathrm{s}$, we obtain new $\Delta V_{\text {tot }{ }_{\oplus \rightarrow A}}$ similar to the previous computed, which was equal to $4.4800 \mathrm{~km} / \mathrm{s}$. They changes from each other in the order of $\mathrm{mm} / \mathrm{s}$, for this reason we have not reported the results, but we still conducted the study for completeness.

## Chapter 6

## Landing Trajectories Optimization on Asteroid

This chapter examines the process of optimizing landing trajectories from a Sunasteroid DRO using one impulsive maneuver. The spacecraft starts on a marginally stable parking orbit around the asteroid 2009-OS5, and the goal is to determine the required $\Delta V$ to achieve a specified landing location. Given the limited size and gravitational influence of the asteroid, the challenge lies in determining the optimal approach to safely land a spacecraft on its surface. To accomplish this, various factors need to be considered, such as the asteroid's shape, rotation, surface, gravitational field, and terrain characteristics. These elements greatly impact the planning and execution of a successful landing. Since this problem is extremely complex, we restrict our study to achieving a point on an imaginary sphere which contains the asteroid. After reaching that point, other accurate models can be considered. These models will consider all disturbance, and a three dimensional model of the spacecraft which will need multiple continuous impulses to landing safe on the asteroid.

### 6.1 PSO applied to landing trajectories on 2009OS5

Particle Swarm Optimization has been employed to iteratively refine the landing trajectories as proposed by Baraldi and Conte for Mars' moon, Phobos [19]. Choosing the parameters to optimize is a complex task, and there are various approaches to tackling the optimization. In the subsequent analysis, the parameters selected are: $\Delta V, \alpha, \vec{X}_{D R O}$ and TOF. The first one indicates the magnitude of the $\Delta V$ needed to achieve the given landing location, the second parameter $(\alpha)$ gives the
$\Delta V$ 's direction; the parameter $\vec{X}_{D R O}$ indicates a point on the parking orbit where the landing maneuver starts, while TOF indicates the landing trajectory time of flight. As shown in Fig. 6.1, $\alpha$ is the angle with respect the $\xi$-axis (which is collinear with the Sun-asteroid line) at which the $\Delta V$ is applied, while $\vec{X}_{D R O}$ are the coordinates $(\xi, \eta)$ given from one of the DRO of the family analyzed in the previous chapter.


Figure 6.1: Main PSO parameters schematization
We can set the variables bounds as shown in Tab. 6.1, where $V_{\eta}$ and $\tau$ are the values found in Chapter 5, for the specific parking DRO here considered $\left(A_{\xi} \cdot L U=2.5 \mathrm{~km}\right)$. Since the DRO has been discretized in $p$ points, the lower bound of $\vec{X}_{D R O}$ is the first point $\left(\vec{X}_{D R O}(1)\right)$, while the upper bound is the last point $\left(\vec{X}_{D R O}(p)\right)$. For the reasons stated above, we decided not to reach directly the

Table 6.1: Lower and Upper Bounds of the four decision variables

| $\#$ | Variable | Lower Bound | Upper Bound |
| :---: | :---: | :---: | :---: |
| 1 | $\Delta V$ | 0 | $V_{\eta}$ |
| 2 | $\alpha$ | 0 | $2 \pi$ |
| 3 | $\vec{X}_{D R O}$ | $\vec{X}_{D R O}(1)$ | $\vec{X}_{D R O}(p)$ |
| 4 | $T O F$ | $0.15 \cdot \tau$ | $0.8 \cdot \tau$ |

surface of the asteroid, but a point on an imaginary sphere of radius 3 times that
of the asteroid. The positions are placed on the $\xi \eta$-plane and they are distributed each $45^{\circ}$ as shown in Fig. 6.2.


Figure 6.2: Landing Positions

As explained in the previous chapter, we initialize the particle positions with the Matlab function unifrnd, which returns an array of random numbers chosen from the continuous uniform distribution over the interval between the set bounds. Therefore the first iteration begins and the new initial conditions for the Eq. (5.14) and Eq. (5.15) become

$$
\left\{\begin{array}{l}
\xi_{0}=\xi_{D R O}(i)  \tag{6.1}\\
\eta_{0}=\eta_{D R O}(i) \\
\dot{\xi}_{0}=\dot{\xi}_{D R O}(i)+\Delta V \cdot \cos \alpha \\
\dot{\eta}_{0}=\dot{\eta}_{D R O}(i)+\Delta V \cdot \sin \alpha
\end{array}\right.
$$

where $i$ indicates the $\mathrm{i}^{\text {th }}$ discretization point of DRO with $1<i<N$.
The cost function, $J$, to minimize is modeled as follows

$$
\begin{equation*}
J=\frac{\left\|\vec{r}_{\text {final }}-\vec{r}_{\text {landing }}\right\| \cdot L U}{0.005}+\frac{\Delta V}{V_{\eta}} \tag{6.2}
\end{equation*}
$$

where $\vec{r}_{\text {final }}$ indicates the final coordinates $\left(\xi_{f} \eta_{f}\right)$ at which the integration is stopped, while $\vec{r}_{\text {landing }}$ indicates the landing coordinates set previously. The latter
are transformed into kilometers and divided for 0.005 , because we want to have an error close to 5 m . In the last term we have the $\Delta V$ used for the landing maneuver compared with $V_{\eta}$. We want to minimize also the $\Delta V$, but we have to remember that the order of magnitude is $\mathrm{cm} / \mathrm{s}-\mathrm{mm} / \mathrm{s}$, so it does not influence the mission $\Delta V$-budget significantly. The cost function is built to approach infinity if the trajectory enters into the sphere shown in Fig. 6.2.

