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Abstract

Generating accurate few-group constants for time-dependent analyses is a challenging
task in fission reactor physics, especially for reactors with a fast spectrum. Recent
efforts have focused on optimizing the selection of group structures using techniques
like genetic algorithms[1]. Another approach to improving the quality of few-group
constants involves using alternative weighting functions instead of the commonly used
k-mode fundamental flux distribution, as several different eigenvalue formulations are
possible in reactor physics. The most popular and widely used are known to be the
multiplication and the time eigenvalues [2], since they retain a clear and physically
important significance and yield meaningful information for the system design in steady
and transient conditions. However, even if alternative eigenvalue formulation could be
very interesting and useful depending on the kind of study that is carried out, their
applications is still rather scarce in the literature. This work has been carried on with
the NEMO research group at Politecnico di Torino and compares the performance
of different eigenvalue formulations of the neutron transport equation (e.g., time or
collision eigenproblems) when used in the collapsing process. The study evaluates the
effectiveness of these alternative weighting spectra by conducting full-core transient
calculations on a Lead Fast Reactor case with the FRENETIC nodal diffusion code.
The results demonstrate that depending on the transient type and reactivity insertion,
the few-group constants obtained using these alternative weighting spectra provide
more accurate integral quantities (e.g., total power) compared to those obtained with
the k-mode collapsed data.
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Chapter 1

Introduction

1.1 Introduction
The objective of this thesis is to investigate alternative weighting functions for collaps-
ing the multi-group constants using the various eigenvalue formulation of the Neutron
Transport Equation (NTE). Specifically the work focused on collapsing the group con-
stants (e.g. diffusion coefficient, fission cross section etc...) from an intermediate num-
ber of groups (in this study, the reference case has 33 energy groups) into a few-group
structure, in order to better represent the analysis of transients involving the full-core.
The nuclear data are initially obtained from a full-core simulation using a Monte Carlo
transport code. The nuclear data are then utilized as input in an in-house code devel-
oped in the work to solve various formulations of the criticality eigenvalue problem of
the system and generate the weighting functions, which correspond to the fundamental
mode of time neutron flux spectrum, required for the data collapsing procedure. The
solver is implemented using the FreeFEM++ finite element language. The transients
of the system under investigation are simulated using the FRENETIC code developed
in the last ten years at Politecnico di Torino [1].

The subsequent sections of the thesis provide a brief overview of the theoretical
principles underlying the adopted physical-mathematical model. The code develop-
ment process within the FreeFEM++ environment will be discussed in detail, covering
aspects such as the creation of the geometry, the mesh generation, and the definition of
the mathematical system of equations, including equations and boundary conditions.
Subsequently, a simple model consisting of a single homogeneous hexagon with 2
energy groups is initially examined to assess the solver’s performance. More complex
systems are then studied, and the discrepancies between the neutron distributions
obtained using different forms of the eigenproblem will be analyzed. Following these
investigations, the transients will be described and defined, both in a standalone 2D
model focused on neutron dynamics only, and in a multiphysics 3D model where the
neutron field is coupled with thermo-fluid dynamics.

In order to introduce the formulation of the considered eigenvalue formulations, a
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Introduction

theoretical introduction about the Neutron Transport Equation is reported.

1.1.1 Main physical quantities
In the following the reader will find a short list of the main physical quantities used in
this work.
With t, it is indicated the time, r⃗ = (x, y, z) the spatial position, E the energy, v⃗ =
(vx, vy, vz) the velocity, Ek = 1

2m
∣∣v⃗2∣∣ the kinetic energy, and Ω⃗ = v⃗

|v⃗| the direction,
defined as {

Ω⃗ = Ωx⃗i+ Ωy j⃗ + Ωzk⃗
Ω2

x + Ω2
y + Ω2

z = 1. (1.1)

Note that the spherical reference system is usually preferred, so defining as θ the
latitude and as ϕ the longitude it is easy to specify

Ωx = sin(θ) cos(φ) =
√

1 − µ2 cos(φ)
Ωy − sin(θ) sin(φ) −

√
1 − µ2 sin(φ)

Ωx = cos(θ) = µ,
(1.2)

that is

Ω⃗ =
√

1 − µ2 cos(φ)⃗i+
√

1 − µ2 sin(φ)⃗j + µk⃗. (1.3)

Now is possible to define the density function, which is a distribution function

n(r⃗, E, Ω⃗, t). (1.4)

This density function describes the number of neutron present inside an infinitesimal
volume dr⃗, a energy range (E;E+dE) and a flying direction inside the solid angle dΩ.
These variables constitutethe so-called phase space. Moreover the neutron density also
depends on the time.

In other words, the neutron density describes the number of neutrons, in the phase
space, i.e. the number of particle per unit volume, velocity, energy and flying direction,
moreover per unit time.
When neutrons move through space, they interact with matter. Neutrons can have
different interactions with particles surrounding them: scattering, fission, capture are
some of them. Each kind of interaction has a certain probability of occurrence. In
general, we indicate with Σx the probability for unit of path that the event x occurs
(i.e. the collision that generates the event x ) and it is measured in cm−1.Σx is also
called macroscopic cross section. Each interaction is due to the collision of neutrons
against other nuclei of the medium, as neutron vs neutron collisions are often neglected
in nuclear engineering applications. The area of the target involved in the collision is
called microscopic cross section; we generally indicate it with the symbol σ and it is
measured in cm2 or in barn (1 barn = 10−24 cm2). Let us have now a wall of area
A
[

cm2], thickness s[ cm], density of particles N [ nuclei/cm 3] and a certain flux
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1.1 – Introduction

Figure 1.1: Graphic representation of the infinitesimal volume dr⃗, and dΩ solid angle.

of neutrons passing through it. The probability that the collision x occurs between
neutrons and the wall particles is the fraction between the total volume of particles
involved in the collision and the total volume of the wall. The first term can be
evaluated multiplying the total number of particles in the wall, NAs, by the area of
the particles involved in the collision, σx.

NAsσx

As
= Nσx = Σx, (1.5)

Where Σx is called macroscopic cross section, knowing the cross section of each
event is crucial to calculate the number of interactions of that type. For example,
knowing the fission cross-section of a certain element, such as Uranium-235, allows
us to evaluate how many fissions a certain neutron flux will generate. The number
of interactions can be written as the total distance traveled by neutrons in a certain
media multiplied by the probability for unit path (i.e. the macroscopic cross-section) of
that kind of interaction. The total distance traveled by neutrons is the multiplication
of the total number of neutrons by the distance traveled at their speed, v, by the time
dt:

n(r⃗, E, Ω⃗, t)dr⃗dEdΩvdtΣx. (1.6)

Note that the quantity n(r⃗, E, Ω⃗, t)v is called angular flux or just flux and is indi-
cated with ϕ(r⃗, E, Ω⃗, t).
In order to know the total number of ”x” interaction, for whatever energy and direction
of the collided neutrons, has to be calculated in a certain region of the phase space the
following quantity, which indicates the reactions of type per occurring:∮

Ω

∫
E
ϕ(r⃗, E, Ω⃗)Σxdr⃗dEdΩdt. (1.7)
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As said before, there are different kind of interactions, like capture, fission, scatter-
ing. Usually the capture and fission process are summed up to form the absorption
cross section: Σa(E, r⃗) = Σf (E, r⃗) + Σc(E, r⃗). In general 1

Σt
is also called ”main free

path”, since it could be also considered a probability per unit length of colliding. In
other words, if a ”l” neutron fly length is considered, the probability that neutron goes
on collision is equal to pcoll = Σxl. When ϕ(r⃗, E, Ω⃗, t)dr⃗dEdΩdt is multiplied with a
macroscopic crossection, essentially the calculation considers all the neutrons inside
the infinitesimal phase space (dr⃗ dΩdE), times the probability the neutron collision.
Notice that the traveled space by the neutron is given by vdt. Using this calculations
for every interaction corss section, it is obtained the total number of neutrons that
are removed from the observed phase space inside dt frame, to another energy range
and/or direction and/or volume.
What if this interaction, instead, hallows neutrons entering the observed phase space,
inside dt frame? In this case it has to be considered the the number of neutorns of a
different phase space (ϕ(r⃗, E′, Ω⃗′, t)dr⃗dE′dΩ′dt), their probability of collision (Σxvdt)
and the probability that after the collision the same neutrons (in case of scattering)
or new neutrons (in case of fission) are emitted inside the observed phase space. This
last term depends on what kind of interaction is considered.
As concern the scattering the scattering probability density function fs is defined:
depends on the position of the neutron, on the energy before (E′) and after (E)
and on the direction before (Ω′) and after (Ω) the collision. In particular, in
an isotropic medium, probability does not depend on the incoming direction of
the neutron (it is a rotational invariant), so it will depend only in the angle the
two directions may form (i.e. we can consider just the scalar product of them):
fs(r⃗, E′ → E, Ω⃗′ → Ω⃗) =⇒ fs(r⃗, E′ → E, Ω⃗′ · Ω⃗)

Regarding fission, it is possible to define ν(r⃗, E′), the number of neutrons emitted
in r⃗ by neutrons with energy E′ (before the collision), and the fission spectrum χ(r⃗, E)
which represents the probability density of being reissued within the energy interval
(E;E + dE). . Moreover, fission can be considered isotropic, so the probability for a
neutron of being reissued in a certain direction is equal for all direction (i.e. 1

4π ).

1.1.2 Neutron Transport Equation (NTE)
In the previous section, all the ingredients to build the NTE are given.
Firstly an infinitesimal region of the phase space is considered in the dt frame. At this
point all the source and sink themr are conisdered here below.

[neutron at time (t+ dt)] − [neutron at time (t)] =
[neutron moving in] − [neutron moving out]
− [collided neutron] + [neutron scattered in from outside]
+ [source]

(1.8)
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1.1 – Introduction

Using the described therms in the previous section, Equation (1.8) becomes:

[n(r⃗, E, Ω⃗, t+ dt) − n(r⃗, E, Ω⃗, t)]dr⃗dEdΩdt = −∇ · Ω⃗ϕ(r⃗, E, Ω⃗, t)dr⃗dEdΩdt
− Σt(r⃗, E)ϕ(r⃗, E, Ω⃗, t)dr⃗dEdΩdt

+
∮
dΩ′

∫
dE′Σs(r⃗, E′)ϕ(r⃗, E′, Ω⃗′, t)fs(r⃗, E′ → E, Ω⃗′ · Ω⃗)dr⃗dEdΩdt

+ S(r⃗, E, Ω⃗, t)dr⃗dEdΩdt

(1.9)

At this point the equation is divided with the differential phase space (dr⃗dEdΩ)
and then the difference between the neutron density at time (t + dt) and at time
(t), since the time interval is infinitesimal, also this difference is a infinitesimal thus:
n(r⃗, E, Ω⃗, t + dt) − n(r⃗, E, Ω⃗, t)] = dn(r⃗, E, Ω⃗, t). Then equation Equation (1.9) is
derived in time. Equation (1.9) becomes:

∂n(r⃗, E, Ω⃗, t)
∂t

= −∇ · Ω⃗ϕ(r⃗, E, Ω⃗, t) − Σt(r⃗, E)ϕ(r⃗, E, Ω⃗, t)

+
∮
dΩ′

∫
dE′Σs(r⃗, E′)ϕ(r⃗, E′, Ω⃗′, t)fs(r⃗, E′ → E, Ω⃗′ · Ω⃗) + S(r⃗, E, Ω⃗, t)

(1.10)

Since on the left hand side, the unknown variable is n(r⃗, E, Ω⃗, t), while on the right
hand side is ϕ(r⃗, E, Ω⃗, t); the first term is rewritten as: n(r⃗, E, Ω⃗, t) = 1

vϕ(r⃗, E, Ω⃗, t).
Hence the previous equation became:

1
v

∂ϕ(r⃗, E, Ω⃗, t)
∂t

= −∇ · Ω⃗ϕ(r⃗, E, Ω⃗, t) − Σt(r⃗, E)ϕ(r⃗, E, Ω⃗, t)

+
∮
dΩ′

∫
dE′Σs(r⃗, E′)ϕ(r⃗, E, Ω⃗, t)fs(r⃗, E′ → E, Ω⃗′ · Ω⃗) + S(r⃗, E, Ω⃗, t)

(1.11)

Note that,for sake of simplicity, fission term has been neglected. Following the same
procedure the NTE with the fission term.

1
v

∂ϕ(r⃗, E, Ω⃗, t)
∂t

= −∇ · Ω⃗ϕ(r⃗, E, Ω⃗, t) − Σt(r⃗, E)ϕ(r⃗, E, Ω⃗, t)

+
∮
dΩ′

∫
dE′Σs(r⃗, E′)ϕ(r⃗, E′, Ω⃗′, t)fs(r⃗, E′ → E, Ω⃗′ · Ω⃗)

+
∮
dΩ′

∫
dE′Σf (r⃗, E′)ϕ(r⃗, E′, Ω⃗′, t)χ(r⃗, E)

4π + S(r⃗, E, Ω⃗, t)

(1.12)

1.1.3 Criticality problem
First, the Equation (1.12) is written in operator form. Before the operators descrip-
tions, it is important to point out, that, since the aim is to study the criticality of the
system, the time dependence is not considered.
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T̂ = ∇ · Ω⃗ + Σ(r⃗, E) (1.13)

ϑ̂ =
∮
dΩ′

∫
dE′Σs(r⃗, E′)fs(r⃗, E′ → E, Ω⃗′ · Ω⃗) (1.14)

F̂ =
∮
dΩ′

∫
dE′Σf (r⃗, E′)χ(r⃗, E)

4π (1.15)

Than is possible to define the operator as:

L̂ = T̂ − ϑ̂ (1.16)

Finally the Equation (1.12) can be formulated with the operator form

T̂ ϕ = F̂ ϕ+ ϑ̂ϕ+ Ŝϕ (1.17)

Where the fission process is introduced. Now that the problem is set, it is possible
to argue that, in principle, we are not sure that Equation (1.12) has a meaningful
solution. To have a physical solution we need to verify that our system is sub-critical
otherwise the presence of the external source will make it diverge. So we consider a
system without a source and the corresponding equation is Equation (1.18). This
equation is homogeneous. thus to find a non-zero solution, we introduce an eigenvalue
k. Once k is inserted, a solution to this equation is always guaranteed and it is called
an eigenfunction.
If k = 1 the system is called critical, which means the neutron population self-sustains.
If k is more or less then one, this means that k has not a direct physical meaning but
provides us important information: k < 1 means that fission process is not able to
compensate the leakages, the neutron population is not self-sustaining itself and the
system is called sub-critical; k > 1 means that the fission process is producing more
neutrons than those that are lost, the system is called super-critical.

T̂ ϕ = 1
k
F̂ϕ+ ϑ̂ϕ (1.18)

6
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Chapter 2

The adoption of the
FreeFEM++ language for the
solution of the diffusion
equation

In this chapter, a comprehensive account will be provided regarding the development of
the finite element solver, which is intended to address and resolve the criticality prob-
lem. The description commences with an elaboration on the methodology employed
to generate the reactor core’s geometry. Moreover, a meticulous examination of a sin-
gular hexagonal system comprising homogeneous material with two energy groups will
also be undertaken. The primary aim of this analysis is to ascertain the verification of
the developed FreeFEM++ solver. As a benchmark for this assessment, the analytical
solutions of k∞ (infinite multiplication factor) and keff (effective multiplication factor)
are employed.

