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Abstract

Conventional vehicles with internal combustion engine (ICE) provide a good performance and long
operating range by utilizing the high energy-density advantages of petroleum fuels. However, the
conventional ICE-vehicles suffer the disadvantages of poor fuel economy and environmental air
pollution. One of the immediate alternative solutions is the HEVs (Hybrid-Electric vehicle). In HEV,
the introduction of one or more power sources increases the complexity of powertrain architecture
and offers additional degrees of freedom in controlling the power-split between the power sources.
In this energy management scenario, the Reinforcement learning (RL) allows to obtain a global
optimization implemented in real-time differently from rule-based or optimization-based control
strategies. In this work, a Deep Reinforcement Learning (DRL) algorithm, i.e., Double Deep-Q-
network (DDQN), is adopted to control the power-split and the gear number. DDQN aims to
simultaneously minimize the fuel consumption (FC) and maintain the state of charge (SOC) of the
battery within the operating range. The case study is a parallel P2-HEV, passenger car. The software
used is composed by three elements: Simulator, Agent and Environment Interface. The Simulator, is
implemented in MATLAB, represents the model of the vehicle, and communicates with the Agent
and Environment Interface, implemented in Python. The Environment Interface is the interface
between the communication components of the Agent and physical simulation. The Agent has a
logical interface divided into three elements: Training algorithm, Approximator (Artificial neural
network) and Exploration strategy that is the component of the agent that allows to obtain optimal
action-value function and find the optimal policy. The main goal of this work is to compare five
different reward functions in order to demonstrate how this crucial function affects the performance
of the algorithm. The DDQN algorithm and reward functions are analysed on four real driving cycles
(CLUST), covering many possible vehicle driving scenarios. The results demonstrate how a good
calibration on the reward coefficient allows to improve the effectiveness of the reward function,
achieving a better performance and minimizing the fuel consumption (FC). The results are also
compared to the Equivalent Consumption Minimization Strategy (ECMS) used as a benchmark
energy management strategy.
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1. Introduction

1.1. Motivations
The automotive sector is in continuously changing and evolution in order to deal with air pollution
(figure 1) and global warming mainly caused by CO2. Due to that, the EU legislative set the Climate
and Energy package designed to reach three core targets by 2020 [1]:

e 20% reduction in EU greenhouse gas emissions from 1990 levels.
e 20% increase in the share of EU energy consumption produced from renewable resources.
e 20% improvement in the EU's energy efficiency.

In EU Road mobility and transport are globally asked to reduce more than 30% the TTW CO2
emissions in the next 10 years and more stringent regulation are incoming.

Since the BEV (Battery electric vehicle) solution cannot be the only solution able to satisfy these EU
road mobility requirements since has some limitations related to the limited range (“range anxiety”),
to the impact of battery cost on TCO (Total Cost of Ownership), to the thermal comfort (and related
impact on driving range), to the mechanical protection of the battery, and to the charging time
(customer acceptance).

In this scenario, the prediction is that in 2040/2050, the road transport show that efficiency and
environmental targets will be reached by a suitable mix of technological solutions (improved
efficiency, alternative and biofuels, electrification, hybrid solutions).

The HEVs and (P)HEVs represent a medium and long-term solution.

Sulfur Nitrogen Particulate Carbon Volatile organic

dioxide oxides matter; s monoxide compounds bt

!

3%

energy

a M = & E &mm

Power Industry Transport Fuel supply

Combustion of

coal, oil, gas, proce e i osnartand
bioenergy f +
and waste

Figure 1. Selected primary air pollutants and their sources
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1.2. Hybrid-electric vehicles (HEV)

1.2.1. Why Hybrid-electric vehicles (HEV)
In order to guarantee an alternative solution respect to the internal combustion engine vehicles
(ICEs) that is an on-board energy-power source based on the chemical energy-power of a fuel (still
today usually liquid hydrocarbons as gasoline or diesel); there are a lot of solutions available on the
market like battery electric vehicles (BEVs), alternative/biofuels vehicles, fuel cell electric vehicles
(FCEV) or electrification of the conventional powertrain (hybrid solution) [2].

