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Abstract

The idea behind this thesis stems from the need to optimize the sizing of collective

self-consumption systems and renewable energy communities. By considering the in-

creasing importance of end consumers and their contribution to climate neutrality goals,

these initiatives are emerging as promising solutions. However, due to their complexity

and the presence of multiple con�icting objectives, it is necessary to develop suitable

optimization approaches. In this context, the thesis proposes a Multi-Objective Op-

timization Problem based on Game Theory. Traditional Multi-Objective methods are

inadequate for e�ectively managing the numerous objective functions involved (going

from multi to many objectives), whereas the proposed method demonstrates greater ca-

pability in handling a higher number of objectives.

This approach goes beyond the simple simulation of di�erent con�gurations to select

the best one for the analyzed case, instead, considering the scenario as a game between

various players, allows the direct identi�cation of optimal solutions. Moreover, this opti-

mization methodology can be applied not only to energy systems, but also to numerous

other contexts.

In light of this, after a brief introduction to renewable energy communities and collective

self-consumption, the proposed optimization methods are examined in detail. Di�erent

procedures have then been implemented in Python and tested on benchmark multi-

objective problems. Afterwards, an optimization case study is performed on a collective

self-consumption system using a dedicated simulation tool adapted to the speci�c con-

text. Finally, the results obtained through the multi-objective optimization approach

based on Game Theory are presented and also compared, when possible, with those

derived from traditional optimization methods.
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Introduction

In recent decades, the need to address climate change and reduce dependence on

traditional energy sources has led to the search for sustainable solutions in the energy

sector. The European Union has positioned itself at the forefront of the �ght against

climate change. In fact, in December 2019, with the introduction of the Green Deal [1],

it proposed a long-term strategy for a prosperous, modern, and competitive economy to

achieve climate neutrality by 2050. This document emphasizes the importance of renew-

able energy sources and the central role of consumers, who are becoming increasingly

active and crucial for the success of the energy transition.

In this context, collective self-consumption and renewable energy communities have

emerged as promising and innovative solutions, revolutionizing the traditional approach

to energy production, consumption, and management. These initiatives were �rst intro-

duced at the European level with the Clean Energy for all Europeans Package (CEP)

[2]. The CEP is a set of legislative acts that reshape the energy sector and introduce the

tools for the creation of collective self-consumption and renewable energy communities

through the Renewable Energy Directive 2018/2001 (RED II). This directive recognizes

the active role of consumers in the energy transition and grants them the right to act

collectively to produce, consume, sell, store, and share self-generated renewable energy.

Italy has transposed this directive experimentally with the Decree-Law 162/2019 [3],

which was converted into Law 8/2020. The Decree also establishes that the Regula-

tory Authority for Energy, Networks, and the Environment (ARERA) determines the

economic settlement model for electricity shared within renewable energy communities,

and the Ministry of Economic Development (MiSE) establishes the incentivizing tar-

i�s and the related access modalities. The two documents were published on August 4,

2020, and September 15, 2020, respectively. The Decree-Law 162/2019 was subsequently
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Introduction

replaced by the Legislative Decree 199/2021. However, at present, the regulatory frame-

work is not yet fully de�ned, and therefore, no o�cial "second-generation" collective

self-consumption and renewable energy communities have been established in practice.

These entities represent a new paradigm in energy provision, based on a decentralized

and participatory vision. Instead of relying solely on large centralized power plants, they

involve a range of local actors, such as citizens, businesses, public institutions, and non-

governmental organizations, who collaborate to maximize the use of renewable energy

sources at the local level.

The main goal of these initiatives is to promote energy e�ciency, environmental sus-

tainability, and active citizen participation in the energy sector, while simultaneously

reducing the reliance on traditional energy sources like coal and oil, and increasing the

production and utilization of energy from renewable sources such as sunlight, wind, wa-

ter, and biomass.

These decentralized production methods o�er numerous advantages, in fact they: repre-

sent an economic saving for the participants, reducing the costs of energy bills; contribute

to the reduction of energy poverty by enabling the participation of anyone, regardless of

economic situation; ensure greater energy independence, reducing reliance on imported

fossil fuels and stabilizing energy prices; promote local economic development, creat-

ing job opportunities and stimulating technological innovation in the renewable energy

sector; contribute to the reduction of greenhouse gas emissions, helping to counteract

climate change and improve the quality of the environment.

However, despite the numerous advantages of collective self-consumption and renewable

energy communities, there are still signi�cant challenges to address. One of the main

challenges relates to the regulatory framework. It is crucial to establish an adequate

legal and regulatory context to ensure the proper functioning and development of these

new realities. This includes de�ning the rights and obligations of community members,

access to electrical grids, measurement and compensation of produced and consumed

energy, and fair remuneration for excess energy sold back to the grid.

Another equally important challenge is �nding optimal con�gurations that make these

entities more attractive and cost-e�ective. As they are relatively new and have multi-

ple objectives to optimize simultaneously, there is still no methodology for sizing them
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Introduction

optimally. Hence, this thesis aims to analyze these entities using multi-objective opti-

mization techniques to identify advantageous con�gurations from di�erent perspectives.

In this thesis work, a Python program called CSCoupled will be used to conduct simula-

tions of collective self-consumption and renewable energy communities to determine the

di�erent objective functions to be optimised. Subsequently, a speci�c Python program

for multi-objective optimization will be implemented. Since the objectives can be numer-

ous and diverse, traditional optimization approaches have their limitations. Hence, an

innovative approach based on Game Theory will be developed to address the challenge

of handling a larger number of objectives in the optimization process. This methodology

will allow to consider a wide range of perspectives and to obtain optimal solutions that

e�ectively balance the desired objectives.

In light of the above, the thesis is organized as follows. In Chapter 1, the Multi-Objective

Optimization is introduced with particular attention to the limitations of the traditional

methodology. Subsequently, the Game Theory-MOOP is explained, distinguishing be-

tween non-cooperative and cooperative games, and illustrating the non-cooperative Nash

solutions for the former and the Nash Bargaining solution and Kalai-Smorodinsky so-

lution for the latter. These methods are then tested to evaluate their proper imple-

mentation on benchmark problems. In Chapter 2, the Python program used for sim-

ulating collective self-consumption is introduced, focusing on the structure of the tool,

the required inputs, and the obtained results. In Chapter 3, the analyzed case study is

presented, illustrating how the necessary data was obtained, describing the considered

business models and outlining the di�erent scenarios examined. Subsequently, in Chap-

ter 4, the results of the Game Theory MOOP for the case study scenarios are analyzed,

while in Chapter 5, the conclusions of this thesis work are drawn.
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Chapter 1

Multi-Objective Optimization

Renewable Energy Communities and collective self-consumption thus represent a

novel approach for sustainable transition through the utilization of renewable energy

sources and enhancing energy provisioning. These communities, which can involve var-

ious renewable energy sources, storage systems, and consumers, aim to optimize their

operations in an e�cient and cost-e�ective way. This cannot be achieved solely through

the optimization of a single objective, as Renewable Energy Communities and collective

self-consumption face a range of con�icting and complex goals. Multi-objective opti-

mization, therefore, becomes crucial for addressing the challenges associated with RECs.

Multi-objective optimization is an area of multiple criteria decision making that is con-

cerned with mathematical optimization problems involving more than one objective func-

tion to be optimized simultaneously [4]. This approach has been applied in various �elds

such as engineering, economics or logistics, where it is necessary to choose an optimal

solution while considering con�icts among di�erent objectives.

In most multi-objective optimizations, there is no single point that simultaneously opti-

mizes the various objective functions, which may be con�icting. Thus, the Pareto Front

is generated, which consists of all non-dominated, Pareto-optimal, or Pareto-e�cient

points. These points represent the optimal trade-o�s among the objective functions,

where improving the value of one objective function would inevitably result in the dete-

rioration of the values of the others.

There are several methods for determining the Pareto front, which can be divided into

two categories:

CAP. 1 Multi-Objective Optimization 4



� Solution-based methods : These methods use one point at a time to determine the

entire Pareto front. Among the most famous are the Weighted sum approach and

the ε-constraints method.

� Population-based methods : In contrast, these methods use a set of points to de-

termine the Pareto front. The most commonly used methods include NSGA-II

(Non-dominated Sorting Genetic Algorithm II), SPEA2 (Strength Pareto Evolu-

tionary Algorithm 2), MOEA/D (Multiobjective Evolutionary Algorithm Based on

Decomposition), and others.

When there are few objective functions to be simultaneously optimized, i.e., 2 or at most

3, these or other methods can be applied without any problems in most cases. However,

as the number of objectives increases, the Pareto front also grows, and its determination

and representation become increasingly complex. Furthermore, even if it were possible

to represent the entire Pareto front, the decision maker would be left with a very large

set of incomparable solutions, with limited practical relevance [5].

It is therefore necessary and advantageous to �nd alternative approaches of multi-objective

optimization, without relying on the determination of the entire Pareto front, but still

�nding solutions belonging to it. One idea might be to use Game Theory.

Mathematical formulation of a multi-objective optimization problem

As previously mentioned, a multi-objective optimization problem is characterized by the

need to simultaneously optimize multiple objective functions. Generally, these functions

can be subject to constraints both on the functions themselves and on the variables that

in�uence them. Keeping in mind that maximizing an objective function is equivalent

to minimizing its negative and vice versa, the optimization problem can be expressed in

mathematical form as follows:

min
x∈X

(f1(x), f2(x), ..., fk(x)) (1.0.1)

subject to:

gj(X) ≤ 0, j = 1, ...,m (1.0.2)

and

xmin
i ≤ xi ≤ xmax

i , i = 1, ..., n (1.0.3)

CAP. 1 Multi-Objective Optimization 5



where the integer k ≥ 2 is the number of objectives and the set X is the feasible set of

decision vectors, which depends on the n-dimensional application domain.

As regards the Pareto front, in mathematical terms, a feasible solution x1 ∈ X is said to

dominate another solution x2 ∈ X if:

1. ∀i ∈ 1, ..., k, fi(x1) ≤ fi(x2), and

2. ∃i ∈ 1, ..., k, fi(x1) < fi(x2).

The Pareto front of a multi-objective optimization problem is bounded by a so-called

nadir objective vector, denoted as znadir, and an ideal objective vector, denoted as zideal,

provided that they are �nite [4]. The nadir objective vector is de�ned as:

znadir =


supx∗∈X∗f1(x∗)

.

.

.
supx∗∈X∗fk(x∗)

 (1.0.4)

and the ideal objective vector as:

zideal =


infx∗∈X∗f1(x∗)

.

.

.
infx∗∈X∗fk(x∗)

 (1.0.5)

In other words, the components of the nadir and ideal point vectors represent the upper

and lower bounds of the Pareto front. However, it should be noted that in practice,

the nadir vector is almost always approximated since it would be necessary to know the

entire Pareto Front to determine it. Therefore, instead of the nadir vector, a pseudo-

nadir point, zpseudo−nadir, is commonly used.

For the determination of these points, inspiration was taken from the approach proposed

by Iorio et al. [6], as shown in the following table:

CAP. 1 Multi-Objective Optimization 6



1.1 Game Theory

Table 1.1: De�nition of Ideal and Nadir points with two and three objective functions [6]

x∗1 = minx f1(x) → Unconstrained minimization of f1(x)
x∗2 = minx f2(x) → Unconstrained minimization of f2(x)
x∗3 = minx f3(x) → Unconstrained minimization of f3(x)
zideal = [f1(x

∗
1), f2(x

∗
2)] → Ideal point in 2D problems

znadir = [f1(x
∗
2), f2(x

∗
1)] → Nadir point in 2D problems

zideal = [f1(x
∗
1), f2(x

∗
2), f3(x

∗
3)] → Ideal point in 3D problems

zpseudonadir = [max(f1(x
∗
2), f1(x

∗
3)),

max(f2(x
∗
1), f2(x

∗
3)),max(f3(x

∗
1), f3(x

∗
2))]

→ Pseudonadir point in 3D problems

For problems with dimensions greater than 3, the Utopia and Nadir points were found

using the same methodology as for the 3-dimensional problem.

Furthermore, instead of the ideal vector, the utopian objective vector zutopia is often

used, where ziutopia = ziideal − ε, ∀i ∈ 1, ..., k and ε > 0 is a small constant. However, in

the subsequent discussion, it will not be necessary, and therefore the terms "ideal" and

"utopia" will be used interchangeably.

