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Abstract 
This work is based on a proof of concept, whose main goal is to determine whether it is feasible to 

rebuild rock fragment trajectories ejected from blasts. 

The initial focus is on creating and improving methods for precisely estimating the three-

dimensional motions of rock fragments using photogrammetric analytic tools to improve the safety 

in mining operations. The objective is to test the effectiveness of the suggested methodologies and 

establish their applicability in actual mining scenarios, passing from the conceptual stage to an 

experimental pilot phase. The reconstructed trajectory methodology must be successful in moving 

from proof of concept to actual use in order to increase safety precautions and provide information 

that can be used to optimize blasting procedures. 

To achieve this, two cameras with High Frame Rate (HFR) capabilities are required to record the 

blasts, which will be carried out in the Valdilecha Quarry near Madrid (Spain). As proposed by the 

proof of concept, the photogrammetric analysis has been employed to extract the 3D motion of the 

objects, allowing the estimation of their movements using computational models by analysing each 

frame of the recorded videos.  

The Sony DSC-RX100 VII is chosen as the preferred camera for the study. It satisfies the 

requirements for HFR availability (used to capture slow-motion sequences), frame rate, pixel size 

and shooting time, ensuring optimal data capture for the application of the photogrammetric 

techniques.  

Finally, the developed approach has been tested in the field to reach the experimental pilot phase. 

As common in experimental work, moving from the controlled laboratory environment to the field 

presents its own difficulties. As expected, there were several problems in the analysis of the field 

recordings, due to the different environmental conditions. However, these difficulties have offered 

important information for enhancing the process in future iterations. The process can be further 

refined to produce more accurate and dependable outcomes in real-world circumstances through 

ongoing improvement and adaption. 
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1. Introduction 
One of the most important steps in guaranteeing safety and improving mining operations is 

reconstructing the paths of the rock particles that are released during a blast. The potential benefits 

of moving a proposed methodology from theoretical viability to actual implementation and testing 

are enormous. According to (European Union, 2021) numerous advantages of fragment movement 

prediction include increased safety, better extraction planning, reduced damage to nearby structures, 

blast design optimization, lower costs, and better environmental management. 

First of all, forecasting the trajectory of pieces makes it possible to identify risk areas and take the 

appropriate safety measures to safeguard people, nearby buildings, and the environment. Potential 

dangers can be reduced by putting in place safety barriers, maintaining proper safety distances, and 

creating efficient evacuation procedures. 

Secondly, a more effective extraction planning is made possible by knowing the trajectory of the 

fragments before. Ground-moving machinery can be placed strategically to speed up the removal of 

bulk materials and shorten the time required for restoration following blasting activities. 

Thirdly, precise trajectory prediction reduces damages to nearby structures. By locating possible 

impact zones, precautionary actions can be taken to lower the chance of damage. 

Additionally, the optimization of blast design can be affected by the prediction of fragment 

trajectories. Previous blast data can be used to improve future designs by adjusting drilling and 

explosive settings to maximize effectiveness and reduce undesirable consequences. 

Furthermore, good fragment trajectory prediction helps mining operations working with lower 

costs, as they can be greatly decreased by preventing costly damage or delays. Cost savings are 

further increased by minimizing damages to nearby structures and shortening the time needed for 

cleaning and repair. 

A methodology based on the use of photogrammetric tools has been proposed to achieve these 

goals. This approach relies on the investigation of face movement (Jiménez, 2022) carried out on 

previous blasts in El Aljibe Quarry (Almonacid de Toledo, Spain). In particular, the work of 

(Jiménez, 2022) presents 2D and 3D approaches for the reconstruction of fragment trajectories 

ejected from blasting by using photogrammetric techniques. 

Starting from that, this project intends to develop the proposed methods for reconstructing rock 

fragment trajectories to increase safety and operational efficiency in mining operations by moving 
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from theoretical viability to real implementation and testing. For this reason, laboratory experiments 

have been conducted to validate and improve the approach together with a field study carried out in 

Valdilecha Quarry in collaboration with Hanson Company to evaluate the viability and efficacy of 

the established methodology. 

This work is also in accordance with the DIGIECO QUARRY project, which focuses on integrating 

digital technology into the mining industry for improved safety and sustainability. The project 

intends to maximize quarry operations and reduce their negative environmental effects by 

employing advanced digital methods like photogrammetry and data analysis. 

 

2. Scope and objectives 
This chapter addresses the work’s main objectives, which rely on the reconstruction of rock 

fragment trajectories to improve the safety in mining operations. 

The major objective is the transition from a concept validation phase to the experimental pilot 

phase. The proposed approaches and techniques have been evaluated for their viability and efficacy 

by raising the technological readiness level (TRL) from 3 to 4 and carrying out controlled 

experiments to test and validate them. This will stand as the groundwork for future developments 

and applications of the reconstructed trajectory methodology in real-world mining environments. 

Furthermore, another important goal is to use a dual-camera configuration to record three-

dimensional data to increase the accuracy of the photogrammetric analysis. To pass from 2D to 3D 

analysis, the addition of a second camera enables the simultaneous capture of videos from different 

perspectives. 

Moreover, the work aims to develop a comprehensive methodology that makes it possible to 

precisely recreate rock fragment trajectories after an explosion. Photogrammetric analytic tools are 

employed to predict the three-dimensional paths of rock fragments and better comprehend their 

behaviour. The 3D reconstructed trajectories can be used to determine safe operating distances, 

identify potential hazard zones, and improve blast design. By achieving this objective, valuable 

information about the movement and dispersion of rock fragments can be acquired, enhancing 

mining operations' safety standards. 

The work additionally points to examine the face movement as a result of previous blasts conducted 

in El Aljibe Quarry.  
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Finally, this investigation will provide fundamental information about the flight paths and 

dispersion patterns of the fragments, which will aid in a better understanding of the dynamics of the 

quarry, increasing the overall safety and efficacy of subsequent mining operations. 

  

3. Background 
The background of this work is based on earlier research in the field of photogrammetry, a method 

for extracting three-dimensional data from two-dimensional pictures or videos. Additionally, the 

DIGIECO project has a big impact on the goals of the study as it aims to integrate digital 

technologies into the mining sector for increased sustainability and safety. 

3.1 Previous works and TRLs  
As previously mentioned, this work is based on the proof of concept (Conceptual pilot) developed 

by (Jiménez, 2022) and aims to denote a more advanced state of technological development. 

A defined technique that evaluates the maturity of technologies, throughout the program's 

acquisition phase (TEC-SHS, 2008) is the Technology Readiness Levels (TRLs). The scale goes 

from 1 to 9, which indicates the most advanced technology. TRLs make it possible to have 

consistent information about the technical maturity of many technology fields. They are considered 

a useful tool for decision-making process for funding and implementing new technologies and offer 

a common knowledge of the state of technology and support risk management. 

The TRLs stages considered in the work are two: TRL 3 and TRL 4. According to the table below 

(Table 1), this work belongs to the earliest stage of the development phase, i.e., Experimental pilot 

(Héder, 2017). In this scale, TRL 4 and TRL 3 are two key stages, and each has its own goals and 

focuses. 
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Phase TRL Hardware Software 
R

es
ea

rc
h 1 Basic principles 

2 Concept and application formulation 

3 Concept validation 

D
ev

el
op

m
en

t 4 Experimental pilot 

5 Demonstration pilot 

6 Industrial pilot 

D
ep

lo
ym

en
t 

7 
First implementation 

Industrialization detailed 

scope 

8 A few records of 

implementation 
Release version 

9 Extensive implementation 

 

The technology has advanced in TRL 4, which emphasizes performance validation, and quantitative 

characterization in order to get ready for future system applications. TRL 3, on the other hand, 

focuses on proving the viability and practicality of the concept, while combining analytical and 

experimental approaches. TRL 4 denotes a greater degree of technological maturity and can be 

considered the first step towards real-world applications.  

The table below (Table 2) shows the main distinctions between TRL 4 and TRL 3.  

 

Table 2: Main differences between TRL 3 and TRL 4 based on (TEC-SHS, 2008) 

TRL 3 TRL 4 
Beginning of research and development 
activities 

Based on TRL 3 

Verification of the proof of concept with 
analytical investigations and lab-based 
experiments 

Integration of fundamental technological 
components to ensure their functionality 

Use of analytical and experimental methods Consistent validation with the requirements of 
potential system applications 

Need of physical experimental validation for 
complex systems or phenomena 

Quantitative characterization of applications 
and performance definition through laboratory 
demonstrations 

 

Table 1: TRLs scale 
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In conclusion, the main goal of the TRL 3 is to prove that a technology and its idea are workable, 

while the TRL 4 provides a more refined understanding of the performance requirements for field 

trials. Considering all these elements, this study fits into TRL 4 and it is common to have to manage 

problems and challenging results in this experimental stage. 

The strength of this tool lies in its ability to assess the advancement and potential of developing 

technologies by understanding the particular characteristics of each TRL stage. 

 

3.2 Photogrammetry 
A strong method for extracting precise and accurate three-dimensional data from two-dimensional 

videos is photogrammetric analysis. It makes it possible to use computer models to estimate 

fragments movements and to recreate real-world coordinates. An in-depth comprehension of the 

motion is obtained through the camera calibration procedure, the object tracking stage, and 3D 

reconstruction.  

A photogrammetric analysis of video data must go through several necessary procedures. First of 

all, it's essential to calibrate the cameras used for recording. The link between the camera's image 

plane and the physical coordinate system, as well as the intrinsic and extrinsic camera parameters, 

like focal length and lens distortion, are all established by camera calibration.  

Moreover, a variety of methods can be used for object tracking, including feature-based tracking, 

point correspondence matching, and optical flow algorithms. To precisely estimate an object's 

position between two frames, these techniques examine how its position changes across the frames. 

Furthermore, the final step consists in the application of the triangulation method, able to relate 

camera characteristics (focal length, lens distortion) and coordinates from two-dimensional (2D) 

videos to get the real-world coordinates (3D coordinates) of the object in each time instant. 

 

3.2.1 High speed photography 
The primary issue with open-pit mining is the high cost of drilling and blasting, which greatly raises 

the total cost of mining (Afum & Temeng, 2015; Božić, 1998; Palangio et al., 2005). The 

effectiveness and expense of drilling, blasting, and following mining activities are directly impacted 

by the quality of the blasting (Bowa, 2015). One of the most challenging features to be faced when 

analysing blasts is its duration. Blast often lasts less than three seconds and for this reason it 

requires an adequate time foundation to observe and understand short duration occurrences, 

according to (Chiappetta & Mammele, 1987). Since events happen too quickly for the human eye to 
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discern, visual investigation is insufficient for studying blasting. The most popular technique for 

analysing the blasting process is to employ data from high-speed photography, slowing down the 

blast movement to allow for qualitative and quantitative analysis (Blair, 1960; Chiappetta & 

Mammele, 1987; Franco, 2022; Navarro et al., 2018; Onederra & Esen, 2003; Segarra, 2004). 

The High-Speed cameras (Balch, 1999) are employed to record fast-moving objects as photographic 

images, with frame rates much higher than 250 fps. Usually, they are used for aerodynamic studies, 

where, through the sequences of images, a motion analysis can be carried out in either 2D or 3D (if 

more than one camera is used). The ability of high-speed cameras to record videos at extremely 

high frame rates enables the depiction of quick processes. In this way, it is possible to slow down 

the blast movement by employing high-speed cameras, making it possible to examine the explosion 

phenomenon in great detail. The fragmentation patterns, shockwaves, initial velocities, response 

times and trajectories of the blasting process can all be better understood using this method. The 

better understanding of blast dynamics, improved blast design, and improved overall efficiency and 

cost-effectiveness of mining operations may all be accomplished using this information. 

It has been considered as the proper technique, for both qualitative and quantitative analysis of 

blasting operations.  

The only downside of these cameras is the high cost, that is the reason why valid substitutes, such 

as High Frame Rate cameras, have been considered for the photogrammetric analysis.  

The use of HFR technology has been used to capture the slow-motion sequences, providing enough 

detailed information about the trajectory of the rock fragments.  

In conclusion, the estimation of fragment movements, recreating real-world coordinate, is achieved 

by using photogrammetric analysis, which appears to be a reliable and successful technique. For the 

purpose High Frame Rate cameras offer a practical and affordable alternative for obtaining 

trajectory information in slow-motion sequences, even though high-speed cameras are frequently 

employed for motion analysis. 

 

3.3.1 From 2D to 3D analysis 
There can be difficulties and data loss while analysing a three-dimensional phenomenon from a 

two-dimensional viewpoint. When 2D assumptions, as for example the hypothesis on the motion of 

the fragments happen in a plane perpendicular to the bench, are used, real velocities and explosion 

directionality are underestimated. A 3D methodology built on stereophotogrammetric analysis is 

employed to get over this restriction. By integrating the spatial information from two photos 
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obtained from separate positions, this method reconstructs dynamic processes. This method needs 

precise knowledge of the camera's internal calibration and external orientation to reconstruct the 

real trajectory of moving objects (Moser & Gaich, 2007). The internal camera calibration refers to 

all the information belonging to the image formation process of the camera, the external camera 

orientation provides accurate information about the camera position and the angle of view while 

recording the videos.  

The 2D analysis with high-speed cameras has its limitations. It only records the blast events in two 

dimensions, losing some spatial information. As a consequence, it is important to consider the 

limitations and potential errors that may result from the projection of a three-dimensional 

phenomenon onto a two-dimensional image while performing 2D analysis. On the other hand, 

three-dimensional approaches, such as stereophotogrammetric analysis, have been employed to 

overcome these limitations. With stereophotogrammetric analysis it is possible to reconstruct the 

three-dimensional movement of objects recorded in high-speed videos, to gain more precise and 

complete data.  

At the end, three-dimensional approach offers a more thorough and accurate analysis of the blast 

events, enabling a better comprehension of the blast dynamics and optimization of blasting 

operation, without making wrong assumptions. 

 

3.4 DIGIECO project 
The extraction of aggregates is a large industry in the EU, providing raw materials for the 

infrastructure and construction sectors. However, the industry must strengthen its long-term 

position and minimize its reliance on imports. The DIGIECO project underlines the significance of 

establishing internal value chains and securing trustworthy and environmentally friendly access to 

raw materials (RM). 

The primary issues impacting the industry of aggregates are the following: 

1. Health, safety, and security: the sector is habitually affected by accidents and serious injuries 

because it involves the use of heavy equipment and operate sin different dynamic environments. 

Upgraded safety precautions are required, as well as enhanced interaction among workers, 

equipment, and sites. 

2. Efficiency, selectivity, and profitability: most of the industries are dominated by small and 

medium-sized companies and that is why adaptable solutions are needed to increase overall 
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efficiency. Nowadays the technologies employed in multi-sites quarries result in a lack of 

interconnection, providing issues. 

3. Environmental impact: quarry activities can harm ecosystems by disrupting water flow, 

generating trash, and polluting the air and noise levels. Minimizing these effects and promoting 

sustainable activities are essential. 

4. Social acceptance: social tensions, such as worries about traffic and the environment, can occur 

as quarries approach on densely inhabited areas. Most of the development of the industry depends 

on promoting social acceptance and clarity. 

In this background, the DIGIECOQUARRY project aims to transform all the operations in fully 

automated and digitalized in order to address the issues facing the sector, such as social acceptance, 

environmental effect, efficiency, and profitability. The project forecasts the creation of an 

Innovative Quarrying System (IQS) that combines sensors, processes, tools, and data management 

to supply real-time process control. 

The project's goals include the following: 

1. Enhanced worker health and safety as a result of automated and managed operations. 

2. Improved efficiency and selectivity in quarrying operations to rise profits and sustainability. 

3. Promoting circular economic principles while minimizing emissions, enhancing water 

management, and maximizing sustainability and resource efficiency. 

4. Greater social acceptance through interacting with stakeholders and dealing with community 

issues. 

5. Validation of the IQS in five prototype/pilot scenarios to show that it is reliable and 

effective. 

6. Improving public impressions and perceptions of the quarrying sector through knowledge 

sharing, international collaboration, and research contributions. 

 

In four years, the project will establish six key technological areas (KTAs) and concentrate on two 

key social areas (KSAs) with a consortium of 25 partners from several disciplines. It intends to 

produce 38 exploitable outputs, including tools, services, and hardware and software solutions. 

In the table below (Table 1), the KTAs and the KSAs are listed, together with the actions demanded 

in the 2050 roadmap for European raw materials1 and the related main challenges. 

 
1 The European Union (EU) created a strategic document called the Vision and Roadmap for European Raw Materials 
in 2050 to lay out the long-term objectives and steps for the sustainable management of raw materials inside the EU. 
The plan focuses on finding sustainable and responsible solutions to problems with raw material availability, access, 
extraction, processing, and recycling (ETP SMR, 2016). 
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Table 3: Relationship between 2050 roadmap, KTAs, KSAs and challenges from (European Union, 2021) 

Actions needed according to 2050 
roadmap for RM 

KTAs, KSAs Challenges 

Action 1: Improvement of the excavation 
(extraction process) through innovative 
drilling & blasting systems. 
Action 2: Developing new and adapting 
existing technologies and operations to 
increase automation in quarries to reduce 
energy consumption in muck pile digging, 
loading, and hauling for fossil-free 
production. 

KTA1 |  
Improved Extraction, 
Rock Mass Characterisation and 
Control 

H&S Security 
Economic efficiency 
Environmental Impact 
Social Acceptance 
 

Action 3: Create innovative crushing, 
(selective) grinding, and sorting technologies 
to reduce energy use in mineral processing. 

KTA2 |  
Innovative Treatment Processes 

H&S Security 
Economic efficiency 
Environmental Impact 
Social Acceptance 

Action 4: Develop and integrate industry 
solutions to improve process control for 
optimised primary and secondary processing. 
Fully control the material flows allowing on-
demand customisation. 

KTA3 |  
Smart Sensors, Automation and  
Process Control 

H&S Security 
Economic efficiency 
Environmental Impact 
Social Acceptance 
 

Action 5: Develop sophisticated Big Data 
and ICT-based production technologies that 
allow for optimised process efficiency and 
management throughout production (energy, 
resource, water). Advances in digitalisation 
and ICT have enabled a real-time integrated 
process control for quarrying. 

KTA4 |  
Quarry Full Digitalisation 
Through ICT Solutions, BIM & 
AI 
 

H&S Security 
Economic efficiency 
Environmental Impact 
Social Acceptance 
 

Action 6: Improve the working environment 
for operators and develop new systems for 
improving Health and Safety. 

KTA5 | 
Applications for Health and 
Safety (H&S) Improvement 

H&S Security 
 

Action 7: Minimise environmental impact of 
quarrying operation Data generation and 
management, including life-cycle assessment 
(LCA), environmental impact, and mass flow 
analysis. 

KTA6 |  
Applications for Environmental 
Impact Minimisation 

Economic efficiency 
Environmental Impact 
 

Action 8 - Develop knowledge on societal 
influence and acceptance including research 
on areas of conflict with regard to human 
health, ethics, gender, rural development and 
urban life, environmental, social, and 
economic aspects. 

KSA7 |  
Social Acceptance and Social 
Influence 

Social Acceptance 
 

Action 9: Communication with policy 
makers and public bodies and synergies with 
other initiatives will be key to improving 
processing. 

KSA8 |  
Communication with Policy 
Makers & Public Bodies 

H&S Security 
Economic efficiency 
Environmental Impact 
Social Acceptance 

 
 
 
According to the diagram below (Figure 1), each of the proposed KTAs and KSAs includes many 
developments: 
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This work belongs to the KTA1: Improved extraction, rock mass characterisation and control and in 

particular to the section 1.4 Blasting Results Control. This specific development aims to achieve 

significant progress in blasting technology to enhance blast outcomes and optimize numerous 

variables, including rock fragmentation, wall stability, vibrations, and overall operational 

efficiency. One of the most significant developments in this field is the post-blast field 

measurements, which are used to control blast performance and to validate and calibrate developed 

models (European Union, 2021). These metrics aid in determining the blast's actual results and offer 

useful information for improving blasting design. In particular, the development of multiple 

characterisation techniques (muck pile’s movement vectors and fragmentation patterns) to create 

post-blast models in relation to rock fragmentation is getting an increasing interest in the field of 

blasting technology. It has always been difficult and frequently wrong to determine the grain size 

distribution of a muck pile. Through this development it would be feasible to estimate it more 

precisely by evaluating the post-blast models derived from photogrammetric methods. 

The strategy tries to link the in-situ block size distribution of the rock mass with the characteristics 

of the muck pile. By making this connection, the new developed blasting design software is able to 

fully comprehend the attributes of the rock mass and incorporate that knowledge into the models, 

getting more accurate outcomes and having the possibility to continuously improve the models.  

The importance of multiple characterisation techniques lays in their capacity to fully improve the 

blasting stage. A more accurate evaluation of the fragmentation affects all the subsequent 

procedures like crushing and grinding. Additionally, it aids in assessing the blasting design's 

effectiveness and pinpointing potential improvement areas. 

Figure 1: KTAs and KSAs 
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Furthermore, knowing the muck pile's movement vectors offers information about the distribution 

of blasted debris and the following shape of the excavation. This knowledge is helpful for 

determining the stability of walls and guaranteeing the security of people and machinery nearby. 

