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Summary

Time-frequency localization operators LF,ϕ : L2(Rd) → L2(Rd) were Ąrstly introduced
by Ingrid Daubechies in 1988 and led to a new geometric approach to localization in
the phase-space. In this thesis, after giving the necessary background, we consider the
problem of maximizing the norm of LF,ϕ under the assumption that the window function ϕ
is a normalized Gaussian and two integrability constraints are given for F . More precisely,
we consider the problem of Ąnding the optimal constant C such that ∥LF,ϕ∥ ≤ C, given
that ∥F∥p ≤ A, ∥F∥q ≤ B, where p, q ∈ (1,+∞) and A,B > 0. With the help of some
recent results by Nicola and Tilli on a similar problem, we can Ąnd both the optimal
constant and weight functions that achieve ∥LF,ϕ∥ = C. Depending on the ratio B/A
different regimes arise: when this ratio is sufficiently large or sufficiently small one of
the constraints is unnecessary and those F that achieve optimality are time-frequency
translated Gaussians, while if the ratio is in an intermediate regime the solution changes
drastically and optimal weight functions are not Gaussians any more and can be given
only in a implicit way.
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Chapter 1

Introduction

Among all problems in time-frequency analysis, arguably one of the main one is the prob-
lem of localizing a signal (which can be an audio signal, an image, etc.) in order to derive
information about its energy content in a given time domain and for a given frequency
window. Over time, various tools have been developed to achieve this. In the early 1960s,
Landau, Slepain and Pollak investigated in a series of articles the properties of certain
localization operators obtained using time and frequency projection operators. Later, in
1988, Daubechies introduced so-called time-frequency localization operators, which give
a more geometric perspective to the localization problem. These operators, also called
DaubechiesŠ localization operators, are the focus of this thesis. Before introducing these
operators, basic concepts of functional and Fourier analysis are recalled in Chapter 2.
Subsequently, in Chapter 3, a fundamental tool of time-frequency analysis is introduced,
namely the short-time Fourier transform. These two chapters provide the basis for the
theory of localization operators, which is presented in Chapter 4 in an essential way. Once
these operators have been introduced, a natural question might be the following: how well
can a signal be localized? Is it possible to localize a signal in an arbitrarily small subset of
the time-frequency plane? The negative answer to the latter question stems from the so-
called uncertainty principles. In Chapter 5, various uncertainty principles are presented,
concerning both different transforms and different notions of concentration. Nevertheless,
the central idea of each uncertainty principle is the following: a signal cannot be too
concentrated in both time and frequency. This barrier forces us to change perspective
and instead of asking how well a signal can be concentrated, a more appropriate question
might be: how can a signal be optimally concentrated? Uncertainty principles do indeed
place a lower limit on the ability to localize a signal, but in general do not tell us how to
reach this limit. The last chapter of this thesis focuses precisely on the problem, between
time-frequency analysis and the calculus of variations, of Ąnding upper bounds for the
norm of localization operators and determining which operators reach this limit. In the
Ąrst section of Chapter 6, a recent result by Nicola and Tilli concerning this problem is
presented, while in the second section we show the solution of a generalized version of
their problem.
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Chapter 2

Preliminaries

This chapter is devoted to a brief recall of some basic deĄnitions and results of functional
and Fourier analysis. In Section 2.1 elemental concepts about operators between Banach
and Hilbert spaces are presented. In addition, certain classes of operators, namely the
trace class and the Hilbert-Schmidt class, are introduced with some of their most impor-
tant properties. Then, in Section 2.2 Fourier transform is deĄned and some of its essential
properties are given.

2.1 Basics of Functional Analysis

In this section we turn our attention to linear operators between Banach spaces. Through-
out the section, we will refer to a generic Banach space as X (or Y ), endowed with the
norm ∥ · ∥X . If we are dealing with a Hilbert space, we will denote it by H (or K) and its
inner product by ⟨·, ·⟩H . Pedex in the norm and scalar product may be dropped in case
there is no ambiguity. Moreover, the whole theory is presented under the assumption that
spaces are inĄnite dimensional, but, unless otherwise stated, everything can be adapted
almost directly for Ąnite dimensional spaces.

A generic linear operator between two Banach spaces X and Y will be denoted as
T : X → Y . As a standard notation, the image of x ∈ X through T will be indicated as
T (x), or equivalently as Tx.

Definition 2.1. A linear operator T : X → Y is bounded if there exist C > 0 such that

∥Tx∥Y ≤ C∥x∥X ∀x ∈ X. (2.1)

For linear operators, boundedness is strictly related to continuity, as the following
theorem states.

Theorem 2.2. For a linear operator T the following statements are equivalent:

• T is continuous;

• T is bounded.

6



Preliminaries

We denote the set of linear bounded (continuous) operators from X to Y as B(X, Y ),
while if X = Y we will just write B(X).

The smallest constant for which (2.1) holds is the norm of T .

Definition 2.3. Given T ∈ B(X, Y ) we deĄne its norm as the following number:

∥T∥ := inf¶C > 0 : ∥Tx∥Y ≤ C∥x∥X ∀x ∈ X♢ = sup

∥Tx∥Y

∥x∥X
: x ∈ X \ ¶0♢

}

.

The proof of the equivalence between two deĄnitions is straightforward. Sometimes,
in order to emphasize the spaces between which T operates, we may write the norm of T
as ∥T∥X→Y .

In what follows we will mostly deal with X and Y being L2(Rd), that is a Hilbert
space. For operators between Hilbert spaces, we can express the norm of an operator
using the dual norm:

∥T∥H = sup¶♣⟨Tx, y⟩H ♣ : x, y ∈ H, ∥x∥H = ∥y∥H = 1♢. (2.2)

Among all operators, a rather important class is the one of compact operators.

Definition 2.4. An operator T ∈ B(X, Y ) is compact if, for every bounded sequence
¶xn♢n∈N ⊂ X, the sequence of the images ¶Txn♢n∈N ⊂ Y has a converging subsequence.

It is not difficult to prove that a linear combination of compact operators is still
compact, so the set of compact operators is a subspace of B(X, Y ). The following theorem
states that it is also closed.

Theorem 2.5. The set of compact operators is a closed subspace of B(X, Y ) with respect
to the operator norm topology.

A Ąrst simple example of compact operators is given by Ąnite-rank operators.

Definition 2.6. An operator T ∈ B(X, Y ) is said to be finite-rank if Im(T ) is Ąnite-
dimensional.

Finite rank operators are of some importance in the light of the following immediate
corollary of Theorem 2.5.

Corollary 2.7. Let ¶Tn♢n∈N ⊂ B(X, Y ) be a sequence of Ąnite-rank operators that con-
verges to T ∈ B(X, Y ). Then T is compact.

Therefore, if one wants to show that an operator is compact, a possible approach is to
Ąnd a sequence of Ąnite-rank operators that is converging to it. Another crucial property
of compact operators is the following.

Theorem 2.8. Let X, Y, Z be three Banach spaces and let T ∈ B(X, Y ), S ∈ B(Y, Z).
Then, if at least one between T and S is compact, then ST ∈ B(X,Z) is compact.

From now on we suppose that X is over the Ąeld C and that T ∈ B(X).
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Preliminaries

Definition 2.9. The set σ(T ) = ¶λ ∈ C : T−λI is not invertible♢ is called the spectrum

of T .

For operators between Ąnite-dimensional spaces (matrices), the spectrum consists of
eigenvalues, those λ ∈ C such that T − λI is not injective. However, this is no longer
true for inĄnte-dimensional spaces. The eigenvalues are in the so-called point spectrum,
which is generally only a part of the whole spectrum. However, the following theorem
states that the spectrum of compact operators resembles the spectrum of operators on
Ąnite dimensional spaces.

Theorem 2.10 (FredholmŠs alternative). Let T ∈ B(X) be a compact operator. Then
one and only one of the following happens:

• T − I is invertible;

• T − I is not injective.

Therefore, for compact operators, all the values in the spectrum, except at most for 0,
are eigenvalues.

In conclusion, we focus our attention on operators on Hilbert spaces. Given T ∈
B(H,K), it can be shown that there exists a unique operator T ∗ ∈ B(K,H), called
adjoint of T , such that:

⟨Tx, y⟩K = ⟨x, T ∗y⟩H ∀x ∈ H, y ∈ K.

If H = K, then both T and T ∗ are in B(H) and if T = T ∗ we say that T is self-adjoint.
If an operator is both compact and self-adjoint the following theorem states that it can
be diagonalized in some suitable basis ([2]).

Theorem 2.11. Let H be a separable Hilbert space and T ∈ B(H) a compact and self-
adjoint operator. Then, there exists an orthonormal basis of H composed of eigenvectors
of T , with corresponding eigenvalues ¶λn♢n∈N. Moreover limn→+∞ λn = 0.

From this theorem follows the next corollary, which relates the eigenvalues of a compact
self-adjoint operator with its norm.

Corollary 2.12. Let T ∈ B(H) be a self-adjoint compact operator on a separable Hilbert
space H and suppose its eigenvalues are ordered in such a way that ♣λ1♣ ≥ ♣λ2♣ ≥ . . ..
Then ∥T∥ = ♣λ1♣.

In light of Theorem 2.11, it is clear that working with compact self-adjoint operators
is of great importance. Thus, if an operator T is compact but not self-adjoint, it could be
useful to construct an operator, associated with T , that is also self-adjoint. This task is
easily accomplished considering T ∗T . The relation between T and T ∗T is stated by the
following corollary of Theorem 2.11.

Corollary 2.13. Let T ∈ B(H) be a compact operator. Then, there exists orthonormal
sets ¶en♢n∈N and ¶yn♢n∈N and non-negative real numbers ¶µn♢n∈N, with limn→+∞ µn = 0,
so that

T =
+∞
∑

n=1

µn⟨·, en⟩yn, (2.3)
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Preliminaries

where the series converges in norm. These µn are called singular values of T and are
the square root of the eigenvalues of T ∗T .

2.1.1 Trace-class and Hilbert-Schmidt operators

In this section we are going to introduce two important classes of operators: the trace-class
and the Hilbert-Schmidt class.

The trace of an operator can be deĄned as it is for matrices. However, since we are
in inĄnite-dimensional spaces the usual deĄnition has to be handled carefully. Before
proceeding, we must deĄne what it means for an operator to be non-negative.

Definition 2.14. Let H be a Hilbert space. An operator T ∈ B(H) is said non-negative

if
⟨Tx, x⟩ ≥ 0 ∀x ∈ H. (2.4)

Condition (2.4) is sufficient to show that, on Hilbert spaces over the Ąeld of complex
numbers, non-negative operators are automatically self-adjoint. This result is an imme-
diate corollary of the following form of the polarization identity.

Proposition 2.15. Let S : H × H → C be a sesquilinear form over a complex Hilbert
space H. Then, for every x, y ∈ H:

S(x, y) =
1

4

3
∑

k=0

ikS(x+ iky, x+ iky). (2.5)

Proof. The proof follows from a direct computation of the right-hand side:
3
∑

k=0

ikS(x+ iky, x+ iky) = S(x, x)
3
∑

k=0

ik + S(x, y)
3
∑

k=0

iki−k + S(y, x)
3
∑

k=0

ikik

+ S(y, y)
3
∑

k=0

ikiki−k = 4S(x, y) =⇒ S(x, y) =
1

4

3
∑

k=0

ikS(x+ iky, x+ iky).

Proposition 2.16. Let T ∈ B(H) be a non-negative operator over a complex Hilbert
space H. Then T is self-adjoint.

Proof. First of all we notice that if T is non-negative, the quantity ⟨Tx, x⟩ is real, therefore
⟨Tx, x⟩ = ⟨Tx, x⟩ = ⟨x, Tx⟩. Letting T (·, ·) = ⟨T ·, ·⟩, and using the polarization identity
(2.5):

T (y, x) =
1

4

3
∑

k=0

ikT (y + ikx, y + ikx)
T positive

=
1

4

3
∑

k=0

i−kT (y + ikx, y + ikx)

=
1

4

3
∑

k=0

i−kT
(

ik(x+ i−ky), ik(x+ i−ky)


=
1

4

3
∑

k=0

i−kT (x+ i−k, x+ i−ky) = T (x, y). (2.6)
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Preliminaries

Non-negative operators are somewhat ŞspecialŤ, since their behaviour resembles, in
some sense, the one of complex numbers. In particular, one can deĄne the square root of
non-negative operator. Before we do this, we need a preceding lemma.

Lemma 2.17. The power series of
√

1 − z about 0 converges absolutely for all complex
numbers such that ♣z♣ ≤ 1.