To optimize computational cost, the number of particles and the maximum number of iterations are set up as follows

$$
\begin{align*}
& N_{\text {particles }}=50  \tag{6.3}\\
& N_{\text {iterations }_{\text {max }}}=200
\end{align*}
$$

The procedure follows the procedures explained in Chapters 3 and 5. Therefore, after updating particles' positions, velocities and global best cost, we obtain the 8 landing trajectories with their respective $\Delta V$ vectors shown in Fig. 6.3 and Fig. 6.4. The white orbit is the parking DRO from which $\Delta V \mathrm{~s}$ are applied.


Figure 6.3: Landing Trajectories and $\Delta V$ Vectors


Figure 6.4: Zoomed version of Fig. 6.3

Fig. 6.5 summarizes the evolutions of the global best bost as iterations change for each landing location. Note that $0^{\circ}$ indicates the point placed at the maximum $x$, and the other points are obtained by rotating it counterclockwise by $45^{\circ}$. In addition, the color of each case of the plot of the Global Best Cost evolution is the same as the landing trajectory. We can see as in all cases, $J$ reaches a value less than or about equal to 1 . It means that the final point of the landing trajectory is closer than $5 m$ respect of the arrival location and that the $\Delta V$ is less than $V_{\eta}$. Tab. 6.2 summarizes all the main parameters useful for finding the landing trajectory. In this case, the angle $\theta$ indicates the arrival point on the imaginary sphere. As we expected, $\Delta V \mathrm{~s}$ are on the order of a few $\mathrm{mm} / \mathrm{s} . \vec{X}_{D R O}$ indicates the starting position in meter in a reference frame shifted to the center of the asteroid. The landing trajectory TOF is between 2 and 4 day, which are acceptable times, because the total waiting time from the insertion into parking DRO to departure for Mars is equal to 30 days for the asteroid 2009-OS5. This means that a spacecraft would have up to 20 days to perform all necessary ISRU operations while at the asteroids.


Figure 6.5: Global Best Cost evolution

Table 6.2: Landing maneuver main parameters and PSO Best Global Cost ( $J$ )

| $\theta$ | $\Delta V[\mathrm{~mm} / \mathrm{s}]$ | $\alpha$ | $\vec{X}_{D R O}[\mathrm{~m}, \mathrm{~m}]$ | TOF $[\mathrm{day}]$ | $J$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0^{\circ}$ | 7.23 | $292.78^{\circ}$ | $[-2493.50,181.25]$ | 2.70 | 0.69 |
| $45^{\circ}$ | 6.55 | $292.22^{\circ}$ | $[-2358.89,-839.35]$ | 3.40 | 0.62 |
| $90^{\circ}$ | 7.63 | $282.29^{\circ}$ | $[-2500.34,25.31]$ | 2.88 | 0.73 |
| $135^{\circ}$ | 8.93 | $285.13^{\circ}$ | $[-2500.00,0]$ | 2.65 | 0.85 |
| $180^{\circ}$ | 7.38 | $108.97^{\circ}$ | $[2481.19,-5193.30]$ | 2.65 | 1.08 |
| $225^{\circ}$ | 7.84 | $69.52^{\circ}$ | $[1840.60,-1743.62]$ | 2.65 | 0.75 |
| $270^{\circ}$ | 6.99 | $149.16^{\circ}$ | $[1912.03,1660.23]$ | 2.92 | 0.67 |
| $315^{\circ}$ | 6.59 | $203.94^{\circ}$ | $[-632.32,2438.09]$ | 3.23 | 0.63 |

To successfully land on an asteroid, an autonomous landing navigation and guidance scheme could be considered [27]. It involves planning desired descent landing trajectories while considering initial and terminal constraints, and designing guidance control laws to track the reference descent trajectory [28].

## Conclusions

This thesis has explored the potential of utilizing asteroids as refueling points for Earth-Mars missions to minimize the $\Delta V$ requirements and overall cost. By implementing In-Situ Resource Utilization (ISRU) techniques, the spacecraft can extract and utilize resources from asteroids, such as water for propellant production or direct consumption (e.g. drinking).

The study focused on trajectories from Earth to candidate asteroids and from there to Mars. The objective was to minimize the total $\Delta V$ from Earth to the asteroid and the time of flight from Earth to Mars, while maximizing the number of resupplies on the asteroid. A double arc trajectory was investigated, involving the interception of a candidate asteroid, insertion into a Sun-asteroid Distant Retrograde Orbit (DRO), a landing trajectory on the asteroid, and then departure towards Mars using the propellant obtained from the asteroid.

The dynamics of Sun-asteroid systems were modeled using the Circular Restricted Three-Body Problem, enabling the computation of periodic orbits such as DROs. Particle Swarm Optimization was employed to determine the initial conditions of the proposed DRO, and PSO was also used to compute optimal landing trajectories on the asteroid.

