

### Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Gestionale A.a. 2022/2023 Sessione di Laurea di luglio 2023

# IMPRENDITORIALITA' LOCALE NELL'ERA DELLA SHARING ECONOMY

UN'ANALISI TERRITORIALE SULLE OPPORTUNITA' OFFERTE DALLA
PIATTAFORMA AIRBNB

RELATORE: CANDIDATO:

PROF. LUIGI BUZZACCHI GASPARE ERRA

CORRELATORE:

DOTT. LUIGI FRANCESCO MILONE

### **ABSTRACT**

Questo lavoro si propone di esplorare le opportunità imprenditoriali nel mercato italiano degli affitti a breve termine di Airbnb utilizzando un tenore di studio territoriale rappresentato dai sistemi locali del lavoro (SLL). Attraverso un approccio di ricerca che combina analisi quantitative e qualitative, si intendono analizzare gli effetti delle piattaforme P2P sulle forme ibride di imprenditorialità, tenendo conto delle dinamiche dell'economia della condivisione e delle credenze emergenti riguardo differenziazioni endogene dei mercati locali che favoriscono lo sviluppo industriale in ogni territorio. Si ritiene che i sistemi locali del lavoro possano essere una buona proxy della sovrapposizione tra domanda e offerta in un determinato territorio. Inoltre, oltre alla diversità spaziale dell'offerta, si considera anche una differenziazione in termini di dimensione e qualità, distinguendo diverse tipologie di imprenditori: gig entrepreneurs e middlemen. Lo studio si basa su una ricerca non ancora pubblicata di (Buzzacchi, Grilli, & Milone, 2021) che analizza le dinamiche imprenditoriali correlate ai mercati locali definiti dalle province italiane. Pertanto, l'obiettivo di questo studio è quello di validare delle ipotesi che siano in linea con gli studi di ricerca esistenti. A tale scopo, viene utilizzato un dataset proveniente da AirDNA, una piattaforma esterna ad Airbnb, che fornisce dati dimensionali sulle diverse tipologie di imprenditori nel periodo compreso tra il 01/06/2008 e il 31/12/2019. Riprendendo le indagini della letteratura sulle dinamiche di ingresso e sulla sharing economy, vengono esplorate le determinanti del comportamento imprenditoriale nel processo di ingresso nel mercato. Si prendono in esame i fattori che favoriscono o scoraggiano gli individui nell'entrare nel mercato degli affitti a breve termine. I risultati ottenuti mostrano che sia i gig entrepreneurs che i middlemen sono stimolati da un aumento della domanda di alloggi turistici, mentre per quanto riguarda l'offerta, l'effetto dei bassi costi di ingresso risulta correlato solo ai gig entrepreneurs, così come il numero di risorse sottoutilizzate (come il numero di abitazioni non occupate e il tasso di occupazione) che aumentano il rendimento del costo/opportunità. Infine, viene testato come le forze di equilibrio tra concentrazione e concorrenza siano rilevanti per la categoria degli imprenditori professionisti.

### **INDICE**

| 1.   | IMPRENDITORIALITA'                    | 12 |
|------|---------------------------------------|----|
| 1.1  | LA FIGURA DELL'IMPRENDITORE           | 13 |
| 1.2  | NUOVE CONDIZIONI AL CONTORNO          | 14 |
| 2.   | LA SHARING ECONOMY                    | 15 |
| 2.1  | INTRODUZIONE ALLA SHARING ECONOMY     | 16 |
| 2.2  | IL CONCETTO DI CONSUMO COLLABORATIVO  | 16 |
| 2.3  | EFFETTI DEL "CONSUMO COLLABORATIVO"   | 17 |
| 2.4  | SHARING ECONOMY PLATFORM              | 18 |
| 3.   | AIRBNB                                | 20 |
| 3.1  | LA STORIA DI AIRBNB                   | 21 |
| 3.2  | FUNZIONALITÀ E INNOVAZIONE            | 21 |
| 3.3  | UNA PIATTAFORMA "MULTI-SIDE"          | 22 |
| 3.4  | ATTORI E MECCANISMI DI GOVERNANCE.    | 23 |
| 3. 5 | 5 TIPOLOGIE DI HOST                   | 25 |
| 3.6  | AIRBNB E TURISMO                      | 27 |
| 4.   | MERCATO LOCALE                        | 29 |
| 4.1  | SISTEMI LOCALI DEL LAVORO (SLL)       | 30 |
| 4.2  | MERCATI LOCALI                        | 32 |
| 4.3  | LE MOTIVAZIONI DELLA SCELTA           | 33 |
| 4.4  | IMPRENDITORIALITA' LOCALE             | 34 |
| 5.   | IPOTESI TESTATE                       | 36 |
| 5.1  | ANALISI PRELIMINARI                   | 37 |
| 52   | SVILUPPO DELLE IPOTESI: HP1-HP2A-HP2B | 38 |

| 5.3 SVILUPPO DELLE IPOTESI: HP3A-HP3B-HP3C           | 41  |
|------------------------------------------------------|-----|
| 6. IL DATABASE                                       | 45  |
| 6.1 DATI E METODO DI RICERCA                         | 46  |
| 6.2 MODIFICHE AL DATABASE: VARIABILI SOCIOECONOMICHE | 47  |
| 6.4 PULIZIA DEL DATASET                              | 52  |
| 6.5 COSTRUZIONE DELLA DOMANDA                        | 53  |
| 6.6 ANALISI DESCRITTIVA DEL DATABASE                 | 54  |
| 7. IL MODELLO                                        | 67  |
| 7.1 INTRODUZIONE AL MODELLO                          | 68  |
| 7.2 DESCRIZIONE DELLE VARIABILI                      | 68  |
| 7.3 REGRESSIONE MULTIVARIATA                         | 72  |
| 7.4 METODOLOGIA                                      | 75  |
| 8. RISULTATI                                         | 78  |
| 8.1 EFFETTI FISSI                                    | 79  |
| 8.2 EFFETTI RANDOM: IL MODELLO                       | 80  |
| 8.3 EFFETTI RANDOM: CONTROLLI E VERIFICHE            | 87  |
| 8.4 EFFETTI RANDOM: CONFRONTO CON STIMATORE OLS      | 89  |
| 9. CONCLUSIONI                                       | 92  |
| REFERENZE                                            | 95  |
| 10.ALLEGATI                                          | 99  |
| 10.1 DATI SLL                                        | 99  |
| 10.2 DATABASE VARIABILI                              | 99  |
| 10.3 SUPPORTO REGRESSIONI                            | 120 |

### INTRODUZIONE

Sebbene la figura dell'imprenditore sia stata molto spesso oggetto di studio nel corso degli anni, nell'era dell'innovazione tecnologica e della condivisione economica, le dinamiche imprenditoriali hanno subito una brusca, ma sana, evoluzione. La lenta e graduale introduzione delle piattaforme digitali ha aperto la strada a nuove forme di capitalismo (Sundararajan, 2017), generando nuove opportunità per gli imprenditori, e consentendo loro di sfruttare le risorse esistenti in modo più efficiente. Gli studi dalla letteratura hanno per lunghi tratti esaminato le origini del maturati riconoscimento di opportunità e di quanto quest'ultima sia rilevante nel processo imprenditoriale (Shane & Venkataraman, 2000). Alcuni autori tratteggiano la nozione di opportunità imprenditoriale definendola un fenomeno di "distruzione creatrice" (Schumpeter, 1907). Altri studi ritengono invece che tali opportunità risiedano già nei mercati, delineando l'imprenditore come un individuo in grado di riconoscere alcune delle potenzialità non sfruttate di una risorsa (Kirzner, 1973). Ulteriori studi si concentrano su dinamiche individuali che guidano la nascita di nuove attività d'impresa, includendo nell'analisi aspetti per lo più socioculturali e psicologici. (Martinez & Aldrich, 2011); (Knight, 1921). D'altro canto, invece, ritroviamo un filone di ricerca che indaga le dinamiche imprenditoriali a livelli macro, includendo nell'analisi contesti economici, culturali e istituzionali con una dimensione prettamente nazionale.

Tuttavia, in un ecosistema dinamico come quello generato dalle nuove piattaforme *P2P* (*peer-to-peer*), emerge come la letteratura non sia ancora riuscita ad inserire nelle analisi gli effetti dell'economia della condivisione sulle forme ibride di imprenditorialità, trascurando le considerazioni secondo le quali gli individui sono inseriti in specifici contesti geografici ed economici definiti a livello locale. D'altronde, se i mercati hanno natura intrinsecamente localizzata ed il territorio è differenziato geograficamente ed eterogeneo dal punto di vista socioeconomico (come è nel settore turistico e nel caso italiano, che saranno oggetto di questo lavoro), ci si aspetta che i differenti livelli di dimensione e investimenti favoriscano uno sviluppo industriale profondamente legato al territorio.

7

L'interesse per questo lavoro di ricerca nasce anche dalla tendenza dei mercati multilaterali nel generare effetti di rete ed effetti di informazione, in grado di accrescere notevolmente le opportunità per gli individui su nuove frontiere di business (Arthur, 1996). L'economia della condivisione sembrerebbe in grado di influenzare i fenomeni imprenditoriali attraverso la commercializzazione del concetto di "consumo collaborativo" (Botsman & Rogers, 2010).

In virtù delle considerazioni fatte, la seguente ricerca si propone di identificare le variabili che influenzano le dinamiche d'ingresso di nuovi imprenditori nei mercati locali, concentrandosi in particolare sul mercato degli alloggi a breve termine attraverso la piattaforma di Airbnb.

La scelta di dedicarsi su Airbnb come caso di studio è giustificata da molteplici ragioni. In primo luogo, consente di includere nell'analisi una cospicua parte delle dinamiche di evoluzione dei mercati, incarnando tutte le caratteristiche delle piattaforme emergenti di condivisione *P2P*. In secondo luogo, l'offerta del settore della ricettività turistica è intrinsecamente segmentata a livello geografico, concedendo la possibilità di distinguere tanti piccoli mercati distribuiti localmente con caratteristiche dissimili. Infine, il mercato degli alloggi a breve termine offre una diversità tipica sulla tipologia di agenti che decidono di farne parte (Dogru, Mody, & al., 2020).

Attraverso un'analisi territoriale, si cercherà di comprendere come le condizioni locali, industriali e geografiche, creino opportunità imprenditoriali uniche per coloro che desiderano operare nel settore degli alloggi a breve termine. In altre parole, la presente ricerca si baserà su questi contributi teorici e su ulteriori studi empirici per analizzare le forze che incidono sugli ingressi di nuovi imprenditori sul mercato. In secondo luogo, indaghiamo se i fattori locali generano effetti diversi tra imprenditori. Distinguendo imprenditori occasionali (gig), coloro che mettono a disposizione il proprio appartamento solo occasionalmente, e imprenditori professionisti (middleman) che attraverso la piattaforma hanno creato una vera e propria attività. Saranno esplorate le condizioni locali che influenzano l'imprenditorialità, come la domanda di alloggi temporanei, la presenza di forze di concorrenza, le strutture alberghiere locali e le caratteristiche geografiche.

Per poter svolgere le analisi si ricorre ad un dataset fornito da AirDna<sup>1</sup>, una società privata che opera esternamente ad Airbnb, in grado di raccogliere e collezionare informazioni su tutti gli host di Airbnb. Si sfrutteranno i dati di migliaia di host sulla piattaforma nel periodo compreso tra il 2017 e il 2019. La dimensione locale dello studio coinvolgerà i sistemi locali del lavoro (SLL), una ripartizione clusterizzata del territorio nazionale dove i gruppi (*cluster*) sono aggregati seguendo una modalità funzionale che si basa sui flussi giornalieri casa/lavoro (pendolarismo).

Il mio studio si ispira al lavoro di Buzzacchi, Grilli, & Milone, 2021, che analizza le dinamiche imprenditoriali correlate ai mercati locali definiti dalle province italiane. L'obiettivo del mio lavoro di ricerca sarà, tra gli altri, quello di validare i risultati ottenuti in Buzzacchi, Grilli, & Milone (2021) operando ad una scala più fine.

Si cerca di fornire alla letteratura dei risultati che siano attendibili e consistenti, propedeutici anche per delle analisi e degli approfondimenti istituzionali in linea con le politiche locali del lavoro. A tal proposito, si dimostra come entrambi gli imprenditori (occasionali e professionisti) sono stimolati all'ingresso da una crescente domanda di alloggi turistici. Nel dettaglio, gli imprenditori occasionali sembrano essere più sensibili a livelli più bassi del costo/opportunità, rappresentato nell'economia della condivisione per lo più da risorse sottoutilizzate (abitazioni non occupate e tasso di disoccupazione) che ne aumentano il rendimento. Al contrario, gli imprenditori professionisti hanno bisogno di investimenti in risorse e capacità più elevati (Xie & Mao, 2017), per questo il loro ingresso è influenzato da altri fattori come la specializzazione del settore ricettivo alberghiero e le forze di concentrazione e concorrenza che guidano le loro dinamiche d'ingresso. Si dimostra come la relazione tra gli ingressi di imprenditori professionisti e la concentrazione del mercato segua un andamento dapprima crescente e poi decrescente: per livelli bassi di concentrazione prevalgono gli effetti di agglomerazione che aumentano gli ingressi, per livelli alti di concentrazione le forze della concorrenza superano le esternalità positive della contiguità con altre imprese e gli ingressi sembrano scoraggiati.

<sup>&</sup>lt;sup>1</sup> https://www.airdna.co/

Si ritiene che questa analisi possa fornire uno spunto per le decisioni istituzionali sui fenomeni di sviluppo turistico locale, offrendo un tenore di studio rappresentato dai sistemi locali del lavoro (SLL) raramente approfondito dalla letteratura. D'altro canto, concentrandosi su un periodo di tempo limitato, questa ricerca offre un elevato grado di replicabilità per lo studio sulla crescita dei mercati locali.

Il resto del lavoro è organizzato come segue. Il capitolo 1 riprenderà brevemente i fondamenti teorici degli studi sull'imprenditorialità. Il capitolo 2 e il capitolo 3 saranno dedicati ad una breve ma consistente rassegna della letteratura sui temi dell'economia della condivisione e sulle pratiche imprenditoriali della piattaforma di Airbnb. Il capitolo 4 sarà dedicato ai sistemi locali del lavoro, di come sono aggregati e di come favoriscano la creazione e lo sviluppo di mercati locali. Il capitolo 5 presenterà nel dettaglio le analisi e le considerazioni sui risultati attesi, formulando un cospicuo numero di ipotesi. Nel capitolo 6 verranno presentate le variabili socioeconomiche aggiunte al dataset di partenza e, successivamente, si proporrà una breve ma solida analisi dei dati. Il capitolo 7 esibirà la costruzione del modello, le variabili incluse, e le spiegazioni teoriche dei modelli di regressione utilizzati. Infine, il capitolo 8 esporrà i principali risultati ottenuti, differenziando gli studi in virtù del tipo di regressione adottata. Il capitolo 9 tratterà delle brevi conclusioni e ipotesi di sviluppi futuri.

1. IMPRENDITORIALITA'

#### 1.1 LA FIGURA DELL'IMPRENDITORE

Nel corso degli anni la letteratura ha fornito diversi spunti sulle tematiche dell'imprenditorialità, i quali ancora oggi risentono di opinioni discordanti in virtù delle dinamiche economiche sempre in evoluzione. Questo lavoro ha come obiettivo, tra gli altri, quello di analizzare i meccanismi che governano le scelte imprenditoriali, inserendo nell'analisi una prospettiva di economia condivisa che è destinata a rimescolare i fattori che guidano gli imprenditori e il loro ingresso nel mercato. Una delle principali prospettive che la letteratura ci fornisce è la visione Schumpeteriana dell'imprenditore, il quale viene visto come un innovatore, ossia un individuo in grado di riconoscere la potenzialità delle risorse esistenti per poter creare nuovi prodotti e processi di business. Gli imprenditori, secondo Schumpeter, non si limitano alla gestione di risorse, bensì sono in grado di introdurre cambiamenti nel flusso circolare dell'economia. Sono gli attori in grado di stimolare la stazionarietà attraverso il riconoscimento di nuove opportunità (de Jong & Marsili, 2015). Altri studi rilevanti sull'imprenditorialità sono stati condotti da (Kirzner, 1973). Capovolgendo la visione Schumpeteriana, l'autore tratteggia la figura dell'imprenditore come colui che approfitta del disequilibrio all'interno dei mercati attraverso la prontezza nel cogliere le innovazioni. "Il ruolo dell'imprenditore diventa, secondo Kirzner, l'identificazione di potenziali opportunità non sfruttate" (Sciascia & De vita, 2004). Anche (Drucker, 1985) mette l'accento sull'identificazione e lo sfruttamento delle opportunità imprenditoriali e sull'assunzione di rischi. Egli considera gli imprenditori come individui che cercano attivamente opportunità di business e si assumono il rischio di perseguirle. Al contrario, (Gartner, 1988) enfatizza il ruolo del contesto e degli elementi situazionali nell'imprenditorialità. Egli sottolinea che gli imprenditori si trovano spesso in situazioni complesse e ambigue, che richiedono adattabilità e capacità di navigare in contesti mutevoli.

Ulteriori studi si sono concentrati sulle dinamiche individuali che guidano le persone nel loro percorso da imprenditori. Tra gli altri, (Martinez & Aldrich, 2011) sfruttano un database conosciuto come "Panel Study of Entrepreneurial Dynamics" (PSED) all'interno del quale è possibile identificare le informazioni su un campione di individui in procinto di iniziare la propria attività imprenditoriale. Il loro obiettivo è quello di testare la teoria

secondo cui l'accesso alle risorse come il reddito familiare, la ricchezza, il capitale umano, l'esperienza lavorativa, l'esperienza imprenditoriale e l'influenza della famiglia e degli amici, influenzino la decisione di diventare un imprenditore o meno. Un altro esempio simile è la pratica secondo la quale si collega la propensione di un individuo ad essere un lavoratore autonomo o imprenditore alle caratteristiche personali di quell'individuo come età, sesso, esperienza, livello di istruzione e occupazioni dei genitori (Verheul, Wennekers, Audretsch, & Thurik, 2002). Infine, sempre nella sfera degli studi su caratteristiche individuali dell'imprenditorialità, (Knight, 1921) pone l'accento sul tema del reddito e studia cosa comporta per gli individui un salario dipendente da una azienda oppure un salario direttamente collegato alla propria attività imprenditoriale.

#### 1.2 NUOVE CONDIZIONI AL CONTORNO

Emerge come la maggior parte degli studi si concentri su aspetti individuali, i quali non solo non prendono in considerazione il fatto che gli individui sono inseriti in specifici contesti geografici ed economici delimitati a livello locale, che possono inevitabilmente influenzare le decisioni individuali (Buzzacchi, Grilli, & Milone, 2021) ma per di più non includono nell'analisi le dinamiche di evoluzione dei mercati. Nell'attuale contesto tecnologico i mercati hanno subito un forte cambiamento dall'avvento delle piattaforme online in grado di modificare il paradigma dell'interazione tra imprenditore e consumatore. In questa prospettiva, molte delle rigidità dell'economia aziendale sono destinate a recedere a favore di una forma più egualitaria di capitalismo basato su un numero crescente di piccoli imprenditori, i quali hanno la possibilità di sbloccare alcune risorse sottoutilizzate e ridurre la dipendenza dal classico stipendio mensile (Vallas & Schor, 2020). Questo fenomeno viene definito come "gig-economy"<sup>2</sup>, la quale sta pian piano emergendo all'ombra di una più ampia visione dell'economia basata sull'utilizzo delle piattaforme che prende il nome di "sharing economy".

<sup>&</sup>lt;sup>2</sup> "Gig economy" - Modello economico basato sul lavoro a chiamata, occasionale e temporaneo, e non sulle prestazioni lavorative stabili e continuative, caratterizzate da maggiori garanzie contrattuali - Treccani Vocabolario.

# 2. LA SHARING ECONOMY

#### 2.1 INTRODUZIONE ALLA SHARING ECONOMY

Nel corso del tempo diversi autori si sono soffermati sull'etimologia dell'economia condivisa, dandone talvolta degli spunti contrastanti in grado però di trovare degli effetti sia nella teoria sia nella realtà. Un primo riscontro lo troviamo nel saggio "Remix: Making Art and Commerce Thrive in a Hybrid Economy" (Lessig, 2008) nel quale si discute di economie condivise ed economie basate sui beni comuni. Lessing pone l'accento sulla teoria della condivisione delle risorse, sottolineando come il driver principale sia l'esigenza di creare un bene comune, dove le persone siano in grado di mettere a disposizione le proprie competenze e i propri mezzi per creare valore (es. Wikipedia). (Frenken & Schor, 2019) definiscono la sharing economy "consumatori che si concedono reciprocamente l'accesso temporaneo a beni fisici sottoutilizzati, eventualmente in cambio di denaro". Nel contesto della sharing economy, le persone sono incoraggiate a mettere a disposizione le proprie risorse sottoutilizzate, come ad esempio la propria abitazione, la propria auto, le proprie competenze o il proprio tempo libero, al fine di trarne un beneficio economico (Stephany, 2015). Secondo Stephany la sharing economy trova riscontro nel valorizzare i beni sottoutilizzati rendendoli disponibili online ad una vasta comunità di persone, portando così ad una diminuzione della necessità di possederli. Da questo principio di condivisione è immediato pensare a una cascata di esternalità positive che il modello trascina con sé: ottimizzazione delle risorse sottoutilizzate, promozione della sostenibilità ambientale e la creazione di nuove opportunità per i singoli individui. In quest'ottica le piattaforme digitali diventano cruciali, permettendo la creazione di un mercato peer-to-peer, dove i costi di informazioni vengono drasticamente ridotti a favore di un meccanismo di fiducia che molti autori reputano fondamentale nella gestione della relazione.

#### 2.2 IL CONCETTO DI CONSUMO COLLABORATIVO

L'era delle tecnologie digitali ha portato ad una trasformazione delle relazioni tra le persone. Le piattaforme online hanno permesso a persone di tutto il mondo la monetizzazione di risorse e competenze non ancora sfruttate. La riduzione degli *information costs* e l'incremento della semplicità nelle comunicazioni hanno reso più

convenienti gli scambi tra individui. Tutto questo si riassume nel fenomeno di "consumo collaborativo", dove gli individui condividono l'accesso alle risorse. I primi autori descrivono il "consumo collaborativo" come una serie di eventi in cui gli individui condividono il consumo di beni o servizi in cambio di attività (Felson & Spaeth, 1978). Altri autori inglobano in questa visioni anche l'organizzazione congiunta dell'acquisto e la distribuzione del prodotto (Belk R. , 2014). Solo in seguito verranno aggiunti elementi come la condivisione, il baratto, il prestito, il commercio. (Botsman & Rogers, 2010). Gli autori credono che l'accesso al consumo collaborativo sia guidato dalla reputazione tra soggetti e fanno affidamento al concetto di collaborazione tra le comunità. Nella loro trattazione Botsman e Rogers si riferiscono alla nozione di "idling capacity", ossia il valore non sfruttato di beni inutilizzati. Allo stesso modo, (Bardhi & Eckhardt, 2012) introducono la nozione di "consumo basato sull'accesso" e raccontano che "invece di acquistare e possedere cose, i consumatori vogliono accedere ai beni e preferiscono pagare per avere un accesso temporaneo"

#### 2.3 EFFETTI DEL "CONSUMO COLLABORATIVO"

La visione di una economia condivisa guidata da scopi sociali si è presto arenata, lasciando spazio ai benefici economici subordinati ed al fenomeno commercializzazione della condivisione, che ha fortemente sconvolto lo status quo in diversi mercati (Belk, Eckhardt, & Bardhi, 2019). Il consumo collaborativo ha un impatto significativo su diversi livelli, influenzando l'ambiente, l'economia, l'imprenditoria, il singolo consumatore e la società nel suo complesso. Se ad esempio pensassimo agli impatti ambientali che si avrebbero nel passaggio dalla proprietà di una risorsa all'accesso temporaneo che essa può garantire a più individui nel tempo, potremmo comprendere l'enorme potenziale per ridurre gli impatti negativi sull'ambiente. Questa visione viene supportata anche da (Gansky, 2010) dove nel suo saggio "The mesh: il futuro del business è la condivisione" sottolinea come sia di grande importanza il potere abilitante delle tecnologie digitali, spiegando che le piattaforme digitali riescono a distribuire anche le risorse fisiche in modo più efficiente, abbassando la pressione sulle risorse naturali. Oltre agli impatti ambientali, il consumo collaborativo ha sconvolto i mercati tradizionali, causando una forte influenza sulle istituzioni esistenti nei settori chiave come i trasporti, l'ospitalità e le banche (Perren & Grauerholz, 2015). Uno dei mercati maggiormente coinvolti è quello degli affitti a breve termine, guidato dall'ingresso nel mercato di Airbnb. Gli studiosi hanno rilevato che la penetrazione di Airbnb nello stato del Texas è stata negativamente correlata con i ricavi degli hotel (Zervas, Proserpio, & Byers, 2017). Nel loro modello la predizione rivela come un aumento dell'1% delle dimensioni del mercato di Airbnb si traduca in una riduzione dei ricavi degli hotel. In altri settori sono emerse piattaforme di ride sharing che sono destinate a modificare i naturali paradigmi dell'economia. Questa modalità di interazione con il bene o servizio finale risulta essere quella prediletta dai clienti, che preferiscono l'accesso ad un veicolo in qualsiasi momento piuttosto che possederne uno. Potenzialmente, gli effetti del consumo collaborativo e della *sharing economy* potrebbero rappresentare una forma di innovazione *disruptive* all'interno di alcuni settori.

#### 2.4 SHARING ECONOMY PLATFORM

Dai paragrafi precedenti si dimostra come il paradigma dell'economia della condivisione si basi specialmente sull'esistenza di piattaforme digitali in grado di favorire l'interazione tra singoli individui (mercati P2P). La funzionalità primaria delle piattaforme di sharing è quella di collegare due o più attori (multi-side) nell'interesse di entrambi. Una prima prospettiva della faccenda ci viene fornita dall'economia industriale, la quale sostiene come il beneficio di un gruppo (side) derivi dall'adesione dell'altro gruppo alla piattaforma (Armstrong, 2006). Fenomeno più comunemente conosciuto come esternalità di rete. Per molti autori le piattaforme sono considerate delle modalità di raggiungimento di un obiettivo più ampio, al contrario (Smedlund & Faghankhani, 2015) sostengono addirittura che le piattaforme sono considerate sia i mezzi che i fini della creazione di valore. Un tale "mercato multilaterale" fornisce beni e servizi a gruppi differenti, i quali hanno tutti bisogno l'uno dell'altro e si affidano alla piattaforma per mediare le loro transazioni (Evans, 2003). Sulla piattaforma lo schema della collaborazione assume maggiore efficacia in quanto produce un abbattimento dei costi di transazione. Rispetto alle piattaforme tradizionali l'incontro tra domanda e offerta avviene direttamente e se c'è intermediazione, questa è finalizzata alla condivisione (Creatuse & UE, 2018). Nel saggio: "Putting the sharing economy into perspective"

(Frenken & Schor, 2019) si esaminano a fondo le reali caratteristiche di una piattaforma e di una economia di tipo "share". La fig. 1 ne riporta una visualizzazione.

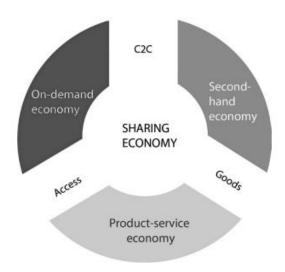


FIGURA 1:INQUADRAMENTO DELLA SHARING ECONOMY CON PROSPETTIVA SU DIFFERENTI ECONOMIE DI SHARING PLATFORM

(Fonte: Frenken, K., & Schor, J. (2017). Putting the sharing economy into perspective)

Nella figura seguente la sharing economy è collocata nel mezzo in quanto aderisce alle tre caratteristiche che la definiscono: interazione tra consumatori (*C2C*), accesso temporaneo e beni fisici.

- Second-hand economy. In questa visione i consumatori si scambiano i beni in maniera reciproca con effetto permanente e non temporaneo (es. Ebay);
- L'affitto di beni da un'azienda piuttosto che da un altro consumatore viene definita economia del prodotto-servizio. Il servizio fornito dall'azienda consiste nel dare al consumatore l'accesso a un prodotto, mentre l'azienda ne mantiene la proprietà. Una volta che il prodotto è stato usato e restituito, diventa nuovamente disponibile per un altro noleggiatore (es. Hertz);
- Infine, se si tratta di fornitura di servizi *P2P* e non di condivisione di beni *P2P*, si parla di economia on-demand, conosciuta anche come "gig-economy". Prima dell'avvento delle piattaforme Internet, le persone già condividevano con parenti e amici perché erano contatti sociali conosciuti e fidati. La novità è che ora gli utenti prestano beni anche a sconosciuti, perché Internet ha ridotto enormemente i costi di transazione tra sconosciuti. (Frenken & Schor, 2019);

# 3. AIRBNB

#### 3.1 LA STORIA DI AIRBNB

Nel 2007 Brian Chesky, cofondatore e CEO e Joe Gebbia, cofondatore e presidente di Airbnb.org, due giovani americani, in occasione della conferenza annuale dell'Industrial design society of America, decisero di condividere il loro appartamento ad alcune persone interessate alla conferenza che non avevano trovato posto come da tradizione negli hotel di San Francisco. Per farlo, con l'aiuto del terzo cofondatore e attuale CSO (Chief Strategy Officer) Nathan Blecharcyzk, decisero di comprare dei materassi ad aria per poter ospitare nel loro loft le persone interessate a partecipare alla conferenza. <sup>3</sup> Successivamente nel 2008 si registrano due eventi rilevanti: a marzo i tre fondatori lanciano per la prima volta la piattaforma chiamandola "Airbed and Brekfast" in occasione di un festival ricevendo due prenotazioni; nel mese di agosto lanciano per la prima volta la piattaforma "payments" per i pagamenti e le transazioni tra host ed ospiti. Nel 2009 il nome del sito cambia e si passa a quello attuale conosciuto come "Airbnb", in parallelo viene anche registrato il primo logo Airbnb. Nei successivi dieci anni seguiranno in serie degli eventi che aprono il business della piattaforma, allargandolo e rendendolo scalabile. Da quel lontano 2007, la community è cresciuta a livelli macroscopici raggiungendo al 31/12/2022 oltre 4 milioni di host, che a loro volta hanno ospitato più di 1 miliardo di ospiti in tutto il mondo. Attualmente si contano circa 6,6 milioni di annunci attivi<sup>4</sup>.

#### 3.2 FUNZIONALITÀ E INNOVAZIONE

Airbnb opera nel segmento di mercato degli alloggi a breve termine, che si inserisce nella panoramica della ricettività turistica. Si tratta di una piattaforma online con la quale persone comuni affittano i propri spazi come alloggi per turisti. Una delle caratteristiche che differenziano questa modalità di ricezione turistica è che l'host può anche non essere fisicamente presente al momento dell'alloggio, condizione invece necessaria quando parliamo degli alloggi a breve termini definiti B&B e strutture ricettive alberghiere. Il mercato tradizionale degli alloggi turistici potrebbe essere rivoluzionato da Airbnb che consente di prenotare online degli alloggi presso altri individui (alloggio peer-to-peer). In quanto tale, Airbnb fa parte dell'economia della

<sup>&</sup>lt;sup>3</sup> https://news.airbnb.com/it/about-us/.

<sup>&</sup>lt;sup>4</sup> https://news.airbnb.com/it/about-us/.

condivisione descritta in precedenza. Alcuni autori sostengono come l'attività di ospitare persone nella propria abitazione non sia troppo differente dalla filosofia dei classici B&B, per questo nasce spontaneo interrogarsi su cosa Airbnb abbia portato di innovativo per riuscire a migliorare il rate di prenotazione peer-to-peer. Un primo elemento di rigidità del vecchio modello è sicuramente il disagio che gli host avevano nel connettersi con i potenziali ospiti e anche la difficoltà di creare una fiducia reciproca basata sul concetto di reputazione. Alcuni autori sostengono che una condizione necessaria per le transazioni in Airbnb è la fiducia. Per aumentare la fiducia, Airbnb presenta il punteggio delle recensioni online che gli host ricevono dai loro ospiti (Ert, Fleischer, & Magen, 2016). La piattaforma di Airbnb è riuscita ad eliminare il problema della connessione tra host ed ospite, fornendo una strumentazione tecnologia adeguata nella quale gli host possono promuovere i loro alloggi (Guttentag, 2015). La piattaforma, inoltre, consente dei meccanismi di fiducia reciproca che facilitano l'accesso al bene tramite dei sistemi di valutazione che gli ospiti possono dare alla fine del loro soggiorno (recensioni). Le recensioni non solo facilitano il rating che i clienti vogliono ex-ante nella scelta del loro soggiorno, ma aiutano anche gli host nel capire cosa migliorare e soprattutto la percezione del valore secondo il cliente.

Per tutte queste ragioni la letteratura ha investigato come il fenomeno degli affitti a breve termine possa costituire una potenziale innovazione disruptive all'interno del mercato della ricettività turistica (vedi ancora Guttentag, 2015). Questa analisi possiede ancora un grado medio di ambiguità dal momento che i confini di cosa sia effettivamente una innovazione dirompente non sono da sempre così definiti. Tuttavia, i principali elementi da considerare sono l'esistenza di prodotti e/o servizi più economici, più semplici, più piccoli e/o convenienti, che vanno a modificare la proposta di valore del settore (Christensen, 1997). Sebbene Airbnb possieda alcune di queste caratteristiche e abbia dei numeri in crescita costante, solo i consumer potranno effettivamente far pendere l'ago della bilancia verso una innovazione disruptive di grandi dimensioni.

#### 3.3 UNA PIATTAFORMA "MULTI-SIDE"

Un'organizzazione che crea valore principalmente consentendo interazioni dirette tra due (o più) tipi distinti di clienti affiliati viene considerata come una *multi-side platform* 

(Hagiu & right, 2015). Altri autori reputano il fenomeno dei mercati bilaterali strettamente collegato alle esternalità di rete che esso genera tra gli utenti. <sup>5</sup> Nel contesto strutturale del mercato degli alloggi a breve termine gli effetti di rete sono rilevanti, specie quando supportati da sistemi efficienti di reputazione. Con effetti di rete bilaterali, la creazione del valore in entrambi i lati dipende dal numero di utenti presenti. Maggiori utenti utilizzano la piattaforma, maggiore sarà il valore intrinseco posseduto da essa, per questo le piattaforme di successo godono di rendimenti di scala crescenti (Rochet & Tirole, 2003). Volendo riassumere la schematizzazione delle piattaforme di sharing economy secondo il modello fornito da (Constantiou, Marton, & Tuunainen, 2017) Airbnb andrebbe inserito nella categoria delle piattaforme cosiddette Chaperones. Elevata rivalità tra i partecipanti one-side e basso controllo degli owners sulle dinamiche di incrocio tra domanda e offerta fanno sì che la piattaforma incoraggi gli imprenditori che decidono di farne parte. L'ingresso di nuovi imprenditori sul mercato rafforza la scelta strategica della piattaforma, la quale riceve le commissioni da entrambi i gruppi: circa il 10% su ogni prenotazione in capo all'ospite e circa il 3% per ogni prenotazione a carico dell'host qualora la transazione vada a buon fine<sup>6</sup>. Secondo (Pizam, 2014) i poteri della piattaforma sono maggiori di quelli che comunemente si potrebbero intuire, l'autore sostiene come Airbnb controlli entrambe le controparti, abbia accesso agli inventari dei proprietari, gestisca le prenotazioni degli affitti, riscuota i pagamenti. <sup>7</sup>Come in tutti i mercati emergenti alcuni autori riconoscono e sottolineano le esternalità positive del modello, altri invece sostengono come i benefici non superino i punti di debolezza: molti suggeriscono la necessità di adattare leggi e regolamenti per consentire a tali piattaforme di operare legalmente. Ciò garantirà che i fornitori di servizi, gli utenti e le terze parti siano adeguatamente protetti da eventuali danni che potrebbero insorgere (Quattrone, Proserpio, Quercia, Capra, & Musolesi, 2016).

#### 3.4 ATTORI E MECCANISMI DI GOVERNANCE.

Airbnb viene riconosciuto come facilitatore di incontro tra due lati del mercato che corrispondono ad host e ospiti. Approfondiamo la questione cercando di interrogarci su

<sup>&</sup>lt;sup>5</sup> Per approfondimenti consultare gli studi di (Choi 2010; Evans e Schmalensee 2007).

<sup>&</sup>lt;sup>6</sup> Informazioni rilevate da una piattaforma di web business information denominate "Business model Toolbox" https://bmtoolbox.net/stories/airbnb/.

<sup>&</sup>lt;sup>7</sup> Per approfondimenti consultare il paper (Gutiérrez, García-Palomares, Romanillos, & Salas-Olmedo, 2017).

- quali siano effettivamente i meccanismi che governano la relazione tra host ed ospiti, tenendo in considerazione il controllo che la piattaforma applica.
- Host. Rappresentano l'attore principale del contesto organizzativo della piattaforma. Alcuni studi si sono interrogati su cosa incoraggi gli individui a mettere a disposizione la propria abitazione al fine di ottenere un profitto. Implicita già nella domanda, una delle prime fonti che determinano la scelta degli imprenditori di entrare a far parte del mercato degli alloggi a breve termine è sicuramente la possibilità di ottenere un profitto (Hamari, Sjöklint, & Ukkonen, 2016). Le dimensioni finanziarie del ritorno sull'investimento sono tutt'altro che definite: molti host affermano infatti come il reddito ottenuto tramite l'affitto degli alloggi sia un extra che va colmare altre fonti di ingresso più redditizie. Tuttavia, molti imprenditori vengono invece riconosciuti come professionisti, per via delle dimensioni del loro business sulla piattaforma. Questa distinzione è cruciale ai fini del lavoro e verrà investigata nel capitolo successivo, dove cercheremo di dettagliare anche quantitativamente queste differenze. Sebbene non saranno oggetto di analisi, alcuni autori evidenziano anche altri trigger che portato gli imprenditori ad entrare nel mercato degli alloggi, come interazione sociale e condivisione; molti host hanno individuato la condivisione come fattore rilevante per l'hosting, facendo riferimento ad una capacità sottoutilizzata di alloggi che altrimenti andrebbero sprecati (Hardy & Dolnicar, 2018).
- ❖ Ospiti. Sono coloro che domandano alloggi a breve termine. Di ispirazione dal libro di Dolnicar intitolato: "Peer-to-peer accomodation network" gli ospiti possono essere distinti in risparmiatori di costi, socializzatori, localizzatori e utilitaristi. I primi hanno come unico obiettivo alloggiare a basso costo, per questo utilizzano la piattaforma come mezzo di filtraggio per gli alloggi a breve termine; non sono interessati al comfort o alla vicinanza del luogo di visita. I socializzatori contrariamente sono ben lieti di incontrare altre persone durante il loro soggiorno, non sono guidati all'acquisto dal prezzo bensì dalla possibilità di trovarsi in contesti con alta facilità di interazione. I localizzatori invece vogliono che il soggiorno sia quanto più vicino possibile ad una esperienza in cui ci si possa sentire a contatto con la cultura locale. Infine, gli utilitaristi puri desiderano ritrovare nell'alloggio tutto ciò di cui hanno bisogno, senza badare ad altre caratteristiche (Hardy & Dolnicar, 2018). Secondo (Guttentag, 2015) ci sono cinque diverse tipologie di motivazioni che spingono gli utenti ad utilizzare la piattaforma,

definendoli: "consumatori collaborativi" per convinzione, "risparmiatori di denaro", "cercatori di casa", "pragmatici" e "cercatori di novità interattive", che cercano nuove esperienze nelle caratteristiche dell'alloggio o nell' interazione con altri utenti.

La piattaforma così consente l'interazione tra host ed ospite, il quale ha la possibilità di interagire con l'host attraverso un sistema di messaggistica efficiente che gli permette di esaudire tutti i dubbi riguardanti l'alloggio. In questo senso, il processo decisionale è guidato da molteplici fattori come: il prezzo, la posizione, il design dell'appartamento, le recensioni, il profilo dell'host, i servizi etc. Tuttavia, (Li & Hudson, 2019) nel loro studio affermano che l'affidabilità degli host e i profili online sono i principali fattori che contribuiscono alla soddisfazione degli ospiti, sottolineando l'importanza di una comunicazione reciproca in grado di rafforzare i meccanismi di reputazione. Emerge chiaramente che le piattaforme digitalizzate come Airbnb consentano ai consumatori di diventare dei "co-creatori" di valore, avendo il potenziale per diventare imprenditori con maggiore facilità mettendo a disposizione semplicemente i propri beni (Oskam & Boswijk, Airbnb: the future of networked, 2016). Nella gestione dei meccanismi imprenditoriali gli host hanno diversi diritti decisionali, come la disponibilità dell'annuncio, il prezzo, il processo di prenotazione e le regole di soggiorno (Tiwana, Konsynski, & Venkatraman, 2013). Nella maggior parte di questi elementi Airbnb accompagna le decisioni degli imprenditori fornendo dei suggerimenti. D'altro canto, però, in qualità di proprietario della piattaforma, Airbnb mantiene i diritti decisionali in tre aree principali: accesso alla piattaforma, costi del servizio e disattivazione dell'account (Leoni & Parker, 2019). Nel continuo del lavoro ci proponiamo di fornire ulteriori analisi ed approfondimenti sulle dinamiche che gli imprenditori devono affrontare nel processo decisionale di ingresso nel mercato, andando ad analizzare nello specifico quali sono i principali driver che portano gli host ad entrare nel mercato.

#### 3. 5 TIPOLOGIE DI HOST

Seguendo il lavoro di (Li, Moreno, & Zhang, 2015) la genesi di Airbnb prevederebbe una figura dell'host caratterizzata principalmente da individui con poca formazione ed esperienza professionale che utilizzano Airbnb come attività secondaria di reddito. Questa teoria viene supportata dalla letteratura la quale afferma che essendo Airbnb

una piattaforma di condivisione *P2P*, nei primi anni la maggior parte degli host mettevano a disposizione una singola proprietà. In particolare, nel 2014-2015 solo il 16% degli imprenditori erano multi-unità, mentre nel 2019 gli host di più unità e quelli con annunci di case intere dominano la piattaforma, contribuendo fino al 69% dei ricavi di Airbnb (Dogru, Mody, & al., 2020). Tuttavia, si rileva come nel corso di 4-5 anni la crescita della piattaforma sia strettamente correlata ad una modifica dello scenario imprenditoriale che vede ora fornitori che offrono più unità sulla piattaforma. Risulta chiaro come il business degli imprenditori abbia subito una evoluzione, a questo punto è evidente interrogarsi su quali siano le dinamiche che guidano la decisione degli host di diventare degli imprenditori multiproprietà, cercando di delineare dei profili dettagliati delle diverse tipologie di host attualmente presenti sul mercato degli affitti a breve termine. Nel nostro modello definiamo:

- i. *Gig-imprenditori (GIG)*. Coloro che utilizzano la piattaforma per vendere i propri servizi solo occasionalmente. In termini quantitativi vengono definiti gig-imprenditori coloro che gestiscono 1-2 annunci attivi;
- ii. Middle-man (MID). Coloro che attraverso l'uso della piattaforma hanno creato una nuova attività in proprio e che tendenzialmente utilizzano Airbnb come fonte primaria di reddito, per questo indicati imprenditori professionisti. Definiamo middlemen coloro che gestiscono dai 3-10 annunci;
- iii. *Grandi imprese (OTHER).* Color che gestiscono un numero superiore a 10 annunci (11+);

Nella letteratura non troviamo tanti riferimenti in grado di fornirci una panoramica completa del quadro imprenditoriale in termini di effetti diretti sul mercato. Oltre alla distinzione quantitativa ci soffermiamo anche su quali siano le caratteristiche in termini di capitale e lavoro che differenziano le due tipologie di host. L'idea è quella che chi è in grado di sostenere la gestione di almeno tre proprietà mostra tendenzialmente una capacità maggiore in termini di investimento di risorse e di capacità manageriali (Oskam, van der Rest, & Telkamp, 2018). Questo si traduce in una spiccata specializzazione dell'imprenditore che rafforza i meccanismi di reputazione alla base del rapporto con gli ospiti. Un numero maggiore di annunci porta ad una riduzione dell'asimmetria informativa tra le parti, l'ospite ha maggiore fiducia dell'host. Come conseguenza

pressoché diretta si nota un incremento del numero di prenotazioni riferiti al singolo imprenditore e di conseguenza aumenteranno anche il numero di recensioni che gli ospiti lasceranno alla fine dei loro soggiorni. Tuttavia, alcuni autori sostengono che il vortice virtuoso può essere messo in discussione da un effetto moderatore negativo del numero di annunci sugli effetti della maggior parte degli attributi di qualità dell'host (Xie & Mao, 2017). In altre parole, gli autori sottolineano come un numero maggiori di annunci da gestire possa indurre una perdita di alcune caratteristiche di qualità, e dunque di reputazione, che gli host avevano costruito nel tempo. Il processo attraverso il quale un crescente numero di imprenditori si affida ad una strategia multiproprietaria degli annunci viene riconosciuto in letteratura come "professionalizzazione dell'host" (Dogru, Mody, & al., 2020).