Proof. The power series of
√

1 − z about the origin is given by

√
1 − z =

+∞
∑

n=0

cnz
n = 1 +

+∞
∑

n=1

(−1)n

(

1/2

n



zn,

where the binomial
(r

n

)

is deĄned by r(r−1)···(r−n+1)
n! for every r ∈ R and every n ∈ N, while

if n = 0 we have
(r

0

)

= 1. Since
√

1 − z is analytic for ♣z♣ < 1, the series here converges
absolutely, so now we have to consider the case ♣z♣ = 1. We notice that cn < 0 for every
n ≥ 1 because when n is even

(1/2
n

)

is negative, while if n is odd
(1/2

n

)

is positive, therefore

1 −
√

1 − x =
+∞
∑

n=1

(−cn)xn

is a positive series. Using this fact, given N ∈ N, we have

N
∑

n=0

♣cn♣ = 1 +
N
∑

n=1

(−cn) = 1 + lim
x→1−

N
∑

n=1

(−cn)xn

positive series
≤ 1 + lim

x→1−

+∞
∑

n=1

(−cn)xn = 1 + lim
x→1−

(1 −
√

1 − x) = 2.

Since this holds for every N , taking the limit N → +∞ we obtain
∑+∞

n=1 ♣cn♣ < +∞, which
means exactly that the power series is absolutely convergent.

Theorem 2.18. Let T ∈ B(H) be a non-negative operator. Then, there exist a unique
non-negative operator S ∈ B(H) such that S2 = T . Moreover, S commutes with all
bounded operators commuting with T . We call S the square root of T and we denote it
by S =

√
T .

Proof. If T = 0 we let
√
T = 0, otherwise we deĄne B = I − ∥T∥−1T , where I is the

identity operator. Since T is non-negative, for every x ∈ H such that ∥x∥ = 1, we have

⟨Bx, x⟩ = ⟨(I − ∥T∥−1T )x, x⟩ = ∥x∥2 − ∥T∥−1⟨Tx, x⟩ ≤ ∥x∥2 = 1,

which implies, using polarization identity, that ∥B∥ ≤ 1. Thanks to Lemma 2.17, this
means that the series

∑+∞
n=0 cnB

n is absolutely convergent, therefore convergent, in B(H)
to an operator we indicate with B1/2. We deĄne

S = ∥T∥1/2B1/2 (2.7)
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Preliminaries

and we want to show that S is non-negative and satisĄes S2 = T . We start proving that
B1/2, hence S, is non-negative. Taking x ∈ H, we have

⟨B1/2x, x⟩ = ⟨(I +
+∞
∑

n=1

cnB
n), x⟩ = ∥x∥2 +

+∞
∑

n=1

cn⟨Bnx, x⟩ ≥ ∥x∥2 +
+∞
∑

n=1

cn∥B∥n∥x∥2

≥ ∥x∥2 +
+∞
∑

n=1

cn∥x∥2 = 0,

where we used the fact that cn are negative, ∥B∥ ≤ 1 and that 1+
∑+∞

n=1 cn =
√

1 − x♣x=1 =
0.

Now we shall prove that S2 = T , which means ∥T∥(B1/2)2 = T :

(B1/2)2 =

(

+∞
∑

n=0

cnB
n

(

+∞
∑

m=0

cmB
m



=
+∞
∑

n=0

(

n
∑

m=0

cmcn−m



Bn =
+∞
∑

n=0

dnB
n,

where the rearrangement is justiĄed since all series are absolutely converging. In order to
compute dn =

∑n
m=0 cmcn−m, we notice the following:

1 − x =
√

1 − x
√

1 − x =

(

+∞
∑

n=0

cnx
n

(

+∞
∑

m=0

cmx
m



=
+∞
∑

n=0

(

n
∑

m=0

cmcn−m



xn,

which implies that d0 = 1, d1 = −1 and dn = 0 for n ≥ 2, therefore B1/2 = I −B and, in
the end:

S2 = ∥T∥(B1/2)2 = ∥T∥(I −B) = ∥T∥(I − I + ∥T∥−1T ) = T.

Lastly, since the series that deĄnes B1/2, hence S, is absolutely convergent, it commutes
with every bounded operator commuting with T .

Up to now we only proved the existence of a square root for T , in particular the one
given by the expression (2.7). To prove uniqueness of the square root we start supposing
S0 is another non-negative operator in B(X) such that S2

0 = T . We notice that S0

commutes with T , indeed S0T = S0S
2
0 = S2

0S0 = TS0. Therefore, S0 commutes also with
S, thus we have:

(S − S0)2S + (S − S0)2S0 = (S − S0)[(S − S0)S + (S − S0)S0]

= (S − S0)(S2 − S0S + SS0 − S2
0)

= (S − S0)(S2 − S2
0) = (S − S0)(T − T ) = 0.

But (S − S0)2S and (S − S0)2S0 are non-negative operator, so they must vanish, in
particular also their difference (S − S0)2S − (S − S0)S

0 = (S − S0)3 is zero. This implies
(S − S0)4 = (S − S0)(S − S0)3 = 0, but since both S and S0 are self-adjoint, for every
x ∈ H we have:

0 = ⟨(S − S0)4x, x⟩ = ⟨(S − S0)2u, (S − S0)2u⟩ = ∥(S − S0)2x∥2 =⇒ (S − S0)2 = 0

and with the same argument we conclude that also S − S0 = 0.
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Preliminaries

Remark. From expression (2.7) it is clear that, if T is compact then also
√
T is compact,

since it is a limit of compact operators.

Now that we have established the notion of square root of an operator, we will show
how to decompose an operator T into a positive operator and a partial isometry, which
will be deĄned later. This decomposition is called polar decomposition of T .

Definition 2.19. Given an operator T ∈ B(H) we deĄne its absolute value as

♣T ♣ :=
√
T ∗T . (2.8)

Definition 2.20. A linear operator U ∈ B(H) is a partial isometry if it is an isometry
over (KerU)⊥, i.e. ∥Ux∥ = ∥x∥ for every x ∈ (KerU)⊥.

Proposition 2.21. Let U ∈ B(H) be a partial isometry. Then also U∗ is a partial
isometry.

Proof. Since U is a partial isometry, from polarization identity it follows that ⟨Ux, Uy⟩ =
⟨x, y⟩ for every x, y ∈ (Ker(U))⊥. Clearly the same equality holds if x ∈ (Ker(U))⊥ while
y ∈ Ker(U), so U∗U is the identity over (Ker(U))⊥. This implies that U∗ is an isometry
on Im(U) = (Ker(U∗))⊥, hence it is a partial isometry too.

Theorem 2.22. Given T ∈ B(H) there exist unique a partial isometry U such that

T = U ♣T ♣, (2.9)

which is uniquely determined by the condition KerU = KerT .

Proof. We start deĄning Ũ : Im♣T ♣ → ImT . Every x ∈ Im♣T ♣ can be written as x = ♣T ♣y
for some y ∈ H, so we can deĄne Ũ(x) = Ũ(♣T ♣y) := Ty. We notice that

∥x∥2 = ∥♣T ♣y∥2 = ⟨♣T ♣y, ♣T ♣y⟩ = ⟨♣T ♣2y, y⟩ = ⟨T ∗Ty, y⟩ = ∥Ty∥2 = ∥Ũx∥.

This computation ensures us that the deĄnition of Ũ is consistent (if x = ♣T ♣y1 = ♣T ♣y2 for
some y1, y2 ∈ H, then ♣T ♣(y1 −y2) = 0, but ∥♣T ♣(y1 −y2)∥ = ∥T (y1 −y2)∥, therefore Ty1 =
Ty2) and it implies that Ũ is an isometry over Im(♣T ♣), thus it can be uniquely extended
to an isometry of Im(♣T ♣) over ImT . The deĄnition of the map U is straightforward
extending Ũ to all H deĄning it 0 on (Im(♣T ♣))⊥. Since ♣T ♣ is self-adjoint (Im(♣T ♣))⊥ =
Ker(♣T ♣). Furthermore, since ∥♣T ♣y∥ = ∥Ty∥, ♣T ♣y = 0 if and only if Ty = 0, therefore
Ker♣T ♣ = KerT which implies, in the end, that KerU = KerT .

Lastly we shall prove that U is unique. Suppose V is another partial isometry such that
T = V ♣T ♣ and KerV = KerT . First condition implies that T = U ♣T ♣ = V ♣T ♣, so U and
V coincide over Im♣T ♣ (and by continuity over its closure), while second condition implies
that KerT = KerU = KerT , so U and V coincide over Ker♣T ♣ = (Im♣T ♣)⊥, therefore U
and V coincide over H = Im♣T ♣ ⊕ Ker♣T ♣.
Definition 2.23. Let H be a separable Hilbert space with orthonormal basis ¶en♢n∈N.
Given T ∈ B(H) a non-negative operator we deĄne the trace of T as

tr(T ) =
+∞
∑

n=1

⟨Ten, en⟩. (2.10)

12
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Since T is non-negative, every term of the sum in (2.10) is non-negative, so the series
is either convergent or divergent. Nevertheless, in principle, it could depend on the basis
¶en♢n∈N. The following theorem states that the deĄnition makes sense, namely that the
trace does not depend on the basis.

Proposition 2.24. The deĄnition of tr given by (2.10) is independent of the basis.

Proof. Let T ∈ B(H) be a non-negative operator and ¶en♢n∈N and ¶fn♢n∈N be two
orthonormal basis of H. We have

+∞
∑

n=1

⟨Ten, en⟩ =
+∞
∑

n=1

∥
√
Ten∥2 =

+∞
∑

n=1

(

+∞
∑

m=1

♣⟨
√
Ten, fm⟩♣2



=
+∞
∑

m=1

(

+∞
∑

n=1

♣⟨
√
Tfm, en⟩♣2



=
+∞
∑

m=1

∥
√
Tfm∥2

=
+∞
∑

m=1

⟨Tfm, fm⟩,

where we used the fact that
√
T is self-adjoint, while the exchange of series is allowed

because all terms are non-negative.

Definition 2.25. An operator T ∈ B(H) is called Hilbert-Schmidt if and only if
tr(T ∗T ) < +∞. We deĄne the Hilbert-Schmidt norm of an operator as ∥T∥HS =
√

tr(T ∗T ).

From the deĄnition of the trace we can see that, given an orthonormal basis ¶en♢n∈N,

∥T∥2
HS = tr(T ∗T ) =

+∞
∑

n=1

⟨T ∗Ten, en⟩ =
+∞
∑

n=1

⟨Ten, T en⟩ =
+∞
∑

n=1

∥Ten∥2, (2.11)

so we can say, in an equivalent way, that an operator is Hilbert-Schmidt if and only if
∑+∞

n=1 ∥Ten∥2 < +∞. Thanks to Proposition 2.24 we immediately see that the Hilbert-
Schmidt norm is independent on the choice of the basis.

We are now going to show some properties of Hilbert-Schmidt and trace-class operators.

Proposition 2.26. Let T ∈ B(H) be a Hilbert-Schmidt operator. Then, also ♣T ♣ and T ∗

are Hilbert-Schmidt operators and

∥♣T ♣∥HS = ∥T ∗∥HS = ∥T∥HS. (2.12)

Proof. We already know that, for every x ∈ H, ∥Tx∥2 = ∥ ♣T ♣x∥2, therefore from (2.11)
we immediately see that ∥♣T ♣∥HS = ∥T∥HS.

Consider now an orthonormal basis ¶en♢n∈N of H. From (2.11) we have:

∥T∥2
HS =

+∞
∑

n=1

∥Ten∥2 =
+∞
∑

n=1

(

+∞
∑

m=1

♣⟨Ten, em⟩♣2


=
+∞
∑

m=1

(

+∞
∑

n=1

♣⟨en, T
∗em⟩♣2



=
+∞
∑

m=1

∥T ∗em∥2 = ∥T ∗∥2
HS,

where exchange of series is allowed since all terms are non-negative.

13
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Theorem 2.27. Let T ∈ B(H) be a Hilbert-Schmidt operator. Then, ∥T∥ ≤ ∥T∥HS and
T is compact. Moreover, a compact operator T is Hilbert-Schmidt if and only if

∑+∞
n=1 µ

2
n,

where ¶µn♢+∞
n=1 are the singular values of T .

Proof. Let ¶en♢n∈N be an orthonormal basis of H and let x ∈ H. We have:

∥Tx∥2 =
+∞
∑

n=1

♣⟨Tx, en⟩♣2 =
+∞
∑

n=1

♣⟨x, T ∗en⟩♣2 ≤ ∥x∥2
+∞
∑

n=1

∥T ∗en∥2

= ∥x∥2∥T ∗∥2
HS

(2.12)
= ∥x∥2∥T∥2

HS.