 

By including photogrammetry methods (based on post-blast models), movement vectors, and 

fragment size distribution data into the blasting design software, it is possible to achieve better 

results in terms of loading/digging cycles, lower energy consumption, decreased equipment 

maintenance costs, and improved haulage fleet efficiency.  

For sectors like mining, these developments in rock classification and modelling hold considerable 

potential because they offer the possibility to improve blasting techniques in being more precise and 

effective, increasing the productivity and saving costs. 

 

Overall, the DIGIECOQUARRY project aims to transform the aggregates sector by utilizing 

automation and digital technology to meet industry difficulties and support the EU's strategic 

objectives for raw materials and sustainability. 

 

4. Methodology  
The methodology underlying the work is based on three main fields of investigation: the camera 

selection process, the photogrammetric analysis of the recorded videos and the three-dimensional 

reconstruction of the object’s trajectory.  

4.1 Camera selection process 
The camera selection process involves market research to identify the potential camera brands and 

models together with their main features that meet the required criteria.  

Moreover, an analysis of blast face movements, based on the previous works on El Aljibe quarry, 

has been conducted. The goal of this step is to understand whether the cameras are able to capture 

moving object from a certain distance from the source and what can be the optimal placement of the 

cameras, influenced by the geometrical configuration of the site. 

4.1.1 Features of the cameras 
Some camera features that affect the camera selection process are the HFR availability, the frame 

rate, the possibility of being remotely triggered using a Wi-fi connection, the focal length, the 

resolution, the pixel size and so on. All these features are defined in the following part. 
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The frame rate is the speed (rate) in which consecutive images (frames) are acquired and captured 

by the camera (Brunner). It is expressed in frames per second (fps). If the frame rate is too low, 

images will appear jagged and jerked. The higher the frame rate is, the smoother and clearer the 

images will appear. If the purpose is to have slow motion effects, at least a camera with 120 fps is 

needed. 

The High Frame Rate (HFR) technology allows the realization of slow-motion sequences by 

capturing more frames per second (Joseph, 2022).  

A trigger system is a mechanism able to remotely activate the shutter on the camera (Hunter et al., 

2022). The direct triggering would not be possible in our case for safety reasons and a remote 

control cannot be used because it does not work at distances higher than 80 –  100 m. That is why 

the cameras must be physically connected to two computers, which will be linked to a third device, 

via Wi-fi, through the TeamViewer software. The third device will send the signal to the other two 

devices, which will activate the cameras to start the recordings. 

The focal length is the distance between the sensor of the camera and the point at which the camera 

can take the sharpest photograph of the subject, focusing the camera to infinity (Nikon Inc. et al., 

2023). The focal length plays an important role in detecting any fragment. It gives information on 

how much of a scene a lens can capture, and how big objects will appear. 

Another important parameter is the resolution. It is defined as the total amount of pixels that can be 

captured. The visual quality and the accuracy of the imagery-based classifications can both be 

affected by the resolution (Fryer & Mclntosh, 2001). 

The pixel size of a camera, usually measured in μm, refers to the physical dimensions (height and 

width) of the pixel unit on the camera sensor (Versus, 2016). This indication plays an important role 

when choosing a camera because it affects the amount of light caught by the pixels (sensitivity) and 

its ability to capture details. In case of low-light environments, a sensor with a larger pixel size is 

better because they will be able to capture more light, although the detection of fine details within 

the image can get worse. 

The shooting time defines the longest continuous recording period that a camera can make before 

running out of space, battery life, shooting modes, frame rates, and other factors (Ascher & Pincus, 

1999). The High Frame Rate setting has a significant impact on the shooting time because the 

camera will catch, gather, and process more frames per second when recording in High Frame Rate 

mode. This may result in shorter shooting times, quicker battery depletion, and higher memory 

usage. 
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Moreover, the memory cards needed should be compatible firstly with the camera and then we 

should consider the HFR records, that usually require more memory than a normal video. Capacity 

is one parameter to consider when choosing a memory card.   

Generally, another important parameter to be considered is the battery life of a camera. In the case 

under exam, there are not specific requirements that have to be fulfilled because the average 

duration of a blast is about seconds.  

 

Three different camera brands (Sony, 2016, 2020, 2022), (Fujifilm), and (Canon, 2019) have been 

analysed to determine which of them is better and suitable for our purpose. The initial screening is 

based on some camera features focused on HFR availability, followed by a filter based on frame 

rate to ensure clear and non-blurred images. 

The Table below (Table 4) shows the different camera brands that have been analysed and the first 

filtering approach that was applied to the final choice.  

Table 4: Type of cameras and related HFR availability 

 

 

 

 

 

 

 

Despite good performances in terms of resolution, focal length, and triggering system, the Sony 

ILME-FX3, the Fujifilm XT 4, and the Sony Alpha 7S III cameras have not the High Frame Rate 

availability and for this reason they have been discarded. Whereas in the table above (Table 4), the 

list of possible cameras that fulfil the initial requirements are presented together with the main 

parameters that will affect the final choice. 

In the following table (Table 5), all the cameras that have the HFR availability are listed. For these 

cameras, a deeper investigation has been made, considering their intrinsic features (provided by the 

suppliers) as the sensor size, the resolution, the focal length, the frame rate and HFR, the shooting 

time and the cost. 

Brand Type HFR 
Availability 

Sony 

DSC-RX100 VII Yes 
ZV-1 Yes 

ILME-FX30 No 
RX10 III Yes 

Alpha 7S III No 
Fujifilm X-T4 No 
Canon G5X Mark II Yes 
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According to Table 5, although the camera from Canon has the highest shooting time duration, it 

has been discarded because it has the lowest frame rate value in HFR mode. This parameter 

represents the reason why a second screening has been done for the cameras listed because, as 

previously stated, high frame rate values in HFR mode is necessary to have a record with good 

quality. 
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Moreover, all the cameras listed have the possibility to be remotely triggered via Wi-fi and have a 

battery capacity that can be capable of withstanding the average duration of a record for our 

purpose. 

 

4.1.2 Motion analysis of the blast face 
As one of the objectives is to evaluate the motion of the blast face, developing a methodology, the 

ballistic trajectory of the fragments has been determined using differential equations in order to get 

the final position of the fragments in the ground and their distance from the bench. It has been 

possible to determine the position of each fragment in time and space by employing the velocity and 

the acceleration data of the fragments after being blasted, coming from the blasts hold in El Aljibe 

Quarry (Franco, 2022; Jiménez, 2022), together with the geometrical parameters of the Valdilecha 

site. This motion analysis has been done to know and evaluate the minimum distance at which the 

cameras can be placed, based on statistical models, and using the information coming from previous 

studies (Jiménez, 2022). 

The site under investigation is the Valdilecha Quarry, near the municipality of Valdilecha (Madrid). 

Limestone is extracted from the quarry and sold to cement factories to produce concrete (Hanson 

Hispania, 2020). The figure below (Figure 2) shows the map of the site, highlighting the benches 

under exploitation in the quarry. 

 

 

 

 

 

 

 

 

 

The geometrical parameters employed to set up a methodology refer to the Bench 2-E and in 

particular to the blast performed on 1st July 2022, as reported in Table 5. 

Figure 2: Location of the benches under exploitation in Valdilecha Quarry 
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Table 5: Geometrical parameters of the bench 

 

 

 

 

 

 

 

 

A scheme of the blast (Figure 3) has been drawn to have a schematical representation of the bench. 

For simplicity, only one row of holes is represented and the blastholes are assumed to be vertical 

even if in reality they are not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final position of the fragments on the ground has been estimated for 5000 fragments (𝑖 =

 1, … ,5000) coming from one row of with twelve blastholes (𝑗 =  1, … ,12). 

Bench 2-E - Blast from 01/07/22 
Parameters Units 

Number of holes 24 - 
Number of rows 2 - 
Number of holes per row 12 - 
Height of the bench 14.2 m 
Length of the bench 84 m 
Burden 5.75 m 
Spacing 7 m 
Stemming 3 m 
Inter-row delay 25 ms 

Figure 3: Simplified representation of the bench 
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Moreover, a grain size distribution of the muck pile is necessary because the mass of the fragment 

can affect its velocity and acceleration and consequently the distance at which it is projected. Due to 

the lack of information about the fragment size in the site under investigation, the grain size of 

another limestone quarry has been considered. The Figure 4 below shows the grain size distribution 

of the Goltas Limestone Quarry in Turkey (Ozkahraman, 2005). 

 

 

 

 

 

 

 

 

 

 

It is reasonable to assume that this grain size distribution can be representative of the grain size 

distribution of the Valdilecha quarry, because in both quarries limestone is mined (Hanson 

Hispania, 2020). 

It is important to outline that the curve has been truncated at 20% of passing to not randomly 

sample fragments that are smaller than 5 cm. If the fragments are too small, they may be confused 

with each other, hidden by the dust coming from the blasts, and the detection of their trajectory can 

be challenging.  

For the sake of simplicity, the rock fragments have been considered as spherical particles. 

The analysis of the movement of the blast face is based on the equations of motion used to 

determine the velocity and the acceleration of each fragment after being blasted, its final position on 

the ground, its distance from the bench, the time at which it impacts the ground and the duration of 

the blast, as proposed by (Jiménez, 2022). 

To get the trajectory of each particle, a detailed analysis of all the forces that are acting at the centre 

of gravity of each fragment during the whole flight, is required (Segarra, 2004; Stojadinović et al., 

2011).  

Figure 4: Grain size distribution of Goltas Limestone Quarry, Turkey 
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Rock fragments' kinetic behaviour during blasting has been discussed by (Segarra, 2004; 

Stojadinović et al., 2011). It is required to understand all of the forces acting on each rock's centre 

of gravity throughout its entire flight in order to apply the second Newton equation of motion and 

determine the trajectory of each particle, as shown in Figure 5. The study is equally valid for all the 

fragments of the bench. 

 

 

 

 

 

 

 

 

 

These forces are the weight (G), the drag force (FD) and the lift force (Lf): 

𝑮 = 𝑚𝑓𝒈           Eq. (1) 

𝑭𝑫 =
1

2
· 𝐶𝐷 · 𝜌𝑎 · 𝑆𝑟 · 𝑉

2         Eq. (2) 

𝑳𝒇 =
1

2
· 𝐶𝐷 · 𝜌𝑎 · 𝑆𝑟 · 𝑉

2         Eq. (3) 

Where: 

-  𝑚𝑓 is the mass of a fragment, which depends on the diameter and on the rock density (kg). 

- g is the acceleration of gravity (m/s2). 

- 𝐶𝐷 is the aerodynamic coefficient. 

- 𝜌𝑎 is the air density (kg/m3). 

- 𝑆𝑟 is the cross section of the fragment (m2). 

- 𝑉 is the velocity of the fragment (m/s). 

Figure 5: Basic forces acting upon the flyrock fragment. Adapted figure from (Stojadinović et al., 2011). 
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Generally, other forces such as the influence of the wind and the Coriolis effect play an important 

role in the analysis of the ballistic movements, but in this case, they have been considered as 

negligible together with the lift force (Stojadinović et al., 2011). 

The following equations are known for each spherical particle and for each instant. 

𝑚𝑓 =
4 𝜋

3
 · 𝜌 · (

ø

2
)
3

          Eq. (4) 

𝑆𝑟 = 𝜋 · (
ø

2
)
2

           Eq. (5) 

𝐶𝐷 =
24

𝑅𝑒
+

2,6·(
𝑅𝑒

5
)

1+(
𝑅𝑒

5
)
1,52 +

0,411·(
𝑅𝑒

263000
)
−7,94

1+(
𝑅𝑒

263000
)
−8 +

𝑅𝑒0.8

461000
      Eq. (6) 

𝑅𝑒 =
𝜌𝑎𝑉ø

µ
           Eq. (7) 

Where: 

- 𝑅𝑒 is the Reynolds number, function of the air density, the dynamic air viscosity, the 

velocity, and the diameter of the fragment.  

 

Table 6 shows the physical constants which have been used in the model. 

Table 6: Physical constants 

Parameter Value 

Acceleration of gravity (g) 9.8 m/s2 

Fragment density (ρ) 2721 kg/m3 

Air density (ρa) 1.1614 kg/m3 

Dynamic air viscosity (μ) 1.8·10-5 kg·m-1·s-1 

 

 

A three-dimensional representation of the bench and the trajectory of a single fragment (i) are 

shown in Figure 6. Moreover, two holes have been represented to understand which is the nearest 

blasthole to the fragment. The individuation of the nearest blasthole determines the ejected fragment 

direction, which is identified by the line passing through the position of the fragment and the 

nearest blasthole, also known as azimuth angle. 
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The initial and final positions of the fragment have been represented by a circle and its trajectory is 

shown in green.  

When the blast is fired (𝑡 =  0), the fragment is part of the rock mass, still belonging to the bench 

and its initial position is defined by (𝑥𝑖 ,  𝑦𝑖, 0) coordinates. Once the blast progresses, the fragment 

is ejected with a certain angle (β), called ejection angle, and a given initial velocity (v0). This 

velocity is known as initial velocity and is defined as the speed at which each fragment is ejected. It 

is evaluated according to empirical models (Jiménez, 2022) obtained from the blast fired at El 

Aljibe quarry. 

The ejected fragment follows a ballistic trajectory before hitting the ground, reaching its final 

position given by (𝑥𝑖, 0,  𝑧𝑖) coordinates at 𝑡 =  𝑡𝑓, when hitting the ground. 

To understand which hole can be considered as the source of the fragment, it is important to 

determine the distance between the fragment (i) and its closest hole (j), defined as the horizontal 

distance. This relation is given by the following equation: 

𝑑ℎ = 𝑚𝑖𝑛(𝑥𝑓𝑖 − 𝑥ℎ𝑗)          Eq. (8) 

𝑖 =  1, . . . ,5000          Eq. (9) 

𝑗 =  1, . . . , 12           Eq. (10) 

 

 

Figure 6: Simplified 3D representation of the analysis of a fragment's trajectory 
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Where: 

- 𝑑ℎ is the horizontal distance between a fragment and the closest hole. 

- 𝑖 is the index of the fragments. 

- 𝑗 is the index of the holes. 

- 𝑥𝑓𝑖 is the x-coordinate of the i-th fragment in the XY plane. 

- 𝑥ℎ𝑗 is the x-coordinate of the j-th hole in the XY plane. 

 

To get the position of the fragment in the XZ plane, a change of coordinates is necessary.  

 

 

 

 

 

 

 

As represented in Figure 8, a geometrical relationship exists between the azimuth angle (𝛼), the 

burden (𝐵), and the distance hole-fragment (𝑑ℎ), that is described by the following equations (11-

13).  

Figure 8: 2D representation in XZ plane 

Figure 7: Coordinate system 
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𝑡𝑎𝑛(𝛼) =  
𝐵

𝑑ℎ
           Eq. (11) 

𝛼 = 𝑎𝑡𝑎𝑛 (
𝐵

𝑑ℎ
)          Eq. (12) 

𝐵𝑟  =  √𝐵2 + 𝑑ℎ
2          Eq. (13) 

Where: 

- 𝛼 is the azimuth angle (°). 

- 𝐵 is the burden (m). 

- 𝐵𝑟 is the real burden, the minimised distance between the hole and the free face (m). 

 

Moreover, the trajectory of a single fragment (i), its initial and final positions are shown with two-

dimensional simplified representations in the three different planes XY and ZY. 

The following figure (Figure 9) outlines the initial position (at 𝑡 =  0) of a rock fragment (i) in the 

XY plane. 

 

 

 

Furthermore, the movement of the fragment has been analysed in the plane X’Y’, as shown in the 

following figure (Figure 10). 

 

Figure 9: 2D representation of the initial position of the fragment in XY plane 
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The position of the rock fragment is given by the x’y’ coordinates. At 𝑡 =  0, its initial position is 

set by (𝑥′𝑖  =  0,  𝑦′𝑖0). Once the blast occurs, the fragment is ejected with an angle β and an initial 

velocity (v0, evaluated according to the models coming from El Aljibe quarry). The fragment 

reaches its final position at (𝑥′𝑖 , 𝑦′𝑖 = 0). Note that in Figure 8 the fragment reaches the ground 

(𝑦′𝑖 = 0) at a certain distance from the bench (𝑑). 

Once the initial velocity (𝑣0) has been evaluated, it is possible to obtain the final position of the 

rock fragments, through the following equations of motion. It is an iterative process computed for 

each fragment and for each time.  

𝒙̇′𝑘+1 = 𝒙̇′𝑘 + 𝒙̈′𝑘 · (𝑡𝑘+1 − 𝑡𝑘)        Eq. (14) 

𝒚̇′𝑘+1 = 𝒚̇′𝑘 + 𝒚̈′𝑘 · (𝑡𝑘+1 − 𝑡𝑘)        Eq. (15) 

𝑣𝑘 = √𝒙̇′𝑘
2 + 𝒚̇′𝑘

2          Eq. (16) 

𝛽 = 𝑎𝑟𝑐𝑡𝑔 (
𝒚̇′0

𝒙̇′0
)          Eq. (17) 

Where 𝒙̇′0 and 𝒚̇′0 are the components of the initial velocity (𝑣0) in the projection plane x’y’ and  𝛽 

is the ejection angle. 

𝒙̈′𝑘+1 = −
1

2
·
𝜌𝑎·𝐶𝐷·𝑆𝑟

𝑚𝑓
· 𝒙̇′𝑘  · √𝒙̇′𝑘

2 + 𝒚̇′𝑘
2       Eq. (18) 

𝒚̈′𝑘+1 = −𝑔 −
1

2
·
𝜌𝑎·𝐶𝐷·𝑆𝑟

𝑚𝑓
· 𝒚̇′𝑘 · √𝒙̇′𝑘

2 + 𝒚̇′𝑘
2        Eq. (19) 

𝒙′𝑘+1 = 𝒙′𝑘 + 𝒙̇′𝑘 · (𝑡𝑘+1 − 𝑡𝑘)        Eq. (20) 

Figure 10: 2D representation of fragment's trajectory in X'Y' plane 
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𝒚′𝑘+1 = 𝒚′𝑘 + 𝒚̇′𝑘 · (𝑡𝑘+1 − 𝑡𝑘)        Eq. (21) 

The solution is a set of (x’, y’) positions defining the flight at discrete time intervals. Moreover, the 

Reynolds number, the aerodynamic coefficient, and the drag force have been computed for each 

time instant.  

As shown in Figure 7, the motion of the fragment is first analysed in the X’Y’ reference system. 

Then, to return to the original coordinate reference system (Figure 6), the following equations have 

been used: 

𝑥(𝑖)  =  𝑥𝑖
0 + 𝑥′(𝑖) ∙ 𝑐𝑜𝑠(𝛼(𝑖))        Eq. (22) 

𝑦(𝑖)  = 𝑦𝑖
0 +  𝑦′(𝑖)          Eq. (23) 

𝑧(𝑖)  =  𝑧𝑖
0 + 𝑦′(𝑖) ∙ 𝑠𝑖𝑛 (𝛼(𝑖))        Eq. (24) 

Where: 

- 𝑥𝑖
0, 𝑦𝑖0, 𝑧𝑖0 are the initial coordinate of the i-fragment. 

- 𝛼 is the azimuth angle, defined by the Eq. (12). 

- 𝑥′(𝑖), 𝑦′(𝑖) are the coordinates of the i-th fragment in the plane X’Y’. 

- 𝑥(𝑖), 𝑦(𝑖), 𝑧(𝑖) are the new coordinates of the i-th fragment in the XYZ reference system. 

With this change of coordinates, it has been possible to represent all the whatever fragments on the 

ground, defined by XZ plane, as shown in Figure 11. 

 

 

 

 

 

 

 

 Figure 11: Fragments projection 
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Figure 12 shows the trajectories of ten fragments chosen arbitrarily to better visualize their paths. 

 

 

 

 

 

 

 

 

 

 

 

The figure below (Figure 13) shows all the fragments on the ground in a colour scale based on the 

nearest blasthole. The colour scale is subdivided into twelve different groups and each group 

represents one of the twelve holes. In this way, the fragments originated by different holes are 

highlighted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Fragments' trajectories 

Figure 13: Coloured representation of fragments on the ground 



33 
 

The statistical tool of the empirical distribution function is used to understand which is the 

distribution of the distances travelled by the fragments. 

 

 

 

 

 

 

 

 

 

 

 

 

The farthest distance travelled by the fragments is 66.50 m as shown in the Figure 14. The 

importance of this parameter is not to be underestimated because it represents the minimum 

distance at which the cameras will be placed to not be hit by the ejected fragments. For safety 

reasons the distance between the cameras and the bench must be higher than 66.50 m. 

 

4.1.3 Optimal location of the cameras 
Once the minimum distance bench-fragment has been determined, it is necessary to optimize the 

position of the two cameras trying to maximize the number of fragments that are visible from both 

cameras and optimizing the coverage of a ground-based region of interest. Together with these 

parameters, also the optimal distance between the cameras and the bench and the distance between 

the two cameras are determined. 

 

The cameras are assumed to have a fixed range and field of view (𝛿), and they are positioned at 

fixed heights above the ground. The position of each camera is described by the distance between it 

and the centre of the bench and by two angles: the angle 𝜗 that defines the position of the first 

Figure 14: Empirical Cumulative Distribution Function 
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camera and the angle 𝜔 which describes the orientation of the camera in relation to the horizontal 

plane. As the cameras are two, two different angles are used to describe their directions: 𝜔1 for the 

first camera and 𝜔2 for the second one, respectively. Moreover, the distance between the two 

cameras needs to be evaluated. 