The hybrid solution (HEVs) can be divided into three macro-categories (figure 2):

A
]
]
]
2
2 e
= EV
l.c-
2 ild-hybrids
:
Xds assist assist
Regenerative Regenerative Regenerative
braking braking braking
=
4; Engine Engine Engine Engine
2|| Start&stop Start&stop Start&stop Start&stop
Min voltage level
14V 14V -<60V <60 V - Hundreds of V Hundreds of V.

Figure 2. HEVs classification based on power and voltage

e Micro-hybrid: using the electric motor (EM) of few power [kW] as a belt driven starter
generator (BSG) replacing the conventional alternator. The battery is a 12V battery (lithium-
ion) that can be directly connected or indirectly connected to the 12V lead-acid battery
through DC-DC converter. This solution guarantees a torque support during acceleration and
ICE re-cranking (Start&Stop).

e Mild-hybrid: the battery is a 48V solution and 48V-12V DC-DC converter using e-machine
(with power between 15 kW and 30 kW) in alternator position or between the transmission
and engine. These solutions guarantee e-assist and e-boost (EM can support the ICE),
downsizing the ICE, regenerative braking more effective, engine cranking more effective,
small pure electric mode.

e Full-Hybrid: using high voltage battery (HV battery) with one or two e-machines with
different positions (with a power between 10 kW and 100 kW). This solution is preferable
because it guarantees all the features of an HEV in a more efficient way.
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The hybrid solution is a perfect compromise between conventional vehicle (ICEs) and battery electric
vehicles (BEVs). The characteristics of HEV are:

e Regenerative braking: in which part of the energy not needed to brake the vehicle is
recovered into kinetic energy using the e-machine as an electric generator in order to
recharge the battery.

e |ICE off in idle: the usage of EM allows to avoid the ICE in idle avoiding the cold start and
guaranteed the re-cranking of the ICE avoiding worst efficiency working points of the internal
combustion engine causing HC/CO/NOx emissions. The pure electric transient motion can be
used in less energy demanding request in short time like parking, queue conditions, reverse
speed.

e |ICE better efficiency: the e-motor guarantees e-assist (full performance acceleration using
EM and ICE) and e-boost (EM torque boosting). These two features allow to properly work the
ICE in more efficient working points.

e ICE Downsizing/Downspeeding: using an e-motor in the powertrain, the engine (ICE) can be
sized with a low engine displacement (downsized) and it can work at low engine speed
(downspeeding) guaranteeing better efficiency.

1.2.2. HEV powertrain architecture (HEV)
The HEV powertrain is composed by:

e Internal combustion engine (ICE): the ICE used in HEVs solutions is downsized (1.0 L) rather
than conventional vehicle in order to be complied with advanced technologies to reduce
emissions and increase the efficiency of the powertrain, besides reduces weight. Typically, it
is a gasoline engine since the coupling between diesel engine and electric motor is not
efficient given the good performance of the diesel engine at low speed and low load and the
air pollutants emitted by this type of engine, above all Nitrogen-oxide (NOx) and particulate
matter (PM).

e Fuel Tank: in order to store the gasoline fuel.

e Electric motor (EM): in HEVs solutions, it can be possible to have one or more electric motor
on board depending on the solutions applied. Thanks to the DC/AC converter (inverter), the
electric motor can act as a motor (to propel the vehicle) or as generator (to recharge the high
voltage battery in braking).

e Battery (B): lithium-ion high voltage battery with a energy stored between 1.5 to 10 kWh.

e Multi-speed transmission: allowing the mechanical energy coming from the ICE to be
transmitted to the wheels.

e Torque-coupling device

10
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There can be two possible HEV configurations: Series-HEV and parallel-HEV:

e Simple Series-HEV: the series hybrid propulsion system has only one powertrain with the
electric motor as torque actuator. The hybridisation is realised at energy source level with
one electric link (realised or directly or through a power converter) connecting one electric
source (typically but not necessarily a battery pack) to an electric generation system based
on an ICE mechanically coupled to an e-machine mainly or solely used as generator.
Therefore, the electric transmission can be seen as a series hybrid with no electric source

(figure 3).