Taking the supremum over all x ∈ H gives us that ∥T∥ ≤ ∥T∥HS.
To prove that T is compact, consider the following sequence of Ąnite-rank operators

TN =
∑N

n=1⟨·, en⟩Ten. We have that TN → T in B(H), indeed:

∥T − TN ∥ ≤ ∥T − TN ∥2
HS =

+∞
∑

n=N+1

∥Ten∥2 → 0 as N → +∞,

therefore, from Corollary 2.7, T is compact.
Lastly, if T is a compact operator then also T ∗T is compact, as well as self-adjoint,

hence we can consider as orthonormal basis of H the one given by its eigenvectors ¶en♢n∈N.
Recalling Corollary 2.13, we know that µ2

n are exactly the eigenvalues of T ∗T . For such
basis we have:

∥T∥2
HS =

+∞
∑

n=1

∥Ten∥2 =
+∞
∑

n=1

⟨Ten, T en⟩ =
+∞
∑

n=1

⟨T ∗Ten, en⟩ =
+∞
∑

n=1

µ2
n.

Proposition 2.28. Let T ∈ B(H) be a Hilbert-Schmidt operator and S ∈ B(H). Then
TS and ST are both Hilbert-Schmidt operators.

Proof. Given an orthonormal basis ¶en♢n∈N of H we have:

∥ST∥2
HS =

+∞
∑

n=1

∥STen∥2 ≤ ∥S∥2
+∞
∑

n=1

∥Ten∥2 = ∥S∥2∥T∥2
HS,

so ST is Hilbert-Schmidt. Moreover, from Proposition 2.12 follows:

∥TS∥HS = ∥(TS)∗∥HS = ∥S∗T ∗∥HS ≤ ∥S∗∥∥T ∗∥HS = ∥S∥∥T∥HS.

We can now turn back to trace-class operator. It is evident that trace-class opera-
tors and Hilbert-Schmidt operators are strictly related. Indeed, as seen in the proof of
Proposition 2.24, we have

tr♣T ♣ =
+∞
∑

n=1

⟨♣T ♣en, en⟩ =
+∞
∑

n=1

∥
√

♣T ♣en∥2 = ∥T∥2
HS,

14
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so an operator is trace-class if and only if
√

♣T ♣ is Hilbert-Schmidt. By virtue of this link,
we can exploit properties of Hilbert-Schmidt operators in order to obtain information
about trace-class operators. First of all, we are going to prove that expression (2.10) is
well-deĄned for every trace-class operator and not only for non-negative ones.

Theorem 2.29. Let T ∈ B(H) be a trace-class operator and ¶en♢n∈N an orthonormal
basis of H. Then

∑+∞
n=1⟨Ten, en⟩ converges absolutely and the limit is independent of the

basis.

Proof. We start proving that the series converges absolutely. Letting T = U ♣T ♣ be the
polar decomposition of T , we want to show that:

+∞
∑

n=1

♣⟨Ten, en⟩♣ =
+∞
∑

n=1

♣⟨U
√

♣T ♣
√

♣T ♣en, en⟩♣ =
+∞
∑

n=1

♣⟨
√

♣T ♣en,
√

♣T ♣U∗en⟩♣ < +∞. (2.13)

From Cauchy-SchwarzŠ inequality, for every term we have that ♣⟨
√

♣T ♣en,
√

♣T ♣U∗en⟩♣ ≤
∥
√

♣T ♣en∥ ∥
√

♣T ♣U∗en∥. Since T is trace-class,
√

♣T ♣ is Hilbert-Schmidt and, thanks to
Proposition 2.28, also

√

♣T ♣U∗ is a Hilbert-Schmidt operator, therefore both ¶∥
√

♣T ♣en∥♢n∈N

and ¶∥
√

♣T ♣U∗en∥♢n∈N are in ℓ2(N). This allows us to use the Cauchy-Schwarz inequality
in the last expression of (2.13), thus obtaining:

+∞
∑

n=1

♣⟨Ten, en⟩♣ =
+∞
∑

n=1

♣⟨
√

♣T ♣en,
√

♣T ♣U∗en⟩♣ ≤
+∞
∑

n=1

∥
√

♣T ♣en∥ ∥
√

♣T ♣U∗en∥

C−S
≤
(

+∞
∑

n=1

∥
√

♣T ♣en∥2

1/2(+∞
∑

n=1

∥
√

♣T ♣U∗en∥2

1/2

≤ ∥
√

♣T ♣∥2
HS.

The proof of the independence of the basis is exactly the same as the one for Proposition
2.24, because now the exchange of series is allowed since the series is convergent.

Another immediate corollary of Proposition 2.28 is the following proposition

Proposition 2.30. Let T ∈ B(H) be a trace-class operator. Then T is also Hilbert-
Schmidt.

Proof. Let T = U ♣T ♣ be the polar decomposition of T . Since T is trace-class
√

♣T ♣ is a
Hilbert-Schmidt operator. Therefore, from Proposition 2.28 follows that T = U

√

♣T ♣
√

♣T ♣
is a Hilbert-Schmidt operator.

Theorem 2.31. Let T ∈ B(H). Then T is trace-class if and only if it is compact and
∑+∞

n=1 µn, where ¶µn♢n∈N are the singular values of T . Moreover, if T is trace-class then
tr♣T ♣ =

∑+∞
n=1 µn and additionally, if it is also self-adjoint, trT =

∑+∞
n=1 λn where ¶λn♢n∈N.

Finally, we have ∥T∥ ≤ tr♣T ♣.

Proof. Let T = U ♣T ♣ be the polar decomposition of T . If T is trace-class
√

♣T ♣ is Hilbert-
Schmidt, but from Theorem 2.27 we have that

√

♣T ♣ is compact, therefore also T =
U
√

♣T ♣
√

♣T ♣ and ♣T ♣ are compact. Not only ♣T ♣ is compact, but it is also self-adjoint and
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its eigenvalues are exactly ¶µn♢n∈N. Letting ¶en♢n∈N be an orthonormal basis made up of
eigenvectors of ♣T ♣, we have

tr♣T ♣ =
+∞
∑

n=1

⟨♣T ♣en, en⟩ =
+∞
∑

n=1

µn.

Conversely, if T is a compact operator the previous formula still holds and shows that T is
also trace-class. With the same reasoning, if T is self-adjoint and trace-class, we can write
the trace with respect to the basis made up its eigenvectors thus obtaining trT =

∑+∞
n=1 λn.

For the last part of the Theorem, we notice that ♣T ♣ is a compact self-adjoint non-
negative operator, therefore, assuming its eigenvalues are decreasingly ordered, from
Corollary 2.12 we have that ∥♣T ♣∥ = µ1, hence:

∥T∥ = ∥U ♣T ♣∥ ≤ ∥♣T ♣∥ = µ1 ≤
+∞
∑

n=1

µn = tr♣T ♣.

In the special caseH = L2(Rd) we are able to give a characterization of Hilbert-Schmidt
operators.

Theorem 2.32. An operator T ∈ B(L2(Rd)) is Hilbert-Schmidt if only if there exists a
function KT ∈ L2(Rd × Rd), called integral kernel, such that

(Tf)(x) =

✂
Rd

KT (x, y)f(y) dy ∀f ∈ L2(Rd). (2.14)

Moreover ∥T∥HS = ∥KT ∥2.

Proof. We start proving that, given K ∈ L2(R2d), the corresponding integral operator
deĄned by (2.14) is continuous. Denoting with TK such operator, for every f ∈ L2(Rd),
we have:

∥TKf∥2
L2(Rd) =

✂
Rd

♣TKf(x)♣2 dx =

✂
Rd

∣

∣

∣

✂
Rd

K(x, y)f(y) dy
∣

∣

∣

2
dx

≤
✂
Rd


✂
Rd

♣K(x, y)♣♣f(y)♣ dy
2

dx.

From FubiniŠs theorem we have that ♣K(x, ·)♣ ∈ L2(Rd) for almost every x ∈ Rd. There-
fore, we can apply Cauchy-SchwarzŠ inequality in the inner integral, thus obtaining:

∥TKf∥2
L2(Rd) ≤ ∥f∥2

L2(Rd)

✂
Rd

✂
Rd

♣K(x, y)♣2 dy dx = ∥K∥2
L2(R2d)∥f∥L2(Rd), (2.15)

which shows that TK is a bounded operator. Moreover, TK is clearly linear, therefore
TK ∈ B(L2(Rd)).

We can now suppose to have a Hilbert-Schmidt operator T ∈ B(H) and an orthonor-
mal basis ¶en♢n∈N of L2(Rd). We want to show that (2.14) holds with the following
kernel:

KT (x, y) =
∑

(m,n)∈N2

⟨Ten, em⟩L2(Rd)em(x)en(y). (2.16)
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We point out that ¶em ⊗ en♢(m,n)∈N2 is an orthonormal basis of L2(R2d). Moreover, from
(2.15), it follows that, for every f ∈ L2(Rd), the operator K ∈ L2(R2d) → Af (K) =
TKf ∈ L2(Rd) is linear and continuous. Thus, for every f ∈ L2(Rd) we have:

✂
Rd

KT (x, y)f(y) dy = Af (KT )(x) = Af

(

∑

(m,n)∈N2

⟨Ten, em⟩em ⊗ en



(x)

A.2
=

∑

(m,n)∈N2

Af

(⟨Ten, em⟩em ⊗ en

)

(x)

A.3
=

+∞
∑

m=1

+∞
∑

n=1

⟨Ten, em⟩Af (em ⊗ en)(x)

=
+∞
∑

m=1

+∞
∑

n=1

⟨Ten, em⟩
✂
Rd

em(x)en(y)f(y) dy

=
+∞
∑

m=1

+∞
∑

n=1

⟨T (⟨f, en⟩en), em⟩em(x)

=
+∞
∑

m=1

⟨Tf, em⟩em(x) = (Tf)(x),

where the use of A.2 is justiĄed because,
∑

(m,n)∈N2⟨Ten, em⟩em ⊗ en converges uncondi-
tional, while the use of A.3 is justiĄed because Af is continuous, thus (A.2) implies that
∑

(m,n)∈N2 Af

(⟨Ten, em⟩em ⊗ en

)

converges unconditionally. Finally, we have:

∥KT ∥2
L2(R2d) =

∑

(n,m)∈N2

♣⟨Ten, em⟩♣2 =
+∞
∑

n=1

+∞
∑

m=1

♣⟨Ten, em⟩♣2

=
+∞
∑

n=1

∥Ten∥2
L2(Rd) = ∥T∥2

HS.

(2.17)

Conversely, if we have K ∈ L2(R2d) and we deĄne TK by (2.14), we have to show that
this is a Hilbert-Schmidt operator. We already proved that TK ∈ B(H). The proof that
it is also Hilbert-Schmidt is straightforward since (2.17) still holds.

In light of this theorem, operators deĄned by (2.14) are called Hilbert-Schmidt integral
operators.

Proposition 2.33. Let T be a Hilbert-Schmidt integral operator over L2(Rd) with integral
kernel K ∈ L2(R2d). Then, its adjoint operator is given by

T ∗f(x) =

✂
Rd

K(y, x)f(y) dy. (2.18)

Therefore T is self-adjoint if and only if K(x, y) = K(y, x).

17
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Proof. Let f, g ∈ L2(Rd). We start showing that K(x, y)f(y)g(x) ∈ L1(R2d):

✂
R2d

♣K(x, y)♣♣f(y)♣♣g(x)♣ dx dy Tonelli
=

✂
Rd


✂
Rd

♣K(x, y)♣♣f(y)♣ dy


♣g(x)♣ dx

=

✂
Rd

(T♣K♣♣f ♣)(y)♣g(y)♣
C−S
≤ ∥T♣K♣∥2∥g∥2 ≤ ∥K∥2∥f∥2∥g∥2 < +∞,

where T♣K♣ denotes the Hilbert-Schmidt integral operator with kernel ♣K♣ and ∥T♣K♣f∥2 ≤
∥K∥2∥f∥2 because T♣K♣ is Hilbert-Schmidt, therefore ∥T♣K♣∥ ≤ ∥T♣K♣∥HS = ∥K∥2. We are
now in the position to use FubiniŠs theorem:

⟨Tf, g⟩ =

✂
Rd


✂
Rd

K(x, y)f(y) dy



g(x) dx =

✂
Rd


✂
Rd

K(x, y)g(x) dx



f(y) dy

=

✂
Rd


✂
Rd

K(x, y)g(x) dx



f(y) dy = ⟨f, T ∗g⟩,

where the expression of T ∗ is exactly the one in (2.18).

2.2 Fourier Transform and its properties

In this section we introduce the Fourier transform with its elementary properties, its rela-
tion with some fundamental operators in time-frequency analysis and with the convolution
product.

Definition 2.34. Let f ∈ L1(Rd). We deĄne the Fourier transform of f the function
as

Ff(ω) = f̂(ω) :=

✂
Rd

e−2πiω·tf(t) dt. (2.19)

It is straightforward to see that the deĄnition is makes sense and that Ff ∈ L∞(Rd)
with ∥Ff∥∞ ≤ ∥f∥1. Therefore, F can be seen as a linear operator between L1(Rd) and
L∞(Rd) with ∥F∥ ≤ 1. Actually, taking f ≥ 0 a.e., we have that f̂(0) = ∥f∥1, which
gives us the equality.