The results indicate that utilizing the asteroid 2009-OS5 for refueling can lead to a $27 \%$ reduction in Earth-Asteroid $\Delta V(4.4800 \mathrm{~km} / \mathrm{s})$ compared to the minimum direct Earth-Mars $\Delta V$ possible ( $6.1696 \mathrm{~km} / \mathrm{s}$ ). The estimated number of refueling opportunities on this asteroid is approximately 83 times, making it a promising candidate for future missions. Consider that in the case of the asteroid 2009 OS5, the 83 refueling opportunities should not be seen as 83 distinct missions, but rather as a few missions where fleets of spacecraft refuel on the asteroid. This is because the alignment of Earth-Asteroid-Mars, which allows for significant $\Delta V$ savings, may occur only once every decade, making the planning of Earth-Mars missions complex. However, there might be asteroids with periodic alignments that incur slightly higher $\Delta V$ costs, which need to be taken into consideration. In any
case, the study suggests the existence of numerous asteroids with potential $\Delta V$ savings. As a result, one possible solution for future Earth-Mars missions could involve utilizing all the available resources on a single asteroid over a short series of missions, and subsequently shifting to another asteroid for future missions.

Furthermore, this research delved into the optimization of landing trajectories on the asteroid's surface using impulsive maneuvers. While the study focused on reaching a point on an imaginary sphere encompassing the asteroid, future work can explore more accurate models considering disturbances, three-dimensional spacecraft model, the asteroid's shape, rotation, surface, gravitational field, and terrain characteristics, which would require multiple continuous impulses for a safe landing.

Overall, this thesis demonstrates the feasibility and potential benefits of utilizing asteroids as refueling points for Earth-Mars missions. By leveraging in-situ resources and optimizing trajectories, significant reductions in launch mass and mission costs can be achieved, bringing us closer to the realization of human colonization of Mars.

To estimate the reduction of mission costs, we introduce some concepts from fondamental rocketry. In the chemical propulsion, the relevant masses are: the payload mass, $m_{u}$, the propellant mass, $m_{p}$, and the structural mass, $m_{s}$. So we have the initial mass of the rocket as follows

$$
\begin{equation*}
m_{0}=m_{u}+m_{p}+m_{s} \tag{6.4}
\end{equation*}
$$

where $m_{0}$ is the total initial mass. Considering that all the propellant is used, the final mass, $m_{f}$, becomes

$$
\begin{equation*}
m_{f}=m_{0}-m_{p}=m_{u}+m_{s} \tag{6.5}
\end{equation*}
$$

We introduce the payload fraction, $\lambda$

$$
\begin{equation*}
\lambda=\frac{m_{u}}{m_{0}} \tag{6.6}
\end{equation*}
$$

and the structural fraction

$$
\begin{equation*}
\epsilon=\frac{m_{s}}{m_{s}+m_{p}} \tag{6.7}
\end{equation*}
$$

Recalling Tsiolkovsky's rocket equation, we have

$$
\begin{equation*}
\Delta V=c \cdot \ln \left(\frac{m_{0}}{m_{f}}\right)=c \cdot \ln \left(\frac{m_{u}+m_{p}+m_{s}}{m_{u}+m_{s}}\right)=-c \cdot \ln [\lambda+\epsilon(1-\lambda)] \tag{6.8}
\end{equation*}
$$

where $c$ is the effective exhaust velocity. Solving for $\lambda$, we have

$$
\begin{equation*}
\lambda=\frac{e^{-\frac{\Delta V}{c}}-\epsilon}{1-\epsilon} \tag{6.9}
\end{equation*}
$$

In multistage rocket with $N$ stages, and with the same $c$ and $\epsilon$ for each stage, Eq. (6.9) becomes

$$
\begin{equation*}
\lambda_{t o t}=\left[\frac{e^{-\frac{\Delta V_{\text {tot }}}{N c}}-\epsilon}{1-\epsilon}\right]^{N} \tag{6.10}
\end{equation*}
$$

where $\lambda_{t o t}=\frac{\left(m_{u}\right)_{N}}{\left(m_{0}\right)_{1}}$.
Considering a rocket with $N=3$ stages, $\Delta V$ to reach a 400 km LEO equal to 10 $\mathrm{km} / \mathrm{s}$, the structural fraction $\epsilon=0.1$ and the effective exhaust velocity $c=4.5$ $\mathrm{km} / \mathrm{s}$ we have that in case of direct Earth-Mars transfer $\left(\Delta V_{m i n, \oplus \rightarrow \delta^{*}}=6.1696\right.$ $\mathrm{km} / \mathrm{s}$ )

$$
\begin{equation*}
\lambda_{t o t}=0.0113 \tag{6.11}
\end{equation*}
$$

It means that the payload mass is $1.13 \%$ of the structural and propellant mass of the first stage.

In case of Earth-Mars transfers via asteroid 2009-OS5 $\left(\Delta V_{\min , \oplus \rightarrow \delta^{\circ}}=4.4800 \mathrm{~km} / \mathrm{s}\right)$ we have

$$
\begin{equation*}
\lambda_{t o t}=0.0195 \tag{6.12}
\end{equation*}
$$

It means that the payload mass is $1.95 \%$ of the structural and propellant mass of the first stage. Therefore, we can send the same rocket configuration to Mars with 1.73 times the payload mass than in direct Earth-Mars transfer case, with obvious economic advantages related to launch costs. On the other hand, it is necessary to establish an ISRU station on the asteroid, or to develop technology that will allow the spacecraft to do resource extraction on its own.

By further exploring and refining these concepts, we can pave the way for successful and cost-effective human missions to Mars, opening up new possibilities for space exploration and colonization.