#### 3.6 AIRBNB E TURISMO

All'interno del paper (ISTAT, Turismo d'arte urbana, 2021) il concetto di turismo si riferisce all'acquisizione di conoscenze ed esperienze che emergono durante lo spostamento da un luogo familiare verso altri luoghi meno conosciuti. Questo movimento verso nuove destinazioni ha un impatto sulle competenze personali, relazionali e sugli aspetti immateriali della personalità. Il contatto con una realtà diversa richiede quotidianamente al turista di sviluppare una prospettiva più ampia e una comprensione che sono strettamente legate al processo del viaggio, il che implica di trascorrere almeno una notte nel luogo visitato. In altre parole, si attribuisce tanto valore alle componenti sensitive che identificano i viaggiatori, aspetto che ricalca fortemente i principali valori espressi e riconosciuti da Airbnb in termini di percezione di valore. Secondo (Boswijk, 2017) Airbnb agevola l'esperienza di vivere come un cittadino in un'autentica casa locale. Questa unicità si esprime nella particolarità e nell'espressione dalla casa affittata dai proprietari, dalla posizione unica e dal contesto. Tuttavia, alcuni studi effettuati sulla città di Barcellona (Adamiak & Szyda, 2019) si soffermano su come gli affitti turistici urbani commercializzati contribuiscano ad una agglomerazione della mobilità turistica, e che questo porti ad una gentrificazione<sup>8</sup> del

<sup>&</sup>lt;sup>8</sup> Riqualificazione e rinnovamento di zone o quartieri cittadini, con conseguente aumento del prezzo degli affitti e degli immobili e migrazione degli abitanti originari verso altre zone urbane. Processo che spesso può portare a conseguenze spesso non egualitarie sul piano socioeconomico (definizione di gentrificazione Vocabolario Treccani)

centro città attraverso lo "spostamento collettivo", ovvero la sostituzione della vita residenziale con il turismo. Un altro aspetto rilevante è l'impatto che le strutture ricettive incombenti subiscono con l'ascesa di Airbnb. Dal punto di vista della distribuzione spaziale degli impatti di Airbnb all'interno delle città, è stato affermato che gli annunci di Airbnb risultano più sparsi rispetto agli hotel e questo potrebbe portare gli ospiti a decidere di visitare quartieri, e quindi impiegare le loro risorse, lontano dai centri comunemente più visitati (Guttentag, Smith, Potwarka, & Havitz, 2018).

È chiaro che tutti questi meccanismi, che siano essi positivi o negativi per le comunità, avvantaggiano la crescita esponenziale del fenomeno degli affitti a breve termine. In quest'ottica si assiste quasi (se non del tutto) ad una trasformazione della catena del valore del mercato turistico. L'agglomerazione e la diversificazione intrinseche negli automatismi della competizione in questo settore semplificano bruscamente il percorso cognitivo che ogni turista fa prima di prenotare il suo soggiorno. La grande eterogeneità di territori nei quali gli host mettono a disposizione un camera o un appartamento spinge le persone nella consapevolezza di visitare luoghi che prima non erano accessibili in termini di disponibilità economica.

Conseguentemente, risulta che una delle variabili principali da dover osservare sono i flussi turistici, nella misura in cui le dinamiche del turismo si stanno modificando e questo potrebbe portare a delle evoluzioni anche nel settore degli alloggi a breve termine dal lato dell'offerta (host).

# 4. MERCATO LOCALE

#### 4.1 SISTEMI LOCALI DEL LAVORO (SLL)

I sistemi locali del lavoro (SLL) rappresentano una griglia territoriale i cui confini, indipendentemente dall'articolazione amministrativa del territorio, sono definiti utilizzando i flussi degli spostamenti giornalieri casa/lavoro (pendolarismo) rilevati in occasione dei Censimenti generali della popolazione e delle abitazioni (ISTAT, Istruzione e lavoro, 2023). In altre parole, è una rappresentazione clusterizzata del territorio nazionale in cui i vari gruppi vengono aggregati seguendo una modalità funzionale e non amministrativa. Pertanto, non essendoci vincoli amministrativi un SLL può essere formato potenzialmente da comuni appartenenti a province o regioni diverse.

Seguendo il criterio di aggregazione territoriale utilizzato, possiamo definire i sistemi locali del lavoro come un ambiente naturale dove all'interno vengono svolte le attività quotidiane della comunità in relazione al lavoro, al tempo libero, ai contatti sociali. Perciò il sistema locale rappresenta un'unità d'indagine significativa per condurre analisi rilevanti per gli aspetti sociali ed economici riguardo alla popolazione e alle attività produttive (Sforzi, 1997). Facendo riferimento ai censimenti della popolazione, la griglia dei sistemi locali è mutevole nel tempo, in virtù anche delle condizioni socioeconomiche del territorio di riferimento. Nel nostro studio prendiamo in considerazione l'ultimo censimento della popolazione del 2011. In questo censimento, il numero totale di SLL ammonta a 611. Essendo indipendenti dai confini amministrativi si stima che sono 56 (9,2%) quelli che si collocano a cavallo di più regioni e 185 (30,3%) quelli che coinvolgono due o più province Il sistema locale più esteso come superficie è quello di Roma (3.892 km2), il più piccolo è Capri con 10,5 km2. I sistemi locali di grandi dimensioni, con oltre 20 milioni di abitanti, rappresentano oltre un terzo della popolazione nazionale (33,8%) e degli occupati residenti (35,0%). 9 Viene riportato di seguito in fig. 2 il cartogramma rappresentativo dei sistemi locali del lavoro nel 2011.

-

<sup>&</sup>lt;sup>9</sup> https://www.istat.it/.

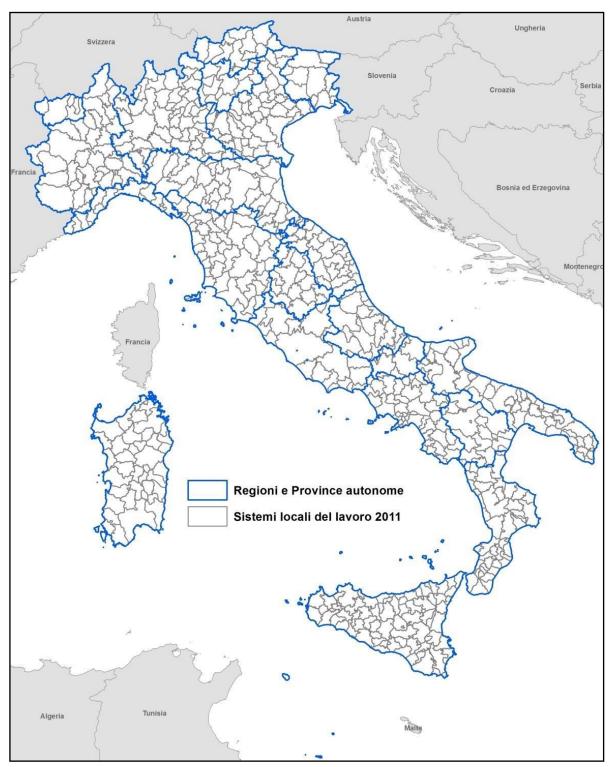


FIGURA 2: CARTOGRAFIA DEI SISTEMI LOCALI DEL LAVORO AL 2011

FONTE:ISTAT

Si nota come la suddivisione territoriale sia profondamente eterogenea, sintomo del fatto che ciascun territorio sperimenta e registra un numero di interazioni differenti. Per quel che riguarda le principali differenze rispetto al censimento del 2001 se ne riporta un breve commento e si rimanda alla sezione degli allegati (sez. 10.1) per ulteriori approfondimenti. Per grandi linee, si osserva una mutazione sia del numero sia della conformazione dei sistemi locali. Il numero dei sistemi locali scende di 72 unità tra il 2001 e il 2011 (-10,5%). Questa differenza indica che qualcosa nelle realtà socioeconomiche territoriali si sta modificando. La continua riduzione del numero degli SLL rispetto al passato è causata principalmente da una dilatazione spaziale delle infrastrutture e dalle dinamiche produttive dei mercati locali, che in aumento o in diminuzione, incidono sulla stesura dei sistemi locali del lavoro odierni.

#### 4.2 MERCATI LOCALI

L'assunzione di una base di analisi definita tramite sistemi locali permette di identificare le nuove densità relazionali del paesaggio economico italiano che risultano mutevoli nel tempo e nello spazio, essendo l'Italia un paese fortemente regionalizzato. Questo processo ha portato i comuni contigui ad integrarsi fino a formare delle uniche unità socio-territoriali, fenomeno che viene definito "coalescenza territoriale" (Calafati & Mazzoni, 2002). I Sistemi locali del lavoro possono essere definiti come raggruppamenti di porzioni territoriali che identificano mercati di lavoro omogenei, dove si realizza una sovrapposizione tra domanda ed offerta di lavoro. In altri termini i sistemi locali sono composti da cluster di frazioni territoriali limitrofe nelle quali le professionalità e le competenze possedute ed offerte dagli individui corrispondono, in una certa misura, con quelle domandate dalle imprese (Coppola & Mazzotta, 2005). Da questo punto di vista, considerate le differenti realtà territoriali, possiamo considerare come endemica la segmentazione del mercato lavorativo. È chiaro che le diverse realtà territoriali presentano dei livelli di domanda ed offerta di lavoro differenti, questo si traduce in una disparità nel trend dei tassi di disoccupazione, di mobilità ed interazione tra agenti. L'esistenza di un mercato locale implica la rilevanza dell'esistenza di limiti spaziali. Un mercato si può definire locale se esistono dei limiti geografici che lo individuano e che riescono a distinguerlo, separandolo da altri mercati (Coppola & Mazzotta, 2005). Una illustrazione più sviscerata emerge nell'approfondimento fatto da (Fischer & Nijkamp, 1987), i quali suggeriscono quattro criteri utili per l'individuazione di un mercato di dimensioni locali:

- i. All'esterno del mercato locale del lavoro, il pendolarismo non ha effetti significativi;
- ii. Il costo dello spostamento all'interno dell'area è irrilevante se confrontato con quello da sostenere se ci si dovesse muovere esternamente;
- iii. Le imprese sono tendenzialmente localizzate in prossimità dello spazio territoriale dove è concentrata la forza lavoro;
- iv. C'è maggiore informazione sulle caratteristiche dei posti di lavoro rispetto alle aree esterne;

Emerge come tutti i quattro elementi ci avvicinano al concetto di prossimità geografica delle relazioni economiche, che è alla base dell'idea di mercato del lavoro locale.

#### 4.3 LE MOTIVAZIONI DELLA SCELTA

Come riportato in precedenza, l'obiettivo del lavoro è quello di valutare le dinamiche imprenditoriali nei mercati degli alloggi a breve termine. Nella nostra analisi, oltre ai dati dinamici di ingresso nel mercato degli imprenditori vogliamo includere anche tutte quelle variabili socioeconomiche di cui vogliamo testare la correlazione in funzione delle ipotesi sviluppate. Con queste finalità non possiamo non considerare che il territorio nazionale è profondamente eterogeneo in termini di ricettività turistica; questa diversità affonda le sue radici specialmente nelle differenze territoriali, la quali non fanno riferimento ad una mera distinzione geografica, ma abbracciano elementi indispensabili come le variabili demografiche, la domanda turistica e le dinamiche di sviluppo economico. Nel corso degli anni la statistica ci aiuta a determinare la presenza di individui (studenti, lavoratori, turisti, residenti) e delle loro interazioni socioeconomiche. Questa variabile può essere, seppur con delle approssimazioni e valutazioni preliminari, stimata attraverso la determinazione della mobilità giornaliera, cioè degli spostamenti abituali per raggiungere il luogo di studio e di lavoro. Il loro numero viene conteggiato all'interno dell'aggregato della "popolazione insistente in un territorio" (ISTAT, Turismo d'arte urbana, 2021).

A valle delle considerazioni fatte, si ritiene come i sistemi locali possano essere funzionali agli obiettivi di ricerca del seguente lavoro, seppur con alcune limitazioni che verranno chiarite successivamente. Alcune discussioni si sono concentrate in merito alla costruzione e all'interpretazione che viene data ai singoli sistemi locali. Alcuni autori sostengono come la sola modalità di interazione territoriale presa in considerazione sia quella dei pendolarismi per motivi di lavoro, definita come non sufficiente per poter esprimere tutte le forme e le intensità delle relazioni territoriali (Calafati & Compagnucci, 2005). Una prima risposta si basa sull'interpretazione dei dati, lo stesso Istituto nazionale di statistica (ISTAT) suggerisce di considerare il sistema locale come: "il luogo cui la popolazione risiede e lavora e dove quindi esercita la maggior parte delle relazioni sociali ed economiche". Di conseguenza, si può considerare il pendolarismo per motivi di lavoro come una proxy abbastanza efficiente dell'insieme delle relazioni di interdipendenza tra territori comunali. Difatti, laddove si concentrano le principali interazioni tra i territori limitrofi è più semplice identificare bisogni e culture sempre più mutevoli. In quest'ottica, la mobilità non è più solo riferita alle periferie delle città ma anche ai luoghi di lavoro e ai principali territori di interazione. Questo ha creato un ampliamento del concetto di città che nei casi di maggior addensamento di persone, servizi e relazioni ha dato vita alle città metropolitane e, a livello generalizzato per l'intero territorio italiano, a sistemi aggregativi funzionali e non solo amministrativi, quali i sistemi locali del lavoro (Coppola, Gianluigi and Mazzotta, Fernanda, 2005).

#### 4.4 IMPRENDITORIALITA' LOCALE

Lo sviluppo di segmenti di mercato locali favorisce ed alimenta la possibilità che nuovi imprenditori decidano di diventare degli agenti economici attivi. La maggior parte degli studi sulle forme di imprenditorialità analizzano più nel dettaglio gli aspetti individuali e di predisposizione delle persone a diventare imprenditori. La letteratura odierna non ha ancora ampiamente dibattuto su quelle che sono le forme di imprenditorialità all'origine dello sviluppo dei mercati locali. Come esaminato in precedenza, la natura dei mercati locali prevede una segmentazione geografica endemica, e spesso, le variabili socioeconomiche al contorno sono enormemente dissimili. Per queste ragioni è interessante studiare come i processi di ingresso nei mercati locali siano influenzati da condizioni industriali locali. In questa direzione è di grande aiuto la spinta che le economie definite "gig" apportano ai mercati territoriali. Si nota una differenza non più così mercata tra lavoro a tempo pieno e lavoro occasionale, molti lavori

tradizionalmente a tempo pieno sono rimpiazzati dal lavoro a tempo determinato, che presenta un continuo di livelli di impegno temporale, dipendenza economica e imprenditorialità (Sundararajan, 2017). Per tale ragione, anche le forme ibride di imprenditorialità sono sempre più comuni, e ancora di più questo è verificato nel settore degli alloggi a breve termine dove troviamo diverse tipologie di imprenditori definiti in precedenza. Gli studi di (Fang, Ye, & Law, 2016) confermano che l'avvento dell'economia collaborativa aiuta l'intero settore del turismo generando nuove posizioni lavorative, trainate da una domanda crescente del turismo a causa dei costi più bassi di alloggio. Esaminando più a fondo le dinamiche locali del mercato della ricettività turistica (Eugenio-Martin, Cazorla-Artiles, & González-Martel, 2019) pubblicano un saggio sui fenomeni di distribuzione spaziale nell'industria turistica. Gli autori suggeriscono come i mercati della ricettività turistica siano delimitabili ai mercati concatenati suggeriti da (Chamberlin, 1933). In un mercato concatenato le imprese che modificano i prezzi possono influenzare più fortemente i rivali prossimi lasciando relativamente inalterati quelli più lontani. Gli autori sostengono che le località turistiche funzionano seguendo un andamento simile, attingendo ad una soglia spaziale di distanza quantitativamente definibile) che segmenta i vari mercati a livello geografico. Introducono l'idea dei multimercati, sostenendo come: "il mercato turistico può essere rappresentato da un mercato in concorrenza imperfetta, dove ciascuna impresa fornisce un prodotto differenziato in base alle proprie caratteristiche, generando una differenziazione di prezzo". Con riferimento al lavoro di (Hay, 1976) gli autori intuiscono come in competizione le imprese del mercato turistico tendono ad aumentare e differenziare l'offerta dove identificano un buco con domanda crescente. Questo fa sì che gli imprenditori possano potenzialmente avere barriere di ingresso molto basse in termini di differenziazione dell'offerta a livelli spaziali. Con l'arrivo di Airbnb, a differenza degli hotel tradizionali che per entrare sul mercato necessitano di investimenti importanti, gli individui possessori di una abitazione o di una stanza non utilizzata possono potenzialmente entrare sul mercato con dei costi di ingresso praticamente nulli. Tuttavia, il modo con cui le variabili socioeconomiche influenzano l'ingresso nel mercato di nuovi imprenditori non è stato ancora studiato in modo sufficiente.

# 5. IPOTESI TESTATE

## **5.1 ANALISI PRELIMINARI**

La seguente indagine si rifà ad un lavoro portato avanti da (Buzzacchi, Grilli, & Milone, 2021) che studia come le dinamiche provinciali possano influire sulle pratiche di ingresso degli imprenditori; partendo da questa solida base di studi, questo capitolo si ripropone di formulare delle ipotesi con un elevato grado di compatibilità con quelle del modello a cui ci si ispira. Pertanto, ci interroghiamo su quali siano i principali fattori che spingono gli individui a far parte del mercato degli affitti a breve termine e quali considerazioni ulteriori possono essere fatte in virtù delle differenze tra le tipologie di host. Nei loro studi (Bucher, Fieseler, Fleck, & Lutz, 2018) hanno individuato tre motivazioni principali che incoraggiano le persone a mettere a disposizione il loro appartamento: motivazioni economiche, morali e sociali. Gli studi mostrano che le motivazioni sociali, come divertimento ed emozione nello stare a contatto con comunità di persone differenti, siano il driver principale. Tuttavia, negli studi di (Gerwe, Silva, & Castro, 2022) si sottolinea come in realtà questi risultati vadano parafrasati tenendo in considerazione il livello di interazione faccia a faccia che i fornitori devono mantenere con i clienti. Gli autori arrivano alla conclusione che tra i fattori principali di stimolazione di ingressi nei mercati P2P ci siano quelli economici quando l'interazione con l'utente è alta (es. Airbnb), al contrario dimostrano che, quando l'interazione faccia a faccia è lieve sono preponderanti meccanismi sociali e morali (es. Car sharing). Da questo studio riscontriamo delle similarità con il seguente lavoro in quanto è uno dei primi studi dove viene evidenziata la differenza tra tipologie di fornitori, che nel nostro caso si traduce in differenze nelle tipologie di host.

Le idee portati avanti finora dalla letteratura riassumo due prospettive distinte: da un lato, l'analisi delle panoramiche imprenditoriali di natura individuale – studi microlivello- dall'altra le considerazioni su aspetti geografici ed economici a livello nazionale-studi macro-livello. Quest'ultimi possono essere sintetizzati dall'incrocio di opportunità imprenditoriali e risorse sottoutilizzate su scala nazionale. Al contrario, il livello micro si concentra su prospettive e motivazioni prettamente personali e non generalizzabili. D'altra parte, quello che spesso viene omesso è il cosiddetto "meso-livello" in grado di associare prospettive locali con meccanismi individuali di ingresso nel mercato (Buzzacchi, Grilli, & Milone, 2021). Come descritto in precedenza ci sono tutti gli

ingredienti affinché si possa condurre uno studio sulle dinamiche imprenditoriali ad un livello di dettaglio specificato dai mercati locali segmentati geograficamente. Nel seguente studio si cerca di arrivare a delle conclusioni, più o meno prevedibili ex-ante, che siano in grado di arricchire la letteratura sui cluster territoriali definiti dai sistemi locali e le conseguenti dinamiche di mercato settorializzato. Per farlo, come detto, ci forniamo dei dati relativi al mercato degli alloggi a breve termine di Airbnb, il quale ci permette di lavorare con un mix di condizioni propedeutiche allo studio. In primo luogo, il mercato degli alloggi a breve termine rispetta i vincoli e le caratteristiche dei mercati locali, fornendo anche differenti forme di imprenditorialità (Imprenditori Gig, Middlemen e Grandi imprese) (Buzzacchi, Grilli, & Milone, 2021). Successivamente, tale settore risulta segmentato geograficamente, il che ci fornisce una dinamica sul differente livello dei costi e quindi della concorrenza, che sono variabili risolutive ai fini della determinazione di dinamiche imprenditoriali di ingresso nel mercato.

Ulteriormente, la scelta di utilizzo dei sistemi locali del lavoro come unità di misura ci consente di superare un problema di identificazione delle relazione economiche affrontato da alcuni autori. (Rangone, 2002) aveva affrontano questo tema definendo un "espediente" la tecnica di definire a priori l'ampiezza dei mercati identificandoli con un livello amministrativo (es. comuni e province) per poter valutare alcune differenze con altre aree segmentate. Secondo l'autore, infatti, utilizzando questo metodo non si riesce a formulare una individuazione empirica dell'incrocio tra domanda e offerta.

#### 5.2 SVILUPPO DELLE IPOTESI: HP1-HP2A-HP2B

Nel corso degli anni la letteratura ha cercato di individuare i principali effetti dell'ingresso di Airbnb sui mercati tradizionali. Alcuni autori sostengono come il mercato degli alloggi a breve termine sia in grado di stimolare la domanda anche per le strutture tradizionali (Li & Srinivasan, 2019). Anche (Adamiak & Szyda, 2019) sostengono come la crescente domanda di alloggi su Airbnb e le conseguenti entrate incoraggino la crescita di offerta nei territori dove la domanda è elevata, il che farebbe aumentare la concentrazione di attività in luoghi già consolidati turisticamente. Al contrario, la domanda turistica per gli hotel tradizionali può essere negativamente correlata con la crescita delle piattaforme *P2P*, in particolare sono gli hotel di fascia bassa ad entrare in

concorrenza, i quali non riescono a differenziare l'offerta rispetto agli hotel di fascia alta e conseguentemente vengono "scioccati e sostituti" (Gutiérrez, García-Palomares, Romanillos, & Salas-Olmedo, 2017). Tesi sostenuta anche da (Dogru, Mody, & al., 2020) i quali affermano che: "Il fatto che la maggior parte dell'offerta di Airbnb (70,1%) comprenda intere case, in particolare quelle offerte da host multi-unità, intensifica la concorrenza del prodotto per le società alberghiere".

Entrando nel merito delle variabili strutturali del mercato che potrebbero incidere sull'ingresso di nuovi imprenditori, prendiamo come riferimento da subito la variabilità della domanda di alloggi. Non è ancora chiaro come gli individui riescano ad ottenere informazioni rilevanti riguardo l'espansione della domanda turistica in un determinato territorio, ma ipotizziamo che questo avvenga nella misura in cui ogni mercato locale riesce a sviluppare effetti di informazione dinamica. Supportati anche dagli studi di (Geroski, 1995), che considera le variabili di costi e domanda nello studio sui nuovi ingressi, quello che ci si aspetta è che ad una maggiore domanda possa corrispondere una maggiore opportunità di ottenere un profitto. Tuttavia, va aggiunto a questa considerazione che il lato dell'offerta imprenditoriale è differenziato orizzontalmente, con host che entrano sul mercato con risorse e competenze diverse. Questo porta ad interrogarsi sull'aspetto dei costi, che tendenzialmente risultano molto bassi in ingresso per gli imprenditori occasionali; altrettanto non può essere confermato per gli imprenditori professionisti, i quali effettuano una concorrenza più diretta agli hotel di fascia alta dal momento che propongono un'offerta con servizi e peculiarità differenti. (Lerner & Haber, 2001) in uno studio sui fattori di performance delle iniziative turistiche, identificano come alte capacità manageriali si associno ad elevati indicatori di performance, sottolineando come la mancanza di competenze gestionali degli imprenditori non ne facilita il successo, e dimostrando come questo sia vero specialmente nelle piccole imprese (come già discusso in sezione 3.5).

Come dibattuto in precedenza, la letteratura non è riuscita ancora a stabilire se il mercato alberghiero tradizionale risenta positivamente o negativamente del mercato degli alloggi *P2P.* Probabilmente questo è dovuto proprio a questa differenza nell'offerta

che gli autori non hanno in qualche modo tenuto in considerazione. <sup>10</sup> Gli host multiproprietari sembrano tendenzialmente più sensibili alle opportunità di mercato in settori turistici di fascia medio-alta, questo sia in termini di disponibilità a pagare dei consumatori sia in termini di offerta (qualità di soggiorno più elevata). Questo non è altrettanto vero per gli imprenditori gig, i quali sono principalmente veicolati all'ingresso dalla struttura dei costi relativamente bassa. In questo si considera anche l'effetto preponderante della capacità di sfruttare risorse sottoutilizzate piuttosto che trovarne di nuove (capitale). Queste considerazioni vengono sostenute anche da (Gerwe, Silva, & Castro, 2022) i quali affermano che la crescita e le risorse sottoutilizzate aumentano l'accesso alla piattaforma. In altre parole, gli imprenditori di tipo gig avrebbero potenzialmente bisogno solo di piccoli investimenti su risorse non sfruttate (appartamenti, interi o condivisi) per entrare sul mercato; al contrario, come dimostrato anche da (Xie & Mao, 2017), gli host multiproprietari hanno bisogno di maggiori risorse in termini di tempo e capitale per mantenere un livello di qualità elevato su tutte le proprietà. Sebbene non sia stata presa in analisi la differenza tra gli imprenditori, alcuni studi affermano che gli host devono sostenere degli investimenti piuttosto bassi (Gutiérrez, García-Palomares, Romanillos, & Salas-Olmedo, 2017), in virtù anche dei costi fissi primari (ad esempio fitto, elettricità, utenze varie) che risultano spesso già coperti; a questo spesso si aggiunge che gli imprenditori di Airbnb hanno generalmente costi di manodopera minimi o nulli (Guttentag, 2015).

Appoggiandoci ai seguenti studi e alle analisi riportate in precedenza, ci proponiamo di fornire un numero cospicuo di ipotesi in grado di racchiudere tutte le osservazioni finora portate alla luce. Di seguito si riporta la schematizzazione delle ipotesi da testare.

- HP1: Una maggiore domanda turistica a livello di mercato locale influenza positivamente l'ingresso di nuovi imprenditori;
- HP2a: Bassi costi di ingresso nel mercato, determinati da un numero più elevato di abitazioni non occupate e da alti tassi di disoccupazione, influiscono positivamente

<sup>&</sup>lt;sup>10</sup> Ad esempio (Zervas, Proserpio, & Byers, 2017). sostengono un impatto negativo di Airbnb sugli hotel tradizionali. Contrariamente (Dogru, Mody, & al., 2020) sostengono invece che: "Nel caso di host multi-unità, ci sono meno differenze tra l'offerta di prodotti dell'host Airbnb e quella dell'hotel vicino che offre anche camere singole all'interno di un unico edificio".

- sull'ingresso di imprenditori non professionisti (ad esempio, gig imprenditori) piuttosto che l'ingresso di quelli professionali (cioè, i middlemen);
- HP2b: L'alta specializzazione del settore ricettivo influisce positivamente sull'ingresso di imprenditori professionisti (ad esempio, middlemen). Piuttosto che l'ingresso di quelli non professionali (cioè, gli imprenditori gig);

# 5.3 SVILUPPO DELLE IPOTESI: HP3A-HP3B-HP3C

Una seconda fase dello studio ci consente di approfondire i temi relativi a concorrenza, informazione e concentrazione; seguono dunque ulteriori ipotesi del modello (HP3a;HP3b;HP3c) che verranno, come in precedenza, argomentate e schematizzate.

Per poter argomentare queste ulteriori ipotesi è necessaria una breve analisi sulle principali forze (variabili strutturali di mercato) che agiscono in fase di ingresso di nuove imprenditori e i conseguenti effetti. Uno dei primi passi che un imprenditore intraprende nel suo (potenziale) processo di ingresso nel mercato è quello di riconoscere una opportunità. Riferendosi alla teoria classica sull'imprenditorialità (vedi sezione 1.1) una opportunità può essere definita come la possibilità di rispondere ad una esigenza del mercato tramite una combinazione creative di risorse (spesso sottoutilizzate) (Kirzner, 1973). Elementi come la necessità del mercato e le risorse sottoutilizzate, vengono visti come tipologie di opportunità alle quali l'imprenditore può fare riferimento (Ardichvili, Cardozo, & Ray, A theory of entrepreneurial opportunity identification and development, 2003). Tuttavia, alcuni sostengono che il riconoscimento di opportunità imprenditoriali è preceduto da una fase di raccolta di informazioni (Ray & Cardozo, 1996). La raccolta di informazione può essere di vario tipo: articoli, riviste, social network e infine interazione con una vasta rete di persone. Nel contesto imprenditoriale, l'informazione ha una connotazione fortemente locale (Weiler, Hog, & Fan, 2006). Questo aspetto, in linea con il nostro modello, viene ampiamente dibattuto in alcuni studi (Bunten, Weiler, & al., 2015). Nelle loro analisi gli autori sottolineano come i progetti imprenditoriali (di successo e non) arricchiscono i fornitori locali sulle opportunità del mercato, in questo modo gli individui raccolgono informazioni che saranno in grado di sfruttare a supporto delle proprie decisioni sulle pratiche di ingresso. Pertanto, le differenze territoriali che esistono tra i vari mercati portano a delle "asimmetrie informative geografiche", che conducono successivamente

ad uno sviluppo economico differente tra i territori, il che rafforza la convinzione che le variabili dei mercati locali siano rilevanti negli studi sull'imprenditorialità (vedi cap.4). A tal proposito, supponiamo che una maggiore variabilità degli ingressi e delle uscite sul mercato degli alloggi a breve termine (Airbnb) possa condurre le persone ad arricchirsi di informazioni sulle eventuali scelte di entrata nel mercato. Ergo, ipotizziamo che una maggiore concentrazione (in termini di offerta) rende i proprietari maggiormente predisposti all'ingresso.

D'altra parte, fiancheggiamo nell'analisi le variabili di concorrenza e agglomerazione <sup>11</sup>. In primo luogo, ipotizziamo che ci possano essere dei vantaggi nella scelta di posizionarsi laddove la concentrazione di mercato è già di per sé rilevante. I potenziali driver di scelta includono, tra gli altri, una condivisione di infrastrutture per le imprese geograficamente concentrate, esternalità informative sulla domanda (vedi sopra) e una diminuzione dei costi di informazione, che aumentano la domanda in un determinato territorio (Graitson, 1982) e (Weber, 1929). Con riferimento al settore degli alloggi a breve termine in modalità di interazione P2P si ritiene possa essere rilevante quest'ultimo spunto, in quanto renderebbe più efficaci le tecniche di web scraping 12 da parte degli attori interessati. Tuttavia, questi effetti potrebbero essere spenti se il grado di competizione, basato sulla dimensione e sulle caratteristiche dell'offerta, risultasse elevato. (Baum & Haveman, 1997) approfondiscono questi temi sottolineando come i domini delle organizzazioni possono risultare più o meno sovrapponibili e, di conseguenza, in grado di genere un grado più basso o più alto di competizione. In particolare, gli autori affrontano il trade-off tra competizione e concentrazione, sostenendo che le due forze possono prevalere l'una sull'altra a seconda del contesto. Quando la domanda è incerta gli imprenditori accettano il costo di una concorrenza localizzata a favore dei benefici derivanti dalle economie di agglomerazione insistenti in una determinata località. Al contrario, quando i costi di trasferimento sono bassi è auspicabile sottrarsi dalla concorrenza geografica. In linea generale, la letteratura ha diffusamente esaminato le dinamiche di ingresso fondate sui compromessi tra numero

<sup>&</sup>lt;sup>11</sup> "Economia di agglomerazione" - Con tale espressione si fa riferimento ai benefici di carattere economico che possono derivare per un'impresa dal localizzare le proprie attività in prossimità di quelle di altre imprese (Dizionari online Treccani- Economia e finanza).

<sup>&</sup>lt;sup>12</sup> È una tecnica informatica di estrazione di dati da un sito web per mezzo di programmi software. Di solito, tali programmi simulano la navigazione umana nel World Wide Web (https://it.wikipedia.org/wiki/Web\_scraping).

di incumbent (concorrenza) e grado di differenziazione dell'offerta (varietà di prodotto), vedi (Spence, 1976) e (Whimton & Mankiw, 1986)<sup>13</sup>. Da questi articoli si ricava che, per livelli di concentrazione elevati, nonostante l'incentivo a differenziare, l'ingresso per alcuni imprenditori potrebbe essere scoraggiato. Al contrario, per bassi livelli di concentrazione, la concorrenza potrebbe essere trascurabile sulle dinamiche di ingresso, favorendo gli effetti di agglomerazione e le conseguenti esternalità (Buzzacchi, Grilli, & Milone, 2021).

Tuttavia, investigando le considerazioni fatte nei capitoli precedenti (sez. 3.5 e 4.4.), includiamo nelle analisi le differenze tra le tipologie di imprenditori (occasionali e professionisti) i quali non sostengono gli stessi costi di ingresso e di informazione, specialmente per via delle loro capacità imprenditoriali e delle loro risorse. Per queste ragioni il comportamento degli individui dinanzi ai meccanismi di concorrenza e concentrazione è differente, nella misura in cui sono i middleman ad essere maggiormente sensibili a questi esiti. Con queste analisi non escludiamo la possibilità che gli imprenditori di tipo gig, risentendo meno di questi effetti, non concludano il loro processo di ingresso facendo segnare un numero di imprese più elevato di quello desiderabile socialmente. Ipotesi supportata anche da (Geroski, 1995), il quale sostiene che l'ingresso su piccola scala e quello definito "de novo" siano più semplici e comuni di ingressi su larga scala e per diversificazione. Pertanto, si ritiene che il legame tra concentrazione ed ingressi, per gli imprenditori professionisti, segua un andamento non lineare. In particolare, per livelli di concentrazione medio-bassi il numero di imprenditori professionisti aumenta, fino al raggiungimento di un valore soglia dopo il quale il continuo aumento di concentrazione scoraggia gli ingressi.

Con riferimento alle seguenti considerazioni formuliamo le seguenti ipotesi.

HP3a: Una maggiore concentrazione dell'industria a livello di mercato locale favorisce l'entrata di nuovi imprenditori;

<sup>&</sup>lt;sup>13</sup> Gli autori analizzano le forze della differenziazione di prodotto e del "furto d'affari". Sottolineano come a differenza di un mercato con prodotto omogeneo, il fenomeno degli ingressi eccessivi non è così marcato. La spiegazione che viene data riguarda la mancata cattura di profitti del concorrente marginale, che aumenta la varietà di prodotti creando surplus sociale, che però non riesce sempre a catturare. Concludendo come nei mercati differenziati l'inclinazione all'ingresso risulta poco chiara (Mankiw & Whinston, 1986).

- HP3b: Il legame tra concorrenza e concentrazione influisce per lo più sull'ingresso di imprenditori professionisti (cioè, middlemen) piuttosto che di imprenditori non professionisti;
- HP3c: la relazione tra la concentrazione e l'ingresso degli imprenditori professionali è crescente linearmente ma decrescente per livelli elevati di concentrazione;

6. IL DATABASE

#### 6.1 DATI E METODO DI RICERCA

Lo studio condotto si è basato su un database fornito da AirDna<sup>14</sup>, una società privata che opera esternamente ad Airbnb, la quale effettua un servizio di *data scraping* in grado rilevare quotidianamente le prestazioni di oltre 10 milioni di proprietà in quasi 120.000 mercati mondiali. Nello specifico, per ogni property, la piattaforma è in grado di restituire rapporti giornalieri e mensili con all'interno dei dati in grado di supportare analisi statistiche del settore ricettivo del turismo. Con tale strumento si possono ottenere informazioni sull'andamento dei mercati e capire l'evoluzione del settore degli alloggi e breve termine.

Nel seguente lavoro sono stati forniti i dati relativi agli accomodamenti di Airbnb riferiti all'intero territorio nazionale in un intervallo di tempo definito. Segue, che la struttura del dataset è formata secondo più dimensioni.

- ❖ Temporale. Sono state osservate numerose variabili partendo dal giorno 01/06/2008 fino ad arrivare al giorno 01/12/2019. Nel dettaglio, l'unità minima di scomposizione temporale è quella relativa ai mesi. Questo ci ha consentito di semplificare le analisi, andando ad aggregare i dati in unità di tempo più ampie;
- ❖ Spaziale. Le variabili in dotazione sono state preventivamente raggruppate seguendo l'unità di misura funzionale definita in precedenza, quali i sistemi locali del lavoro (SLL); L'organizzazione e la lettura del file segue una doppia dimensione: lungo le righe sono riportate tutte le osservazioni, sia in termini temporali (dal primo all'ultimo mese nell'intervallo di tempo) sia in termini spaziali (suddivisione delle osservazioni per SLL). In altre parole, ne consegue che per ogni SLL ad ogni istante t siamo a conoscenza di osservazioni puntuali per ciascuna variabile. Nello specifico le variabili di input del dataset sono riportate in sezione 10.2 negli allegati.

Tutte le variabili riportate sono *time-variant*, per ogni istante t abbiamo una osservazione differente. Rispettando le ipotesi fatte precedentemente (vedi Cap.3-sez. 3.5) si nota come le variabili riferite agli imprenditori siano suddivise seguendo l'ulteriore dimensione relativa al numero di annunci gestiti. Per semplicità da questo momento chiameremo gli imprenditori che gestiscono 1-2 annunci GIG, gli imprenditori

-

<sup>&</sup>lt;sup>14</sup> https://www.airdna.co/

che gestiscono 3-10 annunci MID (abbreviazione di "middleman") e OTHER gli imprenditori che gestiscono più di 10 alloggi (grandi imprese).

### 6.2 MODIFICHE AL DATABASE: VARIABILI SOCIOECONOMICHE

Supportati dalle analisi inerenti alle eterogeneità territoriali del mercato degli alloggi (vedi Cap.4), e come dibattuto nella stesura delle ipotesi da testare (vedi Cap. 5), ai fini del lavoro sono state incluse delle variabili socioeconomiche che potrebbero essere rilevanti in merito alle correlazioni con i meccanismi di ingresso sul mercato degli imprenditori. Tuttavia, si chiarisce preventivamente, che l'insieme delle variabili socioeconomiche incluse nel modello non vuole in alcun modo colmare tutte le possibili grandezze che spiegano il modello e che determinano l'ingresso. È giusto sottolineare come potrebbero attualmente esserci ulteriori variabili non considerate che pesano sulle dinamiche sotto osservazione; per tali ragioni, l'assunzione che viene fatta riguarda la capacità di influenza di ciascuna variabile. In altri termini, si è deciso di includere nel modello tutte quelle variabili che, differenziandosi sul territorio nazionale, potessero influenzare con buona approssimazione le correlazioni indagate. Di seguito, vengono elencate, discusse e analizzate tutte le variabili socioeconomiche aggiunte al modello, specificandone la fonte e il metodo di utilizzo.

➤ Tasso di disoccupazione [UnempRate<sub>Sl</sub>]. Seguendo le indicazioni dell'ISTAT (Istituto Nazionale di Statistica), la rilevazione campionaria sulla forza lavoro rappresenta la principale informazione statistica sul mercato del lavoro italiano (ISTAT-Nota metodologica 2011). Con riferimento al XV censimento ISTAT della popolazione (2011) si è deciso di considerare nell'analisi il tasso di disoccupazione espresso come il rapporto (in termini percentuali) tra le persone in cerca di occupazione e il totale della forza lavoro.¹¹⁵ In riferimento ai fini della ricerca, il dato è stato rilevato e riportato sulla base unitaria dei sistemi locali del lavoro (SLL).

 $UnempRate_{Sl} = \frac{Numero\ di\ persone\ in\ cerca\ di\ occupazione}{Numero\ di\ persone\ in\ cerca\ di\ occupazione\ +\ Numero\ di\ occupati}$ 

\_

<sup>&</sup>lt;sup>15</sup> La "Forza lavoro" di un paese viene definita come il numero totale di lavoratori, potenziali e no, che insistono su un territorio. In particolare, viene calcolata come la somma di due fattori: numero di persone in cerca di occupazione e il totale occupati. (Istat-Statistiche censimento della popolazione)

Considerazioni. Si ipotizza che la variazione del tasso di occupazione possa incidere sulla decisione degli individui di intraprendere un percorso professionale nel mercato degli alloggi a breve termine. In particolare, l'ipotesi è che un aumento del tasso di disoccupazione sia positivamente correlato ad una maggiore propensione delle persone ad entrare nel mercato di Airbnb. Ipotesi supportata dalle considerazioni dibattute precedentemente sulle opportunità imprenditoriali (*part-time e full-time*) che la piattaforme offre (vedi Cap. 2-3-4).

 $\blacktriangleright$  Numero di abitazioni non occupate [UnoccupiedDwellings\_S\_1]. Anche questa variabile è stata fornita dall'Istituto Nazionale di Statistica (ISTAT) con riferimento all'ultimo censimento della popolazione del 2011 (XV) ed è definita per ciascun sistema locale (SLL). La variabile, essendo time-invariant, viene assunta costante per ciascun SLL in tutti gli intervalli temporali analizzati.

Considerazioni. In primo luogo, il numero di abitazioni non occupate interpreta con buona approssimazione il fattore dell'impiego di risorse sottoutilizzate nelle piattaforme *P2P* di *Sharing economy* (vedi Cap. 2). In secondo luogo, si ipotizza che all'aumentare delle residenze non occupate, il numero e la disponibilità di risorse aumenti e, di conseguenza, ci si aspetta una maggiore attitudine degli imprenditori ad entrare. Nonostante le ipotesi fatte, si è consapevoli che questa variabile possa non prendere in considerazione i casi in cui gli imprenditori, specialmente i quelli di tipo gig, mettono a disposizione solo parte del loro appartamento di residenza in modalità temporanea agli ospiti. Tuttavia, così come il tasso di disoccupazione, rappresenta una buona proxy in grado di individuare il costo opportunità degli imprenditori (*HP2a*).

ightharpoonup Altitudine media [Altitude<sub>Sl</sub>]. L'altitudine dei territori, che siano essi comuni o province, viene definita dall'ISTAT attraverso un metodo di rilevazione definito: "Zonal statistics as table di ARCGIS 10.1"  $^{16}$ . Si è partiti dai dati relativi alle altitudini medie di tutti i comuni italiani calcolati dall'ISTAT nel 2011. Il database forniva i valori medi dei comuni con le relative deviazioni standard e i range di intervallo tra valore massimo e valore minimo di

<sup>16</sup> Per approfondimenti-Metodologia per l'estrazione delle altitudini dal DEM ISPRA 20\*20m- Nota tecnica ISTAT.

ciascun comune. Attraverso una analisi quantitativa sono stati raggruppati tutti i comuni appartenenti ad un determinato sistema locale del lavoro utilizzando i database ISTAT sulla composizione di ciascun SLL. Successivamente, si è calcolato il valor medio tra i valori puntuali dei singoli comuni per ciascun SLL. Tramite questa modalità di lavoro si è riusciti ad ottenere un valore molto plausibile dell'altitudine media di ogni SLL che si avvicina in maniera rilevante ai valori medi delle singole province. Si è considerato nelle ipotesi che tali assunzioni potrebbero non avere un grado di precisione massima, sebbene per gli scopi di questo lavoro è considerato sufficiente questo grado di approssimazione.