On board energy source Powertrain
Battery pure electric powertrain

Range Extender
Series Hybrid
i Electric
Motor

Load Follower R, series

H Electric

Full Performance
ICE Generator

IRRI]

Electric transmission L1

| l | : On board installed power
3 2 1 0 (assuming no conversion losses)

Figure 3. Simple Thermal-Electric series-HEV

In this type of configuration, it is possible to define series hybridization ratio Ry, series as the ration
between the internal combustion engine power and the electric power:

. Prcg
Rpseries = —

EM

Where:

e Ryseries = 1: the vehicle is an electric transmission vehicle (series-HEV without battery).

e Ryseries = 0: the vehicle is a battery electric vehicle (BEV).

e Ryseries = (0; 1): depending on the hybridisation ratio used in the sizing of the two electric
power- energy sources, different series hybrid configurations can be defined:

o Range extender: in which the power of hybridization unit (HU=ICE, e-generator and
power converter) is equal to the average power of a reference cycle representative
of the real usage.

o Load follower: in which the HU power is equal to the continuous maximum power
condition (load follower).

o Full performance: in which the HU power is equal to to the transient maximum power
condition.

11
Pasquale Ciccullo



Reinforcement Learning for Hybrid/electric vehicle:

POLITECNICO Analysis and performance of reward functions in a real-time algorithm for P2-HEV
DI TORINO

Automotive Engineering

AY. 2019-2020

e Simple Parallel-HEV: the simple parallel hybrid (figure 4) is a traction system made of two
elementary traction systems (one based on an ICE and one on an e-motor) with as main
energy source the ICE fuel stored in the on-board tank and as possible secondary energy
source the electric energy of an electric storage system (typically a high voltage battery pack).
The hybridisation is realised at powertrain level with a mechanical direct (through clutches,
joints, gears) or an indirect link (with two powertrains one for each axle and coupled through
the road). In order to limit the volume-weight oversizing and related extra-cost, usually the
battery pack is sized for the power requests accepting to sacrifice the pure electric range
(electrically assisted thermal engine-based vehicle)

On board energy source Powertrain
» pure ICE vehicle 1
Parallel Hybrid L= Mini Hybrid
Mild Hybrid
R;, paral.
== Full Performance

EMotor —+ pureEV 0

i On-board installed power
2 1 0 (assuming no conversion losses)

Figure 4. Simple Thermal-electric parallel-HEV

In this type of configuration, it is possible to define series hybridization ratio R, parallel as the ratio
between the internal combustion engine power and the sum between internal combustion engine
power and electric power:

PICE

Ryparallel = —————
" Pew + Pice

Where:

e Ryparallel = 1: the vehicle is a pure conventional ICE-based vehicle.

e Ryuparallel = 0: the vehicle is a pure electric vehicle (EV).

e Ryparallel = (0;1): depending on the hybridisation ratio used in the sizing of the two
electric power-energy sources, different parallel hybrid configurations can be defined:

o Mini-Hybrid: in which the electric motor is used as Belt stater generator (BSG)
operating as starter to re-crank the ICE at each automatic cranking bypassing
conventional starter motor. The high voltage battery is 12V.

o Mild-Hybrid: the high voltage battery is at 48V. The electric motor is a 48 V solution
in general with one e-machine (in the alternator position or between transmission
and engine).

o Full performance (Full-hybrid): HV battery solution (in general hundreds of volts) with
one (or two) e-machines (with different possible positions).
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1.2.3. Parallel-HEV: Classifications based on e-machine position of parallel-HEV
There are two types of methods to classify the simple parallel-HEV:

- Beretta method (Traction method): it is a power/energy method used to evaluate the
different traction systems from an energy perspective. It is based on the elementary traction
system concept (sum of all the devices actively involved in the energy flux for the vehicle
motion).

- P-method

e Beretta method

In Parallel Simple Thermal-Electric Hybrids (Parallel-HEV), the elementary traction systems (On-
board energy/power source and powertrain) are connected mechanically, when the connection
is at powertrain level. The two mechanical actuators are an Internal combustion engine (ICE) and
an electric motor (EM)

The parallel-HEV are classified into (figure 5):

Frdice—{ v, w,

[ES[—PE[—EM[—{ T, [{ W
Double shaft

[FT—ICE T, |

.
FT—él

Figure 5. Classification of simple parallel-HEV (Beretta method)

Double drive
system

- Double drive system: the connection between actuators is at wheel level, this is the typical
solution for four-wheel-drive (4WD), in order to operate on one axle with EM (typically rear
axle) and on the other axle with ICE (typically front axle)

- Double shaft system: the connection is at transmission level.

