POLITECNICO DI TORINO

Master’s Degree in Civil Engineering

Master thesis

FLUTTER ANALYSIS OF LONG-SPAN SUSPENSION
BRIDGES:

THE CASE-STUDY OF THE MESSINA STRAIT PROJECT

Supervisors:
Prof. Alberto Carpinteri
. . Candidate:
Dr. Gianfranco Piana
Stella Huang

Eng. Sebastiano Russo

Academic year 2022/2023



Ringraziamenti

Giunta al termine del mio percorso universitario mi € doveroso ringraziare tutti coloro che mi hanno

sostenuta durante i miei studi e che ne hanno contribuito.

Un ringraziamento speciale al Prof. Alberto Carpinteri, per avermi trasmesso la passione per
I'ingegneria strutturale, in particolare l'instabilita aeroelastica dei ponti sospesi, dandomi

I'opportunita e la fiducia nell’affrontare questo lavoro di tesi magistrale.

Ringrazio il Dott. Gianfranco Piana e I'Ing. Sebastiano Russo, che con la loro pazienza e infinita

disponibilita mi hanno guidata durante tutto il percorso di stesura dell’elaborato.

Un grazie di cuore ai miei amici, che nonostante la distanza che ci separa, non hanno mai smesso di
sostenermi, con cui ho condiviso i momenti di gioia e di difficolta durante questi anni, sono grata di

avervi avuto al mio fianco.

Per ultimo vorrei ringraziare i miei familiari, che hanno sempre creduto in me incondizionatamente,

€ merito della loro fiducia e del loro amore che sono riuscita a raggiungere questo traguardo.



Abstract

The construction of a permanent link over the Messina Strait has always been considered
a great undertaking, due to challenging environmental conditions such as the depth of water, strong
sea current, intense wind, and seismic activities. These factors, among others, have significantly
delayed the design stage and subsequent possible construction. The bridge’s design and feasibility
debate began several decades ago, culminating in 1992, with the approval of the world’s longest
suspension bridge project, featuring a main span of 3300 metres.

This thesis focuses on one of the most dangerous phenomena that could occur in
suspension bridges, i.e. flutter instability. The analysis aims to investigate the behaviour of the
Messina Strait Bridge under wind loads, utilizing both numerical and analytical approaches.

The first part provides a brief overview of the evolutionary process of suspension bridges
in history. Subsequently, the development of the Messina Strait Bridge project is presented, from the
1969 international design competition up to the most recent updates, including the feasibility
analyses conducted regarding the different solution proposed. Furthermore, the various effects of
wind action on long-span suspension bridges are described. Being a project of great relevance, many
researchers have conducted extensive studies, two of these are reported and their results will be
compared to the ones obtained in this thesis.

The second part of this thesis describes in depth the approved project and focuses on the
various finite element models developed, from a simpler model of the main span only to the
complete model of the entire bridge. The numerical methods adopted in this study are then
introduced and the analyses performed using both MATLAB and ANSYS software are reported.
They consist of a preliminary modal analysis, in order to determine the natural frequencies and the
vibration modes, then the flutter analysis is carried out, which takes into account all the aerodynamic
loads involved, modelled by the flutter derivatives. In the end, the critical flutter velocity of the wind,
that initiates instability, and the flutter frequency are derived. In addition, some considerations have
been made regarding the influence of the Drag component on the critical wind speed. Lastly, a
further method was explored, the single-mode criterion, which allows to examine uncoupled single-
degree-of-freedom flutter problems, and it was applied on the Messina Bridge project as well as on
the Tacoma Narrows Bridge, a well-known case of instability that had led to failure.

In conclusion, the critical flutter wind speed is assessed to be over 94 m/s, which
corresponds to 340 km/h, extremely higher than most severe wind ever recorded at the bridge’s
location. The results derived from the flutter analyses, performed using MATLAB and ANSYS
software, in terms of critical flutter wind speed and flutter frequency, agree with each other within
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Abstract Introduction on long-span suspension bridges

4% error, thus both analytical and numerical approaches produce the same result. Moreover, they
align strongly with the values obtained by the research groups examined, with a relative error under
8%. An additional flutter analysis is performed in order to assess the influence of the lateral flutter
derivatives, which proves to be essential to achieve flutter instability in long-span bridges.
Similarly, the model was studied utilizing the single-mode criterion; however, it doesn’t produce
any worthwhile results due to the fact that the bride’s deck was designed to resemble an air foil,
therefore highly stable to single-degree-of-freedom flutter and the critical mechanism always
involves the coupling between two, or more, modes.

In the end, numerical and analytical investigations, confirm the excellent aeroelastic behaviour of

the bridge over the Messina Strait, whose design was carefully developed in the last few decades.
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Chapter 1

Introduction on long-span suspension bridges

Suspension bridges possess an unmistakable architectural profile, rendering their surrounding
landscape extremely identifiable. To mention some of the most famous bridges: the Brooklyn Bridge
in New York and the Golden Gate Bridge in San Francisco.

It’s a type of bridge in which the traffic-carrying deck is hung by means of hangers below the main
cables, suspended between tall towers and anchored at each end of the bridge. This arrangement
allows the deck to be levelled or to arc upwards for additional clearance.

The loads applied to the deck, are carried to the main cables through hangers and subsequently
brought to the ground mainly through the towers for the vertical component and through the anchor
blocks for the horizontal one.
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Figure 1.1 Suspension bridge scheme with force flow (Akashi Kaikyo bridge)
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1.1.  Suspension bridge evolution

The earliest versions of this type of bridges dates back to the 15" century, built by a Tibetan siddha
using iron chains to build the most primitive version of suspension bridge [1].

The bridge over the Menai Strait can be considered as one of the first modern suspension bridge,
built in Wales by Thomas Telford and completed in 1826. After that, many suspension bridges have
been built, often with the intention of building a record-breaking bridge, featuring the longest span
ever. The first one worth mentioning is the Brooklyn bridge in New York, that spans over 486 m,
opened to traffic in 1883. More than half of a century later 3 more bridges broke that record, all
located in the USA: George Washington Bridge, Golden Gate Bridge and Verrazzano Narrows
Bridge. Subsequently 2 European bridges were finalized: Humber Bridge in England and Great Belt
East Bridge in Denmark, however this latter record didn’t last long because in the same year, in 1998,
the Akashi Kaikyo Bridge was completed and its record lasted until 2022, when the Canakkale

Bridge was built in Turkey and its main span covers 2023 meters.

The following table summarizes all the previously mentioned bridges:

Conse’c:ilction Bridge Location Mf:g;glan
1883 Brooklyn bridge New York 486 m
1931 George Washington Bridge New York 1067 m
1937 Golden Gate Bridge San Francisco 1280 m
1964 Verrazzano Narrows Bridge New York 1298 m
1981 Humber Bridge United Kindom 1410 m
1998 Great Belt East Bridge Denmark 1624 m
1998 Akashi Kaikyo Bridge Japan 1991 m
2022 1915 Canakkale Bridge Turkey 2023 m

Table 1.1 Record breaking bridges built in the world

As is clear from the Table 1.1, from the first half of the 20%, suspension bridges started gaining
popularity due to their long span lengths, that allowed to overcome greater distances, that otherwise
would not be accomplished with other types of bridges. Furthermore, it is more cost efficient than
other bridges, as it requires less material while covering greater distances, and it is usually built
without the use of falsework therefore it doesn’t require access from below. Moreover, another
fundamental advantage is the stability to seismic actions, hence it could even be built even on seismic
sites.

The main issue with suspension bridges is due to their flexibility that makes them more prone to
wind effects, that could induce instability or excessive vibration. Instability caused by the interaction
between an air flow and an elastic structure is called aeroelastic instability. The attention was drawn
on this aspect after the Tacoma Narrows Bridge collapse in 1940, when under a recorded wind speed

3
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of around 20 m/s, the bridge started to develop wave motions and twisting motion of the roadway,

that resulted in failure a few hours later.

It's possible to divide the suspension bridges evolution in three generations:

The first generation consist of truss deck bridges, built in the USA between the end of the 19
and the beginning of the 20t century (i.e. Brooklyn 1883, Golden Gate 1937). The truss deck
gives high flexural and torsional stiffness to the structure however, higher stiffnesses
correspond to larger masses, which represent a critical aspect for long-span bridges. The span
length of the Akashi Kaikyo bridge (1998) reaches 1991 m, which is the maximum limit for
this type of bridge, it’s important also to point out that the deck exhibits a lateral deformation

of 30 m under wind action.
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Second generation bridges are characterized by a streamlined box deck, similar to an air foil
shape. This type of deck is very light-weight and exhibits good torsional stiffness, thanks to
the closed box shape, low flexural stiffness due to the shallow depth, together with a very
low wind drag. Furthermore, this type of section was considerably more economical due to
the fabrication techniques that were more efficient than those used for truss girders [2]. Built
in the second half of the 20t century in Europe (i.e. Severn Bridge 1966, Humber Bridge 1981,
Bosforo 1973, Great East Belt 1998, Runyang 2005), the bridge main span’s length could vary
between 1000 m and 1600 m.
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Figure 1.3 View of the Severn bridge during its construction

- The third generation was conceived with the design of the Messina Strait Bridge. This type
of deck allowed to achieve lighter bridges with extremely long spans. The deck section is
composed by multiple airfoil-shaped boxes, which offer a highly reduced wind resistance,
and they are stable to aero-elastic instability phenomena. As of today, the longest bridge with
this type of deck is the Cannakale Bridge, that reaches 2023 m, which is the longest bridge

ever built, however the Messina Strait Bridge is expected to reach 3300 m.

Figure 1.4 View of the Canakkale bridge during its construction [3]

In suspension bridges the ratio between the sag of the main cable and the span length is generally
set between 1/8 and 1/11. The tension in the main cable varies with the sag ratio, and in bridges
where the dead load of the cables is modest compared to the deck weight and traffic loads, the cable
tension will be approximately inversely proportional to the sag ratio, thus by increasing the sag, the
cable tension decreases, reducing its required cross section, and an overall reduction of the quantity
of cable steel, however more material will be employed to build higher towers to allow an increase
of the sag.
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In long span bridges, where the dead load of the cable constitutes a considerable part of the total
load, the effect of increasing the sag ratio will be more pronounced as the cable tension, and therefore
the cable cross section, decreases not only due the increased sag but also due to the reduced cable
dead load. Moreover, the reduced self-weight of the main cables will also have a positive effect on
the aerodynamic stability: the reduced ratio between the cable mass and the distributed mass across
the deck will result in a more distinct separation between the vertical and torsional frequency, thus
preventing flutter instability, as will be seen in the next chapters.

1.2.  The Messina Strait Bridge project development
The Messina Strait Bridge is long-planned construction that will link the island of Sicily to the

southern Italian mainland. The Figure 1.5 shows the geographical location and the virtual view with

the proposed bridge.

Figure 1.5 Visual impact assessment on the Sicilian side

The Messina Strait is a part of the Mediterranean Sea separating the island of Sicily on the west side
from mainland Italy on the east side, and it connects the Ionian Sea with the Tyrrhenian Sea. The
bridge is planned at the minimum width of the strait, and it is approximately 3 kilometres between
Ganzirri in Sicily and Cannitello in Calabria. The location presents many difficulties from the
morphological, seismic, and marine point of view: the strait is an active tectonic area that is directly
affected by the interaction between the African and the European continental plates, as well as being
characterized by a deep seabed and strong water currents.

The bridge construction had always been postponed due to its magnitude, other than political
reasons among many others, like the unstable economic situation of southern Italy compared to the

northern regions.