### 6.2 Future Developments

Building upon the findings and methodologies presented in this thesis, there are several areas of research that hold promise for further exploration and advancement in utilizing asteroids as refueling points for Earth-Mars missions.

To gain a more comprehensive understanding of the dynamics involved in utilizing asteroids as refueling points, future studies should consider the influence of perturbations, such as gravitational interactions with other celestial bodies, solar radiation pressure, and non-uniform mass distributions. By incorporating these factors into modeling frameworks, more accurate and realistic models can be developed to analyze long-term dynamics, stability, and trajectory planning under complex celestial interactions.

Further improvement in mission planning and resource utilization can be achieved through advanced asteroid characterization. Thorough investigations of shape, rotation, surface properties, gravitational fields, and terrain characteristics will enable precise landing trajectory planning, landing site selection, and resource extraction operations. Utilizing high-resolution imaging, radar mapping, and insitu measurements will provide valuable insights into the geological composition, topography, and subsurface structures of asteroids.

Future research should explore the development and optimization of techniques for extracting water, metals, minerals, gases, and other valuable substances from asteroids. Advancements in mining technologies, refining processes, and resource utilization strategies tailored to the unique properties of different asteroids will enhance the self-sustainability of space missions.

In-situ manufacturing and utilization of materials obtained from asteroids offer significant benefits. Future work should focus on developing technologies for producing components, structures, and consumables directly in space. Additive manufacturing, 3D printing, and regenerative life support systems can reduce reliance on Earth-based resupply missions and enhance mission sustainability.

Advancements in guidance, navigation, and control (GNC) are crucial for safe and precise operations in proximity to asteroids. Future efforts should explore advanced algorithms for autonomous navigation, hazard avoidance, and spacecraft rendezvous and docking with asteroids. Incorporating machine learning, computer vision, and sensor fusion approaches can improve the reliability and adaptability of GNC systems in challenging and dynamic environments.

By addressing these future research directions, we can unlock the full potential of utilizing asteroids as refueling points for Earth-Mars missions. Advancements in modeling accuracy, resource extraction techniques, in-situ manufacturing, and GNC systems will contribute to reducing mission costs, enhancing mission sustainability, and paving the way for long-term human presence and colonization of Mars and beyond. The journey towards a new era of space exploration and settlement is filled
with opportunities for innovation and collaboration among space agencies, research institutions, and commercial entities. Together, we can explore and leverage the vast resources available in our solar system, driving humanity towards a future of interplanetary exploration and habitation.

Fig. 6.6 shows a visual concept of ISRU on asteroids product by Aitubo, an artificial intelligence art generator. To generate the figure we use the prompt "Extracting minerals on an asteroid to refuel spacecraft in human space missions".


Figure 6.6: ISRU on asteroid

## Appendix A

## Porkchop Plots for Earth to each Candidate Asteroids

This appendix presents a compilation of all 94 Porkchop Plots Earth-asteroid missions within a specific range of time of flight and departure dates. The catalog encompasses a period of 10 years, starting from January 1st, 2035, and includes Earth-asteroid trajectories with TOF ranging from 51 to 300 days.


Figure A.1: Porkchop Plot from Earth to Asteroid 2000 EA14


Figure A.2: Porkchop Plot from Earth to Asteroid 1993 KA


Figure A.3: Porkchop Plot from Earth Figure A.4: Porkchop Plot from Earth to Asteroid 2005 LC

to Asteroid 2006 CL9


Figure A.5: Porkchop Plot from Earth Figure A.6: Porkchop Plot from Earth to Asteroid 2006 DQ14

to Asteroid 2006 UQ216


Figure A.7: Porkchop Plot from Earth Figure A.8: Porkchop Plot from Earth to Asteroid 2007 HL4


Figure A.9: Porkchop Plot from Earth Figure A.10: Porkchop Plot from Earth to Asteroid 2008 HU4

to Asteroid 2009 BD


Figure A.11: Porkchop Plot from Earth to Asteroid 2009 FH


Figure A.12: Porkchop Plot from Earth to Asteroid 2009 OS5


Figure A.13: Porkchop Plot from Earth to Asteroid 2009 SW171
igure A.14: Porkchop Plot from Earth to Asteroid 2010 DJ


Figure A.15: Porkchop Plot from Earth Figure A.16: Porkchop Plot from Earth to Asteroid 2010 RF12
to Asteroid 2011 AA37


Figure A.17: Porkchop Plot from Earth Figure A.18: Porkchop Plot from Earth to Asteroid 2011 CY7

to Asteroid 2012 BB14


Figure A.19: Porkchop Plot from Earth to Asteroid 2012 VB37


Figure A.21: Porkchop Plot from Earth Figure A.22: Porkchop Plot from Earth to Asteroid 2013 HP11

to Asteroid 2013 SP19


Figure A.23: Porkchop Plot from Earth to Asteroid 2013 UX2


Figure A.25: Porkchop Plot from Earth to Asteroid 2014 LJ


Figure A.27: Porkchop Plot from Earth to Asteroid 2014 WA366
to Asteroid 2015 EZ6


Figure A.29: Porkchop Plot from Earth Figure A.30: Porkchop Plot from Earth to Asteroid 2015 HC1

to Asteroid 2015 VC 2


Figure A.31: Porkchop Plot from Earth to Asteroid 2015 XX128

Figure A.32: Porkchop Plot from Earth to Asteroid 2015 XD169


Figure A.33: Porkchop Plot from Earth Figure A.34: Porkchop Plot from Earth to Asteroid 2015 XA352
to Asteroid 2016 CF137