- ➢ Proporzione di zone costiere [SeaRate<sub>Sl</sub>]. L'ISTAT definisce "zone costiere" quei comuni ubicati vicino la costa che posseggono determinate peculiarità. Questa variabile indica il rapporto, espresso in termini percentuali, tra il numero di comuni di un dato SLL che sono definiti "zona costiera" e il numero totale di comuni appartenenti ad un SLL. La definizione di comune costiero viene data dall'ISTAT utilizzando il seguente metodo.
- i. 1= Zone costiere, comuni situati sulla costa o avente almeno il 50 % della superficie a una distanza dal mare inferiore a 10 km;
- ii. 0= Zone non costiere;

Di seguito la formula utilizzata all'interno del modello.

$$PercSeaside_{Sl} = \frac{Numero\ di\ comuni\ costieri_{Sl}}{Numero\ totale\ di\ comuni_{Sl}}$$

Considerazioni. Sia l'altitudine media che la proporzione di comuni costieri per SLL servono per assicurarsi l'inclusione nel modello delle disuguaglianze territoriali in termini geografici che caratterizzano i mercati locali. Come discusso in precedenza, i mercati distribuiti localmente godono di caratteristiche intrinseche non modificabili nel tempo che influenzano le dinamiche imprenditoriali (Gerwe, Silva, & Castro, 2022).

Numero di letti d'albergo. [Bedhotels<sub>Sl</sub>]. La variabile rappresenta il numero totale dei letti offerti dalle strutture ricettive alberghiere in ogni SLL all'istante t. Per semplicità si è scelto di lavorare con i dati relativi al 2010, (fotografando il settore turistico prima dell'ingresso del mercato di Airbnb) così da poter incrociare anche le informazioni sugli

effettivi livelli di competizioni in termini di capacità del settore alberghiero. In breve, i risultati sono stati ottenuti a seguito di un lavoro di pulizia e aggregazione eseguito a partire da due database: da un lato le informazioni relative alla capacità degli esercizi ricettivi catalogati per tipologia (numero di stelle), dall'altro il dataset relativo ai sistemi locali del lavoro e alla loro composizione. Nell'aggregazione dei dati si è partiti dal sommare il numero di letti per ciascun comune, riunendo i dati diversificati per categoria di hotel (da 1 a 5 stelle-comprendendo anche gli esercizi turistici). Successivamente, si è assegnato a ciascun sistema locale il numero di letti pari alla somma dei letti totali sull'intero dominio comunale.

Considerazioni. L'idea è che la capacità ricettiva di ciascun territorio possa influenzare la decisione degli imprenditori sulle pratiche di ingresso. In particolare, come discusso dalla letteratura (vedi Cap. 5), gli effetti di concentrazione e agglomerazione possono favorire o sfavorire gli effetti preponderanti della competizione spaziale sul territorio.

- Numero di esercizi ricettivi per tipologia [DummyHotels<sub>Sl</sub>]. L'utilizzo di questa variabile ha come obiettivo l'inserimento nel modello dell'alta (o bassa) specializzazione del settore ricettivo insistente su un determinato SLL. Il primo passo è stato la realizzazione del di una tabella in grado di restituire il numero di strutture ricettive che caratterizza il singolo comune; in seguito, si è passati ad aggregare i valori ottenuti sulla base dei sistemi locali, ottenendo così i diversi livelli delle differenti tipologie di strutture su ciascun territorio. Per poter effettivamente testare se l'alta specializzazione del settore alberghiero incide sui risultati del modello, si è deciso di costruire una variabile dummy sulla proporzione degli esercizi ad alta specializzazione, in termini di numero di stelle (4/5/5L), rispetto al totale. In altre parole, la variabile può assumere solo due valori. Vedi sez. 10.2 per il calcolo per ciascun SLL della variabile.
- i. 1= se la proporzione, in termini percentuali, del numero di esercizi altamente specializzati sul totale è maggiore del valore mediano relativo a quel sistema locale;
- ii. 0= altrimenti;

% Esercizi specializzati<sub>Sl</sub> =  $\frac{N.esercizi\ 5S_{Sl} + N.esercizi\ 4S_{Sl} + N.esercizi\ 5L_{Sl}}{N.totale\ di\ esercizi\ ricettivi - N.esercizi\ turistici_{Sl}}$ 

A differenza delle analisi fatte per la variabile  $Bedhotels_{Sl}$ , non prendiamo in considerazione gli esercizi turistici per non rischiare la creazione di errori di valutazione di scala.

Considerazioni. Si ipotizza che il livello di *market share* degli alloggi di lusso possa essere considerata una buona proxy del livello di qualità dell'offerta nel SLL. Come teorizzato nelle ipotesi, ci aspettiamo che l'alta specializzazione del settore ricettivo influisca per di più sugli imprenditori professionisti piuttosto che su imprenditori occasionali. Per giunta, attendiamo la prova che gli imprenditori di tipo gig non siano scoraggiati da un settore alberghiero robusto, confermando le teorie sui costi di ingresso e sulle capacità manageriali ipotizzate in precedenza (vedi Cap.5-sez. 5.3).

 $\triangleright$  Prezzo medio d'affitto degli alloggi. [AVGRent€/sqM Month<sub>Sl</sub>]. Questo variabile viene calcolata con cadenza semestrale dall'osservatorio del Mercato Immobiliare, il quale fornisce i dati relativi al costo di affitto degli alloggi a metro quadro. Così come esaminato per le altre variabili, idealmente dovremmo poter aggregare i dati a livello comunale, per poterli mediare e successivamente riportare per ciascun SLL. Tuttavia, il database dell'Osservatorio del Mercato Immobiliare (OMI) <sup>17</sup>consente solo una estrazione puntuale comune per comune, ricerca molto dispendiosa in termini di tempo. Per questo motivo, si è passati all'assunzione che i prezzi degli affitti possano ricalcare i prezzi medi di ciascuna provincia. Illustriamo di seguito due differenti metodologie di calcolo e aggregazione spiegandone i limiti e la scelta. In primo luogo, c'è da rimarcare che questa ipotesi, indipendentemente dal metodo, porta ad una approssimazione che potrebbe essere messa in discussione; difatti, la griglia territoriale delle province ha un grado di sovrapposizione con la griglia dei sistemi locali (in termini di composizione) che non è massimo, questo può voler dire che nel calcolo del prezzo di affitto medio al metro quadro per la provincia p potrebbe ricadere una osservazione comunale che però non fa parte del sistema locale del lavoro di quel medesimo territorio. Nel dettaglio, il primo metodo prevede la raccolta dei dati su scala provinciale con la finalità di richiamare per ciascun SLL il valore medio della singola provincia nel

-

<sup>&</sup>lt;sup>17</sup> I dati dell'OMI sono forniti ad un livello di granulosità territoriale definite zone OMI con una frequenza semestrale. Questi dati forniscono il canone di locazione mensile minimo e massimo per metro quadro per diverse tipologie di unità abitative e commerciali.

caso in cui il sistema locale fosse mono-provincia; in alternativa, in caso di sistemi locali multi-provincia l'idea è quella di eseguire una media pesata (ad es. con il numero di residenti o con la superfice) tra i valori. Il secondo metodo prevede che ad ogni sistema locale del lavoro venga attribuito il valore della provincia più influente in termini di prezzo/mq, inglobando nella scelta anche variabili demografiche (ad es. densità abitativa, estensione, e numero di abitanti); in effetti, il calcolo della media tra valori multi-provincia risentirebbe comunque del prezzo degli affitti più elevato. Per questo motivo, si è deciso di utilizzare il primo metodo.

Considerazioni. Si ipotizza che l'andamento del prezzo degli affitti al metro quadro possa influenzare le scelte imprenditoriali, così come introdotto dagli studi di (Gerwe, Silva, & Castro, 2022).

#### 6.4 PULIZIA DEL DATASET

Il database di partenza fornito era costituito da 580 SLL. Tuttavia, in alcune analisi di corrispondenza e aggregazione, ci si è imbattuti in piccole discrepanze tra i dati, dovute a periodi temporali di osservazione diversi. In particolare, la mutevole mappatura degli SLL nel tempo ha portato ad una ricalibrazione di alcuni comuni e sistemi locali, in modo da poter allineare i dati alle corrispondenze socioeconomiche trovate. Alla fine di questo piccolo passaggio di pulizia si è deciso di lavorare con un numero di sistemi locali del lavoro pari a 578. Discutiamo brevemente gli eventi principalmente rilevanti di pulizia del dataset.

Pulizia abitazioni non occupate. Nelle analisi comparative tra il dataset di Airdna e quello dell'ISTAT si è rilevato un numero differente di SLL. Le motivazioni potrebbero essere di natura socioeconomica e intrinseche ai cluster dei sistemi locali che sono in continuo mutamento (vedi Cap.4 -sez.4.1). All'interno del database sul numero di abitazioni non occupate del 2011 si sono riscontrati dei sistemi locali non riportati nel nostro dataset, si ipotizza che siano stati raggruppati ad altri SLL. Per tali ragioni non li abbiamo potuti includere nell'analisi. All'interno del nostro dataset invece è stata riscontrata una discordanza sui comuni di *Corigliano Calabro e Rossano*. Nel dataset ISTAT gli SLL erano scorporati, mentre nel nostro dataset raggruppati in un unico sistema locale. Si è dunque deciso di eliminare dal dataset questo SLL per non rischiare eventuali errori di sovrapposizione;

✓ Ulteriori controlli sono stati effettuati sulle differenze nella composizione dei sistemi locali tra il 2008 e il 2019. È emerso che la maggior parte dei sistemi locali mantiene la sua composizione nell'intervallo di tempo esaminato. In particolare, si sono riscontrate piccole differenze sul numero di comuni che compongono un sistema locale attribuibili ai mutevoli cambiamenti delle dinamiche produttive territoriali (vedi sez. 4.1). Tuttavia, ai fini delle indagini si è deciso di mantenere la composizione presente nel dataset iniziale. Queste peculiarità di costruzione del modello rimangono intrinseche nella scelta di adottare i sistemi locali del lavoro come unità di misura territoriale. Pertanto, a differenza dei normali riferimenti amministrativi (comuni e province), è comune la pratica di ricalibrare i dati in virtù del loro mutevole aspetto temporale.

#### 6.5 COSTRUZIONE DELLA DOMANDA

Ai fini di ricerca è utile riservare una parte di questo elaborato alla costruzione della domanda turistica. Nel capitolo relativo alle ipotesi da testare si è discusso di come la letteratura abbia affrontato numerosi studi in cui veniva presa in considerazione il dato relativo alla domanda di alloggi (che siano essi legati alle strutture ricettive alberghiere o meno) (Geroski, 1995); (Page & Ateljevic, 2009). Nel presente lavoro siamo a conoscenza del numero di notti prenotate e del numero di notti sfitte per ciascun intervallo t in un dato SLL. Per la costruzione della domanda di alloggi ci si è basati su un calcolo cumulativo del numero di notti prenotate dai clienti su Airbnb, fondando l'ipotesi che la domanda possa essere descritta da un intervallo cumulativo nell'intorno di t. Si illustra di seguito il calcolo.

$$DOMANDA_{Sl/t}^{L} = \frac{\sum_{t+L}^{i=t-L} Numero \ di \ notti \ prenotate_{Sl/t}}{2L+1}$$

L'intervallo (2L+1) rappresenta la dimensione dell'intorno al tempo t. Questa costruzione risentirà sia delle notti domandate nei mesi precedenti sia di quelle successive. Questa approssimazione può considerarsi ragionevolmente valida anche in virtù delle modalità di prenotazione dei clienti che avvengono con largo anticipo rispetto alla data effettiva di soggiorno in una località. Occorre però rimarcare che, nel database di partenza ritroviamo la maggior parte dei dati che coprono l'intero periodo che va dal 01/06/2008 al 31/12/2019, mentre i dati relativi alle notti sfitte e a quelle prenotate coprono solo il

periodo che va dal 01/01/2017 al 31/12/2019. Gli estremi inferiori degli intervalli di tempo t nell'SLL risultano nulli, per tale ragione si è dovuto ricalibrare il valore di L a seconda del mese di calcolo per ciascun sistema locale: per poterlo fare si è deciso di ricalibrare la costruzione della domanda solo per quei valori e relativi intorni che lo rendessero necessario. Nel dettaglio ci si è mossi nel seguente modo:

- i. Per gli intervalli di intorno al primo valore di notti prenotate per un dato SLL si è
  deciso di considerare solo i mesi successivi e non quelli precedenti (poiché nulli).
   L'intervallo (2L+1) è stato considerato pari a 3;
- ii. Per gli intervalli di intorno al secondo valore di notti prenotate per un dato SLL si è deciso di considerare il primo mese precedente e i due mesi successivi. In questo caso si è deciso di prendere come valore di intervallo pari a 4;
- iii. Per gli intervalli di intorno al penultimo valore di notti prenotate per un dato SLL si è deciso di considerare i mesi precedenti e l'unico mese successivo. Anche qui il valore dell'intervallo è stato considerato pari a 4;
- iv. Per gli intervalli di intorno all'ultimo valore di notti prenotate per un dato SLL si è deciso di considerare solo i mesi precedenti e non quelli successivi (poiché non osservati). L'intervallo (2L+1) è stato preso pari a 3;
- v. Per tutti gli altri valori si è deciso di considerare un L pari a 2 e di conseguenza un valore di intervallo (2L+1) pari a 5;

#### 6.6 ANALISI DESCRITTIVA DEL DATABASE

Nel corso degli anni la letteratura ha utilizzato differenti modalità di aggregazione per poter studiare le differenze tra le tipologie di host attivi sulla piattaforma di Airbnb. (Dogru, Mody, & al., 2020) hanno effettuato uno studio sulle differenze tra gli host della piattaforma, separando in quartili le differenti tipologie di imprenditori a seconda del numero di listing attivi posseduti in un determinato territorio. Al contrario, altri autori fanno una unica distinzioni nel loro lavoro sottolineando che ci possono essere degli host definiti multiproprietario in virtù del numero di appartamenti gestiti (Gyódi, 2019). Questo lavoro di analisi prende spunto dagli studi di (Buzzacchi, Grilli, & Milone, 2021) che studiano il database a disposizione gerarchizzando gli imprenditori a seconda del numero esatto di annunci di cui è proprietario. Come specificato in precedenza (vedi Cap. 5) nel nostro lavoro ipotizziamo quindi una diversificazione dell'host in virtù di un

preciso numero di abitazioni gestite. Questo ci consente di poter fare delle analisi preliminari sul modello.

Una prima rappresentazione del fenomeno la possiamo osservare in tab. 2 nella quale sono riportati il numero degli imprenditori di differenti tipologie su un differente orizzonte temporale. Questa tabella si propone di riassumere i dati a livello nazionale.

|                           | ТЕМРО      | GIG [1-2]  | MID [3-10] | OTHER [11+] | тот        |
|---------------------------|------------|------------|------------|-------------|------------|
|                           | 2015-01-01 | 60.123,00  | 7.238,00   | 308,00      | 67.669,00  |
| Host                      | 2017-01-01 | 154.773,00 | 21.501,00  | 1.084,00    | 177.358,00 |
|                           | 2019-12-01 | 215.571,00 | 30.855,00  | 2.077,00    | 248.503,00 |
|                           | 2015-01-01 | 88,8%      | 10,7%      | 0,5%        | 100,0%     |
| Percentuale<br>degli host | 2017-01-01 | 87,3%      | 12,1%      | 0,6%        | 100,0%     |
|                           | 2019-12-01 | 86,7%      | 12,4%      | 0,8%        | 100,0%     |
|                           |            |            |            |             |            |

TABELLA 1: NUMERO DI HOST ATTIVI PER TIPOLOGIA SUL TERRITORIO

La tab.2 mostra il numero totale di host attivi in Italia in tre differenti intervalli di tempo. Le prime tre righe rappresentano i valori assoluti del numero di imprenditori per categoria, le ulteriori tre righe indicano il rapporto percentuale della singola categoria rispetto al totale. Si è scelto di inserire nell'analisi più istanti temporali per analizzare più nel dettaglio i trend e le prospettive di crescita del settore. In particolare, nel 2015 riscontriamo un numero totale di imprenditori sul mercato poco al di sotto delle 68.000 unità. Dopo esattamente 2 anni il numero totale degli imprenditori risulta essere quasi il triplo, poco inferiore alle 180.000 unità. Lo stesso trend si mantiene rilevante anche dopo ulteriori 3 anni di osservazione (01/12/2019), dove sebbene il multiplo di avanzamento del mercato non si sia riconfermato, si nota comunque una crescita importante. Alla fine del 2019 rileviamo poco meno di 250.000 unità di imprenditori sul mercato degli alloggi a breve termine. Nel 2015 in Italia, la maggior parte degli imprenditori gestisce 1-2 annunci (88,8%), al contrario una piccola parte gestisce dai 3-10 annunci (10,7%), mentre è quasi nullo il rate di coloro che gestiscono più di 10 annunci (0,5%). Il trend mostra come la percentuale di gig sia rimasta per grandi linee la

stessa, la piccola diminuzione che si osserva si ipotizza possa essere dovuta all'effetto preponderante del passaggio da gig e mid rispetto all'ingresso di nuovi gig sul totale. A tal proposito, notiamo un incremento della percentuale del numero di imprenditori che gestiscono dai 3-10 annunci (circa il 12,4% alla fine del 2019).

Una seguente scomposizione prevede la ripartizione del numero di imprenditori per tipo nel SLL al tempo t. In primo luogo, questa analisi ci consente di studiare le dimensioni degli ingressi localizzati e confrontarle a cavallo di periodi successivi. Per linearità con le analisi fatte in precedenza, effettuiamo un fotogramma in due momenti distinti: nel gennaio 2017 e nel dicembre 2019. Il numero totale di sistemi locali analizzati è pari a 578, distribuiti uniformemente. Si è a conoscenza dell'impossibilità di riportare tutti i dati per ciascun sistema locale; per tali ragioni si è deciso di riportare questa analisi solo per i primi 40 sistemi locali con il numero più alto di imprenditori totali. La classificazione è stata fatta ordinando in modalità decrescente il numero totali di imprenditori insistente su un sistema locale. Di seguito la tab.3 e la tab.4 riportano rispettivamente la suddivisione degli imprenditori al 2017 e la suddivisione degli imprenditori al 2019.

| 2017-01-01 | GIG    | MID    | OTHER | тот    |
|------------|--------|--------|-------|--------|
|            | [1-2]  | [3-10] | [11+] |        |
| Roma       | 13.223 | 2.527  | 147   | 15.897 |
| Milano     | 12.720 | 801    | 57    | 13.578 |
| Firenze    | 5.134  | 897    | 80    | 6.111  |
| Venezia    | 2.659  | 575    | 61    | 3.295  |
| Torino     | 2.935  | 201    | 6     | 3.142  |
| Napoli     | 2.635  | 468    | 13    | 3.116  |
| Palermo    | 2.601  | 428    | 11    | 3.040  |
| Bologna    | 2.358  | 237    | 5     | 2.600  |
| Cagliari   | 2.076  | 230    | 4     | 2.310  |
| La Spezia  | 1.802  | 299    | 11    | 2.112  |
| Trapani    | 1.610  | 331    | 14    | 1.955  |
| Catania    | 1.666  | 276    | 12    | 1.954  |

| Siracusa        | 1.611 | 229 | 9  | 1.849 |
|-----------------|-------|-----|----|-------|
| Lecce           | 1.445 | 216 | 9  | 1.670 |
| Ragusa          | 1.334 | 222 | 10 | 1.566 |
| Lucca           | 1.234 | 200 | 15 | 1.449 |
| Olbia           | 1.274 | 145 | 8  | 1.427 |
| Verona          | 1.123 | 198 | 9  | 1.330 |
| Siena           | 982   | 240 | 14 | 1.236 |
| Genova          | 1.108 | 100 | 1  | 1.209 |
| Arzachena       | 1.079 | 119 | 6  | 1.204 |
| Nardò           | 1.002 | 156 | 9  | 1.167 |
| Ostuni          | 1.035 | 106 | 5  | 1.146 |
| Viareggio       | 1.002 | 79  | 4  | 1.085 |
| Perugia         | 905   | 149 | 2  | 1.056 |
| Taormina        | 895   | 127 | 7  | 1.029 |
| Alghero         | 885   | 129 | 10 | 1.024 |
| Alcamo          | 776   | 165 | 13 | 954   |
| Sorrento        | 724   | 184 | 17 | 925   |
| Grosseto        | 800   | 99  | 6  | 905   |
| Como            | 799   | 91  | 7  | 897   |
| Muravera        | 796   | 53  | 4  | 853   |
| Menaggio        | 717   | 109 | 12 | 838   |
| Salerno         | 698   | 124 | 2  | 824   |
| Noto            | 718   | 89  | 5  | 812   |
| Gallipoli       | 674   | 120 | 15 | 809   |
| Marsala         | 695   | 104 | 3  | 802   |
| Bari            | 681   | 94  | -  | 775   |
| GaglianoDelCapo | 639   | 121 | 7  | 767   |
| Rapallo         | 717   | 44  | 4  | 765   |
|                 |       |     |    |       |

TABELLA 2:SUDDIVISIONE SPAZIALE DEGLI IMPRENDITORI PER TIPOLOGIA E PER NUMERO 01/01/2017

| 2019-12-01 | GIG    | MID    | OTHER | тот    |
|------------|--------|--------|-------|--------|
|            | [1-2]  | [3-10] | [11+] |        |
| Roma       | 14.351 | 2.670  | 188   | 17.209 |
| Milano     | 15.035 | 833    | 98    | 15.966 |
| Firenze    | 6.359  | 1.113  | 114   | 7.586  |
| Napoli     | 4.670  | 903    | 26    | 5.599  |
| Venezia    | 3.748  | 814    | 85    | 4.647  |
| Palermo    | 3.701  | 586    | 21    | 4.308  |
| Torino     | 3.699  | 267    | 13    | 3.979  |
| Cagliari   | 3.206  | 363    | 13    | 3.582  |
| Bologna    | 3.080  | 350    | 22    | 3.452  |
| La Spezia  | 2.919  | 444    | 21    | 3.384  |
| Catania    | 2.785  | 428    | 22    | 3.235  |
| Siracusa   | 2.511  | 373    | 15    | 2.899  |
| Trapani    | 2.089  | 475    | 18    | 2.582  |
| Olbia      | 1.945  | 204    | 24    | 2.173  |
| Lecce      | 1.865  | 288    | 15    | 2.168  |
| Ragusa     | 1.770  | 299    | 30    | 2.099  |
| Lucca      | 1.707  | 226    | 28    | 1.961  |
| Verona     | 1.610  | 305    | 20    | 1.935  |
| Arzachena  | 1.609  | 171    | 18    | 1.798  |
| Nardò      | 1.481  | 215    | 14    | 1.710  |
| Genova     | 1.553  | 134    | 7     | 1.694  |
| Viareggio  | 1.480  | 134    | 16    | 1.630  |
| Ostuni     | 1.460  | 155    | 15    | 1.630  |
| Siena      | 1.245  | 325    | 33    | 1.603  |
| Taormina   | 1.343  | 210    | 10    | 1.563  |
| Sorrento   | 1.184  | 324    | 30    | 1.538  |
| Bari       | 1.230  | 197    | 7     | 1.434  |
| Grosseto   | 1.149  | 166    | 16    | 1.331  |
| Alghero    | 1.181  | 140    | 6     | 1.327  |

| Perugia     | 1.108 | 193 | 13 | 1.314 |
|-------------|-------|-----|----|-------|
| Alcamo      | 1.062 | 223 | 26 | 1.311 |
| Muravera    | 1.177 | 105 | 14 | 1.296 |
| Menaggio    | 1.085 | 170 | 24 | 1.279 |
| Como        | 1.080 | 149 | 12 | 1.241 |
| Noto        | 1.011 | 165 | 7  | 1.183 |
| Salerno     | 976   | 200 | 3  | 1.179 |
| Castelsardo | 1.007 | 124 | 29 | 1.160 |
| Gallipoli   | 962   | 182 | 16 | 1160  |
| Ugento      | 948   | 179 | 16 | 1143  |
| Sassari     | 1.033 | 105 | 3  | 1.141 |
|             |       |     |    |       |

TABELLA 3: SUDDIVISIONE SPAZIALE DEGLI IMPRENDITORI PER TIPOLOGIA E PER NUMERO 01/12/2019

Una prima analisi può essere fatta intra gruppo nella misura in cui si ritengono rilevanti i territori che favoriscono un numero maggiore di ingressi. In particolare, nel 2017 si nota come le prime posizioni del ranking siano occupate dalle principali città italiane (in termini di numero di abitanti e superfice) <sup>18</sup>.

Nel dettaglio i primi dieci sistemi locali del lavoro con un numero maggiore di imprenditori ricalcano quasi esattamente la lista delle dieci città italiane più grandi in termini di popolazione, superfice e numero di turisti. Da uno studio sul turismo subordinato ai patrimoni culturali in Italia è infatti emerso come le principali città italiane in termini di arrivi e presenza turistiche siano: Roma, Milano, Firenze, Venezia, Bologna e Napoli, città da sempre riconosciute come le principali culle della cultura italiana (ISTAT, Turismo d'arte urbana, 2021). Questa indicazione è già interessante ai fini delle ipotesi formulate in precedenza (*HP1*). La cosa più interessante da notare è che, al di là delle prime posizioni dove troviamo le principali città italiane, nelle posizioni immediatamente successive ritroviamo delle località di natura prettamente turistica, di cui la prevalenza avente la caratteristica di zona costiera (vedi. Sez. 6.2). Come confermato anche da un paper dell'istituto nazionale di statistica (ISTAT, 19Turismo,

<sup>&</sup>lt;sup>18</sup> Le prime dieci città italiane per numero di abitanti sono nell'ordine: Roma, Milano, Napoli, Torino, Palermo, Genova, Bologna, Firenze, Bari, Catania. Per approfondimenti consultare le statistiche ISTAT (https://www.istat.it/it/).

2022), la presenza dei turisti negli alloggi in affitto gestiti in forma imprenditoriale contano quasi il 33% del totale di turisti che scelgono delle strutture ricettive non alberghiere. In particolare, si riscontrano delle similitudini con gli indicatori di turisticità forniti annualmente dall'ISTAT. I principali indicatori in questione sono: l'indice di turisticità territoriale, espresso come il numero di presenze turistiche su mille abitanti, e l'indice di densità turistica, che misura il peso delle presenze turistiche rispetto alla superficie della città. Rispetto a quest'ultimo indicatore, nel 2018 i primi sei territori riportati dalle precedenti tabelle (Roma, Milano, Firenze, Torino, Venezia, Napoli), espressi come sistemi locali del lavoro e non come comuni, sono riportati dall'ISTAT in termini comunali tra i primi 10 comuni a più elevata densità turistica (ISTAT, Turismo d'arte urbana, 2021).

Questa informazione fortifica l'ipotesi secondo la quale un maggiore livello di domanda turistica, in termini di prenotazioni insistenti in un territorio in un certo intervallo di tempo (vedi sez. 6.5), favorisca gli imprenditori nel loro percorso di ingresso nel mercato. Per quanto riguarda l'analisi tra gruppi, riportiamo un *ranking* pressoché simile che conferma maggiormente la bontà delle nostre ipotesi. Le uniche differenze, al di là di quelle dimensionali che traslano i risultati verso l'alto, sono rappresentate da un numero cospicuo di sistemi locali che guadagna (perde) posizioni a vantaggio di altri SLL.

Oltra alla distribuzione spaziale degli imprenditori, analizziamo nel dettaglio il tasso di ingresso medio nel mercato degli alloggi a breve termini. L'idea è quella di svolgere una duplice indagine. In primo luogo, siamo interessati alla determinazione dei tassi di ingresso per tipologia di imprenditore, sia in termini assoluti (tasso composito di tutto il periodo in esame) sia in termini relativi (andamento nel tempo delle entrate per tipologia di imprenditore). Parallelamente, esploriamo le osservazioni in merito ai passaggi imprenditoriali che gli individui effettuano tra le categorie esaminate. Per prima cosa, si è calcolato il tasso di ingresso per ciascun imprenditore come il rapporto tra il numero di ingressi nel Sl al tempo t e il timaspan, che nel nostro caso va dal 1/06/2008 al 31/12/2019.

$$EntryRate_{Sl/t} = \frac{Numero\ di\ ingressi_{Sl/t}}{Numero\ totale\ di\ mesi_t} \times 100$$

Dopo aver ottenuto, per ogni sistema locale. il valore del tasso di ingresso nel singolo intervallo di tempo, è stata eseguita una media di tutti i valori di EntryRate nei vari istanti temporali; ne deriva la possibilità di investigare un grafico in grado di correlare la variabile degli ingressi nel tempo per le differenti tipologie di imprenditori. Di seguito la fig. 3 ne riporta l'osservazione.

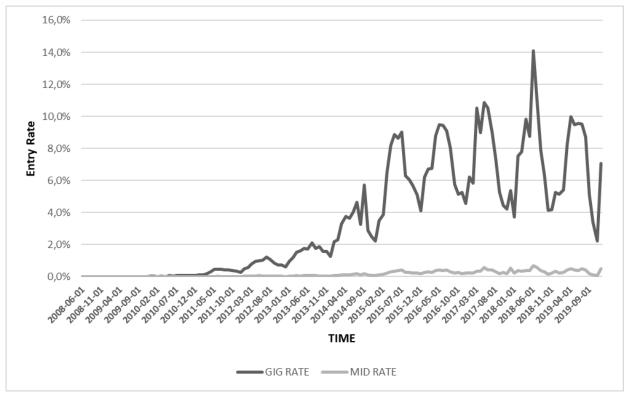


FIGURA 3:ANDAMENTO DEL TASSO DI INGRESSO DEI GIG E DEI MID NEL TEMPO

Dal grafico si nota come il rate degli ingressi dei GIG domini quello dei MID. In linea con le considerazioni sulle dinamiche degli ingressi, i bassi costi all'entrata per gli individui non professionisti ci fanno ritenere il loro ingresso meno ragionato rispetto a quello degli imprenditori professionisti (Buzzacchi, Grilli, & Milone, 2021). Quest'ultimi, come dibattuto anteriormente, devono sostenere degli investimenti in termini di capitale e lavoro più elevati (Xie & Mao, 2017); ne consegue che il loro ingresso risulta di gran lunga inferiore rispetto agli ingressi degli imprenditori occasionali. Un ulteriore spunto meritevole di riflessione è l'andamento difforme della curva dei gig, la quale sembra risentire di forti effetti di stagionalità; c'è la tendenza delle imprese ad immettersi sul mercato quando la domanda turistica risulta più elevata. Anche questa ulteriore

considerazione ci fornisce degli indizi interessanti rispetto alle ipotesi del modello. Ulteriori indagini che confermano queste considerazioni le otteniamo calcolando il tasso di ingresso globale per i tre tipi di imprenditori. Di seguito si riportano sia le analisi fatte per ciascuna tipologia di imprenditore, sia una tabella riassuntiva che comprende tutte le valutazioni fatte. Le tab. 5-6-7 riportano rispettivamente i valori di ingresso per gli imprenditori occasionali (gig), professionisti (mid) e grandi imprese (other).

| Nuovi Imprenditori GIG | Ingressi | Nuovi ingressi al | Nuovi ingressi al mese | EntryRate |
|------------------------|----------|-------------------|------------------------|-----------|
|                        | Timespan | mese t            | t per SLL              |           |
| NEW GIG                | 400.776  | 2.883             | 5,0                    | 3,58%     |
| DA MID                 | 18.321   | 132               | 0,2                    | 0,16%     |
| DA ALTRI               | 139      | 1                 | 0,0                    | 0,00%     |
| DA SLL                 | 35.056   | 252               | 0,4                    | 0,31%     |
| тот                    | 454.292  | 3.268             | 5,6                    | 4,06%     |

TABELLA 4: PRINCIPALI DINAMICHE DI INGRESSO DEGLI IMPRENDITORI GIG

| Nuovi Imprenditori<br>MID | Ingressi<br>Timespan | Nuovi ingressi al<br>mese t | Nuovi ingressi al mese t<br>per SLL | EntryRate |
|---------------------------|----------------------|-----------------------------|-------------------------------------|-----------|
| NEW MID                   | 17.321               | 125                         | 0,2                                 | 0,15%     |
| DA GIG                    | 43.745               | 315                         | 0,5                                 | 0,39%     |
| DA ALTRI                  | 1.937                | 14                          | 0,0                                 | 0,02%     |
| DA SLL                    | 8.793                | 63                          | 0,1                                 | 0,08%     |
| тот                       | 71.796               | 517                         | 0,9                                 | 0,64%     |

TABELLA 5: PRINCIPALI DINAMICHE DI INGRESSO PER GLI IMPRENDITORI MID

| Nuovi Imprenditori | Ingressi | Nuovi ingressi al | Nuovi ingressi al mese t | EntryRate |
|--------------------|----------|-------------------|--------------------------|-----------|
| OTHER              | Timespan | mese t            | per SLL                  |           |
| DA GIG             | 227      | 2                 | 0,0                      | 0,002%    |
| DA MID             | 3423     | 25                | 0,0                      | 0,031%    |
| тот                | 3650     | 26                | 0,0                      | 0,033%    |

TABELLA 6: PRINCIPALI DINAMICHE DI INGRESSO PER GLI IMPRENDITORI OTHER

In primo luogo, definiamo il timespan pari a tutto l'intervallo temporale coperto dal database (01/06/2008-31/12/2019). La prima colonna di ciascuna tabella indica la composizione del numero totale di nuovi ingressi per ciascun imprenditore catalogati per provenienza: nella prima riga troviamo gli imprenditori che per la prima volta entrano nei mercati, successivamente distinguiamo l'origine dell'ingresso in virtù sia di dinamiche dimensionali (salto di categoria degli imprenditori) sia geografiche (imprenditori provenienti da altri SLL). La riga intitolata "DA SLL" indica il numero di imprenditori di quella categoria che provengono da altri sistemi locali del lavoro. In questo modo riusciamo a controllare sia gli effetti dimensionali sia quelli territoriali. I risultati mostrano come ci sia un dominio degli ingressi di nuovi imprenditori occasionali, mostrato anche dal grafico di cui sopra. Alla luce dei risultati ottenuti, osserviamo che mediamente entrano sul mercato nuovi imprenditori occasionali per un valore pari a 3268 al mese generico mese t, mentre i nuovi ingressi dei middlemen sono tendenzialmente più bassi così come quelli delle grandi imprese. Il tasso di ingresso degli imprenditori gig calcolato ed aggregato a livello di sistema locale è pari a circa il 4%, al contrario dei tassi di ingresso dei middlemen e delle grandi imprese.

Infine, siamo interessati nell'indagine delle dinamiche di traslazione imprenditoriale in termini dimensionali sul numero di annunci gestiti. È importante osservare che l'ammontare di imprenditori provenienti da altri sistemi locali incide poco sul tasso di ingresso e per tali ragioni supportiamo le ipotesi fatte in precedenza sulla divisione tra i vari mercati che non sembrano godere di effetti di sovrapposizione. La tab. 8 riporta un confronto per delle analisi comparative più immediate.

|       |                    | Percentuali di ingressi provenienti da |       |       |       |       |
|-------|--------------------|----------------------------------------|-------|-------|-------|-------|
|       | Total<br>EntryRate | First Time EntryRate                   | GIG   | MID   | OTHER | SLL   |
| GIG   | 4,06%              | 3,58%                                  | -     | 0,16% | 0,00% | 0,31% |
| INT   | 0,64%              | 0,15%                                  | 0,39% | -     | 0,02% | 0,08% |
| OTHER | 0,03%              | 0,00%                                  | 0,00% | 0,03% | -     | 0,00% |
| тот   | 4,74%              | 3,74%                                  |       |       |       |       |

TABELLA 7: VALORI DI ENTRYRATE

Inoltre, è interessante osservare come circa l'89% dei nuovi ingressi degli imprenditori gig siano imprenditori per la prima volta, mentre solo un piccola percentuale decide di trasformare la propria attività in piccolo. Al contrario, la maggior parte degli ingressi nel mercato dei MID proviene da quello dei gig, si nota infatti come il 61% risultino di provenienza dall'imprenditoria dei gig. Infine, la poca rilevanza del mercato degli delle grandi imprese ci fa ritenere corrette le considerazioni precedentemente fatte nel non ritenere necessari nelle analisi coloro che gestiscono più di dieci appartamenti.

Successivamente, si è voluto esaminare il numero di *properties* attive. In linea con le analisi fatte in precedenza, si è usato lo stesso intervallo temporale ai fini di una migliore performance di analisi. Di seguito viene riportata una tabella riassuntiva dei dati a livello nazionale. La tab. 9 riporta il numero di annunci attivi.

|            | Annunci attivi |
|------------|----------------|
| 2017-01-01 | 349.444,00     |
| 2019-12-01 | 577.933,00     |
| Var[%]     | 65,39%         |

TABELLA 8: NUMERO DI ANNUNCI ATTIVI IN ITALIA

Si nota un incremento percentuale di circa il 66% a cavallo del periodo selezionato, indice di crescita del numero totale di proprietà attive su tutto il territorio nazionale.

In conclusione, si riporta l'andamento della domanda di alloggi turistici nel periodo compreso tra il 01/01/2017 al 31/1272019, supportato da un grafico che riporta il trend dei ricavi di Airbnb sommati per ciascun SLL nello stesso intervallo di tempo. La fig. 4 riporta lo scostamento dei ricavi della piattaforma Airbnb sul territorio italiano nel tempo.

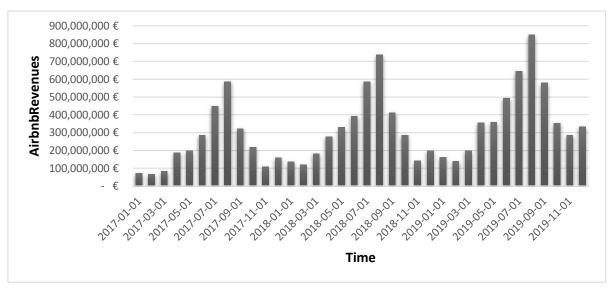


FIGURA 4: AIRBNB REVENUES NEL PERIODO 2017-2019

Il seguente andamento è stato ottenuto sommando per ciascun intervallo temporale i valori dei ricavi per tutti i sistemi locali, in questo modo si è riusciti ad ottenere un trend del biennio 2017-2019 di come si sono comportati i ricavi dell'intero territorio italiano. Si osserva un andamento prettamente stagionale, con i periodi estivi che sembrano essere quelli maggiormente stimolati da margini più elevati e da un numero crescente di persone che domandano alloggi turistici. La fig. 5 riporta la variabilità della domanda di alloggi turistici nel tempo.

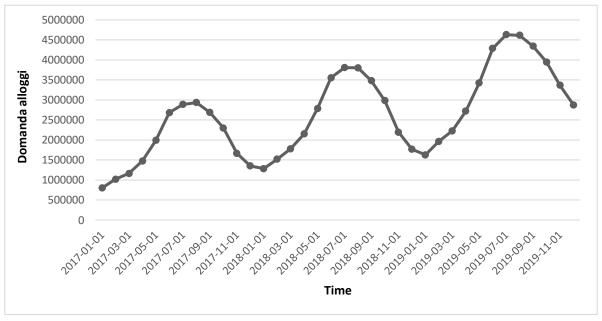


FIGURA 5: DOMANDA DI ALLOGGI TURISTICI NEL PERIODO 2017-2019

Come confermato anche dal trend della domanda di alloggi turistici, i mesi estivi risultano quelli più richiesti nel territorio italiano del mercato degli affitti a breve termine. Oltre un effetto di stagionalità, si osserva anche un aumento incrementale della domanda: i picchi delle curve stagionali sono ogni anno più elevati, a conferma di quanto il fenomeno di Airbnb sia in crescita costante.

# 7. IL MODELLO

#### 7.1 INTRODUZIONE AL MODELLO

In questo capitolo ci proponiamo di fornire tutte le informazioni per la composizione del modello, partendo dalla descrizione delle variabili fino all'impostazione della retta di regressione. L'obiettivo è testare le ipotesi riportate al capitolo 5 utilizzando la teoria dei modelli di regressione. Come nell'articolo al quale questo lavoro prende spunto, si è utilizzato un panel dataset nel quale sono stati forniti dati mensili su sulle dinamiche di ingresso e uscita dal mercato degli imprenditori di Airbnb. I dati di lavoro sono particolarmente ricchi di informazioni e permettono di esaminare le correlazioni tra variabili e ingressi. I dati panel combinano le informazioni relative alle caratteristiche di N individui nello stesso istante temporale con quelle rilevate per gli stessi individui in diversi periodi di tempo t (Palomba, 2008). Nello specifico vogliamo studiare le correlazioni esistenti tra il numero degli ingressi di nuovi imprenditori gig e mid in un certo intervallo t per un determinato SLL; per farlo abbiamo costruito un panel formato da 578 sistemi locali del lavoro (SLL) che vengono osservati in 36 istanti temporali differenti che vanno dal 01/01/2017 al 31/12/2019. Il software scelto per condurre queste analisi è Stata.