2.1 FreeFEM++: Core Geometry
Firstly a short description of FreeFEM++ software is given: FreeFEM is a partial
differential equation solver for non-linear multi-physics systems in 1D, 2D, 3D and 3D
border domains (surface and curve). Problems involving partial differential equations
from several branches of physics, such as fluid-structure interactions, require interpola-
tions of data on several meshes and their manipulation within one program. FreeFEM
includes a fast interpolation algorithm and a language for the manipulation of data on
multiple meshes. FreeFEM is written in C++ and its language is a C++ idiom. [1].

As a first step to build the solver, it is necessary to build the geometry of a generic
hexagonal-assembly core reactor. The geometry definition in FreeFEM++ is based on
the usage of the border command. In order to build a hexagonal-core-configuration,

9



The adoption of the FreeFEM++ language for the solution of the diffusion equation

the most important parameter are essentially three:

• Hexagon Pitch: it is the distance between the two parallel side of the same
hexagon

• Number of sextant’s rows: The sextant is the minimum symmetric por-
tion of an generic hexagonal geometry. This concept is extremely important for
hexagonal-shaped-core, since it is possible to study only one sixth of the system,
provided that the material arrangement is symetric as well, saving computational
effort and CPU time.

• Number of hexagonal element for each row: Since, in principal, the core
geometry can be quite irregular, this parameter is very important in order to
generate a program as much general as possible.

Figure 2.1: (top-left): the ”c” parameter represents the hexagon’s pitch. (top-right): an
example of generic sextant geometry. (bottom): generic core geometry

As concern the singular hexagon geometry, only the first parameter is needed, of
course. The result is reported in figure 2.2

10



2.1 – FreeFEM++: Core Geometry

Figure 2.2: One Hexagon geometry, built with FreeFEM.

After the construction of the geometry, the mesh definition is needed: FreeFEM++
is able to construct its own mesh structure, starting from the nodes of the geometry’s
borders. For example, in figure 2.2 the element is ”linked” by six nodes (corners
and arrows), and an example of the automatically generated mesh is reported in the
following figure.

Figure 2.3: One Hexagon mesh, automatically built with FreeFEM.

Unfortunately there is not a direct command to impose the construction of a struc-
tured mesh, however -for simple geometry- it is possible to adopt this scheme: generate
the geometry only with 6 nodes (one for each ”corner”), in doing so, the hexagon mesh
will be formed automatically by 6 equilateral triangles, perfectly distributed in the
element. After that, use a special command (”trunc”) to truncate the mesh. Here
below an example is reported.

11
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Figure 2.4: (top-left): simple structured mesh with only one element per border. (top-
right): structured mesh with two element per border.(bottom):structured mesh with three
element per border

This geometry, even if extremely simple, could be still useful to study simpler case
in order to understand if the elementary, basic program is consistent or not. This
aspect will be shown later.
As concern more complicated geometry, the procedure is definitely much more com-
plicated. As mentioned earlier, it is typically more common to focus on studying a
subsection of the complete core geometry, specifically one-sixth of it, which is com-
monly referred to as a ”sextant.” Constructing such a geometry presents a challenge
due to the requirement that the edges of the hexagons comprising the sextant must
not intersect or overlap.

12



2.1 – FreeFEM++: Core Geometry

(a) Example of border overlapping. (b) Example of good border treatment.

Figure 2.5: Examples of wrong geometry treatment 2.5a, and good one 2.5b.

Looking at Figure 2.5a, focusing on the different color of the border, is easy to
understand that the border are in contact to each others. This fact causes the impos-
sibility to create a mesh, because of some conflicts in FreeFEM++’s algorithm, while
in Figure 2.5b the borders are not overlapped, as can been seen. This last one is the
right strategy to allow FreeFEM++ to generate a mesh.
To create this type of geometry without falling into the problem just described, the
procedure is not trivial. The adopted method is quite complicated but reliable: it
consists on assembly of the right element-type piece by piece, knowing ex ante their
distribution and so the number of borders surrounding the considered element. Due
to this step by step assembly method, this method has been baptised as IKEA method
and it can be schematized as follows:

1. Insertion of the fundamental input data (previously listed) .

2. knowing the distribution of the hexagonal elements, their centers can be identified.

3. Since the number of hexagons for any rows is known, it is possible to select the
right border arrangement type among the ones listed in Figure 2.6

4. At this point, a vector containing all the points’ coordinates of the geometry has
been created. The command ”border” can be used to generate the structure.

13
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Figure 2.6: All the different kinds of border arrangement used to build the sextant.

Till now, it has been described the scheme used to create the geometry of a generic
hexagonal-core. The next step is to carry on a simple case of criticality problem
(Section 1.1.3). So in the next section the concept of multi group theory and the
mathematical model used to handle NTE will be briefly introduced.

2.1.1 Preliminary calculation: Diffusion two group model
Theoretical introduction: Diffusion Theory and Multi group method

The common feature to all deterministic solution methods is usually that approxi-
mations are needed to deal with the continuous-energy dependence of flux and cross
sections. The energy spectrum is divided into discrete groups, which are indexed in
descending order, starting from the highest group (g = 1) with upper energy boundary
E0. The angular group flux in group g is defined as:

ϕg(r⃗, Ω⃗) =
∫ Eg−1

Eg

ϕ(r⃗, Ω⃗, E)dE. (2.1)

Reaction cross sections are averaged over the same energy intervals in such a way
that the reaction rates are preserved. For this reason a generic cross section (Σi(r⃗, E))
is be defined as:

Σi,g =
∮ ∫ Eg

Eg−1
Σi(r⃗, E)ϕ(r⃗, Ω⃗, E)dEdΩ∮ ∫ Eg

Eg−1
ϕ(r⃗, Ω⃗, E)dEdΩ

. (2.2)

14



2.1 – FreeFEM++: Core Geometry

In other words, the flux is used as weighting function for the evaluation of Σi,g. The
same discussion is still valid for any other quantity of the NTE.
The energy-dependence is not the only problem in solving the transport equation. An-
other problem lies in the angular dependence. The integration over the angular variable
yields the neutron continuity equation (Equation (1.12)), which is independent of Ω⃗.
The problem with this equation, however, is that there is another function to be solved,
namely the current density J⃗(r⃗, E, t) that is the product of the angular flux and the
Ω⃗ direction. The connection of the two unknown functions necessarily demands the
reinstatement of the angular dependence.

J⃗(r⃗, E, Ω⃗, t) = Ω⃗ϕ(r⃗, E, Ω⃗, t) (2.3)

The exact treatment of the angular variable is simply not possible and approxima-
tion methods and additional assumptions are needed to attain a solution. There are
practically four main categories of determinitic solution metohds [2]:

1. The Method of characteristics.

2. The collision probability method.

3. The discrete ordinates method (also known as Sn).

4. The method of spherical harmonics (also known as Pn).

Instead, the following paragraph describes the use of Diffusion model, which is one
of the simplest means to approach neutron transport problems. The diffusion theory
is basically equivalent to the first-order spherical harmonics method (P1), and also of
the second order discrete ordinates method (S2); but it can also be derived directly, as
will be done in the following.

Diffusion processes are encountered in various fields of physics and they are related
to the collective movement of a large number of particles through a permeable medium.
The phenomenon is stochastic at the microscopic level, as each particle undergoes
an individual random walk process while colliding with its surroundings. A typical
example is the mixing of gases or liquids initially separated from each other. The
common feature to all diffusion processes is that the motion takes place without a
net external force, from a higher to a lower concentration. The diffusion model can
also be used for describing the flow of neutrons through the reactor core. Neutron
diffusion theory is an approximation to the general transport theory, and as was stated
in the previous chapter, it is one of the simplest means to solve neutron transport
problems. A good starting point for the derivation of diffusion theory is the neutron
continuity Equation (1.12), which is integrated over the energy variable to remove the
continuous energy-dependence. The mathematical used procedure is the same of the
already explained formulations of Equation (2.1) and Equation (2.2). So for most of
the terms of Equation (1.12) it is sufficient to substitute ϕ(r⃗, E, Ω⃗, t) with the scalar
flux (or total flux : Φg(r⃗, t). The same is done also for the total cross section that embed
all the collision phenomena leading the neutron to escape from the system. Thus,
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Σt(r⃗, E) =⇒ Σt,g(r⃗). As concern the neutron current density: J(r⃗, E, t) =⇒ Jg(r⃗, t).
The integration of the time-derivate term yields:

∫ Eg−1

Eg

1
v

∂ϕ( ⃗r, E, t)
∂t

= ∂

∂t

∫ Eg−1

Eg

1
v
ϕ( ⃗r, E, t)dE = 1

vg

∂Φg

∂t
. (2.4)

Where:

1
vg

=
∫ Eg−1

Eg

1
vϕ(r⃗, E)dE∫ Eg−1

Eg
ϕ(r⃗, E)dE

=
∫ Eg−1

Eg
n(r⃗, E)dE∫ Eg−1

Eg
ϕ(r⃗, E)dE

(2.5)

The integration of the source terms is a bit more complicated. The group-wise form
of the fission source is written as:

∫ Eg−1

Eg

[∫ ∞

0
χ(E)νΣf (r⃗, E′)ϕ(r⃗, E′, t)dE′

]
dE = χg

G∑
g′=1

[νΣf,g′(r⃗)Φg′(r⃗, t)] (2.6)

As concern the scattering term, it is a bit more complicated. For the sake of
simplicity it could be directly defined a cross section quantity for the scattering term
as: Σs(r⃗, E′ → E) and discretaising in energy it becomes:

Σs,g→g′ =
∫ Eg−1

Eg

∫ Eg−1
Eg

Σs(r⃗, E′ → E)ϕ(r⃗, E′)dEdE′∫ Eg−1
Eg

ϕ(r⃗, E′)dE′
(2.7)

The collection of the above results yields for the group-wise continuity equation:

1
vg

∂Φ(r⃗, t)
∂t

+ ∇ · J⃗(r⃗, t) + Σt,g(r⃗)Φg(r⃗, t)

=
G∑

g′=1
[Σs,g′→g(r⃗)Φg′(r⃗, t)] + χg

G∑
g′=1

[Σf,g′(r⃗)Φg′(r⃗, t)]

(2.8)

At this point the actual diffusion theorem can be used. The Fick’s Law suggests
that the neutron current density is proportional to the flux gradient, hence:

J⃗(r⃗, t) = −Dg(r⃗)∇Φg(r⃗, t), (2.9)
where Dg(r⃗) is known as the diffusion coefficient. It can be demonstrated in different

ways that the diffusion coefficient has the form of:

Dg(r⃗) = 1
3Σtr,g(r⃗) (2.10)

where Σtr,g(r⃗) is the transport-corrected total cross section, or simply the transport
cross section, given by:
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Σtr,g(r⃗) = Σt,g(r⃗) − µ0Σs,g(r⃗) (2.11)
Parameter µ0 is the cosine of the average scattering angle, while the parameter

Σs,g(r⃗) is the same of Σs,g→g(r⃗), so the internal-group scattering.

Now, combining Equation (2.8) and Equation (2.9) the continuity equation be-
comes:

1
vg

∂Φ(r⃗, t)
∂t

+ ∇ Dg(r⃗)∇Φg(r⃗, t) + Σt,g(r⃗)Φg(r⃗, t) =

G∑
g′=1

[Σs,g′→g(r⃗)Φg′(r⃗, t)] + χg

G∑
g′=1

[Σf,g′(r⃗)Φg′(r⃗, t)]
(2.12)

Once Equation (2.12) has been found, it can be adapted to any number of groups
(the total number is indicated with the letter G). In reactor physics, the two group
diffusion model is very popular to design and analyse LWRs. It consists in dividing
the energy spectrum into only two energy groups. Group 1, or the fast group consists
of neutrons with energy above 0.625eV . Neutrons below this energy belong to group
2, or the thermal group. The group boundary is chosen in such a way that the energy
peak formed by fully thermalised neutrons is completely enclosed within the thermal
group, as can be seen in Figure 2.7

Figure 2.7: Examples of the Energy spectrum of a thermal reactor (PWR) and a fast
reactor (SFR), [3]. The thermal peak of energy does not overcome the 0.625ev. As concern
the SFR’s spectrum,it has no peak in the thermal region, due to the fact that the SFR is a
fast reactor where neutrons are not thermalized by a moderator.

The steady-state equations in the criticality eigenvalue form can be written as:−D1∇2Φ1(r⃗) + Σr,1Φ1(r⃗) = 1
keff

[νΣf,1Φ(r⃗) + νΣf,2Φ2(r⃗)]
−D2∇2Φ2(r⃗) + Σa,2Φ2(r⃗) = Σs,1→2Φ(r⃗)

(2.13)
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Some considerations can be made,

• Being Equation (2.13) refers to critical condition of the reactor, so no time
dependence is present.

• χ1 and χ2 are still present in the equation system: it is assumed that, consistently
with the fission features, the two-group fission spectrum is simply χ1 = 1 and
χ2 = 0 (since the minimum energy of fission neutron is of the order of 100 eV, and
the energy grid distinguishes only neutrons with E < 0.625 eV and E > 0.625
eV).

• The fast removal. cross section Σr,1 gives the rate at which neutrons are removed
from the fast group either by absorption or down-scattering to group 2: Σr,1 =
Σa,1 + Σs,1→2

• The removal cross section in group 2 is practically reduced to Σa,2, due to the
lack of up-scattering

• Laplacian operator derives from the assumption that a homogeneous medium is
considered, thus: ∇ ·D∇Φ(r⃗) =⇒ D∇2ϕ(r⃗)

In order to predict if the reactor configuration allows to reach the criticality of the
system, as previously anticipated in Section 1.1.3, the eigenvalue must be equal as to
1. However usually, before doing the calculation using Equation (2.13), an infinite
system is considered. By considering an infinite system is possible to evaluate the so
called k∞: this parameter is very important since allows to known is the reactor could
be critical independently from its geometry.

In case of an infinite system, the solution of two group model can involve only
constant solution in a steady state case. In fact, if ϕ1 and ϕ2 were not constant,
neutrons would move from position with high flux to position with lower flux and the
system would not be steady. For this reason the Equation (2.13) becomes:Σr,1Φ1(r⃗) = 1

keff
[νΣf,1Φ(r⃗) + νΣf,2Φ2(r⃗)]

Σa,2Φ2(r⃗) = Σs,1→2Φ(r⃗)
(2.14)

In order to have a solution, the determinant of the matrix of the system should be
zero.

∣∣∣∣∣Σr,1 − 1
kνΣf,1 − 1

kνΣf,2
−Σs,1→2 Σa,2

∣∣∣∣∣ = (Σr,1 − 1
k
νΣf,1)(Σa,2) − (−1

k
νΣf,2)(−Σs,1→2) = 0 (2.15)

From the characteristic expression, the expression of k∞ is obtained:

k∞ = νΣf,1

Σr,1
+ νΣf,2Σs,1→2

Σa,2Σr,1
(2.16)
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k∞ is a number, to attach to a material for an infinite medium. k∞ characterizes
your system from the material point of view and in no way your geometry since in
an infinite system is impossible to define a geometry. If k∞ is larger then one, then
it is possible to a realize steady state critical reactor in a finite geometry using these
materials. If k∞ is lower then one, than no way to obtain critical steady state in a finite
geometry because in finite geometry ulterior losses are introduced, due to leakages.