Figure A.35: Porkchop Plot from Earth Figure A.36: Porkchop Plot from Earth to Asteroid 2016 EP84

to Asteroid 2016 GL222


Figure A.37: Porkchop Plot from Earth to Asteroid 2017 BF29
igure A.38: Porkchop Plot from Earth to Asteroid 2017 BG30


Figure A.39: Porkchop Plot from Earth Figure A.40: Porkchop Plot from Earth to Asteroid 2017 CP1
to Asteroid 2017 FJ3


Figure A.41: Porkchop Plot from Earth to Asteroid 2017 FW90


Figure A.43: Porkchop Plot from Earth to Asteroid 2017 RL16


Figure A.42: Porkchop Plot from Earth to Asteroid 2017 LD

Figure A.44: Porkchop Plot from Earth to Asteroid 2017 UM52


Figure A.45: Porkchop Plot from Earth Figure A.46: Porkchop Plot from Earth to Asteroid 2017 WM13

to Asteroid 2017 YC1


Figure A.47: Porkchop Plot from Earth to Asteroid 2017 YW3


Figure A.49: Porkchop Plot from Earth
to Asteroid 2018 RR1


Figure A.48: Porkchop Plot from Earth to Asteroid 2018 LQ2

Figure A.50: Porkchop Plot from Earth to Asteroid 2019 KJ2


Figure A.51: Porkchop Plot from Earth Figure A.52: Porkchop Plot from Earth to Asteroid 2019 LV
to Asteroid 2019 PY


Figure A.53: Porkchop Plot from Earth to Asteroid 2019 PO1

to Asteroid 2019 SU3


Figure A.55: Porkchop Plot from Earth to Asteroid 2019 UO1
igure A.56: Porkchop Plot from Earth to Asteroid 2019 UB4


Figure A.57: Porkchop Plot from Earth to Asteroid 2019 XV

Fon A.58: Por BK

to Asteroid 2020 BK


Figure A.59: Porkchop Plot from Earth to Asteroid 2020 BV2


Figure A.60: Porkchop Plot from Earth

Figure A.61: Porkchop Plot from Earth to Asteroid 2020 DE2

to Asteroid 2020 CF2

Figure A.62: Porkchop Plot from Earth to Asteroid 2020 HN


Figure A.63: Porkchop Plot from Earth Figure A.64: Porkchop Plot from Earth to Asteroid 2020 HQ4

to Asteroid 2020 HL6


Figure A.65: Porkchop Plot from Earth to Asteroid 2020 OE2


Figure A.67: Porkchop Plot from Earth to Asteroid 2020 PP1


Figure A.66: Porkchop Plot from Earth to Asteroid 2020 OK5

Figure A.68: Porkchop Plot from Earth to Asteroid 2020 RT3


Figure A.69: Porkchop Plot from Earth Figure A.70: Porkchop Plot from Earth to Asteroid 2020 SM2

to Asteroid 2020 SH6


Figure A.71: Porkchop Plot from Earth to Asteroid 2020 VV


Figure A.72: Porkchop Plot from Earth
to Asteroid 2020 WY


Figure A.73: Porkchop Plot from Earth Figure A.74: Porkchop Plot from Earth to Asteroid 2020 WQ3


Figure A.75: Porkchop Plot from Earth to Asteroid 2021 CE

to Asteroid 2021 EN5


Figure A.77: Porkchop Plot from Earth to Asteroid 2021 GB8
hop Plot from Earth


Figure A.79: Porkchop Plot from Earth
to Asteroid 2021 JY5
A.80: Porkchop Plot from Earth to Asteroid 2021 NV8


Figure A.81: Porkchop Plot from Earth Figure A.82: Porkchop Plot from Earth to Asteroid 2021 RP2

to Asteroid 2021 VZ8


Figure A.83: Porkchop Plot from Earth to Asteroid 2022 BT

to Asteroid 2022 BX5


Figure A.85: Porkchop Plot from Earth to Asteroid 2022 KL6
A.86: Porkchop Plot from Earth to Asteroid 2022 NX1


Figure A.87: Porkchop Plot from Earth Figure A.88: Porkchop Plot from Earth to Asteroid 2022 RF1
to Asteroid 2022 RS1


Figure A.89: Porkchop Plot from Earth to Asteroid 2022 SZ2

to Asteroid 2022 SN21


Figure A.91: Porkchop Plot from Earth to Asteroid 2022 UA5
A.92: Porkchop Plot from Earth to Asteroid 2022 WS8


Figure A.93: Porkchop Plot from Earth to Asteroid 1999 CG9

Figure A.94: Porkchop Plot from Earth to Asteroid 2005 ER95

If some porkchop plots are completely black, it means that no solutions with a $\Delta V$ less than $11 \mathrm{~km} / \mathrm{s}$ was found.

## Appendix B

## Porkchop Plots for each Candidate Asteroids to Mars

This appendix presents a collection of all 94 Porkchop Plots asteroid-Mars trajectories within a specific range of flight time and departure dates. The catalog covers a 30 -day period, starting from the day of arrival on the asteroid, and includes asteroid-Mars trajectories with TOFs between 51 and 300 days.