The optimal location of the cameras has been acquired by firstly finding the coordinates of the two 

cameras and the boundaries of their fields of view. Then, the intersection of the two fields of view, 

which represents the area on the ground that is visible from both cameras, has been evaluated. This 

intersection has been used to calculate the overlap percentage between the two fields of view, as 

well as the number of points that are in the intersection area. Finally, it has been determined the 

existing relation between the farthest fragment and the cameras and the distance between one 

camera and the other. The distance between the two cameras strongly depends on the position of the 

farthest ejected fragment on the ground.  This relationship has been described by a function, limited 

by a defined range of values (Adil et al., 2022). 

 

The following figures (Figure 15 and Figure 16) show arbitrary situations of the cameras, 

highlighting the most important parameters that affect their optimal placement. 
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The position of the Camera 1 (C1) can change along the arc according to the angle 𝜗. The arc has a 

radius equal to the value of 𝑟, that should be at least 66.5 m, according to Figure 13. For simplicity, 

𝜗 ranges from 0 to  𝜋
2
  because the analysis is assumed to be symmetrical. The position of Camera 2 

(C2) depends on the position of the first camera (C1), and it is described by the angle (𝛽 + 𝜗). 

Moreover, the distance between the two cameras (𝐷) can vary between 1 and 50 m. In the 

configuration shown in Figure 14, it is evident that the position and the orientation of the cameras is 

not describing an optimal condition because there is no intersection between the fields of view of 

the two cameras, represented by the triangles. This means that a three-dimensional reconstruction of 

the trajectory of the projected fragments is not possible because the fragments on the ground 

(represented by blue circles) will not be detected by both cameras at the same instant. This explains 

Figure 15: Schematical representation of a possible placement of the cameras with their FOVs 
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why the goal of the analysis is to find the optimal location of C1 and C2, defined by 𝜃, 𝜔1 and 𝜔2, 

which must guarantee the intersection of the two fields of view of the cameras. The optimal 

configuration is reached when the fields of view are intersecting each other, and the resulting 

overlapping area is the greatest possible. At the same time, this overlapping area should cover the 

greatest number of fragments. 

 

 

 

Figure 16: Schematical representation of a possible placement of the cameras, their distances from the fragments 
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In Figure 16, the importance of the distance between the cameras and fragments is highlighted. 

Among all the distance values there is one representing the maximum value that determine/define 

the position of the farthest fragment from the cameras. The identification of the farthest point is 

needed for our analysis because the cameras must be placed in a position where they can detect 

even the most distant fragments (𝑑𝑚𝑎𝑥). Moreover, according to (Over et al., 2021), it exists a 

relation between 𝐷 and 𝑑𝑚𝑎𝑥: their ratio must be between 2 and 7. This means that the distance 

between the two cameras depends on how far the farthest fragment is. The evaluation of 𝑑𝑚𝑎𝑥 is 

done by considering the maximum distance between the middle point of the chord defined between 

C1 and C2 (represented by a segment that links the two cameras) and all the fragments on the 

ground. 

As stated before, the position of the cameras is described by several angles and is defined as 

follows: 

𝐶1  =  [𝐶1𝑥 𝐶1𝑧]  =  [𝑟 ∙ 𝑐𝑜𝑠(𝜗)  + 𝐶𝑥 𝑟 ∙ 𝑠𝑖𝑛(𝜗)  + 𝐶𝑧]    Eq. 

(26) 

𝐶2  =  [𝐶2𝑥 𝐶2𝑧]  =  [𝑟 ∙ 𝑐𝑜𝑠(𝜗 + 𝛽) + 𝐶𝑥 𝑟 ∙ 𝑠𝑖𝑛(𝜗 + 𝛽)  + 𝐶𝑧]   Eq. 

(27) 

𝛽 =  2 ∙ 𝑎𝑠𝑖𝑛 (
𝐷

2∙𝑟
)         Eq. (28) 

Where: 

- 𝐶1, 𝐶2 are the coordinates of the cameras. 

- 𝐶1𝑥, 𝐶2𝑥 are the x-coordinates that define the position of the two cameras. 

- 𝐶1𝑧, 𝐶2𝑧 are the z-coordinates that define the position of the two cameras. 

- 𝐶𝑥, 𝐶𝑧 are the coordinates of the centre of the arc. For simplicity, the centre of the arc is in 

the middle of the bench, defined by a length of 𝑊. So, in particular 𝐶𝑥  =  
𝑊

2
 and 𝐶𝑧  =  0. 

- 𝑟 is the radius of the arc, that represents the distance between the cameras and the centre of 

the bench. 

- 𝜗 is the angle that describes the position of the first camera. It ranges from 0 to 𝜋
2
. 

- 𝛽 is the angle that together with 𝜗 defines the position of the second camera. 

- 𝐷 is the distance between the two cameras. 
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Two sets of vertices have been used to create two polygons (triangles), one for each field of view, to 

represent the FOVs of the cameras on the ground. 

𝑇1 = 

[
 
 
 𝐶1𝑥 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔1 −

𝛿

2
) 𝐶1𝑧 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔1 −

𝛿

2
)

𝐶1𝑥 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔1 +
𝛿

2
) 𝐶1𝑧 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔1 +

𝛿

2
)

𝐶1𝑥 𝐶1𝑧 ]
 
 
 

    Eq. (29) 

 

𝑇2 = 

[
 
 
 𝐶2𝑥 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔2 −

𝛿

2
) 𝐶2𝑧 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔2 −

𝛿

2
)

𝐶2𝑥 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔2 +
𝛿

2
) 𝐶2𝑧 + 𝑅 ∙ 𝑐𝑜𝑠 (𝜔2 +

𝛿

2
)

𝐶2𝑥 𝐶2𝑧 ]
 
 
 

    Eq. (30) 

Where: 

- 𝑇1, 𝑇2 are two 3-by-2 matrixes that define the vertices of the fields of view of the two 

cameras. The elements in the first column are the x-coordinates and the ones in the second 

column are the z-coordinates. 

- 𝛿 is the field of view of the cameras and it is fixed at 𝛿 =  72°, according to the cameras 

features. 

- 𝜔1, 𝜔2 are the orientations of the two cameras on the horizontal plane. They can range from 

0 to 2𝜋. 

- 𝑅 is length of the sides of the triangles (m).  

Moreover, the areas (𝐴1, 𝐴2) of the two triangles and their intersection have been evaluated. 𝐴1, 𝐴2 

represent the areas on the ground that are visible from each camera. The two triangles (fields of 

view) are equal because they are defined by the same angle 𝛿 and arbitrary sides (𝑅 =  300 𝑚), 

which means that the areas of the two polygons are the same (𝐴1 = 𝐴2). 

Then, the intersection of the two polygons is calculated, together with the area of the resulting 

intersecting polygon (𝐴𝑖𝑛𝑡). 𝐴𝑖𝑛𝑡 outlines the area on the ground, visible from both the cameras. The 

intersecting polygon is defined by n-vertices and its area is used to calculate the percentage of 

overlap between the two fields of view.  

 

𝐼𝑛𝑡𝑝𝑜𝑙𝑦𝑔𝑜𝑛  =  𝑇1 ∩ 𝑇2         Eq. (31) 

% 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =  
𝐴𝑖𝑛𝑡

𝐴1
 ∙  100        Eq. (32) 

 



39 
 

Then, the built-in MATLAB function called inhull (D’Errico, 2006) has been employed to 

determine whether the fragments are within the intersection polygon. Therefore, the greater the 

intersection polygon is, the greater number of fragments would lie inside that area. Only the 

fragments that lie inside the intersection polygon have been considered, because they can be 

simultaneously visible from both the cameras. 

Once the coordinates of the cameras have been determined, the middle point of the chord 𝐷 is 

defined as follows: 

𝑀𝑃 =  [𝑀𝑃𝑥 𝑀𝑃𝑧]  =  [
𝐶1𝑥+𝐶2𝑥

2

𝐶1𝑧+𝐶2𝑧

2
]       Eq. (33) 

Then, the distance between the between the middle point and all the fragments inside the 

intersection polygon has been evaluated according to the following equation (Eq. (34)). 

𝑑𝑀𝑃−𝑓 = √(𝑀𝑃𝑥(𝑖) − 𝑥(𝑖))2 + (𝑀𝑃𝑧(𝑖) − 𝑧(𝑖))2      Eq. (34) 

Where:  

- 𝑑𝑀𝑃−𝑓 is a column vector, whose size depends on the number of points inside the 

intersection polygon. The elements of the vector are distance values between the middle 𝑀𝑃 

and each fragment. 

- 𝑥(𝑖), 𝑧(𝑖) are the coordinates of the i-th fragment within the intersection polygon. 

One of these distance values represents the maximum distance that defines the location of the 

farthest fragment from the cameras. It may be calculated by: 

𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥(√(𝑀𝑃𝑥(𝑖) − 𝑥(𝑖))2 + (𝑀𝑃𝑧(𝑖) − 𝑧(𝑖))2)     Eq. (35) 

Where: 

- 𝑑𝑚𝑎𝑥 is the maximum value of distance between 𝑀𝑃 and a fragment (𝑥(𝑖), 𝑧(𝑖)). 

The existing relationship between 𝑑𝑚𝑎𝑥 and the chord 𝐷 can be defined as the ratio (Over et al., 

2021): 

𝑎 =  
𝑑𝑚𝑎𝑥

𝐷
 =  2 −  7          Eq. (36) 

The following equation describes the function needed for keeping the parameter 𝑎 within a 

specified interval. This parameter outlines the relationship that exists between the spacing between 

the two cameras and the distance of the fragments from the cameras. 
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𝑦 =  

{
 
 

 
 

0 𝑎 < 2
−𝑎 + 2 𝑎 ≥ 2  &  𝑎 < 4
−2 𝑎 ≥ 4  &  𝑎 < 5
𝑎 − 7 𝑎 ≥ 5  &  𝑎 < 7
0 𝑎 ≥ 7

        Eq. (37) 

 

The determination of this function is needed to limit the variation of the 𝑎-parameter in a predefined 

interval and to ensure that the distance between the cameras (𝐷) is consistent with the maximum 

distance between the cameras and the fragments (𝑑𝑚𝑎𝑥). 

The figure below (Figure 17) shows the function 𝑦 when the parameter 𝑎 varies. 

 

 

 

 

 

 

 

 

 
 

The figure above (Figure 17) represents a trapezoidal function, defined in five intervals. It illustrates 

the values that the function 𝑦 can assume in the 𝑎-interval that ranges from 2 to 7. All the 𝑦-values 

outside the range (𝑎 < 2 and 𝑎 > 7) are equal to 0. 

At the end, the position of the cameras is given by five variables:  

- The angle 𝜗, which defines the position of the first camera (𝐶1), 

- The angle 𝜔1, which represents the orientation of 𝐶1 in relation to the horizontal plane, 

- The angle 𝜔2, which outlines the orientations of 𝐶2 in relation to the horizontal plane, 

- The segment 𝑟, that is the distance between the centre of the bench and cameras, also 

defined as the radius of the arc on which the cameras can move, 

- The chord 𝐷, representing the distance between the two cameras. 

Figure 17: Trapezoidal function 
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The optimal placement of the cameras, with respect to the bench, to the fragments on the ground 

and between themselves, has been detected with a multi-objective optimization, able to: 

- Maximize at the same time the overlapping area and the number of fragments lying inside 

this area, 

- Determine the optimal distance between the cameras (𝐷), using a function that can describe 

how the relation between 𝐷 and 𝑑𝑚𝑎𝑥 can vary in a given range. 

 
 

4.1.4 Multi-objective optimization 
The overlap of the cameras FOV, the number of fragments covered by the FOV intersection and the 

relation between distances fragment-cameras and camera-camera are the functions that need to be 

maximized. They depend on the position and the orientations of the cameras, defined by three 

angles 𝜗, 𝜔1 and 𝜔2, on the distance cameras-centre bench (𝑟) and on the distance between the first 

camera and the second one (𝐷). 

The optimization problem, in which more than one function must be optimized at the same time, is 

known as multi-objective optimization.  

Since three different functions need to be optimized simultaneously, a multi-objective optimization 

has been used to get the optimal values of 𝜗, 𝜔1, 𝜔2, 𝑟 and 𝐷, also known as independent variables. 

The solution of the multi-objective optimization is given by the Pareto front. The Pareto front 

represents a set of optimal solutions that works as a trade-off between these two objectives (Ref.).  

 

One of the advantages of the Pareto optimization is that it allows a more comprehensive and clearer 

understanding of the optimization problem. Instead of focusing on a single objective, Pareto 

optimization considers multiple objectives and their interdependencies. 

The multi-objective optimization (Custodio et al., 2011) is a type of optimization problem where 

there is the need of optimizing multiple functions simultaneously. These objectives may conflict 

with each other, meaning that improving one objective may produce the worsening of another. 

The goal of multi-objective optimization is to find a set of solutions that are optimal with respect to 

multiple objectives, rather than a single optimal solution. This set of solutions should represent a 

good trade-off between the different objectives (Hwang, 1979). 
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One way to formulate a multi-objective optimization issue is as proposed by (Karim, 2000): 

𝑚𝑎𝑥
𝑥∈𝑋

(𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑘(𝑥))         Eq. (38) 

Where: 

- 𝑘 is the number of objective functions. In the multi-objective optimization:  𝑘 ≥ 2. 

- 𝑋 is the set of decision vectors, where 𝑋 ⊆ ℝ𝑛 and it depends on the 𝑛-dimensional 

domain. 

𝑋 can be defined by some constraint function 

To be noted that the maximization of the objective function is equivalent to the minimization of its 

inverse, as follows, because MATLAB always minimises: 

𝑚𝑖𝑛
𝑥∈𝑋

(−𝑓1(𝑥),−𝑓2(𝑥), . . . , −𝑓𝑘(𝑥))        Eq. (39) 

An optimal solution of a multi-objective optimization is the one that achieves the best possible 

compromise among the different objectives. The Pareto-optimal solution or Pareto front is a set of 

solutions that represent a good trade-off between different objectives, where improving one can 

worsen another (Karim, 2000).  

Finding the Pareto front is useful because it allows to compare the different conflicting objectives 

and choose between different trade-offs. By visualizing the Pareto front, it is possible to see which 

solutions are feasible and which trade-offs are available.  

Mathematical definition of the Pareto optimization 

The Pareto optimization is defined as follows: 

• ∀ 𝑖 ∈  {1, . . . , 𝑘}, 𝑓𝑖(𝑥1)  ≤  𝑓𝑖(𝑥2)        Eq. (40) 

• ∃ 𝑖 ∈  {1, . . . , 𝑘}, 𝑓𝑖(𝑥1)  <  𝑓𝑖(𝑥2)        Eq. (41) 

Where: 

- 𝑥1 ∈  𝑋 and 𝑥2 ∈  𝑋 are the feasible solutions 

- 𝑘 is the number of objectives, in this particular case 𝑘 =  3. 

A solution 𝑥∗ ∈  𝑋∗ is called Pareto optimal if there does not exist another solution that dominates 

it. The set of Pareto optimal solutions (𝑋∗) is called Pareto front. Moreover, the Pareto front of a 
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multi-objective optimization is limited by upper and lower bounds. This means the set of solutions 

lies in a range, that must be defined as input. 

The MATLAB algorithm adopted is Paretosearch.m algorithm. It is an iterative algorithm which 

defines a set of points, that must satisfy all the bounds and the constraints at each iteration. The 

resulting points must converge to the points near the true Pareto front. The problem has five 

decision variables or free variables, for which the upper and lower bounds have been defined.  

The outputs of the Pareto search algorithm are the decision variable values (𝑥∗) and the objective 

function values (𝑓1(𝑥∗), 𝑓2(𝑥∗), 𝑓3(𝑥∗)). 

The only point that represents the best possible outcome for all the objectives, simultaneously, is the 

so-called utopia point. This point is important because it provides a reference point for evaluating 

the trade-off and the quality of the solutions. 

𝑃𝑢𝑡𝑜𝑝𝑖𝑎 =  𝑚𝑖𝑛 (−𝑓1(𝑥
∗), −𝑓2(𝑥

∗), 𝑓3(𝑥
∗) )      Eq. (42) 

Where: 

- 𝑃𝑢𝑡𝑜𝑝𝑖𝑎 is a vector whose elements are the coordinates on the Pareto front of the utopia point. 

- 𝑓1(𝑥
∗), 𝑓2(𝑥

∗), 𝑓3(𝑥
∗) are the objective functions. 

Then, the distances between the utopia point and all the points on the Pareto front are calculated 

using the Euclidean distance formula. The trade-off has been found considering the point on the 

Pareto front that has the minimum distance from the utopia point.  

The multi-objective function is defined as: 

𝐹
𝑥∗∈𝑋∗

= [ −𝑓1(𝑥
∗) −𝑓2(𝑥

∗) 𝑓3(𝑥
∗)]       Eq. (43) 

The inputs are the upper and lower bounds of the decision variable values. 

𝑢𝑏 =  [
𝜋

2
2𝜋 2𝜋 250 50]       Eq. (44) 

𝑙𝑏 =  [0 0 0 100 1]        Eq. (45) 

The outputs are the values of the objective functions, which are the elements of the vector 𝐹, that 

has i-th rows and 3 columns, as shown in Eq. (43) and the decision variable values (Eq. (46)). 

𝑥∗ = [𝜃 𝜔1 𝜔2 𝑟 𝐷]        Eq. (46) 
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Where: 

- 𝐹 is a vector containing the three objective functions: the elements of the first column are 

𝑓1(𝑥
∗), the ones of the second column are 𝑓2(𝑥∗) and the elements of the third column are 

𝑓3(𝑥
∗). 

- 𝑓1(𝑥
∗) is the objective function that maximise the overlap between the two fields of view. 

- 𝑓2(𝑥
∗) is the objective function that maximise the number of fragments that are covered by 

the two fields of view. 

- 𝑓3(𝑥
∗) is the objective function that describes how the function 𝑦 (Eq. (37)) can vary if 𝑎 =

𝑑𝑚𝑎𝑥

𝐷
 ∈  [2, 7]. 

- 𝑥∗ is the decision vector made by the three independent variables (decision variables). 

- 𝑢𝑏 is the upper bound for the decision variables. 

- 𝑙𝑏 is the lower bound for the decision variables. 

 

In the figure below (Figure 18), the Pareto front is shown as a result of the Paretosearch.m 

algorithm. The x-axis represents the Objective 1, which is the overlapping area of the two fields of 

view, while the y-axis represents the Objective 2, that is the number of points inside the overlapping 

area and the z-axis is the Objective 3, which shows the 𝑦 function.  

  

 

 

 

 

 

 

 

 

 

 

Figure 18: Pareto front 
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Each point in the figure (Figure 18) represents a possible configuration of 𝜃, 𝜔1, 𝜔2, 𝑟, 𝐷 and the 

corresponding values of the objective functions 𝑓1(𝜃, 𝜔1, 𝜔2, 𝑟, 𝐷), 𝑓2(𝜃, 𝜔1, 𝜔2, 𝑟, 𝐷) and 

𝑓3(𝜃, 𝜔1, 𝜔2, 𝑟, 𝐷). 

In case of three objective functions, the Pareto front turns out to be a surface. For any solution on 

the Pareto front, it is not possible to improve one objective without worsening the other. All the 

objectives are equally important and have the same weight and they are all maximised by the 

decision variables. For this reason, the utopia point is a reference point to get the optimal solution. 

The solutions are better or worse, depending on how close they are to the utopia point. The closer to 

the utopia point the solutions are, the better they are considered.  

The Euclidean distances between the utopia point and all the points on the Pareto front have been 

evaluated to determine the trade-off solution among all the possible ones.  

𝑑𝑃𝑢𝑡𝑜𝑝𝑖𝑎 = 𝑚𝑖𝑛 (√(𝑃𝑢𝑡𝑜𝑝𝑖𝑎(1) − (−𝑓1))
2
+ (𝑃𝑢𝑡𝑜𝑝𝑖𝑎(2) − (−𝑓2))

2 + (𝑃𝑢𝑡𝑜𝑝𝑖𝑎(3) −  𝑓3)
2)  Eq. (47) 

Where: 

- 𝑑𝑃𝑢𝑡𝑜𝑝𝑖𝑎 is the minimum distance between the utopia point and the points on the Pareto 

front, defined by values of −𝑓1, −𝑓2 and 𝑓3. 

- −𝑓1, −𝑓2 and 𝑓3 are the vectors of the objective functions. 

The following figure (Figure 19) represents the Pareto front, the utopia point and the optimal 

solution or trade-off solution. 

 

 

 

 

 

 

 

 

 
Figure 19: Pareto front, utopia point and trade-off solution 
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Finally, the solution is identified by the point on Pareto front, which has the minimum distance 

from the utopia point. This point gives information on the decision variable values (𝑥∗) and the 

objective function values ( 𝑓1(𝑥∗),  𝑓2(𝑥∗), 𝑓3(𝑥∗)). 