If it is greater than 1, the reactor core could reach the criticality condition. In order
to known if the system actually reaches the criticality condition, the geometrical aspect
must be considered too. Hence the study of the finite system is carried on.
In this case, the fluxes are no more constrained to be constant by the infinite medium
hypothesis, and Equation (2.15) becomes:

(
∇2 0
0 ∇2

)(
ϕ1
ϕ2

)
+

− 1
L2

1
+ νΣf,1

kD1
−νΣf,2

kD1
Σs,1→2

D2
− 1

L2
2

(ϕ1
ϕ2

)
= 0 (2.17)

L2
1 and L2

2 are the diffusion areas and are defined as:

L2
1 = D1

Σr,1
= D1

Σa,1 + Σs,1→2
(2.18)

L2
2 = D2

Σr,2
= D2

Σa,2
(2.19)

This equation can be written in compact form as:

∇2Î ϕ⃗+ Âϕ⃗ = 0 (2.20)

What we want to do is to find the eigenvectors of Â to represent the unknown
flux vector. To obtain them we need to find first the eigenvalues of Â, i.e solving the
following linear system:

(Â− ωÎ)Ψ⃗ = 0. (2.21)

To solve this equation we need to impose the determinant of the matrix Â − ωÎ is
equal to zero

|Â− ωÎ| = 0. (2.22)

After some manipulation we get an algebraic equation in ω to be solved for the two
eigenvalues:

ω2 + ω

 1
L2

2
+ 1
L2

2
− νΣf1

kD1

+ 1
L2

2

1
L2

2
− νΣf1

kD1L2
1

− νΣf1

kD1

Σ1→2

D2
= 0, (2.23)
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whose solution is:

ω1,2
1
2

νΣf1

kD1
− 1
L2

2
− 1
L2

1

±

√√√√√
−νΣf1

kD1
+ 1
L2

2
+ 1
L2

1

− 4

 1
L2

1

1
L2

2
− νΣf1

kD1L2
1

− νΣf2

kD1

Σ1→2

D2


(2.24)

it should be noted that both ω1 and ω2 depend on the eigenvalue k. Are the
eigenvalues of matrix Â real? To ensure this condition, the quantity under the square
root has to be positive. This term is made of two quantities. One is defined as a square
quantity, so it is always positive; for the second one a constrain must be imposed. In
fact in order to have real eigenvalues, the following term has to be positive.

1
L2

1

1
L2

2
− νΣf1

kD1L2
1

− νΣf2

kD1

Σ1→2

D2
> 0 (2.25)

We isolate the value of k and get the following condition

k <
νΣf1

Σ1
+ νΣf2

Σ2

Σ1→2

Σ1
= k∞ (2.26)

The condition for having real ω’s eigenvalues is that the k of the finite system has
to be smaller then the value k∞ of the infinite medium. From a physical point of view
this is guaranteed, because in a finite geometry there will be also the contribution of
leakages to reduce the value of the multiplication factor k. Later in this section a
posteriori mathematical proof will be given. So the two values of the ω’s are real, one
positive and one negative. We define them as:

ω1 = µ2 (2.27)
ω2 = −ξ2 (2.28)

Once the eigenvalues are defined, we can obtain the eigenvectors of the matrix Â,
substituting in Equation (2.21) the previously found eigenvalues. Since the determi-
nant of the matrix is zero (we enforced that to find eigenvalues), of course we have a
degree of freedom inside the eigenvectors. So we set the first component Ψ(1) = 1 and
find the second one as:

Ψ(2) =
Σ1→2

D2
1

L2
2+ω

(2.29)

Inserting the two values of ω1 and ω2 we get the actual second components, respec-
tively:

Ψ(1)
1 =

Σ1→2
D2

1
L2

2
− µ2 (2.30)

Ψ(2)
1 =

Σ1→2
D2

1
L2

2
− ξ2 (2.31)
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We have obtained what we were seeking: now we’re able to express the fluxes in
the base of the eigenvectors of matrix Â. We need to introduce some functions of
space to fully describe the fluxes’ dependence from space since the eigenvectors are not
depending on space.(

ϕ(r⃗)
ϕ(r⃗)

)
= f1(r⃗)

(
1

Ψ(2)
1

)
+ f2(r⃗)

(
1

Ψ(2)
2

)
= f1(r⃗)Ψ(2)

1 + f2(r⃗)Ψ(2)
2 (2.32)

And we obtain the definition of the fluxes in terms of the eigenvectors of the matrix
Â

ϕ1 = f1 + f2 (2.33)
ϕ2 = Ψ(2)

1 f1 + Ψ(2)
2 f2 (2.34)

Thus, (
∇2 0
0 ∇2

)
[f1Ψ⃗1 + f2Ψ⃗2] + Â[f1Ψ⃗1 + f2Ψ⃗2] = 0 (2.35)

Developing the products

∇2f1Ψ⃗1 + ∇2f2Ψ⃗2f1ÂΨ⃗1︸ ︷︷ ︸
ω1Ψ⃗1

+ f1ÂΨ⃗2︸ ︷︷ ︸
ω2Ψ⃗2

= 0 (2.36)

Then exploiting the fact that Ψ⃗1 and Ψ⃗2 are linearly independent we obtain two
separates equations:

∇2f1 + ω1f1 = 0 (2.37)
∇2f2 + ω2f2 = 0 (2.38)

Using the definition of rhe ω’s we get:

∇2f1 + µ2f1 = 0 (2.39)
∇2f2 − ξ2f2 = 0 (2.40)

Which are two separates and independent diffusion equations. The first equation
is describing a multiplicative diffusive medium, the second one an absorbing diffusive
medium. The linear combination of the two describes the starting problem. We be-
gan from a problem in which the two unknowns were present in both equations, and
using this technique we can solve two separate equations, one for each unknown, then
reconstruct the fluxes and get the solution of our starting coupled problem.

To solve equations Equation (2.39) we assume our geometry to be the 1D plane
slab. The equations in this geometry are formulated as:

d2f1(x)
dx2 + µ2f1 = 0 (2.41)

d2f2(x)
dx2 − ξ2f2 = 0 (2.42)
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There is no doubt in the signs of the equations so the general solutions are:

f1(x) = A1cos(µx) + C1sin(µx) (2.43)
f1(x) = A2cosh(ξx) + C2sinh(ξx) (2.44)

For symmetri reasons C1 = C2 = 0, and so:

f1(x) = A1cos(µx) (2.45)
f1(x) = A2cosh(ξx) (2.46)

the boundary condition are:

ϕ1

±H

2

 = 0 (2.47)

ϕ2

±H

2

 = 0 (2.48)

But do these boundaries conditions make sense physically? No, because there is
no reason to assume that the extrapolated length of the systems are equal for both
fluxes. This would mean both fluxes vanish at the same extrapolated distance. The
answer is no. The extrapolated distance is dependent from the cross section and the
diffusion coefficient which are different for the two groups. We can think that this slab
“changes” size depending on the group you’re observing. Then we look at the values
of these extrapolated distances and we discover they are very similar. They are not
the same but they are similar for nuclear reactor theory. We can then say that this is
not a physical boundary condition but it’s not a bad approximation. Reconstructing
the fluxes using the the previous definition:

ϕ1 = A1cos(µx) + A2cosh(µx) (2.49)
ϕ2 = A1Ψ(1)

1 cos(µx) + A2Ψ(2)
2 cosh(µx) (2.50)

We can impose now one of the BC for each flux since imposing the symmetry we
already determined two of the unknowns coefficients. We get a system to solve for A1
and A2 {

A1cos(µH
2 ) + A2cosh(µH

2 ) = 0
A1Ψ(1)

1 cos(µH
2 ) + A2Ψ(2)

2 cosh(µH
2 ) = 0

(2.51)

Imposing the determinant of the matrix of coefficients of this linear system to be
zero we get

cos(µH2 )cosh(µH2 )(Ψ(2)
2 − Ψ2

1) = 0 (2.52)
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The only possibility to satisfy this equation is to set

cos(µH2 ) = 0 (2.53)

Which can be satisfied by choosing the argument of the cosine equal to any odd-
multiple number of π

2

µ
H

2 = (2n− 1)π2 (2.54)

which gives us

µ = µn(k) = (2n− 1) π
H

(2.55)

The result is that there is not only a solution of this problem, but there are infinite.
In steady state we choose the first one with n = 1 that is called fundamental solution
to describe our system with a always positive quantity. In fact higher order eigenvalues
can produce oscillating solutions. They can be useful in transient conditions. Having
obtained this result leads us to set A2 to zero, in fact to obtain the following equality
we need A2 = 0

A1cos(µ
H

2 )︸ ︷︷ ︸
=0

+ A2cosh(µH2 ) = 0 (2.56)

All the constants are defined A2 = C1 = C2 = 0 and A1 can assume any value and can
be set once the power of our system is defined. The two fluxes are

ϕ1 = A1cos(µnx) (2.57)
ϕ2 = A2Ψ(2)

1 cos(µnx) (2.58)

Setting n = 1 we get the fundamental solution which is the only meaningful solution
in steady state. We define the geometrical buckling as:

µ(k) = π

H
= B (2.59)

But using the definitiuon of µ1 we have derived previously

µ2
1 = 1

2

νΣf1

kD1
− 1
L2

2
− 1
L2

1

+1
2

√√√√√
−νΣf1

kD1
+ 1
L2

2
+ 1
L2

1

− 4

 1
L2

1

1
L2

2
− νΣf1

kD1L2
1

− νΣf2

kD1

Σ1→2

D2


(2.60)

We can equate this expression to the one of the curvature buckling which is a known
quantity to obtain the value of the effective multiplication factor keff
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keff = 1
Σr,1

.
fast neutron chain︷ ︸︸ ︷

νΣf,1

1 − L2
1B

2
g

+

thermal neutrons chain︷ ︸︸ ︷
νΣf,2Σs,1→2

Σa,2(1 − L2
1B

2
g)(1 − L2

2B
2
g) .

 (2.61)

Where:

• Bg: is defined as geometrical buckling and its definition changes depending on the
core geometry.

• 1
1+L2

1B2
g
: prbability to not leak out from the system for fast neutrons.

• 1
1+L2

2B2
g
: prbability to not leak out from the system for thermal neutrons.

2.1.2 One hexagon calculation
In Section 2.1, it has been explained the scheme used to create the geometry’s system
directly on FreeFEM and also how to create a automatically-generated mesh; now the
further step is to define the eigenvalue problem. As a first attempt, a very easy case
both form the geometrical view point and for the NTE treatment: the considered
geometry is simply one hexagon with the center in the coordinates r⃗ = (xc, yc) =
(0,0). As regards the NTE treatment, as anticipated, a two-group diffusion model (see
Equation (2.17)). Thanks to these simplifying assumption, it is possible to compare
the numerical result obtained with FreeFEM++, with the analytical result, described
with equations Equation (2.16) and Equation (2.61). The steps followed for this
study are:

1. The analytical results for both k∞ and keff have been found by defining a Matlab
script.

2. Definition of the problem and the calculation of keff using FreeFEM++ with a
coarse mesh.

3. Comparison of the analytical result with the numerical one.

As said, firstly the k∞ analytical result is calculated by using the Equation (2.16),
then the analytical keff . These analytical results are reported here below:

Result Reference
k∞ 1.0687 Equation (2.16)
keff,a 0.1531 Equation (2.61)

It is important to highlight the fact that: k∞ > keff,a and so, even if the geometry-
independent multiplicative eigenvalue is bigger than one, once the geometric aspect is
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introduced, the eigenvalue becomes almost ten times smaller. It means that, consider-
ing only the material present in the studied system- in this case only enriched uranium
dioxide- the core could be critical. The fact that once the geometrical aspect is intro-
duced the value gets such a reduction, should not be sourprising, since the considered
geometry is quite small (the system’s area is: 6l2p = 168.823 cm2 and so the neutron
leakages increases a lot.
As reguards the keff,a calculation, here below is reported the Equation (2.61):

keff = 1
Σr,1


fast neutron chain︷ ︸︸ ︷

νΣf,1

1 − L2
1B

2
g

+

thermal neutrons chain︷ ︸︸ ︷
νΣf,2Σs,1→2

Σa,2(1 − L2
1B

2
g)(1 − L2

2B
2
g)


All the terms that constitutes the above formula are known, except for the geometri-

cal buckling parameter (B2
g). In fact, this parameter is directly related to the geometry

of the system. Unfortunately, very few scientific articles has been found useful in order
to better define B2

g for a hexagonal-assembly geometry. According to [4], the hexagon’s
B2

g can be evaluated with a semi-empirical formulation.
From the experimental results shown in [5], it has been suggested that the buckling
of a regular polygon is inversely proportional to the square of the radius RC of the
corresponding circumscribed circle:

B2
g ∼

(
an

Rc

)2
, (2.62)

where an is a constant that depends on the type of regular polygon under consid-
eration. For example, for a square, an is equal to π (B2

g,square = 2( π
L)2, where L is the

square’s side); for a circle, instead, B2
g,circle = (2.405

R )2. In order to carry on this study,
three circles are considered: the inscribed one, the circumscribed one and the one with
same area of the considered polygon(Figure 2.8).

Figure 2.8: Hexagonal polygon with circumscribed and inscribed circles [5].

For an hexagon the results of this study are:
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Number of sides, N RI

Rc
= cos( π

N ) Volume Fraction, An

(πR2
c) Geometric Constants

6 (hexagon) 0.8660 0.8270 2.644 < an < 2.777

Thanks to these iformation, it is possible to calcualte the geometrical buckling for
the studied geometry. Moreover, still in the same article ([4]), different calculations
have been reported, in which the selected an value is 2.675. Using this value, for the
consdered geometry, the geometrical buckling is equal to:

B2
g =

(
an

RC

)2
= (2.675p/2)2 = 0.2709

Thus, the final analytical keff,a is equal to: keff = 0.1531. The consistency of this
calculation can be proved by checking Figure 2.9 in which is reported the table of
results of the article.

Figure 2.9: Results of the semi-empirical adopted formulation for B2
g calculation used in

[4].

It is important to remember that the hexagon’s pitch is equal to 17.1, and so,
the circumbscirbed cirlce must have an radius equal to: pitch

2 = p
2 = 8.55 cm, hence

between RC = 5 cm and RC = 10 cm. For this reason it is aspected that the evaluated
keff,a must be between the two corresponding values and so:

0.05062︸ ︷︷ ︸
considering RC = 5

≤ 0.1531︸ ︷︷ ︸
considering RC = 8.55

≤ 0.18387︸ ︷︷ ︸
considering RC = 10

Till now, only the analytical results have been addressed. These results are very
important, in particular:

• k∞ : If > 1, the system could be critical
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• keff,a : is the effective analytical value of k. It will be used to check the validity
of the elemental model.

After defining the arleady desciribed problem, on FreeFEM the calculation can be
made. In Table 2.1 and Table 2.2 results are reported. It has been reported the
keff,num results and their distance from the analytical value expressed in pcm (ϵ), and
finally the needed computational time.

number of element keff,num ϵ (pcm) CPUt
5 0.154277 117.700 1.18
10 0.15274 36.000 1.196
15 0.152874 22.600 1.761
20 0.152952 14.800 2.27
25 0.152981 11.900 3.902
30 0.153013 8.700 6.367

Table 2.1: Results for the one hexagon two-group diffusion model. weff,num, ϵ [pcm], CPU
time values are reported by considering a fixed first order polynomial Galerkin minimisation
error method and improving the mesh refinement.