Figure B.1: Porkchop Plot from Aster- Figure B.2: Porkchop Plot from Asteroid 2000 EA14 to Mars oid 1993 KA to Mars


Figure B.3: Porkchop Plot from Aster- Figure B.4: Porkchop Plot from Asteroid 2005 LC to Mars oid 2006 CL9 to Mars


Figure B.5: Porkchop Plot from Aster- Figure B.6: Porkchop Plot from Asteroid 2006 DQ14 to Mars

oid 2006 UQ216 to Mars


Figure B.7: Porkchop Plot from Aster- Figure B.8: Porkchop Plot from Asteroid 2007 HL4 to Mars oid 2008 CM74 to Mars


Figure B.9: Porkchop Plot from Aster- Figure B.10: Porkchop Plot from Asoid 2008 HU4 to Mars

teroid 2009 BD to Mars


Figure B.11: Porkchop Plot from As- Figure B.12: Porkchop Plot from Asteroid 2009 FH to Mars
teroid 2009 OS5 to Mars


Figure B.13: Porkchop Plot from As- Figure B.14: Porkchop Plot from Asteroid 2009 SW171 to Mars teroid 2010 DJ to Mars


Figure B.15: Porkchop Plot from As- Figure B.16: Porkchop Plot from Asteroid 2010 RF12 to Mars

teroid 2011 AA37 to Mars


Figure B.17: Porkchop Plot from As- Figure B.18: Porkchop Plot from Asteroid 2011 CY7 to Mars


Figure B.19: Porkchop Plot from As- Figure B.20: Porkchop Plot from Asteroid 2012 VB37 to Mars teroid 2012 XM55 to Mars


Figure B.21: Porkchop Plot from As- Figure B.22: Porkchop Plot from Asteroid 2013 HP11 to Mars


Figure B.23: Porkchop Plot from As- Figure B.24: Porkchop Plot from Asteroid 2013 UX2 to Mars


Figure B.25: Porkchop Plot from As- Figure B.26: Porkchop Plot from Asteroid 2014 LJ to Mars teroid 2014 WX202 to Mars


Figure B.27: Porkchop Plot from As- Figure B.28: Porkchop Plot from Asteroid 2014 WA366 to Mars
teroid 2015 EZ6 to Mars


Figure B.29: Porkchop Plot from As- Figure B.30: Porkchop Plot from Asteroid 2015 HC 1 to Mars


Figure B.31: Porkchop Plot from As- Figure B.32: Porkchop Plot from Asteroid 2015 XX128 to Mars teroid 2015 XD169 to Mars


Figure B.33: Porkchop Plot from As- Figure B.34: Porkchop Plot from Asteroid 2015 XA352 to Mars teroid 2016 CF137 to Mars


Figure B.35: Porkchop Plot from As- Figure B.36: Porkchop Plot from Asteroid 2016 EP84 to Mars
teroid 2016 GL222 to Mars


Figure B.37: Porkchop Plot from As- Figure B.38: Porkchop Plot from Asteroid 2017 BF29 to Mars teroid 2017 BG30 to Mars


Figure B.39: Porkchop Plot from As- Figure B.40: Porkchop Plot from Asteroid 2017 CP1 to Mars
teroid 2017 FJ3 to Mars


Figure B.41: Porkchop Plot from As- Figure B.42: Porkchop Plot from Asteroid 2017 FW90 to Mars


Figure B.43: Porkchop Plot from As- Figure B.44: Porkchop Plot from Asteroid 2017 RL16 to Mars
teroid 2017 UM52 to Mars


Figure B.45: Porkchop Plot from As- Figure B.46: Porkchop Plot from Asteroid 2017 WM13 to Mars
teroid 2017 YC1 to Mars


Figure B.47: Porkchop Plot from As- Figure B.48: Porkchop Plot from Asteroid 2017 YW3 to Mars


Figure B.49: Porkchop Plot from As- Figure B.50: Porkchop Plot from Asteroid 2018 RR1 to Mars teroid 2019 KJ2 to Mars


Figure B.51: Porkchop Plot from As- Figure B.52: Porkchop Plot from Asteroid 2019 LV to Mars

teroid 2019 PY to Mars


Figure B.53: Porkchop Plot from As- Figure B.54: Porkchop Plot from Asteroid 2019 PO1 to Mars


Figure B.55: Porkchop Plot from As- Figure B.56: Porkchop Plot from Asteroid 2019 UO1 to Mars teroid 2019 UB4 to Mars


Figure B.57: Porkchop Plot from As- Figure B.58: Porkchop Plot from Asteroid 2019 XV to Mars
teroid 2020 BK to Mars


Figure B.59: Porkchop Plot from As- Figure B.60: Porkchop Plot from Asteroid 2020 BV2 to Mars


Figure B.61: Porkchop Plot from As- Figure B.62: Porkchop Plot from Asteroid 2020 DE2 to Mars
teroid 2020 HN to Mars


Figure B.63: Porkchop Plot from As- Figure B.64: Porkchop Plot from Asteroid 2020 HQ4 to Mars

teroid 2020 HL6 to Mars


Figure B.65: Porkchop Plot from As- Figure B.66: Porkchop Plot from Asteroid 2020 OE2 to Mars


Figure B.67: Porkchop Plot from As- Figure B.68: Porkchop Plot from Asteroid 2020 PP1 to Mars teroid 2020 RT3 to Mars


Figure B.69: Porkchop Plot from As- Figure B.70: Porkchop Plot from Asteroid 2020 SM2 to Mars

teroid 2020 SH6 to Mars


Figure B.71: Porkchop Plot from As- Figure B.72: Porkchop Plot from Asteroid 2020 VV to Mars