The Fourier transform of an L1(Rd) is not only bounded, as stated by the Riemann-
Lebesgue lemma.

Theorem 2.35 (Riemann-Lebesgue lemma). Let f ∈ L1(Rd). Then f̂ ∈ C0(Rd) = ¶f :
Rd → C continuous such that lim♣t♣→+∞ ♣f(t)♣ = 0♢.

Definition 2.36. Let f ∈ L1(Rd). We deĄne the inverse Fourier transform of the
function f as

F
−1f(t) = f̌(t) :=

✂
Rd

e2πiω·tf(ω) dω. (2.20)

The inverse Fourier transform is denoted with F −1 because it is actually the inverse
operator of the Fourier transform as stated by the inversion theorem.
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Theorem 2.37 (Inversion theorem). Let f ∈ L1(Rd) and suppose that also f̂ ∈ L1(Rd).
Then

f(t) = F
−1 ◦ Ff(t) =

✂
Rd

f̂(ω)e2πiω·t dω.

If f is in L2(Rd), the integral in (2.19) in general will not converge. Nevertheless,
we can deĄne the Fourier transform of an L2 function through a density argument. For
example, one can use L1(Rd)∩L2(Rd), which is a dense subspace of L2(Rd). On this space
one can show that the Fourier transform is an isometry with respect to the L2 norm and
therefore it extends to an isometry on the whole L2(Rd). This is stated by the Plancherel
theorem.

Theorem 2.38 (Plancherel theorem). If f ∈ L1(Rd) ∩ L2(Rd) then ∥f∥2 = ∥f̂∥2.

Thanks to the polarization identity this implies that F preserves the inner product in
L2(Rd):

⟨f, g⟩L2(Rd) = ⟨f̂ , ĝ⟩L2(Rd) ∀f, g ∈ L2(Rd), (2.21)

therefore the Fourier transform F is a unitary operator on L2(Rd). Result (2.21) is called
Parseval formula.

So far we have seen that the Fourier transform is deĄned on L1 and L2. It can be
shown, through Riesz-ThorinŠs interpolation theorem, that this is enough to extended the
Fourier transform to all Lp spaces for 1 < p < 2 (see [9, Section 2.2.4]). Moreover, the
following inequality holds.

Theorem 2.39 (Hausdorff-Young). Let 1 ≤ p ≤ 2 and let p′ such that 1
p + 1

p′
= 1. Then

∥f̂∥p′ ≤ ∥f∥p.

In what follows we will need the sharp version of the Hausdorff-Young inequality:

∥f̂∥p′ ≤
(

p1/p

p′1/p′

d/2

∥f∥p = Ad
p∥f∥p, (2.22)

where Ap is the so-called Babenko-Bechner constant.
Having considered the spaces over which the Fourier transform is deĄned, we can

focus on some of its properties. In particular, we want to focus on the close relationship
that arises between regularity and decay properties. This is explained by the following
theorems.

Theorem 2.40. Let f ∈ L1(Rd). If ♣t♣kf ∈ L1(Rd) for some k ∈ N, then f̂ ∈ Ck
0 (Rd)

and the following holds for every α ∈ Nd with ♣α♣ ≤ k:

F ((−2πit)αf) (ω) = ∂α
Ff(ω). (2.23)

Theorem 2.41. Let f ∈ Ck(Rd) for some k ∈ N. If f, ∂αf ∈ L1(Rd) for every α ∈ Nd

with ♣α♣ ≤ k then
F (∂αf) (ω) = (2πiω)α

Ff(ω). (2.24)

In particular this implies that f̂(ω) = o
(♣ω♣−k

)

as ♣ω♣ → +∞.
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In summary, previous theorems establish a duality between regularity and decay: if a
function is smooth, then its Fourier transform decays rapidly and vice versa.

We now introduce some fundamental operators in Fourier and time-frequency analysis.
Given x, ξ ∈ Rd and λ > 0 we deĄne the time-shift (or translation) operator Tx

Txf(t) = f(t− x) ∀ t ∈ Rd, (2.25)

the modulation operator Mξ

Mξf(t) = e2πiξ·tf(t) ∀ t ∈ Rd, (2.26)

and the dilation operator Dλ

Dλf(t) = λdf(λt) ∀ t ∈ Rd. (2.27)

Moreover, time-shift and modulation operators can be combined into a time-frequency
shift operator

π(x, ξ)f(t) = MξTxf(t) ∀ t ∈ Rd. (2.28)

It is easy to check that all these operators are isometric isomorphisms with respect to the
L1 norm. We show how these operators act under the Fourier transform.

Proposition 2.42. Let f ∈ L1(Rd). Then the following holds:

(i) F (Txf)(ω) = M−xf̂(ω);

(ii) F (Mξf)(ω) = Tξ f̂(ω);

(iii) F (Dλf)(ω) = f̂



ω

λ



.

We point out that the second property, namely that F (Mξf) = Tξ f̂ , is shedding light
on the role of modulation operator: while Tx acts as a translation in the time domain,
Mξ is a translation in the frequency domain. Therefore the time-frequency shift operator
π(x, ξ) is indeed a shift operator because it acts as a translation in the joint time-frequency
domain.

Thanks to these properties, Theorems 2.40 and 2.41 we can compute, as a useful
example, the Fourier transform of Gaussians.

Example 2.43. We want to compute the Fourier transform of Guassians of the kind
e−λπ♣t♣2 , where λ > 0 and ♣t♣2 is the Euclidean norm of t ∈ Rd. We point out that the
Fourier transform of a Gaussian is well-deĄned because it is a function in the Schwartz
class, which is a subspace of L1(Rd). We will show that the Fourier transform maps
Gaussian into Gaussians. More precisely, the following formula holds:

F (e−λπ♣·♣2)(ω) =
1

λd/2
e− 1

λπ♣ω♣2 ∀ω ∈ Rd. (2.29)

We start considering the 1-dimensional case and for the ease of notation we let φλ(t) =
e−λπt2

for t ∈ R. First of all we consider φ = φ1, for which we have:

dφ

dt
(t) = −2πtφ(t).
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If we take the Fourier transform of both members, using (2.24) in the former and (2.23)
in the latter we obtain:

2πiωφ̂(ω) = −i dφ̂
dω

(ω) =⇒ dφ̂

dω
(ω) = −2πωφ̂(ω),

which is exactly the same equation satisĄed by φ, therefore φ̂(ω) = Ce−πω2

for some
C ∈ R. Since φ̂(0) =

✁
R
φ(t) dt = ∥φ∥1 = 1, we obtain that C = 1.

The general case can be proved using the dilation operator:

φλ(t) = e−λπt2

= e−π(
√

λt)
2

=
1√
λ
D√

λφ(t),

thus taking the Fourier transform:

φ̂λ(ω) =
1√
λ

F (D√
λφ)(ω)

2.42(iii)
=

1√
λ
φ̂



ω√
λ



=
1√
λ
e− 1

λ
πω2

.

The passage to the multidimensional case is almost straightforward since e−λ♣t♣2 =
∏d

j=1 e
−λt2

j ,
therefore:

F (e−λπ♣·♣2)(ω) =

✂
Rd

e−λπ♣t♣2e−2πiω·t dt =
d
∏

j=1

✂
R

e−λπt2
j e−2πiωjtj dtj

=
d
∏

j=1

1√
λ
e− 1

λ
πω2

j =
1

λd/2
e− 1

λ
π♣ω♣2 .

We conclude this section by considering how convolution product relates to the Fourier
transform. Given two functions f, g : Rd → Rd, we recall that their convolution is given
by:

(f ∗ g)(x) =

✂
Rd

f(y)g(x− y) dy.

The well-posedness of the convolution is given by YoungŠs theorem.

Theorem 2.44 (Young). Given f ∈ Lp(Rd) and g ∈ Lq(Rd), suppose that 1
p + 1

q = 1 + 1
r

with r ≥ 1. Then f ∗ g ∈ Lr(Rd) and ∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

We notice that, if p = q = 1, then r = 1 so the convolution of two L1 functions is still
in L1. Thanks to this, using FubiniŠs theorem it is immediate to see that:

F (f ∗ g) = Ff · Fg,

which explains the connection between convolution and Fourier transform. Just like as
YoungŠs inequality, in what follows we will need the sharp version of Hausdorff-YoungŠs
inequality, namely:

∥f ∗ g∥r ≤ (ApAqAr′)d∥f∥p∥g∥q. (2.30)
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Chapter 3

Short-Time Fourier Transform

The Fourier transform is a widely used tool in both theoretical and applied settings. In
particular, from an applied point of view, the importance of the Fourier transform lies
primarily in the possibility of examining a signal in the frequency domain, and thus ob-
taining information that would otherwise be difficult to derive from the time domain.
However, the distinction between these domains is rigid, whereas it is of great importance
to have a tool with which time and frequency characteristics can be examined simultane-
ously. There are many representations that can accomplish this task, such as the Wigner
distribution, the ambiguity function and so on. The basic time-frequency representation
of a signal is probably the short-time Fourier transform or STFT. In this chapter we will
deĄne the STFT and describe some of its properties. The reference for this chapter is the
book by Gröchenig [10].

3.1 STFT: definition and properties

The short-time Fourier transform or STFT is a powerful tool used in signal processing
and time-frequency analysis to study the properties of a signal locally in both time and
frequency. The main idea behind STFT is the following: if we want some information
about the spectrum (i.e. frequencies) of a signal f at a certain time, say T , we could
choose an interval (T − ∆T, T + ∆T ) and take the Fourier transform of fχ(T −∆T,T +∆T ).
Normally, multiplication by a characteristic function will not yield a regular function (not
even continuous) and, in light of the duality between regularity and decay, the Fourier
transform of fχ(T −∆T,T +∆T ) will not decay quickly. The problem with this not quick
decay is that in this case the energy in the frequency domain will be spread all over the
domain. Therefore, a sharp cutoff in the time domain leads to a ŞpoorŤ localization in
the frequency domain. In order to avoid this kind of problem, we could think to multiply
the signal f by a smooth function.

Definition 3.1. Fix a function y /= 0, called window function. The short-time Fourier

transform of a function f with window ϕ is deĄned as

Vϕf(x, ω) =

✂
Rd

f(t)ϕ(t− x)e−2πiω·t dt, (x, ω) ∈ R2d. (3.1)
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In the above deĄnition we did not specify where f and ϕ are chosen. The reason is
that various combinations of f and ϕ can lead to a ŞgoodŤ deĄnition. We notice that (3.1)
can be seen in an alternative way:

Vϕf(x, ω) = F (fTxϕ)(ω), (3.2)

therefore STFT is well-deĄned whenever the Fourier transform of this function is. For
example, if both f and ϕ are in L2(Rd) then fTxϕ, is in L1(Rd) for every x ∈ Rd and so
the integral in (3.1) is deĄned. In this special case the STFT can be written as a scalar
product in L2(Rd):

Vϕf(x, ω) = ⟨f,MωTxϕ⟩ = ⟨f, π(x, ω)ϕ⟩.
In general, the STFT of f with respect to ϕ will be deĄned whenever ⟨f,MωTxϕ⟩ is an
expression of some sort of duality. For example, if f ∈ S ′(Rd) and ϕ ∈ S(Rd), then
MωTxϕ ∈ S(Rd), therefore ⟨f,MωTxϕ⟩ can be seen as the usual duality between tempered
distributions and functions in the Schwartz space. Despite this remark, we will mainly
focus on the case in which both the window and the signal are in some Lebesgue space
Lp(Rd).

3.1.1 Properties of STFT

In this section we will introduce and prove some basic properties of STFT. In particular,
as we did for the Fourier transform, we want to know to which spaces Vϕf belongs.

Theorem 3.2. Let f1, f2, ϕ1, ϕ2 ∈ L2(Rd). Then Vϕifi ∈ L2(R2d) and the following holds:

⟨Vϕ1
f1,Vϕ2

f2⟩ = ⟨f1, f2⟩⟨ϕ1, ϕ2⟩. (3.3)

Proof. We start proving that, if f ∈ L2(Rd) and ϕ ∈ S(Rd), the STFT of f with window
ϕ is in L2(R2d). Since we supposed ϕ ∈ S(Rd), the function fTxϕ is in L2(Rd) for every
x ∈ Rd, hence:

∥Vϕf∥2
2 =

✂
R2d

♣Vϕf(x, ω)♣2 dx dω Tonelli
=

✂
Rd


✂
Rd

♣Vϕf(x, ω)♣2


dω

(3.2)
=

✂
Rd


✂
Rd

♣F (fTxϕ)♣2(ω) dω



dx
Plancherel

=

✂
Rd


✂
Rd

♣f(t)ϕ(t− x)♣2 dt


dx

Tonelli
=

✂
Rd

♣f(t)♣2

✂
Rd

♣ϕ(t− x)♣2 dx


dt = ∥f∥2
2∥ϕ∥2

2.