- Single shaft system: the connection is at motor level; this is the most used configuration.

The first two solutions have two transmissions (causing more weight and more costs), the
advantage is that can be chosen the best operating points from EM and ICE working separately;
instead in the third solution (single shaft), there is less flexibility.
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The Single shaft system can further be classified into (figure 6):

- Coaxial solution: this solution allows to integrate the ICE side clutch under the rotor bore in
order to limit the powertrain length. This is guaranteed with the usage of electric motor in
disc shape (4 < 0.2) with high pair pole numbers to increase the torque. The two actuators
rotate at the same engine speed.

- Non-coaxial solution: in this solution, the two actuators are not on the same axle, but t is
used metallic chain applied to the engine flywheel with the clutch integrated. This solution
allows the usage of e-machine with A > 1 usually with a low pair pole number (2 or 3 for
passenger car applications).

ICE

0000 = |

COAXIAL Gearbox [

T

typically chain based coupling

T ICE

OOOOH = |
[nvere [ ot

MNON-COAXIAL (Gearbox -"-

Figure 6. Single shaft: Coaxial and non-coaxial solution
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e P-method

This method is applied to the simple parallel-HEV in which there is a clear distinction between
engine front and engine rear, and the mechanical transmission and differential unit are not
integrated in one housing, but they are decoupled (figure 7):

Final
Drive

— Final
Drive

Engine aa Trans a
|
/Y o Primary Axle Secondary Axle

Figure 7. P-method for simple parallel-HEV

This P-method is classified based on the position of e-machine and it is typically applied to the RWD
(rear-wheel-drive) vehicles with longitudinal engine layout:

- P1f: the e-machine is replacing the conventional alternator. There is a reduction-multiplying
ratio (pulleys and belt coupling) between ICE and e-machine (typically 1:3 or 1:4).

- P1r: the e-machine is replacing the flywheel with a direct 1:1 speed ratio.

- P2:itis an extension of P1r thanks to the second clutch on the ICE side (in this case the ICE
needs anyway a passive flywheel even if smaller than the one of an Internal combustion
engine vehicle (ICEV) application.

- P3:the e-machine is connected to the transmission shaft between mechanical transmission
and the rear differential unit (this is a typical solution for Commercial vehicles).

- P4: the e-machine.

- on the “other axle” (other in respect of the ICE propelled one).

The P-method can be also applied to the FWD (Front-wheel drive) vehicle with transversal engine
layout:

- P1f: e-machine as auxiliary drive engine side.

- P1r: e-machine as the engine transmission side.

- P3:not possible solution in transversal layout transmission since the differential unit is fully
integrated in the transmission housing.

- P4: e-machine on the rear axle.
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1.3. Energy management strategy for HEV
The energy management strategy (EMS) is fundamental for hybrid electric vehicles (HEVs) since it
plays a decisive role on the performance of the vehicle (fuel consumption FC and the state of charge
SOC). The goal in HEV study is to minimize the fuel consumption of the vehicle maintaining the state
of charge within a certain range [0,55-0,65] during the cycle, the initial SOC (SOCj;,,) has to be equal
to the SOC at the end of driving cycle (SOC,y,q)-

However, design a highly efficient EMS is still a challenging task due to the complex structure of HEVs
and the uncertain driving mission.

The existing EMS methods can be generally classified into the following three categories (figure 8):
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Figure 8. Classification of energy management strategy (EMS)

e Rule-based EMS: these strategies can be easily implemented, but the flexibility is critically
limited by working conditions and, consequently, are not adaptive to different driving cycles.

e Optimization-based EMS: these strategies can find the optimal power-split solution respect
to a specific driving cycle, not for all the driving mission possibilities. These methods suffer
from the “curse of dimensionality” problem, which prevents their wide adoption in real-time
applications. In this strategies, global optimum solutions can be obtained by performing
optimization over a predefined driving cycle. So, it is not possible to perform real-time energy
management. In any case, the results of these optimum solutions can be used to benchmark
other control strategies and as a basis to define rules for online implementation [4].

e Learning-based EMS: these strategies can manage complex environmental and can be easily
implemented in the software of ECU. Reinforcement learning (RL) can manage all the difficult
computational, managing complex variable without computational cost [5] (figure 9).
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The Optimisation-based control strategy can be sub-divided into two categories:

- Offline strategies: they require knowledge of the entire driving cycle. they can be seen as a
good analysis, design and assessment tool for other types of strategies; due to their
computational complexity, they are not directly implementable for real-time operation:

1. linear programming (LP): LP solves the problem of fuel consumption optimization by
approximating a convex nonlinear optimization problem with a linear programming
method. Its problem is that the approximate formulation restricts its application to
simple series HEV architectures.