Figure B.73: Porkchop Plot from As- Figure B.74: Porkchop Plot from Asteroid 2020 WQ3 to Mars teroid 2020 XJ4 to Mars


Figure B.75: Porkchop Plot from As- Figure B.76: Porkchop Plot from Asteroid 2021 CE to Mars
teroid 2021 EN5 to Mars


Figure B.77: Porkchop Plot from As- Figure B.78: Porkchop Plot from Asteroid 2021 GB8 to Mars


Figure B.79: Porkchop Plot from As- Figure B.80: Porkchop Plot from Asteroid 2021 JY5 to Mars teroid 2021 NV8 to Mars


Figure B.81: Porkchop Plot from As- Figure B.82: Porkchop Plot from Asteroid 2021 RP2 to Mars

teroid 2021 VZ8 to Mars


Figure B.83: Porkchop Plot from As- Figure B.84: Porkchop Plot from Asteroid 2022 BT to Mars


Figure B.85: Porkchop Plot from As- Figure B.86: Porkchop Plot from Asteroid 2022 KL6 to Mars teroid 2022 NX1 to Mars


Figure B.87: Porkchop Plot from As- Figure B.88: Porkchop Plot from Asteroid 2022 RF1 to Mars

teroid 2022 RS1 to Mars


Figure B.89: Porkchop Plot from As- Figure B.90: Porkchop Plot from Asteroid 2022 SZ2 to Mars


Figure B.91: Porkchop Plot from As- Figure B.92: Porkchop Plot from Asteroid 2022 UA5 to Mars teroid 2022 WS8 to Mars


Figure B.93: Porkchop Plot from As- Figure B.94: Porkchop Plot from Asteroid 1999 CG9 to Mars teroid 2005 ER95 to Mars

If some porkchop plots are completely black, it means that no solutions with a $\Delta V$ less than $14 \mathrm{~km} / \mathrm{s}$ was found.