Now, consider f1, f2 ∈ L2(Rd) and ϕ1, ϕ2 ∈ S(Rd). Both Vϕ1
f1 and Vϕ2

f2 are in
L2(R2d), so their product is in L1(R2d), hence we can use FubiniŠs theorem in the following:

⟨Vϕ1f1,Vϕ2
f2⟩ =

✂
R2d

Vϕ1
f1(x, ω)Vϕ2

f2(x, ω) dx dω

Fubini
=

✂
Rd


✂
Rd

F (f1Txϕ1)(ω)F (f2Txϕ2)(ω) dω



dx

Parseval
=

✂
Rd


✂
Rd

f1(t)ϕ1(t− x) f2(t)ϕ2(t− x) dt



dx

Fubini
=

✂
Rd

f1(t)f2(t)


✂
Rd

ϕ2(t− x)ϕ1(t− x) dx



dt = ⟨f1, f2⟩⟨ϕ2, ϕ1⟩.
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The transition from S(Rd) to whole L2(Rd) is done trough a density argument. Indeed,
for f1, f2 ∈ L2(Rd) and ϕ1 ∈ S(Rd) Ąxed, the mapping ϕ2 ∈ L2(Rd) → ⟨Vϕ1

f1,Vϕ2
f2⟩ is

a linear functional and we just showed that it is bounded over S(Rd), where it coincides
with ⟨f1, f2⟩⟨ϕ2, ϕ1⟩. Since SchwartzŠs class is a dense subspace of L2(Rd) it extends to
a bounded linear operator for every ϕ2 ∈ L2(Rd). Similarly, for Ąxed f1, f2 ∈ L2(Rd)
and ϕ2 ∈ L2(Rd) the mapping ϕ1 ∈ L2(Rd) → ⟨Vϕ1

f1,Vϕ2
f2⟩ is an antilinear functional

that coincides with ⟨f1, f2⟩⟨ϕ2, ϕ1⟩ over S(Rd), therefore it extends to a bounded linear
functional over whole L2(Rd).

Corollary 3.3. If f, ϕ ∈ L2(Rd) then

∥Vϕf∥2 = ∥f∥2∥ϕ∥2. (3.4)

In particular, if ∥ϕ∥2 = 1, Vϕ is an isometry from L2(Rd) into L2(R2d).

Proof. It is sufficient to consider (3.3) with ϕ1 = ϕ2 = ϕ and f1 = f2 = f .

From the Cauchy-Schwarz inequality we immediately see that Vϕf is in L∞(R2d):

♣Vϕf(x, ω)♣ = ♣⟨f,MωTxϕ⟩♣
C−S
≤ ∥f∥2∥MωTxϕ∥2 = ∥f∥2∥ϕ∥2. (3.5)

Combing this with (3.4) and using a simple interpolation argument we see that Vϕf ∈
Lp(R2d) for every p ∈ [2,+∞] and that

∥Vϕf∥p ≤ ∥f∥2∥ϕ∥2. (3.6)

This result is improved by the following theorem due to Lieb [20].

Theorem 3.4. If f, ϕ ∈ L2(Rd) and 2 ≤ p < +∞, then:

∥Vϕ∥p
p =

✂
R2d

♣Vϕ(x, ω)♣p dx dω ≤


2

p

d

∥f∥p
2 · ∥g∥p

2. (3.7)

Proof. Using the Cauchy-Schwarz inequality it is immediate to see that fTxϕ ∈ L1(Rd)
for every x ∈ Rd. In addition to that, since Vϕf = F (fTxϕ) ∈ L2(R2d), from FubiniŠs
theorem we can say that F (fTxϕ) ∈ L2(Rd) for almost every x ∈ Rd and therefore also
fTxϕ ∈ L2(Rd) for a.e. x ∈ Rd. Through an interpolation argument we obtain that
fTxϕ ∈ Lq(Rd) for every q ∈ [1,2].

We start considering the Lp norm of Vϕf :

∥Vϕf∥p =


✂
R2d

♣Vϕf(x, ω)♣p dx dω
1/p

Tonelli
=


✂
Rd


✂
Rd

♣Vϕf(x, ω)♣p dω


dx

1/p

=

=


✂
Rd


✂
Rd

♣F (fTxϕ)(ω)♣p dω


dx

1/p

(2.30)

≤ Ad
p′

✂
Rd


✂
Rd

♣f(t)ϕ(t− x)♣p′

dt

p/p′

dx

]1/p

, (3.8)
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where the use of YoungŠs inequality (2.30) is justiĄed since we noticed that fTxϕ is in
Lq(Rd) for every q ∈ [1,2], so in particular it is in Lp′

(Rd). Letting ϕ∗(t) = ϕ(−t) and
considering the inner integral we have✂

Rd

♣f(t)ϕ(t− x)♣p′

dt =

✂
Rd

♣f(t)♣p′ ♣ϕ∗(x− t)♣p′

dt =
(

♣f ♣p′ ∗ ♣ϕ∗♣p′



(x),

so the expression in (3.8) is the Lp/p′

(Rd) norm of ♣f ♣p′ ∗ ♣ϕ∗♣p′

. Since both f and ϕ are in
L2(Rd) and p′ ≤ 2 we have that ♣f ♣p′

, ♣ϕ∗♣p′ ∈ L2/p′

(Rd). Thanks to YoungŠs theorem 2.44
♣f ♣p′ ∗ ♣ϕ∗♣p′

belongs to Lr(Rd), where r is given by:

1

(2/p′)
+

1

(2/p′)
= 1 +

1

r
=⇒ r =

1

p′ − 1
=

1
p

p−1 − 1
= p− 1 =

p

p′ ,

therefore, using the sharp version of YoungŠs inequality (2.30) in (3.8) we obtain:

∥Vϕf∥p ≤ Ad
p′

(

Ad
2/p′Ad

2/p′Ad
(p/p′)′∥ ♣f ♣p′∥2/p′∥ ♣ϕ∗♣p′∥2/p′

1/p′

.

However ∥ ♣f ♣p′∥2/p′ = (
✁
Rd(♣f(x)♣p′

)2/p′

dx)p′/2 = ∥f∥p′

2 and from a direct calculation

(which can be found in B.1) one can see that Ad
p′A

2d/p′

2/p′ A
d/p′

(p/p′)′ = (2/p)d/p, which corre-
sponds to the desired result.

In light of Theorem 3.2, the STFT with window ϕ in L2(Rd) can be seen as a unitary
operator from L2(Rd) into L2(R2d). Therefore, we can Ąnd its adjoint operator. From a
direct computation it can be seen that this is given by:

V∗
ϕg(t) =

✂
R2d

g(x, ω)ϕ(t− x)e2πiω·t dx dω =

✂
R2d

g(x, ω)MωTxϕ(t) dx dω ∀g ∈ L2(R2d).

(3.9)
This adjoint operator appears in the following nice property, named inversion formula for
the STFT.

Theorem 3.5. Let f ∈ L2(Rd) and ϕ, γ ∈ L2(R2d) such that ⟨ϕ, γ⟩ /= 0. Then:

f(t) =
1

⟨ϕ, γ⟩V∗
γVϕf(t) =

1

⟨ϕ, γ⟩

✂
R2d

Vϕf(x, ω)MωTxγ(t) dx dω ∀t ∈ Rd. (3.10)

Proof. Given f, g ∈ L2(Rd) from (3.3) we have:

⟨Vϕf,Vγg⟩ = ⟨f, g⟩⟨γ, ϕ⟩.
On the other hand:

⟨Vϕf,Vγg⟩ = ⟨V∗
γVϕf, g⟩,

therefore, letting I be the identity operator over L2(Rd), we have:

⟨V∗
γVϕf, g⟩ = ⟨f, g⟩⟨γ, ϕ⟩ =⇒ ⟨(V∗

γVϕ − ⟨γ, ϕ⟩I)f, g⟩ = 0.

Since this holds for every g ∈ L2(Rd) necessarily:

(V∗
γVϕ − ⟨γ, ϕ⟩I)f = 0 =⇒ 1

⟨γ, ϕ⟩V∗
γVϕf = f.
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Therefore, the adjoint operator V∗
γ acts, in some sense, as an inverse operator. This

will be of paramount importance afterwards.

3.2 Bargmann Transform and Fock Space

In the introduction of the chapter we justiĄed the multiplication of a function f by a
window ϕ in the deĄnition of the STFT through the relation between decay and regu-
larity under the action of Fourier transform. Hence, it seems reasonable to make furhter
consideration on the STFT when the window function is a regular and rapidly-decaying
one. In this section, we will consider the speciĄc case in which the window is a Gaussian.
In particular, we choose a Gaussian of the following form:

φ(t) = 2d/4e−π♣t♣2 . (3.11)

The factor 2d/4 is chosen so that ∥φ∥2 = 1. The STFT with Gaussian window becomes

Vφf(x, ω) = 2d/4

✂
Rd

f(t)e−π♣t−x♣2e−2πiω·t dt. (3.12)

Our goal is to rearrange the terms in the above expression in order to make z = x+iω ∈ Cd

appear. We want to highlight the fact that, when talking about complex quantities,
♣z♣2 = zz = ♣x♣2 + ♣ω♣2.

Vφf(x, ω) = 2d/4

✂
Rd

f(t)e−π♣t♣2+2πx·t−π♣ω♣2e−2πiω·t dt

= 2d/4

✂
Rd

f(t)e−π♣t♣2e2π(x−iω)·te− π
2 (♣x♣2−2ix·ω−♣ω♣2)e− π

2 (♣x♣2+♣ω♣2+2ix·ω) dt

= 2d/4e−πix·ωe− π
2 (♣x♣2+♣ω♣2)

✂
Rd

f(t)e−π♣t♣2e2π(x−iω)·te− π
2

(x−iω)2

dt.

The rearrangement may seem arbitrary, but actually it is done in such a way that inside
the integral x and ω enter only via z. This leads to the following deĄnition.

Definition 3.6. The Bargmann transform of a function f on Rd is the function Bf
on Cd given by

Bf(z) = 2d/4

✂
Rd

f(t)e2πt·z−π♣t♣2− π
2

z2

dt. (3.13)

The existence of a connection between the STFT with Gaussian windows and the
Bargmann transform is clear and it is formally stated in the following proposition.

Proposition 3.7. If f is a function on Rd with polynomial growth then its Bargmann
transform Bf is an entire function on Cd. Moreover, letting z = x + iω, the Bargmann
transform of f is related to its STFT through the following

Vφf(x,−ω) = eπix·ωBf(z)e−π♣z♣2/2 (3.14)

We recall that a function deĄned over Cd is entire if it is holomorphic over all Cd.
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Definition 3.8. The Fock space F2(Cd) is the Hilbert space of all entire functions F
on Cd for which the norm

∥F∥2
F2 =

✂
Cd

♣F (z)♣2e−π♣z♣2 dz (3.15)

is Ąnite, where dz stands for the Lebesgue measure on Cd.

Clearly the norm of the Fock space is induced by the following scalar product

⟨F,G⟩F2 =

✂
Cd

F (z)G(z)e−π♣z♣2 dz. (3.16)

Proposition 3.9. If f ∈ L2(Rd) then

∥f∥2 =


✂
Cd

♣Bf(z)♣2e−π♣z♣2 dz
1/2

= ∥Bf∥F2 . (3.17)

Thus B is an isometry from L2(Rd) into F2(Cd).
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Chapter 4

Localization Operators

In the previous chapter we deĄned the STFT, which, roughly speaking, gives us a Ştime-
frequency pictureŤ of a signal. Once we have our joint representation, we might be in-
terested in highlighting some of its features. For example, we might be interested in
understanding where most of the energy is in phase-space.

In this chapter we will look at two ways in which we can solve the problem of creating
operators able to localize a signal.

4.1 Localization with projections

Our Ąrst attempt to localize a signal is arguably the most straightforward one, namely
using a sharp cutoff. If we suppose to have a signal f ∈ L2(Rd) and we want to localize it
in a measurable subset T ⊆ Rd of the time domain we can consider the natural projection
operator:

PT : L2(Rd) → L2(Rd), PT f(t) = χT (t)f(t). (4.1)

This is clearly a projection operator, which means that P 2
T = PT = P ∗

T .
In the same fashion we can deĄne an operator able to localize on a measurable subset

Ω ⊆ Rd in the frequency domain. Its deĄnition it is not as direct as the one for time
projections but it is still easy to understand:

QΩ : L2(Rd) → L2(Rd) QΩf(t) = F
−1 (χΩFf) (t) =

✂
Ω

f̂(ω)e2πiω·t dω. (4.2)

It is also quite simple to show that this is a projection operator:

Q2
Ω = F

−1χΩFF
−1χΩF = F

−1χΩχΩF = F
−1χΩF = QΩ,

Q∗
Ω =

(

F
−1χΩF

∗
= F

∗χ∗
Ω

(

F
−1
∗

= F
−1χΩF = QΩ,

where we used the fact that the Fourier transform is a unitary operator on L2(Rd), namely
that F ∗ = F −1.
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Since both operators are projections, their norm is less or equal than 1, independently of
T and Ω, indeed:

∥PT f∥L2(Rd) = ∥f∥L2(T ) ≤ ∥f∥L2(Rd),

∥QΩf∥L2(Rd) = ∥F
−1χΩFf∥L2(Rd)

Plancherel
= ∥Ff∥L2(Ω) ≤ ∥Ff∥L2(Rd)

Plancherel
= ∥f∥L2(Rd).