#### 7.2 DESCRIZIONE DELLE VARIABILI

Ai fini di ricerca per questo lavoro, la variabile dipendente del modello viene espressa dal numero di ingressi in un determinato SLL per ciascun istante temporale. Pertanto, come ribadito nei capitoli precedenti, l'obiettivo di quest'analisi è lo studio dell'effetto di differenti variabili indipendenti sui tassi di ingresso degli imprenditori occasionali e degli imprenditori professionisti. Si precisa che sono stati esclusi dall'analisi gli imprenditori possessori di un numero di annunci superiori ad undici per via della loro probabile presenza in più di un mercato e per questo soggetti a delle dinamiche definite in precedenza "multimercato". In primo luogo, viene riportata una schematizzazione di tutte le variabili di interesse, attribuendo a ciascuna variabile il ruolo ricoperto nel modello (variabile dipendente, indipendente, di controllo), con un breve richiamo sulla costruzione delle variabili e sulla loro funzionalità (vedi Cap. 6). La tab. 10 riassume la descrizione delle variabili.

| TIPOLOGIA                 | VARIABILE                        | DESCRIZIONE                                                                                                                                                                            |
|---------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variabili                 | EntryGig <sub>Sl/t</sub>         | Entrate di imprenditori Gig come somma di ingressi provenienti<br>da: nuovi gig, mid, other e altri SLL. Variabile trasformata in scala<br>log.                                        |
| dipendenti                | $EntryMid_{Sl/t}$                | Entrate di imprenditori Mid come somma di ingressi provenienti<br>da: nuovi mid, gig, other e altri SLL. Variabile trasformata in scala<br>log.                                        |
|                           | Demand <sub>Sl/t</sub>           | Domanda di alloggi turistici su Airbnb calcolata come somma<br>cumulata di prenotazioni prima e dopo il tempo t per ciascun sl.<br>Variabile trasformata in scala log.                 |
|                           | ${\it UnempRate}_{\it Sl}$       | Tasso di disoccupazione nel sistema locale sl al tempo t.                                                                                                                              |
| Variabili                 | $UnoccupiedDwellings_{Sl}$       | Numero abitazioni non occupate nel sistema locale sl al tempo<br>t.                                                                                                                    |
| indipendenti              | $\it DummyHotels_{Sl}$           | Variabile dummy che identifica l'alta/bassa specializzazione del<br>settore ricettivo. Vale 1 se la porzione di hotel 4/5/5L sono<br>maggiori della mediana nel sl; vale 0 altrimenti. |
|                           | $ConcentrationProp_{Sl,t-1}$     | Proporzione di annunci Airbnb attivi nel sistema locale sl a t-1.<br>Calcolato come rapporto tra numero annunci attivi ed estensione<br>del sistema locale [m2].                       |
|                           | $Bedhotels_{Sl}$                 | Numero totale di letti disponibili nel sistema locale sl al tempo t.<br>Variabile trasformata in scala log.                                                                            |
|                           | $Entry_{k,sl,t-1}$               | Ingressi di imprenditori k al tempo t-1 per ciascun sl. Variabile<br>trasformata in scala log.                                                                                         |
| Variabili di<br>controllo | $Altitude_{Sl}$                  | Altitudine media del sistema locale sl. Variabile trasformata in scala log.                                                                                                            |
|                           | $SeaRate_{Sl}$                   | Proporzione dei comuni definiti "costieri" sul totale comuni appartenenti ad un dato sistema locale sl.                                                                                |
|                           | $AvgRent \ [ \in /Mqmese ]_{Sl}$ | Prezzo medio degli affitti nel sistema locale sl al tempo t. Variabile<br>trasformata in scala log.                                                                                    |

TABELLA 9: DESCRIZIONE VARIABILI

La scelta delle seguenti variabili viene brevemente riportata di seguito. Alcuni studi sottolineano come le risorse sottoccupate o disoccupate, possano offrire possibilità di

creazione di nuove opportunità (Ardichvili, Cardozo, & Ray, A theory of entrepreneurial opportunity identification and development, 2003). Tra le varie assunzioni portate aventi in questo studio si ipotizza che alcuni dei fattori che incidono sulla creazione di nuove opportunità possano essere proprio il numero di abitazioni non occupate (risorse sottoccupate) e il tasso di disoccupazione. D'altronde, nel nuovo contesto dell'economia della condivisione i fornitori entreranno nella piattaforma se individuano opportunità economiche e se hanno le risorse e le motivazioni per sfruttarle (Gerwe, Silva, & Castro, 2022). Per quel che riguarda la domanda di alloggi turistici, si ritiene possa essere una determinante per le dinamiche di ingresso; al contrario, la variabile di controllo degli ingressi al tempo precedente si pensa possa controllare con buona approssimazione la persistenza della variabile dipendente. A tal proposito, molti studi hanno rilevato come i tassi di ingresso e uscita possano incidere sulle performance del mercato, evidenziando come la crescita dei settori sia per lo più generata da un aumento di nuove organizzazioni (offerta) che rispondono tendenzialmente alla possibilità di incrociare sul mercato gli attori che richiedono un bene/servizio (domanda) (Dunne, Roberts, & Samuelson, 1988). Si delinea uno scenario dove maggiori tassi di ingresso stimolano una crescita dell'intero settore, il che farà percepire anche ad altri attori l'opportunità di ingresso. D'altronde l'entrata risulta più frequente nei settori più redditizi e in rapida crescita, e più lenta quando i costi assoluti del capitale sono rilevanti (Siegfried & Evans, 1994). L'aspetto qualitativo dell'offerta viene modellato prendendo in considerazione i differenti standard del settore alberghiero che differenzia gli hotel in base al loro standard qualitativo (ben approssimato dall'attribuzione di 'stelle'); ciò significa che per ogni territorio si potrà stimare la prevalenza degli hotel di fascia bassa e di fascia alta. Per quel che riguarda il tema della concentrazione la letteratura fornisce differenti spunti sull'utilizzo di questa variabile come determinate per effetti di agglomerazione e competizione (Berger, Demirgüç-Kunt, Levine, & Haubrich, 2004). Si ritiene che, seppur in diversa misura, il numero di annunci già attivi sul mercato di Airbnb possa completare il tema delle entrate e delle uscite di nuovi imprenditori collegate ad andamenti a rialzo o a ribasso dei tassi di crescita dei settori.

Infine, si pensa che le variabili geografiche di zona costiera e altitudine possano essere pertinenti per cogliere l'eterogeneità territoriale in diversi contesti di mercato, riuscendo a controllare al margine la variabile di domanda. In altre parole, le variabili geografiche

hanno il compito di capire se a parità di domanda, essa agisca differentemente in diversi contesti (mare, montagna, città). Risulta evidente che queste variabili non sono le uniche che potenzialmente potrebbero spiegare differenze in termini geo-sociali delle varie municipalità; tuttavia, si crede che possano essere delle buone proxy di come i flussi turistici si muovono nello spazio.

Così come osservato in precedenza (si veda il Cap.6-sez.6.2 per ulteriori annotazioni sulle fonti di ciascuna variabile e le modalità di calcolo) il dataset di partenza è formato da alcune variabili *time-variant*, mentre altre sono costanti nel tempo variando solo per sistema locale.

In secondo luogo, la tab. 11 riepiloga tutte le variabili incluse e raccolte nel modello, esplicitando i valori di media, deviazione standard, valore massimo e valore minimo.

| Obs.   | Media                                                          | Std.Dev.                                                                                                                                                                                                                                                     | Min.                                                                                                                                                                                                                                                                                                                                                                         | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20,808 | 11.95                                                          | 37.12                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                            | 1496                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20,808 | 2.05                                                           | 5.98                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                            | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20,808 | 4,515                                                          | 19,671                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                            | 484,847                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20,808 | 0.09                                                           | 0.04                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                         | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20,808 | 11,972                                                         | 14,001                                                                                                                                                                                                                                                       | 268                                                                                                                                                                                                                                                                                                                                                                          | 185,174                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20,808 | -                                                              | -                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20,808 | 2.36                                                           | 6.26                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                            | 100.54                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20,808 | 3,873                                                          | 8,625                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                            | 121,481                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20,808 | 456                                                            | 425                                                                                                                                                                                                                                                          | 0.84                                                                                                                                                                                                                                                                                                                                                                         | 2,314                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20,808 | 0.26                                                           | 0.37                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 20,808 | 7.28                                                           | 1.86                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                            | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 20,808 20,808 20,808 20,808 20,808 20,808 20,808 20,808 20,808 | 20,808       11.95         20,808       2.05         20,808       4,515         20,808       0.09         20,808       11,972         20,808       -         20,808       2.36         20,808       3,873         20,808       456         20,808       0.26 | 20,808       11.95       37.12         20,808       2.05       5.98         20,808       4,515       19,671         20,808       0.09       0.04         20,808       11,972       14,001         20,808       -       -         20,808       2.36       6.26         20,808       3,873       8,625         20,808       456       425         20,808       0.26       0.37 | 20,808       11.95       37.12       0         20,808       2.05       5.98       0         20,808       4,515       19,671       0         20,808       0.09       0.04       0.03         20,808       11,972       14,001       268         20,808       -       -       -         20,808       2.36       6.26       0         20,808       3,873       8,625       0         20,808       456       425       0.84         20,808       0.26       0.37       0 |

TABELLA 10: OSSERVAZIONI, MEDIA, DEVIAZIONE STANDARD, MINIMO E MASSIMO DELLE VARIABILI DEL MODELLO

Il dataset panel riporta 20.808 osservazioni, frutto della dimensione temporale di 36 mesi e un numero di SLL pari a 578, che sono quelli rimanenti dopo aver effettuato una pulizia del dataset di partenza (formato da 580 SLL), nei quali la corrispondenza con le variabili socioeconomiche non è stata riscontrata in virtù del dinamico cambiamento della composizione e aggregazione dei sistemi locali. Il numero di ingressi mensili è calcolato al lordo delle uscite, il che vuol dire che il suo valore minimo sarà nullo. Osserviamo subito un numero medio di ingressi maggiore per gli imprenditori gig, così come un valore massimo che si aggira sui 1,496 ingressi; questo aspetto rafforza le considerazioni fatte precedentemente sul livello di investimenti necessari per l'ingresso, confermando che gli ingressi degli imprenditori gig risultano più "semplici" rispetto a quelli dei middleman, i quali hanno bisogno di maggiori risorse e capacità (Buzzacchi, Grilli, & Milone, 2021). Tutte le variabili numeriche verranno successivamente trasformate in scala logaritmica, tranne i tassi espressi in termini percentuali.

#### 7.3 REGRESSIONE MULTIVARIATA

Per poter stimare le correlazioni tra le variabili indipendenti ed il numero di ingressi di nuovi imprenditori si è scelto di utilizzare un modello di regressione multivariata (a più variabili) che ha l'obiettivo di stimare i valori assunti dall'ingresso nel mercato degli imprenditori a partire da quelli osservati per le variabili indipendenti e di controllo. Nella generica funzione di analisi multivariata, la variabili dipendente (Y) viene espressa come funzione di più parametri:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_n X_{1n} + \varepsilon_i$$

- $\boldsymbol{\diamond}$   $\beta_0$ . Rappresenta il valore di intercetta, ossia il punto in cui la retta di regressione interseca l'asse delle ordinate;
- $\boldsymbol{\diamond}$   $\beta_{1..n}$ . Rappresenta l'insieme dei coefficienti lineari delle variabili indipendenti, i quali determinato la pendenza della retta di regressione;
- $\bullet$   $\varepsilon_i$ . Rappresenta il termine associato all'errore. In genere, l'errore di regressione identifica l'insieme dei fattori omessi che potenzialmente influenza la Y;

Nel seguente modello vogliamo studiare l'effetto delle variabili indipendenti per due differenti tipologie di imprenditori, che quindi genereranno due differenti stime della variabile dipendente; per questo, ci si troverà a dover formulare una stessa equazione di

regressione da dover successivamente applicare due volte. Tuttavia, come specificato in precedenza, il nostro dataset è di tipo panel e questo fa sì che la variabile dipendente sia funzione non solo delle differenti peculiarità valutabili tra sistemi locali (SLL), ma anche di come queste caratteristiche si modificano nel tempo. A tal proposito, costruiamo la funzione di regressione nel seguente modo:

$$\begin{split} E_{k,sl,t} &= \beta_0 + \beta_{1,k} E_{k,sl,t-1} + \beta_{2,k} \text{ln}(Demand_{sl,t}) + \beta_{3,k} UnoccupiedDwellings_{sl} \\ &+ \beta_{4,k} UnempRate_{sl} + \beta_{5,k} DummyHotel_{sl} \\ &+ \beta_{6,k} ConcentrationProp_{sl,t-1} + \beta_{7,k} ConcentrationProp_{sl,t-1}^2 + C_{sl,t} \\ &+ \varepsilon_{sl,t} \end{split}$$

**EQUAZIONE 1** 

Nello specifico segue che:

- $\star$   $E_{k,sl,t-1}$  rappresenta il numero di ingressi per tipologia di imprenditori in un dato sistema locale al tempo precedente. Nello specifico si pensa che il modello possa avere le peculiarità di un modello autoregressivo<sup>19</sup>; per questo si è deciso di costruire questa variabile come il numero totale di ingressi per tipo di imprenditori al tempo [t-1]. Si assume nel modello la seguente variabile per poter confermare le considerazioni fatte in precedenza (vedi Cap. 5) riguardo gli effetti dinamici di informazione che gli individui osservano in virtù dell'ottenimento di un maggiore supporto informativo per le loro decisioni imprenditoriali di ingresso sul mercato (Bunten, Weiler, & al., 2015);
- $\bullet$   $\ln(Demand_{sl,t})$  è il logaritmo naturale della domanda di alloggi turistici in un dato SLL al tempo t definita in sezione 6.5;
- $\clubsuit$  UnoccupiedDwellings<sub>sl</sub> rappresenta il numero di abitazioni non occupate per un determinato SLL. Per costruzione questa variabile non subisce variazioni nella dimensione temporale ed è stata considerata nel modello con il suo logaritmo naturale;
- UnempRate<sub>sl</sub> identifica il tasso di disoccupazione per un determinato SLL. Anche questa variabile non varia nel tempo ma solo tra sistemi locali;
- ❖ DummyHotel<sub>sl</sub> distingue i differenti livelli di specializzazione degli esercizi ricettivi insistenti in un dato SLL. Assume valore 1 quando la proporzione degli hotel di 4/5/5L stelle è maggiore del valore mediano per quel SLL, 0 altrimenti;

<sup>19</sup> Il modello autoregressivo è un modello lineare che specifica che la variabile in uscita dipende linearmente dai valori delle uscite precedenti (Treccani-enciclopedia)

- ❖  $ConcentrationProp_{sl,t-1}$  e  $ConcentrationProp_{sl,t-1}^2$  sono rispettivamente il termine lineare e quadratico della concentrazione di proprietà in un determinato SLL espressa come il rapporto tra il numero di annunci attivi e la superfice (estensione) del sistema locale. Da notare, che nel modello di regressione al generico tempo t questa variabile considera la concentrazione al tempo precedente (t-1);
- C<sub>sl,t</sub> è un termine che racchiude l'insieme di tutte le variabili di controllo del modello. In primo luogo, controlliamo l'effetto dell'andamento del mercato immobiliare in termini di prezzo medio degli affitti al mese per ciascun SLL. Successivamente, consideriamo nelle analisi le differenze geografiche dei territori in virtù delle considerazioni fatte sull'eterogeneità del territorio nazionale, che si pensa possa influenzare la tendenza all'ingresso. Questo aspetto viene considerato tramite l'identificazione dell'altitudine media dei sistemi locali e la percentuale di comuni costieri sul totale comuni appartenenti ad un SLL. Infine, si vuole considerare l'effetto della capacità delle strutture ricettive formali (alberghi, hotel) in termini di numero di letti offerti in un dato sistema locale.

In linea con le ipotesi sviluppate al capitolo 5 ci aspettiamo che il coefficiente  $\beta_{2,k}$  sia positivo per entrambi gli imprenditori gig e middleman. Al contrario, si prevede che i coefficienti  $\beta_{3,k}$  e  $\beta_{4,k}$  siano entrambi positivi per gli imprenditori gig e middleman, sebbene ci aspettiamo che per gli imprenditori di tipo gig questa correlazione con la variabile dipendente degli ingressi sia più marcata. Infine, si ipotizza che il coefficiente  $\beta_{5,k}$  risulti positivo, ma che vada ad influenzare maggiormente le decisioni dei middleman piuttosto che degli imprenditori gig.

Per quanto riguarda il secondo pacchetto di ipotesi ci aspettiamo che i coefficienti di regressione  $\beta_{6,k}$  e  $\beta_{7,k}$ , che supportano la variabile della concentrazione, siano rispettivamente positivo e negativo per entrambi gli imprenditori con una tendenza di effetti maggiormente rilevanti per gli imprenditori professionisti. Questo potrebbe significare (HP3a-HP3b-HP3c) che un iniziale aumento di concentrazione del mercato favorisca l'ingresso degli imprenditori, generando degli effetti di agglomerazioni raccontanti in precedenza. Tuttavia, questa relazione al margine potrebbe avere degli effetti decrescenti, indicando come ci sia una soglia in cui gli imprenditori riconoscono la saturazione del mercato e sono disincentivati all'ingresso.

Nell'insieme del set di variabili di controllo ci aspettiamo che una maggiore proporzione di comuni costieri insistenti in un SLL stimoli gli imprenditori a valutare fenomeni turistici stagionali, i quali potrebbero incentivarli nella loro scelta di ingresso. Con riferimento alla differenza tra imprenditori gig e middleman ci aspettiamo che questo coefficiente sia più rilevante per gli imprenditori di tipo gig. Infine, per quanto riguarda il fattore del numero di letti in un determinato SLL si prevede un'influenza significativa e positivamente correlata con la variabile dipendente e molto simile tra i due imprenditori.

#### 7.4 METODOLOGIA

La teoria dei modelli di regressione panel ci permette di poter utilizzare differenti metodi di approccio. Queste metodologie di lavoro sono spesso complementari e sfruttano ipotesi differenti per ottenere risultati simili tra loro. Tra i vari, si è scelto di utilizzare dapprima il modello definito ad effetti fissi e successivamente sia il modello con effetti random sia il modello pooled OLS di regressione. Le regressioni con dati panel devono considerare un fattore che tiene conto dei cosiddetti "effetti individuali" che determinano il comportamento eterogeneo di ciascun individuo (nel nostro caso la dimensione panel dei sistemi locali del lavoro). In altre parole, ci sono dei fenomeni inosservati che vengono inclusi nel fattore di effetti individuali che influenzano la relazione con la variabile dipendente facendola aumentare o diminuire. L'insieme di fenomeni inosservati che arricchiscono il fattore degli effetti individuali hanno la peculiarità di poter variare tra gli stati (SLL) e anche nel tempo. Un esempio per il nostro modello potrebbe essere la tipologia di legislazione territoriale che favorisce (sfavorisce) l'insediamento e la costruzione di nuovi edifici; questa variabile influenza la variabile dipendente (entrate) ed è potenzialmente correlata con la variabile indipendente (domanda di alloggi turistici). Il modello ad effetti fissi viene costruito proprio per controllare il fattore degli effetti individuali. In particolare, ha la capacità di analizzare i dati mantenendo costanti i periodi temporali ed i soggetti, per questo riesce a catturare la variabilità tra soggetti. In termini operativi, alla variabile indipendente  $Y_{sl,t}$  viene sottratta la media interna del singolo SLL (operazione di data demeaning); questa operazione viene effettuata anche per i termini a destra dell'equazione di regressione e così facendo si riesce ad eliminare il coefficiente dei fattori individuali. Il modello ad effetti fissi, inoltre, consentirebbe anche di includere nell'analisi gli effetti che variano nel tempo ma non tra gli stati. Un esempio potrebbe essere il potere di spesa delle persone che è potenzialmente correlato alla variabile indipendente della domanda di alloggi turistici (salari più alti significa possibilità di permettersi un numero più frequente di spostamenti/viaggi). Per controllare questo effetto si introduce una variabile che tiene conto di questi effetti, influenzando tutti i SLL. Il modello con effetti fissi include nelle analisi queste considerazioni, per questo non considera nel calcolo dei coefficienti l'influenza delle variabili time-invariant. Nel caso di effetti fissi l'intercetta è deterministica.

Contrariamente, il modello ad effetti random assume che il fattore degli effetti individuali si comporti in maniera casuale (randomica) e che quindi non sia correlato con le variabili indipendenti. Ergo, la covarianza tra la generica variabile indipendente e il fattore individuale è nulla. Per tale ragione, il modello ad effetti random cattura la variabilità tra periodi e soggetti. Il modello di regressione con effetti random fa sì che la variabile indipendente sia non correlata con il termine di errore, e questo potrebbe portare a dei risultati consistenti ma inefficienti.

Sebbene non sia teoricamente corretto nei modelli di dati panel, spesso può essere utilizzato, anche solo come prova, il modello di *pooled OLS estimator*. Questo metodo sfrutta lo stimatore dei minimi quadrati e considera sia le variazioni tra gli stati nel tempo sia le variazioni interne agli stati. Il limite del modello di *pooled* nell'utilizzo di dati panel sono i problemi di eterogeneità: se nel modello riportato vi sono dei fattori inosservati correlati in qualche modo con il regressore che influenzano la variabile dipendente (effetti individuali), allora in quel caso il modello pooled OLS è inconsistente. Per poterlo usare dobbiamo verificare l'ipotesi che non ci sia correlazione tra gli effetti individuali non osservati e la generica variabile indipendente. Sebbene non sarà oggetto del seguente lavoro, è utile sottolineare che per poter verificare se il modello OLS può essere utilizzato si fa riferimento spesso al test di Breusch – Pagan, il quale permette di confrontare il modello pooled OLS con quello degli effetti random. Il test verifica se l'ipotesi di nullità della varianza del termine di errore che misura l'eterogeneità non osservata (effetti individuali). Se l'ipotesi nulla viene rigettata significa che la varianza non è nulla, dunque esistono degli effetti casuali che rendono il modello OLS

inefficiente. In questo caso va preferito l'uso del modello ad effetti casuali (Statzu & Strazzera, 2008).

Nel seguente lavoro procederemo ad un'analisi gerarchizzata strutturata come segue:

- i. Si effettueranno dapprima dei modelli di regressione ad effetti fissi, nei quali verranno man mano aggiunte le variabili di concentrazione (ConcProp e ConcPropsq);
- ii. Successivamente, si passerà al modello con effetti randomici (casuali). In questo caso verranno testati sia dei modelli senza l'utilizzo della variabile di concentrazione, nei quali man mano si aggiungono le variabili di controllo, sia modelli in cui viene inserita la concentrazione per verificare che i risultati siano in linea tra una regressione e quella successiva;
- iii. Infine, verranno effettuati dei *run* di regressioni con il modello pooled OLS per verificare se gli effetti individuali del nostro dataset sono più o meno rilevanti e per valutare la bontà dei risultati emersi nei precedenti modelli. Per farlo, eseguiremo una regressione LSDV (Least-squares dummy variables), studiando la variabilità nel tempo.

# 8. RISULTATI

#### 8.1 EFFETTI FISSI

Il modello ad effetti fissi va ad eliminare le dipendenze degli effetti individuali sottraendo a ciascuna variabile la sua media. Essendo un dataset di tipo panel, possiamo decidere di basare la regressione sia tenendo sotto controllo gli effetti individuali su ciascun SLL, sia controllando gli effetti temporali che identificano la stagionalità. In questa prima fase si è scelto di seguire la prima strada, creando delle variabili dummy per ciascun SLL. Ciascuna variabile vale 1 nel calcolo del proprio SLL e 0 altrimenti. I primi risultati sono riportati in tab. 12.

| Effetti fissi                    | GIG [1-2]          | GIG [1-2]          | MID [3-10]         | MID [3-10]         |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|
|                                  | $Y = E_{GIG,sl,t}$ | $Y = E_{GIG,sl,t}$ | $Y = E_{MID,sl,t}$ | $Y = E_{MID,sl,t}$ |
| $\ln E_{k,sl,t-1}$               | 0.255***           | 0.251***           | 0.104***           | 0.104***           |
| .,,-                             | (0.00710)          | (0.00709)          | (0.00710)          | (0.00710)          |
| $ConcentrationProp_{sl,t-1}$     |                    | -0.0431***         |                    | -0.0140***         |
|                                  |                    | (0.00432)          |                    | (0.00401)          |
| $ConcentrationProp_{sl,t-1}$     |                    | 0.000330***        |                    | $0.000119^*$       |
|                                  |                    | (0.0000569)        |                    | (0.0000529)        |
| ln Demand <sub>sl.t</sub>        | 0.0582***          | 0.0749***          | 0.0442***          | 0.0491***          |
| 23,2                             | (0.00494)          | (0.00516)          | (0.00438)          | (0.00459)          |
| UnoccupiedDwellings $_{sl}$      | 0                  | 0                  | 0                  | 0                  |
|                                  | (.)                | (.)                | (.)                | (.)                |
| UnempRate <sub>sl</sub>          | 0                  | 0                  | 0                  | 0                  |
|                                  | (.)                | (.)                | (.)                | (.)                |
| $	extit{D}ummyHotel}_{sl}$       | 0                  | 0                  | 0                  | 0                  |
|                                  | (.)                | (.)                | (.)                | (.)                |
| AvgRent [€/Mqmese] <sub>Sl</sub> | -0.0336            | 0.0102             | 0.0699             | 0.0839             |
|                                  | (0.0630)           | (0.0629)           | (0.0584)           | (0.0585)           |
| $\ln Altitude_{Sl}$              | 0                  | 0                  | 0                  | 0                  |
|                                  | (.)                | (.)                | (.)                | (.)                |
| $SeaRate_{Sl}$                   | 0                  | 0                  | 0                  | 0                  |
|                                  | (.)                | (.)                | (.)                | (.)                |
| $lnBedhotels_{Sl}$               | 0                  | 0                  | 0                  | 0                  |
|                                  | (.)                | (.)                | (.)                | (.)                |
| _cons                            | 0.929***           | 0.828***           | 0.129              | 0.0971             |
|                                  | (0.124)            | (0.124)            | (0.115)            | (0.115)            |
| N                                | 20808              | 20808              | 20808              | 20808              |
| $R^2$                            | 0.088              | 0.093              | 0.019              | 0.020              |

Standard errors in parentheses p < 0.05, p < 0.01, p < 0.001

TABELLA 11: REGRESSIONE AD EFFETTI FISSI

Nella tabella 12 troviamo quattro differenti colonne: le prime due identificano un modello di regressione ad effetti fissi per gli imprenditori di tipo gig con e senza le variabili di concentrazione (ConcProp e ConcPropsq); le ultime due, invece,

rappresentano la stessa tipologia di regressione ma su imprenditori professionisti (MID). Si nota subito come la maggior parte delle variabili sia time-invariant, per tale ragione gli effetti di queste variabili sul modello vengono omessi. Tuttavia, una prima considerazione possiamo farla guardando i coefficienti della variabile di ingressi al tempo t-1 e i coefficienti della variabile domanda di alloggi turistici. Nel dettaglio, si nota subito una correlazione positiva tra l'ingresso di nuovi imprenditori nel mercato rispetto agli ingressi al tempo precedente, prova del fatto che siamo di fronte ad un modello autoregressivo e che la variabile sembra controllare bene gli effetti di persistenza della variabile dipendente. Anche la domanda di alloggi turistici (espressa in termini logaritmici) è positivamente correlata all'ingresso di nuovi imprenditori, con i gig che sembrano più stimolati da una domanda crescente di alloggi turistici. Anche con l'inserimento delle variabili di concentrazione i risultati sono in linea con i modelli appena descritti. Tuttavia, il valore di R-sq risulta molto basso per tutte le regressioni, nonostante aumenti, seppur di poco, con l'inserimento della concentrazione e del suo quadrato. D'altro canto, questo risultato non stupisce dal momento che la maggior parte delle variabili sono state omesse dal modello poiché costanti nel tempo. Per tali ragioni, il modello ad effetti fissi, pur essendo teoricamente uno dei più adatti per i dati di tipo panel, nel nostro caso non riesce a spiegare neanche il 10% della variabilità, per questo si è deciso di proseguire su una strada differente che portasse con sé anche l'effetto delle variabili time-invariant.

#### 8.2 EFFETTI RANDOM: IL MODELLO

Come ribadito in precedenza il modello ad effetti casuale suppone che il valore atteso del termine di effetti individuali sia nullo. In altre parole, nel modello randomico gli effetti individuali inosservati non sono trattati come parametri fissi ma come realizzazione di una variabile aleatoria non correlata al regressore. Le analisi statistiche sono state effettuate seguendo gli stessi step fatti per il modello ad effetti fissi. Se ne riportato i risultati in tabella 13.

| Effetti random                   | GIG [1-2] $Y = E_{GIG,sl,t}$      | $GIG [1-2]$ $Y = E_{GIG,sl,t}$ | $GIG [1-2]$ $Y = E_{GIG,sl,t}$     | GIG [1-2] $Y = E_{GIG,sl,t}$      | $MID [3-10]$ $Y = E_{MID,sl,t}$    | $MID [3-10]$ $Y = E_{MID,sl,t}$ | $MID [3-10]$ $Y = E_{MID,sl,t}$    | $MID [3-10]$ $Y = E_{MID,sl,t}$   |
|----------------------------------|-----------------------------------|--------------------------------|------------------------------------|-----------------------------------|------------------------------------|---------------------------------|------------------------------------|-----------------------------------|
| $\ln E_{k,sl,t-1}$               | 0.575***<br>(0.00624)             | 0.548***<br>(0.00635)          | 0.541***<br>(0.00633)              | 0.526***<br>(0.00639)             | 0.463***<br>(0.00636)              | 0.416***<br>(0.00651)           | 0.451***<br>(0.00639)              | 0.404***<br>(0.00654)             |
| $Concentration Prop_{sl,t-1}$    | , ,                               | 0.0290<br>(0.00155)            |                                    | 0.0226 (0.00165)                  | ` ,                                | 0.0376<br>(0.00147)             | . ,                                | 0.0401 (0.00159)                  |
| $Concentration Prop_{sl,t-1}$    |                                   | -0.00034<br>(0.00002)          |                                    | -0.00026 ****<br>(0.000023)       |                                    | -0.00042 ***<br>(0.000021)      |                                    | -0.00044<br>(0.000022)            |
| $\ln Demand_{sl,t}$              | 0.165***<br>(0.00361)             | 0.149****<br>(0.00368)         | 0.144****<br>(0.00372)             | 0.133 <sup>***</sup><br>(0.00378) | 0.127 <sup>***</sup><br>(0.00273)  | 0.102**** (0.00286)             | 0.113 <sup>***</sup><br>(0.00306)  | 0.0941<br>(0.00309)               |
| $UnoccupiedDwellings_{sl}$       | 0.129 <sup>***</sup><br>(0.00566) | 0.151***<br>(0.00577)          | 0.143****(0.00629)                 | 0.156****                         | 0.0509**** (0.00520)               | 0.0754***(0.00524)              | 0.0560 <sup>***</sup><br>(0.00583) | 0.0804***<br>(0.00586)            |
| $UnempRate_{sl}$                 | 1.018 <sup>***</sup> (0.106)      | 0.626****(0.107)               | 1.137 (0.131)                      | 1.095****<br>(0.131)              | 1.126****<br>(0.0994)              | 0.612****(0.0997)               | 1.504***<br>(0.125)                | 1.515 <sup>****</sup> (0.123)     |
| $DummyHotel_{sl}$                | 0.0792 (0.00867)                  | 0.0724                         | 0.0766***<br>(0.00891)             | 0.0702**** (0.00890)              | 0.0700 <sup>***</sup><br>(0.00820) | 0.0607***(0.00810)              | 0.0588                             | 0.0461 (0.00839)                  |
| $AvgRent \ [ \in /Mqmese ]_{Sl}$ | ` ,                               | , ,                            | 0.244 (0.0201)                     | 0.244 (0.0201)                    | , ,                                | ,                               | 0.173<br>(0.0191)                  | 0.178<br>(0.0189)                 |
| $\ln Altitude_{Sl}$              |                                   |                                | 0.000463 (0.00338)                 | 0.000888                          |                                    |                                 | -0.0209 (0.00324)                  | -0.0224<br>(0.00319)              |
| $SeaRate_{Sl}$                   |                                   |                                | 0.178<br>(0.0134)                  | 0.110<br>(0.0143)                 |                                    |                                 | 0.0360 <sup>**</sup><br>(0.0127)   | -0.0986<br>(0.0135)               |
| $lnBedhotels_{Sl}$               |                                   |                                | 0.0293 <sup>***</sup><br>(0.00380) | 0.0286 (0.00378)                  |                                    |                                 | 0.0156 <sup>***</sup><br>(0.00362) | 0.0137 (0.00357)                  |
| _cons                            | -1.652 <sup>***</sup> (0.0489)    | -1.712 <sup>***</sup> (0.0489) | -2.328 <sup>****</sup><br>(0.0725) | -2.373 ****<br>(0.0727)           | -1.085 <sup>***</sup> (0.0427)     | -1.131 <sup>***</sup> (0.0424)  | -1.399 <sup>****</sup><br>(0.0652) | -1.495 <sup>***</sup><br>(0.0648) |
| $\frac{N}{R^2}$                  | 20808<br>0.7887                   | 20808<br>0.7924                | 20808<br>0.7941                    | 20808<br>0.7960                   | 20808<br>0.5807                    | 20808<br>0.5941                 | 20808<br>0.5847                    | 20808<br>0.5978                   |

Standard errors in parentheses p < 0.05, p < 0.01, p < 0.001

TABELLA 12: REGRESSIONE CON EFFETTI RANDOM

La tabella 13 riporta le stime sui coefficienti delle variabili indipendenti e di controllo correlate allo studio degli ingressi di nuovi imprenditori per tipologia. Nel dettaglio, la tabella è organizzata come segue: sulle righe si riportano le diverse variabili del modello, mentre ogni colonna riporta l'esito di regressioni via via sempre più complete. Vengono rappresentati i risultati di quattro *run* dell'equazione 1 (esplicitata in sez. 7.2) per ciascun imprenditore, con le prime quattro colonne raffiguranti le stime per i gig e le restanti quattro quelle per i middleman. Da sinistra a destra della tabella troviamo:

- i. Regressione multivariata ad effetti random per le variabili indipendenti;
- ii. Regressione multivariata ad effetti random con aggiunta delle variabili di concentrazione;

- iii. Regressione multivariata ad effetti random per le variabili indipendenti con aggiunta delle variabili di controllo;
- iv. Regressione multivariata ad effetti random per variabili indipendenti con l'inserimento delle variabili di controllo e della concentrazione di alloggi nel SLL.

In accordo con i risultati emersi per lo studio ad effetti fissi, viene confermata l'idea di un modello autoregressivo, dove la variabile dipendente della domanda sembra essere ben controllata dagli effetti degli ingressi al tempo precedente; difatti, i coefficienti sono tutti positivi e statisticamente significativi dell'1%, con i gig che sperimentano un correlazione maggiore con gli effetti di informazione dinamica sviluppati localmente  $(\beta_{1,GIG})$  varia da +0,575 \*\*\* a +0,526\*\*\* mentre  $\beta_{1,MID}$  varia da +0,463 \*\*\* a +0,404\*\*\*)<sup>20</sup>. Come suggerito anche dagli studi di (Bunten, Weiler, & al., 2015) si dimostra che gli effetti informativi sulle decisioni imprenditoriali sono rilevanti, specialmente se circoscritti in contesti definiti localmente, dove la sovrapposizione tra domanda ed offerta di lavoro risulta più efficace (Coppola & Mazzotta, 2005).

In linea con la letteratura relativa agli studi sulla sharing economy e sui fenomeni imprenditoriali, si dimostra come la domanda di alloggi turistici sia una variabile rilevante per la determinazione del tasso di ingresso degli imprenditori occasionali e professionisti. Come sottolineato anche da (Baum & Haveman, 1997) le esternalità informative sulla domanda in un particolare luogo sono disponibili per i potenziali entranti che osservano le imprese affermate riuscendo ad assorbirne informazioni. Nel contesto della sharing economy questo fenomeno è più ampio. Se infatti è vero che le piattaforme multi-side generano effetti di esternalità di rete intrinsechi ad un aumento dell'utilità sia dal lato dell'offerta che dal lato della domanda (Rochet & Tirole, 2003), allora è ragionevole considerare che un crescente numero di individui meno "specializzati" in termini di competenze imprenditoriali, guardi con maggiore attenzione l'andamento dinamico della domanda, supportati anche da effetti di stagionalità che rendono la cattura di informazione e l'individuazione di un'opportunità molto più agevole. Questo ci consente di confermare l'ipotesi HP1, nella misura in cui il livello di risposta dei due imprenditori è molto simile, con il coefficiente  $eta_{2,GIG}$  che varia da +0,165\*\*\* a +0,133\*\*, mentre il coefficiente  $\beta_{2,MID}$  varia da +0,127\*\* a +0,094\*\*\*.

-

<sup>&</sup>lt;sup>20</sup> Standard errors in parentheses \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

Nella pratica, si dimostra che un aumento del 10% della domanda di alloggi turistici implica un aumento del tasso di ingresso nel mercato pari all' 1,3% per i gig e circa 1,1% per i middlemen. A queste considerazioni, è doveroso aggiungere le peculiarità del contesto dell'economia della condivisione, la quale dimostra di essere una mano facilitatrice delle interazioni tra domanda e offerta, permettendo una raccolta di informazioni molto semplificata tramite l'utilizzo di piattaforme P2P. Analizzando i diversi run di regressione, osserviamo che man mano che aumenta il numero di variabili tenderà a diminuire il valore del singolo coefficiente  $\beta_{1,k}$  per entrambi gli imprenditori; questo fenomeno è riconducibile ad una diminuzione della variabilità non osservata rispetto a quella osservata, che andrà a spalmarsi su più fronti affinando i valori dei coefficienti.

Un'altra determinante, spesso presa in considerazione dalla letteratura, è rappresentata dai costi di ingresso (Geroski, 1995); (Page & Ateljevic, 2009). Nel quadro della sharing economy, dove gli individui preferiscono l'accesso temporaneo ai beni piuttosto che il possesso (Bardhi & Eckhardt, 2012), la manifestazione dei costi necessari per l'inizio di attività imprenditoriali viene valutata attraverso la percezione del costo/opportunità dell'investimento. Come suggerito anche da (Stephany, 2015), la sharing economy trova riscontro nel valorizzare i beni sottoutilizzati e permette lo sfruttamento di tali risorse al servizio di nuovi orizzonti imprenditoriali (Frenken & Schor, 2019). A tal proposito, il numero di abitazioni non occupate e il tasso di disoccupazione rappresentano con buona probabilità una proxy della dimensione del costo/opportunità dell'attività imprenditoriale. Dai risultati, emerge come per gli imprenditori occasionali un aumento del 10% del numero di abitazioni non occupate si traduca in una stima di circa 1,3%-1,6% sull'aumento del tasso di ingresso; al contrario, queste considerazioni non sono equivalenti per gli imprenditori professionali, i quali sperimentano dei coefficienti  $\beta_{3.MID}$ che variano da +0,055\*\*\* a +0,080\*\*\*. Seppur statisticamente significativi, la stima dei coefficienti dei middleman risulta per ogni regressione sempre inferiore, confermando l'ipotesi HP2 secondo la quale bassi livelli di costo/opportunità stimolino maggiormente gli imprenditori di tipo gig rispetto ai middleman. Per quanto riguarda l'influenza del tasso di disoccupazione sui nuovi ingressi, dimostriamo una influenza molto simile per entrambi gli imprenditori; in particolare, un aumento dell'1% del tasso di disoccupazione ha un effetto significativo all'1% sia sui gig (di circa 1,0%+1,1%) che sui mid (di circa 1,3%-1,5%). Confermando gli studi di (Gerwe, Silva, & Castro, 2022), si dimostra che sia la crescita, sia le risorse sottoutilizzate, aumentano l'accesso alla piattaforma. In altre parole, si attesta che ai fini dell'ingresso e in linea con la teoria kirzneriana, la pratica dell'economia della condivisione sembrerebbe riuscire a conciliare un capitale non sfruttato, sia in termini di risorse fisiche che di risorse umane, con la genesi di nuove opportunità imprenditoriali. D'altro canto, questo è vero per di più per imprenditori occasionali rispetto ai professionisti, nella misura in cui quest'ultimi potrebbero essere influenzati anche da fattori qualità oltre che di dimensione.

A tal proposito, si osserva come la variabile che controlla il differente livello di specializzazione del settore ricettivo sia positivamente correlata con l'ingresso di nuovi imprenditori. Nel dettaglio, il test t-student per la differenza tra medie mostra come i coefficienti DummyHotel per ciascun sistema locale siano statisticamente differenti tra imprenditori gig e imprenditori professionisti ad un livello di significatività dell'1%. Quest'analisi ci consente di confermare le ipotesi riguardanti i diversi effetti della specializzazione del settore ricettivo sugli imprenditori. I coefficienti stimati per i middleman risultano tutti positivi e statisticamente significativi all'1%, dimostrando come le forze di qualità dell'offerta influenzano positivamente l'ingresso di imprenditori professionisti. Alcuni studi avvalorano questa tesi, sostenendo come mantenere standard di qualità elevati per un numero elevato di annunci costringe gli imprenditori professionisti ad alti investimenti in termini di risorse e competenze (Xie & Mao, 2017), il che li metterebbe in competizione con gli hotel di fascia alta. Tesi sostenuta anche da (Dogru, Mody, & al., 2020), i quali affermano che le differenza in termini di offerta tra gli host multi-unità e gli hotel tradizionali non sia così elevata, dimostrando che gli imprenditori professionisti potrebbero maggiormente risentire del differente livello qualitativo dell'offerta in un determinato sistema locale. Al contrario, questo non è ancora dimostrato per gli imprenditori di tipo gig, i quali sembrerebbero essere veicolati all'ingresso da una bassa struttura dei costi, così come discusso nell'ipotesi HP2.

Le regressioni in tabella 13 mostrano anche le differenze tra i *run* nei quali viene inclusa la variabile indipendente della concentrazione di mercato, espressa come rapporto tra annunci Airbnb attivi in un dato SLL al tempo t e l'estensione in termini di superficie [m2] del sistema locale. In primo luogo, sembra confermata l'ipotesi *HP3a* secondo la quale un maggior livello di concentrazione influenza positivamente l'ingresso di nuovi

imprenditori, con coefficienti di stima che risultano positivi e statisticamente significativi per entrambi gli imprenditori. Per i gig il valore di  $eta_{6.GIG}$  varia da +0,029\*\*\* a +0,026\*\*\*, mentre per i mid le stime sono leggermente più alte, con  $\beta_{6,MID}$  che varia da +0,037\*\*\* a +0,041\*\*\*. In linea con la letteratura sugli effetti di agglomerazione, si dimostra che i nuovi ingressi sono positivamente correlati ad un aumento lineare della concentrazione locale di annunci. Si ipotizza che gli individui siano maggiormente propensi a godere della prossimità con altri imprenditori già presenti nel mercato, con l'intento di appropriarsi di effetti di agglomerazione locali come le esternalità informative sulla domanda e la diminuzione dei costi di informazione (Graitson, 1982) e (Weber, 1929). In quest'ottica, l'informazione è rilevante anche post ingresso, in quanto alcuni imprenditori di tipo gig potrebbero voler espandere la propria attività e diventare imprenditori professionisti. Il test *t-student* per la differenza tra coefficienti ci dice che le stime dei valori di concentrazione risultano statisticamente differenti al 99%, questo ci consente di confermare l'ipotesi che le forze della concentrazione hanno effetti diversi sui due tipi di imprenditori, confermando l'ipotesi HP3b. D'altro canto però, i coefficienti stimati per l'effetto del termine quadratico della concentrazione risultano tutti negativi e statisticamente significativi all'1%. Applicando un focus su quello che accade per gli imprenditori professionisti, sembra confermata l'ipotesi HP3c, secondo la quale l'andamento degli ingressi dei middleman risulta crescente linearmente con l'aumentare del livello di concentrazione, ma decrescente al margine. Il coefficiente  $eta_{7.MID}$  risulta quasi identico per entrambe le regressioni con all'interno le variabili di concentrazione per i middleman, aggirandosi intorno a -0,0004\*\*\*. In altre parole, si dimostra che gli effetti della competizione prevalgono su quelli di agglomerazione all'aumentare del livello di concentrazione locale di annunci. In linea con gli studi di (Baum & Haveman, 1997) risulta conveniente per gli imprenditori spostarsi quando il livello di concentrazione aumenta e i costi di trasferimento non sono alti, in modo da sfuggire alle dinamiche competitive sviluppate localmente. Tuttavia, non è chiaro in termini assoluti quando l'effetto della concentrazione scoraggi l'ingresso di nuovi imprenditori, il valore limite potrebbe differire a seconda del contesto locale preso in considerazione. Il mercato degli alloggi a breve termine di Airbnb è in effetti segmentato geograficamente, con capacità che sono tendenzialmente molto differenti tra i territori, questo effetto fa

si che ciascun mercato locale porti intrinsecamente con se un livello limite definito quantitavimente.

Si osserva inoltre, come l'aggiunta al modello di variabili di concentrazione aumenti il valore di R-sq, dimostrando come, seppur in dimensioni non elevate, le variabili di concentrazione siano delle determinanti che spiegano gli ingressi in un determinato SLL al tempo t.