Pn keff,num ϵ (pcm) CPUt
1 0.154277 117.700 2.116
2 0.153378 27.800 1.482
3 0.153198 9.800 2.713
4 0.153189 8.900 7.194

Table 2.2: Results for the one hexagon two-groups diffusion model. keff,num, ϵ [pcm], CPU
time values are reported by considering a fixed mesh parameter n = 5 (number of element
per border), and increasing the polynomial order
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(a) keff,num versus mesh refinement pa-
rameter. The analytical value is also re-
ported.

(b) ϵ behaviour by increasing the mesh
refinement error.

(c) keff,num versus polynomial order.
The analytical value is also reported.

(d) ϵ error behaviour by increasing poly-
nomial order.

As it can be deduced from the reported results, two strategies have been adopted
in order to highlight which one is more efficient in term of computational time. The
first one is improving the results by increasing the mesh refinement parameter, while
for the second is increasing the order of the polynomial used in the Galerkin error
minimisation method. It is important to notice that in FreeFEM, tha maximum
usable polynomial order is equal to four. For the first study, the polynomial order
has been fixed at one, while for the second calculation scheme the mesh refinement
parameter has been fixed to 5, that means five elements per geoemtry’s border are
used (pratically, since the hexagonal geometry is made of six borders, 30 elements are
used to discretize the geometry). Referring to the second case, by using the maximum
available polynomial order, the minimum error reached is equal to 58.098 pcm. Of
course, in order to correctly compare the two resolution approach, it is possible to use
as reference the error (ϵ), and comparing the CPU times. In Figure 2.10 has been
reported the comparison.
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Figure 2.10: Comparison between the CPU times needed to the first resolution method
(orange), and the second one (blue).

It is not trivial to say a priori which one of the method is more efficient in term of
computational times. What can be seen quite easily from Figure 2.10 is that when
low refinement is used (both for test function-polynomial order and number of mesh
element per border), it is worth to set a polynomial order to the first order and increase
the mesh refinement parameter.
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Chapter 3

Eigenvalue Formulations

3.1 Theoretical introduction
A central issue in Nuclear Reactor Engineering is understanding whether the neutron
population throughout the core is stable in time, decreases or increases with it, during
the operations of the reactor life. By definition, a critical nuclear reactor is able to
self-sustain a controlled fission chain reaction, i.e. the phenomenon in which neutrons
generated by fission reactions.
If the aforementioned equilibrium is verified, the neutron population in the reactor is
independent of time, and the unique neutron source term is represented by fissions.
In other words, the criticality condition is reached when the total amount of neutron
that is generated by fission reactions is equal to the amount of neutrons that disappear
from the system, due to absorption or leakage out of the outer surface.
Mathematically, the criticality problem is approached as an eigenvalue promlem, an
expression which reads:

Âϕ = λϕ (3.1)

where Â is a matrix ∈ Rmxn, λ is a scalar, real or complex, and ϕ is the non-trivial
solution vector such that the expression in Equation (3.1) is verified. The eigenvectors
having in common the same eigenvalue form an eigenspace.
In Section 1.1.3 is explained the oldest and most popular formulation known as the
multiplication eigenvalue k. Here is reported the already explained formulation of k:

L̂ϕ+ R̂ϕ = Ŝϕ+ 1
k
F̂ϕ

In the following sections, the alternative eigenvalue formulation are described, which
are:

• Collision eigenvalue: γ

• Time eigenvalue considering precursors elements: ω
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• Time eigenvalue not considering precursors elements: α

• Density eigenvalue: δ

• Capture eigenvalue: θ

3.1.1 γ- eigenvalue
The γ-eigenvalue is called the collion eiganvlaue, and may be seen as a ”direct eigen-
value of the integro-differential neutron transport equation”. As its denomination sug-
gests, γ is inserted to modify of both the scattering-in and the fission terms of the
neutrons balance. In operator notation the transport equation become:

(L̂+ R̂)ϕ = 1
γ

(Ŝ + F̂ )ϕ (3.2)

Likewise the k eigenvalue, the set of eigenvalue for which Equation (3.2) is verified,
is referred to as the γ-eigenvalue spectrum whereas the corresponding eigenfunctions
ϕ are denoted as γ-modes. As already explained for the k0, the γ0 is called the founda-
mental eignevalue and is the term within the eigenvalue-spectrum with the largest real
part, and also the foundamental eigenvalue solution is characterised by a uniform sign
of its associated eigenfunciton solution. The physical meaning of the γ0 is: ”the ratio
between the number of neutorns produced by the scattering-in and the fission source
term, and the number of those lost due to collisions and leakage thought the system
boundaries”. Concerning the critical condition, a system is declared critical if γ0 = 1,
as subcritical if γ0 < 1 and finally supercritical if γ0 > 1.

It is important to remark the fact that in Neutron Diffusion equation model the
Removal operator is defined as:

R̂ =


Σr,1 0 ... 0

0 Σr,2
... . . . 0
0 ... 0 Σr,G

 (3.3)

Where Σr, i is the removal cross section of the i-th energy group. While in Neutron
Transport equation model the removal operator is defined as:

R̂ =


Σt,1 0 ... 0
0 Σt,2
... . . . 0
0 ... 0 Σt,G

 (3.4)

Where Σt, g is the total cross section of the g-th energy group.
The total cross section includes all neutron-nucleus interaction phenomena and the
relation with the removal cross section is:
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Σr, g = Σt, g − Σg→g. (3.5)

When diffusion model is adopted, the Removal operator is typically defined follow-
ing Equation (3.3), since, in principle the inside-group scattering term is present in
both sides of the equation. Thus for consistency, when removal operator is defined as
Equation (3.3), the inside-group scattering is not present inside the scattering matrix.
However, when γ eigenvalue formulation is adopted, the described approach is not full
consistent, since on the right hand side both fission and scattering operator are scaled
by a factor 1

γ , including also the inside-group scattering that in principle should be
present in both sides of the equation. For this reason the already described approach is
not fully consistent, since in both sides the inside-group scattering term is not present.
However, for simplicity, in this work Equation (3.3) definition is used for all the
eigenvalue formulations.

The ω and α-eigenvalue

The second eigenvalue formulation proposed in the history of reactor physics is the
so-called time eigenvalue, which is also the most employed one after the multiplication
eigenvalue. This formulation has recently attracted more attention due to its strong
relationship with the time evolution of an off-critical system, which could be of interest
in order to obtain better few-group constant for dynamic calculations. The time eigen-
value is also the only natural spectral formulation of the transport equation, being
associated with its Laplace transform. For this reason the associated eigenfunctions
are often referred to as the natural modes.

There are two formulations of the time eigenvalue: the most general one (ω-eigenvalue)
was proposed by Henry, and it takes in to account the presence of the delayed neu-
trons, while the second formulation (α-eigenvalue) does not consider the presence of
the precursors, thus the concentrations of the elements born as fission fragments; they
can be stable or unstable and decay into other radionuclides through the emission of
various radiations, including neutrons. First the ω-eigenvalue is introduced, whose
definition is:

L̂ϕ+ R̂ + ωT̂ = Ŝϕ+ F̂pϕ+
R∑

i=0

λi

ω + λi
F̂ ϕ (3.6)

The reported formulation is the non linear version, in order to keep the linear shape
of the problem the Equation (3.6) is divided in to two equations:{

ω
v ϕ+ L̂ϕ+ (Ĉ + F̂T + ŜT )ϕ = Ŝϕ+ F̂ ϕ+∑R

r=1 λrϵr

ωϵr = F̂d,rϕ− λrϵr
(3.7)

While when the delayed neutron contirbution, are neglected, the α eigenvalue, i.e.
the prompt time eigenvalue, would be obtained,
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L̂ϕ+ (R̂ + αT̂ )ϕ = Ŝϕ+ F̂ ϕ (3.8)

The hypothesis at the basis of these formulations is that the neutron flux (and the
precursor concentrations as well, in the case of ω) is separable in time and described
by an exponential decay,

ϕ(r⃗, E, Ω⃗, t) = ϕ̃(r⃗, E, Ω⃗)eαt (3.9)

Thanks to this assumption, the time-derived term in the transport equation became:

∂

∂t
ϕ(r⃗, E, Ω⃗, t) = ∂

∂t
ϕ̃(r⃗, E, Ω⃗)eαt = αϕ̃(r⃗, E, Ω⃗)eαt = αϕ(r⃗, E, Ω⃗, t) (3.10)

This equation allows highlighting the physical meaning of the time eigenvalues,
which are the time frequencies characterising the free evolution of the system. The
most peculiar feature of this spectral form is that its spectrum is featured by a con-
tinuous and a discrete parts, located on the left and on the right, respectively, of the
so-called Corngold limit, defined as min(v(E)Σt(E). Another well-known aspect char-
acterising the time spectrum when the delayed neutrons are considered is the presence
of clusters of discrete eigenvalues, which are usually known as delayed frequencies. As
shown by Henry [1], these discrete eigenvalues tend to accumulate at the right of −λi,
i.e the opposite of the decay constant of the i-th neutorn precursors family. As concern
the foundamental eigenvalue, [2] shown only one eigenstate, associated with ω+λ1 > 0,
has a uniform sign, in fact, the other eigenvalues that constitutes the spectrum in the
clast region of the spectrum, are featured by fluxes with uniform sign but not for the
precursors concentration Ci in this case the associated model are featerued by ω+λi < 0
(notice that if among the ”R” families of precursors, the one that results with negative
C corressponds to the family whose decay constant, lambda satisfies the inequity over
mentioned.
By combining Equation (3.10) with Equation (3.8) the result is (For sake of simplic-
ity, only the α formulation is rephrased in operator formalism):

(T̂ + α

v
)ϕ = (Ŝ + F̂ )ϕ (3.11)

It may be seen a kind of increment of the total macroscopic cross-section Σt by a
factor of α

v , referred to as fictitious capture or time-absorption term.
As concern the criticality condition, these eigenvalues differ from the other formulations
in fact, if the reactor is critical, no time variation is needed to change the reactivity of
the system, so the operator ”T̂” vanishes but since, thanks to the assumption of treating
the time variable as an independent variable, T̂ = α

v , it is possible to conclude that in
case of critical condition α0 or ω0 are equal to zero. Moreover if these formulations are
negative, the system neutron population will decay over time following an exponential
behaviour and, as a consequence, the system will be subcritical; on the contrary,the
positive sign will make neutron population diverge over time (supercritical system).
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δ-eigenvalue

The so-called effective density factor expresses a modification of the nuclides densities
through which criticality may be achieved. Specifically, the δ-eigenvalue problem in
operator formalism reads:

L̂ϕ = 1
δ

(Ŝ + F̂ − R̂)ϕ (3.12)

δ-eigenvalue has influence on both the removal term and on the source terms of the
neutron balance, constituted by the scattering-in and the fission contribution. This
eiganvalue lends itself to two different physical interpretations: first, it can be seen
as a tuning parameter acting on the competition between neutron production and
removal terms, whose density is varied iby the same amount (i.e δ itself). Alternatively
the second interpretation makes it appropriate to dub δ, as the ”streaming eignvalue”
that changes the relationship between angular flux (ϕ) and current (Ω⃗ϕ). In this case
δ turns out to be a scaling parameter that affects the size of the system. In this way,
if the system geometry is rescaled, and rescaled by a Λ factor, δ is also simply rescaled
by a Λ factor but the interesting thing is that the energy spectrum of the neutron flux
does not change. This feature appears to be a considerable advantage with respect to
the other spectral formulations previously discussed, which introduce some distortions
in the energy spectrum.
The criticality condition is given by δ0 = 1, it means that no elements concentration
variations are needed (according to the first interpretation) or, again, no geometry
variation are needed (second interpretation). If the system is supercritical, in order to
reduce the neutrons population, the system domain can be rescaled in order to increase
the leakage term, L̂, by a factor δ and so δ0 > 1 and vice versa, so if reactor is an in
subcritical condition, δ0 < 1.

θ-eigenvalue

This eigenvalue is known as the capture eigenvalue, and its formulation is inspired by
the fact that k and γ act on specific reaction channels, an eigenvalue acting on neutron
capture can be introduced as well:

(L̂+ F̂0 + Ŝ0 − F̂ − Ŝ)ϕ = 1
θ
Ĉϕ. (3.13)

the physical interpretation is quite straightforward: it expresses the number of
neutrons that must be captured in order to maintain the criticality of the system.
Since in this case the eigenvalue acts on a loss term, the criticality conditions are
reversed: when the system is critical θ0 = 1, while, if subcritical, the system needs to
decrease the term of captures and since on the right hand side of the equation 1

θ Ĉ,
θ0 > 1, if instead the system is in a supercritical condition, for the same consideration,
θ0 < 1. In the case of subcritical system, if the capture term has to be strongly reduced,
θ0 can also assume negative values. In such a case, the criticlaity could be reached only
substituting, the removal with a a production term. In case of negative value, it seems
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quite unphysical, but actually, if the number of neutorn cannot be adjusted, the only
way to compensatee for this lack of particles is to introduce them by means a negative
capture. Despite this fact may sound misleading, this property may be very useful
for the design of a reactor, because, in this specific situation, the designer could be
immediately aware that it is necessary to increase the multiplication properties of the
system. The same situation with k or γ, is more difficult to interpretate, since they
would not provide a one-way suggestion, for example the lack of neturons could be due
to an excessive leakage-out term or a too low quantity of fission material to respect
with absorption one. Therefore, due to its tight connection with the capture reactions,
this eigenvalue could be useful for the design of specific components of a reactor, e.g.,
control rods and breeding blankets.

3.1.2 Preliminary Studies

The different eigenvalue formulations are characterised by their own eigenvalue spec-
trum, and for each eigenvalue that solves the problem is associated with an eigenvector
or eigenfunction that is the problem’s solution. Each eigenvalue formulations can
give a different value of the solution, which of course changes with space (r⃗), energy
(E), direction (Ω⃗) and time. Some simplifications occurs by using the diffision model
(Equation (2.17)): the direction discretisation is not needed and so solutions are
”direction-independent”; moreover since the problem that is solved with the eigenvalue
formulation is an approach to criticality, the problem is time-independent too. The
final problem is discrtized only in space and energy field. As concerns the space do-
main subdivision, in FreeFEM++, the problem is treated in space by using the finite
elements logic provided that a mesh is defined. At the end, thanks to all the previous
considerations, the neutron diffusion equation must be subdivided in energy groups
only. The final problem sets an equation for each group of energy. The final system
is a set of fully-coupled differential equations and the general formulation of the g-th
equation is:

∇ ·Dg∇ϕg + Σr,gϕg =
G∑
g′

Σg′→gϕg′ + χg

G∑
g′

Σf,g′ϕg′ (3.14)

The space dependence is not reported in previous formulation, while G is the total
number of considered energy groups, g is the reference energy group considered in
Equation (3.14) and g’ is a general group different from g (g’ /= g). The equations
system with G groups become:
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

−∇ ·D1∇ϕ1 + Σr,1ϕ1 = χ1
∑G

g′ Σf,g′ϕg′

−∇ ·D2∇ϕ2 + Σr,2ϕ2 = Σ1→2ϕ1 + χ2
∑G

g′ Σf,g′ϕg′

−∇ ·D3∇ϕ3 + Σr,3ϕ3 = Σ1→3ϕ1 + Σ2→3ϕ2 + χ3
∑G

g′ Σf,g′ϕg′

...
−∇ ·Dg∇ϕg + Σr,gϕg = ∑G

g′ Σg′→gϕg′ + χg
∑G

g′ Σf,g′ϕg′

...
−∇ ·DG∇ϕG + Σr,GϕG = ∑G

g′ Σg′→Gϕg′ + χG
∑G

g′ Σf,g′ϕg′

(3.15)

It is important to notice that the scattering term of the first three equations has
been made explicit. It has been done with the aim to highlight an important aspect:
the scattering process is a phenomenon where neutrons collide with other particles and
due to this interaction the lost energy and so no up-scattering is considered. For this
reasons, for example, in the first equation of this system (g = 1) the scattering term
is not present: Since the first energy group contains the most energetic neutrons, they
physically can not receive scattered neutrons from other groups. While in equation
g = 2, only one term is present (Σ1→2) since only the neutron of the first group after
colliding and losing a certain amount of energy could be scattered into the second
energy groups. The scattering cross section after the energy discretisation is called
energy transfer matrix and it can be written like:

Σg′→g =


Σ1→1 · · · ΣG→1

... . . . ...
Σ1→G · · · ΣG→G


Since in the diffusion equation on the left hand side the removal term (Σr) which is

defined as:
Σr = Σa + Σf + Σg′→g

the diagonal term of the previously defined matrix can be deleted ex ante, thus, the
scattering matrix became:

Σg′→g =


0 Σ2→1 · · · Σ3→1

Σ1→2 0 · · · Σ3→2
... . . . . . . ...