Clearly, those operators do not answer our original question about localization in time-
frequency, since PT and QΩ act only in time and frequency, respectively. However, we
may think to combine these projections into a single operator:

QΩPT , PTQΩ : L2(Rd) → L2(Rd),

which hopefully is able to localize a signal both in time and frequency ŞnearŤ to the set
T × Ω.

It is clear that these operators are linear and bounded, in particular their norms are
less or equal than 1. Moreover, they are one the adjoint of the other, indeed:

(QΩPT )∗ = P ∗
TQ

∗
Ω = QΩPT . (4.3)

Up to now the only (essential) hypothesis on T and Ω is that they are measurable.
Clearly, by adding some requirements on T and Ω we expect QΩPT and PTQΩ to gain
some properties.

Proposition 4.1. Let T,Ω ⊂ Rd with Ąnite measure. Then QΩPT and PTQΩ are Hilbert-
Schmidt integral operators of the form

QΩPT f(x) =

✂
Rd

K(x, t)f(t) dt, (4.4)

PTQΩf(x) =

✂
Rd

K(t, x)f(t) dt, (4.5)

where

K(x, t) = χT (t)

✂
Ω

e2πiω·(x−t) dω, (4.6)

and ∥K∥L2(R2d) =
√

♣T ♣♣Ω♣.

Proof. Given f ∈ L2(Rd) we have:

QΩPT f(x) =

✂
Ω

e2πiω·x

✂

T

e−2πiω·tf(t) dt



dω
Fubini

=

✂
Rd

χT (t)


✂

Ω

e2πiω·(x−t) dω



f(t) dt,

where the use of FubiniŠs theorem is allowed since Ω and T have Ąnite measure. This gives
us the expression of QΩPT . In order to obtain also the expression for PTQΩ it suffices to
recall from (4.3) that (QΩPT )∗ = PTQΩ. Therefore, the integral kernel of PTQΩ is given
by Proposition 2.33. Lastly, from Theorem 2.32, we have that ∥QΩPT ∥HS = ∥PTQΩ∥HS =
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∥K∥L2(R2d), and:

∥K∥L2(R2d) =


✂
R2d

♣K(x, t)♣2 dx dt
1/2

=





✂
R2d

χT (t)

∣

∣

∣

∣

∣

✂
Rd

e2πiω·(x−t)χΩ(ω) dω

∣

∣

∣

∣

∣

2

dx dt





1/2

=


✂
R2d

χT (t)
∣

∣F
−1(χΩ)(x− t)

∣

∣

2
dx dt

1/2

Tonelli
=


✂
Rd

χT (t)


✂
Rd

∣

∣F
−1(χΩ)(x− t)

∣

∣

2
dx



dt

1/2

=


✂
Rd

∥TtF
−1(χΩ)∥2

2χT (t) dt

1/2

Tt isometry+Plancherel
= ∥χΩ∥2∥χT ∥2 =

√

♣T ♣♣Ω♣.

If we compare the integral kernels of QΩPT and PTQΩ we see that K(x, t) /= K(t, x),
hence, by Proposition 2.33, we immediately conclude that both operator are not self-
adjoint. We already know that, if possible, it is better to deal with self-adjoint operators,
so we should consider the following operators:

(QΩPT )∗QΩPT = P ∗
TQ

∗
ΩQΩPT = PTQΩPT ; (4.7)

(PTQΩ)∗PTQΩ = Q∗
ΩP

∗
TPTQΩ = QΩPTQΩ. (4.8)

By construction, these are self-adjoint operators, and since both QΩPT and PTQΩ are
compact, thanks to Proposition 4.1, Theorem 2.27 and Theorem 2.8 they are also compact.
Hence, by Theorem 2.11, they can be diagonalized. In the particular but relevant case
where T and Ω are intervals (disks in the multi-dimensional case) the eigenfunctions of
these operators are the prolate spheroidal wave functions and have been studied by Slepian,
Pollak and Landau in a series of papers [31, 17, 18, 30].

4.2 Daubechies’ localization operators

The projection operators considered in the previous section fulĄl the task of localizing a
signal in both time and frequency. However, those are still treated separately. Indeed, if
we consider, for example, QΩPT , we see that at the Ąrst moment we perform localization
in time and only then in frequency. Since our task is to localize in both domains at the
same time, it would be more natural to have an operator that treats time and frequency
in a joint way. This is exactly what Ingrid Daubechies did in her remarkable 1988-paper
[5].

In Chapter 3 we deĄned a time-frequency representation of a signal, namely the STFT.
Therefore, to reach our goal, it seems more natural to use STFT instead of the Fourier
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transform. Moreover, from Theorem 3.5 we know that the adjoint operator of Vϕ acts, in
some sense, as an inverse operator. If we choose a window ϕ ∈ L2(R2d) normalized, 3.10
becomes

f(t) = V∗
ϕVϕf(t).

The key idea is to multiply Vϕf by a weight function F (x, ω), which logically should
highlight some features of Vϕf , before applying the adjoint operator. This leads to the
deĄnition of time-frequency localization operators:

LF,ϕ : L2(Rd) → L2(Rd), LF,ϕf(t) = V∗
ϕFVϕf(t). (4.9)

Related to this localization operator is the sesquilinear form LF,ϕ : L2(Rd) ×L2(Rd) → C

deĄned by the expression:

LF,ϕ(f, g) =

✂
R2d

F (x, ω)Vϕf(x, ω)Vϕg(x, ω) dx dω. (4.10)

Indeed, assuming LF,ϕ is bounded, we could deĄne LF,ϕf through RieszŠ representation
theorem as the only element of L2(Rd) such that:

LF,ϕ(f, g) = ⟨LF,ϕf, g⟩ =

✂
Rd

LF,ϕf(t)g(t) dt ∀g ∈ L2(Rd), (4.11)

and therefore LF,ϕ as the operator which maps f into its representation.
Now that we have deĄned time-frequency localization operators our goal is to study

their properties, starting from boundedness, compactness and the belonging to trace class
or Hilbert-Schmidt class. We recall that the window function ϕ ∈ L2(Rd) is Ąxed, so it is
clear that the properties of LF,ϕ will depend upon F .

Proposition 4.2. Let F ∈ Lp(R2d) for p ∈ [1,+∞]. Then LF,ϕ is bounded and ∥LF,ϕ∥ ≤
∥F∥p.

Proof. Letting f, g ∈ L2(Rd), we have:

♣LF,ϕ(f, g)♣ ≤
✂
R2d

♣F (x, ω)♣♣Vϕf(x, ω)♣♣Vϕg(x, ω)♣ dx dω.

From (3.6) we know that, given f ∈ L2(Rd), Vϕf ∈ Lp(Rd) for every p ∈ [2,+∞] and
∥Vϕf∥p ≤ ∥f∥2. We want to Ąnd an exponent q ≥ 2 in order to apply (generalized)
HölderŠs inequality:

1

p
+

1

q
+

1

q
= 1 =⇒ q =

2p

p− 1
,

which is greater or equal than 2, regardless of p. Applying HölderŠs inequality with
exponents p, q and q we have:

♣LF,ϕ(f, g)♣ ≤ ∥F∥p∥Vϕf∥q∥Vϕg∥q ≤ ∥F∥p∥f∥2∥g∥2.

Taking the supremum above all normalized f, g ∈ L2(Rd) gives us the boundedness of
LF,ϕ and, in the end, of LF,ϕ.
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In previous section we managed to prove that projection operatorsQΩPT and PTQΩ are
Hilbert-Schmidt operators, provided both T and Ω have Ąnite measure, which is equivalent
to asking that χT and χΩ are in L1(Rd). An analogous result holds for DaubechiesŠ
localization operators.

Theorem 4.3. Let F ∈ L1(R2d). Then LF,ϕ is a Hilbert-Schmidt integral operator with
kernel

KF (s, t) =

✂
R2d

F (x, ω)MωTxϕ(s)MωTxϕ(t) dx dω. (4.12)

Moreover, ∥KF ∥2 ≤ ∥F∥1.

Proof. Let f, g ∈ L2(Rd). We begin showing that F (x, ω)f(t)MωTxϕ(t) g(s)MωTxϕ(s)
belongs to L1(R2d × Rd × Rd):

✂
R4d

♣F (x, ω)f(t)MωTxϕ(t) g(s)MωTxϕ(s)♣ dx dω dt ds

Tonelli
=

✂
R2d

♣F (x, ω)♣

✂
Rd

♣f(t)♣♣MωTxϕ(t)♣ dt


✂
Rd

♣g(s)♣♣MωTxg(s)♣ ds


dx dω

C−S
≤ ∥f∥2∥ϕ∥2∥g∥2∥ϕ∥2

✂
R2d

♣F (x, ω)♣ dx dω = ∥F∥1∥f∥2∥g∥2.

Now we can apply FubiniŠs theorem in the expression of ⟨LF,ϕf, g⟩:

⟨LF,ϕf, g⟩ =

✂
R2d

F (x, ω)


✂
Rd

f(t)MωTxϕ(t) dt


✂
Rd

g(s)MωTxϕ(s) ds



dx dω

Fubini
=

✂
Rd


✂
Rd


✂
R2d

F (x, ω)MωTxϕ(s)MωTxϕ(t) dx dω



f(t) dt



g(s) ds

=

✂
Rd


✂
Rd

KF (s, t)f(t) dt



g(s) ds.

Since this holds for every f and g we can conclude that LF,ϕf =
✁
Rd KF (·, t)f(t) dt.

Thanks to Proposition 2.14, we know that such integral operator is a Hilbert-Schmidt
operator if and only if KF ∈ L2(R2d), so all we have to do is to compute its norm.

∥KF ∥2
2 = ♣⟨KF , KF ⟩♣ ≤

✂
R2d


✂
R2d

♣F (x, ω)♣♣MωTxϕ(s)♣♣MωTxϕ(t)♣ dx dω


·

✂
R2d

♣F (y, ξ)♣♣MξTyϕ(s)♣♣MξTyϕ(t)♣ dydξ


ds dt

Fubini
=

✂
R4d

♣F (x, ω)♣♣F (y, ξ)♣

✂
R

♣MωTxϕ(t)♣♣MξTyϕ(t)♣ dt


·

✂
R

♣MωTxϕ(s)♣♣MξTyϕ(s)♣ ds


dx dω dydξ

C−S
≤ ∥ϕ∥4

2

✂
R2d

♣F (x, ω)♣ dx dω
✂
R2d

♣F (y, ξ)♣ dydξ = ∥F∥2
1.
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Reminding that Hilbert-Schmidt operators are compact (Theorem 2.27) we observe
that, if F is integrable, the corresponding localization operator LF,ϕ is compact. Moreover,
since we have the explicit expression of the integral kernel, from Proposition 2.33 follows
immediately the next sufficient condition on F in order to make LF,ϕ self-adjoint.

Proposition 4.4. If F ∈ L1(R2d) is a real-valued function then LF,ϕ is self-adjoint.

We will now prove that localization operators with integrable weight function are trace-
class operators. We want to emphasize that, in light of Proposition 2.30, this is a stronger
condition than just being a Hilbert-Schmidt operator.

Theorem 4.5. Let F ∈ L1(R2d). Then LF,ϕ is a trace-class operator. Moreover, given
an orthonormal basis ¶en♢n∈N of L2(Rd), the following holds:

+∞
∑

n=1

♣⟨LF,ϕen, en⟩♣ ≤ ∥F∥1, trLF,ϕ =

✂
R2d

F (x, ω) dx dω. (4.13)

Proof. We start proving that LF,ϕ is a trace-class operator. Given an orthonormal basis
¶en♢n∈N of L2(Rd):

+∞
∑

n=1

♣⟨LF,ϕen, en⟩♣ =
+∞
∑

n=1

∣

∣

∣

✂
R2d

F (x, ω)Vϕen(x, ω)Vϕen(x, ω) dx dω
∣

∣

∣

≤
+∞
∑

n=1

✂
R2d

♣F (x, ω)♣♣Vϕen(x, ω)∥2 dx dω

=

✂
R2d

♣F (x, ω)♣
+∞
∑

n=1

♣⟨en,MωTxϕ⟩♣2 dx dω

Parseval
=

✂
R2d

♣F (x, ω)♣∥MωTxϕ∥2
2 dx dω = ∥ϕ∥2

2∥F∥1 = ∥F∥1,

where the exchange between series and integral is due to the monotone convergence the-
orem. Now that we know that LF,ϕ is trace-class we can compute its trace:

trLF,ϕ =
+∞
∑

n=1

⟨LF,ϕenen⟩ =
+∞
∑

n=1

✂
R2d

F (x, ω)♣Vϕen(x, ω)♣2 dx dω

= lim
N→+∞

N
∑

n=1

✂
R2d

F (x, ω)♣Vϕen(x, ω)♣2 dx dω.