1.1 Game Theory

In simple terms, Game Theory models situations where players make decisions to

maximize their own utility, taking into account that other players are doing the same

and that the decisions made by players have an impact on each other's utilities [7]. Game

Theory is generally divided into two categories: non-cooperative and cooperative.

Non-cooperative Game Theory studies game strategies, analyzing the di�erent decisions

of players and carefully examining the various steps to reach a solution. On the other

hand, cooperative Game Theory analyzes all possible solutions to see which ones can be

achieved, it may study the coalitions that can be formed, and it can determine whether

the reached solution is stable and robust. Therefore, it can be stated that cooperative

Game Theory analyzes the game as a "black box", while non-cooperative Game Theory

precisely analyzes what happens [7].

It is thus possible to view a multi-objective problem, typically described as in Section 1,

through a Game Theory-based approach. Let us then explore the non-cooperative and

cooperative approaches based on the work of Annamdas et al. [8].

For simplicity, let's assume that the number of objective functions, k, is equal to the

CAP. 1 Multi-Objective Optimization 7



1.1 Game Theory

number of design variables, n. This doesn't have to be true, but it makes the explana-

tion easier. We now associate a player with each objective function, and for simplicity,

let's assume that each player has control over only one design variable. It is important

to specify that even though player i has control only over variable xi, the actions of

other players can still in�uence his objective function since it also depends on the de-

sign variables of other players. This, in fact, can be expressed as: fi(x1, x2,...,x(i−1),

xi,x(i+1),...,xn). Therefore, the goal of the i-th player is to optimize (in the example we

will consider, minimize) their objective function fi while taking into account the actions

of the other players who also want to minimize their own objective functions. This game

can be visualized more clearly, graphically, by considering only two players who have

control over as many variables, as described in [8]. Thus, it can be written:

Player1 : min
x1

f1(x1, x2) (1.1.1)

and

Player2 : min
x2

f2(x1, x2) (1.1.2)

Where Player1 aims to minimize the objective function f1 by controlling only variable

x1, but its objective function can be in�uenced by the variable controlled by Player2,

x2, and vice versa.

Assuming these functions are continuous, it is possible to represent them with contours

of constant values in a graph of the design variables, as shown in the Figure 1.1:

CAP. 1 Multi-Objective Optimization 8



1.1 Game Theory

Figure 1.1: Cooperative and non-cooperative game solutions [8]

The dashed lines in the �gure, starting from the global minimum points O1 and O2,

represent the minimum values of the functions f1 and f2 for every value of variable x2

and x1 respectively. Therefore, their intersection, if it exists, is an excellent candidate for

the equilibrium point in a non-cooperative game. This point, referred to as N(x∗1, x
∗
2) in

Figure 1.1, is the Nash equilibrium point and represents a condition of stable equilibrium

in the sense that no player can unilaterally deviate from it to further improve his own

objective function [8]. This point therefore has the following characteristics:

f1(x∗1, x
∗
2) ≤ f1(x1, x

∗
2) (1.1.3)

and

f2(x∗1, x
∗
2) ≤ f2(x∗1, x2) (1.1.4)

where x1 is any x to the right or left of point N at a constant x2, and at the same time,

x2 is any x higher or lower than point N at a constant x1. It is possible to generalize

CAP. 1 Multi-Objective Optimization 9



1.1 Game Theory

these conditions for k objective functions and k design variables as follows:

f1(x∗1, x
∗
2, ..., x

∗
k) ≤ f1(x1, x

∗
2, ..., x

∗
k)

f2(x∗1, x
∗
2, ..., x

∗
k) ≤ f2(x∗1, x2, ..., x

∗
k)

.

.

.

fk(x∗1, x
∗
2, ..., x

∗
k) ≤ fk(x∗1, x

∗
2, ..., xk)

(1.1.5)

An interesting situation arises when the dashed lines intersect at multiple points. In this

case, one should also consider the order in which each player makes their moves but,

since it is not relevant for our analysis, this situation will not be considered.

However, it is possible to observe that every point in the shaded area of Figure 1.1 is

a better solution for this game, but it cannot be achieved non-cooperatively. These

solutions become accessible only by considering a cooperative game.

In a cooperative game, in fact, the two players cooperate with each other to achieve a

better solution for both of their objectives. Hence, as mentioned earlier, it is possible to

reach a solution in the shaded area in the �gure above, and in fact, it is even possible to

achieve a Pareto solution, represented by the curved line O1ACQDBO2. Therefore, the

optimal solutions are those on the line AB (i.e., the intersection between the shaded area

in Figure 1.1 and the Pareto set O1ACQDBO2). It is now possible to �nd a solution on

this line that represents a compromise between the objectives of the di�erent players. In

order to do so, players establish speci�c negotiation rules that can be used to formulate a

super-criterion or a bargaining model [8]. This super-criterion is then used to transform

the multi-objective optimization into an equivalent single-objective optimization and

achieve a compromise point between the di�erent players that lies on the Pareto front.

However, it should be noted that even in a non-cooperative game, it is possible to obtain

Pareto solutions, but this is never certain, as expressed more clearly in the formulation

of Tang et al. [9], whereas it is only certain with a cooperative game.

CAP. 1 Multi-Objective Optimization 10



1.1 Game Theory

1.1.1 Non-cooperative games, Nash equilibrium

The Nash strategy is, as mentioned before, a non-cooperative game. In this, players

make their decisions independently and simultaneously, without knowing in advance the

choices of other players. Additionally, each player only cares about their instantaneous

payo� and does not take into account the e�ect their choices have on other players [9].

The point reached, which is the Nash equilibrium de�ned earlier by equation 1.1.5, can

also be de�ned, as reported by Binois et al. [5], through the following de�nition: A Nash

equilibriun x∗ ∈ X is a strategy such that:

(NE) ∀i, 1 ≤ i ≤ m, x∗i = arg min
xi∈Xi

fi(xi,x
∗
−i) (1.1.6)

This formulation shows in a simpler way the advantages of this non-cooperative strategy:

it is scale-invariant and conveys a notion of �rst-order stationarity. However, as already

implied, it requires a number of design variables greater than or equal to the number

of objective functions and necessitates a partitioning of the design variables among the

di�erent players. This last point may be trivial in some games (considering, for example,

games where the objective functions are physical equations), but in many other games,

it can be problematic. A solution, as proposed by Binois et al. [5], could be to perform

this partitioning through a sensitivity analysis.

The Nash equilibrium point, therefore, depends on how the variable partitioning is de-

cided, as well as on the starting point of the algorithm.

1.1.1.1 Algorithm Implementation

Let's take the articles by Tang et al. [9], [10] as a reference for explaining the algo-

rithm. Firstly, it is necessary to allocate the design variables to the di�erent players (a

player can control more than one design variable, as long as he controls at least one).

Then, as mentioned earlier, each player tries to optimize his objective function by mod-

ifying his design variables while keeping the others constant and exchanging symmetric

information with the other players at regular intervals.

To simplify the explanation, let's consider an example with just 2 players, similar to

the one proposed in Chapter 1.1. Therefore, each player aims to minimize its respective

objective function by modifying only its own design variable, as expressed by equations
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1.1.1 and 1.1.2, which are written again here for convenience:

Player1 : min
x1

f1(x1, x2)

Player2 : min
x2

f2(x1, x2)

where in each iteration, in the �rst of the two equations, x1 is the free design variable for

Player1 while x2 is kept �xed and derives from the previous action of Player2. Similarly,

in the second equation x2 is the free design variable for Player2 while x1 is kept �xed

and derives from the previous action of Player1. In particular, we assume that:

xm−1 = (xm−1
1 , xm−1

2 ) (1.1.7)

are the design variables that minimize the objective functions of Player1 and Player2,

respectively, at iteration m− 1. In the next iteration m, Player1 minimizes its objective

function f1 by varying x1 starting from xm−1
1 while keeping x2 constant and equal to

xm−1
2 . Player2 behaves symmetrically in the same manner. So at iteration m we get:

xm1 = inf
x1

f1(x1, x
m−1
2 ) (1.1.8)

and

xm2 = inf
x2

f2(xm−1
1 , x2) (1.1.9)

Having calculated the new design variables that minimize the two objective functions,

Player1 communicates its xm1 to Player2 for the calculation of the next iteration m+ 1,

and vice versa. This process ends when each player can no longer further improve its

objective function, that is, when convergence of the objective functions is reached. This

occurs at iteration j where:

f j−1
i = f j

i (1.1.10)

or for simplicity of calculation:

|f j
i − f

j−1
i | ≤ ttresh (1.1.11)

where ttresh is de�ned at the beginning.

The point thus found:

fj = [f1(xj1, x
j
2), f2(xj1, x

j
2)] (1.1.12)
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is the Nash equilibrium point.

However, it is important to note that this point is not unique. In fact, it can vary

signi�cantly depending on the partitioning of the design variables and on the starting

point for the algorithm just described. In the �rst iteration, it is necessary in fact to

provide an initial point:

x0 = (x0
1, x

0
2) (1.1.13)

in order to start the process.

A schematic representation of the algorithm is shown in Figure 1.2.

1.1.1.2 Algorithms for constraints handling in non-cooperative Nash game

A problem may arise when implementing constraints on the objective functions. For

example, consider the following game:

Player1 =

{
min
x1

f1(x1, x2)

Subject to g1(x1, x2) = g′1
(1.1.14)

and

Player2 =

{
min
x2

f2(x1, x2)

Subject to g2(x1, x2) = g′2
(1.1.15)

the constraints are satis�ed in the minimization of the objective functions for both play-

ers, but when exchanging information, it is not guaranteed that they will still be satis�ed.

Suppose, for instance, that at iteration (m− 1), the solution for the design variables is:

x(m−1) = (x
(m−1)
1 , x

(m−1)
2 ). In light of the aforementioned, the following equations will be

satis�ed:

g1(xm1 , x
(m−1)
2 ) = g′1 and g2(x

(m−1)
1 , xm2 ) = g′2 (1.1.16)

However, when the players symmetrically exchange information to form xm = (xm1 , x
m
2 ),

it could be that:

g1(xm1 , x
m
2 ) 6= g′1 and g2(xm1 , x

m
2 ) 6= g′2 (1.1.17)

One way to solve this problem is presented by Tang et al. [11], in which they develop a

cooperative game between a player who in turn plays a non-cooperative Nash game for

optimizing the two unconstrained objective functions, and another player who handles

the original constraints. However, to �nd the solution for this game, Tang et al. rely on
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the gradients of the functions, which cannot always be computed, as will be the case in

the speci�c study we will analyze.

Figure 1.2: Algorithm for determining non-cooperative Nash equilibrium.
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1.1.2 Cooperative games, bargaining solutions

The bargaining model introduces a concept of solution for cooperative games where

negotiation processes or group decisions are involved. Cooperation refers to coalitions of

two or more players acting together with a speci�c common purpose, while considering

the objective of maximizing their own individual payo�s [12]. A cooperative game is,

in other words, a game in which players have the opportunity to reach, through an

agreement between parties, a better solution than the one that could be achieved without

the agreement. With a bargaining model, it is possible to reach a mutually advantageous

agreement, or if this is not possible, the solution of "no agreement" is imposed, which is

disadvantageous or less advantageous for all players involved. There are two theoretical

perspectives that provide a solution for cooperative bargaining models based on game

theory and that employ the axiomatic method to evaluate bargaining: Nash bargaining

model and Kalai-Smorodinsky model [12].

In the following, the main di�erences between the Nash bargaining solution and the

Kalai-Smorodinsky solution are explained based on the �ndings of Trejo et al. [12].

Both methods aim to achieve a "fair" solution to the cooperative game, but they di�er

in their de�nition of fairness.