Σ1→G · · · Σ(G−1)→G 0


Coming back to Equation (3.15), as can been seen it is a system of linear differential

equation and so in order have a ”well posed” system, boundary conditions are needed.
Since it is assumed a vacuum boundary condition kind, the incoming current must be
equal to zero. The general expression to impose an incoming current at the boundary
of the system equal to zero is:

J⃗(r⃗s, Ω⃗in, E) = 0 (3.16)
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Where with r⃗s is indicated the position of the position vector at the boundary
region, while with Ωin it is meant the direction vector for which Ωin · n⃗ < 0.

Figure 3.1: outgoing current and incoming current simplified visualization.

Looking at Equation (3.14), the current term is not explicit in the formulation so
it has to be reconstruct. The outgoing and incoming current, respectively, J⃗+ and J⃗−

can be obtained from the neutron current and flux distribution provided the angular
flux is represented by a limited P1 expansion:

J+
g = 1

4ϕg + 1
2 J⃗g · n⃗ = 1

4ϕg + 1
2Dg∇ϕg · n⃗ (3.17)

J−
g = 1

4ϕg − 1
2 J⃗g · n⃗ = 1

4ϕg − 1
2Dg∇ϕg · n⃗ (3.18)

Since only the incoming current at the boundary must be imposed equal to zero
Equation (3.18) gives the following information:

1
4ϕg − 1

2∇ϕg · n⃗ = 0 =⇒ ∇Dgϕg · n⃗ = 1
2ϕg

and so the equaitons’ system is well posed:
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

−∇ ·D1∇ϕ1 + Σr,1ϕ1 = χ1
∑G

g′ Σf,g′ϕg′

−∇ ·D2∇ϕ2 + Σr,2ϕ2 = Σ1→2ϕ1 + χ2
∑G

g′ Σf,g′ϕg′

−∇ ·D3∇ϕ3 + Σr,3ϕ3 = Σ1→3ϕ1 + Σ2→3ϕ2 + χ3
∑G

g′ Σf,g′ϕg′

...
−∇ ·Dg∇ϕg + Σr,gϕg = ∑G

g′ Σg′→gϕg′ + χg
∑G

g′ Σf,g′ϕg′

...
−∇ ·DG∇ϕG + Σr,GϕG = ∑G

g′ Σg′→Gϕg′ + χG
∑G

g′ Σf,g′ϕg′

Dg∇ϕ1 · n⃗ = 1
2ϕ1

Dg∇ϕ2 · n⃗ = 1
2ϕ2

Dg∇ϕ3 · n⃗ = 1
2ϕ3

...
Dg∇ϕg · n⃗ = 1

2ϕg

...
Dg∇ϕG · n⃗ = 1

2ϕG

(3.19)

All the previous considerations had the aim to set the theoretical framework; in the
following a detailed description of the problem’s geometry is reported

3.2 System geometry description

As already explained above, the thesis work was developed in a research context that
has the objective of studying generation-IV fast reactors specifically, the so-called
”LFRs” (”Lead Fast Reactors”) among The European Demonstrator Project for the
Advanced Lead Fast Reactor (ALFRED) is a significant endeavor in Europe, centered
on the creation of fourth-generation Lead Fast Reactors (Gen-IV). The goals of Gen-IV
include sustainability, reducing the amount of radioactive waste in the long term, re-
ducing the risk of nuclear proliferation, enhancing safety measures, and cutting costs.
ALFRED, a 300 MW thermal pool-type prototype, intends to demonstrate the techni-
cal proficiency of LFR technology and examine the potential for LFR Small Modular
Reactors (SMRs).
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Figure 3.2: ALFRED 3D sketch

Here below a smaller version of ALFRED’s core is reported Figure 3.3

Figure 3.3: A smaller and simplified version of ALFRED core. Only four different elements
are considered: IF,OF,CR,DR; respectively: inner fuel, outer fuel, control road, reflector

Actually this is a simplified version of the actual ALFRED’s core. In fact as can be
seen in Figure 3.3 only four kind of materials are present. Here are reported a legend
of the element and a short description regarding fuel element [3].
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• IF: inner fuel (Pu/(Pu+ U) [wt.%] = 21.70)

• OF: outer fuel (Pu/(Pu+ U) [wt.%] = 27.80)

• DR: reflector

• CR: control road

To build this geometry with FreeFEM++ it has been used the same code that the
author has developed for the previous example. Few information are needed referred to
a single sextant of the core: once the sextant is construct, the mentioned code, rotate
the calculated points six times by 30°

Number of rows: 7
Number of hexagons for each row: rowi = Nrows − i

Pitch [cm] : 17.1

The result is reported here below :

Figure 3.4: FreeFEM++ sextant preliminary geometry to be rotated by 30° for six times
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Figure 3.5: FreeFEM+ ALFRED full core geometry obtained by the rotation of the sextant
geometry for six times

Some edges have different colors than others: the red ones are the outer edges of
the outermost hexagons and therefore correspond to the edges of the system on which
the boundary conditions will be imposed.
Looking closely at the geometry, it can be seen that it has a one-sixth symmetry with
respect to a single sextant, allowing us to consider only one sextant of the geometry,
showed in Figure 3.6

Figure 3.6: FreeFEM++ ALFRED single sextant with two different kind of boundary, on
the red edges the vacuum BC will be imposed while on the green one the Specular reflective
BC
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In this case two kinds of boundary conditions were be applied: on the red edges the
already discussed vacuum BC, while as concern the green edges a reflective boundary
condition is imposed. The latest one is a symmetric condition in which the incoming
and outgoing angular fluxes at the interface are equal, i.e.:

ϕ(r⃗b, E, Ω⃗) = ϕ(r⃗b, E, Ω⃗′), (3.20)

for n⃗ · Ω⃗ = −n⃗ · Ω⃗′. In order to achieve such a condition, regions I and II must
be identical. If the geometry of the problem allows its use, it results in significant
reduction in model size, and therefore in computation time.

3.3 Energy grids

To address the criticality study for the different formulations of the eigenvalue problem,
as just discussed, it is necessary to consider different energy group grids, so as to
discretize the energy field of the neutron transport or neutron diffusion equations. In
the framework of this work three different energy grids are defined.
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Table 3.1: 33 Energy groups using ECCO-33 grid.

Group Upper boundary [MeV] Lower Boundary [MeV]
1 2.000000E+01 1.000000E+01
2 1.000000E+01 6.065307E+00
3 6.065307E+00 3.678794E+00
4 3.678794E+00 2.231302E+00
5 2.231302E+00 1.353353E+00
6 1.353353E+00 8.208500E-01
7 8.208500E-01 4.978707E-01
8 4.978707E-01 3.019738E-01
9 3.019738E-01 1.831564E-01
10 1.831564E-01 1.110900E-01
11 1.110900E-01 6.737947E-02
12 6.737947E-02 4.086771E-02
13 4.086771E-02 2.478752E-02
14 2.478752E-02 1.503439E-02
15 1.503439E-02 9.118820E-03
16 9.118820E-03 5.530844E-03
17 5.530844E-03 3.354626E-03
18 3.354626E-03 2.034684E-03
19 2.034684E-03 1.234098E-03
20 1.234098E-03 7.485183E-04
21 7.485183E-04 4.539993E-04
22 4.539993E-04 3.043248E-04
23 3.043248E-04 1.486254E-04
24 1.486254E-04 9.166088E-05
25 9.166088E-05 6.790405E-05
26 6.790405E-05 4.016900E-05
27 4.016900E-05 2.260329E-05
28 2.260329E-05 1.370959E-05
29 1.370959E-05 8.315287E-06
30 8.315287E-06 4.000000E-06
31 4.000000E-06 5.400000E-07
32 5.400000E-07 1.000000E-07
33 1.000000E-07 1.000000E-11

Table 3.2: Group boundaries in MeV adopted for the few-group calculations.

9G 2.231·100 4.979·10−1 1.111·10−1 2.479·10−2 5.531·10−3 2.035·10−3 7.485·10−4 5.4·10−7

6G 2.231·100 4.979·10−1 2.479·10−2 5.531·10−3 7.485·10−4 5.4·10−7

3G 4.979·10−1 7.485·10−4

It is important to remember that the final object of the work requires to collapse the
nuclear data from a finer model, which therefore considers a sufficiently high number
of energy groups, to a coarser model with a smaller number of energy groups. For
this reason, after having done control simulations to test the code, using for example
a model with only three energy groups or six, it is possible to move on to the more
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complex model from which the neutron spectrum will be extracted and used to collapse
the nuclear data from higher to lower energy grids.

3.4 Considerations on neutron flux by using alter-
native eigenvalue

In this section some preliminary considerations have been made. Moreover it has been
solved the criticality problem by adopting alternative eigenvalue formulations.

3.4.1 Preliminary considerations: k eigenvalue 33G Diffusion
system

Here are reported the data obtained solving the eigenvalue problem by using a diffusion
33G model:

Figure 3.7: Results of the simulation for sextant geometry and 33G model. The blue curve
indicates the evolution of keff with respect to the number of element per border, while the
orange one, referes to ϵ the relative error between calculated value, expressed in pcm. NOTE
that all the simulation have been carried out fixing as test function’s order P1 (polynimial
of first order).

Here the total flux distribution has been plotted:
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Figure 3.8: Total flux (integrated over energy groups) distribution over the sextant domain
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Figure 3.9: 3D plots of the total neutron flux (integrating over all energy groups) over
a sextant of the system. The three plots are of the same simulation result with different
angulation. The red grid in z = 0 plane, is the system borders. In the central region of the
sextant, the flux sharply decreases, this region corresponds to the region where the control
rod is inserted. This result

In Figure 3.9 some 3D graphs of the neutronic flux over a sextant of the system.
The three plots come from the same simulation result with different angulations. The
red grid in z = 0 plane is the system borders. In the central region of the sextant, the
flux sharply decreases. This flux dip corresponds to the region where the control rod
is inserted. These graphs allow a better visualisation of the results. It is important to
highlight a aspect that may be misleading: as previously described, the reactor core is
featured in the second-last ”ring of of hexagons” by a neutron reflector (see Figure 3.3);
however its presence does not seems to have any particular effect on the neutron flux.
This is due to the fact that the reflection is better for thermal neutrons, and since the
neutron spectrum of this core is fast (or hard), the number of fast neutrons are much
larger than the one of thermal neutrons. Hence, the it is difficult to observe the real
effect on the energy integreted flux (ϕtot(x, y) = ∑G

g ϕg(x, y)). To better appreciate the
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reflection effect Figure 3.11 considers only a partial amount of energy fluxes within
the more thermal groups.

Figure 3.10: Thermal fraction of the neutron flux distribution over sextant’domain

Figure 3.11: 3D plots of the neutronic profile over a sextant of the system. The two plots
are of the same simulation result with different angulation. The red grid in z = 0 plane,
is the system borders. In the central region of the sextant, the flux sharply decreases, that
region corresponds to the region where the control rod is inserted. While in the near-border
region, the picks are due to the reflection effect of the more external material.

These results obtained so far refere to a 2D framework. The neutronic module
of the FRENETIC code permits model 2D and 3D geometries too. However, coupled
neutronics/thermal-hydraulics simulations can be computed only using a 3D geometry,
i.e considering also the axial dimension of the core. This is due to the fact that, in order
to know the actual power generate by the core, and consequently, the fuel and coolant
temperature, the axial advection should be properly modelled. The thermal-hydraulic
module calculates the temperature distribution with a one-dimensional model along
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the axial length of each fuel assembly (FA). The heat transfer between neighboring
FAs is considered in a weak radial coupling manner, i.e with a ”1D+2D” approach.
In Figure 3.12 the same reactor core of Figure 3.3 is portayed focusing on its axial
features. The implementation of a 3D model would require a heavier implementation
on FreeFEM++ code. However, taking advantage of the fact that the assemblies
are homogeneous axially, the equations can be modified introducing an axial buckling
factor Bz ([4]). Let us consider the diffusion neutron equation in its general form:

−∇ ·Dg∇ϕg + Σr,gϕg = χg

G∑
g=1

ϕg′νgΣf,g′ +
G∑

g=1
g /=g′

Σg→g′ϕg (3.21)

Form now on, the focus will be only on the left hand side and assuming axially
homogeneous FAs Dg(r⃗) → Dg(x, y), so:

[
∂

∂x
∂

∂y
∂
∂z

]
Dg(x, y)


∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z


Equation (3.21) becomes:

− ∂

∂x
Dg(x, y)∂ϕ

∂x
− ∂

∂y
Dg(x, y)∂ϕ

∂y
−Dg(x, y)∂

2ϕ

∂z2 + Σr,g(x, y)ϕg = · · · (3.22)

At this point it is possible to make the hypothesis of flux spatial separability:

ϕg(r⃗) = ϕg(x, y, z) = ϕg(x, y)cos(Bzz). (3.23)

Substituting Equation (3.23) in to Equation (3.22) yields

−cos(Bzz)∇x,yDg(x, y) · ∇ϕg(x, y) +B2
zDg(x, y)ϕgcos(Bzz) + Σr,gϕg(x, y)cos(Bzz)

=

χg

G∑
g=1

ϕg′(x, y)νgΣf,g′(x, y)cos(Bzz) +
G∑

g=1
g /=g′

Σg→g′(x, y)ϕg(x, y)cos(Bzz)

(3.24)

Since the term ”cos(Bzz) ” multiplies all the members in both sides of the equation,
it can be divided from both sides assuming that cos(Bzz) /= 0 that is true (except for
z = H

2 and z = −H
2 ). The value of B2

z can be founded by solving:
d2f(z)

dz2 = −B2
zf(z)

ϕ(x, y, z = H
2 ) = 0

ϕ(x, y, z = −H
2 ) = 0

(3.25)
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The fact that at z = H
2 and z = −H

2 the flux is equal to zero, implies that along
axial direction neutron flux has a cosinusoidal profile.

{
cos(Bz

H
2 ) = 0

−cos(Bz
H
2 ) = 0

=⇒ Bzn

H

2 = (2n+ 1)π
2 (3.26)

Where n = 0,1,2,3, ... so, n ∈ N. Taking n = 0 =⇒ Bz
H
2 = π

2 =⇒ B2
z = ( π

H )2.