In ultima istanza, ci concentriamo sulla scelta e sull'effetto delle variabili di controllo. In primo luogo, osserviamo come un aumento dei prezzi medi di affitto al mese sia correlato positivamente con la variabile dipendente degli ingressi. Gli imprenditori gig sembrerebbero essere più sensibili alle dinamiche di prezzo degli affitti, dimostrando come un aumento del 10% del prezzo medio degli alloggi configuri un aumento del 2,44% della variabile degli ingressi; al contrario, i coefficienti dei middleman si aggirano intorno al valore +0,178\*\*\*.

Per quel che riguarda le variabili geografiche, si osserva una correlazione positiva tra l'ingresso di imprenditori gig e le variabili di proporzione di comuni costieri in un SLL e altitudine media. Nel dettaglio, il fatto che un SLL sia più o meno tendente ad un territorio di prevalenza marittima incoraggia l'ingresso di imprenditori gig, con il coefficiente di stima che varia tra +0,178\*\*\* e +0,110\*\*. Al contrario, seppur positivi, gli effetti dell'altitudine media non risultano significativi per i gig. Per gli imprenditori professionisti gli effetti sono leggermente diversi: un aumento dell'altitudine media dei sistemi locali scoraggia l'ingresso con valori statisticamente significativi e negativi, al contrario l'effetto dell'attitudine costiera di un sistema locale non sembrerebbe influenzare i middleman allo stesso livello dei gig. In linea con gli approfondimenti sul turismo portati avanti dall'ISTAT, si dimostra come i territori con prevalenza di zona costiera sono tra i più attrattivi a livello turistico, supportando l'idea di fondo che una domanda di alloggi turistici stimoli positivamente l'offerta di nuove strutture ricettive. Teoria valida specialmente per gli imprenditori gig, i quali essendo più sensibili alle dinamiche del costo/opportunità sembrerebbero più improntati a mettere a disposizione un appartamento, molte volte non sfruttato, in località turistiche.

Infine, si osserva una correlazione positiva tra il numero di letti nel SLL e l'ingresso di nuovi imprenditori. Relazione valida sia per i gig che per i mid, in quanto un aumento del 10% del numero di letti in una determinata località favorisce un aumento dello 0,29% di ingressi per i gig e un aumento di 0,14% per i mid.

Arricchiamo le nostre analisi con alcune considerazioni globali. In linea generale il modello che più riesce a spiegare la maggiore variabilità sembrerebbe quello con l'inserimento di tutte le variabili di controllo e l'aggiunta delle variabili di concentrazione. A conferma di ciò, si osserva un valore di R-sq Pari 0,7960 per i gig e 0,5978 per i mid; al contrario, per regressioni senza l'ausilio delle variabili di controllo e concentrazione il valore di R-sq risulta sempre più basso.

#### 8.3 EFFETTI RANDOM: CONTROLLI E VERIFICHE

In questa sezione si intende effettuare delle analisi di approfondimento, cercando di confermare quanto discusso nella sezione precedente. In particolare, si effettuano dei *run* di regressioni con effetti random andando a valutare gli effetti autoregressivi del modello, considerando questa volta gli errori standard robusti all'eteroschedasticità. Viene riportata di seguito una tabella riassuntiva, dove per ciascun imprenditore si confrontano i risultati di stima dei coefficienti ottenuti con e senza l'introduzione della variabile degli ingressi al tempo precedente. La tab. 14 riporta il confronto tra effetti random con e senza il controllo sulla persistenza della variabile dipendente.

| Effetti random con e senza       | GIG [1-2]          | GIG [1-2]          | MID [3-10]         | MID [3-10]           |
|----------------------------------|--------------------|--------------------|--------------------|----------------------|
| Entry(t-1)                       | $Y = E_{GIG,sl,t}$ | $Y = E_{GIG,sl,t}$ | $Y = E_{MID,sl,t}$ | $Y = E_{MID,sl,t}$   |
| $\ln E_{k,sl,t-1}$               | 0.526***           |                    | 0.404***           | _                    |
|                                  | (0.0137)           |                    | (0.0203)           |                      |
| $ConcentrationProp_{sl,t-1}$     | 0.0226***          | -0.000150          | 0.0401***          | 0.0243***            |
|                                  | (0.00394)          | (0.00489)          | (0.00596)          | (0.00479)            |
| $ConcentrationProp_{sl,t-1}$     | -0.000267***       | -0.0000552         | -0.000441***       | -0.000241***         |
|                                  | (0.0000666)        | (0.0000524)        | (0.0000892)        | (0.0000560)          |
| $\ln Demand_{sl,t}$              | 0.133***           | 0.170***           | 0.0941***          | 0.0783***            |
|                                  | (0.00709)          | (0.00656)          | (0.00657)          | (0.00512)            |
| ${\tt UnoccupiedDwellings}_{sl}$ | 0.156***           | 0.375***           | 0.0804***          | 0.176***             |
|                                  | (0.0120)           | (0.0325)           | (0.0137)           | (0.0291)             |
| U $nempRate_{sl}$                | 1.095***           | 0.716              | 1.515***           | 1.550**              |
|                                  | (0.243)            | (0.646)            | (0.283)            | (0.542)              |
| $DummyHotel_{sl}$                | 0.0702***          | 0.231***           | 0.0461**           | 0.144***             |
|                                  | (0.0154)           | (0.0442)           | (0.0169)           | (0.0351)             |
| AvgRent [€/Mqmese] <sub>Sl</sub> | 0.244***           | 0.310***           | 0.178***           | 0.243***             |
|                                  | (0.0367)           | (0.0621)           | (0.0419)           | (0.0536)             |
| ln <i>Altitude<sub>Sl</sub></i>  | 0.000888           | 0.00854            | -0.0224***         | -0.0338 <sup>*</sup> |
|                                  | (0.00692)          | (0.0185)           | (0.00672)          | (0.0139)             |
| $SeaRate_{Sl}$                   | 0.110***           | 0.544***           | -0.0986**          | 0.0814               |

|                          | (0.0271)              | (0.0755)              | (0.0325)  | (0.0645)  |
|--------------------------|-----------------------|-----------------------|-----------|-----------|
| ${ m ln} Bedhotels_{Sl}$ | 0.0286***             | 0.159***              | 0.0137*   | 0.0904*** |
|                          | (0.00665)             | (0.0207)              | (0.00670) | (0.0152)  |
| _cons                    | -2.373 <sup>***</sup> | -4.929 <sup>***</sup> | -1.495*** | -2.687*** |
|                          | (0.137)               | (0.318)               | (0.160)   | (0.318)   |
| N                        | 20808                 | 20808                 | 20808     | 20808     |
| $R^2$                    | 0,7960                | 0,6756                | 0,5978    | 0,4698    |

TABELLA 13: REGRESSIONI CON EFFETTI RANDOM OPZIONE ROBUST

La tabella 14 riporta le regressioni con effetti random per gli imprenditori gig e mid con e senza l'aggiunta della variabile degli ingressi contati al tempo precedente, considerando nell'analisi gli errori standard robusti. L'obiettivo di questa breve approfondimento è duplice: da un lato si vuole dimostrare quanta parte della variabilità viene o meno spiegata dagli effetti autoregressivi del modello, dall'altro si cerca di confermare la significatività dei coefficienti anche in modelli regressivi con errori standard robusti all'eteroschedasticità. Da sinistra a destra, ritroviamo dapprima una regressione ad effetti random fatta con l'aggiunta di  $E_{k,sl,t-1}$ , seguita successivamente dalla stessa regressione senza l'ausilio della variabile autoregressiva. L'indice di R2 rappresenta una delle possibili misure della bontà di adattamento di una regressione, in particolare rappresenta quanta variabilità viene spiegata dal modello regressivo considerato rispetto alla variabilità totale. Essendo espresso in termini percentuali, un valore di R2 prossimo allo zero identifica un modello in cui le variabili predittive non spiegano per nulla la variabilità della Y; al contrario più si avvicina all'unità più siamo confidenti del fatto che il modello riesce a catturare gran parte della variabilità del fenomeno. Analizzando i coefficienti riportati in tabella 14 si osserva come all'aggiunta della variabile  $E_{k,sl,t-1}$  i valori di R2 passano da 0,6765 a 0,7960 per i gig, mentre per i mid si osserva un passaggio dal valore 0,4698 al valore 0,5978. Si dimostra che ai fini delle analisi sui fattori che disciplinano l'ingresso di nuovi imprenditori, l'influenza di ciò che accade all'istante temporale precedente riesce a far aumentare il valore di R2 di circa il 17,67% per i gig e di circa il 27,2% per i mid.

Per quel che riguarda gli effetti dell'errore standard robusto, è utile sottolineare le motivazioni che spingono all'utilizzo di questa modalità di controllo. Il fenomeno dell'eteroschedasticità nelle regressioni è molto frequente, in particolare si verifica quando la varianza del termine d'errore non è la stessa per tutte le osservazioni fatte;

questo può portare ad un errore nell'inferenza statistica se in caso di eteroschedasticità si utilizza il calcolo degli errori standard omoschedastici. Dalla tabella 14 si osserva come tutti i coefficienti sono per la maggior parte significativi allo stesso livello di significatività dei modelli senza l'opzione robust; le uniche stime che risultano non significative sono quelle relative ai coefficienti di altitudine media per i gig, i quali però risultavano non significativi anche per le regressioni precedenti. Questa anali conferma la bontà dei risultati ottenuti con il modello ad effetti casuali, dimostrando sia come la variabile degli ingressi a t-1 riesca a controllare con buona approssimazione la persistenza della variabile dipendente, sia la robustezza e la significatività dei coefficienti anche in presenza di eteroschedasticità.

#### 8.4 EFFETTI RANDOM: CONFRONTO CON STIMATORE OLS

In questa sezione si intende verificare la bontà dei risultati ottenuti con il metodo ad effetti random, confrontando i risultati ottenibili con il modello *pooled OLS*. L'utilizzo di tale modello per dati panel non è tuttavia il più corretto; per poter utilizzare tale modello dovremmo assumere che il fattore inosservato degli effetti individuali non sia correlato con le variabili indipendenti. Nel caso l'effetto dei fattori individuali sia uguale per tutti gli individui (e, quindi, si ipotizza assenza di eterogeneità), si può procedere applicando i minimi quadrati ordinari, OLS (*Ordinary Least Squares*). Nel nostro modello non ci proponiamo di fornire una conclusione su quale sia il modello migliore adottabile in costruzione di dati panel, bensì si vuole effettuare una operazione di confronto tra i risultati dei differenti modelli con l'obiettivo di fortificare le stime emerse in precedenza. Di seguito viene riportata la tab. 15, all'interno della quale si osservano quattro differenti colonne: le prime due colonne rappresentano il confronto tra OLS e *random effects* per gli imprenditori gig, le successive due per gli imprenditori professionisti.

| Effetti random e OLS                | (OLS) GIG [1-2] $Y = E_{GIG,sl,t}$ | (RANDOM) GIG [1-2] $Y = E_{GIG,sl,t}$ | (OLS) MID [3-10] $Y = E_{MID,sl,t}$ | (RANDOM) MID [3-10] $Y = E_{MID,sl,t}$ |
|-------------------------------------|------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|
| $\ln E_{k,sl,t-1}$                  | 0.457***                           | 0.526***                              | 0.375                               | 0.404                                  |
| $Concentration Prop_{sl,t-1}$       | (0.00636)                          | (0.0137)                              | (0.00652)                           | (0.0203)                               |
|                                     | 0.0235 <sup>***</sup>              | 0.0226**                              | 0.0402                              | 0.0401                                 |
|                                     | (0.00152)                          | (0.00394)                             | (0.00155)                           | (0.00596)                              |
| $Concentration Prop_{sl,t-1}$       | -0.000279 ****                     | -0.000267                             | -0.000442                           | -0.000441 ****                         |
|                                     | (0.0000211)                        | (0.0000666)                           | (0.0000214)                         | (0.0000892)                            |
| $\ln Demand_{sl,t}$                 | 0.201<br>(0.00392)                 | 0.133<br>(0.00709)                    | 0.128<br>(0.00333)                  | 0.0941 (0.00657)                       |
| UnoccupiedDwellings $_{sl}$         | 0.145 <sup>***</sup>               | 0.156 <sup>***</sup>                  | 0.0642***                           | 0.0804 <sup>***</sup>                  |
|                                     | (0.00589)                          | (0.0120)                              | (0.00570)                           | (0.0137)                               |
| UnempRate <sub>sl</sub>             | 1.589 <sup>***</sup>               | 1.095 <sup>***</sup>                  | 1.792 <sup>***</sup>                | 1.515                                  |
|                                     | (0.120)                            | (0.243)                               | (0.119)                             | (0.283)                                |
| $\mathit{DummyHotel}_{\mathit{sl}}$ | 0.0582***                          | 0.0702 <sup>***</sup>                 | 0.0354 <sup>***</sup>               | 0.0461 <sup>**</sup>                   |
|                                     | (0.00811)                          | (0.0154)                              | (0.00808)                           | (0.0169)                               |
| $AvgRent [ \in /Mqmese]_{Sl}$       | 0.224                              | 0.244                                 | 0.156                               | 0.178                                  |
|                                     | (0.0184)                           | (0.0367)                              | (0.0183)                            | (0.0419)                               |
| $\ln Altitude_{Sl}$                 | 0.0900                             | 0.110 ****                            | -0.124                              | -0.0986 <sup>**</sup>                  |
|                                     | (0.0130)                           | (0.0271)                              | (0.0130)                            | (0.0325)                               |
| $SeaRate_{Sl}$                      | -0.00108                           | 0.000888                              | -0.0248                             | -0.0224***                             |
|                                     | (0.00306)                          | (0.00692)                             | (0.00307)                           | (0.00672)                              |
| ${ m ln} Bedhotels_{Sl}$            | 0.0104 <sup>**</sup><br>(0.00349)  | 0.0286<br>(0.00665)                   | 0.000752                            | 0.0137<br>(0.00670)                    |
| _cons                               | -2.069                             | -2.373                                | -1.188                              | -1.495                                 |
|                                     | (0.0705)                           | (0.137)                               | (0.0667)                            | (0.160)                                |
| $\frac{N}{R^2}$                     | 20808                              | 20808                                 | 20808                               | 20808                                  |
|                                     | 0.832                              | 0.7960                                | 0.629                               | 0.5978                                 |

TABELLA 14: REGRESSIONE MODELLO EFFETTI RANDOM E OLS

Le regressioni panel con lo stimatore OLS sono state effettuate controllando la variabile tempo: si è deciso di gestire gli effetti e le influenze di ciascun intervallo temporale in modo da ottenere risultati più affidabili. In queste modalità, si suppone che il modello sia *space-invariant* e *time-variant*. Attraverso questa opzione, sono state create un numero di variabili dummy per ciascun intervallo temporale (1-36). Questa particolare regressione con il metodo OLS prende il nome di LSDV (*Least-squares dummy variables*). I risultati mostrano dei coefficienti molto simili tra il modello OLS e quello ad effetti random per ciascuna tipologia di imprenditore. Alcune differenze si notano in termini assoluti, con coefficienti che differiscono di poche unità decimali; tuttavia, la maggior parte dei coefficienti risulta in linea in termini di correlazione (segno) e significatività dei

coefficienti con il modello ad effetti casuali. I coefficienti relativi alla variabili degli ingressi al tempo precedente risultano di poco più elevati nel modello random ( $\beta_{1,GIG}$  assume valore +0,457\*\*\* nel modello OLS e +0,526\*\*\* nel modello ad effetti casuali; anche  $\beta_{1,MID}$  assume valore +0,375\*\*\* per il modello OLS e +0,404\*\*\* per il modello randomico), mentre le stime per i coefficienti della domanda di alloggi turistici risultano più alte nel modello OLS ( $\beta_{2,GIG}$  assume valore +0,201\*\*\* nel modello OLS e +0,133\*\*\* nel modello ad effetti casuali; anche  $\beta_{2,MID}$  assume valore +0,128\*\*\* per il modello OLS e +0,094\*\*\* per il modello ad effetti casuali). Un aspetto interessante da sottolineare sono i valori di R-sq, i quali risultano in linea se non addirittura più elevati (si passa da 0,7960 a 0,832 per i gig, da 0,5978 a 0,629 per i mid). Si dimostra che i risultati ottenuti con il modello ad effetti random e presentati in sezione 8.2 possano ritenersi molto affidabili, in virtù sia del controllo di robustezza effettuato al paragrafo precedente sia del confronto eseguito con il modello *pooled OLS*.

L'osservazione dei coefficienti generati dalla regressione LSDV potrebbe potenzialmente ricalcare alcuni effetti di stagionalità dimostrati nel capitolo 6. Sebbene si ritengano importanti ai fini di una valutazione globale, non saranno analizzati in questi lavoro. Per poter osservare come variano i valori delle variabili dummy per ciascun intervallo di tempo si rimanda alla sez. 10.3 degli allegati.

# 9. CONCLUSIONI

Il seguente lavoro di tesi ha affrontato gli sviluppi nell'era dell'economia della condivisione del fenomeno dell'imprenditorialità locale correlata ai territori italiani, concentrandosi sul settore degli alloggi a breve termine attraverso la piattaforma Airbnb. Sfruttando una distinzione territoriale rappresentata dai sistemi locali del lavoro (SLL), sono state effettuate delle analisi empiriche sulle variabili che governano le forze di ingresso nel mercato di nuovi imprenditori, distinti per tipologia (*gig, mid e other*), tratteggiandone gli aspetti salienti.

Le analisi descrittive hanno permesso di delineare gli andamenti del settore degli affitti a breve termine nel periodo compreso tra il 2017 e il 2019. Si è fin da subito osservata la spiccata tendenza del settore ad effetti di stagionalità, rimarcato da una crescente domanda di alloggi nei periodi estivi e confermato da un aumento dei ricavi nello stesso intervallo temporale. Si è osservato, inoltre, come l'andamento nel tempo degli ingressi di nuovi imprenditori sia fortemente legato ad effetti di stagionalità, con gli imprenditori occasionali che sperimentano un tasso di ingresso mediamente più elevato rispetto agli imprenditori professionisti. Infine, dalle evidenze emerse è stato dimostrato che, oltre alle principali città italiane, le località turistiche si distinguono per il loro posizionamento predominante all'interno dei ranking annuali dei sistemi locali del lavoro, in termini di numero assoluto di nuovi ingressi. Questo sottolinea l'importanza cruciale del settore turistico e delle destinazioni turistiche nella promozione dell'imprenditorialità e nell'attrazione di nuovi attori economici.

Successivamente, si è costruito un modello in grado di incorporare al suo interno l'insieme delle variabili selezionate per questo studio. Dai risultati, è emerso come sia gli imprenditori occasionali (gig) che quelli professionisti (middleman) sono stimolati all'ingresso da una crescente domanda di alloggi turistici. Tuttavia, le motivazioni e i fattori influenzanti differiscono tra i due gruppi. Gli imprenditori occasionali sembrano essere più sensibili a livelli più bassi del costo/opportunità, sfruttando risorse sottoutilizzate per massimizzare il loro rendimento. Al contrario, gli imprenditori professionisti richiedono investimenti più elevati in risorse e capacità specifiche del settore alberghiero, e sono influenzati dalla specializzazione del settore ricettivo e dalle forze di concentrazione e concorrenza. Inoltre, l'analisi ha evidenziato un'interessante relazione tra gli ingressi di imprenditori professionisti e la concentrazione del mercato.

Inizialmente, l'aumento della concentrazione favorisce gli effetti di agglomerazione, promuovendo gli ingressi imprenditoriali. Tuttavia, oltre un certo punto, le forze della concorrenza superano le esternalità positive della contiguità con altre imprese, e gli ingressi sembrano essere scoraggiati.

Allo stesso tempo, è importante riconoscere che questo lavoro di ricerca presenta alcune limitazioni. Innanzitutto, è stato analizzato un periodo di tempo limitato (2017-2019). Pertanto, ulteriori indagini condotte in diversi intervalli temporali potrebbero confermare e consolidare i risultati, rendendoli più robusti e significativi. In secondo luogo, il tasso di ingresso di nuovi imprenditori potrebbe essere influenzato anche da fattori definiti a livello micro/macro imprenditoriali, i quali non sono stati inclusi nelle analisi. Pertanto, si pensa che questo studio possa offrire un ottimo punto di partenza per l'inclusione di fenomeni non controllati dal seguente modello. Infine, è importante sottolineare che il presente lavoro di ricerca non ha approfondito le dinamiche di transizione da imprenditore occasionale a imprenditore professionista. Tali dinamiche potrebbero influenzare le valutazioni a posteriori dei fenomeni imprenditoriali locali. Pertanto, quest'area di studio merita ulteriori ricerche e analisi per comprendere appieno l'evoluzione degli imprenditori e le loro esperienze nel tempo.

In conclusione, si pensa che i risultati ottenuti possano fornire un sostegno rilevante per le politiche economiche locali. L'evidenza empirica secondo la quale l'ingresso di nuovi imprenditori sul mercato avvenga con maggiore probabilità in aree territoriali con elevati tassi di disoccupazione, potrebbe rappresentare un'indicazione di come le comunità locali riescano a mettere in atto dei meccanismi di risposta ad un offerta lavorativa tendenzialmente più blanda.

### REFERENZE

- Adamiak, C., & Szyda, B. e. (2019). Airbnb offer in Spain—spatial analysis of the pattern and determinants of its distribution. ISPRS International Journal of Geo-Information, 8(3), 155.
- Ardichvili, A., Cardozo, R., & Ray, S. (2003). A theory of entrepreneurial opportunity identification and development. Journal of Business venture, 18(1), 105-123.
- Armstrong, M. (2006). Competition in Two-Sided Markets,". Rand Journal of Economics,, 37.
- Bardhi, F., & Eckhardt, G. (2012). Access-based consumption: The case of car sharing. Journal of consumer research, 39(4), 881-898.
- Baum, J. A., & Haveman, E. (1997). Love Thy Neighbor? Differentiation and Agglomeration in the Manhattan Hotel industry. Administrative Science Quarterly, 304-338.
- Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of business research, 67(8), 1595-1600.
- Belk, R. W., Eckhardt, G. M., & Bardhi, F. (2019). Handbook of the sharing economy. Edward Elgar.
- Boswijk, A. (2017). Transforming business value through digitalized networks: A case study on the value drivers of Airbnb. Journal of Creating Value, 3(1), 104-114.
- Botsman, R., & Rogers, R. (2010). What's mine is yours. The rise of collaborative consumption (Vol. 1).
- Bucher, E., Fieseler, C., Fleck, M., & Lutz, C. (2018). Authenticity and the sharing economy. Academy of Management Discoveries, 4(3), 294-313.
- Bunten, D., Weiler, S., & al., e. (2015). Entrepreneurship, Information, and Growth. Giornale di scienze regionali, 55(4), 560-584.
- Buzzacchi, L., Grilli, L., & Milone, F. L. (2021). Seizing local entrepreneurial opportunities in the. Politecnico di Torino, Interuniversity Department of Regional and Urban Studies and Planning . Torino: Unpublished.
- Calafati, A. G., & Mazzoni, F. (2002). Una citta'in nuce nelle Marche: Coalescenza territoriale e sviluppo economico. Milano: Franco Angeli.
- Calafati, A., & Compagnucci, F. (2005). Oltre i sistemi locali del lavoro. ECONOMIA MARCHE 24. 1, 51-76. Tratto da https://www.researchgate.net/profile/Fabiano-Compagnucci/publication/265064624\_Oltre\_i\_sistemi\_locali\_del\_lavoro/links/57a1e88308a eef8f311d8426/Oltre-i-sistemi-locali-del-lavoro.pdf
- Chamberlin, E. (1933). Theory of Monopolistic Competition. Cambridge. Harvard University Press.
- Christensen, C. M. (1997). The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Boston: Harvard Business.
- Constantiou, I., Marton, A., & Tuunainen, V. (2017). Four models of sharing economy platforms. MIS Quarterly Executive, 16(4).
- Coppola, G., & Mazzotta, F. (2005). Local Labour Systems in Italy: Theoretical and Empirical Aspects.

  Quaderni del Dipartimento di Scienze Economiche e Statistiche di Salerno, 1-81. Tratto da https://mpra.ub.uni-muenchen.de/13173/1/MPRA\_paper\_13173.pdf
- Creatuse, & UE. (2018). Ufficio stampa. Tratto da Parlamento europeo: https://ec.europa.eu/programmes/erasmus-plus/project-result-content/0aeaea53-4d89-4a30-9774-467bbe4dee02/02%20-%20IO1%20-%20Guide%20Sharing%20IT.pdf
- de Jong, J. P., & Marsili, O. (2015). The distribution of Schumpeterian and Kirznerian opportunities. Small Business Economics, 44, 19-35.

- Dogru, T., Mody, M., & al., e. (2020). Airbnb 2.0: Is it a sharing platform or a loadging corporation?

  Boston University, School of Hospitality Administration . Boston: BU Open Access Articles.

  Tratto da https://doi.org/10.1016/j.tourman.2019.104049
- Ert, E., Fleischer, A., & Magen, N. (2016). Trust and reputation in the sharing economy: The role of personal photos in Airbnb. Tourism management, 52, 62-73.
- Eugenio-Martin, J. L., Cazorla-Artiles, J. M., & González-Martel, C. (2019). On the determinants of Airbnb location and its spatial distribution. Tourism Economics, 25(8), 1224-1244.
- Evans, D. S. (2003). "The Antitrust Economics of Two-Sided Markets. Yale Journal of Regulation, 325-381.
- Fang, B., Ye, Q., & Law, R. (2016). Effect of sharing economy on tourism industry employment. Annals of tourism research, 57, 264-267.
- Felson, M., & Spaeth, J. (1978). Community Structure and Collaborative Consumption. American Behavioral scientist, 4, 614-624.
- Fischer, M., & Nijkamp, P. (1987). ROM STATIC TOWARDS DYNAMIC DISCRETE CHOICE MODELLING:.

  Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam.

  Amsterdam: Serie Research Memoranda. Tratto da https://research.vu.nl/ws/files/73602132/Scanjob%20198700061
- Frenken, K., & Schor, J. (2019). Putting the sharing economy into perspective. In A research agenda for sustainable consumption governance, 121-135.
- Geroski, P. A. (1995). What do we know about entry? . International journal of industrial organization, 13(4), 421-440.
- Gerwe, O., Silva, R., & Castro, J. D. (2022). Entry of providers onto a sharing economy platform: macro-level factors and social interaction. Entrepreneurship Theory and Practice, 833-856.
- Graitson, D. (1982). Spatial Competition à la Hotelling: A Selective Survey. The Journal of Industrial Economics, Vol. 31, No. 1/2, Symposium on Spatial Competition and the, 11-25. Tratto da https://www.jstor.org/stable/2098001
- Gutiérrez, J., García-Palomares, J., Romanillos, G., & Salas-Olmedo, M. (2017). The eruption of Airbnb in tourist cities: Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona. Tourism management, 62, 278-291.
- Guttentag, D. (2015). Current issues in Tourism, 18(12), 1192-1217.
- Guttentag, D., Smith, S., Potwarka, L., & Havitz, M. (2018). Why tourists choose Airbnb: A motivation-based segmentation study. Journal of Travel Research, 57(3), 342-359.
- Gyódi, K. (2019). Airbnb in European cities: Business as usual or true sharing economy? Journal of Cleaner Production, 221, 536-5551.
- Hagiu, A., & right, J. (2015). Multi-sided platforms. International Journal of Industrial Organization, 43, 162-174.
- Hamari, J., Sjöklint, M., & Ukkonen, A. (2016). The sharing economy: Why people participate in collaborative consumption. Journal of the Association, 2047-2059.
- Hardy, A., & Dolnicar, S. (2018). 16 Networks and Hosts-Love-Hate Relationship. In Peer-to-Peer Accommodation Networks.
- Hay, D. (1976). Sequential entry and entry-deterring strategies in spatial competition. Oxford Economic Papers, 2, 227-241.
- ISTAT. (2021, Gennaio 15). Economia. Tratto da Istat archivio-turismo: https://www.istat.it/it/files//2021/01/Turismo-arte-area-urbana.pdf
- ISTAT. (2022, Febbrario 17). Turismo . Tratto da Istituto nazionale di statistica: https://www.istat.it/storage/ASI/2022/capitoli/C19.pdf

- ISTAT. (2023, Maggio 21). Istruzione e lavoro. Tratto da Istat informazioni territoriali e cartografiche dei sistemi locali del lavoro: https://www.istat.it/
- Kirzner, I. (1973). Competition and Entrepreneurship. University of Chicago Press, Chicago, IL. Chicago: University of Chicago Press.
- Knight, F. H. (1921). Cost of production and price over long and short periods. Journal of political economy, 29(4), 304-335.
- Leoni, G., & Parker, L. D. (2019). Governance and control of sharing economy platform: hosting on Airbnb. British Accounting review, 51(6), 100814. Tratto da https://doi.org/10.1016/j.bar.2018.12.001
- Lerner, M., & Haber, S. (2001). Performance factors of small tourism ventures: The interface of tourism, entrepreneurship and the environment. Journal of business venturing, 16(1), 77-100.
- Lessig, L. (2008). Remix: Making art and commerce thrive in the hybrid economy . Bloomsbury Academic.
- Li, H., & Srinivasan, K. (2019). Competitive dynamics in the sharing economy: An analysis in the context of Airbnb and hotels. Marketing Science, 38(3), 365-391.
- Li, J., & Hudson, S. e. (2019). Exploring the customer experience. International research journal on culture, tourism and hospitality.
- Li, J., Moreno, A., & Zhang, D. (2015). Agent behavior in the sharing economy: evidence from Airbnb. Ross School of business paper , 1298.
- Martinez, M. A., & Aldrich, H. E. (2011). Networking strategies for entrepreneurs: balancing cohesion and diversity. International Journal of Entrepreneurial Behavior & Research.
- Oskam, J., & Boswijk, A. (2016). Airbnb: the future of networked. Journal of tourism futures, 2(1), 24.

  Tratto da https://www.emerald.com/insight/content/doi/10.1108/JTF-11-2015-0048/full/pdf?title=airbnb-the-future-of-networked-hospitality-businesses
- Oskam, J., van der Rest, J. P., & Telkamp, B. (2018). What's mine is yours, but at what price? Dynamic pricing behavior as an indicator of Airbnb host professionalization. Journal of Revenue and Pricing Management, 17, 311-328.
- Quattrone, G., Proserpio, D., Quercia, D., Capra, L., & Musolesi, M. (2016). Who Benefits from the "Sharing" Economy of Airbnb? 25th international conference on the world wide web, (p. 1385-1394).
- Rangone, M. (2002). I sistemi locali del lavoro come mercati locali del lavoro. 1000-1024.
- Ray, S., & Cardozo, R. (1996). Sensitivity and creativity in entrepreneurial opportunity recognition: a framework for empirical investigation. Sixth Global Entrepreneurship Research Conference, Imperial College, London. Londra.
- Rochet, J., & Tirole, J. (2003). Platform competition in two-sided markets. Journal of the european economic association, 990-1029.
- Sciascia, S., & De vita, R. (2004, aprile 19). THE DEVELOPMENT OF ENTREPRENEURSHIP RESEARCH. Castellanza: Università Carlo Cattaneo.
- Sforzi, F. (1997). I sistemi locali del lavoro 1991. roma: ISTAT. Tratto da https://docenti.unimc.it/gianluigi.corinto/teaching/2021/24193/files/geo\_ta\_letture/sforzi\_sll1991.pdf
- Smedlund, A., & Faghankhani, H. (2015). Platform orchestration for efficiency, development, and innovation. In 2015 48th Hawaii international conference on system sciences, 1380-1388.
- Spence, M. (1976). Product Selection, Fixed Costs, and Monopolistic Competition. American Economic Review, 217-235. Tratto da https://www.jstor.org/stable/2297319?origin=JSTOR-pdf
- Stephany, A. (2015). The business of sharing: Making it in the new sharing economy. pringer.: .

- Sundararajan, A. (2017). The sharing economy: The end of employment and the rise of crowd-based capitalism. MIT press.
- Tiwana, A., Konsynski, B., & Venkatraman, N. (2013). Special issue: Information technology and organizational governance: The IT governance cube. Journal of Management Information systems, 30(3), 7-12.
- Vallas, S., & Schor, J. B. (2020). What do platforms do? Understanding the gig economy. Annual Review of Sociology, 46, p. 273-294.
- Verheul, I., Wennekers, S., Audretsch, D., & Thurik, R. (2002). An eclectic theory of entrepreneurship: policies, institutions and culture. Springer US, 11-81.
- Weber, A. (1929). Theory of the Location of Industries. University of Chicago Press, University, Chicago.
- Weiler, S., Hog, D., & Fan, C. (2006). Prospecting for economic returns to research: Adding informational value at the market fringe. Journal of regional science, 46(2), 289-311.
- Whimton, M., & Mankiw, G. (1986). Free Entry and Social Inefficiency. The RAND Journal of, 48-58.
- Xie, K., & Mao, Z. (2017). The impacts of quality and quantity attributes of Airbnb hosts on listing performance. International Journal of Contemporary Hospitality Management. International Journal of Contemporary Hospitality Management, 29(9), 2240-2260. Tratto da https://www.emerald.com/insight/content/doi/10.1108/IJCHM-07-2016-0345/full/pdf?title=the-impacts-of-quality-and-quantity-attributes-of-airbnb-hosts-on-listing-performance
- Zervas, G., Proserpio, D., & Byers, J. (2017). The rise of the sharing economy: Estimating the impact of Airbnb on the hotel industry. Journal of Marketing Research., 32, 1-16.

## 10.ALLEGATI

### 10.1 DATI SLL

Differenze principali tra censimento della popolazione del 2001 e quello del 2011 per l'individuazione dei sistemi locali del lavoro SLL. FONTE: ISTAT.

|                          | SLL presenti sia 2001 che 2011 |                 |                  |        |                    |                 |              |              |
|--------------------------|--------------------------------|-----------------|------------------|--------|--------------------|-----------------|--------------|--------------|
| Ripartizioni geografiche | Minor n.comuni                 | Stesso n.comuni | Maggior n.comuni | Totale | SLL scomparsi 2011 | SLL creati 2011 | TOT SLL 2001 | TOT SLL 2011 |
| Nord-ovest               | 19                             | 22              | 57               | 98     | 35                 | 8               | 133          | 106          |
| Nord-est                 | 19                             | 47              | 44               | 110    | 29                 | 9               | 139          | 119          |
| Centro                   | 19                             | 41              | 41               | 101    | 19                 | 4               | 120          | 105          |
| Sud                      | 31                             | 60              | 57               | 148    | 35                 | 23              | 183          | 171          |
| Isole                    | 32                             | 41              | 26               | 99     | 9                  | 11              | 108          | 110          |
| ITALIA                   | 120                            | 211             | 225              | 556    | 127                | 55              | 683          | 611          |

#### **10.2 DATABASE VARIABILI**

Descrizione variabili dataset di partenza.

| VARIABILE          | DESCRIZIONE                                                                          |
|--------------------|--------------------------------------------------------------------------------------|
| ACTIVE_GIG         | Numero di host attivi che<br>gestiscono 1-2 appartamenti                             |
| ACTIVE_MID         | Numero di host attivi che<br>gestiscono 3-10 appartamenti                            |
| ACTIVE_OTHER       | Numero di host attivi che<br>gestiscono 11+ appartamenti in<br>contemporanea         |
| NEW_GIG            | Nuovi host di tipo gig nella<br>provincia                                            |
| NEW_FROM_MID       | Nuovi host di tipo gig , che erano<br>mid a t-1                                      |
| NEW_GIG_FROM_OTHER | Nuovi host di tipo gig , che erano other a t-1                                       |
| NEW_GIG_FROM_SLL   | Nuovi host di tipo gig , che erano attivi in altri SLL a t-1                         |
| GIG_EXIT           | Gig che si sono cancellati dalla<br>piattaforma                                      |
| GIG_TO_MID         | Gig che si sono trasformati a mid                                                    |
| GIG_TO_OTHER       | Gig che si sono trasformati in other                                                 |
| GIG_EXIT_SLL       | Gig che hanno chiuso gli annunci<br>nel SLL ma ne hanno altri attivi in<br>altri SLL |
| EXIT_CALC          | Altri gig che non sono più attivi                                                    |
| NEW_MID            | Nuovi host di tipo mid nella                                                         |

|                           | provincia                                                                                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------|
| NEW_MID_FROM_GIG          | Nuovi host di tipo mid , che erano<br>gig a t-1                                                           |
| NEW_MID_FROM_OTHER        | Nuovi host di tipo mid , che erano other a t-1                                                            |
| NEW_MID_FROM_SLL          | Nuovi host di tipo mid , che erano attivi in altri SLL a t-1                                              |
| MID_EXIT                  | Mid che si sono cancellati dalla<br>piattaforma                                                           |
| MID_TO_GIG                | Mid che si sono trasformati a gig                                                                         |
| MID_TO_OTHER              | Mid che si sono trasformati in other                                                                      |
| MID_EXIT_SLL              | Mid che hanno chiuso gli annunci<br>nel SLL ma ne hanno altri attivi in<br>altri SLL                      |
| CONCENTRATION_PROP        | Numero di annunci attivi su<br>Airbnb (considerando tutte le<br>tipologie di host) al tempo t<br>nell'SLL |
| AIRBNB_REVENUES           | Ricavi generati dagli Airbnb<br>nell'SLL al tempo t                                                       |
| NUMERO NOTTI<br>PRENOTATE | Numero di notti prenotate su<br>Airbnb nell'SLL al tempo t                                                |
| AIRBNB_AD                 | Numero di notti "sfitte" su Airbnb<br>nell'SLL al tempo t                                                 |

Calcolo della variabile DummyHotel per ciascun sistema locale del lavoro.