𝑥∗ = [78.05° 265.22° 267.19° 153.30 𝑚 34.30 𝑚]    Eq. (48) 

𝐹 =  [ −𝑓1(𝑥
∗) −𝑓2(𝑥

∗) 𝑓3(𝑥
∗)]  =  [−91.02 −4759 −2]   Eq. (49) 

Where: 

- 𝑓1(𝑥
∗)  =  91.02 % is the percentage of the overlapping area. 

- 𝑓2(𝑥
∗)  =  4759 is the number of fragments (out of 5000) that lie in the overlapping area. 

- 𝑓3(𝑥
∗)  =  −2 is the value of the function 𝑦 (Eq. (37)) for 𝑎 = 𝑑𝑚𝑎𝑥

𝐷
 that belongs to the range 

between  2 and 7, resulting in 𝐷 =  34.30 𝑚. 

 

Once determined the optimal values of 𝜃, 𝜔1, 𝜔2, 𝑟 and 𝐷, that optimize the area on the ground that 

is visible from both cameras simultaneously, the number of fragments contained by this area, and 

the value of 𝑎, it is possible to place the cameras. 

The figure below (Figure 20) shows the projection of the fragments on the ground, as well as the 

angle of view of each camera and the intersection polygon, whose border is highlighted in green. It 

represents the optimal position and orientation of the cameras with respect to the fragments. 
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In the figure above (Figure 20), the cameras are represented with asterisks, and positioned at 

different angles. The position of the Camera 1 (in red) is defined by 𝜗 =  78.05° and the location 

of Camera 2 (in black) is determined by (𝛽 + 𝜗)  =  91.04°, away from the first one of 34.30 𝑚. 

Moreover, the distance between the centre of the bench and the cameras is about 153.30 m. 

The two triangles have been used to determine the angle of view of each camera and its orientation 

with respect to the North. The orientation of the first camera is about 265.22° (𝜔1) and the one of 

the second camera is 267.19° (𝜔2). The triangles are the representation of the area on the ground 

that is visible from each camera. The intersection of these triangles results in a third polygon, which 

represents the area on the ground that is visible from both cameras. It represents one of the 

maximum possible overlapping areas, selected with the criteria of the utopia point, that also 

contains the greatest number of fragments. 

 

 

 

Figure 20: Optimal position and orientation of the cameras 
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4.1.4 Camera selection 
The camera selection process ends with the selection of the cameras, which involves the analysis of 

the existing relationship between the results obtained with the motion analysis of the blast face 

(fragment size and placement of the cameras) and the features of the cameras (focal length and pixel 

size, which depends on the sensor type). 

In the figure below (Figure 21), a simplified scheme that combines the cameras features and the 

values coming from the motion analysis, as for example the fragment size and the distance between 

the farthest fragment and the cameras, is shown, where: 

- ø is the diameter of the fragment (m). 

- 𝑑𝑚𝑎𝑥 is the distance of the camera from the fragment (m). 

- 𝛼 is the angle between the radius of the fragment and the focal point (°). 

- 𝑓 is the focal length of the camera (mm). 

- 𝑥 is the pixel size able to capture the fragment (μm) 

 

 

According to the geometrical relationships among the elements in the figure, the following 

equations can be used to finally select the proper camera: 

𝑡𝑎𝑛(𝛼) =  
𝑥

𝑓
= 

𝑟 

𝑑𝑚𝑎𝑥 
         Eq. (50) 

𝑥 =  𝑡𝑎𝑛 (𝛼) ∙ 𝑓         Eq. (51) 

𝑝𝑥 =  
𝑥 

𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒(𝑠𝑒𝑛𝑠𝑜𝑟) 
         Eq. (52) 

From these equations, all the parameters are known, apart from the pixel size able to capture a 

fragment. 

 

Figure 21: Graphical representation of the relationship between fragment size-max distance and pixel size-focal length 
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The following table (Table 7) represents a summary of all the characteristics used to identify the 

best camera. As it is possible to notice the cameras’ features and the parameters coming from the 

design are combined in the Eq. (50-52) to get the number of pixels able to capture a fragment with a 

mean diameter of 58.9 cm, if the cameras are 153.3 m far from the bench. 

 

The number of pixels has been evaluated for all the remaining cameras coming from Table 5, to 

make a comparison among the different types and to choose the best one. It has been assumed to put 

the cameras all at the same distance (153.3 m), pointing towards the same fragment of a size equal 

to 58 cm. 

All the three different types of cameras listed have reached a valuable final result because the order 

of magnitude of the number of pixels is the same. However, the camera that requires the lowest 

amount of pixels to detect the same fragment from the same distance is the Sony ZV-1, with 32 px.  

Since one of the main objectives is to record video with HFR, the maximum time that a video can 

last in high frame rate mode is therefore an important parameter to be considered. To be sure that 

the shooting time available from these cameras is long enough to record the event, the time required 

by the fragments to reach the ground has been evaluated. The blast will last 3.82 s, which involves 

that the Sony ZV-1 needs to be discarded because its shooting time is about 3 s.  

Although the remaining two cameras (Sony DSC-RX100 VII and Sony RX10 III) are able to record 

the event, it is still preferable to choose the camera that guarantees the highest shooting time values. 

All things considered, the best choice turns out to be the Sony DSC-RX100 VII. It is able to capture 

a fragment with 31 px, and its shooting time with HFR mode is much higher (6/7 s versus 4 s of 

the Sony RX10 III).  

Table 7: Relation between cameras features and geometrical parameters 
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4.2 Photogrammetric analysis 
The reconstruction of the 3D trajectory of an object is based on calculating its coordinates in real 

space at different time instants. This is accomplished by using the photogrammetric principle of 

collinearity, which states that the object points in the images, the object point in space, and the 

projection centre of the cameras must lie on the same line. By ensuring the intersection of the 

optical axes of the two photographs, the three-dimensional position of the object may be determined 

(Ref.). Prior to solving the collinearity equations, a stereo calibration process is conducted to 

determine the orientation parameters of the cameras, including translation and rotation. This 

calibration step is crucial as it provides the necessary information to account for the number of 

unknowns in the collinearity equations system, enabling a solution to be obtained. Additionally, the 

calibration process determines the distortion coefficients of the lenses, which are then used to 

correct the captured images. 

Once the orientation parameters of the cameras are established, the object is recorded in high frame 

rate (HFR) mode using the two cameras, which are kept in the same position used during the 

capture of the pattern images for calibration. The object trajectory is obtained through frame 

analysis of the recorded videos, which capture different positions of the object along its entire path. 

Each specific position is identified by two homologous frames—one from each camera—

corresponding to the same instant. Utilizing MATLAB's multiple objects tracking function, the 

object is tracked, resulting in the coordinates, measured in pixels, of its centroid at each instant. 

From the 2D coordinates of the object in each frame, it has been possible to reconstruct the 3D 

trajectory of the object in real space. This procedure provides valuable insights into the object's 

movement and position within the 3D environment. 

4.2.1 Stereo camera calibration 
Calibration is an essential step to accurately convert 2D picture points to their corresponding 3D 

world coordinates. The stereo-calibration relies on detecting the corners of a known-sized pattern in 

all the images of a stereophotogrammetric set (Cabrera-Quirós et al., 2013). By identifying the same 

real points in both images of a pair, the algorithm evaluates the projections of these points from the 

world coordinates, defined by the pattern, into the image coordinates using the stereo parameters. 

Moreover, the algorithm aims to minimize the distances between the detected points and their 

reprojected counterparts. With the calibration it is possible to obtain the relative positions and the 

orientations of the two cameras in a stereo camera system. 
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It involves determining the internal and external orientations of cameras used to record object 

movements and correcting lens distortion. It is a one-time process since the cameras remain 

stationary during recording. 

The internal orientation of the cameras, also known as intrinsic parameters, refers to obtaining the 

intrinsic parameters of the camera, which describe its internal functioning. These parameters are the 

constants in the camera, and they include the position of the main point of the image (where the 

optical axis intersects the camera sensor), the focal length (the distance between the optical centre 

and the sensor) and the lens distortion coefficients (both tangential and radial). 

The external orientation, or extrinsic parameters, defines the position of the camera and its 

orientation in relation to the real world. In this case, it involves establishing the relative orientation 

of one camera (e.g. right camera) with respect to another (e.g. left camera), using the left camera as 

a reference system for the reconstruction of the object motion. In other words, the left camera 

represents the origin of the reference system of the object. These extrinsic parameters consist of a 

relative translation with respect to the reference system on which the reconstruction of the object 

trajectory is to be performed and the three camera angles:  

- The pitch (𝝋), which is the angle between the horizontal and the optical axis of the camera. 

Its positive value indicates that the camera is pointing downwards. 

- The roll (𝝎), that represents the rotation around the optical axis, with positive values for 

counter-clockwise tilt. 

- The yaw (), which defines the orientation of the optical axis in the horizontal plane. 

The figure below (Figure 22) shows a visual interpretation of the cameras angles. 

 

 

 

 

 

 

 

 

 Figure 22: The three rotation angles of the right camera with respect to the left camera 



52 
 

The calibration has been performed with MATLAB, based on the images extracted from the 

recordings of the chessboard patterns of the left camera and the right one. From each frame 

obtained by the recorded video of the left camera, there is a corresponding frame recorded by the 

right camera. This pair of frames corresponds to a specific instant in the video.  

The applied calibration methodology can be subdivided into different stages: 

- Detection of checkboard patterns: A set of stereo photos are analysed to find checkerboard 

patterns. The image points (corner coordinates) of the detected checkerboard corners are 

identified in this stage. 

- Generation of checkerboard key-points: The algorithm generates the world coordinates of 

the checkerboard key-points once the checkerboard patterns have been identified. These 

key-points specify the spatial placements of the checkerboard corners in a real-world 

coordinate system. 

- Calibration process: The calibration procedure uses the world points that correspond to the 

detected image points to determine the cameras’ parameters. Both intrinsic (camera matrix 

and distortion coefficients) and extrinsic (rotation and translation) characteristics are 

included in this. These camera parameters are key parameters for precise depth 

measurement and 3D reconstruction. 

- Reprojection error analysis: The code assesses the calibration's accuracy by looking at the 

reprojection errors. Reprojection errors quantify the separation between the projected image 

points (using the estimated camera parameters) and the corresponding detected image 

points. A good calibration gives lower reprojection errors.  

- Visualization of extrinsic parameters: The code allows to visualize the extrinsic parameters 

to understand the relative positions and orientations of the cameras in the stereo camera 

system. This visualization shows how the cameras are orientated and placed in relation to 

the global/world coordinate system. 

- Parameter estimation errors: The code also shows the parameter estimation errors, 

suggesting how accurately the camera parameters were estimated. These errors provide the 

level of uncertainty of the calibration process and can be used to find problems or suggest 

changes. 
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By identifying checkerboard patterns, determining camera characteristics, and analysing the relative 

positions and orientations of the cameras through the algorithm, a robust 3D reconstruction of the 

motion of the object is possible.  

 

 

 

 

 

 

 

 

 

 

 

In the figure above (Figure 23) an example of the stereo calibration arrangement is represented. It 

involves a calibration pattern 10-by-7 chessboard with 28 mm side squares. On the chessboard the 

key points (green circles), the reprojected points (red cross) and the origin of the chessboard 

reference system are represented. 

The following figure (Figure 24) shows a zoom in on the same chessboards, seen from the two 

cameras. 

 

 

 

 

 

 

Figure 23: Example of a calibrated stereopair with Camera Calibrator App from MATLAB 

Figure 24: Zoom in of the calibrated chessboard patterns 
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4.2.2 Object tracking 
To detect moving objects in the videos, they are processed frame by frame using a motion-based 

multi-objects tracking example on MATLAB. Each frame of the video is read, and the motion 

detection is performed.  

The tracking algorithm firstly divides the foreground from the background of the video by masking 

it through morphological operations, in order to remove noises and be able to detect what we are 

interested in.  

Secondly, the blob analysis is performed on the foreground mask to identify and analyse related 

areas, or blobs, in an image. A blob is a collection of pixels with similar properties, such as texture, 

colour, or intensity.  

Then, the code extracts information like areas and centroids of the objects detected, that are used to 

visualize the fragment position in each frame. To distinguish among the paths of each object in each 

frame and to screen undesired points or outliers, a filter is applied. The method applied performs 

point selection on the distance and the derivative criteria. 

Overall, a motion-based multi-object tracking has been performed using foreground detection. It 

demonstrates the detection and tracking of moving objects in a video, as well as visualization and 

analysis of the centroid coordinates. The additional calculations add functionality for point selection 

or tracking based on distance and angle conditions. 

4.3 Trajectory reconstruction 
The reconstruction of the 3D positions of the object by applying collinearity equations to each video 

frame is based on the works of (Wolf et al., 2014) and (Alsadik, 2014).  

By analysing the same frame in both videos, it is possible to derive distinct 3D positions of the 

object for each frame pair, representing different time instants. These positions provide the 

reconstruction of a three-dimensional trajectory, as shown in the following figure (Figure 25). 
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Figure 25: Trajectory seen from the two cameras. Each position (1-5) forms a stereoscopic pair. 

 

 

 

 

 

 

 

 

 

An essential and highly useful geometric principle in photogrammetry is the collinearity criterion, 

as described by (Wolf et al., 2014). The concept of collinearity condition refers to a fundamental 

notion concerning the geometry of aerial or terrestrial photography and the related 3D objects being 

shot. The collinearity requirement is essential for photogrammetric operations because it enables the 

inference of three-dimensional objects locations from two-dimensional images. Correspondences 

between the image points and the object points must be established in order to precisely reproduce 

the geometry and dimensions of the object. The collinearity condition states that the optical centre 

of the camera, the image point in the 2D frame and the corresponding object point in 3D space must 

all lie on a straight line in a three-dimensional space. This condition ensures that the two 

photographs of the same object, taken at the same time, satisfy the collinearity condition.  

The collinearity criterion is mathematically described by two equations, related to the x and y 

coordinates of a photo. These formulas express the correspondence between the image coordinates 

on the photograph and the spatial coordinates of the object point. The intrinsic and extrinsic camera 

parameters are connected to the 3D object coordinates (X, Y, Z) of the corresponding point in the 

scene as well as the image coordinates (x, y) of a point in the image. The external camera 

parameters provide the position and orientation of the camera in space, while the internal camera 

parameters describe the focus length, principal point coordinates, and distortion coefficients. 

If the collinearity condition is satisfied, the intersection of the two homologous rays on the ground 

can be determined. This intersection point represents the three-dimensional position of the object 

point. 
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In the figure above (Figure 26), the collinearity condition for both cameras has been graphically 

represented. The object 𝐴 lies in a 3D space and its coordinates are described by the 𝑋𝑌𝑍 reference 

system. The image system of the left camera coincides with the object reference system. Indeed, the 

photo-coordinates of 𝑎1 on the left camera are given by the same reference system of the object 𝐴, 

while the object point 𝑎2  on the right camera is described by an instrumental reference system 

(image system) 𝑥𝑦𝑧. 𝐿1 and 𝐿2 are respectively the projections of the centres of the left and the 

right camera. 𝑂1 and 𝑂2 are the principal point of the cameras and 𝑓 is the focal length. 

To get the 3D coordinates of the object in each frame, the MATLAB function triangulate.m has 

been adopted. This function involves the application of the collinearity equations to perform the 3D 

triangulation of points.  

Triangulation is the method of determining the 3D position of a point in space, by intersecting the 

projection beams from many camera viewpoints (Hartley & Sturm, 1995). The fundamental idea is 

that if a point is visible from two or more camera field of views, it is possible to calculate its 3D 

position by locating the intersection of the projection rays originating from those fields of view. 

 

 

 

 

 

 

 

 

 

Figure 26: Collinearity condition for the two cameras 
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Collinearity equations and triangulation: general rules 

The collinearity equations are presented below, according to (Wolf et al., 2014): 

𝑥𝑎𝑖 = 𝑥0𝑖 − 𝑓 ⋅ (
𝑟11𝑖(𝑋𝐴−𝑋𝐿𝑖)+𝑟12𝑖(𝑌𝐴−𝑌𝐿𝑖)+𝑟13𝑖(𝑍𝐴−𝑍𝐿𝑖)

𝑟31𝑖(𝑋𝐴−𝑋𝐿𝑖)+𝑟32𝑖(𝑌𝐴−𝑌𝐿𝑖)+𝑟33𝑖(𝑍𝐴−𝑍𝐿𝑖)
)    𝑖 = 1,2                  Eq. (53) 

𝑦𝑎𝑖 = 𝑦0𝑖 − 𝑓 ⋅ (
𝑟11𝑖(𝑋𝐴−𝑋𝐿𝑖)+𝑟12𝑖(𝑌𝐴−𝑌𝐿𝑖)+𝑟13𝑖(𝑍𝐴−𝑍𝐿𝑖)

𝑟31𝑖(𝑋𝐴−𝑋𝐿𝑖)+𝑟32𝑖(𝑌𝐴−𝑌𝐿𝑖)+𝑟33𝑖(𝑍𝐴−𝑍𝐿𝑖)
)   𝑖 = 1,2                              Eq. (54) 

Where: 

- 𝑖 is the index which identifies one of the two images of the stereo-pairs. 

- 𝑥𝑎, 𝑦𝑎 are the photo coordinates of the image point a. 

- 𝑥0, 𝑦0 are the coordinates of the principal points, known from the camera calibration. 

- 𝑟11, 𝑟12, 𝑟13, 𝑟31, 𝑟32, 𝑟33 are the components of rotation matrix of the camera, knowing its 

intrinsic and extrinsic parameters. 

- 𝑋𝑎, 𝑌𝑎, 𝑍𝑎 are the space coordinates of the object point 𝐴. They are the unknowns of these 

equations. 

- 𝑋𝐿, 𝑌𝐿, 𝑍𝐿 are the space coordinates of the centre of projection 𝐿. 

- 𝑓 is the focal length of the cameras. 

For each stereo-pair (one for each instant) there are 4 non-linear equations (2 for each photograph), 

with 3 unknowns (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) and 1 degree of freedom. These equations should be applied for each 

frame extracted from the video. 

These equations make an overdetermined system without an exact solution. To obtain a result that 

can almost satisfy the equations, approximations of this system have been realized through the least 

squares method, applied on the linearised equations. For this reason, if the images are captured by 

more cameras (more than 2), the approximations will be more accurate, and the system will have 

more degree of freedom (Handayani, 2010). 

Actually, the significance of the stereo calibration procedure is evident because without the stereo 

calibration procedure, the orientation parameters would likewise be unknowns. In this situation the 

equation system will be characterized by 21 unknowns:  

- 9 orientation parameters for each camera (𝑋𝐿, 𝑌𝐿, 𝑍𝐿, 𝜑, 𝜔, 𝑘, 𝑥0, 𝑦0, 𝑓).  

- 3 object coordinates (𝑋𝐴, 𝑌𝐴, 𝑍𝐴).  
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Since the least squares method would require at least 22 equations to approximate the solution, this 

problem would be impossible to resolve. 

Due to lens distortions, the measured photo-coordinates may contain slight errors. The Brown-

Conrady distortion model (Brown, 1966) is used to take these systemic mistakes into account. 

𝑥𝑎 = 𝑥′𝑎 + (𝑥
′
𝑎 − 𝑥0) ⋅ (𝑞1 ⋅ 𝑟

2 + 𝑞2 ⋅ 𝑟
4) + (𝑝1 ⋅ (𝑟

2 + 2 ⋅ (𝑥′𝑎 − 𝑥0)
2)  + 

2 ⋅ 𝑝2 ⋅ (𝑥′𝑎 − 𝑥0) ⋅ (𝑦′𝑎 − 𝑦0)) Eq. (55) 

𝑦𝑎 = 𝑦′
𝑎
+ (𝑦′

𝑎
− 𝑦0) ⋅ (𝑞1 ⋅ 𝑟

2 + 𝑞2 ⋅ 𝑟
4) + (2 ⋅ 𝑝1 ⋅ (𝑥

′
𝑎 − 𝑥0) ⋅ (𝑦

′
𝑎
− 𝑦0) + 

𝑝2 ⋅ (𝑟
2 + 2 ⋅ (𝑦′𝑎 − 𝑦0)

2)) Eq. (56) 

𝑟 = √(𝑥′𝑎 − 𝑥0)2 + (𝑦′𝑎 − 𝑦0)2 Eq. (57) 

Where: 

- 𝑥𝑎, 𝑦𝑎 are the undistorted coordinates of the object. 

- 𝑥𝑎
′ , 𝑦𝑎′  are the distorted coordinates of the object. 

- 𝑞1, 𝑞2 are the radial distortion coefficients. 

- 𝑝1, 𝑝2 are the tangential distortion coefficients. 