According to Nash's proposal [13], a solution to a bargaining problem is a function

that takes the characteristics of the bargaining problem as input and returns a vector

of solutions for each player that belongs to the set of possible solutions.This function

must be valid for any bargaining problem. It can return various values, such as the

disagreement point itself or a solution that only optimizes one player's objective function,

disregarding the others'. Although both of these solutions are correct and comply with

what was previously stated, they have inconsistencies regarding fairness. While the

second solution is "unbalanced" in favor of a single player and thus not promising for

the others, the �rst one is non-Pareto e�cient and therefore does not fully utilize the

potential of cooperation between players. To resolve these inconsistencies, Nash proposed

four axioms that the solution of the bargaining problem must satisfy. According to Nash,

the solution should be:

(a) Invariant to a�ne transformation: an a�ne transformation of the possible solu-
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tions and of the disagreement point should not alter the outcome of the bargaining;

(b) Pareto optimality : the solution must be Pareto optimal, meaning it must lay on

the Pareto frontier;

(c) Simmetry : if the players are indistinguishable, the solution should not discriminate

against one player or the other;

(d) Indipendence of irrelevant alternatives : if a solution is chosen from a feasible set

that is a subset of the original set but contains the solution's previously selected

point, then the solution must still assign the same point chosen from the subset.

In other words, the addition of a third, irrelevant, alternative does not have an

in�uence on the choice between the �rst alternatives.

Following these principles, Nash proposed the following solution to the bargaining prob-

lem: we say that there is a unique solution β to the bargaining problem that satis�es the

four axioms (a to d) which is given by the point that maximizes the product of utilities

of the players [13].

While the �rst three axioms were accepted without issues, the fourth axiom has attracted

some criticism. Based on this, Kalai and Smorodinsky [14] developed subsequent work,

formulating a solution to the bargaining problem, that replaces the fourth axiom (d)

with a monotonicity axiom:

(e) Monotonicity : if the set of possible solutions is expanded in a way that the best

solutions remain unchanged, then no player should be disadvantaged by it.

Considering this �fth axiom (e) instead of the debatable fourth one (d), Kalai and

Smordinsky proposed the following solution: we say that there is a unique solution β

to the bargaining problem that satis�es the four axioms (a,b,c and e) which is given by

the intersection point of the Pareto frontier and the straight line segment connecting the

disagreement and the utopia point [14].

1.1.2.1 Formulation of the Nash bargaining solution

In this paragraph, we will formulate the Nash bargaining solution, taking inspiration

from what was proposed by Trejo et al. [12].

For simplicity, let's consider only two players, Player1 and Player2. The bargaining
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problem is de�ned as the pair B = (Θ, d) in the space of objective functions, where Θ is

a set of possible agreements of the objective functions f for Player1 and Player2. These

functions are strictly increasing and concave. Θ is a compact and convex set in R2. An

element of Θ is a pair f = (f1, f2) ∈ Θ, while the disagreement point is d = (d1, d2).

The set Θ consists of points that dominate the disagreement point d. The solution to

a bargaining problem, as mentioned earlier, is a function F that takes any bargaining

problem as input and returns a pair of objective functions: f = (f1, f2) ∈ Θ, where

f1 = F1(B) and f2 = F2(B). Therefore, the interpretation of a cooperative bargaining

game is that given a B = (Θ, d), there exists an agreement f = F (Θ, d) ∈ Θ composed of

objective function values that dominate the disagreement point and ensure a mutually

advantageous agreement. Figure 1.3 shows this bargaining problem:

Figure 1.3: Bargaining problem (adapted from [12])
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The two most important and most restrictive axioms are:

� Pareto optimality : This means that there is no point f = (f1, f2) ∈ Θ that

dominates the components of the solution to the bargaining problem such that

(f1, f2) 6= F (Θ, d).

� Symmetry : Assuming a B such that f (the set of all f) is symmetric around the

45-degree line and d1 = d2, it must necessarily hold that F1(B) = F2(B).

The representation of the bargaining problem with these restrictions is shown in �gure

1.4:

Figure 1.4: Bargaining axioms (adapted from [12])

The Nash bargaining solution of the presented problem is, therefore, the pair of
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objective function solutions (f1, f2) ∈ Θ that solves the following maximization problem:

max
f1,f2∈Θ

(f1 − d1) · (f2 − d2) (1.1.18)

where Θ ≡ (f1, f2) ∈ Θ|f1 ≥ d1 and f2 ≥ d2. This solution is unique since the product

(f1 − d1) · (f2 − d2) (referred to as the Nash product) is continuous and concave. Figure

1.5 illustrates the Nash bargaining solution:

Figure 1.5: Nash's bargaining solution (adapted from [12])

1.1.2.2 Formulation of the Kalai-Smorodinsky bargaining solution

As mentioned before, the Kalai-Smorodinsky solution di�ers from Nash's solution

by replacing the axiom of independence of irrelevant alternatives with the monotonic-

ity axiom. The idea of the solution to this problem can be graphically represented
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by connecting the disagreement point d with the utopia point u, which represents the

optimal values, although unattainable, for the players' objective functions. The Kalai-

Smorodinsky solution is the feasible point lying on this line that is closest to the utopia

point, speci�cally the intersection point between this line and the Pareto front.

In other words, the players aim to optimize their objective functions starting from the

disagreement point d and moving towards the Pareto front. The KS solution is of egali-

tarian inspiration and states that the chosen e�cient solution should result in an equal

ratio of bene�ts for all players [15]. This is de�ned as follows:

ri(s) =
di − si

di − ui
(1.1.19)

where d and u are respectively the disagreement and utopia points, and s is any compro-

mise solution s = [f 1(x), ..., fk(x)]. It should be noted that the bene�t ratio is zero at

the disagreement point and reaches its maximum value at the utopia point. Therefore,

the KS solution is computed by maximizing the bene�t ratios for the di�erent players

while keeping them equal. It can be easily demonstrated that this solution is the point of

intersection between the Pareto front and the line connecting (d, u). Figure 1.6 illustrates

the KS solution for two players:

Figure 1.6: KS solution (adapted from [15])
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This methodology can pose problems in the case of a discontinuous front or, more

generally, when there is no intersection between the line (d, u) and the Pareto front,

which can also occur with three or more players. To address these issues, we employ the

methodology described by Iorio et al. [6].

Once again, for simplicity, let's consider a game with only two objective functions, f1 and

f2. The algorithm proposed begins by identifying the utopia point zutopia and the nadir

point znadir for the objective functions under consideration. Subsequently, a functional

formulation is proposed to be minimized in order to quickly �nd a solution that is very

close to the Kalai-Smorodinsky point:

min
x,t

t

Subject to

{
zutopia + t · τ = F (x)

xmin
i ≤ xi ≤ xmax

i ; i = 1, ..., n

(1.1.20)

where τ =
znadir−zutopia
‖znadir−zutopia‖

. Therefore the function to be minimized in the optimization

problem is:

F (x) = zutopia + t · τ (1.1.21)

which minimizes F(x) by moving towards the utopia point while staying on the line

connecting the utopia and nadir points. To be properly used in an engineering context,

it is necessary to slightly modify this formulation by normalizing each "variable" with

respect to the utopia and nadir points. Speci�cally:

f ′1(x) =
f1(x)

f1(x∗2)− f1(x∗1)
(1.1.22)

f ′2(x) =
f2(x)

f2(x∗1)− f2(x∗2)
(1.1.23)

τ ′1 =
f ′1(x∗2)− f ′1(x∗1)√

(f ′1(x∗2)− f ′1(x∗1))2 + (f ′2(x∗1)− f ′2(x∗2))2
(1.1.24)

τ ′2 =
f ′2(x∗1)− f ′2(x∗2)√

(f ′1(x∗2)− f ′1(x∗1))2 + (f ′2(x∗1)− f ′2(x∗2))2
(1.1.25)

It is therefore possible to rewrite the equation 1.1.21 as follows:[
f ′1(x)

f ′2(x)

]
=

[
f ′1(x∗1)

f ′2(x∗2)

]
+ t ·

[
τ ′1
τ ′2

]
(1.1.26)
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and eliminating the auxiliary variable "t" we obtain the following:

t =
f ′1(x)− f ′1(x∗1)

τ ′1
=
f ′2(x)− f ′2(x∗2)

τ ′2
(1.1.27)

these equation must be satis�ed in order to �nd the solution KS. These two terms can

be associated with two functions:

g1(x) =
f ′1(x)− f ′1(x∗1)

τ ′1
(1.1.28)

and

g2(x) =
f ′2(x)− f ′2(x∗2)

τ ′2
(1.1.29)

i.e. it must be:

g1(x) = g2(x) (1.1.30)

Finally, the functions 1.1.28 and 1.1.29 must be combined with the function 1.1.30 using

a penalty coe�cient ρ, resulting in the following function:

gp(x) = g1(x) + g2(x) + ρ|g1(x)− g2(x)| (1.1.31)

By minimizing this function, it is possible to obtain an approximation of the KS solution.

As proposed in the cited article [6], in this discussion, a ρ equal to one has been imposed.

However, it is important to note that while in a game with only two players the solution

is unique and satis�es all the axioms de�ned in section 1.1.2, in the case of three or more

players, only some of them are satis�ed: Pareto optimality, a�ne invariance, and equity

in bene�t ratio [15].

Therefore, both the Kalai-Smorodinsky and the Nash Bargaining solutions are partic-

ularly interesting for games with many players because they easily adapt to multiple

objectives and provide a unique solution without the need to approximate the extensive

Pareto front.

As de�ned, it is evident that these solutions heavily depend on the chosen disagree-

ment point. A common choice for this point is the Nadir one, but di�erent authors also

consider the Nash equilibrium point derived from non-cooperative game theory. In this

discussion, both will be considered as disagreement points. The �rst one is chosen due

to its widespread use in the literature, while the second one, being an equilibrium point
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found without cooperation among players, can be considered as a point of disagreement

in cooperative games. That is, if the players fail to reach an agreement in the coop-

erative game, they may resort to playing non-cooperatively and converge to the Nash

equilibrium.

1.2 Game Theory - MOOP Algorithm

The algorithm for conducting multi-objective optimization using Game Theory has

been implemented in Python. This algorithm takes as input a set of functions that need

to be optimized simultaneously, whether they are arithmetic functions or simulations

of entities conducted through external software. For instance, in this thesis, collective

self-consumption simulations will be utilized. It is also necessary to provide the con-

straints of the design variables within the functions, as well as, if required, the limits

of the functions themselves and also the distribution of design variables among di�erent

players for the calculation of the non-cooperative Nash equilibrium point. With this

data, the algorithm performs multi-objective optimization and typically returns seven

points: the Utopia point, the Nadir point, the non-cooperative Nash equilibrium point,

and four additional solutions, namely the Nash Bargaining and Kalai-Smorodinsky equi-

librium points that consider the Nadir or the non-cooperative Nash equilibrium as the

disagreement points. The �rst three points do not represent the optimization solutions

but serve as starting points for determining the Nash Bargaining and Kalai-Smorodinsky

equilibria, which, in turn, represent the actual solutions of the algorithm.

It is important to bear in mind that in cases where there are constraints on the objec-

tive functions or when the number of objective functions exceeds the number of design

variables, the calculation of the non-cooperative Nash equilibrium point is not possible.

As a result, the actual solutions are reduced to two: the Nash Bargaining equilibrium

and the Kalai-Smorodinsky equilibrium, both starting from the Nadir.

1.2.1 Game Theory - MOOP Test

After implementing the optimization algorithms described above in Python, it was

decided to conduct tests to verify the proper functioning of the script. To do this,
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considering that the points found should lay on the Pareto Front, tests were carried

out using benchmark functions for its determination. Therefore, it was essential to �rst

implement an algorithm to determine the Pareto Front. Among the various available

options, some of which were previously mentioned in Chapter 1, the decision was made to

utilize NSGA2, speci�cally the implementation provided by pymoo [16]. The benchmark

functions used for the tests are instead some of those presented in [17], speci�cally the

Binh and Korn function, the Chankong and Haimes function, and the Viennet function.

The �rst two functions are the simplest, featuring only two objective functions and two

design variables, but they were bene�cial during the initial phase of the experiments.

They were implemented without constraints for convenience. The Viennet function, on

the other hand, is more complex, featuring three objective functions, and it was used to

verify the algorithm's generalization to higher dimensions. However, this function only

has two design variables, which prevents the determination of non-cooperative Nash. As

a result, further tests were conducted on custom-created problems with three objective

functions and three design variables. In particular one of the analyzed problem is the

following one:

Minimize =


f1 = (x0 − 1)2 + x2

1 + x2

f2 = (x0 + 1)2 + +2 · x1 + x2
2

f3 = −x0 + x2
1 + (x2 − 1)2

(1.2.1)

where all variables are bounded between -5 and 5.