| COD | DEN SLL              | PERCENTUALE 4/5/5L | MEDIANA | DUMMYHOTEL |
|-----|----------------------|--------------------|---------|------------|
| 101 | CHIERI               | 0,14               | 0,14    | 0          |
| 102 | IVREA                | 0,13               | 0,13    | 0          |
| 103 | PINEROLO             | 0,10               | 0,10    | 0          |
| 104 | RIVAROLO CANAVESE    | 0,12               | 0,27    | 0          |
| 105 | SUSA                 | 0,14               | 0,14    | 0          |
| 106 | TORINO               | 0,15               | 0,14    | 1          |
| 107 | BORGOSESIA           | 0,11               | 0,20    | 0          |
| 108 | SANTHIÀ              | 0,05               | 0,18    | 0          |
| 109 | VERCELLI             | 0,08               | 0,23    | 0          |
| 110 | BORGOMANERO          | 0,21               | 0,19    | 1          |
| 111 | NOVARA               | 0,26               | 0,12    | 1          |
| 112 | ALBA                 | 0,19               | 0,16    | 1          |
| 113 | BRA                  | 0,30               | 0,10    | 1          |
| 114 |                      | 0,00               | 0,10    | 0          |
| 115 | CEVA                 |                    |         | 0          |
|     | CUNEO                | 0,05               | 0,18    | +          |
| 116 | FOSSANO              | 0,00               | 0,00    | 0          |
| 117 | GARESSIO             | 0,00               | 0,23    | 0          |
| 118 | MONDOVÌ              | 0,12               | 0,13    | 0          |
| 119 | SALUZZO              | 0,08               | 0,19    | 0          |
| 120 | SAVIGLIANO           | 0,00               | 0,07    | 0          |
| 121 | ASTI                 | 0,26               | 0,06    | 1          |
| 122 | CANELLI              | 0,08               | 0,08    | 0          |
| 123 | NIZZA MONFERRATO     | 0,13               | 0,13    | 0          |
| 124 | ACQUI TERME          | 0,06               | 0,11    | 0          |
| 125 | ALESSANDRIA          | 0,57               | 0,19    | 1          |
| 126 | CASALE MONFERRATO    | 0,15               | 0,15    | 0          |
| 127 | NOVI LIGURE          | 0,12               | 0,12    | 0          |
| 128 | OVADA                | 0,08               | 0,17    | 0          |
| 129 | TORTONA              | 0,14               | 0,14    | 0          |
| 130 | VALENZA              | 0,40               | 0,00    | 1          |
| 131 | BIELLA               | 0,28               | 0,17    | 1          |
| 132 | COSSATO              | 0,00               | 0,29    | 0          |
| 133 | DOMODOSSOLA          | 0,02               | 0,24    | 0          |
| 134 | OMEGNA               | 0,14               | 0,14    | 0          |
| 135 | SANTA MARIA MAGGIORE | 0,00               | 0,16    | 0          |
| 136 | VERBANIA             | 0,17               | 0,16    | 1          |
| 201 | AOSTA                | 0,05               | 0,08    | 0          |
| 202 | AYAS                 | 0,13               | 0,13    | 0          |
| 203 | COURMAYEUR           | 0,20               | 0,18    | 1          |
| 204 | SAINT-VINCENT        | 0,10               | 0,22    | 0          |
| 205 | VALTOURNENCHE        | 0,11               | 0,10    | 1          |
| 301 | BUSTO ARSIZIO        | 0,36               | 0,18    | 1          |
| 302 | LUINO                | 0,08               | 0,16    | 0          |
| 303 | VARESE               | 0,26               | 0,18    | 1          |
| 304 | COMO                 | 0,23               | 0,20    | 1          |
| 305 | MENAGGIO             | 0,08               | 0,19    | 0          |
| 306 | PORLEZZA             | 0,14               | 0,23    | 0          |
| 307 | CHIAVENNA            | 0,09               | 0,18    | 0          |
| 308 | LIVIGNO              | 0,13               | 0,13    | 1          |
| 309 | MORBEGNO             | 0,00               | 0,25    | 0          |
| 310 | SONDALO              | 0,00               | 0,23    | 0          |
| 311 | SONDRIO              | 0,06               | 0,23    | 0          |
| 312 | TIRANO               | 0,00               | 0,25    | 0          |
|     |                      |                    |         |            |
| 313 | MILANO               | 0,36               | 0,15    | 1          |
| 314 | ALBINO               | 0,07               | 0,14    | 0          |

| 315 | BERGAMO                    | 0,28 | 0,12 | 1 |
|-----|----------------------------|------|------|---|
| 316 | CLUSONE                    | 0,05 | 0,11 | 0 |
| 317 | GRUMELLO DEL MONTE         | 0,42 | 0,17 | 1 |
| 318 | VILMINORE DI SCALVE        | 0,00 | 0,20 | 0 |
| 319 | ZOGNO                      | 0,00 | 0,18 | 0 |
| 320 | BRENO                      | 0,04 | 0,11 | 0 |
| 321 | BRESCIA                    | 0,24 | 0,18 | 1 |
| 322 | CHIARI                     | 0,25 | 0,15 | 1 |
| 323 | DARFO BOARIO TERME         | 0,11 | 0,17 | 0 |
| 324 | DESENZANO DEL GARDA        | 0,21 | 0,19 | 1 |
| 325 | EDOLO                      | 0,05 | 0,20 | 0 |
| 326 | LIMONE SUL GARDA           | 0,22 | 0,18 | 1 |
| 328 | MANERBIO                   | 0,00 | 0,17 | 0 |
| 329 | MONTICHIARI                | 0,06 | 0,19 | 0 |
| 330 | ORZINUOVI                  | 0,25 | 0,25 | 0 |
| 331 | PONTE DI LEGNO             | 0,15 | 0,15 | 0 |
| 332 | SALÒ                       | 0,29 | 0,21 | 1 |
| 333 | VESTONE                    | 0,00 | 0,25 | 0 |
| 334 | PAVIA                      | 0,18 | 0,18 | 0 |
| 335 | SANNAZZARO DE' BURGONDI    | 0,09 | 0,18 | 0 |
| 336 | STRADELLA                  | 0,17 | 0,17 | 0 |
| 337 | VIGEVANO                   | 0,13 | 0,21 | 0 |
| 338 | VOGHERA                    | 0,12 | 0,22 | 0 |
| 339 | CASALMAGGIORE              | 0,07 | 0,14 | 0 |
| 340 | CREMA                      | 0,47 | 0,13 | 1 |
| 341 | CREMONA                    | 0,19 | 0,05 | 1 |
| 342 | ASOLA                      | 0,00 | 0,17 | 0 |
| 343 | CASTEL GOFFREDO            | 0,00 | 0,00 | 0 |
| 344 | CASTIGLIONE DELLE STIVIERE | 0,00 | 0,17 | 0 |
| 345 | MANTOVA                    | 0,21 | 0,18 | 1 |
| 346 | POGGIO RUSCO               | 0,00 | 0,27 | 0 |
| 348 | SUZZARA                    | 0,10 | 0,20 | 0 |
| 349 | VIADANA                    | 0,00 | 0,00 | 0 |
| 350 | LECCO                      | 0,14 | 0,15 | 0 |
| 351 | LODI                       | 0,19 | 0,19 | 0 |
| 401 | BADIA/ABTEI                | 0,09 | 0,10 | 0 |
| 402 | BOLZANO/BOZEN              | 0,10 | 0,11 | 0 |
| 403 | BRESSANONE/BRIXEN          | 0,07 | 0,21 | 0 |
| 404 | BRUNICO/BRUNECK            | 0,09 | 0,16 | 0 |
| 405 | CASTELROTTO/KASTELRUTH     | 0,16 | 0,14 | 1 |
| 406 | EGNA/NEUMARKT              | 0,02 | 0,23 | 0 |
| 407 | MALLES VENOSTA/MALS        | 0,07 | 0,10 | 0 |
| 408 | MERANO/MERAN               | 0,13 | 0,13 | 1 |
| 409 | SAN CANDIDO/INNICHEN       | 0,13 | 0,13 | 0 |
| 411 | SILANDRO/SCHLANDERS        | 0,13 | 0,12 | 1 |
| 412 | VIPITENO/STERZING          | 0,09 | 0,17 | 0 |
| 413 | ARCO                       | 0,10 | 0,13 | 0 |
| 414 | BORGO VALSUGANA            | 0,06 | 0,14 | 0 |
| 415 | CANAZEI                    | 0,11 | 0,14 | 0 |
| 416 | CAVALESE                   | 0,11 | 0,11 | 0 |
| 417 | CLES                       | 0,03 | 0,19 | 0 |
| 418 | MALÈ                       | 0,10 | 0,10 | 0 |
| 419 | MOENA                      | 0,09 | 0,12 | 0 |
| 420 | PINZOLO                    | 0,31 | 0,10 | 1 |
| 421 | RIVA DEL GARDA             | 0,16 | 0,16 | 0 |
| 422 | ROVERETO                   | 0,05 | 0,14 | 0 |
| 423 | STORO                      | 0,00 | 0,21 | 0 |
| 424 | TIONE DI TRENTO            | 0,10 | 0,11 | 0 |
| 425 | TONADICO                   | 0,11 | 0,11 | 0 |

| 426 | TRENTO                | 0,09 | 0,22 | 0 |
|-----|-----------------------|------|------|---|
| 501 | BARDOLINO             | 0,15 | 0,14 | 1 |
| 503 | ISOLA DELLA SCALA     | 0,00 | 0,33 | 0 |
| 504 | LEGNAGO               | 0,50 | 0,17 | 1 |
| 505 | MALCESINE             | 0,09 | 0,13 | 0 |
| 506 | PESCHIERA DEL GARDA   | 0,10 | 0,20 | 0 |
| 507 | SAN BONIFACIO         | 0,03 | 0,16 | 0 |
| 508 | VERONA                | 0,22 | 0,19 | 1 |
| 509 | VILLAFRANCA DI VERONA | 0,21 | 0,21 | 0 |
| 510 | ARZIGNANO             | 0,04 | 0,20 | 0 |
| 511 | ASIAGO                | 0,10 | 0,22 | 0 |
| 512 | BASSANO DEL GRAPPA    | 0,16 | 0,19 | 0 |
| 513 | NOVENTA VICENTINA     | 0,00 | 0,17 | 0 |
| 514 | SCHIO                 | 0,05 | 0,23 | 0 |
| 515 | THIENE                | 0,06 | 0,24 | 0 |
| 517 | VICENZA               | 0,31 | 0,31 | 0 |
| 518 | AGORDO                | 0,05 | 0,10 | 0 |
| 519 | AURONZO DI CADORE     | 0,02 | 0,13 | 0 |
| 520 | BELLUNO               | 0,14 | 0,14 | 0 |
| 521 | CORTINA D'AMPEZZO     | 0,28 | 0,10 | 1 |
| 522 | FELTRE                | 0,00 | 0,29 | 0 |
| 523 | LONGARONE             | 0,02 | 0,31 | 0 |
| 524 | PIEVE DI CADORE       | 0,07 | 0,27 | 0 |
| 525 | CASTELFRANCO VENETO   | 0,21 | 0,21 | 0 |
| 526 | CONEGLIANO            | 0,19 | 0,19 | 0 |
| 527 | MONTEBELLUNA          | 0,23 | 0,15 | 1 |
| 528 | ODERZO                | 0,28 | 0,11 | 1 |
| 529 | PIEVE DI SOLIGO       | 0,42 | 0,25 | 1 |
| 530 | TREVISO               | 0,33 | 0,16 | 1 |
| 531 | VALDOBBIADENE         | 0,11 | 0,22 | 0 |
| 532 | VITTORIO VENETO       | 0,00 | 0,14 | 0 |
| 533 | JESOLO                | 0,16 | 0,16 | 0 |
| 534 | PORTOGRUARO           | 0,04 | 0,18 | 0 |
| 535 | SAN DONÀ DI PIAVE     | 0,35 | 0,30 | 1 |
| 536 | VENEZIA               | 0,26 | 0,15 | 1 |
| 537 | CITTADELLA            | 0,22 | 0,22 | 0 |
| 538 | MONSELICE             | 0,00 | 0,00 | 0 |
| 539 | MONTAGNANA            | 0,00 | 0,13 | 0 |
| 540 | PADOVA                | 0,36 | 0,10 | 1 |
| 541 | ADRIA                 | 0,06 | 0,15 | 0 |
| 542 | BADIA POLESINE        | 0,11 | 0,11 | 0 |
| 543 | ROVIGO                | 0,25 | 0,25 | 0 |
| 601 | CIVIDALE DEL FRIULI   | 0,15 | 0,15 | 0 |
| 602 | LATISANA              | 0,22 | 0,16 | 1 |
| 603 | SAN GIORGIO DI NOGARO | 0,13 | 0,13 | 0 |
| 604 | TARVISIO              | 0,00 | 0,13 | 0 |
| 605 | TOLMEZZO              | 0,03 | 0,29 | 0 |
| 606 | UDINE                 | 0,10 | 0,22 | 0 |
| 607 | GORIZIA               | 0,11 | 0,25 | 0 |
| 608 | MONFALCONE            | 0,15 | 0,20 | 0 |
| 609 | TRIESTE               | 0,16 | 0,20 | 0 |
| 610 | MANIAGO               | 0,12 | 0,27 | 0 |
| 611 | PORDENONE             | 0,12 | 0,12 | 1 |
| 701 | DIANO MARINA          | 0,07 | 0,13 | 0 |
| 701 | IMPERIA               | 0,05 | 0,13 | 0 |
| 702 | SANREMO               | 0,12 | 0,24 | 0 |
| 703 | VENTIMIGLIA           | 0,06 | 0,19 | 0 |
| 704 | ALBENGA               | 0,06 | 0,19 | 0 |
|     |                       |      |      |   |
| 706 | CAIRO MONTENOTTE      | 0,00 | 0,21 | 0 |

| 707        | FINALE LIGURE             | 0,04 | 0,23 | 0 |
|------------|---------------------------|------|------|---|
| 708        | SAVONA                    | 0,07 | 0,20 | 0 |
| 709        | CHIAVARI                  | 0,00 | 0,26 | 0 |
| 710        | GENOVA                    | 0,14 | 0,26 | 0 |
| 711        | RAPALLO                   | 0,28 | 0,22 | 1 |
| 712        | SESTRI LEVANTE            | 0,09 | 0,23 | 0 |
| 713        | LA SPEZIA                 | 0,07 | 0,28 | 0 |
| 714        | LEVANTO                   | 0,08 | 0,16 | 0 |
| 801        | CASTEL SAN GIOVANNI       | 0,11 | 0,11 | 0 |
| 802        | FIORENZUOLA D'ARDA        | 0,14 | 0,17 | 0 |
| 803        | PIACENZA                  | 0,16 | 0,20 | 0 |
| 804        | BORGO VAL DI TARO         | 0,04 | 0,12 | 0 |
| 805        | FIDENZA                   | 0,15 | 0,15 | 0 |
| 806        | LANGHIRANO                | 0,00 | 0,27 | 0 |
| 807        | PARMA                     | 0,22 | 0,16 | 1 |
| 808        | CASTELNOVO NE' MONTI      | 0,00 | 0,24 | 0 |
| 809        | CORREGGIO                 | 0,18 | 0,09 | 1 |
| 810        | GUASTALLA                 | 0,29 | 0,00 | 1 |
| 811        | REGGIO NELL'EMILIA        | 0,20 | 0,20 | 0 |
| 812        | CARPI                     | 0,45 | 0,27 | 1 |
| 813        | FANANO                    | 0,02 | 0,12 | 0 |
| 814        | MIRANDOLA                 | 0,29 | 0,12 | 1 |
| 815        | MODENA                    | 0,24 | 0,20 | 1 |
| 816        | PAVULLO NEL FRIGNANO      | 0,00 | 0,27 | 0 |
| 817        | PIEVEPELAGO               | 0,07 | 0,07 | 0 |
| 818        | SASSUOLO                  | 0,19 | 0,14 | 1 |
| 819        | VIGNOLA                   | 0,19 | 0,10 | 0 |
|            |                           |      |      |   |
| 820        | BOLOGNA                   | 0,28 | 0,16 | 1 |
| 821        | GAGGIO MONTANO            | 0,05 | 0,14 | 0 |
| 822        | IMOLA                     | 0,21 | 0,21 | 0 |
| 823        | COMACCHIO                 | 0,12 | 0,12 | 0 |
| 824        | COPPARO                   | 0,00 | 0,25 | 0 |
| 825        | FERRARA                   | 0,27 | 0,18 | 1 |
| 826        | GORO                      | 0,00 | 0,00 | 0 |
| 827        | FAENZA                    | 0,28 | 0,24 | 1 |
| 828        | LUGO                      | 0,13 | 0,13 | 0 |
| 829<br>830 | RAVENNA PARAMAGNA         | 0,13 | 0,12 | 1 |
|            | BAGNO DI ROMAGNA          | 0,13 | 0,16 | 0 |
| 831        | CESENA                    | 0,24 | 0,24 | 0 |
| 832        | CESENATICO                | 0,04 | 0,05 | 0 |
| 833        | FORLÌ                     | 0,18 | 0,18 | 0 |
| 834        | MODIGLIANA<br>SANTA SOFIA | 0,00 | 0,00 | 0 |
| 835        | SANTA SOFIA               | 0,00 | 0,11 | 0 |
| 836        | CATTOLICA                 | 0,11 | 0,12 | 0 |
| 837        | RICCIONE                  | 0,07 | 0,15 | 0 |
| 838        | RIMINI                    | 0,07 | 0,11 | 0 |
| 839        | NOVAFELTRIA<br>CARRARA    | 0,00 | 0,13 | 0 |
| 901        | CARRARA                   | 0,13 | 0,13 | 0 |
| 902        | MASSA                     | 0,04 | 0,11 | 0 |
| 903        | PONTREMOLI                | 0,00 | 0,13 | 0 |
| 904        | BARGA                     | 0,04 | 0,16 | 0 |
| 905        | CASTELNUOVO DI GARFAGNANA | 0,03 | 0,19 | 0 |
| 906        | LUCCA                     | 0,43 | 0,12 | 1 |
| 907        | PIETRASANTA               | 0,24 | 0,12 | 1 |
| 908        | VIAREGGIO                 | 0,07 | 0,11 | 0 |
| 909        | MONTECATINI-TERME         | 0,20 | 0,16 | 1 |
| 910        | PISTOIA                   | 0,08 | 0,12 | 0 |
| 911        | SAN MARCELLO PISTOIESE    | 0,03 | 0,24 | 0 |
| 912        | BORGO SAN LORENZO         | 0,20 | 0,16 | 1 |

| 913  | CASTELFIORENTINO             | 0,19 | 0,13 | 1 |
|------|------------------------------|------|------|---|
| 914  | EMPOLI                       | 0,07 | 0,07 | 0 |
| 915  | FIRENZE                      | 0,28 | 0,21 | 1 |
| 916  | FIRENZUOLA                   | 0,10 | 0,30 | 0 |
| 917  | CASTAGNETO CARDUCCI          | 0,17 | 0,17 | 0 |
| 918  | CECINA                       | 0,11 | 0,11 | 0 |
| 919  | LIVORNO                      | 0,15 | 0,17 | 0 |
| 920  | MARCIANA MARINA              | 0,12 | 0,12 | 0 |
| 921  | PIOMBINO                     | 0,10 | 0,10 | 0 |
| 922  | PORTOFERRAIO                 | 0,17 | 0,15 | 1 |
| 923  | ROSIGNANO MARITTIMO          | 0,07 | 0,14 | 0 |
| 924  | PISA                         | 0,27 | 0,20 | 1 |
| 925  | POMARANCE                    | 0,00 | 0,00 | 0 |
| 926  | PONTEDERA                    | 0,19 | 0,12 | 1 |
| 927  | SAN MINIATO                  | 0,29 | 0,21 | 1 |
| 928  | VOLTERRA                     | 0,21 | 0,00 | 1 |
| 929  | AREZZO                       | 0,39 | 0,09 | 1 |
| 930  | BIBBIENA                     | 0,03 | 0,15 | 0 |
| 931  | CORTONA                      | 0,48 | 0,04 | 1 |
| 932  | MONTEVARCHI                  | 0,14 | 0,12 | 1 |
| 933  | SANSEPOLCRO                  | 0,12 | 0,12 | 0 |
| 934  | CHIUSI                       | 0,12 | 0,12 | 0 |
| 935  | MONTALCINO                   | 0,25 | 0,14 | 1 |
| 936  | MONTEPULCIANO                | 0,12 | 0,12 | 0 |
| 937  | PIANCASTAGNAIO               | 0,03 | 0,13 | 0 |
| 938  | POGGIBONSI                   | 0,29 | 0,05 | 1 |
| 939  | SIENA                        | 0,33 | 0,12 | 1 |
| 940  | SINALUNGA                    | 0,33 | 0,21 | 0 |
| 941  | CASTEL DEL PIANO             | 0,04 | 0,12 | 0 |
| 941  | FOLLONICA                    | 0,08 |      | 0 |
| 943  |                              |      | 0,13 |   |
| 944  | GROSSETO<br>MANCIANO         | 0,28 | 0,19 | 0 |
| 945  | MONTE ARGENTARIO             | 0,15 |      | 1 |
| 946  |                              | 0,15 | 0,08 |   |
| 947  | ORBETELLO PITIGLIANO         | 0,13 | 0,18 | 0 |
| 948  | PRATO                        | 0,36 | 0,24 | 1 |
| 1001 | ASSISI                       |      |      | 0 |
| 1001 | CASCIA                       | 0,11 | 0,15 |   |
|      | CASTIGLIONE DEL LAGO         |      |      | 0 |
| 1003 |                              | 0,00 | 0,19 | 0 |
| 1004 | CITTÀ DI CASTELLO<br>FOLIGNO | 0,11 | 0,11 |   |
|      |                              | 0,15 | 0,15 | 0 |
| 1006 | GUALDO TADINO                | 0,08 | 0,08 |   |
| 1007 | GUBBIO                       | 0,29 | 0,29 | 0 |
| 1008 | NORCIA                       | 0,06 | 0,19 | 0 |
| 1009 | PERUGIA                      | 0,19 | 0,17 | 1 |
| 1010 | SPOLETO                      | 0,15 | 0,15 | 0 |
| 1011 | TODI                         | 0,25 | 0,25 | 0 |
| 1012 | UMBERTIDE                    | 0,00 | 0,00 | 0 |
| 1013 | ORVIETO                      | 0,19 | 0,19 | 0 |
| 1014 | TERNI                        | 0,09 | 0,13 | 0 |
| 1101 | CAGLI                        | 0,00 | 0,26 | 0 |
| 1102 | FANO                         | 0,05 | 0,12 | 0 |
| 1103 | PERGOLA                      | 0,00 | 0,13 | 0 |
| 1104 | PESARO                       | 0,20 | 0,11 | 1 |
| 1105 | SASSOCORVARO                 | 0,04 | 0,13 | 0 |
| 1106 | URBANIA                      | 0,00 | 0,13 | 0 |
| 1107 | URBINO                       | 0,20 | 0,13 | 1 |
| 1108 | ANCONA                       | 0,22 | 0,22 | 0 |
| 1109 | FABRIANO                     | 0,29 | 0,24 | 1 |

| 1110         | JESI                     | 0,13 | 0,13 | 0 |
|--------------|--------------------------|------|------|---|
| 1111         | OSIMO                    | 0,22 | 0,22 | 0 |
| 1112         | SENIGALLIA               | 0,07 | 0,08 | 0 |
| 1113         | CIVITANOVA MARCHE        | 0,17 | 0,17 | 0 |
| 1114         | MACERATA                 | 0,18 | 0,11 | 1 |
| 1115         | MATELICA                 | 0,05 | 0,05 | 0 |
| 1116         | RECANATI                 | 0,13 | 0,13 | 0 |
| 1117         | TOLENTINO                | 0,10 | 0,14 | 0 |
| 1118         | VISSO                    | 0,00 | 0,13 | 0 |
| 1119         | ASCOLI PICENO            | 0,19 | 0,19 | 0 |
| 1120         | COMUNANZA                | 0,00 | 0,12 | 0 |
| 1121         | SAN BENEDETTO DEL TRONTO | 0,13 | 0,13 | 0 |
| 1122         | FERMO                    | 0,17 | 0,17 | 0 |
| 1123         | MONTEGIORGIO             | 0,29 | 0,29 | 0 |
| 1124         | MONTEGRANARO             | 1,00 | 0,00 | 1 |
| 1125         | PORTO SANT'ELPIDIO       | 0,00 | 0,00 | 0 |
| 1201         | ACQUAPENDENTE            | 0,10 | 0,10 | 0 |
| 1202         | CIVITA CASTELLANA        | 0,31 | 0,23 | 1 |
| 1203         | MONTALTO DI CASTRO       | 0,00 | 0,11 | 0 |
| 1204         | TARQUINIA                | 0,23 | 0,15 | 1 |
| 1205         | VITERBO                  | 0,16 | 0,16 | 0 |
| 1206         | RIETI                    | 0,18 | 0,16 | 1 |
| 1207         | CIVITAVECCHIA            | 0,15 | 0,15 | 0 |
| 1207         | POMEZIA                  | 0,21 | 0,13 | 0 |
| 1209         | ROMA                     | 0,21 | 0,21 | 1 |
|              |                          |      |      |   |
| 1210         | FORMIA                   | 0,11 | 0,11 | 0 |
| 1211         | FORMIA                   | 0,11 | 0,13 | 0 |
| 1212         | GAETA                    | 0,16 | 0,16 | 0 |
| 1213         | LATINA                   | 0,21 | 0,21 | 0 |
| 1214         | SABAUDIA                 | 0,22 | 0,11 | 1 |
| 1215         | TERRACINA                | 0,20 | 0,20 | 0 |
| 1216         | CASSINO                  | 0,19 | 0,11 | 1 |
| 1217         | FROSINONE                | 0,09 | 0,09 | 1 |
| 1218         | SORA                     | 0,09 | 0,14 | 0 |
| 1301         | AVEZZANO                 | 0,11 | 0,17 | 0 |
| 1302         | CASTEL DI SANGRO         | 0,08 | 0,11 | 0 |
| 1303         | CELANO                   | 0,12 | 0,12 | 0 |
| 1304         | L'AQUILA                 | 0,18 | 0,13 | 1 |
| 1305<br>1306 | PESCASSEROLI             | 0,16 | 0,12 | 1 |
|              | SULMONA                  | 0,11 | 0,14 | 0 |
| 1307         | GIULIANOVA               | 0,12 | 0,16 | 0 |
| 1308         | PINETO                   | 0,11 | 0,17 | 0 |
| 1309         | TERAMO                   | 0,05 | 0,21 | 0 |
| 1310         | MARTINSICURO             | 0,05 | 0,13 | 0 |
| 1311         | PENNE                    | 0,33 | 0,17 | 1 |
| 1312         | PESCARA                  | 0,26 | 0,13 | 1 |
| 1313         | ATESSA                   | 0,26 | 0,12 | 1 |
| 1314         | CHARDIACREIE             | 0,15 | 0,15 | 0 |
| 1315         | GUARDIAGRELE             | 0,00 | 0,06 | 0 |
| 1316         | ORTONA                   | 0,18 | 0,18 | 0 |
| 1317         | SAN SALVO                | 0,08 | 0,17 | 0 |
| 1318         | VASTO                    | 0,14 | 0,11 | 1 |
| 1401         | BOJANO                   | 0,11 | 0,11 | 0 |
| 1402         | CAMPOBASSO               | 0,27 | 0,23 | 1 |
| 1403         | TERMOLI                  | 0,17 | 0,17 | 0 |
| 1404         | AGNONE                   | 0,33 | 0,33 | 0 |
| 1405         | ISERNIA                  | 0,35 | 0,24 | 1 |
| 1501         | CASERTA                  | 0,34 | 0,14 | 1 |
| 1502         | MONDRAGONE               | 0,11 | 0,07 | 1 |

| 1503         | PIEDIMONTE MATESE              | 0,00         | 0,20         | 0      |
|--------------|--------------------------------|--------------|--------------|--------|
| 1504         | SESSA AURUNCA                  | 0,43         | 0,14         | 1      |
| 1505         | TEANO                          | 0,13         | 0,13         | 0      |
| 1506         | BENEVENTO                      | 0,31         | 0,19         | 1      |
| 1508         | MONTESARCHIO                   | 0,17         | 0,17         | 0      |
| 1509         | MORCONE                        | 0,33         | 0,33         | 0      |
| 1511         | SAN MARCO DEI CAVOTI           | 0,00         | 0,00         | 0      |
| 1512         | TELESE TERME                   | 0,23         | 0,15         | 1      |
| 1513         | CAPRI                          | 0,47         | 0,15         | 1      |
| 1514         | CASTELLAMMARE DI STABIA        | 0,26         | 0,18         | 1      |
| 1515         | FORIO                          | 0,28         | 0,20         | 1      |
| 1516         | ISCHIA                         | 0,29         | 0,16         | 1      |
| 1517         | NAPOLI                         | 0,24         | 0,14         | 1      |
| 1518         | NOLA                           | 0,85         | 0,08         | 1      |
| 1519         | SAN GIUSEPPE VESUVIANO         | 0,40         | 0,20         | 1      |
| 1520         | SORRENTO                       | 0,43         | 0,07         | 1      |
| 1521         | TORRE DEL GRECO                | 0,21         | 0,19         | 1      |
| 1522         | ARIANO IRPINO                  | 0,13         | 0,06         | 1      |
| 1523         | AVELLINO                       | 0,22         | 0,16         | 1      |
| 1524         | SANT'ANGELO DEI LOMBARDI       | 0,10         | 0,10         | 0      |
| 1525         | SOLOFRA                        | 0,50         | 0,25         | 1      |
| 1527         | AGROPOLI                       | 0,00         | 0,00         | 0      |
| 1528         | AMALFI                         | 0,40         | 0,12         | 1      |
| 1529         | ASCEA                          | 0,30         | 0,17         | 1      |
| 1530         | BATTIPAGLIA                    | 0,31         | 0,25         | 1      |
| 1531         | BUCCINO                        | 0,20         | 0,10         | 1      |
| 1532         | CAMEROTA                       | 0,21         | 0,10         | 0      |
| 1533         | CAPACCIO                       | 0,31         | 0,05         | 1      |
| 1534         |                                | 0,31         |              | 1      |
| 1535         | CASTELLABATE<br>EBOLI          | 0,33         | 0,17         | 1      |
|              |                                |              |              |        |
| 1536<br>1537 | NOCERA INFERIORE               | 0,40         | 0,20         | 0      |
| 1538         | OLIVETO CITRA                  | 0,25<br>0,14 | 0,25         | 0      |
|              | PACANI                         |              | 0,14         |        |
| 1539<br>1540 | PAGANI                         | 0,13<br>0,36 | 0,13<br>0,16 | 0<br>1 |
| 1541         | POSITANO                       | 0,00         | 0,16         | 0      |
| 1542         | ROCCADASPIDE<br>SALA CONSILINA |              |              | 1      |
| 1543         | SALERNO                        | 0,53<br>0,35 | 0,12<br>0,10 | 4      |
|              |                                |              |              | 0      |
| 1544         | SAPRI<br>SARNO                 | 0,18         | 0,18         | 1      |
| 1545         |                                | 1,00         | 0,00         |        |
| 1546         | VALLO DELLA LUCANIA            | 0,25         | 0,00         | 1      |
| 1601         | APRICENA                       | 0,00         | 0,17         | 0      |
| 1603         | CERIGNOLA                      | 0,00         | 0,00         | 0      |
| 1604         | FOGGIA                         | 0,17         | 0,17         | 0      |
| 1605         | LUCERA                         | 0,63         | 0,13         | 1      |
| 1606         | MANFREDONIA                    | 0,32         | 0,11         | 1      |
| 1607         | RODI GARGANICO                 | 0,03         | 0,06         | 0      |
| 1608         | SAN GIOVANNI ROTONDO           | 0,13         | 0,13         | 0      |
| 1609         | TORREMAGGIORE                  | 0,00         | 0,00         | 0      |
| 1610         | VICO DEL GARGANO               | 0,16         | 0,16         | 0      |
| 1611         | ACQUAVIVA DELLE FONTI          | 0,00         | 0,00         | 0      |
| 1612         | BARI                           | 0,37         | 0,13         | 1      |
| 1613         | CORATO                         | 0,50         | 0,10         | 1      |
| 1614         | GIOIA DEL COLLE                | 0,20         | 0,20         | 0      |
| 1615         | GRAVINA IN PUGLIA              | 0,20         | 0,00         | 1      |
| 1616         | MOLFETTA                       | 0,62         | 0,15         | 1      |
| 1617         | MONOPOLI                       | 0,57         | 0,17         | 1      |
| 1618         | PUTIGNANO                      | 0,62         | 0,00         | 1      |
| 1619         | RUTIGLIANO                     | 0,67         | 0,00         | 1      |

| 1620 | CASTELLANETA             | 0,57 | 0,10 | 1      |
|------|--------------------------|------|------|--------|
| 1621 | GINOSA                   | 0,43 | 0,14 | 1      |
| 1622 | MANDURIA                 | 0,38 | 0,08 | 1      |
| 1623 | MARTINA FRANCA           | 0,52 | 0,06 | 1      |
| 1624 | TARANTO                  | 0,43 | 0,09 | 1      |
| 1625 | BRINDISI                 | 0,56 | 0,11 | 1      |
| 1626 | CEGLIE MESSAPICA         | 0,50 | 0,00 | 1      |
| 1627 | FASANO                   | 0,65 | 0,30 | 1      |
| 1628 | FRANCAVILLA FONTANA      | 0,00 | 0,00 | 0      |
| 1629 | MESAGNE                  | 0,40 | 0,20 | 1      |
| 1630 | OSTUNI                   | 0,37 | 0,14 | 1      |
| 1631 | CASARANO                 | 0,20 | 0,20 | 0      |
| 1632 | COPERTINO                | 0,50 | 0,00 | 1      |
| 1633 | GAGLIANO DEL CAPO        | 0,26 | 0,18 | 1      |
| 1634 | GALATINA                 | 0,60 | 0,20 | 1      |
| 1635 | GALLIPOLI                | 0,38 | 0,04 | 1      |
| 1636 | LECCE                    | 0,50 | 0,11 | 1      |
| 1637 | MAGLIE                   | 0,31 | 0,15 | 1      |
| 1638 | NARDÒ                    | 0,34 | 0,11 | 1      |
| 1639 | OTRANTO                  | 0,34 | 0,04 | 1      |
| 1640 | TRICASE                  | 0,00 | 0,00 | 0      |
| 1641 | UGENTO                   | 0,40 | 0,10 | 1      |
| 1642 | BARLETTA                 | 0,45 | 0,10 | 1      |
| 1643 | MINERVINO MURGE          | 0,00 | 0,00 | 0      |
| 1644 | SAN FERDINANDO DI PUGLIA | 0,33 | 0,00 | 1      |
| 1701 | LAURIA                   | 0,00 | 0,26 | 0      |
| 1702 | MARATEA                  | 0,30 | 0,17 | 1      |
| 1703 | MARSICOVETERE            | 0,07 |      | 0      |
|      | MELFI                    |      | 0,13 | 0      |
| 1704 |                          | 0,06 | 0,11 |        |
| 1705 | POTENZA                  | 0,18 | 0,18 | 0      |
| 1706 | RIONERO IN VULTURE       | 0,27 | 0,18 | 1      |
| 1708 | SENISE                   | 0,00 | 0,20 | 0      |
| 1709 | MATERA NOVA CIRI         | 0,38 | 0,09 | 1      |
| 1710 | NOVA SIRI                | 0,80 | 0,00 | 1      |
| 1711 | PISTICCI                 | 0,33 | 0,00 | 1      |
| 1712 | POLICORO                 | 0,38 | 0,15 | 1      |
| 1714 | TRICARICO                | 0,00 | 0,00 | 0      |
| 1801 | ACRI                     | 0,00 | 0,25 | 0      |
| 1802 | AMANTEA                  | 0,38 | 0,19 | 1<br>1 |
| 1803 | BELVEDERE MARITTIMO      | 0,36 | 0,06 |        |
| 1804 | CASSANO ALLIONIO         | 0,30 | 0,22 | 1      |
| 1805 | CASSANO ALL'IONIO        | 0,38 | 0,17 | 1      |
| 1806 | CASTROVILLARI            | 0,42 | 0,16 | 1      |
| 1807 | COSENZA                  | 0,24 | 0,19 | 1      |
| 1809 | COSENZA                  | 0,27 | 0,16 | 1      |
| 1810 | MORMANNO                 | 0,08 | 0,08 | 0      |
| 1811 | PAOLA AMARE              | 0,14 | 0,14 | 0      |
| 1812 | PRAIA A MARE             | 0,09 | 0,09 | 0      |
| 1814 | SAN GIOVANNI IN FIORE    | 0,29 | 0,29 | 0      |
| 1816 | SCALEA                   | 0,33 | 0,21 | 1      |
| 1817 | CATANZARO                | 0,25 | 0,19 | 1      |
| 1818 | CHIARAVALLE CENTRALE     | 1,00 | 0,00 | 1      |
| 1819 | SELLIA MARINA            | 0,21 | 0,07 | 1      |
| 1820 | SOVERATO                 | 0,28 | 0,04 | 1      |
| 1821 | LAMEZIA TERME            | 0,28 | 0,15 | 1      |
| 1822 | BIANCO                   | 0,13 | 0,13 | 0      |
| 1823 | BOVALINO                 | 0,50 | 0,00 | 1      |
| 1825 | GIOIA TAURO              | 0,41 | 0,12 | 1      |
| 1826 | LOCRI                    | 0,36 | 0,09 | 1      |

| 1827         | MARINA DI GIOIOSA IONICA                     | 0,20         | 0,20 | 0      |
|--------------|----------------------------------------------|--------------|------|--------|
| 1828         | MELITO DI PORTO SALVO                        | 0,00         | 0,00 | 0      |
| 1830         | POLISTENA                                    | 0,50         | 0,00 | 1      |
| 1831         | REGGIO DI CALABRIA                           | 0,38         | 0,18 | 1      |
| 1832         | ROCCELLA IONICA                              | 0,20         | 0,10 | 1      |
| 1833         | ROSARNO                                      | 0,00         | 0,00 | 0      |
| 1835         | STILO                                        | 0,00         | 0,00 | 0      |
| 1837         | CIRÒ MARINA                                  | 0,20         | 0,10 | 1      |
| 1838         | CROTONE                                      | 0,45         | 0,08 | 1      |
| 1840         | PETILIA POLICASTRO                           | 0,29         | 0,00 | 1      |
| 1843         | TROPEA                                       | 0,28         | 0,11 | 1      |
| 1844         | VIBO VALENTIA                                | 0,42         | 0,13 | 1      |
| 1901         | ALCAMO                                       | 0,14         | 0,14 | 0      |
| 1902         | CASTELVETRANO                                | 0,56         | 0,06 | 1      |
| 1903         | MARSALA                                      | 0,43         | 0,09 | 1      |
| 1904         | SALEMI                                       | 0,00         | 0,00 | 0      |
| 1905         | TRAPANI                                      | 0,16         | 0,16 | 0      |
| 1906         | ALIA                                         | 0,00         | 0,00 | 0      |
| 1907         | BAGHERIA                                     | 0,17         | 0,17 | 0      |
| 1908         | BISACQUINO                                   | 0,00         | 0,00 | 0      |
| 1909         | CASTELBUONO                                  | 0,50         | 0,00 | 1      |
| 1910         | CEFALÙ                                       | 0,42         | 0,08 | 1      |
| 1911         | CORLEONE                                     | 0,00         | 0,00 | 0      |
| 1912         | GANGI                                        | 0,33         | 0,33 | 0      |
| 1913         | LERCARA FRIDDI                               | 0,00         | 0,00 | 0      |
| 1914         | PALERMO                                      | 0,28         | 0,22 | 1      |
| 1915         | PARTINICO                                    | 0,18         | 0,18 | 0      |
| 1916         | PETRALIA SOTTANA                             | 0,00         | 0,00 | 0      |
| 1917         | PRIZZI                                       | 0,00         | 0,00 | 0      |
| 1917         | TERMINI IMERESE                              | 0,33         | 0,00 | 1      |
|              |                                              | 0,33         | 0,22 | 0      |
| 1919<br>1920 | BARCELLONA POZZO DI GOTTO BROLO              | 0,25         | 0,25 | 0      |
| 1921         | CAPO D'ORLANDO                               | 0,31         |      | 1      |
| 1921         |                                              | 0,31         | 0,25 |        |
| 1923         | FRANCAVILLA DI SICILIA                       | 0,23         | 0,20 | 0<br>1 |
| 1923         | LIPARI                                       | 0,40         |      |        |
| 1925         | MESSINA                                      |              | 0,11 | 1<br>1 |
| 1926         | MILAZZO                                      | 0,35         | 0,15 |        |
| 1927         |                                              |              |      | 0      |
| 1928         | PATTI PATTI                                  | 0,00         | 0,00 | 0      |
| 1929         |                                              | 0,00         | 0,22 | 0      |
| 1930         | SANT'AGATA DI MILITELLO SANTA TERESA DI RIVA | 0,22         | 0,17 | 0      |
| 1931         | SANTO STEFANO DI CAMASTRA                    | 0,25         | 0,25 | 0      |
| 1932         | TAORMINA                                     |              | 0,18 | 1      |
| 1933         |                                              | 0,37<br>0,27 | 0,19 | 1      |
| 1933         | AGRIGENTO BIVONA                             | 1,00         | 0,00 |        |
| 1934         | CAMMARATA                                    | 0,20         | 0,00 | 0      |
| 1935         | CAMPOBELLO DI LICATA                         | 0,20         | 0,20 | 0      |
|              |                                              |              |      |        |
| 1937         | CANICATA                                     | 0,00         | 0,00 | 0      |
| 1938         | LICATA                                       | 0,43         | 0,14 | 1      |
| 1939         | MENFI                                        | 0,57         | 0,14 | 1      |
| 1940         | NARO                                         | 0,00         | 0,00 | 0      |
| 1941         | RIBERA                                       | 0,00         | 0,00 | 0      |
| 1942         | SCIACCA                                      | 0,78         | 0,11 | 1      |
| 1943         | CALTANISSETTA                                | 0,20         | 0,20 | 0      |
| 1944         | GELA                                         | 0,40         | 0,20 | 1      |
| 1945         | MAZZARINO                                    | 0,00         | 0,00 | 0      |
| 1946         | MUSSOMELI                                    | 0,00         | 0,00 | 0      |
| 1947         | RIESI                                        | 0,00         | 0,00 | 0      |

| ı    | i i                         |      |      |        |
|------|-----------------------------|------|------|--------|
| 1948 | ENNA                        | 0,29 | 0,00 | 1      |
| 1949 | LEONFORTE                   | 0,50 | 0,00 | 1      |
| 1950 | NICOSIA                     | 0,00 | 0,00 | 0      |
| 1951 | PIAZZA ARMERINA             | 0,38 | 0,25 | 1      |
| 1953 | ADRANO                      | 0,67 | 0,00 | 1      |
| 1954 | BRONTE                      | 0,00 | 0,00 | 0      |
| 1955 | CALTAGIRONE                 | 0,20 | 0,20 | 0      |
| 1956 | CATANIA                     | 0,34 | 0,09 | 1      |
| 1957 | GIARRE                      | 0,06 | 0,11 | 0      |
| 1958 | GRAMMICHELE                 | 0,00 | 0,00 | 0      |
| 1960 | PATERNÒ                     | 0,00 | 0,00 | 0      |
| 1961 | RANDAZZO                    | 0,00 | 0,00 | 0      |
| 1963 | COMISO                      | 0,33 | 0,17 | 1      |
| 1964 | ISPICA                      | 0,13 | 0,00 | 1      |
| 1965 | RAGUSA                      | 0,56 | 0,07 | 1      |
| 1966 | VITTORIA                    | 0,33 | 0,22 | 1      |
| 1967 | AUGUSTA                     | 0,19 | 0,19 | 0      |
| 1968 | LENTINI                     | 0,00 | 0,00 | 0      |
| 1969 | NOTO                        | 0,19 | 0,19 | 0      |
| 1970 | PACHINO                     | 0,00 | 0,10 | 0      |
| 1971 | SIRACUSA                    | 0,40 | 0,11 | 1      |
| 2001 | ALGHERO                     | 0,36 | 0,06 | 1      |
| 2004 | CASTELSARDO                 | 0,24 | 0,22 | 1      |
| 2005 | OZIERI                      | 0,00 | 0,00 | 0      |
| 2006 | SASSARI                     | 0,25 | 0,19 | 1      |
| 2007 | THIESI                      | 0,00 | 0,00 | 0      |
| 2008 | BITTI                       | 1,00 | 0,00 | 1      |
| 2009 | DESULO                      | 0,13 | 0,13 | 0      |
| 2011 | MACOMER                     | 0,00 | 0,00 | 0      |
| 2012 | NUORO                       | 0,24 | 0,17 | 1      |
| 2012 | OROSEI                      | 0,38 | 0,19 | 1      |
| 2013 | SINISCOLA                   | 0,17 | 0,17 | 0      |
| 2015 | SORGONO                     | 0,00 | 0,25 | 0      |
| 2015 | CAGLIARI                    | 0,37 | 0,13 | 1      |
| 2017 | MURAVERA                    | 0,40 | 0,13 | 1      |
| 2020 | NURRI                       | 0,00 | 0,12 | 0      |
| 2020 | GHILARZA                    | 0,17 | 0,23 | 0      |
| 2022 | ORISTANO                    | 0,41 | 0,06 | 1      |
| 2022 | TERRALBA                    | 0,41 | 0,15 | 1      |
| 2023 |                             | 0,13 | 0,13 |        |
| 2024 | BOSA<br>ARZACHENA           | 0,13 | 0,13 | 0<br>1 |
| 2025 |                             |      |      |        |
|      | OLBIA  SANTA TERESA GALLURA | 0,51 | 0,07 | 1      |
| 2028 | SANTA TERESA GALLURA        | 0,24 | 0,18 | 1      |
| 2029 | SAN TEODORO                 | 0,35 | 0,08 | 1      |
| 2030 | TEMPIO PAUSANIA             | 0,11 | 0,00 | 1      |
| 2031 | LANUSEI                     | 0,30 | 0,10 | 1      |
| 2034 | TERTENIA                    | 0,27 | 0,07 | 1      |
| 2035 | TORTOLÌ                     | 0,31 | 0,07 | 1      |
| 2036 | SANLURI                     | 0,21 | 0,21 | 0      |
| 2037 | VILLACIDRO                  | 0,10 | 0,20 | 0      |
| 2038 | CARBONIA                    | 0,18 | 0,09 | 1      |
| 2039 | IGLESIAS                    | 0,21 | 0,14 | 1      |