 

The non-linear collinearity equations are linearised as follows through the Taylor’s theorem: 

𝐹𝑖 = 𝑥0𝑖 − 𝑓 ⋅
𝑟𝑖

𝑞𝑖
= 𝑥𝑎𝑖  Eq. (58) 

𝐺𝑖 = 𝑦0𝑖 − 𝑓 ⋅
𝑠𝑖

𝑞𝑖
= 𝑦𝑎𝑖              Eq. (59)  

Where:  

𝑞𝑖 = 𝑟31𝑖(𝑋𝐴 − 𝑋𝐿𝑖) + 𝑟32𝑖(𝑌𝐴 − 𝑌𝐿𝑖) + 𝑟33𝑖(𝑍𝐴 − 𝑍𝐿𝑖)   Eq. (60) 

𝑟𝑖 = 𝑟11𝑖(𝑋𝐴 − 𝑋𝐿𝑖) + 𝑟12𝑖(𝑌𝐴 − 𝑌𝐿𝑖) + 𝑟13𝑖(𝑍𝐴 − 𝑍𝐿𝑖)  Eq. (61) 

𝑠𝑖 = 𝑟21𝑖(𝑋𝐴 − 𝑋𝐿𝑖) + 𝑟22𝑖(𝑌𝐴 − 𝑌𝐿𝑖) + 𝑟23𝑖(𝑍𝐴 − 𝑍𝐿𝑖)      Eq. (62) 

To simplify the collinearity system, the Taylor’s theorem has been applied to approximate the 

Equation (58) up to the first order of the partial derivatives. It can be used to get an approximation 

of the polynomial-based collinearity problems for a given point. 
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𝑑𝑍𝐴 Eq. (63) 

𝑦𝑎 = 𝐺0 + (
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𝑑𝑍𝐴 Eq. (64) 

This point 𝐴 (𝑋𝐴0, 𝑌𝐴0, 𝑍𝐴0)  is the one determined by the intersection of the optical lines of each 

camera, based on the method proposed by (Instituto Geografico Nacional, 2008). 

Through the stereo calibration process, the parameters describing the external orientation of the 

cameras (the rotation matrix 𝑅𝐶 and the translation vector 𝑇𝐶) are known. The unknowns in the 

Equation (64) are 𝑑𝑋𝐴, 𝑑𝑌𝐴 and 𝑑𝑍𝐴. 

The linearised collinearity equations are the following: 

𝑏𝐽14𝑖 𝑑𝑋𝐴 + 𝑏𝐽15𝑖 𝑑𝑌𝐴 + 𝑏𝐽16𝑖 𝑑𝑍𝐴 = 𝐽𝑖 Eq. (65) 

𝑏𝐽24𝑖 𝑑𝑋𝐴 + 𝑏𝐽25𝑖 𝑑𝑌𝐴 + 𝑏𝐽26𝑖 𝑑𝑍𝐴 = 𝐾𝑖  Eq. (66) 

Where: 

- 𝑏𝑗 coefficients are the partial derivatives of the functions 𝐹 and 𝐺, with respect to the 

indicated unknowns evaluated in the initial approximation. 

- 𝐽 and 𝐾 are equal to 𝑥𝑎 − 𝐹0 and 𝑦𝑎 − 𝐺0, respectively. 

The linear equation system defined by Equation (65) can be written in matrix form as follows: 

𝑩𝑱 ⋅ 𝑿 = 𝑰 Eq. (67) 

Where: 

𝑩𝑱 =

(

 
 

𝑏𝐽141 𝑏𝐽151 𝑏𝐽161
𝑏𝐽241 𝑏𝐽251 𝑏𝐽261
𝑏𝐽142 𝑏𝐽152 𝑏𝐽162
𝑏𝐽242 𝑏𝐽252 𝑏𝐽262)

 
 

       Eq. (68) 

𝑿 = (
𝑑𝑋𝐴
𝑑𝑌𝐴
𝑑𝑍𝐴

) Eq. (69) 
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𝑰 = (

𝐽1
𝐾1
𝐽2
𝐾2

)    Eq. (70) 

As stated before, the system above is an overdetermined system of linear equations, made by 4 

equations and 3 unknowns. This means that it does not give an exact solution for 𝑿, so that a global 

least squares adjustment is required. The application of the least squares to solve 𝑿 means 

minimizing the sum of the squares of the components of the residual vector. The residuals are 

determined using: 

𝑽𝑹 = 𝑩𝑱 ⋅ 𝑿 − 𝑰    Eq. (71) 

Applying Otero and Sevilla's (1989) criterion of minimization of the sum of squared residuals: 

𝑩𝑱𝑇𝑩𝑱 ⋅ 𝑿 = 𝑩𝑱
𝑇 ⋅ 𝑰 Eq. (72) 

𝑿 = (𝑩𝑱
𝑇 ⋅ 𝑩𝑱)

−1
⋅ 𝑩𝑱

𝑇 ⋅ 𝑰 Eq. (73) 

The X matrix of unknowns adjusts the 𝑋𝐴0,  𝑌𝐴0, and  𝑍𝐴0initial values. The same method has been 

repeated until the value of the elements of 𝑿 is negligible in order to build an iterative least square 

process, which improves the estimation of the coordinates of 𝐴. 
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5. Laboratory test 
In lab environments, photogrammetric analysis is essential for validating and improving the 

accuracy and the reliability of the methodology proposed. Laboratory experiments offer controlled 

settings, where accurate measurements can be made, enabling an exhaustive analysis of the 

photogrammetric methodology and the evaluation of its effectiveness. 

The main goal of lab test is to assess the accuracy, precision, and difficulties of the procedure under 

investigation. The outcomes of these tests help in the establishment of best practices, the 

improvement of workflows and the development of photogrammetric technologies, resulting in 

more precise and consistent results in real-world settings.  

In conclusion, the laboratory test offers a supervised environment to assess the precision and 

effectiveness of the proposed methodology. It is essential for testing the method, comprehending its 

limitations, and enhancing its use for accurate three-dimensional measurements. 

 

5.1 Equipment 
As widely in the previous chapters, the choice and use of proper tools are crucial for the effective 

execution of photogrammetric analysis. The cameras, tripods, object to be tracked, calibration 

patterns, the triggering light, and two computers are among the crucial elements. Together, they 

create a complete setting for carrying out a trustworthy photogrammetric analysis. 

Cameras 

The cameras employed for this investigation are Sony DSC-RX100 VII (Sony, 2016). To be able to 

detect the 3D motion of an object, two identical cameras are necessary. These cameras provide 

great image quality and clarity thanks to their image sensors, ensuring the gathering of accurate and 

detailed data. They are suitable for on-site applications due to their lightweight and small form, 

which makes for simple transportation. Below, a photo (Figure 27) of the camera is represented. 
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Tripods 

Two tripods (one for each camera) are used to securely hold the Sony cameras during data 

collecting in order to guarantee stability and precise positioning. Tripods offer a reliable support 

structure that helps to reduce unintentional camera movements and guarantee consistent imagery 

throughout the analysis process. The adaptability and adjustability of the tripods provide flexible 

positioning, enabling optimal camera angles and scene coverage. 

The chosen tripod is TSL08CN00 Slim Tripod from Benro (Benro EN-GBP), made of carbon fiber 

to minimize its weight. It can support 4 kg and includes a ball head and a quick release plate. They 

are ideal for on-site applications because they are light (1.0 kg) and compact, so that they can be 

easily carried and stored. The tripods height ranges between 510 mm, when folded, to its maximum 

value of 1463 mm. Its body is made by 4-sections legs, that can be independently spread to get the 

wanted height. Thanks to a primary locking knob, placed in the head, it is possible to control the 

orientation of the camera, according to specific needs. Moreover, the presence of a built-in bubble 

level is an important component for precise camera orientation. It aids to keep the horizons level 

and the images stable, consistent, and aligned precisely. In addition, the tripods are equipped with 

rubber feet, which guarantee a greater stability on various surfaces. In the following figure (Figure 

22), the TSL08CN00 Slim Tripod is shown. 

 

 

 

 

Figure 27: Camera Sony DSC-RX100 VII 
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Object 

To track and examine the item's motion, a simple ball is chosen as the object of interest. It is perfect 

for tracking test because of its highly recognisable features, as its rounded shape. The cameras will 

capture the ball's movements inside the scene, allowing for the later extraction of its 3D trajectory 

and motion traits. The following figure (Figure 23) represents the ball to be tracked. 

 

 

 

 

 

 

 

 

 

Figure 29: Ball as tracked object 

Figure 28: TSL08CN00 Slim Tripod 
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Calibration pattern 

The Sony cameras are calibrated using a chessboard-shaped calibration pattern, according to 

(Cabrera-Quirós et al., 2013). The size of the chessboard employed is 10-by-7 squares of 28 mm 

side each. In order to make it easier to estimate camera parameters like focus length, lens distortion, 

and spatial orientation, the checkerboard design offers a clearly defined and instantly recognizable 

pattern of reference points. The 3D coordinates of the object are precisely measured and 

reconstructed thanks to calibration. 

The figure below (Figure 30) shows the tool employed for the calibration process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Triggering light 

A triggering light is used to identify when the object starts moving and to synchronize the 

recordings made by the two cameras. The triggering light acts as a visual signal of the time zero of 

the video, which means the instant when the motion starts. The reference time set provided by the 

light enables the synchronization with the captured video frames. With this synchronization it is 

possible to conduct a reliable time-based analysis and to ensure an accurate matching between the 

object’s trajectory and the recorded data. In the case under investigation, the triggering light was 

made with the flash of a smartphone. 

Figure 30: Chessboard pattern 
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Personal computers 

Two computers are connected to the cameras as part of the configuration/setup to perform the 

photogrammetric analysis. During the data collecting process, these computers are essential for 

remotely controlling the cameras because, for safety reasons, it is not possible for the user to be 

physically near the cameras.  

The remote-control capability is facilitated through the use of the TeamViewer app, which enables 

seamless control and monitoring of the camera settings and operations from a smartphone. Users 

who have the software (the TeamViewer app) installed on their smartphone can remotely access and 

operate the linked PCs, making it possible to manage the cameras from a portable and approachable 

interface. The capacity to control computers remotely makes it unnecessary to physically touch 

them while collecting data, resulting in a more efficient and safety process. 

This set of tools provides data collection, making it easier to analyse and reconstruct the 3D 

trajectory of the object and motion characteristics. 

The two cameras are kept stationary throughout the recording, looking either at the moving object 

for trajectory reconstruction or at the calibration pattern provided for stereo calibration.  

Below, the arrangement of the whole equipment is represented in (Figure 31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Setup of the equipment 
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5.2 Realization of the photogrammetric sets 
The laboratory trial starts with the data acquisition. It is necessary to record and extract frames from 

the videos of calibration and moving object. 

Photogrammetric set for calibration 

The videos of the calibration pattern are taken by placing the chessboard at different positions 

within the field of view of the camera and by slightly rotating the pattern in various orientations 

while the cameras are kept fixed. The videos are recorded with the same HFR that is going to be 

used to record the object’s motion. After many tests with different values of HFR (250 fps, 500 fps 

and 1000 fps), a HFR of 250 fps is considered appropriate because it guarantees enough number of 

frames and an adequate processing time. 

From the video of the calibration pattern recorded from the left camera, the frames are extracted 

randomly. Since each frame is associated to timestamps, it is possible to extract frames from the 

video, made by the right camera, at precisely the same moments as in the first video. All the frames 

are then saved as individual images and a correction of distortion due to the lenses is applied on 

them. 

Photogrammetric set for moving object detection 

The videos are recorded with a HFR value of 250 fps (same value used for the calibration videos). 

The frames are extracted from the recorded videos from both the left and the right cameras. Among 

all the frames extracted, only some frames are chosen. From the point of the lighting signal onward, 

the frames of interest are selected. The lighting signal acts a triggering mark, indicating the starting 

point from which the frame must be considered for subsequent processing. Then, lens distortion is 

removed from the chosen frames to ensure that they have correct and undistorted representations of 

the captured scene. Moreover, a new video sequence is realised by merging together the unaltered 

frames in time sequence. After that, a multi-object tracking analysis is applied to the generated 

video. To do this, the ball motion within the movie is identified and tracked.  

By following these stages, the frames coming from both calibration and moving object videos are 

accurately extracted and corrected from lens distortion to guarantee a better quality of the analysis.  
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5.3 Lens distortion correction 
Lens distortion is a phenomenon where objects captured by cameras appear to have distorted 

shapes. This is typically caused by the features of the camera lens.  

As stated by (Wolf et al., 2014) and (Wang, 1990), lens distortions can be categorized as decentring 

or symmetric radial distortions. Both occur if light rays are bent or shift directions, preventing them 

from emerging parallel to their incoming directions after passing through the lens.  

Symmetric radial distortion results in the distortion of imaged points along radial lines from the 

optical axis. While decentring distortion refers to an off-centre distortion pattern results, which 

contains both tangential and asymmetric radial components. Distortion in an unavoidably effect of 

lens manufacturing, but its effects can be greatly diminished with careful design. Traditional camera 

calibration techniques only supplied data on the symmetric radial component. 

The correction of the lens distortion is necessary to: 

- Improve the quality of the images: Images that have been deformed can be stretched, appear 

fuzzy, or have other anomalies that affect the image's overall perception and visual appeal. 

Lens distortion can be corrected to return things to their original size and shape for accurate 

and appealing photographs. 

- Obtain more accurate measurements: Lens distortion can cause uncertainties, especially in 

cases where a recognition and reconstruction of the motion of an object is performed. Lens 

distortion correction creates outcomes/results that are more precise and trustworthy, by 

ensuring that measurements and object detection algorithms are implemented appropriately. 

More in detail, the radial distortion value shows the radial displacement between the collimator 

cross's ideal location and its actual image. The method for calculating the values of radial lens 

distortion coming from (Wolf et al., 2014) involves fitting a polynomial curve to a plot of the 

displacements vs radial distances. 

Based on lens design theory, the polynomial has the following structure: 

∆𝑟 =  𝑘1 ∙ 𝑟
1 + 𝑘2 ∙ 𝑟

2 + 𝑘3 ∙ 𝑟
5 + 𝑘4 ∙ 𝑟

7       Eq. (74) 

 

Where: 

- ∆𝑟 is the value of the radial distortion (mm). 

- 𝑟 is the redial distance from the principal point (mm). 

- 𝑘1, 𝑘2, 𝑘3, 𝑘4 are the coefficients of the polynomial. The distortion data from the calibration 

are used to solve them using the least squares method. 
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The distance 𝑟 from an image point to the primary point is calculated and used to compute the value 

of r from Eq. (74) in order to correct the 𝑥 and 𝑦 position of the image point. To achieve this, firstly 

the x and y coordinates have been converted into 𝑥̅, 𝑦̅ coordinates, which describe the relative 

position of the image point with respect to the principal point through the following equations: 

𝑥̅  =  𝑥 − 𝑥𝑝           Eq. (75) 

𝑦̅  =  𝑦 − 𝑦𝑝           Eq. (76) 

Where: 

- 𝑥̅, 𝑦̅ are the relative coordinates of the image point (with respect to the principal point). 

- 𝑥, 𝑦 are the coordinates of the image point. 

- 𝑥𝑝, 𝑦𝑝 are the coordinates of the principal point. 

 

Then, the radial distance from the principal point has been computed: 

𝑟 =  √𝑥̅2 + 𝑦̅2          Eq. (77) 

 

Finally, the radial distortion (∆𝑟) has been evaluated. The corrections 𝛿𝑥 and 𝛿𝑦 (related to 𝑥, 𝑦 

components) have been obtained by using the similar-triangle relationship, as shown in the figure 

below (Figure 32). 

 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 32: Relationship between radial lens distortion and corrections to x and y coordinates from (Wolf, 2014) 
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Based on the similarity between triangles, the following relationships are valid: 

∆𝑟

𝑟
 =  

𝛿𝑥

𝑥̅
 =  

𝛿𝑦

𝑦̅
             Eq. (78) 

From which: 

𝛿𝑥 =  𝑥̅  ∙  
∆𝑟

𝑟
           Eq. (79) 

𝛿𝑦 =  𝑦̅  ∙  
∆𝑟

𝑟
           Eq. (80) 

Through these correction values, it has been possible to get the corrected coordinates 𝑥𝑐 and  𝑦𝑐: 

𝑥𝑐  =  𝑥̅ –  𝛿𝑥           Eq. (81) 

𝑦𝑐  =  𝑦̅ –  𝛿𝑦           Eq. (82) 

Each frame (coming from whether the calibration recordings nor the moving object videos) has 

gone through the aforementioned process applying a built-in MATLAB function undistortImage.m, 

which takes as input the stereo parameters coming from the calibration. 

 

5.4 Result and discussion 
All the explained methodology has been applied to the recorded videos from the left and the right 

cameras. 

In the figure below (Figure 33), the results obtained after the calibration process are shown. In blue 

the left camera is represented while the red camera is in red. The coloured squares in the figure are 

the depiction of the calibration patterns in the real-world coordinates.  
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In the following table (Table 8), the intrinsic and the extrinsic parameters coming from the 
calibration process are listed. 

 

After, the accuracy of the calibration has been evaluated by examining the reprojection errors, 

which measure the distance between the projected image points and the corresponding detected 

image points. 

As shown in the following figure (Figure 34), the mean reprojection error is around 0.16 pixels. 

This value is low enough to state that the calibration process is robust and reliable. 

 

Figure 33: Extrinsic parameters obtained with calibration 

Table 8: Intrinsic and extrinsic parameters coming from the calibration 
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Once the calibration has been performed, the analysis of the videos takes place. Through the motion 

based multi-objects tracking, it is possible to recognise the path of the object in the video, as 

represented in the figure below (Figure 35). 

 

 

 

 

 

 

 

 

 

 

 

The figure above (Figure 35) shows the masked video on the left and the normal video on the right. 

In the masked video it is depicted in a clear way the difference between the foreground and the 

Figure 34: Mean reprojection errors per image 

Figure 35: Application of the motion based multi-object algorithm in frame 108 (Left camera) 
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background. Through the Blobanalysis.m, the x-y coordinates of the centroid of the object have 

been identified in each frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: 2D representation of the centroids coordinates - Left camera 

Figure 37: 2D representation of the centroids coordinates - Right camera 
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In the figures above (Figure 36 and Figure 37), the representation of the coordinates of the centroids 

is shown. Each circle represents the position of the object, through the x-y coordinates (in pixels) of 

its centroid, in each frame.  

One may notice a well recognisable trajectory in 2D appears in the images together with some other 

points that can be considered as outliers (more evident in Figure 36). To represent only the path in 

which we are interested in, the derivative filter has been applied. It consists of a function able to 

filter the undesired points. Once defined a starting point (which belong to the path), considered as a 

reference point, the distance between it and the centroids in each frame has been computed. 

Moreover, the centroids’ derivative in relation to the starting location has been calculated. With this 

procedure, it is possible to determine whether a point belongs or not to the trajectory by comparing 

the distances and the derivatives with predetermined thresholds. Finally, based on the chosen point 

and centroid of the current frame, the reference point is updated and all the methos is iterated 

through the frames. 

The figures below (Figure 38 and Figure 39) represent only the points that belong the trajectory of 

the object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Object trajectory in 2D by the left camera 
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At the end, through the information coming from calibration process and the triangulate MATLAB 

function, the reconstruction of the trajectory has been possible in the real coordinate system. In the 

figure below (Figure 40), the object trajectory in 3D has been plotted, together with the position of 

the cameras. 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Object trajectory in 2D by the right camera 

Figure 40: Trajectory of the object in 3D 
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To be sure that the 3D coordinates obtained by the analysis are correct, the first image point of each 

image used to calibrate the cameras has been represented in the real space. If this reprojected point 

coincides with its real position in the calibration patterns, it means that the method used to 

reconstruct the real coordinates of an object works well. 

Moreover, the trajectory has been also represented in following figure (Figure 41), using the 

extrinsic parameters visualization, coming from the calibration process, to visualize the position of 

the cameras and the calibration patterns together with the trajectory of the object. 

 

Figure 41: 3D trajectory of the object with cameras and chessboards locations 
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6. Field trial  
After having done all the trials in laboratory, the analysed methodology has been tested in the field, 

in Valdilecha Quarry, to see if the proposed approach is effective also in a real environment. In 

contrast to laboratory tests, which are conducted under carefully controlled conditions, field trials 

require taking videos in real environments, which may provide a number of difficulties and 

unknowns due to illumination, moving objects and complex geometries. The main goal of a field 

trial is to assess the precision, quality, and viability of the method in practical settings.  

Field tests also offer a chance to detect and solve practical and technical issues found during the 

data collection and processing phases, as problems with image quality, image distortion, and the 

effects of environmental factors. In this sense field trials provide essential information on the 

advantages, disadvantages, and potential areas for improvement, which helps to advance in the 

methodology. In conclusion, field tests help to improve the approaches, workflows, and tools used 

in photogrammetric analysis by highlighting the difficulties and constraints that can occur in 

complicated real contexts.  

 

6.1 Features of the bench  
The bench under analysis is the number 3 and in the following table (Table 9) its geometrical 

parameters and blast data are listed. 

Table 9: Geometrical parameters of the bench under investigation 

 

 

 

 

 

 

 

 

 

The type of explosive employed is RIOFLEX, a bulk water gel based on ammonium nitrate, 

produced by MAXAM. Its density ranges between 0.6 𝑔/𝑐𝑚3 and 1.35 𝑔/𝑐𝑚3. Thanks to its 

Bench 3 - Blast from 12.06.23 
Parameters Units 

Number of holes 26 - 
Number of rows 4 - 
Number of holes per row 6-7 - 
Height of the bench 13 m 
Length of the bench 49 m 
Burden 5 m 
Spacing 7 m 
Stemming 3 m 
In-row delay 42 ms 
Among-rows delay 67 ms 
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variable density, it is considered very flexible and adaptable to many applications and different 

environments. The detonation has been performed through electronic detonators with an in-row 

delay of 42 𝑚𝑠 and among-rows delay of 67 𝑚𝑠 (Maxam, 2023). 