1.2.1.1 Results for the benchmark functions

This section presents the results of the multi-objective optimization using Game

Theory for the di�erent benchmark functions. In particular, for the Binh and Korn

function the obtined values of variables and objective functions are reported respectively

in Figures 1.7 and 1.8:
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Figure 1.7: Design Variable Space of the Binh and Korn Function

Figure 1.8: Objective Functions Space of the Binh and Korn Function

From the design variables graph, it is evident that there are two points for both the

Utopia and the Nadir. It is important to note that the points are the same, but those
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of the Nadir overlap with those of the Utopia. These two points represent the values of

the design variables that minimize (for the Utopia) and maximize (for the Nadir) the

functions f1 and f2.

The obtained results are presented more clearly in the following tables:

Table 1.2: Variable values for the Binh and Korn function

Variable x1 x2

Utopia for f1 0.0 0.0
Utopia for f2 5.0 3.0

PseudoNadir for f1 5.0 3.0
PseudoNadir for f2 0.0 0.0

Nash 0.0 3.0
NB_nadir 2.1 2.1
NB_nash 1.7 1.7
KS_nadir 2.1 2.1
KS_nash 1.8 1.8

Table 1.3: Objective values for the Binh and Korn function

Objective_Functions f1 f2
Utopia 0.0 4.0

PseudoNadir 135.9 50.0
Nash 35.9 29.0

NB_nadir 36.3 16.5
NB_nash 22.3 22.2
KS_nadir 36.6 16.4
KS_nash 24.6 21.1

For the Chankong and Haimes function, instead, only graphical results are reported

to avoid excessive verbosity. In particular, the results for the variables are depicted in

Figure 1.9, while the results for the objective functions are shown in Figure 1.10:
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Figure 1.9: Design Variable Space of the Chankong and Haimes Function

Figure 1.10: Objective Functions Space of the Chankong and Haimes Function

Since these benchmark problems have only two design variables and two objective

functions, it is possible to provide a graph similar to that in Figure 1.1, which allows for
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a detailed analysis of the functioning of the non-cooperative Nash algorithm, iteration

by iteration. Speci�cally, for the Binh and Korn function, it would be as follows:

Figure 1.11: Design Space for non-cooperative Nash

As can be observed from Figure 1.11, starting from the initial point xstart, objec-

tive function f1 is minimized by varying only x1 and therefore it moves to the left until

reaching the value x1 = 0. At the same time, objective function f2 is minimized by

varying x2 and it moves upwards, reaching the value x2 = 3. Thus, the new value for

the next iteration is created as x = (0, 3) which, due to the simplicity of the functions,

is already the equilibrium point. The second iteration con�rms this, identifying it as a

non-cooperative Nash point.

Subsequently, the multi-objective optimization for the Viennet function was carried out,

taking into account the considerations for the three-dimensional space of the objective

functions previously reported. Therefore, the obtained results for the variables are pre-

sented in Figure 1.12:
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Figure 1.12: Design Variable Space of the Viennet Function

while the values of the results for the objective functions are reported in Figure 1.13.

The obtained results are presented more clearly in the following tables:

Table 1.4: Variable values for the Viennet function

Variable x1 x2

Utopia for f1 0,0 0,0
Utopia for f2 -2,0 -1,0
Utopia for f3 0,0 0,0

PseudoNadir for f1 -2,0 -1,0
PseudoNadir for f2 0,0 0,0
PseudoNadir for f3 -2,0 -1,0

NB_nadir -0,4 0,2
KS_nadir -0,4 0,3

Table 1.5: Objective values for the Viennet function

Objective_Functions f1 f2 f3
Utopia 0,0 15,0 -0,1

PseudoNadir 1,5 17,0 0,2
NB_nadir 0,3 15,8 -0,1
KS_nadir 0,4 15,6 -0,1
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(a)

(b)

Figure 1.13: Objective Functions Space of the Viennet Function
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Finally, as mentioned earlier, speci�c problems were created to test the non-cooperative

Nash approach in the case of three objective functions. For the problem expressed in

Equation 1.2.1, only the graphical representation of the objective function results is

reported, Figure 1.14:

Figure 1.14: Objective Functions Space of problem1
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Having conducted these and other tests, su�cient con�dence was gained in the

proper functioning of the implemented multi-objective optimization through Game The-

ory script. Consequently, it became possible to proceed with the thesis and integrate it

with the CSCoupled simulation program for collective self-consumption and renewable

energy communities.

1.2.2 Choice of the single-objective minimization algorithm

Although the problems addressed are multi-objective in nature, due to the imple-

mentation of the optimization algorithm, it is still necessary to perform single-objective

minimizations.

For this purpose, several tests were conducted on the benchmark functions using the

following minimization solvers:

� shgo from scipy [18]: a global optimization method that �nds the global minimum

of a function using Simplicial Homology Global Optimization. This algorithm is

suitable for solving generic black-box optimization problems and has demonstrated

convergence on problems with nonlinear objective functions and with constraints

[19];

� GA: Genetic Algorithm from pymoo [20]: a global optimization method that sim-

ulates natural evolution. It starts by generating an initial population, evaluates

individuals based on the problem, and then uses �tness-based selection, crossover

operator, and mutation to obtain optimal solutions over multiple generations.

� DE: Di�erential Evolution from pymoo [21]: a global optimization algorithm that

utilizes di�erential crossover to generate new solutions. The algorithm combines the

di�erences between individuals to create new candidate solutions. This technique

is e�ective in �nding global solutions for complex optimization problems;

� Nelder Mead from pymoo [22]: a direct search algorithm based on a simple geo-

metric concept. It employs a combination of re�ection, expansion, and contraction

operations to iteratively adapt a simple polyhedron to an objective function. It is

capable of approaching a local minimum by adapting to changes in the function's

topology [23];
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� Pattern Search from pymoo [24]: an optimization algorithm that evaluates the sur-

rounding points to �nd a local minimum of a function. It does not require di�er-

entiability and can adapt to nonlinear problems or with complex constraints. The

algorithm is based on the search for prede�ned patterns to guide the exploration

of the solution space. While primarily it is a method for local minimization, it can

be combined with other techniques to enhance the search for a global minimum.

[25];

� ES: Evolutionary Strategy from pymoo [26]: similar to the Genetic Algorithm since

both simulate natural evolution. However, it employs a stochastic parent selection

process where all individuals contribute to the next generation. Furthermore, unlike

the GA, the ES does not use a crossover operator and, instead, solutions are

directly mutated through small random modi�cations of their values.

This selection of solvers provides various optimization strategies to address the problems

within the context of the thesis, considering their e�ectiveness, adaptability, and speci�c

properties.

The population-based methods, despite producing similar results to other approaches,

require longer computation time compared to shgo, Nelder Mead, and Pattern Search.

This factor may present challenges in future implementations. On the other hand, the

three aforementioned methods have proven to be the most promising in terms of compu-

tation time and result accuracy. However, considering that the latter two are local search

methods, the decision was made to utilize shgo instead for the subsequent analysis, given

its global optimization capabilities.
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Chapter 2

Cscoupled

In this thesis work, the aim is to perform a multi-objective optimization of a collective

self-consumption system. As stated in the Italian directives [3], this is a speci�c mode

of sharing electrical energy in which all end-users are located in the same building or

condominium.

However, the condominium can be modeled in two di�erent con�gurations [27]:

� Physical self-consumption: It involves a direct private connection between the gen-

eration system and domestic/common users, with a single Point of Delivery (POD)

to the public grid, as shown in Figure 2.1a;

� "Virtual" self-consumption: It involves the use of the public grid for energy ex-

change between generation and consumption units, as illustrated in Figure 2.1b.

Nevertheless, despite the fact that the "virtual" self-consumption con�guration implies

that all the energy generated by the system is injected into the grid and the entire energy

demand is met through the grid, from a practical standpoint, these two con�gurations

can be considered equivalent. This is possible due to the proximity of the consump-

tion units to the generation installation. The di�erence lies instead in regulatory and

economic aspects, as the current regulations ([3], [27]) require each consumption unit

(such as each household) to be connected to the public grid through its own POD. This

requirement is implemented to ensure consumer freedom in choosing an energy supplier

and to enable free entry and exit from the collective self-consumption. These principles

are only adhered to in the virtual con�guration, which will therefore be the subject of

the analysis.
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(a) Physical self-consumption scheme

(b) Virtual self-consumption scheme

Figure 2.1: Schemes of a collective self-consumption (adapted from [27])

To simulate the behavior of collective self-consumption, the Python program CSCou-

pled is utilized, which is an adaptation of the more general program RECoupled ([28],
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[29]), tailored for individual collective self-consumption. This program considers the con-

dominium as a single energy node connected to the national power grid, through which

it can withdraw the missing electrical energy or inject surplus energy.

Currently, energy sharing exclusively regards electricity. However, within the energy

node, various energy vectors can be considered by utilizing renewable technologies, stor-

age systems, and conversion components (such as heat pumps). Figure 2.2 provides a

detailed, albeit not necessarily exhaustive, example of a multi-vector energy node. In

addition to diverse technologies, connections with other energy networks, such as nat-

ural gas and district heating/cooling, are also considered to meet local energy needs.

Nevertheless, energy sharing on these networks is not yet regulated, and therefore, self-

generated energy must be consumed locally.

Figure 2.2: Schematic representation of an active energy node with multiple energy vectors
(adapted from [28])
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2.1 Components

In CSCoupled, the di�erent components of collective self-consumption are simulated.

The main ones include:

� Generatio plant;

� Boiler;

� Heat Pump;

� Consumption units and electric grid.

Generatio plant

According to the Decree Law 162/2019 [3], the generation system of a collective self-

consumption must be based on renewable energy sources. There are no restrictions on

the speci�c type of system, which could be a photovoltaic system, a micro-hydroelectric

system, small wind turbines, and so on. However, considering the residential context

and the constraints on con�guration, it seems that the photovoltaic system is the most

suitable and easily implementable choice [30].

In the context of CSCoupled, the speci�c choice of the generation system is not crucial

since it only requires the hourly production pro�les of the unit from the renewable

installation, regardless of the technology used.

Boiler

The boiler used in the context of the collective self-consumption is a natural gas boiler.

Its main purpose is to heat water used for domestic purposes, such as space heating.

The choice of a natural gas boiler is based on its e�ciency and reliability in providing

hot water quickly and continuously.

Heat Pump

The improving performance of heat pumps is paving the way for a broader adoption of

this technology, contributing to the electri�cation and decarbonization of energy con-

sumption in residential buildings. In fact, the heat production by a heat pump is

generally more energy-e�cient compared to a traditional boiler, resulting in expected

positive e�ects in terms of energy savings, costs, and emissions [31]. For these reasons,
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the integration of an Air Source Heat Pump (ASHP) is introduced within the collective

self-consumption system to complement the existing conventional boiler.

However, it is necessary to avoid potential oversizing of the heat pump in order to limit

the economic impact of this technology, while maximizing the heat production from this

component compared to that of the existing gas boiler. In this perspective, the maximum

capacity of the heat pump is not calculated based on the overall peak heating demand

but according to the average peak demand during the coldest months.

The electrical consumption of the heat pump, required for the simulation, is calculated

using the Coe�cient of Performance (COP).

Consumption units and electric grid

The consumption units (individual apartments) are considered as "passive" energy des-

tinations, meaning that their power demand must be met at all times and their con-

sumption pro�le cannot be modi�ed. On the other hand, the electrical grid is simply

modeled as a source/sink of energy, with the only limitation being the maximum power

it can provide. Since the system is virtual, the grid satis�es the entire demand of the

consumption units. The maximum power is the sum of the individual contractual powers

that can be supplied at the POD of the homes, which is typically around 3 kW in the

residential context.

2.2 Input data

CSCoupled requires few input data to run the simulation. Speci�cally, the following

information needs to be provided in CSV format: hourly production pro�les from the

renewable generation plant, energy demand pro�les of the apartments, and the electrical

and thermal demand of the entire condominium. Additionally, some numerical values are

required within the script, such as the number of apartments, the sizes of the renewable

generation plant and heat pump in kW , and all the costs of the variuous energy �ows,

as well as the investment, operational, and maintenance costs of the various installed

devices.
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2.3 Simulation of the energy node

The simulation process of CSCoupled involves the calculation of energy �ows within

the collective self-consumption system, considering all energy vectors and technologies

involved.

To better understand how the optimization in CSCoupled works, it is advisable to provide

a clearer explanation of what happens within the energy node of the condominium.