This assumption helps to significantly reduce the complexity of the model. The
neutron profile over the sextant is always similar to the one in Figure 3.8, but k
changes, as can be seen in Figure 3.13:

(a) Core’s axial view (b) Core’s radial view

Figure 3.12: ALFRED’s core design views.Figure 3.12a is reports the axial view of the
cut symbolized by the red line appearing in figure Figure 3.12b.
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Figure 3.13: Results of the simulation for sextant geometry and 33G model with the
additional term that takes in consideration the axial leakages. The blue curve indicates the
evolution of keff with respect to the number of element per border, while the orange one,
referes to ϵ the relative error between calculated value, expressed in pcm. NOTE that all
the simulation have been carried out fixing as test function’s order P1 (polynomial of first
order).

Thanks to this study, it is possible to say that in order to have a good accuracy of
the result, concerning this system, nn = 5 is a fine enough mesh parameter.

3.4.2 3D 33-G diffusion model: k, γ, α, ω criticality evalua-
tions

As already anticipated, once the model is ready on FreeFEM++, the first step to
follow in order to run the transient simulation in FRENETIC with the collapsed data,
is to obtain the various energy the spectra from FreeFEM++. It is important to
remind the fact that during the transient reactor’s conditions that will be simulated, is
expected a temperature change inside the system, and is extremely important to take
in consideration the crossection feedback effect with respect to temperature changes.
In order to do that, FRENETIC needs a library of group constants, for some set
of temperatures. Of course, for each temperature configurations, the spectra would
change, since cross sections change. In order to have all the set of data it is necessary to
first evaluate the neutron spectrum with 33-groups, for each core spatial configuration
and at each temperature, Then the nuclear data can be collapsed with spectra. The
spectrum definition is the following:

ψg =
∫

Vi

dr⃗ϕg. g=1,...,G i=1,...,N (3.27)

Where ψg is the energy spectrum of the g-th energy group, and is obtained inte-
grating the neutron flux ϕg over the spatial domain, Vi. Note that ϕg is summed over
all the regions of the same type. In order to make a transient simulation, FRENETIC
needs at least three set of data referred to different temperature. Once loaded these
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library of data, FRENETIC handle the time evolution of the system, by interpolating
the loaded nuclear data.

Nuclear data are function not only of the fuel temperature but also of the coolant
one: thermal equilibrium during the evolution of the transient before to be reached,
so the fuel and coolant temperatures have different values and, so, it is necessary to
combine all the possible and realistic configuration of the system’s temperatures. Here
is reported a table with the chosen temperatures.

Tfuel [K] Tcoolant [K]
673 673
1073 673
1073 1073
1437 673
1473 1073
1473 1473

Table 3.3: Total meaningful temperatures combinations

Notice that the actual total number of possible configurations are 9 (three temper-
atures are considered for both fuel and coolant medium), but only six are reported in
the previous table since the discarded ones have no physical meaning, as the coolant
temperature can not be higher then the fuel one.

Moreover, in order to simulate a larger number of transient events, new reactor’s
element configuration could be considered, for example, the easier case but still with
an important validity for transient studies, is the case of the presence or not of the
control rods. Again, in order to pass the correct data in FRENETIC software, it is
necessary to calculate the spectra of the new configurations too, for each temperature.
Finally, the total amount of simulation to carry on in FreeFEM++ for the evaluation
of neutrons spectrum for each temperature and core configurations, are 12.

This whole process has to be done for each eigenvalue formulations that has been
considered.

The selected eigenvalue formulations that has been studied are four:

1. k: multiplication eigenvalue.

2. γ: collision eigenvalue.

3. α: time eigenvalue (without precursors).

4. ω: time eigenvalue (with precursors).

Therefore the excluded eigenvalues formulations are:
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1. θ: capture eigenvalue.

2. δ: density eigenvalue.

The reason why these last formulations have not been studied has to be investigated
by focusing on their methematical formulation and also remark the fact that the built
FreeFEM++ solver uses a diffusive model.

Focusing on δ formulation, as can been seen in the formulation reported in Equa-
tion (3.12), the density eigenvalue has the characteristics to not modify, in principal
at least, the nuclear data, but only the geometrical features. In fact Equation (3.12)
can be rewritten as:

δL̂ϕ = (Ŝ + F̂ − R̂)ϕ,

δ multiplies the leakage operator, which is defined in the transport formulation as
the streaming term:

Leakage = ∇ · J⃗ = ∇ · (Ω⃗ϕ)

It is therefore easy to see that no nuclear data is present inside the ”L” operator.
The streaming term just reported follows the transport definition, but as previously
said, the solver that has been created in FreeFEM+ uses a diffusive model. In diffusion,
the streaming term become,

Leakage = −∇(D∇ϕ) =
↑

homogeneous medium

−D∇2ϕ

The crucial point is that the diffusion coefficient ”D” is defined as:

D = 1
3Σt

,

where Σt is the total cross-section. Hence, using the diffusion model, the fact that
the δ eigenvalue material-independent is lost. For this reason, the obtained results
are difficult to interpreted, since the eigenvalue would scale not only the geometrical
aspect, but also the material proprieties.

Concerning θ eigenvalue, in order to better explain why the diffusion model could
be not suitable for this eigenvalue formulation, it is worth to study more deeply why
diffusion model works correctly for k, γ, α and ω formulations.

In the following table the eigenvalues formulation are recalled.
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Table 3.4: Formulations of eigenvalue formulations considered in this study

Eigenvalue Formulation
k (L̂+ R̂ − Ŝ)ϕ = 1

k F̂ ϕ

γ (L̂+ R̂)ϕ = 1
γ (Ŝ + F̂ )ϕ

α L̂ϕ+ (R̂ + αT̂ )ϕ = Ŝϕ+ F̂ ϕ

ω L̂ϕ+ R̂ + ωT̂ = Ŝϕ+ F̂pϕ+∑R
i=0

λi

ω+λi
F̂ ϕ

Looking as reference Table 3.4:

• k acts on F̂ that is defined as νΣf . The eigenvalue can be seen as a scaling factor
acting on the fission propriety of the material, but it can been seen alternatively
as a scale factor acting only on ν, that is not ”embedded” in D.

• γ acts on νΣf , but also on Σs. Strictly speaking, this would mean that Σt and
therefore D should also change, but, similarly to k, it is plausible to assume that
Σs is multiplied by a ”virtual” νs which is always equal to 1 (the scattering emits
a neutron) and that eventually is re-scaled by gamma itself. This means that, if
gamma were ¡1, ν

γ neutrons would be emitted by fission, and νs

γ neutrons would
be emitted by scattering.

• both concerning α and ω by looking at Equation (3.10) (same for ω), in these
case the eigenvalues are not properly a scaling factor.

Going back to θ, it is not reasonable to assume a virtual νc, i.e. a number of
neutrons removed from capture, so that theta does not modify Σc. This cannot be
assumed because the interactions are always neutron-nucleus, therefore it is the single
neutron that is captured. In other words: if it is assumed νc, then it should be assumed
also a ν∗

f , i.e. the number of neutrons absorbed by fission, and a ν∗
s , i.e. the number

of neutrons interacting by scattering. But these definitions don’t make much sense.
Therefore in order to also consider the θ and δ formulations, it is necessary to untie the
streaming term from the nuclear material data; for example instead using a diffusion
model to handle the direction discretization, the PN or the SN models could be used,
at the price of a bigger number of equations to be handle.

For sake of simplicity, in the following are reported the plot of the results for the
selected eigenvalue formulation only at the temperature combination Tf = 673 K and
Tc = 673 K.
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(a) 2D plot of k eigenvalue formulation results
for a 33G diffusion 3D model.

(b) 3D plot of k eigenvalue formulation results for
a 33G diffusion 3D model.

Figure 3.14: k eigenvalue formulation total neutron flux Tf = 673 K and Tf = 673 K.

(a) 2D plot of γ eigenvalue formulation results
for a 33G diffusion 3D model.

(b) 3D plot of γ eigenvalue formulation results for
a 33G diffusion 3D model.

Figure 3.15: γ eigenvalue formulation total neutron flux Tf = 673 K and Tf = 673 K.
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(a) 2D plot of α eigenvalue formulation results
for a 33G diffusion 3D model.

(b) 3D plot of α eigenvalue formulation results for
a 33G diffusion 3D model.

Figure 3.16: α eigenvalue formulation total neutron flux Tf = 673 K and Tf = 673 K.

(a) 2D plot of ω eigenvalue formulation results
for a 33G diffusion 3D model.

(b) 3D plot of ω eigenvalue formulation results for
a 33G diffusion 3D model.

Figure 3.17: ω eigenvalue formulation total neutron flux Tf = 673 K and Tf = 673 K.

As can be easily observed from the previous graphs, at least as regards the flow
profile on the sextant, the different formulations of the eigenvalues practically generate
very similar spatial results, except for the eigenvalue α. This behaviour is hardly
understable also due to the fact that, usually, α and ω have same neutron flux shape.
This result, needs a more detailed study.
By observing also the higher order eigenfunction obtained solving the problem by
adopting ω formulation, it has been observed that one of the results shown the following
behaviour:
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(a) 2D plot of ω eigenvalue formulation results
for a 33G diffusion 3D model.

(b) 3D plot of ω eigenvalue formulation results for
a 33G diffusion 3D model.

Figure 3.18: ω eigenvalue formulation total neutron flux Tf = 673 K and Tf = 673 K.

The flux shape over the sextant in Figure 3.18 is -heuristically- equal to Fig-
ure 3.16. This behaviour can be explained with a deeper study of ω and α eigenvalue
spectra.

As well explained in [5] α and ω spectra have quite peculiar features. For example,
one of the most important characteristic of this spectral form is that its spectrum is
featured by a continuous and a discrete parts, located on the left and on the right,
respectively, of the so-called Corngold limit, defined as min(v(E)Σt(E)). Another
well-known aspect characterising the time spectrum when the delayed neutrons are
considered is the presence of clusters of discrete eigenvalues, which are usually known
as delayed frequencies. As proved by [1] these discrete eigenvalues tend to accumulate
at the right of −λi,i.e on the right side of the precursor decay family, ∀i = 1, ..., R. The
phenomenon of the eigenpair clustering, tightly related to the nature of the in-hour
equation is explained by the presence of eigenstates featured by very similar fluxes
but diferent precursors spatial concentrations: the fundamental eigenstate provides a
homogeneous sign of the all the eigenfunctions of the equation system. In other words
the neutron flux solution has a certain distribution with same sing all over the domain,
but also the distribution of the precursors concentrations. In support of what has been
said, the Figure 3.19 shows the distributions on the sextant of the concentrations of
the precursors generated by the fission reactions within the considered materials and
the associated eigenfunction. As can be easily seen, the neutron distribution of the
two eigenstate are heuristically, the same, while the precursors distribution are strongly
different. In the first case (the fundamental one) the distribution is physically consistent
with the neutron flux, and the numerical value has the same sign (typical behaviour of
the fundamental solution), while in the second case, the precursor concentration has a
weird distribution and the numerical value has a non-uniform sign.
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(a) 2D plot of ω eigenvalue formulation results
for a 33G diffusion 3D model. Fundamental
solution (ω0)

(b) 2D plot of precursors concentration dis-
tribution.

(c) 2D plot of ω eigenvalue formulation results for
a 33G diffusion 3D model. This solution is a higher
order harmonic, beloging to the cluster of solution
close to one of the λf values.

(d) 2D plot of precursors concentration distri-
bution.

Figure 3.19: Comparison of the precursor concentration distribution between fundamental
harmonic solution and higher order one.

Referring to the in-hour equation(Equation (3.28)), this mean that the second so-
lution belongs to one of the highlighted point in Figure 3.20, generated by GeoGebra,
using precursor family data.

ρ(ω) = lω

lω + 1 + 1
lω + 1

F∑
f=1

ωβf

ω + λf
(3.28)
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Figure 3.20: In-hour equation plot. The green line is the shape of the Equation (3.28),
the blue dashed line corresponds to the λi values, while the red line is the value of reactivity,
that is ρ0 ≃ −0.0379 (since the corresponding to keff = 0.96344 and ρ0 = keff −1

keff
.

The clustering and the similarity between the fluxes are a critical issue for any
eigenvalue algorithm aiming at retrieving only the most significant eignevalue. How-
ever, as found in [2], among all the eigenstates, only the one characterised by ω + λ1
(where λ1 is the higher decay frequency, and so the lower decay time among the all
precursors family) has a uniform sign fluxes and precursors concentration. This feature
is extremely important to provide a shift to enable the convergence of the numerical
solver. Actually the interesting eigenstates are R + 1, where the additional one is
the prompt eigenstate, where delayed neutrons are not affecting the system. In other
words, the ω model collapses into α model. This last aspect explain why by solving
the ω eigenvalue problem, one of the higher-order solutions, one has the same ”weird
behavior” of α model: it corresponds to the prompt eigenstate of ω spectrum. In some
sense this is also a kind of verification for ϕα

0 (fundamental solution of α eigenvalue
problem). However the ”weird” ϕα

0 behavior has been already noticed by [6] and [7].
In order to better clarify this behavior, some of the concepts in [6] and [7] are reported
here.

In [6] the study has been carried out for a small PHWR (Pressurized Heavy Water
Reactor, see Figure 3.21)
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Figure 3.21: PHWR Core geometry used in [6].

The study has shown and compared the different results of the criticality problem
for k and α eigenvalue model. First a slightly super-critical system, with a fundamental
eiganvalue k0 = 1.0035 and α0 = 4.06182 (s−1) ; for both models the result is reported
in Figure 3.22:

Figure 3.22: Thermal flux for both k and α models in [6]. The double humped shape arises
because inner zone has fuel of lower reactivity than that of outer zone.

Afterwards, the same core system it has been studied(Figure 3.21), but with a
stronger sub-criticality level and with a reflector (important remark: the system studied
in this work is a fast spectrum, reflected strongly sub-critical system). Even [7] has
analyzed such a system in the MUSE experiments, in which very short neutron pulses
are delivered in the middle of the core of a small fast experimental reactor. The
idea was to measure prompt α0 and to estimate the sub-criticality using the formula
α0 = (keff −1)

l . However, this formula was not found to be valid. Another issue in highly
sub-critical system is that the α0 is largely negative. Hence, the effective removal cross-
section (Σeff

r =
(
Σr + α

v

)
) may become negative. The strongly sub-critical system

studied in [6], has an k0 = 0.7 that corresponds to a α0 = −211.3764 (s−1). The
k − mode result is very similar to Figure 3.22, while with α − mode turn put to be
Figure 3.23
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Figure 3.23: Thermal flux for both α models for a strongly sub-critical reactor with reflector
in [6].

In order to verify the result in [6], the criticality problem for k has been carried out
but modifying the removal term by adding to Σr, α

v . The correctness was checked since
the obtained result is the same in Figure 3.23. inspired by this procedure, the same
calculation has been made for the system considered in this thesis work, reported in
Figure 3.24.

(a) 2D plot of k eigenvalue formulation results
for a 33G diffusion 3D model.

(b) 3D plot of k eigenvalue formulation results for
a 33G diffusion 3D model.

Figure 3.24: k eigenvalue formulation total neutron flux Tf = 673 and Tc = 673 with the
effective removal corss section (Σr + α

v ).