| COD        | DEN SLL              | UNOCCUPDWELL    | NUMBERBED    | UNEMPRATE      | ALTITUDUINE  | PREZZO<br>AFFITTI<br>2017-01-<br>01 | 2018-<br>01-01 | 2019-<br>01-01 | Searate |
|------------|----------------------|-----------------|--------------|----------------|--------------|-------------------------------------|----------------|----------------|---------|
| 101        | CHIERI               | 8.014           | 980          | 0,066          | 294          | 7,2                                 | 7,6            | 7,7            | 0,0     |
| 102        | IVREA                | 12.021          | 1323         | 0,082          | 501          | 7,2                                 | 7,6            | 7,7            | 0,0     |
| 103        | PINEROLO             | 25.523          | 2076         | 0,058          | 897          | 7,2                                 | 7,6            | 7,7            | 0,0     |
| 104        | RIVAROLO CANAVESE    | 15.098          | 981          | 0,094          | 756          | 7,2                                 | 7,6            | 7,7            | 0,0     |
| 105        | SUSA                 | 37.102          | 12075        | 0,065          | 1709         | 7                                   | 8              | 8              | 0,0     |
| 106        | TORINO               | 91.502          | 21173        | 0,090          | 581          | 7,2                                 | 7,6            | 7,7            | 0,0     |
| 107        | BORGOSESIA           | 18.901          | 1376         | 0,066          | 911          | 5,5                                 | 5              | 5,3            | 0,0     |
| 108        | SANTHIÀ              | 5.064           | 992          | 0,068          | 211          | 5,5                                 | 5              | 5,3            | 0,0     |
| 109        | VERCELLI             | 4.998           | 565          | 0,076          | 135          | 5,5                                 | 5              | 5,3            | 0,0     |
| 110        | BORGOMANERO          | 15.063          | 2993         | 0,071          | 375          | 6,9                                 | 6,9            | 6,9            | 0,0     |
| 111        | NOVARA               | 8.707           | 2284         | 0,089          | 160          | 6,9                                 | 6,9            | 6,9            | 0,0     |
| 112        | ALBA                 | 16.100          | 2719         | 0,052          | 379          | 5,9                                 | 5,9            | 6,1            | 0,0     |
| 113        | BRA                  | 3.933           | 1137         | 0,068          | 280          | 5,9                                 | 5,9            | 6,1            | 0,0     |
| 114        | CEVA                 | 6.176           | 255          | 0,052          | 649          | 5,9                                 | 5,9            | 6,1            | 0,0     |
| 115<br>116 | CUNEO<br>FOSSANO     | 38.439<br>3.031 | 4473<br>376  | 0,050          | 1170<br>356  | 5,9                                 | 5,9            | 6,1            | 0,0     |
|            |                      |                 | 449          | 0,045          |              | 5,9                                 | 5,9            | 6,1            | 0,0     |
| 117<br>118 | GARESSIO<br>MONDOVÌ  | 4.267<br>26.432 | 2428         | 0,057<br>0,048 | 1316<br>625  | 5,9<br>5,9                          | 5,9<br>5,9     | 6,1<br>6,1     | 0,0     |
| 119        | SALUZZO              | 21.684          | 1228         | 0,048          | 895          | 5,9                                 | 5,9            | 6,1            | 0,0     |
| 120        | SAVIGLIANO           | 6.218           | 764          | 0,051          | 269          | 5,9                                 | 5,9            | 6,1            | 0,0     |
| 121        | ASTI                 | 17.007          | 1472         | 0,075          | 209          | 5,4                                 | 5,3            | 5,3            | 0,0     |
| 122        | CANELLI              | 3.129           | 321          | 0,077          | 322          | 5,4                                 | 5,3            | 5,3            | 0,0     |
| 123        | NIZZA MONFERRATO     | 4.879           | 197          | 0,069          | 202          | 5,4                                 | 5,3            | 5,3            | 0,0     |
| 124        | ACQUI TERME          | 12.286          | 1832         | 0,062          | 311          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 125        | ALESSANDRIA          | 9.968           | 1280         | 0,073          | 128          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 126        | CASALE MONFERRATO    | 8.604           | 764          | 0,072          | 181          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 127        | NOVI LIGURE          | 14.392          | 1082         | 0,065          | 409          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 128        | OVADA                | 10.760          | 363          | 0,062          | 356          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 129        | TORTONA              | 8.654           | 668          | 0,072          | 261          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 130        | VALENZA              | 4.612           | 388          | 0,091          | 113          | 5,2                                 | 5,3            | 5,3            | 0,0     |
| 131        | BIELLA               | 14.840          | 828          | 0,080          | 709          | 4,8                                 | 4,9            | 5,2            | 0,0     |
| 132        | COSSATO              | 7.848           | 167          | 0,070          | 537          | 4,8                                 | 4,9            | 5,2            | 0,0     |
| 133        | DOMODOSSOLA          | 12.210          | 2592         | 0,076          | 1346         | 7,8                                 | 7,8            | 8,7            | 0,0     |
| 134        | OMEGNA               | 5.706           | 1377         | 0,065          | 789          | 7,8                                 | 7,8            | 8,7            | 0,0     |
| 135        | SANTA MARIA MAGGIORE | 6.769           | 1006         | 0,074          | 1346         | 7,8                                 | 7,8            | 8,7            | 0,0     |
| 136        | VERBANIA             | 17.255          | 9693         | 0,068          | 710          | 7,8                                 | 7,8            | 8,7            | 0,0     |
| 201        | AOSTA<br>AYAS        | 17.016<br>7.608 | 6464<br>1764 | 0,051          | 1879<br>1895 | 9                                   | 8,9            | 12,4           | 0,0     |
| 202        | COURMAYEUR           | 13.136          | 5881         | 0,058          | 2130         | 9                                   | 8,9<br>8,9     | 12,4<br>12,4   | 0,0     |
| 203        | SAINT-VINCENT        | 10.908          | 4599         | 0,032          | 1430         | 9                                   | 8,9            | 12,4           | 0,0     |
| 205        | VALTOURNENCHE        | 10.063          | 4221         | 0,052          | 2021         | 9                                   | 8,9            | 12,4           | 0,0     |
| 301        | BUSTO ARSIZIO        | 26.083          | 6978         | 0,064          | 229          | 7,8                                 | 7,8            | 7,9            | 0,0     |
| 302        | LUINO                | 12.323          | 812          | 0,062          | 504          | 7,8                                 | 7,8            | 7,9            | 0,0     |
| 303        | VARESE               | 23.151          | 4469         | 0,054          | 365          | 7,8                                 | 7,8            | 7,9            | 0,0     |
| 304        | COMO                 | 36.393          | 7477         | 0,057          | 415          | 8,7                                 | 8,9            | 9              | 0,0     |
| 305        | MENAGGIO             | 17.574          | 4814         | 0,052          | 776          | 8,7                                 | 8,9            | 9              | 0,0     |
| 306        | PORLEZZA             | 11.195          | 1739         | 0,051          | 964          | 8,7                                 | 8,9            | 9              | 0,0     |
| 307        | CHIAVENNA            | 13.398          | 1861         | 0,054          | 1406         | 6,8                                 | 7,9            | 6,3            | 0,0     |
| 308        | LIVIGNO              | 14.709          | 11585        | 0,052          | 2314         | 6,8                                 | 7,9            | 6,3            | 0,0     |
| 309        | MORBEGNO             | 18.574          | 1926         | 0,064          | 1015         | 6,8                                 | 7,9            | 6,3            | 0,0     |
| 310        | SONDALO              | 4.396           | 392          | 0,070          | 1743         | 6,8                                 | 7,9            | 6,3            | 0,0     |
| 311        | SONDRIO              | 18.245          | 1947         | 0,059          | 1435         | 6,8                                 | 7,9            | 6,3            | 0,0     |
| 312        | TIRANO               | 7.977           | 619          | 0,053          | 1281         | 6,8                                 | 7,9            | 6,3            | 0,0     |
| 313        | MILANO               | 118.907         | 82352        | 0,061          | 155          | 14,5                                | 15,6           | 16,3           | 0,0     |
| 314        | ALBINO               | 12.847          | 545          | 0,052          | 720          | 7,8                                 | 7,9            | 8,4            | 0,0     |
| 315        | BERGAMO              | 43.221          | 8160         | 0,047          | 288          | 7,8                                 | 7,9            | 8,4            | 0,0     |
| 316        | CLUSONE              | 25.451          | 2262         | 0,053          | 1150         | 7,8                                 | 7,9            | 8,4            | 0,0     |
| 317        | GRUMELLO DEL MONTE   | 5.950           | 588          | 0,041          | 370          | 7,8                                 | 7,9            | 8,4            | 0,0     |
| 318        | VILMINORE DI SCALVE  | 3.669           | 419          | 0,050          | 1535         | 7,8                                 | 7,9            | 8,4            | 0,0     |
| 319        | ZOGNO                | 30.000          | 1995         | 0,057          | 1121         | 7,8                                 | 7,9            | 8,4            | 0,0     |
| 320        | BRENO                | 10.264          | 806          | 0,052          | 1243         | 7,3                                 | 7,5            | 7,7            | 0,0     |

| 221        | BRESCIA                        | 22.850           | 4591         | 0,059          | 196       | 7.2                                   | 7.5        | 77         | 0.0 |
|------------|--------------------------------|------------------|--------------|----------------|-----------|---------------------------------------|------------|------------|-----|
| 321<br>322 | CHIARI                         | 12.675           | 2399         | 0,059          | 251       | 7,3<br>7,3                            | 7,5<br>7,5 | 7,7<br>7,7 | 0,0 |
| 323        | DARFO BOARIO TERME             | 13.819           | 3101         | 0,062          | 685       | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 324        | DESENZANO DEL GARDA            | 10.093           | 9902         | 0,059          | 126       | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 325        | EDOLO                          | 15.135           | 1995         | 0,069          | 1663      | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 326        | LIMONE SUL GARDA               | 3.826            | 7906         | 0,047          | 645       | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 328        | MANERBIO MANERBIO              | 2.865            | 192          | 0,051          | 58        | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 329        | MONTICHIARI                    | 3.867            | 588          | 0,055          | 64        | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 330        | ORZINUOVI                      | 3.296            | 447          | 0,050          | 76        | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 331        | PONTE DI LEGNO                 | 12.749           | 2600         | 0,040          | 2040      | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 332        | SALÒ                           | 20.045           | 9667         | 0,072          | 323       | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 333        | VESTONE                        | 4.781            | 289          | 0,040          | 726       | 7,3                                   | 7,5        | 7,7        | 0,0 |
| 334        | PAVIA                          | 8.599            | 1260         | 0,056          | 77        | 6,7                                   | 6,8        | 6,8        | 0,0 |
|            | SANNAZZARO DE'                 | 0.000            | 1200         | 0,000          |           |                                       | 0,0        | 0,0        |     |
| 335        | BURGONDI                       | 3.804            | 431          | 0,059          | 90        | 6,7                                   | 6,8        | 6,8        | 0,0 |
| 336        | STRADELLA                      | 6.560            | 340          | 0,064          | 173       | 6,7                                   | 6,8        | 6,8        | 0,0 |
| 337        | VIGEVANO                       | 7.388            | 862          | 0,073          | 108       | 6,7                                   | 6,8        | 6,8        | 0,0 |
| 338        | VOGHERA                        | 14.561           | 2374         | 0,061          | 288       | 6,7                                   | 6,8        | 6,8        | 0,0 |
| 339        | CASALMAGGIORE                  | 2.314            | 387          | 0,060          | 27        | 6,2                                   | 6,1        | 6,4        | 0,0 |
| 340        | CREMA                          | 7.805            | 767          | 0,059          | 78        | 6,2                                   | 6,1        | 6,4        | 0,0 |
| 341        | CREMONA                        | 12.589           | 1326         | 0,058          | 45        | 6,2                                   | 6,1        | 6,4        | 0,0 |
| 342        | ASOLA                          | 2.318            | 167          | 0,062          | 35        | 5,9                                   | 5,9        | 6,1        | 0,0 |
| 343        | CASTEL GOFFREDO                | 1.695            | 93           | 0,059          | 49        | 5,9                                   | 5,9        | 6,1        | 0,0 |
|            | CASTIGLIONE DELLE              |                  |              |                |           |                                       |            |            |     |
| 344        | STIVIERE                       | 2.302            | 307          | 0,059          | 91        | 5,9                                   | 5,9        | 6,1        | 0,0 |
| 345        | MANTOVA                        | 9.364            | 1910         | 0,050          | 26        | 5,9                                   | 5,9        | 6,1        | 0,0 |
| 346        | POGGIO RUSCO                   | 1.923            | 266          | 0,060          | 15        | 5,9                                   | 5,9        | 6,1        | 0,0 |
| 348        | SUZZARA                        | 2.784            | 275          | 0,064          | 19        | 5,9                                   | 5,9        | 6,1        | 0,0 |
| 349        | VIADANA                        | 2.642            | 150          | 0,051          | 22        | 5,9                                   | 5,9        | 6,1        | 0,0 |
| 350        | LECCO                          | 43.152           | 3455         | 0,050          | 554       | 7                                     | 7,4        | 7,3        | 0,0 |
| 351        | LODI                           | 10.983           | 1960         | 0,054          | 66        | 7,6                                   | 7,1        | 7,5        | 0,0 |
| 401        | BADIA/ABTEI                    | 2.710            | 16489        | 0,039          | 1903      | 13,1                                  | 11,5       | 12         | 0,0 |
| 402        | BOLZANO/BOZEN                  | 7.548            | 18027        | 0,037          | 951       | 13,1                                  | 11,5       | 12         | 0,0 |
| 403        | BRESSANONE/BRIXEN              | 2.459            | 14583        | 0,033          | 1461      | 13,1                                  | 11,5       | 12         | 0,0 |
| 404        | BRUNICO/BRUNECK                | 3.561            | 19265        | 0,037          | 1715      | 13,1                                  | 11,5       | 12         | 0,0 |
| 405        | CASTELROTTO/KASTELRUTH         | 4.021            | 19026        | 0,032          | 1663      | 13,1                                  | 11,5       | 12         | 0,0 |
| 406        | EGNA/NEUMARKT                  | 640              | 4625         | 0,039          | 756       | 13,1                                  | 11,5       | 12         | 0,0 |
| 407        | MALLES VENOSTA/MALS            | 1.039            | 7636         | 0,028          | 1915      | 13,1                                  | 11,5       | 12         | 0,0 |
| 408        | MERANO/MERAN                   | 4.592            | 26419        | 0,039          | 1174      | 13,1                                  | 11,5       | 12         | 0,0 |
| 409        | SAN CANDIDO/INNICHEN           | 268              | 10044        | 0,028          | 1771      | 13,1                                  | 11,5       | 12         | 0,0 |
| 411        | SILANDRO/SCHLANDERS            | 707              | 7406         | 0,029          | 1744      | 13,1                                  | 11,5       | 12         | 0,0 |
| 412        | VIPITENO/STERZING              | 1.241            | 6561         | 0,032          | 1800      | 13,1                                  | 11,5       | 12         | 0,0 |
| 413        | ARCO                           | 3.239            | 1809         | 0,039          | 704       | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 414        | BORGO VALSUGANA                | 8.214            | 4820         | 0,050          | 1199      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 415        | CANAZEI                        | 3.147            | 7929         | 0,041          | 2071      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 416        | CAVALESE                       | 8.639            | 6879         | 0,041          | 1513      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 417        | CLES                           | 9.489            | 3106         | 0,044          | 1149      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 418        | MALÈ                           | 12.046           | 11248        | 0,045          | 1608      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 419        | MOENA                          | 4.807            | 8843         | 0,040          | 1939      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 420        | PINZOLO                        | 11.070           | 7421         | 0,032          | 1872      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 421        | RIVA DEL GARDA                 | 6.090            | 10587        | 0,049          | 839       | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 422        | ROVERETO                       | 18.459           | 6643         | 0,045          | 891       | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 423        | STORO TIONE DI TRENTO          | 5.021            | 629          | 0,032          | 1306      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 424        | TIONE DI TRENTO                | 10.769           | 11034        | 0,049          | 1364      | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 425<br>426 | TONADICO<br>TRENTO             | 7.240            | 5608         | 0,051          | 1443      | 9,2                                   | 9,8        | 9,4        | 0,0 |
|            |                                | 22.174<br>14.686 | 8922         | 0,042<br>0,054 | 932       | 9,2                                   | 9,8        | 9,4        | 0,0 |
| 501<br>503 | BARDOLINO<br>ISOLA DELLA SCALA | 2.918            | 12610<br>400 | 0,054          | 398<br>25 | 7,8<br>7,8                            | 8,4<br>8,4 | 8,5<br>8,5 | 0,0 |
| 503        | LEGNAGO                        | 2.918            | 400          | 0,048          | 15        | 7,8                                   | 8,4        | 8,5        | 0,0 |
| 505        | MALCESINE                      | 2.884            | 7321         | 0,042          | 638       |                                       | 8,4        |            | 0,0 |
| 505        | PESCHIERA DEL GARDA            | 6.276            | 7321         | 0,033          | 104       | 7,8<br>7,8                            | 8,4        | 8,5<br>8,5 | 0,0 |
| 507        | SAN BONIFACIO                  | 9.724            | 1140         | 0,031          | 206       | 7,8                                   | 8,4        | 8,5        | 0,0 |
| 508        | VERONA                         | 25.359           | 10100        | 0,047          | 407       | 7,8                                   | 8,4        | 8,5        | 0,0 |
| 509        | VILLAFRANCA DI VERONA          | 4.955            | 2608         | 0,047          | 58        | 7,8                                   | 8,4        | 8,5        | 0,0 |
| 510        | ARZIGNANO                      | 6.337            | 1106         | 0,045          | 269       | 6,7                                   | 7,3        | 7,3        | 0,0 |
| 511        | ASIAGO                         | 19.504           | 3088         | 0,047          | 1256      | 6,7                                   | 7,3        | 7,3        | 0,0 |
| 512        | BASSANO DEL GRAPPA             | 17.579           | 2134         | 0,045          | 379       | 6,7                                   | 7,3        | 7,3        | 0,0 |
| 513        | NOVENTA VICENTINA              | 3.104            | 108          | 0,043          | 57        | 6,7                                   | 7,3        | 7,3        | 0,0 |
|            |                                | J.10 r           | 100          | J,U 1 T        |           | · · · · · · · · · · · · · · · · · · · | , ,,,      | , , , ,    | 0,0 |

| <b>544</b> | SCHO                   | 42.022         | 1204       | 0.000          | 657  | 6.7 | 7.0  |            | 0.0                                   |
|------------|------------------------|----------------|------------|----------------|------|-----|------|------------|---------------------------------------|
| 514        | SCHIO                  | 12.033         | 1394       | 0,068          | 657  | 6,7 | 7,3  | 7,3        | 0,0                                   |
| 515        | THIENE                 | 6.363          | 650        | 0,058          | 326  | 6,7 | 7,3  | 7,3        | 0,0                                   |
| 517        | VICENZA                | 15.488         | 4399       | 0,046          | 61   | 6,7 | 7,3  | 7,3        | 0,0                                   |
| 518        | AGORDO                 | 13.707         | 5320       | 0,033          | 1526 | 7,1 | 8    | 11,8       | 0,0                                   |
| 519        | AURONZO DI CADORE      | 9.416          | 3099       | 0,049          | 1625 | 7,1 | 8    | 11,8       | 0,0                                   |
| 520        | BELLUNO                | 8.779          | 834        | 0,040          | 743  | 7,1 | 8    | 11,8       | 0,0                                   |
| 521        | CORTINA D'AMPEZZO      | 9.033          | 6112       | 0,032          | 1715 | 7,1 | 8    | 11,8       | 0,0                                   |
| 522        | FELTRE                 | 8.890          | 472        | 0,048          | 822  | 7,1 | 8    | 11,8       | 0,0                                   |
| 523        | LONGARONE              | 9.095          | 1751       | 0,044          | 1174 | 7,1 | 8    | 11,8       | 0,0                                   |
| 524        | PIEVE DI CADORE        | 7.068          | 1098       | 0,050          | 1438 | 7,1 | 8    | 11,8       | 0,0                                   |
| 525        | CASTELFRANCO VENETO    | 5.247          | 770        | 0,041          | 45   | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 526        | CONEGLIANO             | 7.072          | 755        | 0,049          | 67   | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 527        | MONTEBELLUNA           | 4.431          | 507        | 0,053          | 120  | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 528        | ODERZO                 | 4.042          | 708        | 0,050          | 14   | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 529        | PIEVE DI SOLIGO        | 5.452          | 540        | 0,053          | 269  | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 530        | TREVISO                | 15.203         | 3455       | 0,045          | 25   | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 531        | VALDOBBIADENE          | 6.055          | 358        | 0,053          | 449  | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 532        | VITTORIO VENETO        | 7.312          | 559        | 0,051          | 311  | 7,1 | 7,5  | 8,1        | 0,0                                   |
| 533        | JESOLO                 | 23.276         | 34037      | 0,063          | 1    | 9,3 | 10,5 | 10,7       | 1,0                                   |
| 534        | PORTOGRUARO            | 20.935         | 11866      | 0,054          | 6    | 9,3 | 10,5 | 10,7       | 0,5                                   |
| 535        | SAN DONÀ DI PIAVE      | 4.092          | 1330       | 0,046          | 3    | 9,3 | 10,5 | 10,7       | 0,4                                   |
| 536        | VENEZIA                | 31.984         | 37006      | 0,056          | 7    | 9,3 | 10,5 | 10,7       | 0,5                                   |
| 537        | CITTADELLA             | 6.876          | 680        | 0,039          | 37   | 7,5 | 8    | 7,9        | 0,0                                   |
| 538        | MONSELICE              | 6.637          | 507        | 0,062          | 19   | 7,5 | 8    | 7,9        | 0,0                                   |
| 539        | MONTAGNANA             | 2.556          | 176        | 0,057          | 12   | 7,5 | 8    | 7,9        | 0,0                                   |
| 540        | PADOVA                 | 28.282         | 26718      | 0,051          | 17   | 7,5 | 8    | 7,9        | 0,2                                   |
| 541        | ADRIA                  | 14.589         | 1748       | 0,066          | 1    | 5,6 | 6,1  | 6,1        | 0,6                                   |
| 542        | BADIA POLESINE         | 3.368          | 225        | 0,053          | 9    | 5,6 | 6,1  | 6,1        | 0,0                                   |
| 543        | ROVIGO                 | 6.713          | 742        | 0,046          | 5    | 5,6 | 6,1  | 6,1        | 0,0                                   |
| 601        | CIVIDALE DEL FRIULI    | 4.091          | 529        | 0,072          | 316  | 7,2 | 6,6  | 6,9        | 0,0                                   |
| 602        | LATISANA               | 51.190         | 23819      | 0,059          | 6    | 7,2 | 6,6  | 6,9        | 0,7                                   |
| 603        | SAN GIORGIO DI NOGARO  | 12.544         | 5330       | 0,057          | 14   | 7,2 | 6,6  | 6,9        | 0,5                                   |
| 604        | TARVISIO               | 4.172          | 1730       | 0,047          | 1227 | 7,2 | 6,6  | 6,9        | 0,0                                   |
| 605        | TOLMEZZO               | 14.555         | 3959       | 0,045          | 1062 | 7,2 | 6,6  | 6,9        | 0,0                                   |
| 606        | UDINE                  | 25.355         | 4327       | 0,051          | 210  | 7,2 | 6,6  | 6,9        | 0,0                                   |
| 607        | GORIZIA                | 5.094          | 1331       | 0,054          | 60   | 6,6 | 6,9  | 7,1        | 0,1                                   |
| 608        | MONFALCONE             | 2.647          | 934        | 0,057          | 30   | 6,6 | 6,9  | 7,1        | 1,0                                   |
| 609        | TRIESTE                | 13.304         | 4233       | 0,055          | 215  | 7,5 | 7,9  | 8          | 1,0                                   |
| 610        | MANIAGO                | 8.972          | 1039       | 0,047          | 490  | 6,5 | 6    | 6,9        | 0,0                                   |
| 611        | PORDENONE              | 20.347         | 3722       | 0,048          | 113  | 6,5 | 6    | 6,9        | 0,0                                   |
| 701        | DIANO MARINA           | 13.682         | 5162       | 0,058          | 244  | 8,7 | 8,8  | 9,1        | 1,0                                   |
| 702        | IMPERIA                | 18.385         | 1559       | 0,069          | 575  | 8,7 | 8,8  | 9,1        | 0,4                                   |
| 703        | SANREMO                | 28.528         | 5755       | 0,080          | 527  | 8,7 | 8,8  | 9,1        | 0,6                                   |
| 704        | VENTIMIGLIA            | 13.921         | 2180       | 0,088          | 428  | 8,7 | 8,8  | 9,1        | 0,7                                   |
| 705        | ALBENGA                | 35.611         | 10070      | 0,062          | 413  | 9,4 | 10   | 9,7        | 0,5                                   |
| 706        | CAIRO MONTENOTTE       | 8.390          | 822        | 0,055          | 584  | 9,4 | 10   | 9,7        | 0,0                                   |
| 707        | FINALE LIGURE          | 35.764         | 12818      | 0,052          | 374  | 9,4 | 10   | 9,7        | 1,0                                   |
| 708        | SAVONA                 | 31.836         | 8815       | 0,061          | 343  | 9,4 | 10   | 9,7        | 0,8                                   |
| 709        | CHIAVARI               | 17.748         | 2668       | 0,067          | 492  | 7,9 | 7,8  | 7,5        | 0,6                                   |
| 710        | GENOVA                 | 60.590         | 9094       | 0,065          | 597  | 7,9 | 7,8  | 7,5        | 0,4                                   |
| 711        | RAPALLO                | 22.885         | 4653       | 0,066          | 242  | 7,9 | 7,8  | 7,5        | 1,0                                   |
| 712        | SESTRI LEVANTE         | 15.578         | 2977       | 0,053          | 409  | 7,9 | 7,8  | 7,5        | 0,8                                   |
| 713        | LA SPEZIA              | 30.701         | 5500       | 0,070          | 323  | 8,5 | 8,6  | 8,5        | 0,6                                   |
| 714        | LEVANTO                | 4.632          | 1994       | 0,048          | 330  | 8,5 | 8,6  | 8,5        | 1,0                                   |
| 801        | CASTEL SAN GIOVANNI    | 7.729          | 294        | 0,044          | 297  | 7,1 | 6,6  | 6,8        | 0,0                                   |
| 802        | FIORENZUOLA D'ARDA     | 5.695          | 811        | 0,044          | 227  | 7,1 | 6,6  | 6,8        | 0,0                                   |
| 803        | PIACENZA               | 28.354         | 2439       | 0,044          | 397  | 7,1 | 6,6  | 6,8        | 0,0                                   |
| 804        | BORGO VAL DI TARO      | 8.985          | 576        | 0,047          | 799  | 7,4 | 7,7  | 7,8        | 0,0                                   |
| 805        | FIDENZA                | 6.642          | 5667       | 0,049          | 110  | 7,4 | 7,7  | 7,8        | 0,0                                   |
| 806        | LANGHIRANO             | 8.961          | 328        | 0,049          | 715  | 7,4 | 7,7  | 7,8        | 0,0                                   |
| 807        | PARMA                  | 27.216         | 5498       | 0,045          | 218  | 7,4 | 7,7  | 7,8        | 0,0                                   |
|            | CASTELNOVO NE' MONTI   | 16.222         | 1539       | 0,044          | 819  | 6,7 | 6,9  | 6,8        | 0,0                                   |
| 808        |                        | - <del>-</del> | -          |                |      |     | 6,9  |            | · · · · · · · · · · · · · · · · · · · |
| 808<br>809 | CORREGGIO              | 3.499          | 495        | 0.047          | 26   | 6.7 | 0.9  | 6.8        | 0.0                                   |
| 809        | CORREGGIO              | 3.499<br>1.853 | 495<br>289 | 0,047<br>0.063 | 26   | 6,7 |      | 6,8<br>6.8 | 0,0                                   |
| 809<br>810 | CORREGGIO<br>GUASTALLA | 1.853          | 289        | 0,063          | 20   | 6,7 | 6,9  | 6,8        | 0,0                                   |
| 809        | CORREGGIO              |                |            |                |      |     |      |            |                                       |

| 814 | MIRANDOLA                 | E 727           | 680           | 0.056          | 10         | 7.6        | 7.0        |            | 0.0 |
|-----|---------------------------|-----------------|---------------|----------------|------------|------------|------------|------------|-----|
| 815 | MODENA                    | 5.737<br>22.613 | 4525          | 0,056<br>0,056 | 18<br>37   | 7,6<br>7,6 | 7,9<br>7,9 | 8          | 0,0 |
| 816 | PAVULLO NEL FRIGNANO      | 9.085           | 613           | 0,055          | 671        | 7,6        | 7,9        | 8          | 0,0 |
| 817 | PIEVEPELAGO               | 9.899           | 2457          | 0,048          | 1260       | 7,6        | 7,9        | 8          | 0,0 |
| 818 | SASSUOLO                  | 10.954          | 2470          | 0,055          | 335        | 7,6        | 7,9        | 8          | 0,0 |
| 819 | VIGNOLA                   | 8.719           | 1483          | 0,045          | 234        | 7,6        | 7,9        | 8          | 0,0 |
| 820 | BOLOGNA                   | 57.603          | 20846         | 0,047          | 155        | 9,2        | 10,1       | 11,2       | 0,0 |
| 821 | GAGGIO MONTANO            | 20.744          | 3386          | 0,055          | 688        | 9,2        | 10,1       | 11,2       | 0,0 |
| 822 | IMOLA                     | 8.517           | 2262          | 0,047          | 167        | 9,2        | 10,1       | 11,2       | 0,0 |
| 823 | COMACCHIO                 | 34.890          | 3107          | 0,069          | 1          | 6,8        | 7,1        | 7,3        | 0,4 |
| 824 | COPPARO                   | 3.057           | 180           | 0,070          | 3          | 6,8        | 7,1        | 7,3        | 0,0 |
| 825 | FERRARA                   | 17.135          | 2697          | 0,061          | 8          | 6,8        | 7,1        | 7,3        | 0,0 |
| 826 | GORO                      | 841             | 133           | 0,059          | 1          | 6,8        | 7,1        | 7,3        | 1,0 |
| 827 | FAENZA                    | 8.583           | 1545          | 0,038          | 232        | 8,3        | 9,9        | 12,1       | 0,0 |
| 828 | LUGO                      | 8.492           | 781           | 0,045          | 9          | 8,3        | 9,9        | 12,1       | 0,1 |
| 829 | RAVENNA                   | 39.631          | 39880         | 0,071          | 6          | 8,3        | 9,9        | 12,1       | 0,7 |
| 830 | BAGNO DI ROMAGNA          | 2.324           | 2088          | 0,053          | 812        | 7,6        | 7,6        | 7,8        | 0,0 |
| 831 | CESENA                    | 7.223           | 1124          | 0,053          | 201        | 7,6        | 7,6        | 7,8        | 0,1 |
| 832 | CESENATICO                | 16.360          | 59938         | 0,079          | 15         | 7,6        | 7,6        | 7,8        | 1,0 |
| 833 | FORLÌ                     | 10.563          | 3012          | 0,059          | 244        | 7,6        | 7,6        | 7,8        | 0,0 |
| 834 | MODIGLIANA                | 1.089           | 15            | 0,042          | 468        | 7,6        | 7,6        | 7,8        | 0,0 |
| 835 | SANTA SOFIA               | 2.083           | 196           | 0,050          | 572        | 7,6        | 7,6        | 7,8        | 0,0 |
| 836 | CATTOLICA                 | 8.415           | 26021         | 0,078          | 104        | 9,2        | 9,6        | 10,7       | 0,8 |
| 837 | RICCIONE                  | 11.404          | 33900         | 0,076          | 196        | 9,2        | 9,6        | 10,7       | 0,4 |
| 838 | RIMINI                    | 15.752          | 69633         | 0,071          | 133        | 9,2        | 9,6        | 10,7       | 0,4 |
| 839 | NOVAFELTRIA               | 4.472           | 466           | 0,080          | 570        | 9,2        | 9,6        | 10,7       | 0,0 |
| 901 | CARRARA                   | 7.161           | 1039          | 0,103          | 272        | 7,8        | 8,6        | 9,9        | 1,0 |
| 902 | MASSA                     | 11.632          | 5121          | 0,104          | 339        | 7,8        | 8,6        | 9,9        | 1,0 |
| 903 | PONTREMOLI                | 8.953           | 437           | 0,083          | 608        | 7,8        | 8,6        | 9,9        | 0,0 |
| 904 | BARGA                     | 6.437           | 1073          | 0,036          | 638        | 9,2        | 10,8       | 10,3       | 0,0 |
|     | CASTELNUOVO DI            |                 |               |                |            |            |            |            |     |
| 905 | GARFAGNANA                | 5.008           | 1151          | 0,059          | 883        | 9,2        | 10,8       | 10,3       | 0,0 |
| 906 | LUCCA                     | 11.329          | 2352          | 0,048          | 189        | 9,2        | 10,8       | 10,3       | 0,0 |
| 907 | PIETRASANTA               | 13.755          | 10126         | 0,075          | 356        | 9,2        | 10,8       | 10,3       | 0,8 |
| 908 | VIAREGGIO                 | 19.871          | 9033          | 0,082          | 116        | 9,2        | 10,8       | 10,3       | 1,0 |
| 909 | MONTECATINI-TERME PISTOIA | 9.636<br>11.022 | 15398<br>1227 | 0,066<br>0,069 | 173<br>331 | 7,4        | 7,5<br>7,5 | 7,8        | 0,0 |
| 911 | SAN MARCELLO PISTOIESE    | 4.691           | 1069          | 0,069          | 978        | 7,4        | 7,5        | 7,8<br>7,8 | 0,0 |
| 912 | BORGO SAN LORENZO         | 5.569           | 1570          | 0,067          | 504        | 11,6       | 12,1       | 13,3       | 0,0 |
| 913 | CASTELFIORENTINO          | 3.370           | 626           | 0,065          | 173        | 11,6       | 12,1       | 13,3       | 0,0 |
| 914 | EMPOLI                    | 6.619           | 911           | 0,054          | 103        | 11,6       | 12,1       | 13,3       | 0,0 |
| 915 | FIRENZE                   | 20.972          | 38660         | 0,058          | 286        | 11,6       | 12,1       | 13,3       | 0,0 |
| 916 | FIRENZUOLA                | 3.122           | 333           | 0,051          | 700        | 11,6       | 12,1       | 13,3       | 0,0 |
| 917 | CASTAGNETO CARDUCCI       | 3.946           | 1550          | 0,057          | 177        | 10,4       | 10,5       | 9,6        | 1,0 |
| 918 | CECINA                    | 7.019           | 3644          | 0,064          | 108        | 10,4       | 10,5       | 9,6        | 0,7 |
| 919 | LIVORNO                   | 8.041           | 2479          | 0,073          | 91         | 10,4       | 10,5       | 9,6        | 0,6 |
| 920 | MARCIANA MARINA           | 4.549           | 3213          | 0,052          | 219        | 10,4       | 10,5       | 9,6        | 1,0 |
| 921 | PIOMBINO                  | 8.689           | 4966          | 0,060          | 74         | 10,4       | 10,5       | 9,6        | 0,8 |
| 922 | PORTOFERRAIO              | 10.052          | 12038         | 0,062          | 134        | 10,4       | 10,5       | 9,6        | 1,0 |
| 923 | ROSIGNANO MARITTIMO       | 9.597           | 2047          | 0,063          | 142        | 10,4       | 10,5       | 9,6        | 0,5 |
| 924 | PISA                      | 14.734          | 7246          | 0,059          | 74         | 8,6        | 8,7        | 8,8        | 0,6 |
| 925 | POMARANCE                 | 2.129           | 239           | 0,047          | 316        | 8,6        | 8,7        | 8,8        | 0,0 |
| 926 | PONTEDERA                 | 7.440           | 1836          | 0,069          | 109        | 8,6        | 8,7        | 8,8        | 0,0 |
| 927 | SAN MINIATO               | 5.353           | 652           | 0,071          | 41         | 8,6        | 8,7        | 8,8        | 0,0 |
| 928 | VOLTERRA                  | 1.605           | 1091          | 0,046          | 219        | 8,6        | 8,7        | 8,8        | 0,0 |
| 929 | AREZZO                    | 8.185           | 2154          | 0,065          | 419        | 6,7        | 7          | 6,7        | 0,0 |
| 930 | BIBBIENA                  | 9.368           | 1274          | 0,055          | 774        | 6,7        | 7          | 6,7        | 0,0 |
| 931 | CORTONA                   | 3.924           | 1315          | 0,063          | 405        | 6,7        | 7          | 6,7        | 0,0 |
| 932 | MONTEVARCHI               | 11.653          | 3343          | 0,055          | 356        | 6,7        | 7          | 6,7        | 0,0 |
| 933 | SANSEPOLCRO               | 3.754           | 1085          | 0,061          | 567        | 6,7        | 7          | 6,7        | 0,0 |
| 934 | CHIUSI                    | 4.907           | 1310          | 0,067          | 375        | 8,8        | 8,7        | 8,8        | 0,0 |
| 935 | MONTALCINO                | 3.334           | 2004          | 0,052          | 257        | 8,8        | 8,7        | 8,8        | 0,0 |
| 936 | MONTEPULCIANO             | 3.283           | 14514         | 0,058          | 422        | 8,8        | 8,7        | 8,8        | 0,0 |
| 937 | PIANCASTAGNAIO            | 3.699           | 1256          | 0,054          | 590        | 8,8        | 8,7        | 8,8        | 0,0 |
| 938 | POGGIBONSI                | 6.938           | 3993          | 0,060          | 295        | 8,8        | 8,7        | 8,8        | 0,0 |
| 939 | SIENA                     | 12.704          | 7670          | 0,048          | 330        | 8,8        | 8,7        | 8,8        | 0,0 |
| 940 | SINALUNGA                 | 3.389           | 685           | 0,071          | 322        | 8,8        | 8,7        | 8,8        | 0,0 |
| 941 | CASTEL DEL PIANO          | 7.267           | 1503          | 0,049          | 610        | 10,1       | 11,4       | 10,5       | 0,0 |

| 942          | FOLLONICA                          | 9.440          | 3679        | 0,078          | 233        | 10,1       | 11,4       | 10,5       | 0,4 |
|--------------|------------------------------------|----------------|-------------|----------------|------------|------------|------------|------------|-----|
| 943          | GROSSETO                           | 18.069         | 7068        | 0,060          | 164        | 10,1       | 11,4       | 10,5       | 0,4 |
| 944          | MANCIANO                           | 2.062          | 1029        | 0,043          | 323        | 10,1       | 11,4       | 10,5       | 0,0 |
| 945          | MONTE ARGENTARIO                   | 6.015          | 1878        | 0,080          | 171        | 10,1       | 11,4       | 10,5       | 1,0 |
| 946          | ORBETELLO                          | 5.506          | 3056        | 0,068          | 87         | 10,1       | 11,4       | 10,5       | 1,0 |
| 947          | PITIGLIANO                         | 3.248          | 414         | 0,058          | 465        | 10,1       | 11,4       | 10,5       | 0,0 |
| 948          | PRATO                              | 14.191         | 2032        | 0,074          | 310        | 9,2        | 9,5        | 9,2        | 0,0 |
| 1001         | ASSISI                             | 4.753          | 5063        | 0,060          | 319        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1002         | CASCIA                             | 6.240          | 1434        | 0,064          | 1094       | 6,4        | 6,5        | 6,7        | 0,0 |
| 1003         | CASTIGLIONE DEL LAGO               | 3.359          | 534         | 0,064          | 338        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1004         | CITTÀ DI CASTELLO                  | 4.560          | 1039        | 0,066          | 481        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1005         | FOLIGNO                            | 6.090          | 2543        | 0,057          | 456        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1006         | GUALDO TADINO                      | 3.903          | 778         | 0,066          | 628        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1007         | GUBBIO                             | 5.238          | 1103        | 0,073          | 639        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1008         | NORCIA                             | 4.323          | 898         | 0,065          | 913        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1009         | PERUGIA                            | 12.338         | 8392        | 0,065          | 311        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1010         | SPOLETO                            | 6.191          | 1721        | 0,069          | 697        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1011         | TODI                               | 5.819          | 1243        | 0,063          | 346        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1012         | UMBERTIDE                          | 2.558          | 342         | 0,077          | 469        | 6,4        | 6,5        | 6,7        | 0,0 |
| 1013         | ORVIETO                            | 6.958          | 1631        | 0,052          | 356        | 5,8        | 5,2        | 5,2        | 0,0 |
| 1014         | TERNI                              | 16.575         | 2443        | 0,070          | 426        | 5,8        | 5,2        | 5,2        | 0,0 |
| 1101         | CAGLI                              | 4.321          | 683         | 0,064          | 594        | 7,2        | 7,2        | 7,5        | 0,0 |
| 1102         | FANO                               | 11.333         | 3519<br>395 | 0,059          | 168        | 7,2        | 7,2        | 7,5        | 0,2 |
| 1103<br>1104 | PERGOLA<br>PESARO                  | 5.175<br>7.269 | 7034        | 0,057<br>0,055 | 214<br>140 | 7,2<br>7,2 | 7,2<br>7,2 | 7,5<br>7,5 | 0,0 |
| 1104         | SASSOCORVARO                       | 4.984          | 1217        | 0,055          | 527        | 7,2        | 7,2        |            | 0,0 |
| 1105         | URBANIA                            | 1.703          | 274         | 0,076          | 531        | 7,2        | 7,2        | 7,5<br>7,5 | 0,0 |
| 1107         | URBINO                             | 3.144          | 1430        | 0,074          | 245        | 7,2        | 7,2        | 7,5        | 0,0 |
| 1107         | ANCONA                             | 11.247         | 2906        | 0,065          | 74         | 7,2        | 7,2        | 7,5        | 0,9 |
| 1109         | FABRIANO                           | 6.065          | 1272        | 0,052          | 464        | 7          | 7,2        | 7          | 0,0 |
| 1110         | JESI                               | 10.019         | 1697        | 0,064          | 242        | 7          | 7,2        | 7          | 0,1 |
| 1111         | OSIMO                              | 2.455          | 815         | 0,069          | 139        | 7          | 7,2        | 7          | 0,3 |
| 1112         | SENIGALLIA                         | 11.105         | 8838        | 0,078          | 98         | 7          | 7,2        | 7          | 0,4 |
| 1113         | CIVITANOVA MARCHE                  | 4.647          | 995         | 0,076          | 86         | 7,1        | 6,8        | 7,2        | 0,8 |
| 1114         | MACERATA                           | 8.045          | 1445        | 0,063          | 221        | 7,1        | 6,8        | 7,2        | 0,0 |
| 1115         | MATELICA                           | 7.679          | 1161        | 0,049          | 776        | 7,1        | 6,8        | 7,2        | 0,0 |
| 1116         | RECANATI                           | 13.423         | 4247        | 0,062          | 77         | 7,1        | 6,8        | 7,2        | 0,6 |
| 1117         | TOLENTINO                          | 5.739          | 1033        | 0,063          | 469        | 7,1        | 6,8        | 7,2        | 0,0 |
| 1118         | VISSO                              | 4.708          | 359         | 0,066          | 1132       | 7,1        | 6,8        | 7,2        | 0,0 |
| 1119         | ASCOLI PICENO                      | 12.941         | 3044        | 0,106          | 430        | 6,7        | 7,1        | 7,1        | 0,0 |
| 1120         | COMUNANZA                          | 5.134          | 593         | 0,054          | 547        | 6,7        | 7,1        | 7,1        | 0,0 |
|              | SAN BENEDETTO DEL                  |                |             |                |            |            |            |            |     |
| 1121         | TRONTO                             | 15.026         | 13314       | 0,078          | 136        | 6,7        | 7,1        | 7,1        | 0,9 |
| 1122         | FERMO                              | 11.197         | 2607        | 0,085          | 141        | 6          | 5,9        | 6,4        | 0,7 |
| 1123         | MONTEGIORGIO                       | 4.672          | 193         | 0,052          | 223        | 6          | 5,9        | 6,4        | 0,0 |
| 1124         | MONTEGRANARO                       | 1.139          | 130         | 0,065          | 118        | 6          | 5,9        | 6,4        | 0,0 |
| 1125         | PORTO SANT'ELPIDIO                 | 3.612          | 555         | 0,074          | 60         | 6          | 5,9        | 6,4        | 1,0 |
| 1201         | ACQUAPENDENTE<br>CIVITA CASTELLANA | 3.894          | 852         | 0,068          | 420        | 6,1        | 6,1        | 5,9        | 0,0 |
| 1202<br>1203 | MONTALTO DI CASTRO                 | 6.498<br>8.404 | 655<br>556  | 0,094<br>0,091 | 228<br>262 | 6,1        | 6,1<br>6,1 | 5,9<br>5,9 | 0,0 |
| 1203         | TARQUINIA                          | 8.404<br>4.564 | 991         | 0,091          | 119        | 6,1<br>6,1 | 6,1        | 5,9        | 0,1 |
| 1204         | VITERBO                            | 17.702         | 3958        | 0,083          | 328        | 6,1        | 6,1        | 5,9        | 0,0 |
| 1206         | RIETI                              | 38.725         | 2180        | 0,082          | 634        | 6          | 5,8        | 5,9        | 0,0 |
| 1207         | CIVITAVECCHIA                      | 9.463          | 1699        | 0,082          | 177        | 12         | 12         | 11,8       | 1,0 |
| 1208         | POMEZIA                            | 56.318         | 6111        | 0,098          | 197        | 12         | 12         | 11,8       | 0,4 |
| 1209         | ROMA                               | 185.174        | 121481      | 0,084          | 395        | 12         | 12         | 11,8       | 0,0 |
| 1210         | FONDI                              | 6.666          | 1555        | 0,110          | 347        | 8          | 11,8       | 8,1        | 0,6 |
| 1211         | FORMIA                             | 13.449         | 1822        | 0,116          | 235        | 8          | 11,8       | 8,1        | 0,8 |
| 1212         | GAETA                              | 9.084          | 2353        | 0,119          | 224        | 8          | 11,8       | 8,1        | 1,0 |
| 1213         | LATINA                             | 15.972         | 2136        | 0,099          | 299        | 8          | 11,8       | 8,1        | 0,1 |
| 1214         | SABAUDIA                           | 7.664          | 1136        | 0,096          | 216        | 8          | 11,8       | 8,1        | 0,1 |
| 1215         | TERRACINA                          | 18.647         | 2521        | 0,117          | 82         | 8          | 11,8       | 8,1        | 1,0 |
| 1216         | CASSINO                            | 17.259         | 1648        | 0,119          | 337        | 5,4        | 5,3        | 5,5        | 0,0 |
| 1217         | FROSINONE                          | 45.033         | 11554       | 0,099          | 512        | 5,4        | 5,3        | 5,5        | 0,0 |
| 1218         | SORA                               | 15.587         | 699         | 0,099          | 678        | 5,4        | 5,3        | 5,5        | 0,0 |
| 1301         | AVEZZANO                           | 37.395         | 1892        | 0,098          | 980        | 6,1        | 6          | 6,2        | 0,0 |
| 1302         | CASTEL DI SANGRO                   | 16.670         | 3523        | 0,099          | 1127       | 6,1        | 6          | 6,2        | 0,0 |
| 1303         | CELANO                             | 8.742          | 1299        | 0,079          | 1336       | 6,1        | 6          | 6,2        | 0,0 |