The electric energy generated by photovoltaic panels can be utilized in various ways.

Firstly, it is used by the heat pump for conversion into thermal energy, if necessary.

If there is still available electric power, it is consumed by the consumers to meet their

own electrical needs. As mentioned earlier, this is done through the national grid, but

since production and consumption are in close proximity, it is considered as physical self-

consumption. Finally, if there is still excess energy, it can be fed back into the electrical

grid. On the other hand, consumers can meet their energy demand by directly utilizing

the energy from the production plant, as mentioned earlier, or, in the case where the

energy demand is still not ful�lled, they can purchase electricity from the grid.

The heat pump, instead, can utilize energy from the photovoltaic panels or from the

electric grid to produce hot air for the condominium when needed. In case the available

energy is not su�cient, the backup boiler comes into operation to provide the additional

energy.

The tool uses the input data to determine all energy �ows within the collective self-

consumption and subsequently, the procedure calculates the annual data required for

energetic and economic assessment, through Key Performance Indicators (KPIs), for the

di�erent con�gurations.

2.4 Key Performance Indicators

KPIs are used to evaluate the performance of collective self-consumption once it has

been simulated, typically on an annual basis. Two groups of KPIs are considered: energy-

related and economic-related.

The energy-related KPIs taken into account are self-consumption and self-su�ciency.

Self-consumption indicates the percentage of internally generated energy that is actu-
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ally consumed within the system, rather than being injected into the electrical grid.

Self-su�ciency, on the other hand, refers to the ability to meet one's own energy needs

without relying on external sources. A system is considered self-su�cient when it can

generate all the energy required to cover its internal consumption without having to

purchase energy from the electrical grid.

These energy indicators, in addition to their de�nition, also provide insights into the

environmental situation and the utilization of the grid. In particular, maximizing self-

su�ciency guarantees a reduction in carbon dioxide production and the use of the na-

tional electrical grid, as less energy is drawn from it. On the other hand, maximizing

self-consumption does not provide signi�cant information regarding the reduction of car-

bon dioxide emissions. This is because a high value of self-consumption could simply

result from a small amount of energy being consumed locally. However, maximizing self-

consumption implies a lower injection of energy into the grid, which, if excessive, could

cause issues in the electrical system as, while it was designed to supply all the energy

demanded by consumers, it was not intended for high levels of decentralized power in-

jection.

The economic KPIs considered are, instead, the Internal Rate of Return (IRR), which

represents the e�ective interest rate that makes the Net Present Value of a cash �ow

equal to zero and the Percentage Cost Reduction (PCR), which is de�ned to compare

the annual costs of the collective self-consumption scheme with those in which this con-

�guration is not adopted.

To calculate the economic indicators, it is necessary to consider various incentives. How-

ever, since the economic scenario for renewable energy communities and collective self-

consumption is still evolving, it was decided to consider incentives from past years. In

particular, the Italian government provides incentives for shared energy, as it reduces

the demand for energy from the national grid. According to the Decree Law 162/2019

[3], the energy that is virtually shared is de�ned as the minimum hourly value between

the total energy supplied to the grid and the total energy drawn from the grid, either

instantaneously or through a storage system. However, a portion of the production may

still be physically self-consumed, for example, to power the heat pump or shared services

such as an elevator or common area lighting. In this case, the energy supplied to the
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grid must be reduced by the amount of energy that is directly self-consumed.

In particular, globally, the economic value of shared energy in collective self-consumption

con�gurations can be approximately considered as 110 e/MWh [32]. Furthermore, all

the energy injected into the grid can bene�t from the dedicated withdrawal service and

be sold at the zonal hourly market price, which is generally lower than the retail price

[32].

Additionally, the Italian government has implemented an incentive program aimed at

promoting the adoption of renewable energy generation in the residential sector. Ac-

cording to this program, 50% of the capital costs for installing a photovoltaic system

and 65% of the investment costs for a heat pump can be recovered over a ten-year period

through tax deductions [33]. However, it is important to clarify the situation regarding

the heat pump. With an average lifespan of approximately 10 years, once this period has

expired, it becomes necessary to purchase a new unit. Nevertheless, it is crucial to note

that the incentives are only applicable when replacing a traditional production system.

Therefore, when purchasing a new heat pump, the incentives are no longer available.

It is important to note that di�erent KPIs can con�ict with each other and therefore

cannot be maximized simultaneously. The sizing of collective collective self-consumption

thus becomes a multi-objective problem.
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Chapter 3

Case Study

In this thesis, an analysis on collective self-consumption is carried out within a multi-

family residential building. In order to ensure greater generality, the simulation is based

on the most common type of multi-family building in Italy, speci�cally those constructed

between 1961 and 1975, as illustrated in Figure 3.1.

Figure 3.1: Share of residential building in Italy by construction period (adapted from [31])

The case study considered in this thesis shares similarities with the one described in

the article by Canova et al. [31]. In the analyzed building, there is indeed a rooftop
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photovoltaic system installed to partially cover the electrical energy demand, along with

an heat pump supported by an auxiliary boiler for the thermal demand, as reported in

the aforementioned article. The detailed operation of these components is described in

Section 2.3, while a schematic representation of collective self-consumption is illustrated

in Figure 3.2.

Figure 3.2: Collective self-consumption in multifamily residential building [31]

Figure 3.3 provides a clear representation of the power �ows within the analyzed

collective self-consumption setup. Energy �ows within the building are divided into two

parts: the electrical side and the thermal side. On the thermal side, the energy demand

of the apartments can be met through two options: the utilization of a heat pump and

the use of a gas boiler. On the electrical side, the energy generated by the photovoltaic

system can be used to power the heat pump, satisfy the electrical demand of the con-
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sumers, or be sold back to the grid. When photovoltaic production is lower than the

internal demand or absent, electricity is purchased from the grid. For modeling purposes,

domestic users within the building can be treated as a virtual aggregated load that draws

from the grid an amount of electrical energy equal to the sum of the households' demands.

Figure 3.3: Scheme of the energy �ows in the collective self-consumption con�guration (adapted
from [31])

In the context of the analysis that will follow, two distinct scenarios are explored for

simulating the collective self-consumption. In the �rst scenario, referred to as the Purely

Electrical scenario, households install only a rooftop photovoltaic system to partially

cover their electrical energy needs. The centralized heating demand, on the other hand,

is met through a gas boiler. In the second scenario, referred to as the Electrical and

Thermal scenario, one additional component is introduced, namely a heat pump, to

partially ful�ll the heating demand while simultaneously increasing the consumption of
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renewable electrical energy at the local level.

Before proceeding with the simulations, it is necessary to import the relevant input data

for the proper con�guration of the scenarios.

3.1 Case study input data

The initial data required for the simulation are provided in Section 2.2.

In particular, the number of apartments was set to 40 as it represents the average value

for buildings constructed between 1961 and 1975, as reported by Corrado et al. [35]. As

for the costs related to energy �ows, investments, and the operation/maintenance of the

installed devices, this information was extrapolated from [31].

Particular attention should be paid to other single numerical value data to be included

in the script, namely the sizes in kW of the renewable generation system and the heat

pump. These variables will be subject to the multi-objective optimization through Game

Theory, and depending on the simulation case, they may vary or be set to zero, depending

on whether they are used and their optimal size is sought, or whether they are absent in

the simulation. It is therefore important to establish size limits for these technologies.

These have been determined by technical constraints, such as the available roof area and

the dimensions of the heat pump, or approximately calculated to meet the demand of

the consumers, Section 2.1.

Finally, the CSV data has been determined as described in the following sections.

3.1.1 PV's production pro�les

The required data for the photovoltaic system, as mentioned earlier, are the unitary

hourly production pro�les. These data have been obtained using the online tool PVGIS

(PhotoVoltaic Geographical Information System) developed by the JRC (Joint Research

Center) [34], with the reference location set to Torino. PVGIS uses solar irradiation

values and external temperature (which a�ects the e�ciency of the photovoltaic panels)

to estimate the energy generated during each hourly interval.
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3.1.2 Thermal demand of the building

The data concerning the thermal demand of the building were extrapolated from

the article by Canova et al. [31]. Speci�cally, Canova et al., after selecting the refer-

ence building with the physical characteristics reported in the article by Corrado et al.

[35], estimated the heating demand using a simpli�ed steady-state approach. In this ap-

proach, only the thermal losses through transparent/opaque surfaces and ventilation are

considered, while contributions from internal loads, solar gains, and the thermal mass of

the building are neglected. The approach proposed in [31] takes into account the hourly

variation of air temperature and assumes a �xed reference indoor temperature. Conse-

quently, the hourly thermal load for heating the reference building can be calculated by

summing the following contributions: heat loss through external walls, heat loss through

the roof, heat loss through the ground, heat loss through internal walls, heat loss through

transparent surfaces (e.g., windows), and heat loss due to ventilation. In the article [31],

the necessary data were extracted from the JRC dataset available for all European Union

countries [36].

Finally, as indicated in [31], the thermal demand was adjusted taking into account the

Italian regulations that regulate the daily and seasonal activation/deactivation of heating

systems based on the annual heating degree days and speci�c climatic zones [37].

3.1.3 Electricity demand of the building

The considered multifamily residential building, as mentioned earlier, consists of

40 apartments. Under the assumption that all families have joined the collective self-

consumption, it is necessary to estimate the hourly load pro�le of the families within the

building. This has been extrapolated from the article by Canova et al. [31], where the

hourly load pro�le is derived by assuming the annual demand of the families and consid-

ering a normalized load pro�le for residential end-users. Subsequently, the normalized

pro�le is appropriately scaled to preserve the aggregate annual electricity demand.

Finally, the hourly load pro�le of the families is combined with the electricity demand

of the heat pump, so that the total electricity consumption of the residential building is

also in�uenced by the thermal demand. This highlights the interconnected nature of the
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analyzed con�guration in the present study. Other electricity consumptions arising from

the common areas of the reference building, such as common area lighting, are neglected.

3.2 Energetic evaluation

CSCoupled then utilizes the input data to simulate the energy node in the collective

self-consumption and calculates the following energy �ows:

� The energy injected into and withdrawn from the grid by the building, excluding

consumers, solely dependent on the energy from the photovoltaic system and heat

pump consumption;

� The input energy (in the form of gas) and output power (in the form of thermal

power) from the backup boiler;

� The input electrical power and output thermal power from the heat pump;

� The shared energy;

� The normalized load of domestic consumers;

� The thermal power output from the boiler in the case without collective self-

consumption and, thus, without the heat pump;

� The normalized load of domestic consumers in the case without collective self-

consumption. It is important to note that this value remains constant regardless

of the presence or absence of collective self-consumption, as the energy demand of

consumers does not vary.

These data are then used to calculate the energy and economic KPIs previously described,

Section 2.4.

3.3 Business model

It is now necessary to de�ne an appropriate business model for this con�guration in

order to evaluate the key economic performance indicators.

Firstly, it is important to clarify how the investment for implementing collective self-

consumption is carried out. While it is possible for individual consumers to individually

bear the investment costs, this analysis assumes the presence of an external investor
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who takes on the expenses of implementation and management of the collective self-

consumption. This choice has been made to lighten the initial burden for consumers,

who do not have to incur any costs and therefore make the initiative more appealing.

All expenses are therefore borne by the external investor, who is not part of the collec-

tive self-consumption but, as a result, expects an economic return for the entire project

duration, which has been set at 20 years.

The investment analysis is considered from three perspectives: that of the investor, who

has covered all the expenses; that of the "condominium", which focuses only on the

common consumption, particularly the thermal consumption in the analyzed case; and

that of the consumers, represented by the 40 families that include all the electrical con-

sumption. The distinction between "condominium" and consumers has been made in

order to clearly highlight the economic bene�ts derived from the thermal or electrical

perspectives.

As a result, two possible business models have been hypothesized. In the �rst model,

revenues and savings are divided among consumers, condominium, and investor using

pro�t-sharing variables. In the second model, on the other hand, all revenues and savings

are exclusively allocated to consumers and the condominium, on the condition that they

purchase electricity only from the investor at an increased price.

Subsequently, a further analysis highlighted that the second model requires the devel-

opment of a business model for the external electricity supply by the investor to meet

consumer demand and, therefore, it was decided to adopt the �rst business model.

3.3.1 Business Model's implementation

The analyzed Business Model involves the allocation of savings generated by the cre-

ation of collective self-consumption among the Investor, the Consumers, and the Condo-

minium, using two pro�t distribution variables: βcons and βbuild respectively.