The figure below (Figure 42) represents the design of the blast together with the location of a 

geophone, highlighted with a red circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Placement of the cameras 
According to the methodology proposed in this work, the cameras has been placed in the optimal 

position, as shown the figure below (Figure 43).  

Figure 42: Design of the blast of the bench n.3 
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The figure above (Figure 43) shows the cameras, the bench, the fragments, and the fields of view of 

the cameras are represented by two triangles. 

The Camera 1 is depicted in red and located at an angle 𝜗 =  58°. The second camera (Camera 2) 

is shown in black and positioned at an angle (𝛽 + 𝜗)  =  72°, with a distance of 24.55 𝑚 from the 

first camera. The distance between the centre of the bench and the cameras is about 100 𝑚. This 

value is the minimum distance (lower bound) at which the cameras should be placed. 

To determine the angle of view and orientation of each camera with respect to the horizontal plane, 

two triangles are used. The first camera has an orientation of about 229.42° (𝜔1), while the second 

camera has an orientation of 232.86° (𝜔2). These orientations indicate the direction in which the 

cameras are pointing. 

The triangles represent the visible area on the ground from each camera’s perspective. When these 

triangles intersect, they form a third polygon. This polygon depicts the area on the ground that is 

visible from both the cameras. It has five vertices and represents the maximum possible overlapping 

area, encompassing the largest number of fragments. 

A preliminary inspection of the site was conducted on 25th of May (2023) to understand how the 

configuration of the place was and where the equipment could be placed to obtain the best result. 

Figure 43: Optimal placement of the cameras in the field 
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In the figures below (Figure 44), an overview of the part of the quarry under investigation is 

represented and on the left side of the image it is possible to distinguish the bench. 

 

 

As it is possible to notice in Figure 44, in front of the bench there is a platform with an altitude of 

7.5 m, where the cameras can be easily placed. The distance between the bench and the plateau is 

about 150 m. It has been preferable to settle the cameras on the plateau and not on the ground for 

safety reasons to prevent damages to the cameras. 

In the images below (Figure 45 and Figure 46), the setup of the equipment on the platform and a 

zoom in of the cameras are shown.  

 

 

 

 

 

 

 

 

Figure 45: Setup of the equipment 

Figure 44: Overview of the site 
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The cameras have been placed at a distance of about 150 𝑚 from the bench, 20 𝑚 far one from the 

other about. These values are different from the ones found theoretically. The difference is due to 

the configuration of the land. Moreover, the orientations of the cameras were not perfectly equal to 

the ones found with the software, because of the difficulty of reaching those precise measurements 

(𝜔1 and 𝜔2). In the table below (Table 10), the different values are reported. 

 

Table 10: Comparison between the theoretical and in-field values 

 Theoretical values Value used in the 
field 

𝜔1 229.42° 225° 

𝜔2 232.86° 230° 

𝐷𝐶1−𝐶2 24.55 𝑚 20 𝑚 

𝐷𝐵𝑒𝑛𝑐ℎ−𝐶 100 𝑚 150 𝑚 
 

 

6.3 Calibration process 
Since the distances in the field are much greater than those used in the laboratory, we decided to 

adopt a larger chessboard for the calibration so that it could be more easily seen from both cameras. 

Figure 46: Zoom in of the location of the cameras 
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As shown in figure below (Figure 47), the calibration pattern is a 9-by-6 chessboard with 78 mm 

side squares. 

 

 

 

 

 

 

 

 

 

 

To perform the calibration, the chessboard has been placed in 10 different positions. The following 

images (Figures 48 and Figures 49) depict examples of different locations of the calibration pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Calibration pattern used in the field 

Figure 48: Example of calibration, chessboard in position 1 
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Through the above-mentioned process, the calibration was done as shown in the figures below 

(Figure 50 and Figure 51). 

Figure 49: Example of calibration, chessboard in position 2 

Figure 50: Stereo calibration result, with the chessboard in position 2 
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As it is possible to see, the stereo calibration is not very accurate. Not all the corners of the squares 

are detected probably because the distance between the pattern and the cameras was too high, and 

the image results to be pixelated and blurred. 

 

6.4 Blast recordings 
Once the calibration videos were recorded and the holes were charged, the blast took place. It lasted 

4 seconds. In the following figures (Figure 52 and Figure 53), some representative frames of the 

blast motion are shown. 

As it is possible to notice from the images, the blast produced a great amount of fumes and dust, 

which made it challenging to identify the trajectory of the individual fragments from that distance, 

as sometimes they were hidden by the dust. However, the motion based multi-object algorithm has 

been applied in both recordings and, as it has been predicted, all the fragments were seen by a 

unique moving cloud and no single paths were recognisable. 

Figure 51: Zoom in of the stereo calibration result 
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Figure 52: Example of representative frames of the blast (Left camera) 
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Figure 53: Example of representative frames of the blast (Right camera) 
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7. Discussion 
In this first part of this work a criterion is proposed to choose two identical cameras for the 

reconstruction of the three-dimensional movement of the blast face fragments. This is done through 

a motion analysis of the blast face, whose aim is to determine whether a moving object may be 

captured by the cameras at a specific distance from its source and where the cameras have to be 

placed to get the optimal results.  

Employing equations of motion, the final position of each fragment on the ground and its distance 

from the bench have been evaluated starting from the geometry of the site. Then, the optimal 

location of the cameras is defined through the multi-objective optimization. Both the cameras are 

placed in front of the bench, oriented according to specific angles, and distant from each other of a 

certain value.  

In this optimal configuration, both cameras can record the motion of the greatest amount of 

fragments at the same time. 

At the end, the existing link between the outcomes from the design of the site and the features of the 

cameras has been carried out in detail. The fragment size, the duration of the blast and the distance 

between the cameras and the bench (which depends on the position of the cameras on the ground) 

have been combined together with the focal length and the pixel size of the cameras. By the 

comparison of the performances of the cameras analysed viz. Sony DSC-RX100 VII, Sony ZV-1, 

Sony RX10 III, Canon G5X Mark II, the most suitable camera for our research has been chosen.  

In conclusion, the camera Sony DSC-RX100 VII is preferable to the other cameras considered, 

because it has: 

- The highest shooting time, able to record the whole blast. 

- A reasonable number of pixels able to capture a fragment with a diameter of about 59 cm, 

from a distance of 153.3 m.  

- High frame rate values in HFR mode, necessary to have a record with good quality. 

 

The following part of the work is focused on the use of photogrammetric analysis to be able to 

reconstruct the motion of the fragment in a real-world coordinate system. The proposed 

methodology has been initially tested in laboratory trials showing effective results, and 

subsequently applied in field, where numerous issues and challenges has been encountered. As it 

usually happens, when you move from theory (in laboratory) to practice (on the field) there could 

be different results between what has been predicted and what really happens for many reasons. 
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7.1 Issues 
The placement of the cameras was not properly the one defined theoretically because of the 

influence of the shape of the site. The most relevant feature to underline is the distance between the 

bench and the cameras. For safety reasons, the cameras have been placed in front of the bench, on a 

platform 150 𝑚 far from the bench. The choice not to place the cameras on the ground (on the 

bottom of the quarry) has affected the result of the analysis both of the calibration and the fragments 

videos. 

Calibration issues 

The calibration pattern was too far from the cameras because it appears to be blurred and pixeled, so 

that the recognition of the corners of the squares is difficult to identify and sometimes not possible, 

as shown in the Figure 54, from the light blue circle. The calibration pattern was a 9-by-6 squares 

chessboard and in this case, the board size evaluated with the algorithm has been instead 8-by-6 

squares, resulting in a decrease in the accuracy of the method. Moreover, the detected points, 

indicating the corners of the squares and that should lie on the same line, appear to be misaligned. 

This can affect the radial distortion values, which order of magnitude is bigger than what was 

expected (103 instead of 10−2/10−1).  

 

 

 

 

 

 

 

 

Furthermore, problems in calibration have also affected the correction due to lens distortion.  The 

MATLAB function undistortImage.m takes as input the stereo parameters (as for example the 

rotation matrixes, the translation vector, the focal lengths of the cameras and the radial distortion 

values) coming from the calibration, returning as output the modified undistorted image. For this 

reason, if the variables from the calibration are inaccurate, the error also affects the lens distortion 

correction. 

Figure 54: Example of calibration issues 
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Trajectory recognition issues 

After the calibration, the next step is the recognition of the motion of the fragments (represented by 

centroids) in the videos, by analysing the coordinates of the centroids in each frame. The procedure 

proposed in the laboratory test has been applied to the recordings taken on the field, but 

unfortunately in the latter case the multi-object motion-based algorithm was not able to detect the 

path of individual fragments. All the fragments have been seen as a unique moving cloud. The 

figures below (Figure 55 and Figure 56) show examples of the application of the motion based 

multi-object algorithm applied on two frames. 

As it is noticeable in the first image (Figure 55), most of the fragments are enclosed in the same 

box, which is indicating the location (x and y coordinates in pixels) of the object identified by the 

algorithm. For this reason, the individual recognition of a single fragment trajectory was not 

possible under the conditions employed. Moreover, the amount of dust produced by the blast was 

quite high, resulting in covering the motion of the rock fragments.  

In the second figure (Figure 56), the influence of the dust is even more evident as it is possible to 

see from the yellow boxes around the clouds of smoke, which indicate their movement. 

 

 

 

 

Figure 55: Application of the motion based multi-object algorithm in frame 124 (Left camera) 
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7.2 Recommendations 
To try to avoid these problems, it is necessary to make some changes and improvements to the 

procedure. 

Calibration improvements 

To improve the calibration results, there could be some enhancements and changes to do: modifying 

the placement of the cameras or moving the calibration pattern closer to them. 

If the cameras are kept in the position described, maybe a larger calibration pattern is needed. 

However, a larger pattern may cause problems in transport and handling, despite the improvements 

that could be achieved in calibration results. For this reason, there could be two possibilities to 

better the experiments: 

1. to approach the calibration pattern to the cameras or 

2. to approach the cameras to the chessboard. 

In this way it is possible to avoid pixeled and blurred images of the chessboard, so that the corners 

of each square will be well visible. 

Trajectory recognition improvements 

To reconstruct the trajectory of the fragments through the use of the motion based multi-object 

algorithm, a solution can be to focus only on a part of the whole bench and to put the camera as 

close as possible to the bench, obviously always within the limits imposed by safety regulations. 

This implies that the cameras will not be placed on the plateau in front of the bench, but on the 

Figure 56: Application of the motion based multi-object algorithm in frame 208 (Left camera) 
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ground. By placing the cameras on the ground, the distance can be decided based on the specific 

needs and requirements, rather than being imposed by the site’s morphology. 

Although the fragments detection can be easier, placing the cameras closer to objects of interest 

increases the potential damage. In this case, it might be appropriate to take some precautions, as for 

example covering them with some kind of protection, if possible. Moreover, a manual recognition 

system can be used. It involves the manually detection of the objects frame by frame, instead of the 

application of an automatic algorithm.  

Furthermore, the videos can be recorded by cameras settled on two small drones (instead of the 

ground), that should remain fixed at a certain height for all the duration of the blast. This new setup 

can maybe help in the recognition of the fragments’ motion, offering new branches of investigation. 

By applying these changes into practice, the calibration procedure will achieve greater accuracy and 

the motion-based multi-object tracking system will improve the trajectory reconstruction, enhancing 

the performance and yielding better outcomes. 

 

8. Conclusion 
As a development of the TRL 3 (Concept validation), this works aims to reach the TRL 4 

(Experimental pilot). However, the final result coming from the analysis of the field videos has 

proved to be different from what had been predicted. The change from laboratory analysis to field 

test and condition has shown some problematic features to be considered. 

Environmental changes, unforeseen variables, and practical limitations can all have an impact on 

how well the operation works and how it turns out. Despite certain challenges, these situations 

provide invaluable insights and chances for improvement. These enhancements might involve 

adjusting the experimental design, resolving technical problems, improving the data collection and 

analysis procedures to better fit real-world circumstances. 

Notwithstanding the unsuccessful results of the field trial, the work has significantly improved a 

number of crucial areas, as for example camera location, camera selection for object tracking, 

automatic fragment object movement recognition, calibration, and 3D reconstruction of object 

trajectories. 

The suggested strategy for introducing cameras in a blast provides a way to choose the best cameras 

and their optimal placement, based on statistical models as the use of the multi-objectives 

optimization. The camera selection process results to be affected by the object tracking method, a 

crucial component of the proposed methodology. A proper detection algorithm makes sure that the 



91 
 

chosen cameras can record the blast, ensuring the extraction of essential data for an accurate object 

tracking and trajectory analysis. The adopted technology uses computer vision algorithms to 

automatically identify and track moving objects in video frames, greatly affecting (positively in the 

lab tests and negatively in the field) the efficiency and precision of trajectory analysis. 

Moreover, a calibration methodology has been a necessary step to reconstruct the 3D path of a 

moving object. By calibrating the cameras, an accurate connection between the image plane and the 

real coordinate system is achieved. According to the accuracy of this process, it is possible to 

rebuild the trajectory of a moving object in three dimensions, giving an exhaustive comprehension 

of fragment movement. 

Overall, the passage between field testing and laboratory trials marks a significant development and 

validation milestone for the method. The difficulties encountered during this shift are important 

teaching moments that help iteratively improve the process for subsequent deployments. Based on 

the methodology proposed in this work, the process can be further refined to produce more accurate 

and dependable outcomes in real-world circumstances through ongoing improvement and adaption. 
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Appendix A 
 

% Location of the cameras 

clc 
clear all 
close all 
 
%% Data from BANCO 2E - Blast of 01.07.22 
 
nhtot = 24;      % Tot num of holes per blast 
nrows = 2;       % num of rows 
h1r = 12;        % num of holes per row 
B = 5.75;        % Burden (m) 
Sp = 7;          % Spacing (m) 
H = 14.2;        % Height (m) 
T = 3;           % Stemming (m) 
W = h1r*Sp;      % Width (m) 
tir=25;          % Inter-row delay (ms) 

 

passing = [0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1];  
% in % 
frag_size = [50 60 100 140 160 200 250 270 320 350 500 600 700 900 1050 2000 4000];     
% in mm 
s = 50:.001:4000; 
length(s); 
pp = pchip(frag_size,passing,s); 
 
xholes = ((Sp/2):Sp:(W-(Sp/2)))'; 
yholes = H; 
L=length(xholes); 
 
figure(1) 
rectangle('Position', [0 0 W H]) 
hold on 
xline(xholes) 
hold on 
% scatter(xc,yc,'r') 
grid on 
xlabel('Width (m)') 
ylabel('Height (m)') 
title('Bench representation') 
hold off 
 
% passing=[0 passing]; 
% frag_size=[0 frag_size]; 
nfrag=5000; 
rsizes=[]; 
ppr = @(x) pchip(passing,frag_size,x); 
while numel(rsizes)~=nfrag 
      fragpass=rand(1,1); 
      if fragpass>=0.2 
         rsizes=[rsizes ppr(fragpass)]; % mm 
      end 
end 
f_radius=rsizes'/2000; 
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% Coordinate of a generic fragment on the bench 
ry = rand(1,nfrag)*H; 
rx = rand(1,nfrag)*W; 
[mdis,pos] = min(abs(rx-xholes),[],1); 
tdis1=(rx-xholes); 
tdis2=zeros(1,nfrag); 
for jj=1:nfrag 
     tdis2(jj)=tdis1(pos(jj),jj); 
end 
nabs = atan(B./mdis);   
n2 = atan(B./tdis2);  
dir=sign(n2); 
Bf = sqrt(mdis.^2+B^2); 
mazim = mean(nabs); 
Mean_radius=mean(f_radius); 
 
figure(2) 
semilogx(frag_size,passing,'o') 
% hold on 
% plot(fragpass, rsizes, '-') 
xlabel('Size (mm)') 
ylabel('Passing (%)') 
title('Grain size distribution') 
grid on 
hold off 
 
% Constants and equations known for each instant and fragment 
g = 9.81;                         % Gravity m/s2 
ad = 1.1614;                      % Air density kg/m3 
S = pi*f_radius.^2;               % Surface of fragment m2. 
m = 2721*(4/3)*pi*f_radius.^3;    % Mass of fragment 
mu = 18.46e-6;                      % Dynamic air viscosity kg/(m*s) 
 
t0 = 0; 
tstep = 1e-2; 
 
% Models: Response time coeff 
t_resp = 23.063*exp(-1.013*Bf./ry); 
 
% Initial velocity 
maxv=25; 
v0 = maxv*(8.7153*(ry/H).^4-17.139*(ry/H).^3+8.3769*(ry/H).^2+0.9364*(ry/H)-0.005); 
 
% Ejection angle 
alfa = 59.551*exp(-1.151*(Bf./ry)); 
v0x = v0.*cosd(alfa); 
v0y = v0.*sind(alfa); 
 
POS=cell(1,nfrag); 
TIME=cell(1,nfrag); 
 
P=zeros(numel(f_radius),3); 
  for ii=1:nfrag 
     i=1; %Iteration. 
     x=[]; 
     x=0; 
     y=[]; 
     y=ry(ii); 
     vx=[]; 
     vy=[]; 
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     ax=[]; 
     ay=[]; 
     v=[]; 
     t=[]; 
     t=t0+t_resp(ii)+tir*(pos(ii)-1); 
     t=t/1000; 
 
     while y(end)>0 
        % i 
         if i==1 
            vx(i) = v0x(ii); 
            vy(i) = v0y(ii); 
            v(i) = v0(ii); 
 
            Re = 2*ad.*f_radius(ii).*v(i)./mu; 
            Cd = (24./Re)+((2.6.*(Re./5))./(1+(Re./5).^1.52))+((0.411.*(Re./26300).^(-
7.94))./(1+(Re./263000).^(-8)))+((Re.^0.08)./461000); 
 
            fr = (0.5*ad.*Cd.*S(ii))./m(ii);        % Drag force              
            ax(i) = -fr*vx(i)*v(i); 
            ay(i) = -g-fr*vy(i)*v(i); 
 
         else 
          t(i)=t(i-1)+tstep; 
          vx(i) = vx(i-1) + ax(i-1)*(t(i)-t(i-1)); 
          vy(i) = vy(i-1) + ay(i-1)*(t(i)-t(i-1)); 
          v(i) = sqrt(vx(i).^2+vy(i).^2); 
          Re = 2*ad.*f_radius(ii).*v(i)./mu; 
          Cd = (24./Re)+((2.6.*(Re./5))./(1+(Re./5).^1.52))+((0.411.*(Re./26300).^(-
7.94))./(1+(Re./263000).^(-8)))+((Re.^0.08)./461000); 
 
          fr = (0.5.*ad.*Cd*S(ii))./m(ii); 
          ax(i) = -fr*vx(i).*v(i); 
          ay(i) = -g-fr.*vy(i).*v(i); 
 
          x(i) = x(i-1)+vx(i).*(t(i)-t(i-1)); 
          y(i) = y(i-1)+vy(i).*(t(i)-t(i-1)); 
           
         end 
        POS{ii}(i,:)=[rx(ii)+real(x(i))*cos(nabs(ii))*dir(ii) real(y(i)) 
real(x(i))*sin(nabs(ii))]; 
        i=i+1; 
      end 
      X(ii)=real(x(i-1)); 
      Y(ii)=real(y(i-1)); 
      T(ii)=t(end); 
      TIME{ii}=t; 
      P(ii,:)=[rx(ii)+X(ii)*cos(nabs(ii))*dir(ii) 0 X(ii)*sin(nabs(ii))];   
  end 
 
XX=[0 W W 0]; 
YY=[0 0 0 0]; 
ZZ=[0 0 H H];   
 
 
range=X; 
 
[tmax,int]=max(T); 
[m,inm] = min(f_radius); 
tt=0:0.01:tmax; 
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Col=flip(jet(numel(tt))); 
CT = interp1(tt,Col,T,'pchip'); 
 
figure(3) 
hold on 
for ii=1:10 
    plot3(POS{ii}(:,1),POS{ii}(:,3),POS{ii}(:,2)) 
end 
fill3(XX,YY,ZZ,'y', 'FaceAlpha',0.3) 
%scatter3(P(:,1),P(:,3),P(:,2),10*radius*2,CT,'LineWidth',2) 
xlabel('x (m)') 
ylabel('z (m)') 
zlabel('y (m)') 
grid on 
title ('Fragments trajectory') 
xlim([-20 104]) 
ylim([0 100]) 
zlim([0 25]) 
set(gca, 'YDir', 'reverse' ) 
 
figure(4) 
scatter3(P(:,1),P(:,3),P(:,2),10*f_radius*2,CT,'LineWidth',2) 
set(gca, 'YDir', 'reverse' ) 
hold on 
fill3(XX,YY,ZZ,'y', 'FaceAlpha',0.3) 
% plot3(XX,YY,ZZ,'r') 
scatter(rx,zeros(1,numel(rx))) 
% scatter3(rx,0,ry) 
% for jj=1:nfrag 
%     plot([rx(jj) P(jj,1)],[0 P(jj,3)]) 
% end 
grid on 
%axis([0 250 0 500]) 
title ('Fragments projection') 
xlabel('x (m)') 
ylabel('z (m)') 
xlim([-20 104]) 
ylim([0 90]) 
zlim([0 20]) 
daspect([1 1 1]) 
 
figure(5) 
scatter(P(:,1),P(:,3)) 
set(gca, 'YDir', 'reverse' ) 
hold on 
% scatter(rx,zeros(1,numel(rx))) 
% for jj=1:nfrag 
%     plot([rx(jj) P(jj,1)],[0 P(jj,3)]) 
% end 
plot([0 W],[0 0],'r','LineWidth',2) 
grid on 
title ('Fragments projection') 
xlabel('x (m)') 
ylabel('z (m)') 
legend('Fragment representation','Bench','Location','northeast') 
 