| 1304         | L'AQUILA                   | 18.144         | 1977  | 0,075          | 1017       | 6,1        | 6          | 6,2 | 0,0        |
|--------------|----------------------------|----------------|-------|----------------|------------|------------|------------|-----|------------|
| 1304         | PESCASSEROLI               | 4.122          | 2339  | 0,073          | 1492       | 6,1        | 6          | 6,2 | 0,0        |
| 1306         | SULMONA                    | 17.679         | 2298  | 0,110          | 921        | 6,1        | 6          | 6,2 | 0,0        |
| 1307         | GIULIANOVA                 | 8.524          | 5303  | 0,082          | 109        | 6,1        | 6,4        | 6,5 | 0,8        |
| 1308         | PINETO                     | 11.688         | 4567  | 0,084          | 119        | 6,1        | 6,4        | 6,5 | 1,0        |
| 1309         | TERAMO                     | 13.375         | 1901  | 0,068          | 647        | 6,1        | 6,4        | 6,5 | 0,0        |
| 1310         | MARTINSICURO               | 21.714         | 8122  | 0,093          | 109        | 6,1        | 6,4        | 6,5 | 0,7        |
| 1311         | PENNE                      | 4.804          | 254   | 0,085          | 422        | 6,4        | 6,4        | 6,5 | 0,0        |
| 1312         | PESCARA                    | 24.468         | 8024  | 0,092          | 87         | 6,4        | 6,4        | 6,5 | 0,8        |
| 1313         | ATESSA                     | 18.385         | 2029  | 0,078          | 435        | 5,6        | 5,6        | 5,6 | 0,2        |
| 1314         | CHIETI                     | 14.279         | 2065  | 0,100          | 424        | 5,6        | 5,6        | 5,6 | 0,1        |
| 1315         | GUARDIAGRELE               | 9.329          | 1023  | 0,086          | 696        | 5,6        | 5,6        | 5,6 | 0,0        |
| 1316         | ORTONA                     | 2.790          | 765   | 0,096          | 193        | 5,6        | 5,6        | 5,6 | 0,5        |
| 1317         | SAN SALVO                  | 12.647         | 744   | 0,074          | 360        | 5,6        | 5,6        | 5,6 | 0,2        |
| 1318         | VASTO                      | 8.049          | 3023  | 0,095          | 258        | 5,6        | 5,6        | 5,6 | 0,5        |
| 1401         | BOJANO                     | 4.072          | 652   | 0,101          | 815        | 5,4        | 5,3        | 5,5 | 0,0        |
| 1402         | CAMPOBASSO                 | 24.488         | 1599  | 0,112          | 595        | 5,4        | 5,3        | 5,5 | 0,0        |
| 1403         | TERMOLI                    | 23.631         | 3327  | 0,098          | 292        | 5,4        | 5,3        | 5,5 | 0,3        |
| 1404         | AGNONE                     | 8.111          | 212   | 0,079          | 873        | 4,1        | 4,2        | 4,8 | 0,0        |
| 1405         | ISERNIA                    | 15.899         | 1062  | 0,098          | 728        | 4,1        | 4,2        | 4,8 | 0,0        |
| 1501         | CASERTA                    | 18.855         | 3033  | 0,121          | 133        | 4,8        | 5,3        | 5,1 | 0,0        |
| 1502         | MONDRAGONE                 | 25.417         | 2716  | 0,196          | 24         | 4,8        | 5,3        | 5,1 | 0,5        |
| 1503         | PIEDIMONTE MATESE          | 6.588          | 139   | 0,173          | 433        | 4,8        | 5,3        | 5,1 | 0,0        |
| 1504         | SESSA AURUNCA              | 12.999         | 1193  | 0,127          | 73         | 4,8        | 5,3        | 5,1 | 0,4        |
| 1505         | TEANO                      | 6.742          | 286   | 0,146          | 244        | 4,8        | 5,3        | 5,1 | 0,0        |
| 1506         | BENEVENTO                  | 12.772         | 1212  | 0,127          | 371        | 4,5        | 4,5        | 4,6 | 0,0        |
| 1508         | MONTESARCHIO               | 8.499          | 413   | 0,150          | 448        | 4,5        | 4,5        | 4,6 | 0,0        |
| 1509         | MORCONE                    | 3.153          | 139   | 0,097          | 607        | 4,5        | 4,5        | 4,6 | 0,0        |
| 1511         | SAN MARCO DEI CAVOTI       | 1.342          | 13    | 0,104          | 573        | 4,5        | 4,5        | 4,6 | 0,0        |
| 1512         | TELESE TERME               | 8.739          | 640   | 0,121          | 324        | 4,5        | 4,5        | 4,6 | 0,0        |
| 1513         | CASTELLANAMARE DI          | 3.093          | 3513  | 0,065          | 173        | 6,9        | 6,9        | 7,4 | 1,0        |
| 1514         | CASTELLAMMARE DI<br>STABIA | 4.922          | 2597  | 0,187          | 313        | 6,9        | 6,9        | 7,4 | 1,0        |
| 1515         | FORIO                      | 3.247          | 10449 | 0,114          | 195        | 6,9        | 6,9        | 7,4 | 1,0        |
| 1516         | ISCHIA                     | 3.350          | 11984 | 0,123          | 173        | 6,9        | 6,9        | 7,4 | 1,0        |
| 1517         | NAPOLI                     | 90.072         | 20179 | 0,175          | 70         | 6,9        | 6,9        | 7,4 | 0,5        |
| 1518         | NOLA                       | 16.254         | 1306  | 0,169          | 265        | 6,9        | 6,9        | 7,4 | 0,0        |
| 1519         | SAN GIUSEPPE VESUVIANO     | 9.129          | 202   | 0,137          | 145        | 6,9        | 6,9        | 7,4 | 0,4        |
| 1520         | SORRENTO                   | 6.078          | 16592 | 0,118          | 258        | 6,9        | 6,9        | 7,4 | 1,0        |
| 1521         | TORRE DEL GRECO            | 10.711         | 1957  | 0,166          | 101        | 6,9        | 6,9        | 7,4 | 1,0        |
| 1522         | ARIANO IRPINO              | 13.801         | 606   | 0,132          | 521        | 4,5        | 4,3        | 4,4 | 0,0        |
| 1523         | AVELLINO                   | 20.265         | 2254  | 0,122          | 551        | 4,5        | 4,3        | 4,4 | 0,0        |
|              | SANT'ANGELO DEI            |                |       |                |            |            |            |     |            |
| 1524         | LOMBARDI                   | 8.884          | 360   | 0,107          | 651        | 4,5        | 4,3        | 4,4 | 0,0        |
| 1525         | SOLOFRA                    | 1.277          | 163   | 0,129          | 502        | 4,5        | 4,3        | 4,4 | 0,0        |
| 1527         | AGROPOLI                   | 7.239          | 612   | 0,175          | 240        | 6,8        | 6,7        | 7   | 0,7        |
| 1528         | AMALFI                     | 4.595          | 4807  | 0,094          | 385        | 6,8        | 6,7        | 7   | 1,0        |
| 1529         | ASCEA                      | 9.621          | 3173  | 0,120          | 259        | 6,8        | 6,7        | 7   | 0,8        |
| 1530         | BATTIPAGLIA                | 3.612          | 1665  | 0,154          | 368        | 6,8        | 6,7        | 7   | 0,4        |
| 1531         | BUCCINO                    | 3.834          | 348   | 0,121          | 523        | 6,8        | 6,7        | 7   | 0,0        |
| 1532         | CAMEROTA                   | 6.161          | 4429  | 0,157          | 321        | 6,8        | 6,7        | 7   | 1,0        |
| 1533         | CAPACCIO                   | 4.534          | 3089  | 0,165          | 231        | 6,8        | 6,7        | 7   | 0,3        |
| 1534         | CASTELLABATE               | 6.901          | 1806  | 0,111          | 241        | 6,8        | 6,7        | 7   | 1,0        |
| 1535         | EBOLI                      | 3.946          | 534   | 0,126          | 276        | 6,8        | 6,7        | 7   | 0,3        |
| 1536         | NOCERA INFERIORE           | 4.360          | 188   | 0,126          | 200        | 6,8        | 6,7        | 7   | 0,2        |
| 1537         | OLIVETO CITRA              | 3.062          | 1011  | 0,110          | 662        | 6,8        | 6,7        | 7   | 0,0        |
| 1538         | PADULA                     | 2.316          | 425   | 0,115          | 764        | 6,8        | 6,7        | 7   | 0,0        |
| 1539         | PAGANI                     | 4.739          | 177   | 0,169          | 171        | 6,8        | 6,7        | 7   | 0,6        |
| 1540         | POSITANO                   | 2.525          | 3313  | 0,081          | 474        | 6,8        | 6,7        | 7   | 1,0        |
| 1541         | ROCCADASPIDE               | 4.427<br>6.307 | 950   | 0,099          | 630<br>728 | 6,8        | 6,7        | 7   | 0,0        |
| 1542         | SALA CONSILINA             | 16.044         | 3430  | 0,093          |            | 6,8        | 6,7        | 7   | 0,0        |
| 1543<br>1544 | SALERNO<br>SAPRI           | 7.986          | 1791  | 0,146<br>0,141 | 380<br>366 | 6,8<br>6,8 | 6,7<br>6,7 | 7   | 0,6<br>0,7 |
| 1544         | SARNO                      | 3.418          | 54    | 0,141          | 122        | 6,8        | 6,7        | 7   | 0,0        |
| 1546         | VALLO DELLA LUCANIA        | 3.642          | 95    | 0,137          | 598        | 6,8        | 6,7        | 7   | 0,0        |
| 1601         | APRICENA                   | 12.096         | 301   | 0,118          | 133        | 6,1        | 7,1        | 6,2 | 0,1        |
| 1603         | CERIGNOLA                  | 6.450          | 159   | 0,201          | 113        | 6,1        | 7,1        | 6,2 | 0,0        |
| 1604         | FOGGIA                     | 21.591         | 1745  | 0,135          | 336        | 6,1        | 7,1        | 6,2 | 0,0        |
|              |                            |                |       | -,             |            |            | , =        | -,- | -,-        |

| I 1605       | LUCERA                | 6 250           | F44          | 0.122          | 460        | C 1        | 7.1        |            | 0.0                                   |
|--------------|-----------------------|-----------------|--------------|----------------|------------|------------|------------|------------|---------------------------------------|
| 1605<br>1606 | MANFREDONIA           | 6.358<br>14.318 | 544<br>10761 | 0,132<br>0,173 | 460<br>255 | 6,1<br>6,1 | 7,1<br>7,1 | 6,2<br>6,2 | 0,0<br>1,0                            |
| 1607         | RODI GARGANICO        | 7.067           | 2283         | 0,175          | 194        | 6,1        | 7,1        | 6,2        | 1,0                                   |
| 1608         | SAN GIOVANNI ROTONDO  | 7.407           | 5991         | 0,116          | 348        | 6,1        | 7,1        |            | 0,0                                   |
| 1609         | TORREMAGGIORE         | 2.220           | 24           | 0,120          | 117        | 6,1        | 7,1        | 6,2<br>6,2 | 0,0                                   |
| 1610         | VICO DEL GARGANO      | 6.119           | 3569         | 0,112          | 308        | 6,1        | 7,1        | 6,2        | 1,0                                   |
| 1611         | ACQUAVIVA DELLE FONTI | 3.349           | 45           | 0,137          | 352        | 6,8        | 7,1        | 7          | 0,0                                   |
| 1612         | BARI                  | 47.385          | 5821         | 0,124          | 185        |            | 7,1        | 7          | 0,4                                   |
| 1613         | CORATO                | 10.960          | 511          |                | 372        | 6,8        | 7,1        | 7          | · · · · · · · · · · · · · · · · · · · |
| 1614         | GIOIA DEL COLLE       |                 | 236          | 0,100          | 328        | 6,8        |            | 7          | 0,0                                   |
|              |                       | 2.147           | 203          | 0,125          |            | 6,8        | 7,1        | 7          | 0,0                                   |
| 1615         | GRAVINA IN PUGLIA     | 2.504           |              | 0,134          | 418        | 6,8        | 7,1        | 7          | 0,0                                   |
| 1616<br>1617 | MOLFETTA              | 10.633<br>5.433 | 1122         | 0,115          | 98         | 6,8        | 7,1        | 7          | 0,8                                   |
|              | MONOPOLI              |                 | 3574         | 0,110          | 144        | 6,8        | 7,1        |            | 1,0                                   |
| 1618         | PUTIGNANO             | 6.698           | 626          | 0,115          | 354        | 6,8        | 7,1        | 7          | 0,0                                   |
| 1619         | RUTIGLIANO            | 3.983           | 631          | 0,094          | 162        | 6,8        | 7,1        | 7          | 0,7                                   |
| 1620         | CASTELLANETA          | 7.656           | 4481         | 0,115          | 139        | 6,5        | 7,4        |            | 0,8                                   |
| 1621         | GINOSA                | 5.288           | 1121         | 0,134          | 217        | 6,5        | 7,4        | 7          | 0,5                                   |
| 1622         | MANDURIA              | 21.447          | 842          | 0,139          | 58         | 6,5        | 7,4        | 7          | 0,8                                   |
| 1623         | MARTINA FRANCA        | 17.431          | 2068         | 0,099          | 395        | 6,5        | 7,4        | 7          | 0,0                                   |
| 1624         | TARANTO               | 32.525          | 3168         | 0,123          | 98         | 6,5        | 7,4        | 7          | 0,7                                   |
| 1625         | BRINDISI              | 14.471          | 1627         | 0,171          | 57         | 8,5        | 8,4        | 8,6        | 0,3                                   |
| 1626         | CEGLIE MESSAPICA      | 8.667           | 84           | 0,107          | 202        | 8,5        | 8,4        | 8,6        | 0,0                                   |
| 1627         | FASANO                | 11.541          | 3042         | 0,098          | 212        | 8,5        | 8,4        | 8,6        | 1,0                                   |
| 1628         | FRANCAVILLA FONTANA   | 8.350           | 150          | 0,117          | 125        | 8,5        | 8,4        | 8,6        | 0,0                                   |
| 1629         | MESAGNE               | 4.420           | 389          | 0,169          | 89         | 8,5        | 8,4        | 8,6        | 0,0                                   |
| 1630         | OSTUNI                | 28.717          | 5340         | 0,100          | 121        | 8,5        | 8,4        | 8,6        | 1,0                                   |
| 1631         | CASARANO              | 8.205           | 243          | 0,139          | 114        | 6,4        | 6,5        | 6          | 0,3                                   |
| 1632         | COPERTINO             | 2.077           | 59           | 0,182          | 46         | 6,4        | 6,5        | 6          | 0,7                                   |
| 1633         | GAGLIANO DEL CAPO     | 9.327           | 2815         | 0,163          | 104        | 6,4        | 6,5        | 6          | 1,0                                   |
| 1634         | GALATINA              | 9.739           | 202          | 0,141          | 82         | 6,4        | 6,5        | 6          | 0,3                                   |
| 1635         | GALLIPOLI             | 10.978          | 1882         | 0,158          | 58         | 6,4        | 6,5        | 6          | 1,0                                   |
| 1636         | LECCE                 | 37.097          | 5752         | 0,151          | 46         | 6,4        | 6,5        | 6          | 0,3                                   |
| 1637         | MAGLIE                | 8.510           | 708          | 0,127          | 89         | 6,4        | 6,5        | 6          | 0,5                                   |
| 1638         | NARDÒ                 | 26.944          | 2962         | 0,159          | 41         | 6,4        | 6,5        | 6          | 1,0                                   |
| 1639         | OTRANTO               | 6.320           | 6200         | 0,131          | 75         | 6,4        | 6,5        | 6          | 1,0                                   |
| 1640         | TRICASE               | 5.736           | 309          | 0,121          | 116        | 6,4        | 6,5        | 6          | 1,0                                   |
| 1641         | UGENTO                | 19.727          | 6232         | 0,170          | 51         | 6,4        | 6,5        | 6          | 1,0                                   |
| 1642         | BARLETTA              | 24.021          | 1695         | 0,155          | 108        | 6,1        | 6,5        | 6,3        | 0,6                                   |
| 1643         | MINERVINO MURGE       | 3.117           | 0            | 0,122          | 406        | 6,1        | 6,5        | 6,3        | 0,0                                   |
|              | SAN FERDINANDO DI     |                 |              |                |            |            |            |            |                                       |
| 1644         | PUGLIA                | 2.464           | 130          | 0,133          | 43         | 6,1        | 6,5        | 6,3        | 0,5                                   |
| 1701         | LAURIA                | 5.075           | 800          | 0,062          | 858        | 5,4        | 5,1        | 5,6        | 0,1                                   |
| 1702         | MARATEA               | 1.810           | 1955         | 0,072          | 474        | 5,4        | 5,1        | 5,6        | 1,0                                   |
| 1703         | MARSICOVETERE         | 8.572           | 1234         | 0,109          | 866        | 5,4        | 5,1        | 5,6        | 0,0                                   |
| 1704         | MELFI                 | 10.647          | 1108         | 0,121          | 452        | 5,4        | 5,1        | 5,6        | 0,0                                   |
| 1705         | POTENZA               | 24.481          | 2343         | 0,140          | 744        | 5,4        | 5,1        | 5,6        | 0,0                                   |
| 1706         | RIONERO IN VULTURE    | 4.141           | 594          | 0,131          | 621        | 5,4        | 5,1        | 5,6        | 0,0                                   |
| 1708         | SENISE                | 4.394           | 396          | 0,135          | 676        | 5,4        | 5,1        | 5,6        | 0,0                                   |
| 1709         | MATERA                | 9.001           | 2012         | 0,114          | 248        | 8,1        | 7,5        | 6,8        | 0,0                                   |
| 1710         | NOVA SIRI             | 3.299           | 2730         | 0,111          | 281        | 8,1        | 7,5        | 6,8        | 0,8                                   |
| 1711         | PISTICCI              | 6.833           | 5294         | 0,134          | 101        | 8,1        | 7,5        | 6,8        | 0,7                                   |
| 1712         | POLICORO              | 4.614           | 2657         | 0,139          | 196        | 8,1        | 7,5        | 6,8        | 0,3                                   |
| 1714         | TRICARICO             | 2.055           | 34           | 0,132          | 410        | 8,1        | 7,5        | 6,8        | 0,0                                   |
| 1801         | ACRI                  | 2.501           | 163          | 0,120          | 1008       | 6,8        | 6,8        | 5,9        | 0,0                                   |
| 1802         | AMANTEA               | 10.929          | 2375         | 0,104          | 412        | 6,8        | 6,8        | 5,9        | 1,0                                   |
| 1803         | BELVEDERE MARITTIMO   | 13.505          | 5894         | 0,122          | 456        | 6,8        | 6,8        | 5,9        | 1,0                                   |
| 1804         | CARIATI               | 13.666          | 3022         | 0,122          | 347        | 6,8        | 6,8        | 5,9        | 0,8                                   |
| 1805         | CASSANO ALL'IONIO     | 22.994          | 7613         | 0,099          | 448        | 6,8        | 6,8        | 5,9        | 0,6                                   |
| 1806         | CASTROVILLARI         | 9.160           | 1031         | 0,105          | 578        | 6,8        | 6,8        | 5,9        | 0,0                                   |
| 1807         | CETRARO               | 7.765           | 1687         | 0,153          | 472        | 6,8        | 6,8        | 5,9        | 1,0                                   |
| 1809         | COSENZA               | 31.441          | 4416         | 0,118          | 702        | 6,8        | 6,8        | 5,9        | 0,1                                   |
| 1810         | MORMANNO              | 4.543           | 1257         | 0,091          | 787        | 6,8        | 6,8        | 5,9        | 0,0                                   |
| 1811         | PAOLA                 | 9.060           | 1176         | 0,116          | 554        | 6,8        | 6,8        | 5,9        | 1,0                                   |
| 1812         | 55414 4 4 4 4 5 5     | 7.780           | 2206         | 0,166          | 567        | 6,8        | 6,8        | 5,9        | 1,0                                   |
| 1012         | PRAIA A MARE          | 71700           |              |                |            |            |            |            |                                       |
| 1814         | SAN GIOVANNI IN FIORE | 5.145           | 441          | 0,149          | 672        | 6,8        | 6,8        | 5,9        | 0,0                                   |
|              |                       |                 | 441<br>5688  | 0,149<br>0,150 | 672<br>407 | 6,8<br>6,8 | 6,8<br>6,8 | 5,9<br>5,9 | 0,0                                   |
| 1814         | SAN GIOVANNI IN FIORE | 5.145           |              |                |            |            | -          |            | · · · · · · · · · · · · · · · · · · · |

| 1            | I                          |                 |              | 1              | 1          | 1          |            |            |            |
|--------------|----------------------------|-----------------|--------------|----------------|------------|------------|------------|------------|------------|
| 1819         | SELLIA MARINA              | 13.024          | 4046         | 0,128          | 431        | 6,4        | 4,8        | 5          | 0,6        |
| 1820         | SOVERATO                   | 14.541          | 4594         | 0,163          | 363        | 6,4        | 4,8        | 5          | 1,0        |
| 1821         | LAMEZIA TERME              | 24.610          | 5099         | 0,117          | 553        | 6,4        | 4,8        | 5          | 0,3        |
| 1822         | BIANCO                     | 3.836           | 1009         | 0,139          | 343        | 4,3        | 4,4        | 4,6        | 0,9        |
| 1823         | BOVALINO                   | 4.988           | 112          | 0,096          | 347        | 4,3        | 4,4        | 4,6        | 0,7        |
| 1825         | GIOIA TAURO                | 5.475           | 1029         | 0,149          | 192        | 4,3        | 4,4        | 4,6        | 1,0        |
| 1826         | LOCRI                      | 6.258           | 792          | 0,120          | 284        | 4,3        | 4,4        | 4,6        | 0,7        |
| 1827         | MARINA DI GIOIOSA IONICA   | 6.258           | 363          | 0,143          | 523        | 4,3        | 4,4        | 4,6        | 0,5        |
| 1828         | MELITO DI PORTO SALVO      | 11.840          | 121          | 0,119          | 586        | 4,3        | 4,4        | 4,6        | 0,7        |
| 1830         | POLISTENA                  | 10.587          | 446          | 0,132          | 377        | 4,3        | 4,4        | 4,6        | 0,0        |
| 1831         | REGGIO DI CALABRIA         | 35.164          | 3049         | 0,143          | 592        | 4,3        | 4,4        | 4,6        | 0,8        |
| 1832         | ROCCELLA IONICA<br>ROSARNO | 8.007           | 878<br>227   | 0,152          | 239        | 4,3        | 4,4        | 4,6        | 1,0        |
| 1833         |                            | 5.190           |              | 0,197          | 240        | 4,3        | 4,4        | 4,6        | 0,4        |
| 1835         | STILO<br>CIRÒ MARINA       | 3.434           | 99           | 0,098          | 423        | 4,3        | 4,4        | 4,6        | 0,6        |
| 1837<br>1838 | CROTONE                    | 8.368           | 775<br>10377 | 0,127          | 196<br>181 | 6,1        | 6,9        | 6,3        | 0,6        |
|              |                            | 34.011          |              | 0,143          |            | 6,1        | 6,9        | 6,3        | 0,4        |
| 1840         | PETILIA POLICASTRO         | 7.211           | 436          | 0,150          | 592        | 6,1        | 6,9        | 6,3        | 0,0        |
| 1843         | TROPEA                     | 11.363          | 15465        | 0,103          | 331        | 5,5        | 6,1        | 6,1        | 1,0        |
| 1844         | VIBO VALENTIA              | 18.513          | 8692         | 0,135          | 306        | 5,5        | 6,1        | 6,1        | 0,8        |
| 1901         | ALCAMO                     | 19.169          | 1172         | 0,120          | 275        | 5,3        | 5,6        | 5,3        | 0,5        |
| 1902         | CASTELVETRANO              | 20.884          | 3200         | 0,137          | 214        | 5,3        | 5,6        | 5,3        | 0,3        |
| 1903         | MARSALA<br>SALEMI          | 24.241          | 2882<br>76   | 0,117          | 55<br>352  | 5,3        | 5,6        | 5,3        | 1,0        |
| 1904<br>1905 | TRAPANI                    | 3.689<br>26.869 | 8696         | 0,118<br>0,140 | 201        | 5,3        | 5,6<br>5,6 | 5,3<br>5,3 | 0,0        |
|              |                            |                 |              |                |            | 5,3        |            |            |            |
| 1906         | ALIA                       | 4.303           | 0            | 0,147          | 624<br>211 | 5,6        | 5,7        | 5,9        | 0,0        |
| 1907         | BAGHERIA                   | 11.952          | 2714         | 0,294          |            | 5,6        | 5,7        | 5,9        | 1,0        |
| 1908         | BISACQUINO                 | 5.606           | 0            | 0,121          | 500        | 5,6        | 5,7        | 5,9        | 0,0        |
| 1909         | CASTELBUONO                | 3.026           | 355          | 0,105          | 776        | 5,6        | 5,7        | 5,9        | 0,5        |
| 1910         | CEFALÙ                     | 13.782          | 7386         | 0,112          | 303        | 5,6        | 5,7        | 5,9        | 1,0        |
| 1911<br>1912 | CORLEONE<br>GANGI          | 12.052          | 135          | 0,126          | 557<br>776 | 5,6        | 5,7        | 5,9        | 0,0        |
|              |                            | 6.306           | 138<br>34    | 0,093          | 557        | 5,6        | 5,7        | 5,9        | 0,3        |
| 1913<br>1914 | PALERMO                    | 3.761<br>91.402 | 15749        | 0,153<br>0,177 | 318        | 5,6<br>5,6 | 5,7<br>5,7 | 5,9<br>5,9 | 0,0<br>0,7 |
| 1914         | PARTINICO                  | 18.884          | 495          | 0,177          | 304        | 5,6        | 5,7        | 5,9        | 1,0        |
| 1916         | PETRALIA SOTTANA           | 10.020          | 231          | 0,110          | 717        |            | 5,7        | 5,9        | 0,0        |
| 1917         | PRIZZI                     | 2.174           | 75           | 0,110          | 588        | 5,6<br>5,6 | 5,7        | 5,9        | 0,0        |
| 1918         | TERMINI IMERESE            | 15.692          | 1194         | 0,114          | 445        | 5,6        | 5,7        | 5,9        | 0,5        |
| 1910         | BARCELLONA POZZO DI        | 13.092          | 1134         | 0,114          | 443        | 3,0        | 3,7        | 3,5        | 0,3        |
| 1919         | GOTTO                      | 20.350          | 2537         | 0,127          | 345        | 6          | 5,8        | 6          | 0,7        |
| 1920         | BROLO                      | 5.585           | 675          | 0,116          | 360        | 6          | 5,8        | 6          | 1,0        |
| 1921         | CAPO D'ORLANDO             | 12.754          | 1133         | 0,096          | 623        | 6          | 5,8        | 6          | 0,6        |
| 1922         | CARONIA                    | 2.034           | 205          | 0,131          | 703        | 6          | 5,8        | 6          | 1,0        |
| 1923         | FRANCAVILLA DI SICILIA     | 2.816           | 462          | 0,131          | 765        | 6          | 5,8        | 6          | 0,0        |
| 1924         | LIPARI                     | 4.834           | 4254         | 0,101          | 293        | 6          | 5,8        | 6          | 1,0        |
| 1925         | MESSINA                    | 23.536          | 2102         | 0,142          | 346        | 6          | 5,8        | 6          | 1,0        |
| 1925         | MILAZZO                    | 13.386          | 843          | 0,142          | 207        | 6          | 5,8        | 6          | 0,9        |
| 1927         | MISTRETTA                  | 1.772           | 18           | 0,130          | 807        | 6          | 5,8        | 6          | 0,0        |
| 1928         | PATTI                      | 7.639           | 2396         | 0,112          | 530        | 6          | 5,8        | 6          | 0,7        |
| 1929         | SANT'AGATA DI MILITELLO    | 7.224           | 350          | 0,106          | 478        | 6          | 5,8        | 6          | 0,8        |
| 1930         | SANTA TERESA DI RIVA       | 11.316          | 1567         | 0,124          | 435        | 6          | 5,8        | 6          | 0,9        |
| 1550         | SANTO STEFANO DI           | 11.510          | 1307         | 0,124          | 733        | 0          | 3,0        | 3          | 0,5        |
| 1931         | CAMASTRA                   | 4.451           | 250          | 0,102          | 391        | 6          | 5,8        | 6          | 1,0        |
| 1932         | TAORMINA                   | 15.184          | 14389        | 0,113          | 331        | 6          | 5,8        | 6          | 1,0        |
| 1933         | AGRIGENTO                  | 47.388          | 4833         | 0,205          | 229        | 5          | 5,6        | 4,7        | 0,5        |
| 1934         | BIVONA                     | 4.725           | 61           | 0,131          | 411        | 5          | 5,6        | 4,7        | 0,0        |
| 1935         | CAMMARATA                  | 4.715           | 313          | 0,161          | 541        | 5          | 5,6        | 4,7        | 0,0        |
| 1936         | CAMPOBELLO DI LICATA       | 4.518           | 22           | 0,159          | 231        | 5          | 5,6        | 4,7        | 0,0        |
| 1937         | CANICATTÌ                  | 12.582          | 228          | 0,136          | 452        | 5          | 5,6        | 4,7        | 0,0        |
| 1938         | LICATA                     | 13.942          | 1731         | 0,193          | 137        | 5          | 5,6        | 4,7        | 1,0        |
| 1939         | MENFI                      | 8.251           | 1041         | 0,135          | 272        | 5          | 5,6        | 4,7        | 0,3        |
| 1940         | NARO                       | 5.353           | 0            | 0,133          | 325        | 5          | 5,6        | 4,7        | 0,0        |
| 1941         | RIBERA                     | 7.651           | 140          | 0,165          | 239        | 5          | 5,6        | 4,7        | 0,5        |
| 1942         | SCIACCA                    | 11.831          | 3912         | 0,129          | 306        | 5          | 5,6        | 4,7        | 0,5        |
| 1943         | CALTANISSETTA              | 17.018          | 563          | 0,149          | 418        | 4,5        | 4,3        | 4,3        | 0,0        |
| 1944         | GELA                       | 21.810          | 480          | 0,159          | 139        | 4,5        | 4,3        | 4,3        | 0,5        |
| 1945         | MAZZARINO                  | 3.508           | 26           | 0,193          | 431        | 4,5        | 4,3        | 4,3        | 0,0        |
| 1946         | MUSSOMELI                  | 8.360           | 18           | 0,136          | 375        | 4,5        | 4,3        | 4,3        | 0,0        |
| 1947         | RIESI                      | 9.487           | 825          | 0,164          | 264        | 4,5        | 4,3        | 4,3        | 0,5        |
|              |                            |                 |              |                |            |            | . ,-       |            | - , -      |

| 1948 | ENNA                 | 8.310  | 638   | 0,129 | 527  | 4,5 | 4    | 4,6  | 0,0 |
|------|----------------------|--------|-------|-------|------|-----|------|------|-----|
| 1949 | LEONFORTE            | 8.552  | 113   | 0,193 | 430  | 4,5 | 4    | 4,6  | 0,0 |
| 1950 | NICOSIA              | 2.299  | 20    | 0,133 | 792  | 4,5 | 4    | 4,6  | 0,0 |
| 1951 | PIAZZA ARMERINA      | 14.711 | 557   | 0,174 | 427  | 4,5 | 4    | 4,6  | 0,0 |
| 1953 | ADRANO               | 13.169 | 84    | 0,195 | 656  | 5,9 | 6,1  | 6,3  | 0,0 |
| 1954 | BRONTE               | 4.243  | 173   | 0,139 | 1068 | 5,9 | 6,1  | 6,3  | 0,0 |
| 1955 | CALTAGIRONE          | 7.900  | 446   | 0,143 | 418  | 5,9 | 6,1  | 6,3  | 0,0 |
| 1956 | CATANIA              | 65.261 | 10057 | 0,129 | 375  | 5,9 | 6,1  | 6,3  | 0,8 |
| 1957 | GIARRE               | 17.033 | 1349  | 0,117 | 648  | 5,9 | 6,1  | 6,3  | 0,7 |
| 1958 | GRAMMICHELE          | 3.916  | 38    | 0,125 | 415  | 5,9 | 6,1  | 6,3  | 0,0 |
| 1960 | PATERNÒ              | 8.110  | 48    | 0,124 | 642  | 5,9 | 6,1  | 6,3  | 0,0 |
| 1961 | RANDAZZO             | 3.083  | 53    | 0,161 | 1105 | 5,9 | 6,1  | 6,3  | 0,0 |
| 1963 | COMISO               | 7.826  | 180   | 0,124 | 313  | 5,7 | 5,8  | 5,1  | 0,0 |
| 1964 | ISPICA               | 11.582 | 1087  | 0,115 | 59   | 5,7 | 5,8  | 5,1  | 1,0 |
| 1965 | RAGUSA               | 48.345 | 8053  | 0,092 | 371  | 5,7 | 5,8  | 5,1  | 0,7 |
| 1966 | VITTORIA             | 17.040 | 473   | 0,110 | 120  | 5,7 | 5,8  | 5,1  | 1,0 |
| 1967 | AUGUSTA              | 12.338 | 2046  | 0,111 | 333  | 5,9 | 6,5  | 6,3  | 0,5 |
| 1968 | LENTINI              | 6.086  | 0     | 0,089 | 199  | 5,9 | 6,5  | 6,3  | 0,3 |
| 1969 | NOTO                 | 15.181 | 1821  | 0,128 | 462  | 5,9 | 6,5  | 6,3  | 0,2 |
| 1970 | PACHINO              | 5.138  | 244   | 0,102 | 23   | 5,9 | 6,5  | 6,3  | 1,0 |
| 1971 | SIRACUSA             | 23.077 | 6309  | 0,145 | 197  | 5,9 | 6,5  | 6,3  | 0,4 |
| 2001 | ALGHERO              | 11.042 | 6749  | 0,135 | 206  | 7,7 | 8,2  | 8    | 0,8 |
| 2004 | CASTELSARDO          | 13.332 | 5390  | 0,106 | 233  | 7,7 | 8,2  | 8    | 0,6 |
| 2005 | OZIERI               | 2.231  | 184   | 0,112 | 388  | 7,7 | 8,2  | 8    | 0,0 |
| 2006 | SASSARI              | 20.257 | 6381  | 0,178 | 228  | 7,7 | 8,2  | 8    | 0,3 |
| 2007 | THIESI               | 4.342  | 49    | 0,116 | 406  | 7,7 | 8,2  | 8    | 0,0 |
| 2008 | BITTI                | 888    | 28    | 0,086 | 543  | 7,9 | 10,5 | 10,3 | 0,0 |
| 2009 | DESULO               | 2.374  | 473   | 0,137 | 873  | 7,9 | 10,5 | 10,3 | 0,0 |
| 2011 | MACOMER              | 3.315  | 266   | 0,127 | 467  | 7,9 | 10,5 | 10,3 | 0,0 |
| 2012 | NUORO                | 6.241  | 3751  | 0,118 | 555  | 7,9 | 10,5 | 10,3 | 0,1 |
| 2013 | OROSEI               | 3.785  | 4918  | 0,110 | 175  | 7,9 | 10,5 | 10,3 | 0,6 |
| 2014 | SINISCOLA            | 4.993  | 738   | 0,130 | 207  | 7,9 | 10,5 | 10,3 | 0,7 |
| 2015 | SORGONO              | 2.631  | 194   | 0,147 | 655  | 7,9 | 10,5 | 10,3 | 0,0 |
| 2016 | CAGLIARI             | 30.915 | 11339 | 0,138 | 184  | 8,5 | 8,8  | 9,1  | 0,5 |
| 2017 | MURAVERA             | 10.925 | 10993 | 0,125 | 304  | 7,8 | 8,3  | 8,7  | 0,5 |
| 2020 | NURRI                | 473    | 81    | 0,110 | 439  | 7,8 | 8,3  | 8,7  | 0,0 |
| 2021 | GHILARZA             | 4.499  | 362   | 0,109 | 295  | 7,8 | 8,3  | 8,7  | 0,0 |
| 2022 | ORISTANO             | 10.945 | 1151  | 0,125 | 118  | 7,8 | 8,3  | 8,7  | 0,4 |
| 2023 | TERRALBA             | 3.581  | 1203  | 0,170 | 202  | 7,8 | 8,3  | 8,7  | 0,2 |
| 2024 | BOSA                 | 6.888  | 900   | 0,159 | 296  | 7,8 | 8,3  | 8,7  | 0,9 |
| 2025 | ARZACHENA            | 17.779 | 14594 | 0,110 | 155  | 7,7 | 8,2  | 8    | 0,6 |
| 2027 | OLBIA                | 22.415 | 9262  | 0,116 | 282  | 7,7 | 8,2  | 8    | 0,4 |
| 2028 | SANTA TERESA GALLURA | 6.326  | 6410  | 0,094 | 146  | 7,7 | 8,2  | 8    | 1,0 |
| 2029 | SAN TEODORO          | 15.806 | 7589  | 0,128 | 167  | 7,7 | 8,2  | 8    | 1,0 |
| 2030 | TEMPIO PAUSANIA      | 2.358  | 631   | 0,116 | 432  | 7,7 | 8,2  | 8    | 0,0 |
| 2031 | LANUSEI              | 3.531  | 761   | 0,139 | 406  | 7,9 | 10,5 | 10,3 | 0,9 |
| 2034 | TERTENIA             | 4.862  | 1172  | 0,133 | 441  | 7,9 | 10,5 | 10,3 | 0,5 |
| 2035 | TORTOLÌ              | 5.169  | 3810  | 0,142 | 321  | 7,6 | 8,6  | 9,3  | 0,7 |
| 2036 | SANLURI              | 3.434  | 605   | 0,108 | 206  | 6,7 | 7,7  | 8,2  | 0,0 |
| 2037 | VILLACIDRO           | 6.318  | 1018  | 0,145 | 187  | 6,7 | 7,7  | 8,2  | 0,2 |
| 2038 | CARBONIA             | 11.788 | 1391  | 0,140 | 84   | 9,2 | 10,6 | 12,9 | 0,9 |
| 2039 | IGLESIAS             | 4.651  | 766   | 0,155 | 294  | 9,2 | 10,6 | 12,9 | 0,5 |

Andamento temporale del tasso di ingresso per imprenditori GIG e MID.

| Time | Rate GIG | Rate MID | тот      |
|------|----------|----------|----------|
| 2008 | 0,000025 | 0,000000 | 0,000025 |
| 2009 | 0,000035 | 0,000001 | 0,000036 |
| 2010 | 0,000523 | 0,000019 | 0,000542 |
| 2011 | 0,003182 | 0,000087 | 0,003269 |
| 2012 | 0,008342 | 0,000304 | 0,008646 |
| 2013 | 0,015818 | 0,000496 | 0,016314 |
| 2014 | 0,033703 | 0,001148 | 0,034851 |
| 2015 | 0,063231 | 0,002567 | 0,065798 |
| 2016 | 0,071047 | 0,003073 | 0,074120 |
| 2017 | 0,073763 | 0,003349 | 0,077111 |
| 2018 | 0,075462 | 0,003558 | 0,079020 |
| 2019 | 0,069860 | 0,003333 | 0,073193 |

## **10.3 SUPPORTO REGRESSIONI**

Si riporta il valore delle variabili dummy che controllano l'effetto temporale nella regressione OLS riportata in sez. 8.4

|         | (OLS)                 | (OLS)                 |
|---------|-----------------------|-----------------------|
|         | lEntryGig             | lEntryMid             |
| 1.time  | 0                     | 0                     |
|         | (.)                   | (.)                   |
| 2.time  | -0.280***             | -0.130 <sup>***</sup> |
|         | (0.0294)              | (0.0294)              |
| 3.time  | 0.0916**              | 0.0539                |
|         | (0.0294)              | (0.0294)              |
| 4.time  | -0.190***             | -0.140***             |
|         | (0.0295)              | (0.0294)              |
| 5.time  | -0.0556               | -0.0223               |
|         | (0.0295)              | (0.0295)              |
| 6.time  | -0.278***             | -0.178 <sup>***</sup> |
|         | (0.0297)              | (0.0297)              |
| 7.time  | -0.374***             | -0.191 <sup>***</sup> |
|         | (0.0298)              | (0.0297)              |
| 8.time  | -0.469 <sup>***</sup> | -0.329 <sup>***</sup> |
|         | (0.0298)              | (0.0297)              |
| 9.time  | -0.659 <sup>***</sup> | -0.426 <sup>***</sup> |
|         | (0.0298)              | (0.0297)              |
| 10.time | -0.618***             | -0.303***             |
|         | (0.0298)              | (0.0297)              |
| 11.time | -0.501***             | -0.298***             |
|         | (0.0296)              | (0.0295)              |
| 12.time | -0.312***             | -0.0348               |
| ·       | ·                     | ·                     |

| -       |                       |                       |
|---------|-----------------------|-----------------------|
|         | (0.0296)              | (0.0295)              |
| 13.time | -0.524***             | -0.320***             |
|         | (0.0295)              | (0.0294)              |
| 14.time | -0.0321               | -0.0515               |
|         | (0.0296)              | (0.0295)              |
| 15.time | -0.300 <sup>***</sup> | -0.127***             |
|         | (0.0295)              | (0.0295)              |
| 16.time | -0.207***             | -0.151***             |
|         | (0.0296)              | (0.0295)              |
| 17.time | -0.323 <sup>***</sup> | -0.239 <sup>***</sup> |
|         | (0.0297)              | (0.0297)              |
| 18.time | -0.0546               | -0.0289               |
|         | (0.0299)              | (0.0299)              |
| 19.time | -0.446 <sup>***</sup> | -0.226***             |
|         | (0.0299)              | (0.0299)              |
| 20.time | -0.484 <sup>***</sup> | -0.368***             |
|         | (0.0299)              | (0.0299)              |
| 21.time | -0.614 <sup>***</sup> | -0.408***             |
|         | (0.0300)              | (0.0299)              |
| 22.time | -0.817***             | -0.478***             |
|         | (0.0300)              | (0.0299)              |
| 23.time | -0.575 <sup>***</sup> | -0.310***             |
|         | (0.0299)              | (0.0297)              |
| 24.time | -0.393***             | -0.178***             |
|         | (0.0298)              | (0.0296)              |
| 25.time | -0.347***             | -0.300***             |
|         | (0.0296)              | (0.0295)              |
| 26.time | -0.462***             | -0.194***             |
|         | (0.0297)              | (0.0296)              |
| 27.time | -0.210***             | -0.152***             |
|         | (0.0297)              | (0.0296)              |
| 28.time | -0.281***             | -0.153***             |
|         | (0.0297)              | (0.0297)              |
| 29.time | -0.324***             | -0.209***             |
|         | (0.0299)              | (0.0298)              |
| 30.time | -0.395***             | -0.214***             |
|         | (0.0301)              | (0.0300)              |
| 31.time | -0.458 <sup>***</sup> | -0.241***             |
|         | (0.0302)              | (0.0301)              |
| 32.time | -0.423***             | -0.252***             |
|         | (0.0302)              | (0.0301)              |
| 33.time | -0.656***             | -0.441***             |
|         | (0.0301)              | (0.0300)              |
| 34.time | -0.912***             | -0.553***             |
|         | (0.0302)              | (0.0301)              |
| 35.time | -0.975***             | -0.544***             |
|         | (0.0304)              | (0.0301)              |
| 36.time | -0.186***             | -0.0934**             |
|         | (0.0306)              | (0.0300)              |