It is appreciable ictu oculi that the result is the same obtained for the α eigenvalue
problem.
Let us try to understand in which circumstances such an unpleasant behaviour arises.
It is well explained in [7], in which a fast sub-critical system is analysed with a Dirac’s
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delta response. It is worth to resume some of the observation of [7]. In this study
the aim is to study the response of a sub-critical reflected reactor to a pulse through
an external source of neutron (the framework of this paper is the dynamic of an ADS
system). In particular the aim is to understand the evolution of the system and how
it responds to an external source. There are two ways of getting rid of the influence of
the source. The first one is to turn it off and deduce keff from the fluctuations at zero
power. In this case, keff is not known in the real conditions of operation. The second
one, which is chosen in [7], is to study the system behaviour following a source pulse.
The usual method, which consists in measuring the population decay rate at long time
scales (typical of delayed neutrons), is only precise for reactivities smaller than βeff ,
which is not compatible with ADS reactivities. Moreover, it requires the knowledge of
βeff and a very low intrinsic source. That is why it has been chosen to deal rather
with the prompt decrease following the pulse, which is today accessible to experiment.
As analytic reference solution they adopted the one group point kinetic model:

dN

dt
=
(
νpΣf − (Σf + Σc +DB2)

)
Nv (3.29)

Where νp is the average number of prompt neutrons produced by fission, v is the
average neutron velocity, and DB2 is the leakage term. The cross section have been
already defined for the previous models. Now, l is defined as the average time between
a fission event and the previous one in the chain reaction. In the case of one group
point kinetics, it is precisely the lifetime of a neutron (because the fission probability
is independent of the age of neutron), given by:

l = 1
(Σf + Σc +DB2)v (3.30)

while the keff is:

keff = νpΣf

(Σf + Σc +DB2) .

Combining keff definition with Equation (3.30) it can be seen that:

keff = νpΣf

(Σf + Σc +DB2) = νpΣfvl (3.31)

At this point is possible to define the decrease rate as:

Ω(t) = − 1
N

dN

dt
. (3.32)

Using Equation (3.32) with Equation (3.29) and Equation (3.30), the neutron
decrease rate, Ω(t), can be rewritten as:

Ω(t) = − 1
N

dN

dt
= 1 − keff

l
↑

time independent

≡ Ω (3.33)
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So it has been deduced that the decrease rate of neutrons inside the system according
with this mathematical model should be constant, and so N(t) decreases linearly.
Then this conclusion has been compared with a reference decrease, simulated with a
Monte Carlo code. The reference reactor used in [7] is spherical and fast system, with
keff = 0.972 composed of a 90 cm diameter core made of 27% Pu MOX, surrounded
by 20 cm thick sodium/stainless steel reflector. The simulation result of a Dirac source
response in given in Figure 3.25.

Figure 3.25: Dirac pulse system’s response. Monte Carlo code result found in article [7].

The graph represents Ω, or the variation of the rate of fission reaction, which is
related to to N (neutron density). Neutrons are introduced into the system through
the Dirac’s source. As can be easily observed at t = 0 Ω is high, then stabilized at a
value asymptotic, which is different from the expected one found in Equation (3.33),
called Ω∞. In other words, the theoretical result fails; in fact Ω∞ can be seen as
1−keff

l∗ , where l∗ is a fictitious neutron lifetime and since Ω∞ is lower than 1−keff

l ,
l∗ > l. Hence the lifetime of the neutrons is bigger then the expected one. Further-
more we see that the fission rate decrease very sharply and then stabilizes at a constant
value, this means that the fission reactions initially decrease very suddenly but succes-
sively more and more slowly, but at the same time we know that l ≈ const: neutrons
generated in the first seconds remain inside the system for longer time and accumulate.

The only way to account for such long times is to consider the role of the reflector.
While the one group point kinetics implies an exponential distribution for intergenera-
tion times, in an actual reactor neutrons may spend a lot of time in the reflector, where
absorption cross sections are low, before coming back into the fuel. These few long-life
neutrons appear to have a major impact on the kinetics of the system, in the same way
as the delayed neutrons, but with an intermediate time scale. In [7] the demonstra-
tion of the role of the reflector was carried out, by considering a core with only fuel
(MOX) but with same reactivity (they have considered a more enriched MOX in order
to compensate the leak to reactivity). The obtained result demonstrate that if reflector
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is not present, the system behaves like expected. In [7] it has been also demonstrate
that even the core size plays a role on flux behavior, in particular a smaller system
are more difficult to study. Is easy to understand that the presence of the reflector
introduces longer time scales for one generation. How does this induce long time scales
for the whole transient ? As a matter of fact, long-life neutrons constitute a very small
fraction of the total number of neutrons. If all generations are present at the same
time, few old neutrons of first generations will be mixed with many young neutrons of
later generations and will not have a noticeable impact on the whole transient. On the
contrary, if only few first generations of neutrons are present after a while, these long-
life neutrons will represent a significant proportion of the population. In Figure 3.26
is shown the effect of sub-criticality in the system considered in [7], where a Monte
Carlo code was adopted.

Figure 3.26: Distribution of the generations of the fissions occurring at t = 300 µs, at
keff = 1.0 and keff = 0.9 in [7]. In this graph the system has been considered at time
t = 300 µs, that corresponds to 100l. In case of critical system (keff = 1.0) the larger
amount of neutrons after 100l are the ones of the 100-th generation themselves; while in
case of sub-criticality, the larger quote of neturons population at 100l is the ones of previous
generations.

The greater the subcriticality, the older the neutrons present at a given time. In
the same way, a growing human population will be mainly young, while a small birth
rate will lead to an older population.

These considerations well explain the reason why the obtained ϕ0
α, reported in Fig-

ure 3.16.
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Chapter 4

Results

In this section the results of different LFR core configurations are discussed.
To begin, it is useful to review the approach taken to address studies aimed at simu-
lating transient phenomena using FRENETIC code.

Figure 4.1: Scheme of work to simulate LFR transient analysis by using alternative weight-
ing function (Spectrum) for group collapsing of nuclear data.

Consequently, based on the outlined scheme, the initial phase involves simulating
the entire system using Serpent to generate the intermediate nuclear data. These cross
section data are subsequently utilized as input for the FreeFEM++ solver to obtain the
neutron flux distribution. From FreeFEM++ code we obtain the weighting functions
which are necessary for the collapse procedure. The established method for generating
the average cross sections for group g and reaction y involves computing weighted
averages using the following formula:

Σy,g(r⃗, t) =
∫ Eg+1

Eg
dE Σy(r⃗, E, t)ψ(r⃗, E, t)∫ Eg+1
Eg

dE ψ(r⃗, E, t)
. (4.1)

In order to preserve reaction rates, it is common practice to utilize the total flux
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Φ(r⃗, E, t) from a reference system configuration when dealing with the system under
investigation. Even when considering time-independent cross sections, the weighting
function may still vary over time, making the computation of group constants for tran-
sient calculations computationally intensive. To address this, the weighting is typically
achieved by employing the flux obtained from a highly detailed transport calculation,
which involves a static, k-based criticality calculation under various operating condi-
tions. This allows for interpolation on a set of pre-calculated data to closely approxi-
mate the time-dependent conditions.
Equation (4.1) encompasses various complexities, including the selection of group
boundaries [E1, ..., EG], the dependence on physical and operational parameters (e.g.,
burn-up, control rod position, thermodynamic conditions), angular effects (e.g., emis-
sion anisotropy), the determination of the weighting function ψ(r⃗, E, t) , and the choice
of the weighting function model. In recent times, considerable attention has been given
to optimizing the few-group structure. However, limited attention has been given to
exploring alternative options for the weighting spectrum ψ(r⃗, E). The use of the static
k eigenfunction may not yield satisfactory outcomes when the system is significantly
off-critical due to two main reasons:

1. The static calculation neglects the ”time” capture 1
v

∂
∂t∗ and the effects of delayed

neutrons.

2. The solution for the k eigenvalue may not accurately represent the energy spec-
trum of the physically time-dependent system.

As suggested in [1], one viable option could be utilizing the time eigenfunction
φα(r⃗, E) to incorporate the system’s free evolution information into the weighting
procedure. This approach now carries a computational load comparable to static k
calculations.

Due to the encouraging results of that work and to some gaps in the literature
concerning this kind of analysis, this work focuses on assessing the advantages coming
from the adoption of the different eigenfunctions associated with the transport model
as weighting functions for the few-group collapsing procedure. To this aim, this paper
reports some time-dependent calculations performed at first with an intermediate, ref-
erence group structure, i.e. the 33-group energy grid commonly adopted in the ECCO
code [2], and then with nested 9-, 6- and 3-group structures (reported in Table 4.1),
collapsing the data using the eigenfunctions of some of the different spectral formula-
tions available in the literature, namely the time eigenvalue α, the collision eigenvalue
γ and the multiplication eigenvalue k [3].

Table 4.1: Group boundaries in MeV adopted for the few-group calculations.

9G 2.231·100 4.979·10−1 1.111·10−1 2.479·10−2 5.531·10−3 2.035·10−3 7.485·10−4 5.4·10−7

6G 2.231·100 4.979·10−1 2.479·10−2 5.531·10−3 7.485·10−4 5.4·10−7

3G 4.979·10−1 7.485·10−4
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First of all some preliminary studies has been carried on with the aim of addressing
the accuracy and the conformity of the developed solver on FreeFEM++. In fact even if,
the described study of the 1 hexagon two groups-diffusion model case in Section 2.1.2
can be seen as a verification test, it has been observed that when a more complex
reactor system is considered, the error between kref and kF F increase. The kref is
the multiplicative eigenvalue used as reference given by FRENETIC, while kF F is the
result provided by FreeFEM++ code.

In Figures 4.2 and 4.3 and ?? are reported three different system used to highlight
the factors that create the discrepancies between the two results generated by the
respective software.

(a) Radial core illustration. Ele-
ment legend: IO:inner fuel.

(b) Table of 2D and 3D results for a 3 groups dif-
fusion model.

Figure 4.2: First preliminary studied. Featuring factor: homogeneity.

(a) Radial core illustration. Ele-
ment legend: IO:inner fuel, CI: in-
serted control rod.

(b) Table of 2D and 3D results for a 3 groups dif-
fusion model.

Figure 4.3: Second preliminary studied. Featuring factor: heterogeneity.
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(a) Radial core illustration. El-
ement legend: IO:inner fuel,
OO:outer fuel, CI: inserted control
rod, CO: extracted control rod,
DO: reflector, BO: barrel.

(b) Table of 2D and 3D results for a 33 groups dif-
fusion model.

Figure 4.4: Third preliminary studied. Featuring factor: stronger heterogeneity and finer
energy grids.

Figure 4.2a, Figure 4.3a and Figure 4.4a represent only the radial core config-
urations, since the systems are axially assembly-homogeneous: considering the single
hexagon, the material does not change in the axial direction.
In Figure 4.2b, Figure 4.3b and Figure 4.4b, the kF RENET IC that have been used
as reference value for testing the accuracy of FreeFEM++ solver’s results are reported.
The tabulated results consider both a 2D case - radial configuration only - and a 3D
case. Looking at the three tables, it turns out that ϵ = ∆k = |kF RENET IC −kfreeF EM |
is always lower when the axial dimension is neglected. In addition to that, also the
heterogeneity of the system has a non-negligible weight on the deviation of kF F s with
respect to FRENETIC results; in fact, focusing on the 2D case in Figure 4.2b and
Figure 4.3b, ∆k increase. As concerns the 2D case in Figure 4.4b, ∆k is lower with
respect to the 2D case in Figure 4.3b, even if the third system is even more hetero-
geneous. This is due to the fact that in the third case a 33 − G grid has been used.
From this evidence, it is possible to infer that refining the energy discretization, ∆k
decreases. The reason why, the discrepancy between the two solvers increases when
3D case is used is due to the fact that, in FreeFEM++ solver, the axial dimension
is treated by introducing an axial buckling term by which it is assumed a sinusoidal
profile of the neutron flux in axial direction, while in FRENETIC the actual 3D core is
simulated; so it implies that the actual neutron profile in êz direction is not perfectly
described by the buckling term and so the sinusoidal profile. Moreover, the error gets
worst when a heterogeneous system is considered, since, starting from a non-perfectly
represented neutron flux for each hexagon, even the interaction between neutrons of
the surrounding assembly is be affected. Concerning the heterogeneity, an additional
case is considered in Figure 4.5 with the aim of better explain this phenomena.
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4.1 – 2D Transient analysis

(a) Radial core illustration. Ele-
ment legend: IO:inner fuel, CO: ex-
tracted control rod

(b) Table of CRin and CRout results for a 2D
mono-kinetic diffusion model.

Figure 4.5: Additional preliminary studied. Featuring factor: soft heterogeneity and
switching CI and CO.

In this preliminary study it is possible to appreciate the fact that when the control
rods are extracted (CO elements), the difference kF F and kF RENET IC is relatively
small with respect to the case of inserted control rods (CI elements, not represented in
Figure 4.5a). This suggests the presence of a spatial self-shielding phenomena. Which
it involves both control rods (CRs) and fuel pellets. Practically, as one moves towards
the center of the CR, the neutron flux tends to diminish. This reduction is attributed
to the high absorption cross-sections prevalent in these regions, leading to a strong flux
depression. Thus, the term ”self-shielding” is employed to describe this phenomenon.
In the nodal method (used by FRENETIC), the spatial resolution does not extend
beyond the hexagonal level, resulting in a representation of the average neutron at
the hexagon level flow. Conversely, in fine mesh methods, such as the finite element
method (FF), the self-shielding effect is distinctly observed due to the resolution of the
neutron flux on smaller mesh triangles. After this necessary considerations, the first
set of simulated transient will be deeply described.

4.1 2D Transient analysis

The focus of this study is on the Gen-IV Lead-cooled Fast Reactor (LFR) technology,
which currently undergoes extensive research and development worldwide, involving
both industrial and academic sectors. The analysis considers various reactivity inser-
tion levels, such as sub-prompt critical and super-prompt critical, as well as different
few-group structures. As a case study, a scaled-down version of the ALFRED (Ad-
vanced Lead Fast Reactor European Demonstrator) core design [4] was developed.
Figure 4.6 illustrates several 2D hexagonal core configurations used in this study.
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Figure 4.6: 2D core model adopted for the test calculations

The neutronic module of the multiphysics code FRENETIC, which has been de-
veloped over the past decade at Politecnico di Torino ([5, 6]), is utilized for both
intermediate- and few-group transient simulations. This module, written in Fortran,
incorporates a hexagonal nodal diffusion solver and various efficient methods for reac-
tor kinetics, including the Predictor-Corrector Quasi-Static (PCQS) method [6]. All
transient calculations presented in this study are conducted using this method, com-
bined with adaptive time-step selection for solving the shape and amplitude functions.
For the computation of the different spectra used in the few-group collapsing, an ad
hoc LFR model written in the FreeFEM++ language [7] is employed. FreeFEM++ is a
highly efficient finite element solver for partial differential equations. The versatility of
FreeFEM++ enables the straightforward implementation of various eigenvalue prob-
lems, which would otherwise be complex and intrusive in the FRENETIC code. The
following eigenvalue problems have been solved: the classical multiplication eigenvalue,

(L̂+ R̂)φ⃗k,n = Ŝφ⃗k,n + 1
kn
F̂ φ⃗k,n,

the collision eigenvalue,

(L̂+ R̂)φ⃗γ,n = 1
γn

(Ŝ + F̂ )φ⃗γ,n,

and the prompt and delayed time eigenvalue formulations, respectively,
αn

v
φ⃗α,n + (L̂+ R̂)φ⃗α,n = (Ŝ + F̂ )φ⃗α,n,
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4.1 – 2D Transient analysis

ωn

v
φ⃗ω,n + (L̂+ R̂)φ⃗ω,n = (Ŝ + F̂p)φ⃗ω,n +

R∑
i=1

λi

ωn + λi
F̂d,iφ⃗ω,n.