The idea of joining Calabria and Sicily existed since the Romans time, but engineering challenges
due to the environmental conditions such as the depth of water, strong sea current, high winds, and
seismic activities have been the main obstacles of the bridge construction.
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In 1969 the Italian Ministry of Public Works issued an international design competition that attracted
enormous attention, with more than a hundred proposals from designers worldwide, whom
submitted a mixture of traditional and unconventional schemes. A total of 143 design were
submitted and the nominated judging committee approved 75 of them. The designs ranged from
single to multi-span suspension and cable-stayed bridges to three-dimensional cable networks,
underground and floating tunnels, and 12 of them were awarded: 6 won an ex-aequo first prize and
6 won the second ex-aequo prize [4]. The following figures depicts the designs that won the first ex-

aequo prize:

e Arch. Montuori in collaboration engineer Calini and Pavlo — Four span suspension bridge

i e e e R N —_ .a - ) . s < i -
- . - i . bow

Figure 1.6 Four span bridged proposed by Arch. Montuori, engineer Calini and Pavlo

e Grant Alan and Partners, Covell and Partners, Inbucon international — Floating underwater
tunnel

e Y — =

Figure 1.7 Floating underwater tunnel by Grant Alan and Partners, Covell and Partners, Inbucon international

e Lambertini Group — Three span cable stayed bridge
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Figure 1.8 Three span stayed bridge by Lambertini Group
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e Musmeci Group - Single span suspension bridge

Figure 1.9 Single span suspension bridge by Musmeci Group

e Ponte di Messina Group SpA — Three span suspension bridge
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Figure 1.10 Three span suspension bridge by Ponte di Messina Group SpA

e Technital SpA — Five span suspension bridge

500 1000 1000 1000 500

Pantano grands

Figure 1.11 Five span suspension bridge by Technital SpA

Right after the design competition, the Ponte di Messina Group (GPM), a private company started
investing considerable efforts and resources in the project, aimed at carrying out a technically
founded feasibility assessment. One of the main assumptions made by GPM was that no type of
tunnel solution, floating or underground, was of any possible interest, hence they focused their

studies on bridge schemes only. Initially, the single span solution was considered with caution, being



Chapter 1 Introduction on long-span suspension bridges

too far from existing technical knowledge, but a significant contribution was brought by Dr. William
C. Brown, who envisioned the first concepts of aerodynamically designed highly stable bridge decks
that were going to be fully developed ten years later. His original sketches are reported in Figure 1.6
(a) and (b). The design was supported for the first time by a systematic campaign of wind tunnel
tests, enabling the comparison of alternatives and providing experimental proof that was possible

to achieve sufficient stability at such spans [5].
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Figure 1.12 (a) Original sketches of Dr. Brown of the multi-box deck [6]
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Figure 1.13 (b) Original sketches of Dr. Brown of the multi-box deck [6]

GPM concluded its activities in 1979, issuing a feasibility report that stated as feasible a two-span
solution, but with uncertainties regarding the offshore foundation, and a single span solution which
was the favoured one in terms of robustness and performance.

In 1981, the Italian government issued a statutory law forming the state-owned company Stretto di
Messina Spa, whose task was to design, build and operate a permanent rail and road link across the
Messina Strait. When they started their own survey and testing activities, they classified the

proposed crossing solutions considered into three categories (Figure 1.8):



Chapter 1 Introduction on long-span suspension bridges

- Underground tunnels;
- Floating tunnels, whether cable-anchored at the seabed or supported by underwater piers;

- Bridges, both single and multi span.

mwm
A Underwater tunnel 4

-’
~ -’

~
\ Underground tunnel /

Figure 1.14 Proposed crossing solutions

Many possibilities were extensively explored until 1986, when they issued their feasibility report,
whose main conclusion were:

- Underground or underwater tunnels were technically unfeasible, besides being extremely
costly beyond any cost/benefit ratio of possible financial interest;

- Among all the bridge schemes, solutions with more than two spans were considered be of
lower technical and financial performance, therefore only two span and single span
suspension bridge schemes were considered;

- The robustness and performance of the single span solution is superior to the two-span

option.

Such conclusions were analogous to those already obtained by GPM, but they were more significant
due to a higher level of environmental knowledge supporting it and advanced innovative design
solution.

In 2002 the preliminary design of a single span suspended bridge was finalized and approved,
subsequently in 2004, Stretto di Messina Spa issued a competition to select the general contractor to
carry out the final design and construction. Eurolink, a consortium led by Salini Impregilo Group,
an Italian company, was awarded the bid to construct in 2005 and 5 years later they delivered the
definitive design, with over 8.000 graphic papers, that were approved the following year [7]. The
project manager consultant was assigned to American company Parson Transportation Group.
Eventually in 2013 the Italian government declared the liquidation the Stretto di Messina Spa and
the project decayed. However, ten years later, in 2023 a decree law was approved, that re-establishes

the Stretto di Messina Spa and the resumption of the executive design process of the previous project

8].
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The approved design consists of a single span suspension bridge linking Cannitello in Calabria and
Ganzirri in Sicily, with three roadways and one railway for each direction. It is expected to be 3666
metres long and the main span would be 3300 metres, rendering it the world longest suspended
bridge. The deck, consisting of three separate boxes linked with cross beams every 30 metres, is
hanged on 2 sets of dual steel cables with a diameter of 1.24 m, which drapes over two 382 metres
high towers.

- e R

Figure 1.15 View of the landscape for Calabria side

Webuild SpA, formerly Salini Impregilo SpA, the group leader of the general contractor Eurolink,
stated that the Messina Strait Bridge would join Italy to Europe, by means of an innovative, strategic
project that is ready to be built, as soon as the contract is reinstated and updated. The executive
project is expected to take 8 months, while the construction time to build the bridge will be just over
6 years.

The deck is expected to support 6.000 vehicles per hour and the passage of up to 200 trains per day,
moreover the bridge is designed with a clearance of 65,5 metres, if subjected to maximum loading,
while in normal operating conditions, the clearance will be around 74 metres, therefore it won’t
affect the maritime traffic crossing the strait.

The cost of the construction of the bridge is approximately €4,5 billion, which is about 40% of the
total value of the infrastructure network that would include the bridge and all the works related to
the crossing, but also the upgrade of the road and rail networks in Sicily and Calabria. On the other
hand, the project is expected to boost the national GDP, and it would involve about 300 suppliers

11
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and more than 100.000 people would be potentially employed and most of them would come from

the southern part of the nation, where the unemployment rate is high [9].

Figqure 1.16 View of the bridge from the deck

Although it’s a “ready to be built” project, which has been tested for many years in every critical
aspect, a colossal infrastructure as the designed Messina Bridge has never been constructed before,
and it would be one and half time longer than the current longest bridge, the uncertainties related
to the construction are one of the main reasons it hasn’t been built yet. Despite this, its design has
already inspired many other long span bridges, some of which are already completed or under
construction, as the Canakkale bridge in Turkey, depicted in Figure 1.4.

Figure 1.17 New comcept of suspension bridge

12
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However, new designs of the bridge are still in development, that could achieve even greater
distances as well as new features are designed for the current project in order to further improve the
overall behaviour. For instance, Figure 1.17 and 1.18 depicts the works of engineer Peroni [10]: a
new concept of suspension bridges, that could span over up to 5 kilometres and the proposal of an
additional cable system, faced downwards that further anchors the deck to the ground, reducing
drastically the lateral displacement [11].

13



Chapter 2

Wind effects on long-span suspension bridges

The deck of a suspension bridges is connected to steel cables by means of a series of vertical hangers,
this configuration can induce larger deck deformations (Figure 2.1). This type of structures are
typically susceptible, due to their flexibility, to wind action as it might induce instability or excessive

vibration in long-span bridges.

Figure 2.1 Suspension bridge scheme

Instability caused by the interaction between an air flow and an elastic structure is called aeroelastic
instability and in the case of bridges, it includes torsional divergence, galloping, flutter and vortex-
induced vibrations.

In order to avoid instabilities, the design requires that the maximum wind speed estimated at the
bridge site is sufficiently lower than a critical value.

Modern designs of long-span bridge are conducted by combining experimental investigation
through wind tunnel testing with computer analysis, that rely on analytical or semi-analytical
models, as well as on numerical procedures, which are implemented in computer programs and

usually requires parameters that are experimentally determined.

The interaction between bridge vibration and wind flow is usually idealized as being divided in two
kinds of forces: motion dependent and motion independent, the former vanishes if the structure is
rigidly constrained, while the latter, dependent only on the wind characteristics and section
geometry, exist whether the bridge is moving or not. According to this schematization, the equation

of motion in the presence of aerodynamic forces can be expressed in the following general form:

[M1{5} + [CH{6} + (K18} = {F(8,6)}_, + {Fm (2.1)
Where:
- [M] is the mass matrix

- [C]is the damping matrix
14
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[K] is the stiffness matrix

{0} is the displacement vector

{F(5,6 )}m ; is the motion-dependent aerodynamic force vector

- {F}p; is the motion-independent wind force vector.

Despite the fact that both motion-dependent and motion-independent forces cause deformations,
aero-elastic instability is only generated by the motion-dependent part, which in short-span bridges,
is insignificant and there is no concern about aeroelastic instability, while in flexible structures such
as long-span bridges, both instability and vibration need to be carefully investigated.

Aeroelastic phenomena are characterized by the fact than when an elastic structure and the air flow
are combined, they result in a single dynamic system with features that differ from those of the two
components taken independently. Some instability phenomena, such as torsional divergence and
galloping, can be treated with quasi-static approach, while flutter instability must be analysed as a

fully dynamic phenomenon.

2.1. Steady aerodynamic analysis

The analysis is performed considering a static condition of the bridge with the application of plane
forces in x and y directions, torque moment and steady forces, generated by the laminar flow in the
deck direction. Stability is evaluated with respect to the deformed shape of the deck under wind

action and its instability.

Figure 2.2 Steady aerodynamic model

Drag force in x direction, lift force in y direction and moment around z axis are determined with the

following equations:

15
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e 22
Ds =5 p U?B Cp(a) (2.2)
L 23
Ls =5 pU*B Cy(a) (2.3)
1 ape 2.4
M == p U2B*Cy () (2.4)
Where:

- pis the air density [kg/m?];
- U is the average wind speed [m/s];
- Bis the deck width [m];

- Cp,Cy, Cy are the non-dimensional static aerodynamic coefficients of drag, lift and moment;

- ais the angle of attack [deg].

Aerodynamic coefficients are evaluated in wind tunnel on a scaled section, where it is possible to

control the variation of @, and forces 2.2, 2.3 and 2.4 are obtained. By dividing Ds, L by% p U?B, and

M, by% p U%2B? itis possible to determine Cp, Cy, Cy.
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For small angles of attack, the values of Cp, C;, Cy; can be linearized and then Equations 2.2, 2.3 and
2.4 become:

Dy = % p U%B Cp(0) (2.5)
Ly = % p U?B (CL(O) + (%) a) (2.6)
M, = % p U?B? (CM(O) + (d(%’) a) (2.7)

2.2. Torsional divergence

Aerostatic divergence is usually treated as a static instability, caused by the vanishing of the total

stiffness (elastic plus aerodynamic) associated with the torsional mode.

Figure 2.4 One-degree-of-freedom simplified model

Wind flowing against the structure exerts a mean pressure proportional to the square of the wind
velocity and it generally induces both aerodynamic forces and moments in a structure. At a critical
wind velocity, the edge-loaded bridge may buckle out of plane under the action of a drag force or
torsionally diverge under a wind-induced moment that increases with the attack angle.

A simplified model to study torsional divergence considers only the deck section immersed in a two-
dimensional flow in the single-degree-of-freedom system, shown in Figure 2.4. Considering a small

rotation angle a, the aerodynamic moment resulting from wind, M, is given by:

1 1 dc
_ > o 2p2 — = ,12R2 M 2.8
M == pUB? Cy(@) =5 p U?B [CM(O)+(da)a] 2.8)

Where:
- pis the air density [kg/m?];
- U is the average wind speed [m/s];
- Bisthe deck width [m];
- Cy(a) is the aerodynamic moment coefficient, which is a function of the angle of attack «,
that can be determined by wind tunnel tests;

17
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- Cy(0) denotes the moment coefficient for the angle of attack equal to zero.

When the aerodynamic moment caused by wind exceeds the resting torsional capacity, the
displacement of the bridge diverges. Equating the aerodynamic moment given by Equation 2.8 to
the internal elastic moment ka gives:

Cm

ko a —% p U?B? [CM(O) + (dd—a) a] =0 (2.9)

Where k, is the spring constant of torsional stiffness. Equation 2.9 can be written as follow:

1 dc 1
T 2p2 M _- 2p2 = 2.10
[ka ZpUB(da)]a 2pUBCM(O) 0 (2.10)
The term within square brackets represents the total (elastic plus aerodynamic) torsional stiffness of
the system and by equating the total stiffness to zero, the critical wind speed for torsional divergence

is obtained:

(2.11)

The critical speed given by Equation 2.11 must be sufficiently higher than the maximum speed at
the bridge site. However, it should be observed that the previous usually overestimates the torsional
divergence speed compared to more sophisticated models, in which the coupling between vertical

bending and torsion is taken into account.

2.3. Two-degree-of-freedom flutter

Aerostatic flutter is a dynamic instability phenomenon that originates from the mutual interaction
of elastic, inertial and self-excited aerodynamic forces, therefore at a certain wind speed the structure
oscillates in a divergent, destructive manner.