It is important to clarify that consumers maintain their energy demand constant, but

through the use of shared energy, they receive a portion of the economic incentives for this

energy as well as for the energy fed into the grid. It can be stated that this component of

collective self-consumption generates "revenues." On the other hand, the condominium,

thanks to the heat pump, reduces its demand for gas supplied by the national grid,
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which results in potential economic savings. Although these are not actual "revenues",

the expenses related to the raw material decrease for the condominium.

Therefore, the "economic bene�ts" derived from collective self-consumption can be di-

vided into two categories: consumer bene�ts, benefitscons, which include incentives

for shared and fed-in energy, and condominium bene�ts, benefitsbuild, which represent

the reduction in expenses for the thermal energy component. The latter corresponds

to the di�erence between the expenses incurred in a situation without collective self-

consumption and the expenses in a situation with collective self-consumption.

It is therefore possible to de�ne the cash �ows for the three parts considered:

� the cash �ows for consumers are determined by the expenses for the electricity

demand, expvwith, and by a part of the benefitscons, in particular:

cfcons = −expvwith + (1− βcons) · benefitscons (3.3.1)

� the cash �ows for the condominium, on the other hand, include expenses related

only to the condominium's electricity withdrawn, expwith, and gas expenses, expgas.

Additionally, a portion of the benefitsbuild needs to be subtracted. Therefore, it is:

cfbuild = −expwith − expgas − βbuild · benefitsbuild (3.3.2)

Although it may seem that the expenses are increasing, it is important to note that,

thanks to the use of a heat pump, the absolute costs remain lower compared to those

incurred in a situation without the implementation of collective self-consumption;

� �nally, the cash �ows for the investor include, as already mentioned, the initial in-

vestment capex, the operating costs opex, and the missing portions of the economic

bene�ts, i.e.:

cfinv = −capex− opex+ βcons · benefitscons + βbuild · benefitsbuild (3.3.3)

It is necessary to further clarify the usage of βcons and βbuild. These variables do not

have a prede�ned value but will be some of the variables utilized in multi-objective

optimization through Game Theory. Therefore, they can vary within prede�ned limits

in order to determine their optimal value. Speci�cally, the limits have been set between

0.1 and 1, where the lower limit has been de�ned to ensure a minimum return for the

investor during the optimization process.
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3.4 Simulation and Game Theory MOOP integration

It is now possible to simulate the collective self-consumption of the case study using

CSCoupled and determine its optimal con�gurations through multi-objective optimiza-

tion using Game Theory.

This optimization process, as already expressed in Section 1.2, ultimately yields seven

points. The �rst three points, namely Utopia, Nadir, and non-cooperative Nash equilib-

rium, serve as the starting point for determining the actual solutions. The sought-after

solutions are, in fact, Nash Bargaining equilibrium and Kalai-Smorodinsky equilibrium.

Both of these methods strive for the Utopia, and two solutions were found by setting the

Nadir point as the disagreement point, while the other two were obtained from the non-

cooperative Nash equilibrium. The determination of this point, as suggested in Section

1.1.1, involves a combination of sensitivity analysis and considerations of the physical

behavior of di�erent components when allocating the design variables.

To perform the optimization, it is necessary to �rst de�ne the objective functions to be

associated with the players and the variables that in�uence them. These settings may

vary depending on the speci�c case under consideration, but it is crucial to bear in mind

that, due to the way the algorithm is implemented in the context of non-cooperative

Nash equilibrium, the number of variables must be equal to or greater than the number

of players and, consequently, the number of objective functions that need to be analyzed

(see Section 1.1.1). It was therefore decided to analyze two di�erent cases: a Purely

Electrical Case and an Electrical and Thermal Case.

Purely Electrical Case

The Purely Electrical Case is the simplest scenario as it involves only two design vari-

ables: the size of the photovoltaic system and the variable for distributing the economic

bene�ts of the consumer. Since there is no heat pump, the thermal situation of the con-

dominium remains unchanged compared to the case without collective self-consumption,

and therefore, it is not necessary to consider the condominium bene�ts (benefitsbuild).

With only two design variables, if the non-cooperative Nash equilibrium is also desired

to be analyzed, only two objective functions can be included. The chosen functions in-

clude the Internal Rate of Return for the investor and the Percentage Cost Reduction
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for consumers.

For this case, having only two design variables, it is also possible to compare it with

traditional multi-objective optimization and �nd the entire Pareto Front and the most

commonly selected solution in this case, which is the point closest to the utopia.

However, in the context of optimization through Game Theory, it is also possible to con-

sider a greater number of objective functions. In this case, though, the non-cooperative

Nash solution point and the Nash Bargaining and Kalai-Smorodinsky solutions derived

from it are lost.

Electrical and Thermal Case

For what concerns the case that includes both the electrical and thermal aspects, the

number of involved design variables increases. In this scenario, in fact, in addition to the

photovoltaic system, the heat pump is also simulated, resulting in four design variables,

including the size of the heat pump and the variable for distributing the economic bene-

�ts for the condominium. Therefore, if one also wishes to calculate the non-cooperative

Nash equilibrium point, a maximum of four objective functions can be selected for op-

timization. In this case, to maintain consistency with the Purely Electrical scenario,

the following objective functions have been chosen: the Internal Rate of Return for the

investor, the Percentage Cost Reduction for consumers, and the Percentage Cost Reduc-

tion for the condominium.

For this case as well, given the limited number of design variables and objective functions,

it is possible to compare it with traditional multi-objective optimization.
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Chapter 4

Analysis of Results

In this chapter, the results of multi-objective optimizations using Game Theory for

the examined collective self-consumption will be calculated and analyzed. Initially, the

two cases described in the previous chapter will be explored, while also calculating the

entire Pareto Front and its point closest to Utopia. This will allow for a comparison with

traditional multi-objective optimization.

4.1 Results of the Purely Electrical Case

As mentioned earlier, the design variables in this case are the size of the photovoltaic

system, pvsize, and the variable for the distribution of economic bene�ts of the consumers,

βcons, while the objective functions are the Investor Internal Rate of Return, irrinv, and

the Consumer Percentage Cost Reduction, pcrcons.

For the determination of the non-cooperative Nash equilibrium, the variable pvsize has

been assigned to the player controlling irrinv, while the variable βcons has been assigned

to the player controlling pcrcons.

During the optimization, it was noticed, however, that in this situation the solution

values for the IRR of the investor are too low or take on NaN (Not a Number) values,

causing the malfunction of the optimization algorithm. NaN values occur when there

are no positive cash �ows for the investor.

For this reason, it was decided to implement some constraints on the objective functions,

forcing them to take values greater than zero. However, due to the reasons expressed in

Section 1.1.1.2, this modi�cation makes it impossible to determine the non-cooperative

CAP. 4 Analysis of Results 52



4.1 Results of the Purely Electrical Case

Nash point, and consequently, the solutions derived from it are not calculated.

Once these constraints are set, it becomes possible to determine the optimal solutions.

Speci�cally, the results of the design variables for these solutions are as follows:

Figure 4.1: Variable space for solutions of the Purely Electrical Case

while the values of the objective functions are the following:
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Figure 4.2: Objective function space for solutions of the Purely Electrical Case

The values can be visualized more clearly in a tabular format:

Table 4.1: Values of the variables for the solutions of the Purely Electrical Case

Variable pvsize [kW ] βcons
Utopia for irrinv 16.5 1.00
Utopia for pcrcons 98.5 0.30

PseudoNadir for irrinv 98.5 0.30
PseudoNadir for pcrcons 16.5 1.00

Closest to Utopia 100.0 0.47
NB_nadir 100.0 0.61
KS_nadir 100.0 0.69
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Table 4.2: Values of the objective functions for the solutions of the Purely Electrical Case

Objective_Functions irrinv pcrcons
Utopia 34.67% 53.79%

PseudoNadir 0.00% 0.00%
Closest to Utopia 8.12% 40.95%

NB_nadir 12.79% 30.55%
KS_nadir 15.46% 23.98%

From Table 4.1, it can be observed an "odd" behavior for the design variables in

determining the Utopia point for the irrinv function. As expected, the optimal value

is achieved when βcons is equal to 1, indicating that all the incentives go to the player

controlling the investor's IRR. However, the calculated size of the photovoltaic system

is around 16 kW , rather than taking lower values. This cannot be explained by the con-

straints imposed on the objective functions, as the PCR of the consumer, by de�nition,

is always greater than zero. In fact, this phenomenon can instead be explained by the

behavior of the irrinv objective function with varying pvsize, as illustrated in Figure 4.3:

Figure 4.3: Investor's IRR trend as a function of pvsize

Indeed, it can be observed that for any value of βcons, the IRR of the investor reaches a
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plateau around a pvsize value of 20 kW . In other words, below this size of the photovoltaic

system, the irrinv remains nearly constant.

This phenomenon can be attributed to the patterns observed in initial investment costs

(capex) and operational expenses (opex), as well as the revenues generated from energy

sharing and grid injection. Speci�cally, when considering photovoltaic systems below

the 20 kW threshold, the increase in capex and opex costs is nearly proportional to the

rise in energy revenues. However, once the 20 kW threshold is surpassed, the shared

energy revenues experience a comparatively lower growth rate, leading to a reduction in

the investor's Internal Rate of Return.

Another behavior that may appear unusual is the optimization for pcrcons, which does

not reach the maximum size of pvsize and the minimum value of βcons. However, this

phenomenon can be explained by the constraints imposed on the objective functions,

speci�cally the need to maintain the Internal Rate of Return of the investor above zero.

It is also worth noting that all the obtained solutions, namely the point closest to the

Utopia, the Nash Bargaining, and the Kalai-Smorodinsky, have a nearly identical value

for pvsize, which is 100 kW , while they di�er in the values of βcons. This fact is solely due

to the con�guration of the Pareto Front, where the "central" points are characterized by

high sizes of the photovoltaic system.

Finally, from the analysis of Figure 4.2 and Table 4.2, the values of the objective function

solutions can be examined. It is immediately evident that the Point closest to the Utopia

is "insensitive" to the conformation of the Pareto Front, as it is simply determined by

calculating the minimum distance of its points from the Utopia. Consequently, depending

on the speci�c shape of the Front, this point could also be located in extreme positions

and thus favor one objective function over another. In the analyzed case, indeed, this

point signi�cantly favors pcrcons over irrinv.

The Nash Bargaining and Kalai-Smorodinsky solutions, on the other hand, due to the

axioms they are based on and the chosen disagreement point, ensure greater "fairness"

among the di�erent players. This is particularly evident, at least from a purely geometric

perspective, when the Nadir is chosen as the disagreement point, since the solutions are

central to the front. In the considered case, indeed, the found solutions are central

and relatively close to each other, but the Nash Bargaining solution slightly favors the
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consumer player, while the Kalai-Smorodinsky solution favors the investor player. The

values of these solutions do not have a speci�c explanation since they consider the game

as a "black box," as described in Section 1.1.

A di�erent perspective can be obtained by considering the Nash non-cooperative solution

as the disagreement point. Although this solution was not found in the examined case

due to the constraints imposed on the objective functions, its behavior can be analyzed

through the graphs presented in Section 1.2.1.1. The non-cooperative Nash solution,

representing a more realistic equilibrium point with no cooperation between players,

may not necessarily be located in a central region, as shown, for example, in Figure 1.14.

Consequently, the Nash Bargaining and Kalai-Smorodinsky solutions obtained from this

point might not necessarily represent the most "fair" outcomes from a purely geometric

perspective, but they could be fair in relation to the relative "strength" of the di�erent

players.

4.2 Results of the Electrical and Thermal Case

The design variables for the Electrical and Thermal Case include the size of the pho-

tovoltaic system, pvsize, the variable for distributing economic bene�ts of the consumers,

βcons, the size of the heat pump, hpsize, and the variable for distributing economic ben-

e�ts of the condominium, βbuild. The objective functions comprise the Internal Rate of

Return for the investor, irrinv, the Percentage Cost Reduction for consumers, pcrcons,

and the PCR for the condominium, pcrbuild.

For determining the non-cooperative Nash solution, pvsize and hpsize are assigned to the

player controlling irrinv, the variable βcons to the player controlling pcrcons, and the vari-

able βbuild to the player controlling pcrbuild.