The operators in previous equations have their conventional meanings: L̂ represents
the leakage operator, R̂ denotes the removal operator, Ŝ corresponds to the scattering
operator, F̂ represents the total fission operator, F̂p and F̂d,i denote the prompt and
i-th delayed fission operators, respectively. The parameter n indicates the order of the
flux harmonics, and in this case, we assume R to be the number of precursor families,
which is set to 1. Since the first harmonic, characterized by a uniform sign over the
entire domain, is the only physically relevant one, the FreeFEM++ eigenvalue solver,
which acts as a wrapper to the SLEPc library [8], is specifically configured to calculate
and provide this particular harmonic. In this work, all transient scenarios commence
from a steady-state critical configuration. The transient is initiated at a specific time
t = T (1) by manipulating the control rods, which is simulated by replacing the control
assemblies. Following a duration of time t = T (2), the core is restored to the initial
critical configuration. In FRENETIC, the group constants associated with each type
of reactor assembly are updated at each time step through a straightforward linear
interpolation between the data at the configuration times T (n) and T (n+1).

For each scenario, the following calculation approach is employed: Firstly, the ref-
erence transient simulation is conducted using the group constants collapsed onto an
intermediate group structure (in this case, the ECCO 33-group grid). Subsequently, uti-
lizing these group constants, the time, collision, and multiplication eigenvalue problems
are solved for each off-critical reactor configuration. The various spectra corresponding
to the configuration at t = T (n) are then utilized as weighting functions to collapse
the group constants from the intermediate to the few-group structure within the con-
figuration time interval t = [T (n), T (n+1)]. This process assumes a prior knowledge
of the principal reactor configurations (e.g., control rod positions) and the associated
group constants throughout the entire transient period. This assumption is typically
fulfilled in most cases, often facilitated by the utilization of a pre-computed library of
multi-group cross sections. In line with the approach presented in [1], the adjusted
number of neutrons emitted by fission, denoted as ν̄, is modified to ensure that the
system characterized by the different sets of few-group constants is initially critical
with utmost precision. This is achieved through the employment of a correction factor
1/keff,x, where x corresponds to the eigenvalue spectrum utilized for collapsing the con-
stants. By incorporating this correction factor, the occurrence of slight deviations from
criticality due to collapsing errors is avoided, guaranteeing that all the analyzed cases
commence from the same initial condition. The transient calculation is subsequently
executed employing the few-group constants while maintaining the numerical settings
unaltered from the reference simulation. Finally, a comparison is made between the
temporal evolution of the key neutronic integral parameters computed in both cases,
such as the total power P (t).
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4.2 Results of 2D transient analysis

This section provides a summary of the obtained results from a series of transient sce-
narios involving the 2D simplified version of the ALFRED reactor. These scenarios
were analyzed using varying numbers of groups and different weighting spectra. The
collapsing process was conducted without spatial homogenization, implying that data
pertaining to the same types of regions (e.g., control assemblies) were collapsed using
the flux spectrum obtained from those regions. To simplify the calculations and focus
solely on the neutronic aspects, all thermal feedback effects were neglected, assuming
that the core operates under cold conditions. To avoid abrupt variations in the total
power of the reactor, the scenarios were initiated by a step insertion or extraction of
all control rods for a very short time interval (t=[1 · 10−9, 100] ms). Subsequently,
the rods were withdrawn or inserted at a constant rate between t=[100, 500] ms to
restore criticality. These scenarios were designed to simulate potential reactivity inser-
tion accidents, which represent a crucial type of safety-critical transients. Additionally,
the movement of the control rods serves as the operational transient that induces the
most significant spatial and energy effects on the neutron distribution, enabling an
exploration of the performance of the weighting functions in a challenging yet real-
istic scenario. The full-developped function shape of the neutron flux for both the
configuration is reported in Figure 4.7.
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Figure 4.7: 3D plots of the neutronic profile over a sextant of the system. The three plots
are of the same simulation result with different angulation. The red grid in z = 0 plane,
is the system borders. The neutron distribution has a Gaussian-like shape. In the central
region of the sextant, the flux sharply decreases, that region corresponds to the region where
the control road is inserted.

Tables Table 4.2 to Table 4.3 provide a summary of the different scenarios ana-
lyzed, considering various reactivity values and few-group grids. Each case is evaluated
based on the total energy deposited during the transient and the peak power of the
33-group case within the time interval T (1) = 1 · 10−9 to T (2) = 100 ms, which serve
as references for computing relative errors compared to results obtained using different
spectra. Additionally, the relative error between the time profiles of total power is also
calculated as an additional measure of accuracy.

Although the three nested few-group grids exhibit a certain pattern, it is evident
that the relative error does not consistently decrease when transitioning from 3 to 9
groups, except in cases where k is used as the weight. This observation deviates from
the expected trend, and it can be attributed to a combination of collapsing errors and
the criticality adjustment factor 1/keff,x. While preserving reaction rates does not guar-
antee preservation of eigenvalues, the correction factor employed to maintain criticality
aligns with the spectra used for group collapsing only when x = k. Unfortunately, this
is presently the sole method for adjusting criticality in FRENETIC, resulting in a slight
bias introduced by 1/keff,x in the collapsed system’s spectrum.

Despite the expected small bias, considering the range of keff,x between 0.9986 and
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Table 4.2: Impact of the weighting functions with some few-group grids for a negative
reactivity insertion.

ρ̄ = 1
∆t

∫ T (2)

T (1)
ρ(t)dt

group
grid

weight. spectrum
ψ(E)

% relative error
E =

∫
P (t)dt Pmin ||(P33G − P )/P33G||

reference values (33-group) 1.271 [MJ] 5.017 [MW] -

-86 pcm

3-group

k -2.352 -0.632 9.767
γ 0.958 0.046 4.088
α 3.457 0.627 13.444
ω -4.981 -1.164 19.264

6-group

k 0.841 0.008 3.217
γ 2.907 0.435 11.047
α 3.368 0.604 13.674
ω -0.703 -0.308 4.380

9-group

k 0.258 0.021 1.558
γ 1.291 0.231 5.480
α 1.827 0.345 7.562
ω -1.049 -0.245 4.024

reference values (33-group) 0.810 MJ 4.596 MW -

-240 pcm

3-group

k -10.561 -1.833 51.364
γ -4.721 -0.901 23.970
α 0.413 0.083 7.300
ω -9.129 -1.608 44.526

6-group

k -2.408 -0.517 14.496
γ 1.008 0.039 5.604
α 2.770 0.479 16.529
ω -1.634 -0.392 10.390

9-group

k -2.035 -0.378 11.035
γ -0.348 -0.106 2.591
α 0.851 0.107 5.542
ω -1.399 -0.276 7.625

reference values (33-group) 1.810 MJ 3.812 MW -

-1610 pcm

3-group

k -12.407 -0.684 89.845
γ -5.284 -0.278 37.656
α -1.257 0.356 66.261
ω -1.385 0.331 62.642

6-group

k -5.296 -0.296 52.074
γ -0.095 -0.030 10.641
α -1.452 0.657 118.249
ω -1.557 0.653 116.153

9-group

k -4.124 -0.260 43.118
γ -1.528 -0.127 17.471
α 6.855 0.454 45.053
ω 6.646 0.455 88.636

0.9999, an examination of the tables reveals that, in most cases, particularly those
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Table 4.3: Impact of the weighting functions with some few-group grids for a positive
reactivity insertion (βeff = 330 pcm).

ρ̄ = 1
∆t

∫ T (2)

T (1)
ρ(t)dt

group
grid

weight. spectrum
ψ(E)

% relative error
E =

∫
P (t)dt Pmax ||(P33G − P )/P33G||

reference values (33-group) 4.713 MJ 7.057 MW -

+193 pcm

3-group

k 15.371 5.267 92.440
γ 7.868 2.691 47.476
α 22.914 9.668 194.846
ω -10.866 -3.481 65.247

6-group

k 10.849 3.679 76.194
γ 5.619 1.902 39.224
α 25.949 10.760 221.097
ω -5.835 -1.887 39.712

9-group

k 9.191 3.084 66.385
γ 6.614 2.208 47.136
α 6.614 2.208 39.879
ω -4.808 -1.588 33.984

reference values (33-group) 19.686 MJ 12.506 MW -

+287 pcm

3-group

k 52.655 28.592 372.772
γ 23.324 12.028 157.499
α -60.062 -27.632 369.399
ω -53.398 -24.774 324.517

6-group

k 41.950 22.232 357.377
γ 17.126 8.709 127.039
α 4.059 2.086 31.493
ω -25.163 -12.160 179.778

9-group

k 36.061 18.834 357.377
γ 23.800 12.152 181.767
α 17.707 8.947 145.578
ω -25.163 -12.157 179.770

reference values (33-group) 47.488 [MJ] 2.302 [MW] -

+331 pcm

3-group

k 66.780 12.324 349.688
γ 21.293 4.175 117.101
α -237.580 -37.045 994.320
ω -132.475 -20.489 549.046

6-group

k 33.519 5.914 205.941
γ -77.096 -12.810 355.199
α -175.975 -29.566 812.434
ω -709.027 -119.174 6489.474

9-group

k 49.023 8.675 346.952
γ 31.071 5.443 191.215
α 21.952 3.784 128.830
ω -46.232 -7.802 244.931

with significant ρ, the k-spectrum produces relatively inaccurate results compared to
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the other spectra. The performance of the prompt (α) and delayed (ω) energy spectra
appears highly sensitive to ρ, with the table reporting a time-averaged value between
T (1) and T (2). For low reactivity values (|ρ| < 240 pcm), the delayed spectrum, which
assumes only one family of precursors, provides better results than the prompt spec-
trum. Conversely, as the reactivity increases, the prompt spectrum exhibits improved
accuracy. This trend is particularly evident in scenarios involving super-prompt reac-
tivity injection and aligns with observations made in [9] for a thermal, homogeneous,
and infinite system. To prevent excessively large power excursions resulting from the
super-prompt criticality state, the configuration times T (2) and T (3) are adjusted to
0.002 and 0.05 ms, respectively.
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Figure 4.8: Total power evolution (right) and relative difference between the total power
of the 33-group case with respect to the few-group cases (right) computed for the various
eigenvalues for a negative negative reactivity insertion (ρ̄=-240 pcm). The black dashed lines
represent the configuration times T (n), and Λ0 = 3.909 · 10−4 ms.

Except for the slightly sub-critical case with ρ̄ = −86 pcm and the 3- and 6-group
super-critical cases (ρ̄ = +331 pcm), the γ-collapsed data consistently provide a more
accurate power evolution than the k case. The accuracy of the time eigenfunctions
varies depending on the specific case, as shown in Figures 4.8 and 4.9. These figures
display the total fission power evolution for both the reference and few-group cases (left)
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4.2 – Results of 2D transient analysis

and the time-dependent relative error between the reference value and the few-group
values (right). The figures represent the cases of negative and super-prompt reactivity
insertion for both the 3- (top) and 9-group (bottom) structures. In the sub-critical
scenario, the α spectrum case is the most accurate for both the 3- and 9-group grids.
It is followed by the γ and ω cases, while the k case performs the worst. One possible
explanation for the superiority of the α spectrum is that the time-dependent spectrum
ψ(E, t) in the 33-group case is primarily dominated by prompt emissions during the
initial 300 neutron generations. This suggests that using the α-collapsed data allows the
few-group model to better capture the prompt jump and subsequent plateau. However,
if the rod extraction occurs after a sufficiently long time, surpassing the reactor’s stable
period of 1/ω0, the delayed effects would dominate ψ(E, t), potentially altering the
ranking between the two time spectra.
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Figure 4.9: Total power evolution (right) and relative difference between the total power
of the 33-group case with respect to the few-group cases (right) computed for the various
eigenvalues for a super-prompt reactivity insertion (ρ̄=331 pcm). The black dashed lines
represent the configuration times T (n), and Λ0 = 3.909 · 10−4 ms.

The performance of the time spectra in the case of super-critical reactivity insertion
strongly relies on the specific few-group grid used for collapsing. This indicates that
there can be a discrepancy between physical expectations and the numerical effects of
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the collapsing process. In both cases, the k-collapsed case consistently performs the
poorest, while the γ case demonstrates favorable behavior with low sensitivity to the
group structure. Calculating the fundamental eigenfunction is typically computation-
ally expensive and highly dependent on the degree of off-criticality. As a result, the
collision eigenfunction appears to offer the best compromise in terms of computational
cost, as it exhibits a convergence rate similar to k while maintaining accuracy, at least
for the majority of the cases presented in this study.
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Chapter 5

Conclusions

This study focuses on the collapsing of group constants using different weighting spec-
tra, specifically exploring the use of fundamental eigenfunctions associated with various
eigenvalue formulations in neutron diffusion (and transport) as an alternative to the
conventional choice of the k-eigenvalue spectrum.

Due to the complexity of the problem and the numerous parameters influencing
group constant generation, numerical experiments were conducted using a simplified
2D version of the ALFRED core design.

The analysis revealed that predicting the performance of each weighting eigenfunc-
tion based solely on physical considerations is challenging. This is due to the occurrence
of numerical error compensations in the collapsing scheme, which depend on factors
such as the type of reactivity insertion, the few-group grid, the eigenfunction type, and
the system energy spectrum.

Nonetheless, it can be concluded that, in most cases, the k eigenfunction tends to
yield the poorest results, particularly in situations with significant reactivity. In this
regard, the γ spectrum appears to be the most effective weighting option. In many
cases, the prompt and delayed time eigenfunctions may offer slightly better results
than γ, but their evaluation is considerably more computationally demanding. This
conclusion finds support from a physical perspective, as the γ eigenvalue introduces
the least distortion to the energy spectrum of the system.

To establish more general conclusions, especially regarding fast systems, further
numerical experiments should be conducted in the future, with a particular focus on
the thermal feedback effects in heavily off-critical systems.
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che spero di non aver mai sprecato.

85





Bibliografia

[1] M. Massone, N. Abrate, G. F. Nallo, S. Dulla, P. Ravetto e D. Valerio. ≪Gene-
tic algorithm-based optimisation of the few-group structure for lead fast reactors
analysis≫. In: Proceedings of the ANS International Conference PHYSOR 2022.
Pittsburgh, PA: American Nuclear Society (ANS), 2022, pp. 1388–1397.

[2] Paolo Saracco, Sandra Dulla e Piero Ravetto. ≪On the spectrum of the multigroup
diffusion equations≫. In: Progress in Nuclear Energy 59 (ago. 2012), pp. 86–95.
issn: 0149-1970. doi: 10.1016/J.PNUCENE.2012.03.002.

87

https://doi.org/10.1016/J.PNUCENE.2012.03.002

	Introduction
	Introduction
	 Main physical quantities 
	Neutron Transport Equation (NTE)
	Criticality problem

	References

	The adoption of the FreeFEM++ language for the solution of the diffusion equation
	FreeFEM++: Core Geometry
	Preliminary calculation: Diffusion two group model
	One hexagon calculation

	References

	Eigenvalue Formulations
	Theoretical introduction
	- eigenvalue
	Preliminary Studies

	System geometry description
	Energy grids
	Considerations on neutron flux by using alternative eigenvalue
	Preliminary considerations: k eigenvalue 33G Diffusion system
	3D 33-G diffusion model: k, , ,  criticality evaluations

	References

	Results
	2D Transient analysis
	Results of 2D transient analysis

	Conclusions
	References