Since

♣F (x, ω)♣
N
∑

n=1

♣Vϕen(x, ω)♣2 ≤ ♣F (x, ω)♣
+∞
∑

n=1

♣Vϕen(x, ω)♣2 = ♣F (x, ω)♣ ∈ L1(R2d),

we can apply LebesgueŠs dominated convergence theorem to conclude that:

trLF,ϕ = lim
N→+∞

N
∑

n=1

✂
R2d

F (x, ω)♣Vϕen(x, ω)♣2 dx dω =

✂
R2d

F (x, ω) dx dω.
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So far, except for 4.2, we considered only the case F ∈ L1(R2d). As the last result of
the section we will deal with the more generic case F ∈ Lp(R2d) for p < +∞.

Proposition 4.6. Let F ∈ Lp(R2d) with 1 ≤ p < +∞. Then the corresponding localiza-
tion operator LF,ϕ is compact.

Proof. Given F ∈ Lp(R2d), thanks to Theorem 2.5 it is sufficient to consider a sequence
Fn of functions in L1(R2d) such that Fn → F in Lp(R2d). For example, we can suppose
that Fn are in SchwartzŠs class S(R2d), which is a well-known dense subspace of Lp(R2d)
for p < +∞. Indeed, from Proposition 4.2, we have that ∥LFn,ϕ − LF,ϕ∥ ≤ ∥Fn − F∥p, so
LFn,ϕ → LF,ϕ in B(L2(Rd)). Since S(R2d) ⊂ L1(R2d), LFn,ϕ are compact, thus also LF,ϕ

is.

4.2.1 Spherically Symmetric Weights

In previous section we managed to prove that, if the weight function F is in Lp(R2d)
for some p < +∞ and it is real-valued then the corresponding localization operator
LF,ϕ is compact and self-adjoint. Thus, it is natural to ask which are its eigenfuctions
with corresponding eigenvalues. However, this in general is not feasible. Hence, we shall
consider some speciĄc class of weight and window functions. In particular, in this section
we will consider the special case in which the window for the STFT is a Gaussian (3.11)
and the weight F is spherically symmetric. Letting r2

j = x2
j + ω2

j for j = 1, . . . , d and
r2 = (r2

1 . . . , r
2
d) ∈ Rd, the hypothesis about F can be rephrased in the following way

F (x, ω) = F(r2). (4.14)

In order to highlight the dependence of F through F, the corresponding localization
operator will be denoted as LF,φ. For this operators a complete characterization of the
spectrum and eigenspaces is given in the already cited paper of Daubechies [5].

Before stating we need to introduce some special function, namely Hermite functions.
In dimension d = 1, Hermite functions are given by:

Hk(t) =
21/4

√
k!



− 1

2
√
π

k

eπt2 dk

dtk

(

e−2πt2


, (4.15)

where k ∈ N∪¶0♢ := N0. Hermite functions have lots of interesting and useful properties.
A standard reference is [6, Section 1.7]. We cite some of them which will be useful in the
following.

(i) ¶Hk♢k∈N0
is an orthonormal basis of L2(R);

(ii) H0(t) = φ(t), where φ is the normalized Gaussian given by (3.11);

(iii) Setting H−1 = 0, the following recursive relation holds

2
√
πtHk =

√
k + 1Hk+1 +

√
kHk−1 for k = 0,1, . . . ; (4.16)
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(iv) Hermite functions are eigenfunctions of F , speciĄcally

FHk = (−i)kHk. (4.17)

Hermite functions in generic dimension are just the tensor product of 1-dimensional Her-
mite functions. Explicitly, given a multi-index k = (k1, . . . , kd) ∈ Nd

0, the corresponding
Hermite function is given by:

Hk(t) =
d
∏

j=1

Hkj (tj). (4.18)

It is still true that d-dimensional Hermite functions (now ranging between all possible
multi-indices) form an orthonormal basis of L2(Rd). Moreover, using (4.17), it is easy to
see that d-dimensional Hermite functions are still eigenfunction of the Fourier transform
and that the following holds:

FHk = (−i)♣k♣Hk, (4.19)

where ♣k♣ = k1 + · · · kd is the length of the multi-index.
The introduction of Hermite functions is necessary, since they are exactly the eigen-

functions of LF,φ.

Theorem 4.7. Eigenfuctions of LF,φ are the d-dimensional Hermite functions Hk, with
corresponding eigenvalues:

λk =
1

k!

✂ +∞

0

· · ·
✂ +∞

0

F



s1

π
, . . . ,

sd

π







d
∏

j=1

s
kj

j



 e−(s1+···+sd) ds1 · · · dsd, (4.20)

where k ∈ Nd
0 and k! = k1! · · · kd!.

Before proving the theorem we need the following lemma.

Lemma 4.8. Given z ∈ C, it holds:

✂
R

e−2π(t2+zt) dt =
1

21/2
eπz2/2. (4.21)

Proof. Letting z = Rez + iImz = u+ iv we have:

✂
R

e−2π(t2+zt) dt =

✂
R

e−2π(t2+ut)e−2πivt dt = eπu2/2e−2π(t2+ut+u2/4)e−2πivt dt

= eπu2/2

✂
R

e−2π(t+u/2)2

e−2πivt dt = eπu2/2
F (T−u/2e

−2π(·)2

)(v)

2.42(i)+2.43
= eπu2/2e2πi(u/2)v 1

21/2
e−πv2/2 =

1

21/2
eπ(u2+2iuv−v2)/2 =

1

21/2
eπz2/2
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Proof of Theorem 4.7. Since Hermite functions are an orthonormal basis of L2(Rn) it is
sufficient to prove that ⟨LF,φHk, Hl⟩ = ⟨FVφHk,VφHl⟩ = λk

∏d
j=1 δkj ,lj , which means

that the scalar product is different from zero if and only if k = l. We start by computing
the STFT of a Hermite function:

VφHk(x, ω) =

✂
Rd

Hk(t)e−2πiω·t 2d/4e−π♣t−x♣2 dt =

✂
Rd

d
∏

j=1

Hkj (tj)e
−2πiω·t 2d/4e−π♣t−x♣2 dt

=
d
∏

j=1

21/4

✂
R

Hkj (tj)e
−2πiωjtje−π(tj−xj)2

dtj

=
d
∏

j=1

21/4

✂
R

21/4

√

kj !



− 1

2
√
π

kj

eπt2
j
dkj

dtkj

(

e−2πt2
j



e−2πiωjtje−π(tj−xj)2

dtj

=
d
∏

j=1

21/2

√

kj !



− 1

2
√
π

kj
✂
R

dkj

dtkj

(

e−2πt2
j



eπ(t2
j −2iωjtj−t2

j +2tjxj−x2
j ) dtj

=
d
∏

j=1

21/2

√

kj !



− 1

2
√
π

kj

e−πx2
j

✂
R

dkj

dtkj

(

e−2πt2
j



e2π(xj−iωj)tj dtj

=
d
∏

j=1

21/2

√

kj !



− 1

2
√
π

kj

e−πx2
j [2π(xj − iωj)]

kj (−1)kj

✂
R

e−2π[t2
j −(xj−iωj)tj ] dtj

=
d
∏

j=1

√

πkj

kj !
21/2(xj − iωj)

kje−πx2
j

1

21/2
eπ(xj−iωj)2/2

=
d
∏

j=1

√

πkj

kj !
(xj − iωj)

kje−πiωjxje−π(x2
j +ω2

j )/2

=





d
∏

j=1

√

πkj

kj !
(xj − iωj)

kj



 e−πiω·xe−π(r2
1
+···+r2

d)/2. (4.22)

Before computing the scalar product between LF,φHk and Hl, we introduce the angular
coordinate θj , such that xj + iωj = rje

iθj . Therefore we have:

⟨LF,φHk, Hl⟩ =

✂
R2d

F (x, ω)





d
∏

j=1

√

πkj

kj !
r

kj

j e
−ikjθj



 e−πiω·xe−π(r2
1
+···+r2

d)/2·





d
∏

m=1

√

πlm

lm!
rlm

m e−ilmθm



 e−πiω·xe−π(r2
1
+···+r2

d
)/2 dx dω

=

✂
R2d

F (x, ω)





d
∏

j=1

√

πkj+lj

kj !lj !
r

kj+lj
j ei(lj−kj)θj



 e−π(r2
1
+···+r2

d) dx dω. (4.23)

For every pair of coordinates (xj , ωj) we can switch to polar coordinates (rj , θj). Since
F (x, ω) = F(r2) is independent of angular coordinates, only functions depending on those
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are ei(lj−kj)θj , for which:

✂ 2π

0

ei(lj−kj)θjdθj =































ei(lj−kj)θj

i(lj − kj)

∣

∣

∣

∣

2π

0

= 0 if kj /= lj

✂ 2π

0

dθj = 2π if kj = lj

.

Therefore, if k /= l, the whole integral is 0, otherwise, letting kj = lj in (4.23):

⟨LF,φHk, Hk⟩ = (2π)dπ
♣k♣

k!

✂ +∞

0

· · ·
✂ +∞

0

F(r2
1, . . . , r

2
d)e−π(r2

1
+···+r2

d)





d
∏

j=1

r
2kj+1
j



 dr1 · · · drd

=
1

k!

✂ +∞

0

· · ·
✂ +∞

0

F(r2
1, . . . , r

2
d)e−π(r2

1
+···+r2

d)





d
∏

j=1

(πr2
j )kj



 πr1dr1 · · ·πrddrd.

With the change of variable sj = πr2
j , we Ąnally obtain:

⟨LF,φHk, Hk⟩ =
1

k!

✂ +∞

0

· · ·
✂ +∞

0

F



s1

π
, . . . ,

sd

π







d
∏

j=1

s
kj

j



 e−(s1+···+sd) ds1 · · · dsd,

which is exactly the expression (4.20).

In conclusion, we will consider two meaningful examples, namely when the weight F is
the characteristic function of a disk centred around the origin and when it is a Gaussian.
In order to make computations easier we conĄne ourselves in the case d = 1.

Example 4.9 (Localization on a disk). We study arguably the most simple case, namely
when F is the characteristic function of the disk BR = ¶(x, ω) ∈ R2 : x2 + ω2 ≤ R2♢:

F (x, ω) = F(r2) =

{

1 if x2 + ω2 = r2 ≤ R2

0 otherwise
.

In order to highlight that F is the characteristic function of BR we let LF,φ = LBR,φ.
Noticing that F( s

π ) = χ[0,πR2](s), expression (4.20) brings to:

λk(R) =
1

k!

✂ +∞

0

χ[0,πR2](s)s
ke−s ds =

1

k!

✂ πR2

0

ske−s ds = γ(k + 1, πR2),

where γ is the lower incomplete gamma function. An easy integration by parts, when
k ≥ 1, leads to:

✂ πR2

0

ske−sds = −(πR2)ke−πR2

+ k

✂ πR2

0

sk−1e−s ds.
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Iterating this process gives us the following formula for the k-th eigenvalue:

λk = 1 − e−πR2
k
∑

j=0

(πR2)j

j!
, k = 0,1, . . .

Since (πR2)j/j! is strictly positive, it follows immediately that the sequence of eigenvalues
is strictly decreasing. Moreover, since F is real-valued, from Proposition 4.4 we have that
LBR,φ is self-adjoint, as well as compact. Therefore, from Corollay 2.12 we conclude that:

∥LBR,φ∥ = ♣λ0♣ = 1 − e−πR2

.

Recalling the deĄnition of the norm for operators between Hilbert spaces 2.2, we obtain
that, for every normalized f ∈ L2(Rd):

λ0 = ∥LBR,φ∥ ≥ ♣⟨LBR,φf, f⟩♣ =

✂
BR

♣Vφf(x, ω)♣2 dx dω

=⇒
✂
BR

♣Vφf(x, ω)♣2 dx dω ≤ 1 − e−πR2

. (4.24)

We point out that the left-hand side of the last expression represents the energy of Vφf
concentrated on the disk BR.