If a system immersed in a wind flow is given a small perturbation, its motion will either decay or
diverge, depending on whether the energy extracted from the flow is smaller or larger than the
energy dissipated by mechanical damping. The critical condition, which divides decay from
divergent motions, occurs at wind speed called flutter speed, at which the motion of the structure
exhibits oscillations of increasing amplitude at a constant frequency, called flutter frequency.

Flutter instability, originally studied in aeronautics, became of interest for bridge engineering after
the collapse of the Tacoma narrows bridge in 1940, and the analyses usually performed combines
both experimental and analytical procedures. The analysis aims to determine the lowest wind speed
that initiates instability on the proposed bridge deck configuration, which should be sufficiently

higher than meteorological expected wind speeds at the bridge site.
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Figure 2.5 Two-degree-of-freedom simplified model

Figure 2.5. shows the self-excited aerodynamic forces acting on a deck which is subjected to a
constant wind flow U, and in this two-degree-of-freedom simplified model only the vertical
deflection h and the torsional rotation a are considered.

A closed-form expression for the unsteady aerodynamic forces acting on the oscillating bridge decks
cannot be obtained. To solve the problem, Scanlan and Tomko proposed a semiempirical model,
based on the so-called flutter derivatives that are experimentally determined in wind tunnels. The self-
exciting forces can be assumed as linear functions of structural displacements and velocities,

parametrically dependent on the reduced frequency of oscillation K:

Lo (t, K) = %pUzB [KHI(K) iUt) + KHS(K)%@ + K?H3;(K)a(t) + K*Hy(K) %] 2.12)
M,,(t,K) = % pU2B? [KA;(K) % + KA (K) %@ + K2A5(K)a(t) + K2AL(K) %] 2.13)
Where
K = wB/U = 2nfB/U (2.14)
- Bis the deck width

- w is the angular frequency of oscillation

- U is the undisturbed mean wind speed

The coefficients H; and A; (i = 1 — 4) are the flutter derivatives, functions of the reduced frequency
of oscillation K, as well as the mean angle of attack. The coefficients that multiply generalized
displacements are intended as aerodynamic stiffness, while those which multiply generalized
velocities represents aerodynamic damping. Equations 2.12 and 2.13 do not explicitly include
additional mass terms in i and & which are considered to be negligible in wind engineering

applications.
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The flutter derivatives are usually plotted as a function of the reduced velocity:

U 2m

= =" 2.14
In a flutter analysis, only the onset instability condition is normally exanimated for the design of
bridge structures. Under the assumption of small oscillations perturbating the flow, the structure

can be modelled as a damped linear oscillator with two-degree-of-freedom:

mh(t) + c h(t) + kph(t) = Lg (¢, K) (2.15)
1a(t) + cha(t) + kya(t) = Mg, (t,K) (2.16)
Where:

- hand a are the vertical bending and the torsional angle

- m and I are the mass and the polar mass moment of inertia per unit length

- ¢4 and ¢y, are the mechanical damping coefficients

- kp and k, are the stiffness in the heaving and pitching modes, respectively

- Lge and Mg, are the self-excited lift and moment per unit length, depending on time t and on

the deck oscillation through K

In classical flutter, also known as coupled or stiffness-driven flutter, the two modes coalesce into a
single flutter frequency that originates a motion which introduces energy into the system, leading to
divergent or large-amplitude oscillations. Considering a harmonic solution to Equations 2.12 and
2.13 in the form:

h(t) = hoe®* (2.18)

at =amet (2.19)

and imposing the system complex determinant to zero, after separating the real and the imaginary
part, a fourth degree and a third degree polynomial equations are obtained, with respect to the
reduced frequency of oscillation, the common solution of which gives the critical reduced frequency
for flutter K.
The frequency wy that simultaneously satisfies both polynomial equations is the flutter frequency.
Therefore, the flutter speed can be obtained as:

Bwg

F = Kr

(2.20)

If more than one intersection point is found in the selected range of K, the lowest Uy is the required

solution.

Alternatively, the flutter speed can be calculated with the eigenvalues w, = w,, + iw;, (n =
1,2,3 ...) of the system, by increasing the wind speed until the real part of an eigenvalue, which is
related to damping, until it reaches a positive value. The imaginary part of the same eigenvalue

represents the flutter frequency.
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Figure 2.6 Examples of flutter derivatives [12]

2.4. Three-degree-of-freedom flutter

Although the simplified representation of the bridge deck response with only two-degree-of-
freedom yields excellent results, in very long span bridges, therefore more flexible, the lateral (sway)
component of the motion cannot be neglected, and it may be relevant for flutter instability.

Several studies have been made to estimate the influence of the motion induced drag on the critical
wind speed. More precisely, it has been assessed that it becomes significant for main spans longer
than 1500 metres. The influence of lateral components is studied in Section 6.5.

I B |

U
—_—

Figure 2.7 Three-degree-of-freedom simplified model
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By taking into account the along-wind force and displacement, the general expression of the self-

excited forces in matrix form for a finite element analysis becomes:

K2H;  K2H; ue 1 o [ X2 KHsg KH:B
Lge B B K*Hs ( ] U U U [ ]
1 2ps 2p+ KP: KP; KP,B
D — 12 K“Pg K“P, . 5 1 2 .
se ZPU B B B K2P3 prt U U U p
M, KA}B  KALB  KA3B*||
K245 K24y K243B1 Y | U TR
1 1 _
= 50 B([Fal{a) + 5 [R1(@)) @21

Where:
- Lge, Dse and M, are the self-excited lift force, drag force and pitch moment, respectively;
- h,pand a are the displacements at the centre of the deck section in the directions
corresponding to Lg,, D, and Mg, respectively;
- H{,P/ and A; (i = 1 — 6) are the generalized derivatives;
- [F4] and [F,] are the flutter derivatives matrices corresponding to displacement and velocity,

respectively.

In liner analysis, the general aeroelastic motion equations of bridge system are expressed in terms

of the generalized modal coordinate vector {5}
(M1(8) + ([c] - % pUZB[C*]) (6} + ([K] - % pU?BIK"1) (6} = {0} (2.22)

Where [M], [C] and [K] are the generalized mass, damping and stiffness matrices, respectively, and
[C*] and [K*] are the generalized aerodynamic damping and aerodynamic stiffness matrices,
respectively.

Matrices [M], [C] and [K] are derived in the same way as in the classical dynamic analysis, while
matrices [C*] and [K*], corresponding to [F,] and [F;] in Equation 2.21, respectively, are assembled
from local aerodynamic forces.

By assuming harmonic oscillation in the form {§} = {5,}e'*¢, the following characteristic problem is

obtained:

(—a)z [M] + iw ([C] - %pUZB[C*]> + [K] - %pUzB[K*]) {6,} = {0} (2.23)

The flutter speed Ur and the flutter frequency wp can be derived from the nontrivial solution of
Equation 2.23, which is given by the following condition:

1 1
det (—a)z[M] +iw ([C] - E,oUZB’[C*]) + [K] - EpUZB[K*]) =0 (2.24)
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2.5. The single-mode criterion

Relevant for bridges is also single-degree-of-freedom flutter, referred also as damping-driven flutter,
wherein negative damping in a single mode can be attained without any coupling with other modes.
This form physically interprets the onset of flutter as the wind velocity that produces enough
negative aerodynamic damping to offset the bridge’s own mechanical damping.

A preliminary judgement on the flutter behaviour of the section can be made by examining the flutter
derivatives, which could be modified in order to eliminate the positive flutter derivatives as shown
in Figure 2.6, especially A3 and Hj, since they govern torsional flutter and vertical flutter.

If, among the aerodynamic damping terms, only those associated with A; and H; are considered

significant, the total structural plus aerodynamic damping can be written as:
1 *
Chtot = Ch — E,DUBKHl (K) (2.25)

1
Catot = Ca — EPUB?)KA;(K) (2.26)

For vertical and torsional degree of freedom, respectively.

For the air foil, A5 and H; are both negative for every value of K, therefore, the total damping is
always positive for both h and a. It can be concluded that, in an incompressible flow, the air foil isn’t
subjected to single-degree-of-freedom flutter in a vertical or torsional mode; that is, the critical

mechanism always involves a coupling between these two modes (classical flutter instability).

Dedicated numerical procedure, allows to solve Equation 2.23 efficiently, such as the pK-F method,
developed by A.Namini and P.Albrecth [13]. The single-mode criterion expressed by Equations 2.25
and 2.26, can also be applied in Finite Element Framework, as illustrated in [14] and [15].

Moreover, Scanlan (1987) [16] and Scanlan and Jones (1990) [17], introduced a single-mode criterion
for a generic multi-degree-of-freedom system employing only the aerodynamic damping terms Hy,

P; and A} and in addition the stiffness term in A3:

H(R) Gy + PE(R)Gys + AL (R) Gy = ol @i (2.27)
L pi al — pB4.Ld al
Where
1/2
3 1
w; = w; oBY (2.28)
1+ 5 45(K)Gai
And
_  Ba;
K = 2.29
= (2.29)
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Chapter 3

Aeroelastic studies of the Messina Bridge project

After the publication of the Messina Strait Bridge project many research groups started testing it,
focusing especially on aerostatic instabilities, caused by the interaction between an air flow and an
elastic structure, tin order to prevent dangerous conditions or even worse, the collapse of the whole
structure, such as the Tacoma Narrows bridge disaster in 1940.

Investigations usually begin with the development of a finite element model of the bridge to analyse
its behaviour under wind actions, with particular attention towards flutter, then a modal analysis is
carried out to determine the natural frequencies and the vibrations modes. Subsequently, the flutter
analysis, based on the flutter derivatives, that can be extracted in wind tunnel tests on spring
mounted scaled models of the bridge. The flutter analysis is performed for each of the modes
considered, and the flutter instability occurs when the structural damping of one of these modes
becomes null. The corresponding wind speed is called flutter velocity and any increment of the wind

velocity from this point will increase the vibrations exponentially.

Due to magnitude and relevance of the Messina Strait Bridge, many research groups have published
their studies, and two of them will are presented in this thesis:
- Prof. G. Diana et al. of Politecnico di Milano [18];
- Prof.]. A. Jurado et al. of University of A Corunia [19];
- Prof. P. D’Asdia (Univerista degli Studi di Trieste) and Prof. V. Sepe (Universita degli Studi
di Roma “La Sapienza”) [20].
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Chapter 3 Aeroelastic studies of the Messina Bridge project

3.1. Diana et al. studies

Their studies are based on the 1992 bridge design, and its lateral view and cross section are reported

in Figure 3.1 and Figure 3.2:

SICILIA.

560

Deck mass
Cable mass

24300 kg/m
32000 kg/m

Global cable tension
Tower height

267200 t
376 m

Figure 3.1 Messina strait bridge project main features

Grid service lanes

Grid service lane
Trip wire for flow separation centrol

Transversal beam {every 30 m)

Figure 3.2 Deck design

Due to the relevance of the Messina Strait Bridge project, it has been possible to perform many kinds
of test, comparing results of section models at different scales with those obtained on a full scale
aeroelastic model and with several numerical simulations: in the end a final verification has been
performed on a real bridge, the Humber Bridge.

The flow chart of Figure 3.3 summarizes the main aspects of the research: it started with a wind
tunnel test on a 1:87 scale section model (block 6, Figure 3.3). The output of this first step mainly
consists of two information: the static loads and the self-exciting loads, linked to the relative motion
between the wind and the structure.

Wind tunnel tests (static » Bridge structure < Wind wnnel tests
and dynamic) on 1:100 FEM model (static and dynamic) on
scale tower section + 1 2 1:87 scale section
model model
* 4 Eigenvalues and * 6
Tower eigenvectors 2
Wind tunrel tests (static * Wind tunnel tests (static DCCk
; and dynamic) on 1:250 and dynamic) on a 1:30
Wind tunnel complete tower model Modal aeroeiastic scale deck section Wind 1
. ind tunne
to check for the model (linear) model to check the
optimized solution 3 optimized 1:87 scale @
I 5 ‘ model
T Bridge FEM
aeroelastic model | C to study of
I (non linear) the Reynolds effects
1 A
Site wind . —p»| Real \_avim: s;mcmrc 10 Wind tunnel tests
measuremen stmutation (S'ﬂﬁc and dy‘ﬂiﬂ“c) on
s Response to a §:250 scale section
turbulent wind and model
Mathematical modei stability analysis 12 I ‘ 13
validation by F § A k 4 i
experimental tests on -
the Humber Bridge: Wind tunnel tests on 2
parameter full bridge aceroelastic
identification and model (1:250 scale)
model optimization ‘ 14 ’
@ Full model
Full scale Comparisor i
Mode| response to Wind tunnel
measurements, » turbulent wind @
Humber Bridge Numerical

Figure 3.3 General layout of the research
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Hence it is possible to assess the stability, through simple one or two-degree-of -freedom model: if
the cross section is stable, the whole structure will be stable too, being just an extrusion in the third
dimension of the considered section model. At this stage it is also possible to perform a design
optimization in order to improve the aerodynamic performances, being the section model is easily
modifiable.