[mu,sigma,muCI,sigmaCI] = normfit(P(:,3)); 
 
figure(6) 
PD=fitdist(P(:,3),"Kernel") 
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xgrid = linspace(0,70,100)'; 
PDF_Est = pdf(PD,xgrid); 
plot(xgrid,PDF_Est,'k-','LineWidth',2) 
title ('Kernel Distribution model') 
xlabel('Travelled distance in z-direction (m)') 
ylabel('Probability') 
 
% CF = cdf(PD,xgrid); 
 
data = [P(:,1) P(:,3)]; 
[bandwidth,density,X,Y]=kde2d(data); 
 
% plot the data and the density estimation 
figure(7) 
contour3(X,Y,density,50)  
hold on 
plot(data(:,1),data(:,2),'r.','MarkerSize',5) 
plot([0 W],[0 0],'k','LineWidth',2) 
title ('Bivariate Kernel density estimation') 
set(gca, 'XDir', 'reverse' ) 
xlabel('Travelled distance (m)') 
ylabel('Travelled distance (m)') 
 
% Max distance at 100% - distance camera-bench 
max_dist=prctile(range,100); 
 
figure(8) 
ecdf(range,'Bounds','on') 
hold on  
yline(1,'r','--') 
xline(max_dist,'r') 
plot(max_dist,0,'b*') 
xlabel('Total travelled distance (m)') 
ylabel('Cumulative probability') 
title('Empirical Cumulative Distribution Function') 
legend('CDF','Lower Confidence Bound','Upper Confidence 
Bound',"AutoUpdate","off",'Location','northwest') 
 
 
DATA = [data f_radius]; 

 

%% Multi-objective optimization 
ub = [pi/2, 2*pi, 2*pi, 250, 50]; 
lb = [0, 0, 0, 100, 1]; 
 
% Define the number of variables 
nvars = 5; 
 
% Define the options for the genetic algorithm 
options = optimoptions('paretosearch','PlotFcn','psplotparetof','ParetoSetSize',200);              
 
% Run the genetic algorithm 
[XXX, fval] = 
paretosearch(@(x)multiobjective2(x,DATA),nvars,[],[],[],[],lb,ub,[],options); 
 
% Find the utopia point 
utopia = [min(fval(:,1)) min(fval(:,2)) min(fval(:,3))]; 
 
% Calculate the distances between the utopia point and all points on the Pareto front 
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distances = pdist2(utopia,fval,'euclidean'); 
 
 
% Find the index of the point on the Pareto front with the minimum distance to the 
utopia point 
[min_distance, min_index] = min(distances); 
 
% Get the decision variable values for the point on the Pareto front with the minimum 
distance to the utopia point 
best_p = fval(min_index,:); 
dec_var = XXX(min_index,:); 
 
figure(11) 
plot3(fval(:,1),fval(:,2),fval(:,3),'o') 
hold on 
grid on 
scatter3(utopia(1), utopia(2), utopia(3), 200, 'x', 'LineWidth', 2); 
scatter3(best_p(1), best_p(2), best_p(3), 100, '*', 'LineWidth', 2); 
xlabel('Objective 1 - Overlapping area'); 
ylabel('Objective 2 - Number of points inside the overlapping area'); 
zlabel('Objective 3 - Trapezoidal function y') 
legend('Pareto Front','Utopia point','Optimal solution','Location','southeast') 
title ('Pareto front') 

 

%% Application of the multi-objective optimization 
theta = dec_var(1); 
w1 = dec_var(2); 
w2 = dec_var(3); 
radius = dec_var(4); 
D = dec_var(5); 
 
Cx = W/2;      
Cz = 0; 
 
R = 300; 
beta = 2*asin(D/(2*radius)); 
delta = 72*pi/180;                        
arc_x = radius*cos(theta)+Cx;   
arc_z = radius*sin(theta)+Cz; 
 
data1 = [DATA(:,1) DATA(:,2)]; 
nfragg=size(data1,1); 
 
% Coordinates of C1 
    C1_x = radius*cos(theta)+Cx;   
    C1_z = radius*sin(theta)+Cz;  
     
    % Coordinates of C2 
    C2_x = radius*cos(theta+beta)+Cx;   
    C2_z = radius*sin(theta+beta)+Cz;  
 
    % Triangle 1  
    X1_t1 = C1_x + R*cos(w1-(delta/2)); 
    Z1_t1 = C1_z + R*sin(w1-(delta/2)); 
     
    X2_t1 = C1_x + R*cos(w1+(delta/2)); 
    Z2_t1 = C1_z + R*sin(w1+(delta/2)); 
     
    % Triangle 2 
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    X1_t2 = C2_x + R*cos(w2-(delta/2)); 
    Z1_t2 = C2_z + R*sin(w2-(delta/2)); 
 
    X2_t2 = C2_x + R*cos(w2+(delta/2)); 
    Z2_t2 = C2_z + R*sin(w2+(delta/2)); 
 
    V_t1 = [X2_t1 Z2_t1; C1_x C1_z; X1_t1 Z1_t1]; 
    V_t2 = [X2_t2 Z2_t2; C2_x C2_z; X1_t2 Z1_t2]; 
 
    mp_x = (C1_x+C2_x)/2;   
    mp_z = (C1_z+C2_z)/2; 
 
    pol1 = polyshape(V_t1(:,1), V_t1(:,2)); 
    A1 = polyarea(V_t1(:,1), V_t1(:,2));       % m2 
    pol2 = polyshape(V_t2(:,1), V_t2(:,2)); 
    A2 = polyarea(V_t2(:,1), V_t2(:,2));       % m2    
 
 % Define the vertices of the intersection polygon 
    int = intersect(pol1,pol2); 
    V_int = int.Vertices; 
     
    A_int = polyarea(V_int(:,1), V_int(:,2));  % m2 
    overlap = (A_int/A1);             % percentage (%) 
    in = inhull(data1, V_int);  % determine which points are inside the convex hull 
 
 % Extract the coordinates of the points that lie inside the intersection area 
    points_inside = DATA(in, :); 
 
 %Evaluation of dmax 
    mp_x = (C1_x+C2_x)/2;   
    mp_z = (C1_z+C2_z)/2; 
 
    %Evaluation of the distances between C1 and all the points inside the 
    %intersection area 
    dC1_f = sqrt((C1_x - points_inside(:,1)).^2 + (C1_z - points_inside(:,2)).^2); 
 
    %Evaluation of the distances between C2 and all the points inside the 
    %intersection area 
    dC2_f = sqrt((C2_x - points_inside(:,1)).^2 + (C2_z - points_inside(:,2)).^2); 
 
    dmax = max(sqrt((mp_x - points_inside(:,1)).^2 + (mp_z - points_inside(:,2)).^2)); 
     
    a = dmax/D; 
 
 
   figure(12) 
    scatter(P(:,1),P(:,3), 'bo') 
    hold on 
    plot([0 W],[0 0],'r','LineWidth',2) 
    plot (arc_x, arc_z) 
    plot(C1_x,C1_z, 'r*') 
    plot (C2_x, C2_z, 'k*') 
    plot(V_t1(:,1),V_t1(:,2), '--r') 
    plot(V_t2(:,1),V_t2(:,2), '--k') 
    plot(pol1) 
    plot (pol2) 
    plot (int, 'EdgeColor','g','LineStyle','-') 
    grid on 
    title ('Fragments projection') 
    xlabel('x (m)') 
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    ylabel('z (m)') 
    legend('Fragment representation','Bench','','Camera 1','Camera 2','Angle of view 
C1','Angle of view C2','Triangle 1','Triangle 2','Interception','Location','southwest') 
    axis equal 

 

% Kernel density function 

function [bandwidth,density,X,Y]=kde2d(data,n,MIN_XY,MAX_XY) 
global N A2 I 
if nargin<2 
    n=2^8; 
end 
n=2^ceil(log2(n)); % round up n to the next power of 2; 
N=size(data,1); 
if nargin<3 
    MAX=max(data,[],1); MIN=min(data,[],1); Range=MAX-MIN; 
    MAX_XY=MAX+Range/2; MIN_XY=MIN-Range/2; 
end 
scaling=MAX_XY-MIN_XY; 
if N<=size(data,2) 
    error('data has to be an N by 2 array where each row represents a two dimensional 
observation') 
end 
transformed_data=(data-repmat(MIN_XY,N,1))./repmat(scaling,N,1); 
%bin the data uniformly using regular grid; 
initial_data=ndhist(transformed_data,n); 
% discrete cosine transform of initial data 
a= dct2d(initial_data); 
% now compute the optimal bandwidth^2 
  I=(0:n-1).^2; A2=a.^2; 
 t_star=root(@(t)(t-evolve(t)),N); 
p_02=func([0,2],t_star);p_20=func([2,0],t_star); p_11=func([1,1],t_star); 
t_y=(p_02^(3/4)/(4*pi*N*p_20^(3/4)*(p_11+sqrt(p_20*p_02))))^(1/3); 
t_x=(p_20^(3/4)/(4*pi*N*p_02^(3/4)*(p_11+sqrt(p_20*p_02))))^(1/3); 
% smooth the discrete cosine transform of initial data using t_star 
a_t=exp(-(0:n-1)'.^2*pi^2*t_x/2)*exp(-(0:n-1).^2*pi^2*t_y/2).*a;  
% now apply the inverse discrete cosine transform 
if nargout>1 
    density=idct2d(a_t)*(numel(a_t)/prod(scaling)); 
 density(density<0)=eps; % remove any negative density values 
    [X,Y]=meshgrid(MIN_XY(1):scaling(1)/(n-1):MAX_XY(1),MIN_XY(2):scaling(2)/(n-
1):MAX_XY(2)); 
end 
bandwidth=sqrt([t_x,t_y]).*scaling;  
end 
%####################################### 
function  [out,time]=evolve(t) 
global N 
Sum_func = func([0,2],t) + func([2,0],t) + 2*func([1,1],t); 
time=(2*pi*N*Sum_func)^(-1/3); 
out=(t-time)/time; 
end 
%####################################### 
function out=func(s,t) 
global N 
if sum(s)<=4 
    Sum_func=func([s(1)+1,s(2)],t)+func([s(1),s(2)+1],t); const=(1+1/2^(sum(s)+1))/3; 
    time=(-2*const*K(s(1))*K(s(2))/N/Sum_func)^(1/(2+sum(s))); 
    out=psi(s,time); 
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else 
    out=psi(s,t); 
end 
 
end 
%####################################### 
function out=psi(s,Time) 
global I A2 
% s is a vector 
w=exp(-I*pi^2*Time).*[1,.5*ones(1,length(I)-1)]; 
wx=w.*(I.^s(1)); 
wy=w.*(I.^s(2)); 
out=(-1)^sum(s)*(wy*A2*wx')*pi^(2*sum(s)); 
end 
%####################################### 
function out=K(s) 
out=(-1)^s*prod((1:2:2*s-1))/sqrt(2*pi); 
end 
%####################################### 
function data=dct2d(data) 
% computes the 2 dimensional discrete cosine transform of data 
% data is an nd cube 
[nrows,ncols]= size(data); 
if nrows~=ncols 
    error('data is not a square array!') 
end 
% Compute weights to multiply DFT coefficients 
w = [1;2*(exp(-i*(1:nrows-1)*pi/(2*nrows))).']; 
weight=w(:,ones(1,ncols)); 
data=dct1d(dct1d(data)')'; 
    function transform1d=dct1d(x) 
 
        % Re-order the elements of the columns of x 
        x = [ x(1:2:end,:); x(end:-2:2,:) ]; 
 
        % Multiply FFT by weights: 
        transform1d = real(weight.* fft(x)); 
    end 
end 
%####################################### 
function data = idct2d(data) 
% computes the 2 dimensional inverse discrete cosine transform 
[nrows,ncols]=size(data); 
% Compute wieghts 
w = exp(i*(0:nrows-1)*pi/(2*nrows)).'; 
weights=w(:,ones(1,ncols)); 
data=idct1d(idct1d(data)'); 
    function out=idct1d(x) 
        y = real(ifft(weights.*x)); 
        out = zeros(nrows,ncols); 
        out(1:2:nrows,:) = y(1:nrows/2,:); 
        out(2:2:nrows,:) = y(nrows:-1:nrows/2+1,:); 
    end 
end 
%####################################### 
function binned_data=ndhist(data,M) 
% this function computes the histogram 
% of an n-dimensional data set; 
% 'data' is nrows by n columns 
% M is the number of bins used in each dimension 
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% so that 'binned_data' is a hypercube with 
% size length equal to M; 
[nrows,ncols]=size(data); 
bins=zeros(nrows,ncols); 
for i=1:ncols 
    [dum,bins(:,i)] = histc(data(:,i),[0:1/M:1],1); 
    bins(:,i) = min(bins(:,i),M); 
end 
% Combine the  vectors of 1D bin counts into a grid of nD bin 
% counts. 
binned_data = accumarray(bins(all(bins>0,2),:),1/nrows,M(ones(1,ncols))); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function t=root(f,N) 
% try to find smallest root whenever there is more than one 
N=50*(N<=50)+1050*(N>=1050)+N*((N<1050)&(N>50)); 
tol=10^-12+0.01*(N-50)/1000; 
flag=0; 
while flag==0 
    try 
        t=fzero(f,[0,tol]); 
        flag=1; 
    catch 
        tol=min(tol*2,.1); % double search interval 
    end 
    if tol==.1 % if all else fails 
        t=fminbnd(@(x)abs(f(x)),0,.1); flag=1; 
    end 
end 
end 

 

% Multi-objective optimization function 

function F = multiobjective2(x,DATA)    
 
theta = x(1); 
w1 = x(2); 
w2 = x(3); 
radius = x(4); 
D = x(5); 
 
Cx = 84/2;      % W 
Cz = 0; 
R = 500; 
beta = 2*asin(D./(2*radius)); 
delta = 72*pi/180;                       
arc_x = radius.*cos(theta)+Cx;   
arc_z = radius.*sin(theta)+Cz; 
 
data1 = [DATA(:,1) DATA(:,2)]; 
nfragg=size(data1,1); 
 
 
% Coordinates of C1 
    C1_x = radius.*cos(theta)+Cx;   
    C1_z = radius.*sin(theta)+Cz;  
     
    % Coordinates of C2 
    C2_x = radius.*cos(theta+beta)+Cx;   
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    C2_z = radius.*sin(theta+beta)+Cz;  
 
    % Triangle 1  
    X1_t1 = C1_x + R*cos(w1-(delta/2)); 
    Z1_t1 = C1_z + R*sin(w1-(delta/2)); 
     
    X2_t1 = C1_x + R*cos(w1+(delta/2)); 
    Z2_t1 = C1_z + R*sin(w1+(delta/2)); 
     
    % Triangle 2 
    X1_t2 = C2_x + R*cos(w2-(delta/2)); 
    Z1_t2 = C2_z + R*sin(w2-(delta/2)); 
 
    X2_t2 = C2_x + R*cos(w2+(delta/2)); 
    Z2_t2 = C2_z + R*sin(w2+(delta/2)); 
 
    V_t1 = [X2_t1 Z2_t1; C1_x C1_z; X1_t1 Z1_t1]; 
    V_t2 = [X2_t2 Z2_t2; C2_x C2_z; X1_t2 Z1_t2]; 
    mp_x = (C1_x+C2_x)/2;   
    mp_z = (C1_z+C2_z)/2; 
    pol1 = polyshape(V_t1(:,1), V_t1(:,2)); 
    A1 = polyarea(V_t1(:,1), V_t1(:,2));       % m2 
    pol2 = polyshape(V_t2(:,1), V_t2(:,2)); 
    A2 = polyarea(V_t2(:,1), V_t2(:,2));       % m2     
 % Define the vertices of the intersection polygon 
    int = intersect(pol1,pol2); 
    V_int = int.Vertices; 
     
        if isempty(int.Vertices)==0 
            A_int = polyarea(V_int(:,1), V_int(:,2));  % m2 
            overlap = (A_int/A1);         % percentage (%) 
            in = inhull(data1, V_int);  % determine which points are inside the convex 
hull 
            F1 = -overlap; 
            F2 = -sum(in)/nfragg; 
             
            %Extract the coordinates of the points that lie inside the 
            %intersection area 
            points_inside = DATA(in, :); 
 
            if isempty(points_inside)==0 
 
             
            mp_x = (C1_x+C2_x)/2;   
            mp_z = (C1_z+C2_z)/2; 
     
            %Evaluation of the distances between C1 and all the points inside the 
            %intersection area 
            dC1_f = sqrt((C1_x - points_inside(:,1)).^2 + (C1_z - 
points_inside(:,2)).^2); 
         
            %Evaluation of the distances between C2 and all the points inside the 
            %intersection area 
            dC2_f = sqrt((C2_x - points_inside(:,1)).^2 + (C2_z - 
points_inside(:,2)).^2); 
         
            dmax = max(sqrt((mp_x - points_inside(:,1)).^2 + (mp_z - 
points_inside(:,2)).^2)); 
             
            a = dmax/D; 
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            F3 = (a<2).*0 + ((a>=2)&&(a<4)).*(-a+2) + ((a>=4)&&(a<5)).*-2 + 
((a>=5)&&(a<7)).*(a-7) + (a>=7).*0; 
            else 
            F3 = 0;     
            end 
           
        else 
            F1=0; 
            F2=0; 
            F3=0; 
        end 
 
    
F=[F1; F2; F3]; 
end 

 

%-------------------------------------------------------------------------------------- 

clc 
clear all 
close all 
 
%% FRAMES EXTRACTION - CAMERA LEFT 
% Frames extraction from the calibration video 
% import the video file 
cd 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_1206' 
 
% import the video file 
obj1 = VideoReader('20230612115401.MTS'); 
vidHeight1 = obj1.Height; 
vidWidth1 = obj1.Width; 
%  
 
% set the time interval to extract frames from (in seconds) 
startTime1 = 54; % start at 30 seconds 
endTime1 = 221; % end at 54 seconds 
 
% convert the time interval to frame indices 
startFrame1 = floor(startTime1 * obj1.FrameRate) + 1; 
endFrame1 = floor(endTime1 * obj1.FrameRate); 
 
ST1 ='.jpg'; 
% reading and writing the frames  
for i1 = startFrame1 : endFrame1 
    % read the current frame 
    frame_cal = read(obj1, i1); 
     
    % convert integer to string 
    Sx1 = num2str(i1); 
     
    % concatenate the filename with the file format 
    Strc1 = strcat(Sx1, ST1); 
     
    % set the directory to save the frames in 
    cd frames_calib_2 
     
    % export the frame 
    imwrite(frame_cal, Strc1); 
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    cd .. 
end 
 
%%------------------------------------------------------------------------- 
 
% Frames extraction from the falling object video 
% import the video file 
cd 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_1206' 
 
% import the video file 
obj = VideoReader('20230612140854.MTS'); 
vidHeight = obj.Height; 
vidWidth = obj.Width; 
 
% set the time interval to extract frames from (in seconds) 
startTime = 552; % start at 30 seconds 
endTime = 669; % end at 54 seconds 
 
% convert the time interval to frame indices 
startFrame = floor(startTime * obj.FrameRate) + 1; 
endFrame = floor(endTime * obj.FrameRate); 
 
ST='.jpg'; 
% reading and writing the frames  
for i = startFrame : endFrame 
    % read the current frame 
    frame_obj = read(obj, i); 
     
    % convert integer to string 
    Sx = num2str(i); 
     
    % concatenate the filename with the file format 
    Strc = strcat(Sx, ST); 
     
    % set the directory to save the frames in 
    cd frames_object 
     
    % export the frame 
    imwrite(frame_obj, Strc); 
     
    cd .. 
end 

 

%%------------------------------------------------------------------------- 
 
clc 
clear all 
close all 
 
%% FRAMES EXTRACTION - CAMERA RIGHT 
% Frames extraction from the calibration video 
% import the video file 
cd 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_1206' 
 
% import the video file 
obj1 = VideoReader('20230612115242.MTS'); 
vidHeight1 = obj1.Height; 
vidWidth1 = obj1.Width; 
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% set the time interval to extract frames from (in seconds) 
startTime1 = 115; % start at 30 seconds 
endTime1 = 305; % end at 54 seconds 
 
% convert the time interval to frame indices 
startFrame1 = floor(startTime1 * obj1.FrameRate) + 1; 
endFrame1 = floor(endTime1 * obj1.FrameRate); 
 
ST1 ='.jpg'; 
% reading and writing the frames  
for i1 = startFrame1 : endFrame1 
    % read the current frame 
    frame_cal = read(obj1, i1); 
     
    % convert integer to string 
    Sx1 = num2str(i1); 
     
    % concatenate the filename with the file format 
    Strc1 = strcat(Sx1, ST1); 
     