## Bibliography

[1] Isaac Newton, Daniel Bernoulli, Colin MacLaurin, and Leonhard Euler. Philosophiae naturalis principia mathematica. excudit G. Brookman; impensis TT et J. Tegg, Londini, 1833 (cit. on p. 2).
[2] Victor G. Szebehely and F. T. Geyling. «Theory of Orbits: The Restricted Problem of Three Bodies». In: 1967 (cit. on p. 13).
[3] Julia L Bell, Martin W Lo, and Roby S Wilson. «Genesis Trajectory Design». In: (2000) (cit. on p. 13).
[4] Davide Conte. Semi-Analytical Solutions for Proximity Operations in the Circular Restricted Three-Body Problem. The Pennsylvania State University, 2019 (cit. on p. 16).
[5] D. L Richardson. «Analytic construction of periodic orbits about the collinear points». In: Celestial Mechanics (1980) (cit. on p. 17).
[6] David B. Spencer and Davide Conte. Interplanetary Astrodynamics. CRC Press, 2023 (cit. on p. 23).
[7] J.L Lagrange. Sur le mouvement des noeuds des orbites planétaires. Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin, 1778 (cit. on pp. 32, 37).
[8] Richard H. Battin. «An introduction to the mathematics and methods of astrodynamics». In: 1987 (cit. on pp. 32, 42).
[9] Johann Heinrich Lambert. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques. Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin, 1761, pp. 265-322 (cit. on p. 32).
[10] Charles Darwin. On the origin of species, 1859. Routledge, 2004 (cit. on p. 48).
[11] D. Karaboga. «Artificial bee colony algorithm». In: Scholarpedia 5.3 (2010). revision \#91003, p. 6915. DOI: 10.4249/scholarpedia. 6915 (cit. on p. 49).
[12] Matteo Ceriotti and Massimiliano Vasile. «MGA trajectory planning with an ACO-inspired algorithm». In: Acta Astronautica 67.9 (2010), pp. 1202-1217. ISSN: 0094-5765. DOI: https://doi.org/10.1016/j. actaastro. 2010. 07.001. URL: https://www.sciencedirect.com/science/article/pii/ S0094576510002468 (cit. on p. 50).
[13] Ying Tan and Yuanchun Zhu. «Fireworks algorithm for optimization». In: Advances in Swarm Intelligence: First International Conference, ICSI 2010, Beijing, China, June 12-15, 2010, Proceedings, Part I 1. Springer. 2010, pp. 355-364 (cit. on p. 50).
[14] Guanwei He, Davide Conte, Robert Melton, and David Spencer. «Fireworks Algorithm Applied to Trajectory Design for Earth to Lunar Halo Orbits». In: Journal of Spacecraft and Rockets 57 (Jan. 2020), pp. 1-12. DOI: 10.2514/1. A34469 (cit. on p. 50).
[15] Russell Eberhart and James Kennedy. «A new optimizer using particle swarm theory». In: MHS'95. Proceedings of the sixth international symposium on micro machine and human science. Ieee. 1995, pp. 39-43 (cit. on p. 51).
[16] J. Kennedy and R. Eberhart. «Particle swarm optimization». In: Proceedings of ICNN'95 - International Conference on Neural Networks. Vol. 4. 1995, 1942-1948 vol.4. DOI: 10.1109/ICNN. 1995.488968 (cit. on p. 51).
[17] R. Mendes, J. Kennedy, and J. Neves. «The fully informed particle swarm: simpler, maybe better». In: IEEE Transactions on Evolutionary Computation 8.3 (2004), pp. 204-210. DOI: 10.1109/TEVC. 2004.826074 (cit. on p. 51).
[18] Tetsuyuki Takahama and Setsuko Sakai. «Solving Difficult Constrained Optimization Problems by the $\epsilon$ Constrained Differential Evolution with GradientBased Mutation». In: Constraint-Handling in Evolutionary Optimization. Ed. by Efrén Mezura-Montes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 51-72. ISBN: 978-3-642-00619-7. DOI: 10.1007/978-3-642-00619-7_3. URL: https://doi.org/10.1007/978-3-642-00619-7_3 (cit. on p. 53).
[19] Vittorio Baraldi and Davide Conte. «Trajectory Optimization and Control Applied to Landing Maneuvers on Phobos from Mars-Phobos Distant Retrograde Orbits». In: AAS/AIAA Astrodynamics Specialist Conference (2021) (cit. on pp. 56, 100).
[20] Ziliang Jin and Maitrayee Bose. «New clues to ancient water on Itokawa». In: Science Advances 5.5 (2019), eaav8106. DOI: $10.1126 /$ sciadv. aav8106. eprint: https://www.science.org/doi/pdf/10.1126/sciadv. aav8106. URL: https://www.science.org/doi/abs/10.1126/sciadv. aav8106 (cit. on p. 56).
[21] N.A. Moskovitz, L. Wasserman, B. Burt, R. Schottland, E. Bowell, M. Bailen, and M. Granvik. «The astorb database at Lowell Observatory». In: Astronomy and Computing 41 (2022), p. 100661. ISSN: 2213-1337. DOI: https://doi. org/10.1016/j.ascom.2022.100661. URL: https://www.sciencedirect. com/science/article/pii/S2213133722000750 (cit. on p. 56).
[22] Alan W. Harris and Alan W. Harris. «On the Revision of Radiometric Albedos and Diameters of Asteroids». In: Icarus 126.2 (1997), pp. 450-454. ISSN: 00191035. DOI: https://doi.org/10.1006/icar.1996.5664. URL: https: //www.sciencedirect.com/science/article/pii/S001910359695664X (cit. on p. 81).
[23] W.R. Van Schmus and J.A. Wood. «A chemical-petrologic classification for the chondritic meteorites». In: Geochimica et Cosmochimica Acta 31.5 (1967), pp. 747-765. ISSN: 0016-7037. DOI: https://doi.org/10.1016/S00167037(67) 80030-9. URL: https://www. sciencedirect.com/science / article/pii/S0016703767800309 (cit. on p. 82).
[24] H.B. Wiik. «The chemical composition of some stony meteorites». In: Geochimica et Cosmochimica Acta 9.5 (1956), pp. 279-289. ISSN: 0016-7037. Doi: https://doi.org/10.1016/0016-7037(56) 90028-X. URL: https: //www. sciencedirect. com/science/article/pii/001670375690028X (cit. on p. 82).
[25] Collin J. Bezrouk and Jeffery Parker. «Long Duration Stability of Distant Retrograde Orbits». In: AIAA/AAS Astrodynamics Specialist Conference. Doi: 10.2514/6.2014-4424. eprint: https://arc.aiaa.org/doi/pdf/10.2514/ 6.2014-4424. URL: https://arc.aiaa.org/doi/abs/10.2514/6.20144424 (cit. on p. 86).
[26] Xiaohui Hu, Russell Eberhart, et al. «Solving constrained nonlinear optimization problems with particle swarm optimization». In: Proceedings of the sixth world multiconference on systemics, cybernetics and informatics. Vol. 5. Citeseer. 2002, pp. 203-206 (cit. on p. 89).
[27] Shuang Li, Pingyuan Cui, and Hutao Cui. «Autonomous navigation and guidance for landing on asteroids». In: Aerospace Science and Technology 10.3 (2006), pp. 239-247. ISSN: 1270-9638. DOI: https://doi.org/10.1016/ j.ast.2005.12.003. URL: https://www.sciencedirect.com/science/ article/pii/S1270963805001690 (cit. on p. 106).
[28] Huang Xiangyu, Cui Hutao, and Cui Pingyuan. «An autonomous optical navigation and guidance for soft landing on asteroids». In: Acta Astronautica 54.10 (2004), pp. 763-771. ISSN: 0094-5765. DOI: https://doi . org/ 10 . 1016/j.actaastro.2003.09.001. URL: https://www.sciencedirect.com/ science/article/pii/S0094576503003187 (cit. on p. 106).


[^0]:    ${ }^{1}$ According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet.

[^1]:    ${ }^{2}$ https://asteroid.lowell.edu/main/astorb/

[^2]:    ${ }^{1}$ https://ssd.jpl.nasa.gov/tools/sbdb_query.html

[^3]:    ${ }^{2}$ https://cneos.jpl.nasa.gov/glossary/h.html
    ${ }^{3}$ https://cneos.jpl.nasa.gov/glossary/albedo.html

[^4]:    ${ }^{4}$ https://www.spacex.com/vehicles/starship/
    ${ }^{5}$ https://www.faa.gov/space/stakeholder_engagement/spacex_starship/media/ Appendix_G_Exhaust_Plume_Calculations.pdf

[^5]:    ${ }^{6}$ https://www.nasa.gov/mission_pages/psyche/overview/index.html