Moreover, at this stage it is already possible to estimate the flutter instability velocity, around 62 m/s,
but experimental testing and numerical simulation have found out that this instability is well beyond
this limit, fixed around 80 m/s, unfortunately a more precise flutter velocity hasn’t been published

yet.
The table below reports the structural frequencies obtained from the numerical modelling:

frequency [Hz] |Mode of vibration

i 0.033 first horizontal (symmetric)

1l 0.059 second horizontal {(non symmetric)

[l 0.061 first vertical (non symmetric)

v 0.080 first-third vertical (symmetric)

\Y 0.081 first torsional (non symmetric)

VI 0.084 first-third horizontal (symmetric)

Vil 0.093 first axial

1X 0.097 first-third torsional (symmetric)

X 0.103 second horizontal cables (symmetric)
Xl 0.107 third vertical (symmetric)
Xl 0.116 first-third horizontal cables (symmetric)
XV 0.128 fourth vertical

XV 0.129 third torsional

Table 3.1 Natural frequencies

HORIZONTAL VERTICAL TORSIONAL

Figure 3.4 Vibration modes
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After the optimization loop has been completed, further tests have been carried out on the best
behaving deck section, with a bigger model (1:30 scale), however, despite Politecnico di Milano
preferred an easy-to-handle 2D section model rather than a 3D complete one, the project’s
magnitude required further verifications on a 3D full bridge aeroelastic model.

At that time no wind tunnel was suitable for that kind of testing, was available in Italy, so an
agreement with the Danish Maritime Institute (DMI) of Copenhagen has allowed several months of
testing on a 1:250 scale model (block 14, 15, Figure 3.3).

Figqure 3.5 Aeroelastic full bridge model (1:250 scale)

The adopted model reproduces the real bridge dynamic behaviour, taking into consideration lateral,
torsional and vertical stiffness, the results are reported in Table 3.2, which shows how the similar
achievement means a good agreement between the prototype and model dynamic features; the only
critical issue is the modal damping, as for real structures the structural damping tends to increase
for higher modes, while the model shows a opposite trend.

Real bridge  Model Maodel Non dimension
natural nat. freq.  nat. freg.  damping
frequencies  target measured % of
(Hz) (Hz) (Hz) critical
Lateral |1 Sym 0.033 0.52 0.52 0.4
Lateral 2 Asym  0.059 0.93 0.97 0.4
Vertical | Asym  0.06] 0.97 1.03 1
Vertical 2 Sym 0.08 1.27 1.35 1
Torsional |  Asym  (0.081 1.28 1.45 1
Lateral 3 Sym 0.084 1.33 1.37
Vertical 3 Asym  0.093 1.47
Torsional 2 Sym 0.097 1.53 1.7 0.3
Vertical 4 Sym 0.107 1.69 1.9 0.7
Lateral 4 Asym  0.107 1.69 ()
Lateral 3 Sym 0.116 1.83
Vertical 5 Sym 0.129 24 21 0.7
Torsional 3 Asym (0.129 204 23 0.3

Table 3.2 Dynamic verification on the 1:250 full bridge aeroelastic model
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In addition, Figure 3.6 reports the variation of first vertical and the first torsional mode frequency
with increasing wind speed, and since the stiffness-driven flutter occurs when these frequencies

coalesce. At the design wind speed of 62 m/s the bridge still exhibits a stable behaviour, as the two
frequencies are still distinct.

0.1
== 008
=] e ftorsexp
g i) 0.06 ——tors best fit
88004 A vertexp
g s — vert best fit
w002
0
0 20 40 60 80

Wind speed[m/s]

Figure 3.6 Vertical and torsional frequency variation

3.2.  Jurado et al. studies

These studies are performed by a hybrid approach that consists of an experimental phase and a
subsequent computational phase. The aim is to find out the value of flutter wind speed and during

the design phase it must be verified that it’s higher that the extreme wind estimated at the location
of the bridge.

A finite element model of the entire bridge (Figure 3.7) was developed in ABAQUS, consisting of
2913 elements with 12,528 degrees of freedom and the geometrical and mechanical properties are
summarized in Table 3.3:

/,H]?Illunl\ |“ |‘ |‘ @l@};
7 T'ﬂ'mfﬂ&"'w

Figure 3.7 Finite element model of the Messina Bridge
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Total deck length (m)
Central span length (m)
Lateral span length (m)

Distance between tower-anchorage, Sicily side (m)
Distance between tower-anchorage, Calabria side (m)

Total deck width (m)
Central box area (m)

Central box moment of inertia, I, (m*)
Central box moment of inertia, I, (m*)

Central box polar moment of inertia, | (m*)
Central box mass per unit length of deck (t/m)

Lateral box area (m)

Lateral box moment of inertia, I, (m*)
Lateral box moment of inertia, I, (m*)

Lateral box polar moment of inertia, | (m?)
Lateral box mass per unit length of deck (t/m)

Non-structural mass per unit length of deck (t/m)

3666
3300
183
960
810
61.13
0.341
0.286
1.847
0.653
7.85
0.645
0623
11.018
1.375
12.5
4.37

Table 3.3 Geometrical and mechanical properties FE model

The modal analysis was carried out in two steps due to the large flexibility of the structure. Firstly,

the initial stresses in main cables and hangers were calculated under self-weight, and then the modal

analyses were performed with the corresponding overall stiffness of the bridge. Table 3.4 summarize

some of the natural frequencies of the Messina bridge reported in Kusano’s studies [21], being the

more recent publication of J. A. Jurado et al., and the comparison to Diana et al. data [18].

Freq (Hz)

Mode Type Kusano Diana

1 LS 0.0309 0.033

2 LA 0.0573 0.059

3 VA 0.0606 0.061

4 Vs 0.0811 0.080

5 LS 0.0860 0.084

6 TA 0.0868 0.081

7 VA 0.0925 0.093

8 Vs 0.0980

9 TS/LA 0.1032 0.097

10 VA 0.1033

11 LA 0.1042

12 Vs 0.1078 0.107

13 LS 0.1142

14 VA 0.1279 0.128

15 LA 0.1347

16 TS/LA 0.1356 0.129

17 VS/LA 0.1448

18 LA 0.1461

19 Vs 0.1363

20 Vs 0.1386

21 Vs 0.1603

22 Vs 0.1620

23 LATA 0.1658

24 Vs 0.1678

25 VA 0.1734

Table 3.4 Natural frequencies of the Messina Bridge
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The eighteen flutter derivatives of the numerical example were extracted from the bridge sectional
model (1:100 scale) test carried out in the wind tunnel at the University of A Corufa (Spain), and
they are reported in Figure 3.9:

Figure 3.8 Wind tunnel testing of the Messina bridge deck
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Figure 3.9 Flutter derivatives of Messina Bridge
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Then, the FLAS code, developed by the University of A Coruna, was employed to compute flutter
velocity using the natural frequencies and mode shapes of the bridge obtained in the modal analysis
as well as other basic information of the bridge such as span length, number of elements in each
span, aeroelastic modes to consider as well as structural damping.

The seven most relevant modes, 1, 2, 3, 4, 5, 6 and 11 (Figure 3.10) were considered, and the results
are shown in Figure 3.13. The top half of the graph shows the evolution of negative alpha values vs.
wind velocity, which are related to the damping of the structure.

Flutter occurs when the alpha value of the torsional mode goes from negative to positive, which is a
point of null structural damping at the wind speed of 102.72 m/s. Any increment of wind velocity
from this point will increase the vibration exponentially.

The bottom half is the evolution of beta values, which are related to frequencies of the structure. The

frequency of the mode 6 gradually decreases as flutter occurs at the reduced frequency of 0.246.

Mode 1 (lateral)
Freq =0.0309 Hz

1 — Mode 2 (lateral) e
2 Freq =0.0573 Hz

Mode 3 (vertical)

| Mode 4 (vertical) i—
Freq = 0.0606 Hz !

Freq=0.0811 Hz

Mode 5 (vertical)
Freq = 0.0860 Hz

— Mode 6 (torsional)
Freq = 0.0868 Hz

Mode 11 (lateral)
Freq=0.1042 Hz

Figure 3.10 Natural frequencies and mode shapes considered for flutter analysis
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Figure 3.11 Flutter analysis result

Moreover, they developed a numerical methodology for optimization of the deck shape and cable
size in long span bridges considering aeroelastic and structural constrains, further details can be
found in [21], [22] and [23].

3.3. D’Asdia and Sepe studies

This study was conducted on the 1992 design of the proposed bridge over the Messina Strait, and it
was further examined in [24], with a multi-mode approach, originally proposed by Scanlan in [25].

SICILIA CALABRIA
60 3300 B 810 )
]
e +1
I Lsass ;f#“g

—

1275 8.0 12.78
60,40

Figure 3.12 1992 design of the proposed bridge
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A FEM model has been developed consisting of 5000 d.o.f., and the first 20 natural modes around
the dead load equilibrium configuration or around the average configuration in wind flow have
been evaluated and a computer code was able to take into account geometrical nonlinearities and
the stiffness. Average values of mass M per unit length and torsional mass moment of inertia I per

unit length have been evaluated taking into account both main cables and deck:

M [kg/m] | 5.50E+04
I [kgm*/m]| 2.80E+07

Table 3.5 Mechanical properties assumed

The structural damping &; has been assumed varying from 0.6% to 0.9%, depending on the modes
considered.

The multi-mode approach is able to provide within the same analysis more solutions (Table 3.7),
according to the number of modes taken into account, using the aeroelastic derivatives reported in

Figure 3.13, obtained through experimental investigations carried out during the design process.

It can be observed in Figure 3.14 that several pairs of vertical and torsional modes have nearly
identical mode shapes. For these modes, the ratio between frequencies of torsional mode and the
corresponding vertical mode is close to the ratio between the deck half-width and the polar moment

of inertia radius, meaning that the deck stiffness is negligible compared to the cable stiffness.
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Figure 3.13 Flutter derivatives

mode angular frequency @, (rad/s) |period 5!'"I (s)| mostsignificant component
a 0.195 32.2 1st lateral
b 0.352 17.8 2nd lateral
C (.380 16.5 st vertical
d 0.500 12.6 Ist torsional
e 0.501 12.5 3rd lateral
f 0.508 12.4 2nd vertical
g 0.606 101.4 2nd torsional
h (.626 10.0 4th lateral
i 0.677 93 Jrd vertical
] 0.705 8.9 5th lateral
m 0.803 7.8 Ird torsional

Table 3.6 Natural angular frequency and period
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vertical torsional
Figure 3.14 Natural modes

The critical wind speed corresponds to the lowest value (94 m/s), is in good agreement with the
analytical and experimental results obtained during design studies.

It can be observed that the second vertical mode f has roughly the same frequency of the first
torsional one d: this introduced complications in their numerical evaluation but, most importantly,
it indicates that these modes can’t be excited independently one from the other, as confirmed by

wind tunnel experiments performed on a 1:250 model during the design process.

_modcs taken O | K. Ue
into account rad/s m/s
cd 0.418 | 0276 | 94 |
fe 0.544 | 0204 | 165 |
im 0.726 | 0.200 | 225
cdfg | 0418 | 0276 | 94
cdfgim | 0418 | 0276 | 94
¢ d(deformed)| 0424 | 0275 | 96

Table 3.7 Results of the multi-mode analysis

It is also important to assess the role of horizontal displacements along-wind (lateral modes), whose
contribution can be stabilising or not depending on the deck geometry and on the mode shapes; in
this case, the mode b along-wind has exactly the same shape (Figure 3.14) of the first vertical one c
and also the frequencies are very close, thus it is expected to be aerodynamic coupled; on the other
hand, the frequencies of mode & and of the third vertical mode i are close, but instead they are

orthogonal.
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Chapter 4
Messina Strait Bridge project

4.1. General bridge outline

The Messina Strait Bridge is planned at the minimum width of the Strait, at approximately 3
kilometres between the cities of Ganzirri in Sicily and Cannitello in Calabria.
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Suspension bridge
Highway connections
e Railway connections

Figure 4.1 Plan view of the location and the connections

The final overall configuration is shown in Figure 4.2:

SICILIA CALABRIA
960 3300 e 810

Figure 4.2 Side view of the Messina Bridge
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4.2. Suspended deck

The suspended deck consists of three stream-lined longitudinal boxes, the lateral ones designated
for the road carriageways, while the centre one for the railways.