2. dynamic programming (DP): uses a numerical or analytical model to compute the
optimal control strategy to achieve the best fuel consumption. It is able to deal with
nonlinearity to find the global optimal solution.

3. metaheuristic search methods: solve optimization problems using stochastic search
techniques that reproduce natural processes (e.g., genetic algorithms, particle swarm
optimization and simulated annealing).

They are effective to solve complex optimization problems with nonlinear, multimodal, and non-
convex objective functions. All these offline optimization strategies cannot be used in real-time
applications but can provide a benchmark for design and comparison.

- Online strategies: Online strategies are used when real-time analysis is required. In these
strategies, the global criterion of global optimization techniques has to be reduced to an
instantaneous optimization, introducing a cost function that only depends on the present
state of the system parameters.

1. ECMS: an equivalent fuel factor is calculated, expressed as the actual fuel
consumption that is required to recharge the batteries and to recover the energy of
the regenerative braking. The total equivalent fuel consumption is the sum of the real
fuel consumption of the internal combustion engine (ICE) and the equivalent fuel
consumption of the electric motor. An instantaneous cost function can be calculated
and minimized without the necessity for future predictions. The disadvantage of this
strategy is that it does not guarantee charge sustainability (SOC;;,, = SOC.n4).

2. model predictive control (MPC): this control strategy in first step calculates the
optimal inputs over a prediction horizon to minimize the objective function subject
to the constraints; then it implements the first element of the derived optimal inputs
to the physical plant; finally, it moves the entire prediction horizon forward and
repeats the first step.
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1.4. Work target
This work is focused on the study of DDQN algorithm and on the sensitivity of the immediate reward.

The double deep-Q-network (DDQN) has been developed to overcome the overestimation bias, a
defect present in the DRL strategies such as Deep-Q-network (DQN). The DDQN is considered as a
groundbreaking work in the field of Deep Reinforcement Learning.

The DDQL-based strategy shows more promising performance than DQL on convergence rate and
policy searching ability, since that DQL algorithm is generally vastly overoptimistic about the iterative
value of greedy policy.

In addition to this, this work is focused on the reward function comparing different solutions that
highly affects the performance of DRL. The optimization objective is the vehicle fuel economy, the
reward represents a crucial function since it is designed in order to simultaneously control the fuel
consumption (FC) of the internal combustion engine (ICE) and the state of charge of the battery
(SOC)

The sensitivity analysis on the five reward functions analysed shows how calibrating correctly this
crucial function of the algorithm allows to improve the effectiveness of the reward having a better
performance of the DRL algorithm and maximize the goal of the energy management strategy:

R, = f(FC(t),SOC(t))

The DDQN and the different reward functions analysed are tested on four different driving cycles
(urban, extra-urban, highway and mixed driving cycles) that cover most possible driving scenario of
a passenger car.

18
Pasquale Ciccullo



Reinforcement Learning for Hybrid/electric vehicle:

. POLITECNICO Analysis and performance of reward functions in a real-time algorithm for P2-HEV
> /7% | DITORINO

Automotive Engineering

AY. 2019-2020

2. Vehicle model

For this case study, the vehicle chosen is a parallel P2-HEV full performance passenger car. The layout
refers to the driveline of a hybridized front-wheels driven passenger car equipped with a
conventional downsized ICE and a 6-gears transmission (Figure 10).

2.1 Vehicle architecture
More specifically, it is a simple-thermal electric parallel hybrid (P2-HEV) with two torque actuators
(ICE and MG) in which the hybridization is obtained through mechanical link (Torque coupling device
TCD and clutches C1 and C2):

Front axle

c2
C
) (eeee)

ICE

Figure 10. Powertrain configuration of parallel P2-HEV (