    % set the directory to save the frames in 
    cd frames_calib2 
     
    % export the frame 
    imwrite(frame_cal, Strc1); 
     
    cd .. 
end 
 
%%-------------------------------------------------------------------------- 
 
% Frames extraction from the falling object video 
% import the video file 
cd 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_1206' 
 
% import the video file 
obj = VideoReader('20230612140805.MTS'); 
vidHeight = obj.Height; 
vidWidth = obj.Width; 
 
% set the time interval to extract frames from (in seconds) 
startTime = 593.4; % start at 30 seconds 
endTime = 710.4; % end at 54 seconds 
 
% convert the time interval to frame indices 
startFrame = floor(startTime * obj.FrameRate) + 1; 
endFrame = floor(endTime * obj.FrameRate); 
 
ST='.jpg'; 
% reading and writing the frames  
for i = startFrame : endFrame 
    % read the current frame 
    frame_obj = read(obj, i); 
     
    % convert integer to string 
    Sx = num2str(i); 
     
    % concatenate the filename with the file format 
    Strc = strcat(Sx, ST); 
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    % set the directory to save the frames in 
    cd frames_object 
     
    % export the frame 
    imwrite(frame_obj, Strc); 
     
    cd .. 
end 

 

% Video processing 

%% CAMERA CALIBRATION 
% Define images to process 
imageFileNames1 = 
{'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305\frames_calibra
tion\frame_200.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305\frames_calibrat
ion\frame_600.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305\frames_calibrat
ion\frame_1000.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305\frames_calibrat
ion\frame_1400.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305\frames_calibrat
ion\frame_2650.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305\frames_calibrat
ion\frame_4300.jpg'}; % Left 
 
imageFileNames2 = 
{'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305\frames_calibr
ation\frame_100.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305\frames_calibra
tion\frame_600.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305\frames_calibra
tion\frame_1050.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305\frames_calibra
tion\frame_1350.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305\frames_calibra
tion\frame_2450.jpg', 
'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305\frames_calibra
tion\frame_4300.jpg'}; % Right 
  
 
% Detect checkboards in images 
% [imagePoints,boardSize,pairsUsed]  detectCheckerboardPoints(imageFileNames1, 
imageFileNames2); 
[imagePoints, boardSize, imagesUsed] = detectCheckerboardPoints(imageFileNames1, 
imageFileNames2); 
 
% Generate world coordinates of the checkboard keypoints 
squareSize = 28; % in mm 
worldPoints = generateCheckerboardPoints(boardSize, squareSize); 
 
% Read one of the images from the first stereo pair 
Il = imread(imageFileNames1{1}); 
[mrows, ncols, ~] = size(Il); 
 
% Calibrate the camera 
[stereoParams,pairsUsed,estimationErrors] = 
estimateCameraParameters(imagePoints,worldPoints, ... 
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    'EstimateSkew',false,'EstimateTangentialDistortion',false, ... 
    'NumRadialDistortionCoefficients', 2,'WorldUnits','millimeters', ... 
    'InitialIntrinsicMatrix', [], 'InitialRadialDistortion', [], ... 
    'ImageSize', [mrows, ncols]); 
 
% View reprojection errors 
h1 = figure; 
showReprojectionErrors(stereoParams); 
 
% Visualize pattern locations 
h2 = figure; 
showExtrinsics(stereoParams, 'CameraCentric'); 
 
% Display parameter estimation errors 
displayErrors(estimationErrors, stereoParams); 
 
% Camera 1 - Left 
r1 = eye(3); % Rotation matrix 
w1 = (pi/180)*(0);  
p1 = (pi/180)*(0); 
k1 = (pi/180)*(0); 
Tx1 = 0; Ty1 = 0; Tz1 = 0; % Translation matrix 
T1 = [Tx1 Ty1 Tz1]; 
angles1 = rad2deg([w1 p1 k1]); 
mw1 = [1 0 0; 0 cos(w1) sin(w1); 0 -sin(w1) cos(w1)]; 
mp1 = [cos(p1) 0 -sin(p1); 0 1 0; sin(p1) 0 cos(p1)]; 
mk1 = [cos(k1) sin(k1) 0; -sin(k1) cos(k1) 0; 0 0 1]; 
m1 = mw1*mp1*mk1; 
 
% Camera 2 - Right 
r2 = stereoParams.PoseCamera2.R; %stereoParams.RotationOfCamera2; 
eulXYZ = rotm2eul(r2, 'XYZ'); 
w2 = -eulXYZ(1); 
p2 = -eulXYZ(2); 
k2 = -eulXYZ(3); 
Tx2 = -stereoParams.TranslationOfCamera2(1); 
Ty2 = -stereoParams.TranslationOfCamera2(2); 
Tz2 = -stereoParams.TranslationOfCamera2(3); 
T2 = [Tx2 Ty2 Tz2]; 
angles2 = rad2deg([w2 p2 k2]); 
mw2 = [1 0 0; 0 cos(w2) sin(w2); 0 -sin(w2) cos(w2)]; 
mp2 = [cos(p2) 0 -sin(p2); 0 1 0; sin(p2) 0 cos(p2)]; 
mk2 = [cos(k2) sin(k2) 0; -sin(k2) cos(k2) 0; 0 0 1]; 
m2 = mw2*mp2*mk2; 
 
%% ------------------------------------------------------------------------ 
 
f = 8.8; % Focal length 8.8-25.7 
% Camera 1 - Left camera focal length (pixels) 
f1 = norm(stereoParams.CameraParameters1.FocalLength);  
% Camera 2 - Right camera focal length (pixels) 
f2 = norm(stereoParams.CameraParameters2.FocalLength);  
psize = [f/f1, f/f2]; 
 
%%------------------------------------------------------------------------- 
 
% LEFT CAMERA - Correction from lens distortion 
pathname_left = 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\camera 
left\frames_object'; 
file_list_left = dir(fullfile(pathname_left, '*.jpg')); 
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image_left = cell(length(file_list_left), 1); 
und_image_left = cell(length(file_list_left), 1); 
 
for i = 1:length(file_list_left) 
    current_file_name_left = file_list_left(i).name; 
    current_file_path_left = fullfile(pathname_left, current_file_name_left); 
    current_image_left = imread(current_file_path_left); 
    
    image_left{i} = current_image_left; 
 
    cameraParams_left = {stereoParams.CameraParameters1 
stereoParams.CameraParameters2}; 
    und_image_left{i} = undistortImage(image_left{i}, cameraParams_left{1});  
end 
 
 
for i = 1:length(und_image_left) 
    output_file_name_left = sprintf('image_%04d.jpg', i); 
    output_file_path_left = fullfile('corrected_images', output_file_name_left); 
     
    imwrite(und_image_left{i}, output_file_path_left); 
end 
 
% CREATION OF THE VIDEO WITH THE CORRECTED IMAGES - LEFT CAMERA 
    % Setup 
workingDir = 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\camera 
left\corrected_images'; 
imageNames = dir(fullfile(workingDir,'*.jpg')); %'image_%04d', 
imageNames = {imageNames.name}'; 
 
    % Creation of a new video with the image sequence 
outputVideo = VideoWriter(fullfile(workingDir,'moving_obj_left1.avi')); 
% outputVideo.FrameRate = outputVideo.FrameRate; 
open(outputVideo) 
for ii = 1:length(imageNames) 
   img = imread(fullfile(workingDir,imageNames{ii})); 
   writeVideo(outputVideo,img) 
end 
close(outputVideo) 
 
    % View the new video 
corr_left_Video_Avi = VideoReader(fullfile(workingDir,'moving_obj_left1.avi')); 
ii = 1; 
while hasFrame(corr_left_Video_Avi) 
   mov(ii) = im2frame(readFrame(corr_left_Video_Avi)); 
   ii = ii+1; 
end 
 
figure  
imshow(mov(1).cdata, 'Border', 'tight') 
 
movie(mov,1,corr_left_Video_Avi.FrameRate) 

 

%%------------------------------------------------------------------------- 

%% Camera left – Tracking object 

cd 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Left_2305' 
obj_left=FUNC_MotionBasedMultiObjectTrackingExample('moving_obj_left.avi'); 
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v_left = VideoReader('moving_obj_left.avi'); 
areas_left = {}; 
centroids_left = {}; 
bbox_left = {}; 
areas_all_frames_left = {}; 
bbox_all_frames_left = {}; 
centroids_all_frames_left = {}; % initialize empty cell array 
tracks_left = []; % initialize empty array for tracks 
 
while hasFrame(v_left) 
   frame_left = readFrame(v_left); 
  % Detect foreground. 
        mask_left = obj_left.detector.step(frame_left); 
 
        % Apply morphological operations to remove noise and fill in holes. 
        mask_left = imopen(mask_left, strel('rectangle', [3,3])); 
        mask_left = imclose(mask_left, strel('rectangle', [15, 15])); 
        mask_left = imfill(mask_left, 'holes'); 
 
        detector_left = vision.ForegroundDetector('NumGaussians', 5, ... 
            'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7); 
        blobAnalysis_left = vision.BlobAnalysis('BoundingBoxOutputPort', true, ... 
        'AreaOutputPort', true, 'CentroidOutputPort', true, ... 
        'MinimumBlobArea', 200 );  
        % Moving object detection - Perform blob analysis to find connected components. 
        [areas_left, centroids_left, bbox_left] = 
obj_left.blobAnalyser.step(mask_left); 
        % Store centroids in cell array 
        centroids_all_frames_left{end+1} = centroids_left; 
        areas_all_frames_left{end+1} = areas_left; 
        bbox_all_frames_left{end+1} = bbox_left; 
 
end 
 
centroidX_l = {};  
centroidY_l = {}; 
for i = 1:length(centroids_all_frames_left) 
    centroidX_l{i} = centroids_all_frames_left{i}(:, 1); 
    centroidY_l{i} = centroids_all_frames_left{i}(:, 2); 
end 
 
figure(10) 
hold on % Add subsequent scatter plots to the same figure 
for i = 1:length(centroidX_l) %400:length(centroidX_l) 
    scatter(centroidX_l{i}, centroidY_l{i}); % centroidX_l{i}, centroidY_l{i} 
%     text(centroidX_l{i}, centroidY_l{i}, num2str(i), 'Color', 'red', 'FontSize',5); 
end 
title('Centroid Coordinates - Left camera'); 
xlabel('X (px)'); 
ylabel('Y (px)'); 
grid on 
set(gca,'Ydir','reverse') 
 
 
aux_l1=centroids_all_frames_left(102:200); 
distances_l1 = cell(numel(aux_l1), 1); 
stp_l1=[]; 
idx_l1=1; 
points_l1=cell(numel(aux_l1),1); 
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centroids_l1=cell(numel(aux_l1), 1); 
deriv_l1=cell(numel(aux_l1), 1); 
thresh_l1=100; 
threshd_l1= 0.1; %0.1; 
 
 
for ii=1:numel(aux_l1) 
    if ii==1 
       stp_l1=aux_l1{ii}(idx_l1,:); 
       points_l1{ii}=stp_l1; 
       centroids_l1{ii} = aux_l1{ii}; 
    else 
       centroids_l1{ii}=aux_l1{ii}; 
       distances_l1{ii} = pdist2(stp_l1,centroids_l1{ii}); 
       deriv_l1{ii} = atan2(centroids_l1{ii}(:,2)-stp_l1(2),centroids_l1{ii}(:,1)-
stp_l1(1)); 
       if ii==2 
          deriv_l1{ii-1}=deriv_l1{ii}; 
       end 
       if all(distances_l1{ii} > thresh_l1) & all(abs(deriv_l1{ii} - deriv_l1{ii - 
1}(idx_l1,:))' > threshd_l1) % && (idx_l1 <= numel(deriv_l1{ii - 1})) 
          points_l1{ii}=[]; 
       else 
          %[~,idx_l1] = min(distances_l1{ii}); 
          [~,idx_l1]=min(distances_l1{ii}.*abs(deriv_l1{ii}-deriv_l1{ii-
1}(idx_l1,:))'); 
          points_l1{ii}=centroids_l1{ii}(idx_l1,:); 
          stp_l1=centroids_l1{ii}(idx_l1,:); 
       end 
    end 
end 
 

figure(11) 
hold on 
for ii=1:numel(points_l1) 
    if isempty(points_l1{ii}) 
        continue; % Skip empty cells 
    end 
    plot(points_l1{ii}(1),points_l1{ii}(2),'ob') 
end 
title('Object trajectory 2D - Left camera'); 
xlabel('X (px)'); 
ylabel('Y (px)'); 
grid on 
set(gca, 'Ydir', 'reverse') 
 

%%------------------------------------------------------------------------- 
 
% RIGHT CAMERA - Correction from lens distortion 
pathname_right = 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\camera 
right\frames_object'; 
file_list_right = dir(fullfile(pathname_right, '*.jpg')); 
image_right = cell(length(file_list_right), 1); 
und_image_right = cell(length(file_list_right), 1); 
 
for i = 1:length(file_list_right) 
     
    current_file_name_right = file_list_right(i).name; 
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    current_file_path_right = fullfile(pathname_right, current_file_name_right); 
    current_image_right = imread(current_file_path_right); 
     
    image_right{i} = current_image_right; 
 
    cameraParams_right = {stereoParams.CameraParameters1 
stereoParams.CameraParameters2}; 
    und_image_right{i} = undistortImage(image_right{i}, cameraParams_right{2});  
end 
 
 
for i = 1:length(und_image_right) 
    output_file_name_right = sprintf('image_%04d.jpg', i); 
    output_file_path_right = fullfile('corrected_images', output_file_name_right); 
     
    imwrite(und_image_right{i}, output_file_path_right); 
end 
 
% CREATION OF THE VIDEO WITH THE CORRECTED IMAGES - RIGHT CAMERA 
    % Setup 
workingDir_r = 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\camera 
right\corrected_images'; 
imageNames_r = dir(fullfile(workingDir_r,'*.jpg')); %'image_%04d', 
imageNames_r = {imageNames_r.name}'; 
 
    % Creation of a new video with the image sequence 
outputVideo_r = VideoWriter(fullfile(workingDir_r,'moving_obj_right1.avi')); 
% outputVideo.FrameRate = outputVideo.FrameRate; 
open(outputVideo_r) 
for ii = 1:length(imageNames_r) 
   img_r = imread(fullfile(workingDir_r,imageNames_r{ii})); 
   writeVideo(outputVideo_r,img_r) 
end 
close(outputVideo_r) 
 
    % View the new video 
corr_right_Video_Avi = VideoReader(fullfile(workingDir_r,'moving_obj_right1.avi')); 
ii = 1; 
while hasFrame(corr_right_Video_Avi) 
   mov_r(ii) = im2frame(readFrame(corr_right_Video_Avi)); 
   ii = ii+1; 
end 
 
figure  
imshow(mov_r(1).cdata, 'Border', 'tight') 
 
movie(mov_r,1,corr_right_Video_Avi.FrameRate) 
 
 
cd 'C:\Users\pagon\OneDrive\Desktop\MUMS\THESIS\Video_Processing\Right_2305' 
obj_right = FUNC_MotionBasedMultiObjectTrackingExample('moving_obj_right.avi');  
 
v_right = VideoReader('moving_obj_right.avi'); 
areas_right = {}; 
centroids_right = {}; 
bbox_right = {}; 
areas_all_frames_right = {}; 
bbox_all_frames_right = {}; 
centroids_all_frames_right = {}; % initialize empty cell array 
while hasFrame(v_right) 
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   frame_right = readFrame(v_right); 
  % Detect foreground. 
        mask_right = obj_right.detector.step(frame_right); 
 
        % Apply morphological operations to remove noise and fill in holes. 
        mask_right = imopen(mask_right, strel('rectangle', [3,3])); 
        mask_right = imclose(mask_right, strel('rectangle', [15, 15])); 
        mask_right = imfill(mask_right, 'holes'); 
 
        detector_right = vision.ForegroundDetector('NumGaussians', 5, ... 
            'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7); 
        blobAnalysis_left = vision.BlobAnalysis('BoundingBoxOutputPort', true, ... 
        'AreaOutputPort', true, 'CentroidOutputPort', true, ... 
        'MinimumBlobArea', 200 );  
        % Moving object detection - Perform blob analysis to find connected components. 
        [areas_right, centroids_right, bbox_right] = 
obj_right.blobAnalyser.step(mask_right); 
        % Store centroids in cell array 
        centroids_all_frames_right{end+1} = centroids_right; 
        areas_all_frames_right{end+1} = areas_right; 
        bbox_all_frames_right{end+1} = bbox_right; 
end 
 
centroidX_r = {};  
centroidY_r = {}; 
for i = 1:length(centroids_all_frames_right) 
    centroidX_r{i} = centroids_all_frames_right{i}(:, 1); 
    centroidY_r{i} = centroids_all_frames_right{i}(:, 2); 
end 
 
figure(12) 
hold on % Add subsequent scatter plots to the same figure 
for i = 1:length(centroidX_r) % 389:length(centroidX_r) 
    scatter(centroidX_r{i}, centroidY_r{i}); %centroidX_r{i}, centroidY_r{i} 
%     text(centroidX_r{i}, centroidY_r{i}, num2str(i), 'Color', 'red', 'FontSize', 5); 
end 
title('Centroid Coordinates - Right camera'); 
xlabel('X (px)'); 
ylabel('Y (px)'); 
grid on 
set(gca,'Ydir','reverse') 
 
 
aux_r1=centroids_all_frames_right(102:200); 
distances_r1 = cell(numel(aux_r1),1); 
stp_r1=[]; 
idx_r1=2; 
points_r1=cell(numel(aux_r1),1); 
centroids_r1 = cell(numel(aux_r1),1); 
deriv_r1=cell(numel(aux_r1), 1); 
thresh_r1=1000; 
threshd_r1=0.05; %0.1 
 
for ii=1:numel(aux_r1) 
    if ii==1 
       stp_r1=aux_r1{ii}(idx_r1,:); 
       points_r1{ii}=stp_r1; 
       centroids_r1{ii} = aux_r1{ii}; 
    else 
       centroids_r1{ii}=aux_r1{ii}; 
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       distances_r1{ii} = pdist2(stp_r1,centroids_r1{ii}); 
       deriv_r1{ii} = atan2(centroids_r1{ii}(:,2)-stp_r1(2),centroids_r1{ii}(:,1)-
stp_r1(1)); 
        if ii==2 
          deriv_r1{ii-1}=deriv_r1{ii}; 
        end 
       if all(distances_r1{ii} > thresh_r1) & all(abs(deriv_r1{ii}-deriv_r1{ii-
1}(idx_r1)) > threshd_r1) 
          points_r1{ii}=[]; 
       else 
%           [~,idx_r1] = min(distances_r1{ii}); 
          [~,idx_r1]=min(distances_r1{ii}.*abs(deriv_r1{ii}-deriv_r1{ii-1}(idx_r1))'); 
          points_r1{ii}=centroids_r1{ii}(idx_r1,:); 
          stp_r1=centroids_r1{ii}(idx_r1,:); 
       end 
    end 
end 
 
 
figure(13) 
hold on 
for ii=1:numel(points_r1) 
    if isempty(points_r1{ii}) 
        continue; % Skip empty cells 
    end 
    plot(points_r1{ii}(1),points_r1{ii}(2),'ob') 
end 
title('Object trajectory 2D - Right camera'); 
xlabel('X (px)'); 
ylabel('Y (px)'); 
grid on 
set(gca, 'Ydir', 'reverse') 

%%------------------------------------------------------------------------- 

% Triangulation  

points_l1_c = points_l1(1:84); 
points_r1_c = points_r1(1:84); 
p_l1 = zeros(length(points_l1_c),2); 
p_r1 = zeros(length(points_r1_c),2); 
for i=1:84 
    p_l1(i,:) = points_l1_c{i}; 
    p_r1(i,:) = points_r1{i}; 
end 
 
% Compute the distance from camera 1 to the face. 
point3d = zeros(length(p_l1),3); 
distanceInMeters = []; 
for i = 1:length(p_l1) 
    point3d(i,:) = triangulate(p_l1(i,:), p_r1(i,:), stereoParams); 
    distanceInMeters(i)= norm(point3d(i,:))/1000; 
end  
 
 
h2 = figure; 
showExtrinsics(stereoParams, 'CameraCentric'); 
hold on 
for i=1:length(point3d) 
    scatter3(point3d(i,1), point3d(i,3), point3d(i,2), 'ob') 
end  
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%% Result presentation 
T1 = [Tx1; Ty1; Tz1]; % r1 
T2 = [Tx2; Ty2; Tz2]; % r2 
C1 = -r1' * T1; 
C2 = r2' * T2; 
 
figure (14) 
hold on; 
% set(gca, 'Xdir', 'reverse') 
set(gca, 'Zdir', 'reverse') 
cam1 = plot3(C1(1), C1(3), C1(2), 'bo', 'MarkerSize', 10);  % Camera 1 position 
cam2 = plot3(C2(1), C2(3), C2(2), 'ro', 'MarkerSize', 10);  % Camera 2 position 
grid on; 
 
for i=1:length(point3d) 
    frag = scatter3(point3d(i,1), point3d(i,3), point3d(i,2), 'ob'); 
    hold on 
    grid on 
end 
 
title('Object trajectory 3D'); 
xlabel('X (mm)') 
ylabel('Z (mm)') 
zlabel('Y (mm)') 
lgd = legend([cam1, cam2, frag], 'Left camera', 'Right camera', 'Fragments'); 
daspect([1 1 1]) 