The road platform comprises two 3.75 m wide road lanes plus emergency lanes, for each direction.
Inspection and maintenance lanes are located externally on cantilevering elements at the side of the
road boxes, outside from the hangers. The central box carries two railway tracks plus inspection
walkways. The large open area between the boxes brings the total deck width to about 61 m, with
52 m distance between the cables.

Figure 4.3 Cross section of the deck

To achieve aerodynamic efficiency, the central box had to be as shallow as possible, in order to
maximize the effectiveness of the total centre void area, hence, the depth of the railway box was set
to 2.2 m, which was considered the minimum for internal inspection and maintenance.

On the other hand, the road boxes were made deeper, with the purpose of increasing the overall
deck torsional stiffness and achieving the minimum bottom flange plate thickness to minimize
weight while maintaining durability and local stability, defined at 9 mm, resulting in a 2.7 metres
depth for the road boxes. The upper orthotropic deck plate configuration was on the contrary
dominated by local strength and fatigue behaviour resulting in a minimum deck plate thickness of
14 mm and 6 mm for the trapezoidal trough.

The curved shape is the result of an optimization process, to achieve the best aerodynamic efficiency,
and it also plays a role in improving local stability against buckling of plates in longitudinal
compression.

Moreover, the deck structure is equipped with four inspection gantries, two in the centre span and

one in each of the side spans.

The longitudinal boxes are carried by transverse box girders spanning between the hanger planes,
forming a grid for the whole suspended deck structure.

The transverse girders are 4 m wide rectangular boxes spanning 52 m between the hangers, varying
in depth from about 1.3 to 4.7 metre, and formed by plates whose thickness varies from 12 to 24 mm,

and the optimum distance between the transverse girders is considered to be 30 m.
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Figqure 4.4 Virtual view from below the bridge

The static redundancy of the system ensures that the deck would not collapse even on the unlikely
event that all the hangers at one end of a crossbeam breaks.

Different steel grades will be employed: S355ML for most of the deck, with S420ML for special
elements at the tower articulation, and the total amount of structural steel expected in the deck is
about 55.000 tons, the resulting total steel girder self-weight is only 18.1 t/m, with a total deck dead
load of about 23 t/m.
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To improve serviceability under severe wind conditions, external wind screens are implemented in
the overall aerodynamic design. Small aerofoils control the flow and act as aerodynamic dampers,
while the wind protection element is a perforated metal sheet tuned so as to reduce the air flow and
protect vehicles from the direct action of strong wind.

The interior boxes will be dehumidified to control corrosion, and external steel surfaces will be
painted with a multi-layer system to maximize durability.

Impregilo JV group, winner of the 2005 tender, proposed a simpler trapezoidal shape instead of the
curved lower plating for the railway box, and it would have continuous longitudinal web under

each rail, in order to minimize the potential fatigue damage.

Figure 4.5 3D model of the 2005 proposed deck

4.3. Deck restrains and expansion joints

Typically, suspension bridges have lateral spans close to half the main span length, but the land
configuration of the Messina Strait bridge site does not allow normal configuration with two long
side spans: on Sicily’s side the site is so close to the east island point that there is simply not enough
space, and the access viaducts must immediately turn southwards. On Calabria’s side, the coast is
comparatively steep, and the hills quickly become too high for a side span. Indeed, the road and rail
corridors go into tunnel within a short distance.

Due to these short spans, the design of the deck restrains, and expansion joints was complicated, but
an innovative idea arose in the early nineties, thanks to the contribution of Dr. Brown, who proposed
to make the longitudinal boxes discontinuous at each tower, replacing the continuous structure with
two simply supported spans and restoring the continuity in the short spans. The central railway box

is left continuous throughout.
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Figure 4.6 Lateral span on Sicilian side

The deck structure is retained laterally at the towers via a large pendulum strut with X-bracing.
This configuration creates an extremely flexible deck segment at the towers, and as a consequence
the lateral forces in the side span are dramatically reduced and the rotations, due to transverse wind
are carried at the tower segment, and not to the abutments.

On the other hand, the rotation about the vertical axis of the flexible deck segment at the tower are
absorbed via moderate flexure in the continuous central rail box. This doesn’t generate forces in the
simply supported outer roadway box segments which have small expansion joints, which do not
experience the overall large span displacements but only the local relative movements associated
with temperature changes over short segment length and local kinematics from the global bridge
behaviour.

The span of the special road and rail box segments at towers to achieve the optimal balance between
flexibility and size was found to be 50 m.

In 2005, the Impregilo JV group improved the complex expansion joint mechanism, with consequent
reductions in cost, wear and maintenance requirements, by reducing substantially the longitudinal
displacement. They proposed the longitudinal connection between the deck and towers through two
pairs of hydraulic devices or “buffers”, connected to short cantilever extensions of the side span of
a transverse cross girder. These devices, operating via hydraulic control, behave in an elastic manner
up to a force limit, and then at higher longitudinal displacements maintain a constant force in a
pseudo “elastic-perfectly-plastic” manner, as result many frequent displacements are restrained.
Furthermore, the devices behave as a passive control system for longitudinal seismic actions,
introducing a beneficial energy dissipation for the earthquake response.
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Figure 4.7 Proposed deck-tower connection

4.4. Suspension system

The suspension system comprises two pairs of main cables set 52 m apart. In the main span, each
1.24 m diameter cable comprises 44.352 wires of 5.38 mm, giving a total steel cross section area just
over 1 m?2 The total length of each cable will be 5.270 m, whereas the total amount of structural steel
used in the suspension system is about 167.000 t for cable wires, 5.500 t for suspenders and 7.000 t
for cable clamps and saddles. In addition, this was assessed as the best cable configuration in [26].

The hangers are spaced every 30 m, connecting the ends of the crossbeams from the main cables.
Hanger diameters vary up to a maximum of about 160 mm, and the longest hanger next to the towers

are about 300 m long and weigh about 30 tons.

4.5. Towers

The towers are huge structures, rising to a height of 382 metres and sustaining the enormous vertical
load applied from the main cables. Key design considerations include the challenging economic
constructability and the need to sustain high lateral forces deriving from horizontal wind load on
the whole structure as well as very large seismic forces arising from the design earthquake

conditions.
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The steel plate material utilized is grade 420, with thickness varying from 40.45 mm over most of the
height to 60-65 mm in the lower sections and the total amount of structural steel is expected to about
55.500 t per tower.

The tower legs are multicellular structures with overall dimensions of 12x16 m and connected by
four crossbeams having rectangular cross section of 4x16.9 m.

The shape of tower legs in the preliminary design was optimized for structural performance,
aerodynamic behaviour, and aesthetic appearance, resulting in the peculiar “lozenge” cross section.
Such shape exhibits better wind drag coefficients than a simple rectangular one, while at the same
time eliminating high stress area in connection with the strong wind multi axial bending present.
The base connection of the steel legs to the concrete foundation plinth is obtained by embedding

into the concrete a 12 m section of leg equipped with a large number of shear connectors.
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Figure 4.8 Preliminary design of the towers
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Impregilo JV proposed some variations regarding towers, and the most evident one being mainly
for aesthetic reasons: the removal of the lower crossbeam and the shaping of the remaining three
with curved top and bottom flanges (Figure 4.9).

52.00m

Figure 4.9 Towers according to the 2005 proposal
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4.6. Foundations

The bridge main span interacts with the soil through the towers and at the anchor blocks.

The steel towers are connected to massive concrete foundations 130x60 metres in plan, placed at a
depth of 10 metres below sea level, within an excavation supported by T-shaped diaphragms walls
and waterproofed by jet grouting treatments, which is aimed at preventing potential settlement and

liquefaction due to excess pore pressure triggered by earthquake events.

4.7. Operation & maintenance strategies

A fundamental requirement of the bridge is a specific strategy to optimize management, operation
and maintenance, due to the large scale and the technical complexity of the structure, but as well as
the economic relevance, being an essential link in the national transportation system.
Such a strategy is aimed at achieving best performance in terms of:

- Safety, durability and value of the structure;

- Effective and economic maintenance;

- Safety of users and maintenance personnel;

- Service continuity and quality;

- Security against possible offences.

In addition, a very advanced and innovative monitoring, control and management system was
developed for the Messina Bridge, and it consists of a fully integrated instrumentation and
communication system involving the collection, distribution, processing and storage of all needed

information, including procedures and equipment to manage various events and scenarios.

GPS
l\wfs
{Remste)

Legend of Sensors

14T Interngl Air Temperature GPS Global Positioning System

SPT Steel Plate Temperature STl Static Inclinometer

RST FRood Surface Temperature UD Linear Displacement

OFS Optical Fiber (Stress Data) OYl  Dymemic Inclinomater

OFT Optical Fiber (Tempercture Data) HYP Hydroulic Pressure e Position of sensor on Hanger
BAC Biaxiol Accelerometer CCE Corrosion Cell i

TAC Triaxial Accelerometer WMS  Weight Motion Sensor ® Position of sensor

STG  Stroin Cauge GTE Geotectonic Deto —— Optical fiber on cables

Figure 4.10 Structural instrumentation layout
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5.1. Introduction to multimodal aeroelastic analysis

Suspension bridges subjected to self-excited aerodynamic loads represents a dynamic non-
proportionally damped system where both damping, and stiffness are affected by wind load and
oscillation frequency.

The MATLAB based flutter analysis, consists in a multimodal aeroelastic analysis, including
aerostatic nonlinearities, on a one-dimension continuum model of the suspension bridge.

Vertical and torsional oscillations in suspension bridge subjected to aeroelastic loads are governed
by the Equations 5.1 and 5.2 [27], which are based on the classical linearized theory, but improved
by including wind-related geometric nonlinearities, such as the stiffening/softening induced by the
lift force and a Prandtl-like second-order effect due to the drag force. This procedure has been
introduced in [28] and [29].

v | ey 3o Hazv(z,t)+62(my(z)z9(z,t))

bee ZHg ™5z * o at R 922 5.1)
8f\* '
+<l> L fov(zt)dz
0%29(z,t) 29(z,t) 0*9(z,t) 0%9(z,t) 0%v(z,t)
Mo = ly—5—+ o — =+ Ely—— == (Gl + HP)— 5=+ m, () — 5

0z* (5.2)

+b2<81f) o foﬁ( t)dz

- Lg, and Mg, are the aeroelastic (self-excited) lift and moment;

- v and Y are the vertical and torsional displacement of the deck-cross section;

- g and Iy are the bridge mass and mass moment of inertia per unit length;

- ¢y =2ugé&,w, and ¢y = 2Iyéywy are the damping coefficients, being &,y and w,, wy
damping ratios and angular frequencies;

- El, El, and GI; are the vertical bending rigidity, warping and primary torsional rigidity,
respectively;

- H is the horizontal component of the main cable tension;
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- lis the main span length;
- b is half the distance between cables;
- f,L¢ Ac and E, are the cable sag, length, cross-section area and Young modulus;

- m,(2) is the horizontal bending moment due to the steady drag force.

Considering a solution for Equations 5.1 and 5.2 in the harmonic form:
v(z,t) = 7(z)e’t (5.3)
9(z,t) = 9(2)e* (5.4)

The spatial functions are expressed by weighted sums of sinusoids having different wavelengths:

v(z)=b Zj;l ayj sin (?) (5.5)

J(2) = Z:;laﬁk sin (?) (5.6)

A quadratic eigenvalue problem, of N = n + m equations, is obtained for the unknowns a,,; and a,
by applying Galerkin method:
[A4, D)){ay,9} = {0} (5.7)

Equation 5.7 solutions are the eigenvalues 1, and eigenvectors {a,, }rdescribing different vibration
shape modes, with r € [1;2N], and they can be expressed as a linear combination of the 2N

independent eigen solutions as:

2N

V(x,t) = z v, (2)ehrt (5.8)
i

T(x ) = Z 8, (2)ert (5.9)
r=1

Where v,.(z) and 9,(z) are the vertical and torsional components of the rt"eigensolution.