However, also in this scenario, the issues related to the values of the IRR of the investor,

encountered in the previous case, arise. Therefore, constraints are once again applied to

the objective functions, requiring them to be greater than zero, and the non-cooperative

Nash equilibrium and its corresponding solutions are not computed.

Therefore, it is now possible to proceed with multi-objective optimization. The design

variable solutions cannot be graphically represented as they exist in a four-dimensional
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space, while the objective function solutions are depicted in Figure 4.4:

(a)

(b)

Figure 4.4: Objective function space for solutions of the Electrical and Thermal Case
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The values can be seen more clearly in tabular format:

Table 4.3: Values of the variables for the solutions of the Electrical and Thermal Case

Variable pvsize [kW ] βcons βbuild hpsize [kW ]
Utopia for irrinv 1.0 1.00 1.00 0.0
Utopia for pcrcons 87.0 0.17 0.92 72.5
Utopia for pcrbuild 100.0 0.78 0.10 78.5

PseudoNadir for irrinv 87.0 0.17 0.92 72.5
PseudoNadir for pcrcons 1.0 1.00 1.00 0.0
PseudoNadir for pcrbuild 1.0 1.00 1.00 0.0

Closest to Utopia 100.0 0.51 0.20 43.5
NB_nadir 100.0 0.71 0.10 32.5
KS_nadir 100.0 0.77 0.10 23.0

Table 4.4: Values of the objective functions for the solutions of the Electrical and Thermal Case

Objective_Functions irrinv pcrcons pcrbuild
Utopia 34.67% 48.17% 32.88%

PseudoNadir 0.00% 0.00% 0.00%
Closest to Utopia 0.57% 34.18% 18.06%

NB_nadir 8.40% 20.79% 15.64%
KS_nadir 12.11% 16.83% 11.49%

From table 4.3, it can be observed that the Utopia for irrinv coincides with that of

the Purely Electrical Case, with a heat pump size of 0 kW , a value of one for both β

parameters, but a value of 1 kW for the photovoltaic system size (pvsize). The di�erence

observed in this latter variable can be explained by the plateau of the objective function

irrinv with respect to the variable pvsize, as illustrated in Figure 4.3.

The values of the design variables for pcrcons and pcrbuild are still in�uenced by the need to

maintain the investor's IRR above zero. Furthermore, while the �rst objective function

does not depend on βbuild and hpsize and simply seeks to minimize the value of βcons, the

second objective function, pcrbuild, aims to optimize both βbuild and hpsize while ensuring

that the investor's IRR remains above zero.

The most constraining player for heat pump size is indeed the one controlling the in-

vestor's IRR. Its objective function, in fact, decreases rapidly as hpsize increases, regard-

less of the value of βbuild, and can even have negative values, as shown in Figure 4.5.
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On the other hand, the player controlling pcrbuild bene�ts from increasing hpsize, even

though it reaches plateaus for relatively large sizes of this component, as highlighted in

Figure 4.6.

Figure 4.5: Investor's IRR trend as a function of hpsize

Figure 4.6: Consumer's PCR trend as a function of hpsize

CAP. 4 Analysis of Results 60



4.2 Results of the Electrical and Thermal Case

From table 4.3, it can indeed be noticed that the values of βbuild and hpsize for all so-

lutions are very low, which can be explained by the trends shown in the previous �gures.

By analyzing Figure 4.4 and tables 4.3 and 4.4, it is possible to apply the same reasoning

as in the Purely Electrical Case for the point closest to the Utopia and the points cor-

responding to the Nash Bargaining and Kalai-Smorodinsky solutions. In fact, the point

closest to the Utopia is highly disadvantageous for the player controlling the investor's

IRR, while the other two points are more balanced and ensure greater fairness between

the players.

By comparing tables 4.2 and 4.4, it is evident that in the Electrical and Thermal case,

there is a decrease in the values of irrinv and pcrcons compared to the Purely Electrical

Case. However, in the case currently analysed, the bene�ts for consumers are divided

into the electrical and thermal part and therefore it is interesting to analyze what hap-

pens to the value of pcr for global consumers, without distinguishing between the two

aspects. Thus, combining pcrcons and pcrbuild yields:

Table 4.5: Results of the objective functions for the Electrical and Thermal Case by combining
pcrcons and pcrbuild

Objective_Functions irrinv pcrcons−global
Closest to Utopia 0.56% 25.28%

NB_nadir 8.40% 17.95%
KS_nadir 12.11% 13.88%

Comparing then the table 4.5 with the Purely Electrical Case 4.2, it can be observed

that in the second investment scenario, the results are less advantageous for both the

investor and the consumers.

The situation changes when considering all energy expenses and taking thermal costs into

account in the �rst scenario. To do this, it is necessary to calculate the PCR of consumers

in the Purely Electrical Case, also considering the heating expenses. In particular, it is:
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Table 4.6: Results of the objective functions for the Purely Electrical Case considering thermal
expenses

Objective_Functions irrinv pcrcons−global
Closest to Utopia 8.12% 18.31%

NB_nadir 12.79% 13.67%
KS_nadir 15.46% 10.72%

Therefore, considering the overall economic-energy aspect, it can be observed that

the introduction of the heat pump leads to an overall improvement in the economic

performance of consumers, but, at the same time, it results in a decrease in pro�tability

for the investor.

The question that arises is what happens when one chooses to optimize the second

scenario by directly considering global consumers without distinguishing between the

electrical and thermal aspects. However, to do so, some modi�cations need to be made

to the business model. Speci�cally, as mentioned earlier, the electrical and thermal

components are combined in the calculation of pcrcons−global and therefore, instead of

considering two variables for the allocation of economic bene�ts, only one variable is

used: βcons−global. In particular, using this business model, the obtained results of the

objective functions are illustrated in Figure 4.7:
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Figure 4.7: Objective function space for solutions of the Electrical and Thermal Case considering
global consumers

written in tabular form:

Table 4.7: Values of the variables for the solutions of the Electrical and Thermal Case consid-
ering global consumers

Variable pvsize [kW ] βcons−global hpsize [kW ]
Utopia for irrinv 16.0 1.00 0.0

Utopia for pcrcons−global 98.0 0.40 40.0
PseudoNadir for irrinv 98.0 0.40 40.0

PseudoNadir for pcrcons−global 16.0 1.00 0.0
Closest to Utopia 35.5 0.78 0.0

NB_nadir 100.0 0.61 0.0
KS_nadir 100.0 0.68 0.0
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Table 4.8: Values of the objective functions for the solutions of the Electrical and Thermal Case
considering global consumers

Objective_Functions irrinv pcrcons
Utopia 34.67% 25.31%

PseudoNadir 0.00% 0.00%
Closest to Utopia 24.90% 3.59%

NB_nadir 12.79% 13.67%
KS_nadir 15.16% 11.07%

As can be observed by comparing tables 4.5 and 4.8, the use of this new business

model brings an advantage to the player controlling the investor's IRR but a disadvan-

tage to the player controlling the consumers as a whole. This occurs because the heat

pump is never installed since its economic bene�ts seem to be not very favourable for

the con�guration as a whole.

The comparison between the two business models highlights several signi�cant consid-

erations. Initially, it can be noted that the �rst model may o�er greater advantages

and prove to be more realistic if the objective is to implement thermal e�ciency within

the context of collective self-consumption. This is because the �rst model explicitly

addresses the thermal component of self-consumption, providing a more comprehensive

perspective.

On the other hand, the second model may be more suitable when evaluating the situation

as a whole. However, this approach carries the risk of not installing certain components,

such as the heat pump in the speci�c case being considered. The results obtained for

this new business model are practically identical to those found for the Purely Electric

Case, as the optimization yields a value of zero for the size of the heat pump.

It could be hypothesized that the reason the second model neglects the installation of

the heat pump is because it favors the interests of the investors more, as evident from

comparing the results shown in tables 4.5 and 4.8. In the �rst model, there are indeed

two objective functions in favor of the consumers, while in the second model, there is

only one, thus placing greater importance on the investor's objective function.
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4.3 Analysis without Non-Cooperative Nash Equilib-

rium

Since in the previous discussion it was not possible to determine the non-cooperative

Nash because of the constraints imposed on the objective functions, it is now possible

to perform the Game Theory MOOP without the non-cooperative Nash. This allows

to simultaneously analyse a greater number of objective functions than design variables.

In this context, the traditional multi-objective optimization reaches its limit (due to

the excessive amount of objective functions), making it impossible to perform direct

comparisons.

It has been chosen to use the business model described in Section 3.3 to obtain a more

speci�c view of the two scenarios. The Purely Electrical Case is initially analyzed using

the variables described in Section 4.1, with the following objective functions: irrinv,

pcrcons, sci, ssi. The last two speci�cally refer to the electrical aspect. However, it is

important to emphasize that the energy performance indicators are not in�uenced by the

pro�t-sharing variable, and therefore, for these, βcons only varies to ensure compliance

with the constraints for the other objective functions.

Therefore, the variables of the solutions are:

Table 4.9: Values of the design variables for the solutions of the Purely Electrical Case consid-
ering also the energetic KPIs

Variable pvsize [kW ] βcons
Utopia for irrinv 16.5 1.00
Utopia for pcrcons 98.5 0.30
Utopia for sci 2.5 0.82
Utopia for ssi 100.0 0.99

PseudoNadir for irrinv 98.5 0.30
PseudoNadir for pcrcons 16.5 1.00
PseudoNadir for sci 100.0 0.99
PseudoNadir for ssi 2.5 0.82

NB_nadir 35.5 0.56
KS_nadir 36.0 0.46

while the values of the objective functions of the solutions are:
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Table 4.10: Values of the objective functions for the solutions of the Purely Electrical Case
considering also the energetic KPIs

Objective_Functions irrinv pcrcons sci ssi
Utopia 34.67% 53.79% 100.00% 45.31%

PseudoNadir 0.00% 0.00% 39.15% 2.95%
NB_nadir 17.00% 15.75% 87.89% 36.04%
KS_nadir 12.72% 19.74% 87.08% 36.32%

By comparing these tables with those related to the Purely Electrical Case seen ear-

lier, 4.1 and 4.2, it can be noticed that the values of the variables and objective functions

calculated for the Utopia and Nadir of the players controlling the investor's IRR and con-

sumer's PCR remain constant. This result was already evident even without performing

the calculations, as the sci and ssi, being by de�nition greater than zero, do not a�ect

their calculation in any way.

Furthermore, it is possible to observ that the self-consumption is optimized with a value

of approximately 3 kW for pvsize, but it also reaches its maximum value in a plateau

phase below 20 kW . This behavior is in fact similar to what is illustrated in Figure

4.3, however, maximizing this objective function for low values of pvsize is not a desir-

able outcome. On the contrary, it is evident that the self-su�ciency is maximized by

imposing the maximum size for the production system. Due to these characteristics, as

indicated by the values of the Nadir, these two objective functions are in stark contrast

to each other and therefore do not create an excessive imbalance in the game in favor of

one party over the other.

However, with the addition of these two new objective functions, the values of the vari-

ables in the Nash Bargaining and Kalai-Smorodinsky solutions undergo a drastic change,

particularly for the variable pvsize, which decreases from 100 kW to approximately 36

kW . This is due to the relatively strong in�uence of the objective function sci, which

seeks to minimize the size of the production system.

From the perspective of the objective functions 4.10, it can be observed that ideally, sci

could reach 100%, while ssi stops at 45%. The values of these objective functions calcu-

lated in the base case using the variables of the found solutions were approximately 39%

and 45%, respectively. However, in this new analysis, sci reaches 87% and ssi decreases
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to 36%, resulting in a more balanced approach towards the ideal values.

Regarding the Nash Bargaining solution for the irrinv and pcrcons, the reduction in the

size of the photovoltaic system leads to an increase in the investor's IRR, as highlighted

in the graph in Figure 4.3, and a decrease in consumer's PCR, as indicated by the values

of the Nadir. To maintain a "balance," the Nash Bargaining solution reduces the value of

βcons in order to not excessively penalize the consumers. However, the equilibrium value

of βcons is still too high, resulting in a signi�cant decrease in consumer's PCR, dropping

from approximately 31% to 16%.

A similar situation is found for the Kalai-Smorodinsky solution, which, by modifying

the variables in a similar manner, leads instead to a decrease in both these objective

functions compared to the case in Table 4.2. However, the Kalai-Smorodinsky solution

maintains a higher value of consumer's PCR compared to the Nash Bargaining solution.