The vertical and torsional displacements are expresses as a sum of » modal contributions; each one
being defined by the sum of N = n + m harmonic functions. The real part of the eigenvalues governs
the exponential trend of the modal contributions, while the imaginary part represents the modal
frequency. If the real part of an eigenvalue becomes positive, the system is unstable, and with the
increase of time it will diverge exponentially.

Considering a step value of wind velocity, a complex eigenvalue analysis is performed for each step
to analyse the variation of natural frequencies and the corresponding modal shape. When the real
part becomes null, the eigenvalue violets the stability condition, and the corresponding wind

velocity is the critical velocity.
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5.2.  Messina Strait bridge project case

The aeroelastic analysis was performed on this project, in order to examine the structural frequencies
and modal shapes with increasing wind speed.

The main features of the case study are summarized in Table 5.1, Table 5.2 and Figure 5.1:

I f b Lc Ac Hg Iy I, L, It
[m] [m] [m] [m] [m’]  [kg/m] [kgm¥m] [m‘] [m] [m*]
3300 297 26 3.37E+03 4.83 7.52E+04 2.87E+02 9.394 0 3.0918

Table 5.1 Main features of the study-case

C/,O 0
Cdo 0.1
Table 5.2 Steady-state aerodynamic coefficients
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Figure 5.1 Flutter derivatives of the Messina bridge project

Equations 5.12 and 5.13 describes vertical and torsional displacements components and eight
sinusoidal functions were chosen to describe them: n = m = 8, thus a total of sixteen modes were
extracted, however in this study only the first eight modes are reported.

The variation of modal frequencies and damping factors for increasing wind speed is shown in
Figures 5.2 and 5.3:
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Figure 5.2 Damping factors and modal frequencies

The real part of the eigenvalue corresponding to the second mode becomes positive at the critical
wind speed of 98.4 m/s and at a flutter frequency of 0.069 Hz. In fact, the flutter modal shape (Figure
5.3, Mode 3) in wind-free condition is purely torsional however, the correspondent frequency
coalesce with the frequency of mode 2 (Figure 5.2), causing the vertical and torsional modes to
couple, leading to flutter (Figure 5.4, Mode 2). And it important to point out that the flexural and

torsional components of the critical mode, at flutter condition, are out of phase.
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Figure 5.3 Messina bridge modal shapes in wind-free condition
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Figure 5.4 Messina bridge modal shapes critical flutter condition

5.3. Result comparison

In conclusion, the results obtained are compared with the flutter wind velocity and flutter frequency
derived by Jurado et al. [19]and by D’ Asdia and Sepe [20]:

MATLAB  Juradoetal. D'Asdia&Sepe %AJurado et al. %AD'Asdia&Sepe
Uf [m/sl 98.4 102.7 94 4.2 -4.7
f[Hz] 0.069 0.066 0.067 -4.2 -2.7

Table 5.3 Messina bridge flutter analysis, result comparison

The results obtained with a multimodal aeroelastic analysis, including aerostatic non linearities are
perfectly aligned to the results obtained in the studies considered, in fact the critical wind speed
calculated with MATLAB can be considered the mean value between the other two, with a relative
error lower than 5%. Similarly, the flutter frequency, obtained with MATLAB, is slightly greater
than the literature values, but still lower than 5%.

49



Chapter 6
ANSYS flutter analysis

In this thesis, the flutter analyses are performed by finite element numerical models using the
commercial software ANSYS APDL, which allows to easily take into account several non-linear key
features of suspension bridges: this kind of structures presents a non-linear geometric behaviour
due to hangers and main cables: the increase of tension in main cables induce a reduction of
displacements given by further loads. This non-linear behaviour has been considered by including
the pre-stress effects due to pretension in the modal analyses, which the software easily allows to
implement. Accordingly, the weight of the bridge itself generate a global stiffening effect on the
structure, so neglecting the influence of these phenomena would lead to wrong physical

representations.

6.1.  Flutter problem using ANSYS

The Chinese researchers X.G. Hua and Z.Q. Chen [30], in 2008, proposed a full order approach that
allows to analyse coupled flutter on long-span bridges, employing the measured flutter derivatives
from tests performed in wind tunnels on bridge sectional model, using the commerecial finite element
software ANSYS. The method is based on the definition of the aeroelastic loads by means of a
particular user defined element and is shortly illustrated below. An example of this analysis can be
found in [31] and [32].

The equation of motion of a deck section in a smooth flow can be expressed as:

MX + CX + KX = F,, (6.1)

Where
- Mis the global mass matrix;
- Cis the damping matrix;
- Kis the stiffness matrix;
- X is the acceleration vector,
- X is the velocity vector,
- X is the displacement vector,

- F, is self-excited nodal forces vector, defined in Equation 2.21.
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By converting the distributed aeroelastic forces applied on a generic element of a bridge girder into
equivalent nodal loads acting on the element’s ends, the equivalent nodal loading for that element
is obtained:

Ff, = KEX® + CE.X® (6.2)

Where K, and Cg, are the aeroelastic stiffness and damping matrices of element e, respectively.

Using a lumped formulation, they can be expressed as:

Ko 0
Ke=| """ . (6.3)
L 0 aell
co o
Cee=| " (6.4)
| 0 aell
0 0 0 0 0 o0
o P P, BP; 0 0
0 H; H; BH; 0 0
Kie1 = a o B BA B4 0 (6.5)
6 4 4
0o 0 0 0 0 0
o o o o 0 o
0 0 0 0 0 o0
0 P P BP; 0 0
0 H? Hi BH; 0 O
o1 =b 0 ? 6.6)
0 BA, BA, B2, 0 0
0o 0 0 0 0 0
o o o 0o o0 o0

Where a = pU?K?L_/2 and b = pUBKL,_, B is deck’s width and L, is the length of the element e.

Hence it is necessary to represent the elemental stiffness and damping matrices due to motion-
dependent aeroelastic forces by applying user-defined element MATRIX27 in Ansys. The element
can only model either an aeroelastic stiffness matrix or an aeroelastic damping matrix, but not both
simultaneously, therefore a pair of MATRIX27 elements are attached to each node of a generic bridge

deck element, to simulate the aerostatic forces, as illustrated in Figure 6.1:

Py
(=} .
. o
i I
<~ H IEL_J 3:_’:,:' 'E"_.z'
lk-':-'.'.'-’ i SR .|r

Figure 6.1 Hybrid finite element model

The MATRIX27 elements el and e3 represent respectively the aeroelastic stiffness and damping of

the node 7, as the MATRIX27 elements e2 and e4 represent respectively the aeroelastic stiffness and
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damping of the node j. If the length of each bridge deck element is the same, the element matrices

are simplified as:

K¢ = 2K¢, (6.7)
ce =2C¢, (6.8)
K = 2K¢, (6.9)
ce* = 2C¢, (6.10)

Assembling all elemental matrices into a global aeroelastic stiffness and damping matrices leads to:
Fpo = KgoX + CooX (6.11)

The mathematical model of an integrated system is obtained by substituting Equation 6.11 into 6.1,

with the effect of aeroelasticity parametrized by wind velocity and vibration frequency:

MX+(C—Cue)X+(K—Kg)X=0 (6.12)

By performing a modal decomposition in the state-space, the equation 6.12 is transformed into an

eigenvalue problem:
A—uhp, =0 (6.13)

With this equation, a complex eigenvalue analysis can be carried out to determine the eigenvalues
of the system at a specific wind velocity and vibration frequency.

Assuming the conjugate pairs of complex eigenvalues y; = a; * iff; and the conjugate pairs of
complex eigenvectors ¢; = p; + iq;. The real part «; is related to modal damping, therefore, if it
becomes null the system will be dynamically unstable, and the corresponding wind velocity U is
the critical flutter wind velocity, the maximum speed the bridge can withstand. The imaginary part

pBi of the complex eigenvalue s will be the flutter frequency.

It is necessary to provide the variation of both wind velocity and vibration frequency in the complex
eigenvalue analysis, so a mode-by-mode tracking method is employed to iteratively search the
flutter frequency and the flutter velocity.

The procedure is summarized below:

1. Establish the Finite Element model for the original structure without MATRIX27 elements,
perform a modal analysis, including the effects of permanent loads, and compute the first m
natural frequencies ! (i = 1,2,...,m);

Set an initial wind velocity Uy and its increment AU;

3. Let the initial oscillation frequency w, be the frequency «! of each natural mode;
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4. Determine the reduced frequency K and the aeroelastic stiffness and damping matrices in
MATRIX27 elements, with the support of a MATLAB script, as in Equations 6.5 and 6.6 at the
current iteration, and then carry out the complex eigenvalue analysis;

5. Compare the imaginary part of the i computed complex eigenvalue y, with w,. If
|(Im(w;) — we)/Im(u))| > 1073 let wy = Im( ;) (6.14)
repeat step 4 and 5, otherwise go to step 6;

6. Loop steps 3-5 over all the m computed natural modes to obtain all m pairs of complex
eigenvalues at the current wind velocity U;
7. Repeat steps 2-6 for all the range of interest of wind velocity to obtain the variation of m pairs

of complex eigenvalues with wind velocity.
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6.2. Structural FE models

Considering the dimension and complexity of the project of the bridge over the Messina Strait,
several 3D finite element models were developed and tested in ANSYS, in order to calibrate them in
such a way that the results provided could align with the results obtained by other researchers.
The numerous information available regarding the Messina Strati bridge project, allowed to build a
complete model comprehensive of the designed three box deck, main span and the lateral ones.
For the numerical simulation of the mechanical behaviour three different kind of finite elements has
been employed [33]:

1. Element BEAM188 is based on Timoshenko beam theory which includes shear-deformation
effects. It's a three-dimensional two-node beam element, and it has six degrees of freedom at
each node: translations and rotations in the three dimensions.

2. Element LINK180 is a 3D element that can be used for trusses, cables and links. It is a uniaxial
tension-compression element with three degrees of freedom per node related to translation.

3. Element MASS21 is a point element having up to six degrees of freedom and it is used to
model the structural mass properties. However, this element has been used only to adjust
the deck mass moment of inertia, since the weight of the elements have been defined as a

combination of sectional properties and material models attached to the beam elements.

A total of three different numerical models of the bridge were realized, and they are presented in

the following sections.

6.2.1. Fishbone model, main span

Figure 6.2 FE model 1 of the Messina Strait bridge project

In this model, the two coupled cables are modelled as two equivalent cables, one on each side of the
deck, with an equivalent diameter of 1.6 metres. Similarly, the bridge’s deck is represented by only
its central axis, to which are assigned equivalent properties considering all three longitudinal boxes,
and it is connected to the hangers, by means of cross girders, considered as rigid links.
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Moreover, the deck is restrained through hinges, which allows rotation in every direction, whereas
the rotation around x-axis is prevented for the cables.

The deck girders, as well as the main cables are modelled with BEAM188 elements, by defining the
material and geometric properties and assign it to each component of the bridge. It's worth
mentioning that the rigid links are defined with a high inertia to achieve rigid flexural behaviour
and its weight is set to equal zero. On the contrary, the hangers are modelled with LINK180
elements, which transmit only tension forces between deck and main cables. Lastly element MASS21
is utilized to represents the mass moment of inertia of the deck, however, many tests have proven
that the best results are obtained by setting to zero this parameter.

The geometrical and mechanical properties of the model implemented in the calculations are

summarized in Table 6.1:

Span length (m) 3300
Total deck width (m) 61.13
Distance between cables (m) 52
Sag (m) 297
Cable area (mz) 2.01
Young modulus (N/m?) 2.10E+11
Poisson modulus 0.3
Equivalent vertical moment of inertia, 1z (m*) 9.394
Equivalent lateral moment of inertia, Iy (m*) 385.65
Equivalent polar moment of inertia, It (m*) 3.0918
Deck mass per unit length (kg/m) 18000

Table 6.1 Geometrical and mechanical properties of the Messina Strait bridge project

Subsequently, the modal analysis is carried out in two steps due to the large flexibility of the
structure. In the first step, the initial main cable stresses were calculated under self-weight, finally
the actual modal analyses with the corresponding overall stiffness of the bridge structure. Figure 6.5
and Table 6.2 summarize only the first 10 natural frequency extracted and the corresponding
vibration mode shapes, since it's known that flutter occurs usually at lower frequencies,
comprehensive of a comparison with the results calculated Section 5.2 and published by Diana et al.
in [18], Kusano in [21] and D’ Asdia and Sepe in [20].

Mode  Frequency [Hz] Type MATLAB Diana Kusano  D’Asdia&Sepe %AMATLAB — %ADiana %AKusano  %AD’Asdia&Sepe
1 0.0331 LS - 0.033 0.0309 0.0311 - 0.2 7.0 6.5
2 0.0622 LA - 0.059 0.0573 0.0562 - 5.4 8.6 10.7
3 0.0646 VA 0.064 0.061 0.0606 0.0606 1.0 5.9 6.6 6.6
6 0.0862 \E 0.087 0.08 0.0811 0.0806 -0.9 7.8 6.3 6.9
5 0.0740 TA 0.09 0.081 0.0868 0.0794 -17.8 -8.6 -14.7 -6.8
9 0.0983 TS/LA 0.12 0.097 0.1032 0.0962 -18.1 14 -4.7 2.2
11 0.1033 LS - - 0.1142 0.1075 - - -9.5 -3.9
13 0.1289 VA 0.129 0.128 0.1279 - -0.1 0.7 0.8
15 0.1381 TS/LA - 0.129 0.1356 7.1 1.8
18 0.1539 LA - 0.1461 - 5.3

Note: V (Vertical), L (Lateral), T (Torsional), S (Symmetric), A (Asymmetric)

Table 6.2 Modal frequencies and modal shapes comparison
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Figqure 6.3 Modal frequencies and modal shapes of the model 1

56



Chapter 6

ANSYS flutter analysis

6.2.2.

7

Fishbone model, three spans

Figure 6.4 FE model 2 of the Messina Strait bridge project

This model is exactly like the previous one, but with the addition of the lateral spans and the towers.

As in the previous model, the deck is restrained through hinges, whereas the tower foundations and

the anchorages are fixed, so every degree of freedom is constrained.

The tower legs and cross beams are modelled using BEAM188 elements, by assigning the geometry

and the steel material properties.

The geometrical and mechanical properties of the model implemented in the calculations are

summarized in Table 6.3:

Total span length (m)

Central span length (m)

Lateral span length (m)

Tower height (m)

Total deck width (m)

Distance between cables (m)

Sag (m)

Cable area (m?)

Young modulus (N/m?)

Poisson modulus

Equivalent vertical moment of inertia, Iz (m*)
Equivalent lateral moment of inertia, Iy (m*)
Equivalent polar moment of inertia, It (m*)
Deck mass per unit length (kg/m)

3666
3300
183
382.6
61.13
52

297
2.01
2.10E+11
0.3
9.394
385.65
3.0918
18000

Table 6.3 Geometrical and mechanical properties of the Messina Strait bridge project

In conclusion, Figure 6.7 and Table 6.4 summarizes the results obtained from the modal analysis,

comprehensive of a comparison with the results calculated Section 5.2 and published by Diana et al.
in [18], Kusano in [21] and D’ Asdia and Sepe in [20]:

Mode  Frequency [Hz] Type MATLAB Diana Kusano  D’Asdia&Sepe %AMATLAB  %ADiana %AKusano  %AD’Asdia&Sepe
1 0.0328 LS - 0.033 0.0309 0.0311 - -0.8 6.0 5.5
3 0.0603 LA - 0.059 0.0573 0.0562 - 2.2 5.3 7.4
4 0.0651 VA 0.064 0.061 0.0606 0.0606 1.7 6.7 7.4 7.3
7 0.0819 VS 0.087 0.08 0.0811 0.0806 -5.9 2.3 0.9 1.5
5 0.0735 TA 0.09 0.081 0.0868 0.0794 -18.3 -9.3 -15.3 7.4
10 0.0972 TS/LA 0.12 0.097 0.1032 0.0962 -19.0 0.2 -5.8 1.1
11 0.0998 LA - - 0.1042 0.1075 - - -4.3 -7.2
15 0.1306 VA 0.129 0.128 0.1279 - 1.2 2.0 2.1 -
16 0.1355 TS/LA - 0.129 0.1356 - - 5.0 -0.1 -
17 0.1474 LA - - 0.1461 0.1282 - - 0.9 15.0

Table 6.4 Modal frequencies and modal shapes comparison

57



Chapter 6

ANSYS flutter analysis

DISPIACEMENT
STEP=1

SUB =1
FREQ=.032750
DM =.11968-C3

DISPLACEMENT

DISPTACEMENT

DISPLACEMENT

DISPLACEMENT
STEP=1

SUB =16
FREQ=.135513
DV =.1272-03

Mode 1, LS, 0.033Hz

Mode 4, VA, 0.065Hz

Mode 7, VS, 0.082Hz

Mode 11, LS, 0.100Hz

Mode 16, TS, 0.135Hz

SUB =
FREQ=.060321
DMY =.163E-03

DISPLACEMENT
STkp=1

SUB =
FREQ=.073503
DMK =, 112203

TREQ=.02721
DM =.157FE-03

DISPLACEMENT
STEP=1

S5UB =15
FREQ=.130618
DM =.106E-03

DISPLACEMENT

STEP=1

SUB =17
FREQ=.147455
[DMX =.13%E-03

Mode 2, LA, 0.060Hz

Mode 10, TS, 0.097Hz

Mode 15, VA, 0.130Hz

Mode 17, LA, 0.147Hz

Figure 6.5 Modal frequencies and modal shapes of the model 2
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6.2.3.  Complete model

Figure 6.6 FE model 3 of the Messina Strait bridge project

To achieve a more realistic model, each of the three longitudinal boxes that make up the deck are

modelled (Figure 6.9) by BEAM188 elements, to which are assigned the geometrical and mechanical

properties listed in Table 6.5.

The boundary condition of this model remains unaltered from the previous model.

B J|Total span length (m) 3666
| ‘_'\' TT7 T ) p1{Central span length (m) 3300
T ‘\ [ | I ﬁ Lateral span length (m) 183

‘ T ‘ S Tower height (m) 382.6
\ | ‘ \ ‘ SHES Total deck width (m) 61.13
‘ | ‘ I N Distance between cables (m) 52

ST e

e ‘ ‘ ‘ ‘ ‘ Young modulus (N/m?) 2.10E+11

: ‘L‘I"'[ - J ‘ ’ ‘ \ Poisson modulus 0.3
~Lo L’[ ‘ | _Ml ‘ __|Cable area (m?) 2.01
- l’l,l J J' N “ ‘ ‘ Central box area (m?) 0.341

< 1 8> l| J 1 ‘ ‘ ‘ -|Central box vertical moment of inertia, Iz (m*) 0.286

B L)\l} J . ‘ Central box lateral moment of inertia, Iy (m*) 1.847

} - L |w J J Central box polar moment of inertia, It (m*) 0.653

! L Lateral box area (mz) 0.645

Lateral box vertical moment of inertia, Iz (m4) 0.623

Lateral box lateral moment of inertia, Iy (m*) 11.02

Lateral box polar moment of inertia, It (m4) 1.375

Deck mass per unit length (kg/m) 18000

Figure 6.7 Model 3 deck detail Table 6.5 Geometrical and mechanical properties of the Messina

Strait bridge project

Figure 6.10 and Table 6.6 summarizes the results obtained from the modal analysis, comprehensive
of a comparison with the results calculated in Section 5.2 and published by Diana et al. in [18],
Kusano in [21] and D’Asdia and Sepe in [20].

59



Chapter 6 ANSYS flutter analysis

Mode  Frequency [Hz] Type MATLAB Diana Kusano  D’Asdia&Sepe %AMATLAB — %ADiana %AKusano  %AD’Asdia&Sepe
1 0.0328 LS - 0.033 0.0309 0.0311 -0.8 6.0 5.5
0.0596 LA - 0.059 0.0573 0.0562 - 0.9 3.9 6.0
4 0.0649 VA 0.064 0.061 0.0606 0.0606 1.4 6.3 7.0 7.0
6 0.0821 Vs 0.087 0.08 0.0811 0.0806 -5.6 2.7 1.3 1.8
7 0.0853 TA 0.09 0.081 0.0868 0.0794 -5.2 54 -1.7 7.5
11 0.1070 TS/LA 0.12 0.097 0.1032 0.0962 -10.8 10.3 3.7 11.3
12 0.1116 Vs - 0.107 0.1078 0.1075 - 4.3 35 3.8
15 0.1298 VA 0.129 0.128 0.1279 - 0.6 1.4 1.5 -
16 0.1399 LA - - 0.1347 - - - 3.9 -
17 0.1450 TS/LA . 0.129 0.1356 0.1282 . 12.4 6.9 13.1

Table 6.6 Modal frequencies and modal shapes comparison
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Figure 6.8 Modal frequencies and modal shapes of the model 3
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In conclusion, as shown in Table 6.2, Table 6.4 and Table 6.6, the results of the modal analyses yield
natural frequencies and modal shapes that are consistent with the results obtained from the
analytical analysis in MATLAB and with the results published by Diana et al., Kusano and
D’Asdia&Sepe. The relative frequency error is calculated with respect to all sets of results, and it is
less of 15% for each of the three models. It can be observed that the error is usually higher for
torsional modes, in fact the frequency error percentage of the other modes are all lower than 7%. The
reason being, to a more accurate value of the asymmetric torsional mode frequency corresponds a
higher error of the symmetric torsional frequency, and vice versa, this is due to the fact that the
geometric and mechanical properties that can be modified in order to improve the relative error, are
in contrast. The increase of the level of detail in model 3, didn’t aggravate the error percentage with
respect to the two preceding models. The frequency values are more consistent compared to
Kusano's results, rather than the others: the error percentage is lower than 10%, and the subsequent
flutter analysis is carried out using the flutter derivates published by the University of A Corufia,

thus resulting in a more accurate comparison.

6.3.  Flutter analysis

The flutter analysis is carried out on the complete model, however the MATRIX27 elements must be
added prior to the analysis. Two hybrid elements, for aerostatic stiffness and damping, are attached
at each of the 123 nodes situated on the middle axis of the deck and they are fully restrained at the
extremities.

Figure 6.11 depicts a portion of the bridge and the MATRIX27 elements are marked in red:

Figure 6.9 FE model 3 with MATRIX27 elements

In order to calculate the flutter velocity, flutter derivatives obtained in wind tunnel tests are also
necessary. The flutter derivatives utilized in this thesis are derived by Leon at the wind tunnel of the
University of A Corunia, and the whole set of 18 flutter derivatives was published in [34] and
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reported in figure 6.12. Moreover, a structural damping equal to {; = 0,5% has been assumed for all
the modes extracted.

Subsequently the analysis can be performed as illustrated in Section 6.1: an iterative procedure is
applied to each of the 10 modes extracted by the modal analysis, summarized in Table 6.6.

The damped complex eigenvalue analyses were conducted on the model under wind velocities

ranging from 0 to 100 m/s (0 to 360 km/h). The incremental step of wind velocity was set variable,

from a standard value of 10 m/s to a minimum of 0.2 m/s when approaching instability.
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Figure 6.10 Flutter derivatives derived at the University of A Coruiia
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The flutter condition occurs when the real part, related to the modal damping, becomes null, and
the corresponding wind velocity Uy is the critical flutter wind velocity. Hence, the analysis produced
a critical flutter wind speed of 94,7 m/s and a corresponding critical frequency of 0.0699 Hz. This
wind speed, corresponding to 340 km/h, belongs to the 12% level of the Beaufort scale that
characterizes hurricanes, and it is much more severe than the strongest wind ever recorded over the
Messina Strait, which was approximately 163 km/h.

Contrary to what can be deduced from the analysis output, the torsional mode itself doesn’t initiate
the flutter instability: the increase of wind velocity causes a variation of modal shape associated with
the variation of the eigenvalues, in fact flutter instability is caused by the interaction between modes.
Figure 6.15 shows how torsional, vertical and lateral degrees of freedom are coupled together when
the flutter condition is approached. Nevertheless, the flutter instability is caused by a variation of

the torsional asymmetric mode.

[N
=)

Figure 6.13 Flutter shape: coupled vertical, torsional and lateral modes

6.4. Result comparison

In conclusion, the flutter wind speed and the flutter frequency derived from the ANSYS flutter
analysis in this chapter, are compared with the results obtained by Jurado et al. [19] and by D’ Asdia
and Sepe in [20], moreover they are compared with the results from the MATLAB flutter analysis of

the previous chapter.