Furthermore, comparing the Kalai-Smorodinsky solutions between the Purely Electrical

Case and the currently analyzed one, it might seem that the solution obtained in the

latter case is worse and therefore not Pareto optimal. However, the truth is that the

addition of the objective functions sci and ssi has completely changed the Pareto front.

In fact, as shown earlier, if we apply the variables found for the solution of the Purely

Electrical Case to this new con�guration, we obtain a value for sci equal to the Nadir.

This demonstrates that the solution of the base Purely Electrical Case does not dominate

the solution of the new con�guration.

For this reason, it is impossible to make a direct comparison between the two con�g-

urations in an absolute sense. However, it can be stated that considering the energy

performance indicators, the economic feasibility tends to decrease.

For the Electrical and Thermal Case, the design variables correspond to those described

in Section 4.2. The objective functions analyzed include the investor's IRR, consumer's

PCR, condominium's PCR, self-consumption, and self-su�ciency. Self-consumption

speci�cally refers to the electrical component, as the thermal energy production must be

fully self-consumed by law, as explained in Chapter 2. In this scenario, self-su�ciency is

instead divided into an electrical component, ssi, and a thermal component, ssith.

In this case as well, the energy performance indicators do not depend on the pro�t-sharing

variables, and therefore, they are determined solely to satisfy the imposed constraints.
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Consequently, the values of the design variables and objective functions obtained through

multi-objective optimization are reported in Tables 4.11 and 4.12, respectively:

Table 4.11: Values of the design variables for the solutions of the Electrical and Thermal Case
considering also the energetic KPIs

Variable pvsize [kW ] βcons βbuild hpsize [kW ]
Utopia for irrinv 1.0 1.00 1.00 0.0
Utopia for pcrcons 87.0 0.17 0.92 72.5
Utopia for pcrbuild 100.0 0.78 0.10 78.5
Utopia for sci 11.0 0.84 0.97 11.5
Utopia for ssi 100.0 0.99 0.59 0.0
Utopia for ssith 68.5 0.82 0.87 183.0

PseudoNadir for irrinv 87.0 0.17 0.92 72.5
PseudoNadir for pcrcons 1.0 1.00 1.00 0.0
PseudoNadir for pcrbuild 1.0 1.00 1.00 0.0
PseudoNadir for sci 100.0 0.99 0.59 0.0
PseudoNadir for ssi 1.0 1.000 1.000 0.0
PseudoNadir for ssith 1.0 1.00 1.00 0.0

NB_nadir 86.5 0.69 0.63 86.5
KS_nadir 70.0 0.79 0.64 96.0

Table 4.12: Values of the objective functions for the solutions of the Electrical and Thermal
Case considering also the energetic KPIs

Objective_Functions irrinv pcrcons pcrbuild sci ssi ssith
Utopia 34.67% 48.17% 32.88% 100.00% 45.31% 99.55%

PseudoNadir 0.00% 0.00% 0.00% 39.15% 1.16% 0.00%
NB_nadir 6.56% 17.55% 14.22% 58.96% 37.00% 66.44%
KS_nadir 6.54% 9.74% 14.11% 67.65% 33.37% 72.63%

By comparing these tables with the results for the base Electrical and Thermal Case,

4.3 and 4.4, it can be observed that the values of the solutions for the Utopia and Nadir

of the common objective functions are the same, as expected.

From Table 4.11, it can still be observed that sci and ssi are in strong contrast, while

the new objective function ssith, as it seeks to maximize the size of the heat pump, is

in strong opposition to both the investor's IRR and the electrical ssi. The latter also

aims to minimize the size of the heat pump since this component leads to an increase in

electrical self-consumption.
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By comparing the energy behavior of the Electrical and Thermal Case between the base

case and this new analysis, an increase in self-consumption can be observed, from values

around 45% to approximately 60%, a decrease in electrical self-su�ciency, which drops

from about 43% to around 35%, and a signi�cant increase in thermal self-su�ciency,

which goes from values around 15% to over 60%. Therefore, as expected, the results of

the energy indicators obtained in this new analysis are more balanced in approaching

the ideal.

From an economic perspective instead, considering all the new objective functions, a

reduction in the "strength" of the player controlling the investor's Interest Rate of Return

can be observed. This is evident when comparing the optimization results for this case

with those reported in Table 4.4. Additionally, analyzing the Nash Bargaining solution,

both the values of pcrcons and pcrbuild decrease, but to a lesser extent than the IRR.

On the other hand, considering the Kalai-Smorodinsky solution, the value of pcrcons

undergoes a signi�cant decrease, while the value of pcrbuild increases.

Compared to the new Purely Electrical Case, highlighted in Tables 4.9 and 4.10, a

signi�cant reduction in the percentage of self-consumed energy is observed, attributed

to the larger size of the photovoltaic system, while electrical self-su�ciency remains

practically unchanged. From the economic point of view instead, overall, it can be

stated that the inclusion of the thermal component in this latest analysis, as well as in

the previously examined cases in 4.1 and 4.2, leads to a decrease in economic bene�ts

for the investor in favor of consumers, as well as a reduction in self-consumption in favor

of thermal self-su�ciency.

4.4 Discussion of the Results

It is now possible to summarize the results obtained from the analyzed cases. Only

the scenarios implemented using the �rst business model will be summarized since the

Electrical and Thermal case, calculated using the second business model, is practically

identical to the Purely Electrical case.

Considering only the economic indicators, it appears that the �rst analyzed case rep-

resents the most pro�table investment when considered on its own, as it yields higher

CAP. 4 Analysis of Results 69



4.4 Discussion of the Results

values for both the Investor's Internal Rate of Return and the Consumers' Percentage

Cost Reduction. However, when considering the entire energy situation of the collective

self-consumption, taking into account also the thermal expenses in the Purely Electrical

case, the situation changes. In fact, while it is not possible to claim that one scenario

is better than the other, it is observed that the pro�tability of the �rst case decreases,

especially for consumers, who have more advantageous economic indicators in the Elec-

trical and Thermal case. From the investor's perspective, on the other hand, the Purely

Electrical case remains the most advantageous scenario.

However, considering also the energy indicators, the results for the respective scenar-

ios change. There is a general decrease in economic pro�tability, as one would expect,

with the exception of some indicators that remain higher either for the Nash Bargaining

solution or for the Kalai-Smorodinsky solution. If we compare the two new scenarios

with each other, from an economic perspective, what was described earlier remains un-

changed: the �rst scenario is more favorable for the investor, while the second scenario

is more favorable for the consumers. From an energy perspective, instead, it is observed

that the electrical self-su�ciency remains unchanged in both scenarios. However, the in-

troduction of the two new objective functions in the second case, although not in direct

contrast with self-consumption, a�ects the balance of optimization and penalizes it. As

a result, the �rst case exhibits a signi�cantly higher level of sci compared to the second

case.

From this analysis, it emerges that there is no overall optimal con�guration, but each

has its own advantages. However, if a decision has to be made about which con�gu-

ration to implement, it is considered appropriate to opt for the one that involves the

use of a heat pump and is calculated through the Nash Bargaining method, considering

energy indicators as well. This con�guration seems to represent the best compromise

as it ensures favorable results both from an environmental perspective and in terms of

grid utilization, with high self-consumption and high thermal self-su�ciency. Moreover,

it maintains a su�ciently high level of convenience for the consumers.

However, it should be emphasized that its main disadvantage is the relatively low in-

vestor's IRR. Therefore, in case there is a need for higher pro�tability for the investor, it

is considered more appropriate to implement the con�guration calculated using the KS
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4.4 Discussion of the Results

method, with the heat pump but without the energy indicators.
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Chapter 5

Conclusions

This thesis presents the implementation of a multi-objective optimization model

based on Game Theory. The reasons and methodologies of this model are explained

in Chapter 1, while the main �ndings can be extracted from Chapter 4. It is important

to highlight that although this work utilized the Game Theory MOOP to optimize the

sizing of a collective self-consumption system, the model itself possesses more general

characteristics and can be applied in various contexts. Therefore, the conclusions drawn

are of general nature and are not limited to energy system optimization.

In particular, through the analysis of the optimized scenarios, namely the Purely Elec-

trical Case and the Electrical and Thermal Case, it was possible to compare the multi-

objective optimization based on Game Theory with the traditional approach. In the

latter, the most commonly selected point is the closest to the Utopia. However, as men-

tioned earlier, this point does not consider the shape of the Pareto front and may favor

one objective function at the expense of another. On the contrary, the results obtained

through Game Theory MOOP, due to their underlying axioms, provide more "fair" so-

lutions for the di�erent objective functions, avoiding imbalances. It is important to note

that all computed solutions are Pareto optimal, so it is not possible to claim that one

is inherently better than the other. However, thanks to the enhanced fairness provided

by Game Theory, which is always guaranteed, it appears that this approach can o�er

additional insights in multi-objective analysis, at least in speci�c situations.

Another challenge of traditional MOOP is the di�culty of simultaneously optimizing

more than three objective functions. However, this does not pose a signi�cant obstacle
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for the Game Theory-based approach, as highlighted in Section 4.3. It is important

to note, however, that Game Theory MOOP also has its limitations. In fact, with an

excessively high number of objective functions, it may become challenging to reach an

optimal solution, or the optimization time required may become excessive. This was also

observed in the analyzed examples, as the increase in the number of objective functions

and variables, and thus the complexity of the optimization, resulted in progressively

longer execution times.

A comparison between two di�erent business models was also conducted in Section 4.2.

The main di�erence between the two lies in the division of collective self-consumption

into electrical and thermal parts in the �rst model, while the second model considers

the collective self-consumption as a whole entity. It emerged that the �rst model assigns

greater importance to consumers since they have more objective functions resulting from

the division of energy components, thus playing a dominant role in the cooperative game.

On the other hand, the second model reduces the number of the consumers' objective

functions, giving more relevance to the investor. The �rst business model also allows

for a more accurate analysis of the behavior of collective self-consumption when thermal

improvements are considered from the outset. Instead, the second model, being more

general, risks overlooking the importance of such improvements. By utilizing these two

models, the results presented in Tables 4.5 and 4.8 are obtained. It should be noted

that it is not possible to claim that the solutions described in the �rst table are worse

or better than those in the second table. Rather, the importance attributed to di�erent

players varies between the models.

This aspect highlights another important characteristic of multi-objective optimization

based on Game Theory, which is the need to adequately de�ne the problem to be opti-

mized. A simple example emerges from this discussion: if the primary drivers of collective

self-consumption are the consumers or if thermal e�ciency also needs to be considered,

then implementing the optimization through the �rst business model is more advanta-

geous. On the other hand, if the promoter is an investor or if encouraging the investor's

participation is the goal, then implementing the optimization using the second business

model appears more appropriate.

From the discussion carried out, the di�culty of adequately explaining the obtained

CAP. 5 Conclusions 73



results has also emerged, as cooperative methods analyze the game as a "black box".

They provide an optimized solution through a super-criterion that satis�es the prede-

termined axioms but do not re�ect the steps necessary to reach that solution. This is

in contrast to the non-cooperative Nash game, which delves more into the optimization

and its details. However, this point presents several limitations that have emerged in

the discussion. Firstly, it does not guarantee that the solutions lie on the Pareto front,

making its solution less desirable. In this thesis, in fact, the non-cooperative Nash equi-

librium point was not considered as a solution but rather as a possible starting point

to determine the solutions. Furthermore, this equilibrium point does not allow for a

number of objective functions greater than the number of variables, which can be highly

limiting in cases where there are few design variables. Finally, as explained in Section

1.1.1.2, the last problem in the context of non-cooperative Nash lies in the di�culty of

applying constraints to the objective functions. Unlike the �rst two problems, which are

intrinsic to this method, there are possibilities to solve this last problem, but it requires

further investigation to be adequately addressed.

Therefore, Game Theory-MOOP proves to be a feasible methodology that yields satis-

factory results. It can be used individually by selecting one of the proposed solutions

or the obtained solutions can be combined with others. For instance, they can be com-

bined with solutions obtained by maximizing or minimizing di�erent objective functions

or using other solutions from Game Theory MOOP calculated from speci�c disagree-

ment points. This allows for obtaining insights into possible optimal con�guration and

analyzing trade-o�s without the need to determine the entire Pareto front.
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