Uf [m/s] f[Hz] %AUf %Af

ANSYS 94.7 0.0699 - -
MATLAB 98.4 0.069 3.8 -1.3
Jurado et al. 102.7 0.066 7.8 -5.9
D'Asdia&Sepe 94 0.067 -0.7 -4.3

Table 6.7 Messina bridge flutter analysis, result comparison

As is clear from Table 6.7, the ANSYS flutter analysis produced accurate values of flutter wind
velocity and flutter frequency. The flutter wind velocity is almost exactly the same value obtained
by D’Asdia, resulting in a relative error of less than 1%. Compared to Jurado’s value, it results in a
greater error of 7,8% but still in a reasonable error rage. The comparison with the MATLAB results
is considered of high interest, because the two analyses, involving different approaches and
software, yield approximately the same results, thus further validating the value of the flutter wind

speed.
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6.5. Influence of lateral flutter derivatives

In addition to the previous flutter analysis, a further two-degree-of-freedom flutter analysis is
carried out only for the critical mode, that leads to flutter instability, for the purpose of comparing
the results of the two analyses.

This analysis examinates only lift and moment, whereas drag forces are not included at all, thus only
flutter derivatives H; and A; are considered, while P; are considered equal to zero. The non-zero

values of the stiffness matrix and the damping matrix, reduces to 6 terms:

0 0 0 0 0 0
0 0 0 0 0 0
ke = a 0 H; H; BH; 0 0 (6.14)
0 BA, BA, B?4A, 0 0
0 0 0 0 0 0
0o 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
e _p 0 H;* H{* BZH{ 0 0 (6.15)
0 BA; BA; B?A} 0 0
0 0 0 0 0 0
o 0 0 0 0 0

Subsequently the same 7 steps procedure of the previous case if followed: the iterative procedure is
applied only to the asymmetric torsional mode extracted in Section 6.2.3.

The damped complex eigenvalue analyses were conducted on the model under wind velocities
ranging from 0 to 120 m/s (0 to 432 km/h). The incremental step of wind velocity was set variable,

from a standard value of 10 m/s to a minimum of 5 m/s when the instability was expected.

The analysis didn’t produce a critical flutter wind speed in the speed range investigated, therefore
flutter instability can’t occur under the action of wind flows that can be expected in that site, since
the maximum wind speed ever recorded is much lower than the upper limit of the range examined.
Figure 6.17 compares the variation of the real and the imaginary part of the complex eigenvalue of
the asymmetric torsional mode derived with drag forces and without drag forces.

In conclusion, without taking into account the drag forces, the flutter instability doesn’t occur due
to the fact that only a three-degree-of-freedom coupled mode initiates the instability, as stated in

Section 2.3.
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The single-mode criterion

7.1. Introduction

As already mentioned in Section 2.5, damping-driven flutter occurs in bridges when negative
damping in a single mode is achieved without coupling with other modes, initiating flutter as the
wind velocity produces enough negative aerodynamic damping to offset the bridge’s own
mechanical damping.

Most flutter derivatives in bridges maintain the same sign with increasing speed, but A; for some
bridges may change sign as U, increases. In several practical cases all coupling coefficients A7, H,
and H; are negligible and by assuming A3, P; and P; negligible, with Hi and P negative, reveals
that, for single-mode flutter to occur A5 must become strongly positive for some value of K. When
this occurs, the torsional mode causes the overall system to flutter. However, it may also be observed
how the damping effects from vertical and lateral motions can weight against flutter even when the
tendency to torsional instability is present.

The uncoupled single-degree-of-freedom flutter can be analysed as follows, by pre- and post-
multiplying Equation 2.23 by the eigenvector {8, ;} related to the j-th mode:

1 1
{60,}" (—wZ[M] +iw ([C] - EpU[C*]) +[K] - EpUZ[K*]> {60} =0 (7.1)

It's worth mentioning that in order to uncouple the problem, [C] is generally assumed as Rayleigh
damping matrix:
[C] = a[M] + B[K] (7.2)

Where a and f are proportionality coefficients of Rayleigh damping.
As mentioned in Section 2.5, Scanlan (1978) [25] and Scanlan and Jones (1990) [17], introduced a
single-mode criterion, based on the damping terms in square brackets of Equation 7.2, which

compares the aeroelastic damping with the mechanical damping of the system:

il w;
pBAL, &,

Hi (K)Gpi + P{ (K)Gp; + A3(K)Goi 2

(7.3)
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In order to apply Equation 7.3 in a finite Element Framework it is necessary to define the following
terms:

- The variables Gy;, Gp; and G,; are the modal integrals in the heave, sway ad torsional

directions:
Gri = (w7 - ), (7.4)
Gpi = () - ), (7.5)
Gor = O - (0., 7.6)

- Uy Uy and 9, are the deflection in vertical direction, in transverse direction and the rotation
around longitudinal axis, respectively, of the bridge’s deck;
- ¢§; is the generalized damping ratio;

- I; in the generalized inertia:

I; = {8} [M] {6} (7.7)

- Jis a vector containing all the degree of freedom of the whole bridge;
- [M]is the mass matrix of the bridge;
- L4 being the deck length.

The vectors containing the nodes degrees of freedom and the mass matrix can be extracted from
ANSYS [35], whereas the single-mode criterion has been examined graphically, by means of a
MATLAB code, for each mode considered. The resulting graph compares the variation of the
aeroelastic damping, the left term of Equation 7.1 with the mechanical damping of the system, the
constant value on the right side. The single-mode flutter occurs when the system’s total damping
vanishes: when left term exceeds the right value and for the lowest wind velocity that validates the
equality of Equation 7.1, flutter has been initiated with the corresponding flutter frequency being
computed from Equation 7.2. However, the frequency variation with increasing speed is assumed

to be negligible, therefore the frequency ratio of the right term equals to one.

In the following sections, two cases have been examined:

- The Tacoma Narrows bridge;

- The Messina Strait bridge project.
The criterion is applied to the subject of this thesis as well as the Tacoma Narrows bridge, a well-
known case of failure due to instability in order to validate the criterion, since the Messina Strait
bridge is expected to be stable to single-degree-of-freedom flutter as result of the deck girders design,

which resembles an airfoil.
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7.2.  The Tacoma Narrows bridge case

e e e e e o
!S?mi 335m 853 m 335 m
1
1650 m

Figure 7.1 Lateral view of Tacoma Narrows bridge

The Tacoma Narrows Bridge was opened to traffic on July 1¢, 1940. It was the third longest

suspension bridge at the time with a central span of 853 m and it was characterized by the extreme

slenderness of the deck thus it had a very low torsional and vertical bending stiffness.

In the first months of service, the bridge presented some mild vertical oscillation, but on November

7t 1940, the bridge developed twisting oscillation of the deck caused by a wind speed of 18 m/s,

much lower than the value calculated during design phase, that led the bridge to collapse a few

hours later.

Figure 7.2 Tacoma Narrows bridge collapse

Only the torsional asymmetric mode is
investigated, since it is the one that caused the
collapse.

The torsional mode is governed by the A;
flutter derivative and Figure 7.3 illustrates
some examples of A; flutter derivatives, the
function related to the Tacoma bridge deck is
marked with “1” and it changes sign from a

reduced wind velocity equal to 2.

Q3¢

0.2

0.1

-01

-0.2

" A

Figure 7.3 Examples of A5 flutter derivatives
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By implementing the frequency, corresponding to the torsional mode, geometrical properties, such
as deck element length and deck width, modal properties extracted in ANSYS APDL, and the three

flutter derivatives mentioned above in MATLAB, the software generated the solution in Figure 7.4:

x10% TA

— — — - Mechanical damping
Aerostatic damping

U [mis]
Figure 7.4 Torsional single-degree-of-freedom flutter

The torsional instability initiates at a speed of 10.5 m/s and at a frequency of 0.213 Hz, when the
aeroelastic damping changes sign and becomes greater than the mechanical damping. Then
resulting total damping becomes negative which causes torsional oscillation on the bridge deck, that
could lead to failure.

In literature, the torsional instability speed has been estimated to be in a range of 8 m/s and 12 m/s,
therefore, the value obtained with the single-mode criterion aligns perfectly with the results

obtained by other researchers.
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7.3. The Messina Strait bridge case

In this case the single-mode has been applied to the first lateral, vertical and torsional modes. Figure

7.5 reports the flutter derivatives examined with this approach:

09 I . L I . )
0 5 10 15 20 25 30
Reduced Velocity U

Figure 7.5 A5, P{ and Hi of Messina Strait bridge

As it is clear from the Figure 7.5, the flutter derivatives mentioned before are all negative function

for any reduced wind velocity value, therefore the criterion of Equation 7.1 is expected to be always

false and the deck always stable. The results provided by the software are reported in Figure 7.6, 7.7

and 7.8.
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Figure 7.6 Sway single-degree-of-freedom flutter
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The single-mode criterion applied to the Messina Strait bridge project case, didn’t produce any
critical wind speed since the flutter derivatives never become positive therefore the mechanical
damping, in this simplified model, is always greater than the aeroelastic damping. Moreover, the
aeroelastic damping is beneficial to the system’s total damping, since it is negative and on the other
side of the mechanical damping in Equation 7.1, they can be summed to obtain the total damping,
which is improved compared with respect to the mechanical one only.

In conclusion the deck can’t experience single-degree-of-freedom flutter in any mode, since the
critical mechanism involves a coupling between two, or more, modes. However, this behaviour was
expected being the flutter derivatives all negative and the deck specifically designed to resemble an

air foil shape.
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Conclusions

A critical phase of the design process of a long-span bridge is certainly the aerodynamic analysis,
which assesses the behaviour of the structure when it interacts with a wind flow, however under
certain conditions, an aeroelastic instability could arise, that causes the bridge to oscillate which
could lead to structural failure.

The project of the bridge over the Messina Strait is analysed by means of both numerical and
analytical approaches, focusing on the problem of flutter instability.

Although several Finite Element models have been developed, the flutter analysis was performed
only on the last, and most complete one, which is comprehensive of the airfoil multi-box deck, the
main span and the lateral spans. This analysis was carried out on ANSYS APDL, a software that
allowed to take into account the stiffening effect of the cables as well as the aerodynamic forces,
modelled by flutter derivatives. Initially a modal analysis was performed on every model developed,
and the natural frequencies obtained were compared with the results obtained in other studies, thus
the third model was selected to be tested with aerodynamic forces, since the level of detail was higher
and the relative error of the natural frequency, compared with literature values, were lower than the
results produced by the other models. The flutter analysis was carried out through an iterative
process, applied to each of the modes considered. In the end the critical flutter wind speed and the
flutter frequency were obtained.

Moreover, the same analysis was performed with a purely analytical approach, by means of a
MATLAB code, which is programmed to include aerostatic nonlinearities, such a stiffening induced

by lift forces and Prandtl-like second order effects due to drag force.

At the end of Chapter 6, the results obtained from both the analyses were compared with the results

obtained by the research groups examined:

Uf [m/s] f[Hz] %AUf %Af

ANSYS 94.7 0.0699 - -
MATLAB 98.4 0.069 3.8 -1.3
Jurado et al. 102.7 0.066 7.8 -5.9
D'Asdia&Sepe 94 0.067 -0.7 -4.3

Table 8.1 Flutter analysis result comparison

74



Chapter 8 Conclusions

As Table 8.1 demonstrates, both the methods employed produced accurate results in terms of flutter
velocity and flutter frequency, that are perfectly in line with the results by Jurado et al. [19] and
D’Asdia and Sepe [20], whereas Diana et al. didn’t provide an exact value, but they estimated a flutter
velocity over 80 m/s.

It’s important, to point out that the MATLAB code employed was able to capture the phase difference
that occurs between the vertical mode and the torsional mode, and given that the relative difference
between the numerical and analytical approaches is not significant, it can be concluded that the
method is as valid as the finite element analysis, however it involves a much more simplified model,

therefore a reduced computational time.

In addition, the influence of the lateral flutter derivatives was evaluated by performing a flutter
analysis on the same model as before but neglecting the flutter derivatives related to drag force.
However, flutter instability didn’t arise for wind speeds up to 120 m/s, for this reason it can be
concluded that lateral flutter derivatives are essential, since the critical flutter mode is a vertical,

lateral and torsional coupled mode.

Another approach was investigated, the single-mode criterion, originally proposed by Scanlan [16],
has been applied to the model, but it didn’t lead to flutter instability. This is due to the fact that the
flutter derivative that governs this type of flutter, also known as damping driven flutter, are negative
for every reduced velocity, which is a characteristic feature of this type of bridge decks, designed to

resemble air foils, being extremely stable to single-degree-of-freedom flutter instability.

Nevertheless, these results confirm the excellent aeroelastic behaviour of the Messina Strait bridge,
since maximum wind speed ever recorded at the bridge’s location in significantly lower than the

flutter speed calculated on the approved project.
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