Example 4.10 (Localization with Gaussian weight). Another natural choice for the
weight function F is a Gaussian:

F (x, ω) = e−απ(x2+ω2),

where α > 0 is a dilation parameter. In this case F( s
π ) = e−αs, so from (4.20) and

integrating by parts k + 1 times we obtain the eigenvalues of LF,φ:

λk =
1

k!

✂ +∞

0

ske−(1+α)s ds = (1 + α)−(k+1), k = 0,1, . . .

Like the previous case, eigenvalues are already ordered in decreasing order and F is still
real-valued, therefore

∥LF,φ∥ = 1 + α.
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Chapter 5

Uncertainty principles

Up to know we put some effort in constructing some tools that have the ability to con-
centrate a signal in the time-frequency domain. In the introduction of Section 3.1 we also
pointed out that a characteristic function is not a ŞgoodŤ window for the STFT because,
in light of the duality between regularity and decay, the Fourier transform of a not regular
functions has a slow decay. Indeed, in Section 4.2.1, we considered the STFT with a
Gaussian window function, which has nice regularity and decay properties. However, a
natural question arises: how good can we concentrate a signal? Is it possible to have a
signal arbitrarily concentrated both in time and frequency? The answer to this questions
is deĄnitely no and it is given by uncertainty principles, which are ubiquitous results in
Fourier and time-frequency analysis. Uncertainty principles arise in different versions but
the main underlying idea is the following:
a function cannot be too concentrated both in time and frequency.

Even if not explicit, we already had a Ąrst glimpse of this phenomenon when we
computed the Fourier transform of dilated Gaussian (Example 2.43). Indeed, given λ > 0
we recall that:

F (e−λπ♣·♣2)(ω) =
1

λd/2
e− 1

λπ♣ω♣2 ∀ω ∈ Rd.

If we choose λ to be very large, the Gaussian in the time domain e−λπ♣t♣2 will be strongly
concentrated around the origin. However, in the corresponding Gaussian in the frequency
domain the dilation parameter appears in the denominator of the exponent, so this will
be poorly concentrated.

In this chapter we will present some uncertainty principles, both for the Fourier trans-
form and the STFT and we will give a quantitative description of how good we can localize
a signal.

5.1 Heisenberg’s uncertainty principle

Arguably, the most famous uncertainty principle is the one named after Heisenberg ([12]).
Despite being a fascinating topic, we will not discuss all the implications that this un-
certainty principles has in quantum mechanics. Therefore, our attention is driven to the

39



Uncertainty principles

mathematical formulation of the principle.
In literature there are several proofs of HeisenbergŠs uncertainty principle. The one that

we will present was given (in the 1-dimensional case) by de Bruijn in [3] and involves, once
again, Hermite functions. Before stating and proving HeisenbergŠs uncertainty principle
we are going to need some lemmas.

Lemma 5.1. Let f ∈ L2(R). Then

✂
R

t2♣f(t)♣2 dt+

✂
R

ω2♣f̂(ω)♣2 dω =
1

2π

+∞
∑

k=0

(2k + 1)♣⟨f,Hk⟩♣2, (5.1)

where Hk is the k-th Hermite function. In particular we have

✂
R

t2♣f(t)♣2 dt+

✂
R

ω2♣f̂(ω)♣2 dω ≥ ∥f∥2
2

2π
, (5.2)

with equality if and only if f is a multiple of H0.

Proof. Our aim is to exploit the fact that Hermite functions are an orthonormal basis of
L2(R) by computing ⟨tf,Hk⟩. Before going on we remark that the previous expression is
not an L2 scalar product but is a duality between a tempered distribution and a func-
tion in the Schwartz class. However, from the theory of tempered distributions we have
that ⟨tf,Hk⟩ = ⟨f, tHf ⟩ and the latter expression is indeed a scalar product in L2(Rd).
Moreover, from this observation, we see that tHk appears. Therefore, using (4.16) we
have:

⟨tf,Hk⟩ = ⟨f, tHk⟩ =
1

2
√
π

(√
k + 1⟨f,Hk+1⟩ +

√
k⟨f,Hk−1⟩



.

To compute the similar quantity for f̂ we also need to recall that Hermite functions are
eigenfunction of the Fourier transform (4.17):

⟨ωf̂ ,Hk⟩ = ⟨f̂ , ωHk⟩ =
1

2
√
π

(√
k + 1⟨f̂ , Hk+1⟩ +

√
k⟨f̂ , Hk−1⟩



(4.17)+F unitary
=

1

2
√
π

(√
k + 1(−i)k+1⟨f,Hk+1⟩ +

√
k(−i)k−1⟨f,Hk−1⟩



=
1

2
√
π

(−i)k−1
(√

k⟨f,Hk−1⟩ −
√
k + 1⟨f,Hk+1⟩



.

Now, since ¶Hk♢k∈Nd
0

is an orthonormal basis of L2(R), we can use ParsevalŠs identity:

✂
R

t2♣f(t)♣2 dt+

✂
R

ω2♣f̂(ω)♣2 dω =
+∞
∑

k=0

(

♣⟨tf,Hk⟩♣2 + ♣⟨ωf̂ ,Hk⟩♣2


=
1

2π

+∞
∑

k=0

[

(k + 1)♣⟨f,Hk+1⟩♣2 + k♣⟨f,Hk−1⟩♣
]

=
1

2π

+∞
∑

k=0

(2k + 1)♣⟨f,Hk⟩♣2.
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Since (2k + 1) ≥ 1, it is immediate to see that inequality (5.2) holds and that equality
is achieved if and only if ⟨f,Hk⟩ = 0 for every k > 1, which means exactly that f is a
multiple of H0.

In order to extend previous lemma to the multi-dimensional case we need the follow-
ing result related to the Fourier transform of restrictions. Before stating the lemma we
introduce the following notation:

t′ = (t2, . . . , td) ∈ Rd−1, ω′ = (ω2, . . . , ωd) ∈ Rd−1,

(F1f)(ω1, t
′) = F (f(·, t′))(ω1), (F ′f)(t1, ω

′) = F (f(t1, ·))(ω′).

Lemma 5.2. Let f ∈ L2(Rd). Then F1f(ω1, ·) ∈ L2(Rd−1) for almost every ω1 ∈ R and
F ′(F1f(ω1, ·))(ω′) = Ff(ω).

Proof. Before starting, we point out that, since f ∈ L2(Rd), f(·, t′) ∈ L2(R) for almost
every t′ ∈ Rd−1, therefore F1f(·, t′) is well-deĄned for almost every t′ ∈ Rd−1. Then we
have: ✂

Rd

♣F1f(ω1, t
′)♣2 dω1 dt

′ Tonelli
=

✂
Rd−1

✂
R

♣F (f(·, t′))(ω1)♣2 dω1 dt
′

Plancherel
=

✂
Rd−1

✂
R

♣f(t1, t
′)♣2 dt1 dt′ = ∥f∥2.

which proves that F1f(ω1, ·) is in L2(Rd−1) for almost every ω1 ∈ R.
Now suppose that f ∈ L1(Rd) ∩ L2(Rd). Since f is in L1(Rd) we can use (2.19) to

make F1f explicit:

F1f(ω1, t
′) =

✂
R

f(t1, t
′)e−2πiω1t1 dt1 =⇒

F
′(F1f(ω1, ·))(ω′) =

✂
Rd−1


✂
R

f(t1, t
′)e−2πiω1t1 dt1



e−2πiω′·t′

dt′

Fubini
=

✂
Rd

f(t1, t
′)e−2πiω1t1e−2πiω′·t′

dt1 dt
′ = Ff(ω).

Through the density of L1(Rd) ∩L2(Rd) in L2(Rd) the last part of the statement follows.

Lemma 5.3. Let f ∈ L2(Rd). Then, for every j = 1, . . . , d:
✂
Rd

t2j ♣f(t)♣2 dt+

✂
Rd

ω2
j ♣f̂(ω)♣2 dω =

1

2π

∑

k∈Nd
0

(2kj + 1)♣⟨f,Hk⟩♣2. (5.3)

In particular we have:

✂
Rd

t2j ♣f(t)♣2 dt+

✂
Rd

ω2
j ♣f̂(ω)♣2 dω ≥ ∥f∥2

2

2π
, (5.4)

with equality if and only if f is a multiple of H0.
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Proof. Without loss of generality we consider the case j = 1. Moreover, we introduce the
following notation:

⟨f, g⟩1(t′) = ⟨f(·, t′), g(·, t′)⟩, ⟨f, g⟩′(t1) = ⟨f(t1, ·), g(t1, ·)⟩,
From Lemma 5.1, since f(·, t′) ∈ L2(R) for a.e. t′ ∈ Rd−1, we have:

✂
R

t21♣f(t1, t
′)♣2 dt1 +

✂
R

ω2
1♣F1f(ω1, t

′)♣2 dω1 =
1

2π

+∞
∑

k1=0

(2k1 + 1)♣⟨f,Hk1
⟩1♣2,

which holds for almost every t′ ∈ Rd−1. We can now integrate with respect to t′ every
member:

•

✂
Rd−1

✂
R

t21♣f(t1, t
′)♣2 dt1 dt′ Tonelli

=

✂
Rd

t21♣f(t)♣2 dt;

•

✂
Rd−1

✂
R

ω2
1♣F1f(ω1, t

′)♣2 dω1 dt
′ Tonelli

=

✂
R

ω2
1

✂
Rd−1

♣F1f(ω1, t
′)♣2 dt′ dω1.

From Lemma 5.2 we know that F1f(ω1) ∈ L2(Rd−1) for a.e. ω1 ∈ R. Therefore, we
can use PlancherelŠs theorem in the inner integral for a.e. ω1 ∈ R and obtain:✂
Rd−1

✂
R

ω2
1♣F1f(ω1, t

′)♣2 dω1 dt
′ =

✂
R

ω2
1

✂
Rd−1

♣F ′(F1f(ω1, ·))(ω′)♣2 dω′ dω1

5.2
=

✂
R

✂
Rd−1

ω2
1♣Ff(ω1, ω

′)♣2 dω′ dω1 =

✂
Rd

ω2
1♣F (ω)♣2 dω.

• For the last term we start pointing out that integral and series can be exchanged
because every term is non-negative. Then, from ParsevalŠs identity we have:✂

Rd−1

♣⟨f,Hk1
⟩1(t′)♣2 dt′ =

∑

k′∈N
d−1

0

♣⟨⟨f,Hk1
⟩1, Hk′⟩′♣2

=
∑

k′∈N
d−1

0

∣

∣

∣

✂
Rd−1


✂
R

f(t1, t
′)Hk1

(t1) dt1



Hk′(t′) dt′
∣

∣

∣

2

Fubini
=

∑

k′∈N
d−1

0

∣

∣

∣

✂
Rd

f(t)H(k,k′)(t) dt
∣

∣

∣

2
=

∑

k′∈N
d−1

0

♣⟨f,H(k,k′)⟩♣2,

where we used the fact that multi-dimensional Hermite functions are just the tensor
product of 1-dimensional ones. Plugging this result in the series leads to:

✂
Rd−1

+∞
∑

k1=0

(2k1 + 1)♣⟨f,Hk1
⟩♣2 =

+∞
∑

k1=0

∑

k′∈N
d−1

0

(2k1 + 1)♣⟨f,H(k,k′)⟩♣2

=
∑

k∈Nd
0

(2k1 + 1)♣⟨f,Hk⟩♣2,

and we notice that the rearrangement of the series is allowed since convergence is
unconditional. Putting all these results together leads to (5.3).
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The proof of the last part of the statement is exactly the same as the one in Lemma
5.1.

We are now in the position to prove HeisenbergŠs uncertainty principle.

Theorem 5.4. Let f ∈ L2(Rd) and a, b ∈ Rd. Then:


✂
Rd

♣t− a♣2♣f(t)♣2 dt
1/2 ✂

Rd

♣ω − b♣2♣f̂(ω)♣2 dω
1/2

≥ d∥f∥2
2

4π
. (5.5)

Moreover, equality is achieved if and only if f(t) = cMbTaφ(λt), where φ is the normalized
Gaussian given by (3.11), c ∈ C, λ > 0 and a, b ∈ Rd.

Proof. Firsly, we notice that it is sufficient to prove the inequality when a = b = 0,
since the generic case can be recovered from this special one by means of a phase-space
translation. Indeed, given f ∈ L2(Rd) we can consider g = M−bT−af for which we have:

♣f(t)♣2 = ♣(TaMbg)(t)♣2 = ♣e2πib·(t−a)g(t− a)♣2 = ♣g(t− a)♣2,
♣f̂(ω)♣2 = ♣F (TaMbg)(ω)♣2 2.42

= ♣M−aTbĝ(ω)♣2 = ♣e−2πia·ωĝ(ω − b)♣2 = ♣ĝ(ω − b)♣2,

and ∥f∥2 = ∥g∥2. In light of this, we will consider a = b = 0.
We start proving that, for every component, the following holds:


✂
Rd

t2j ♣f(t)♣2 dt
1/2 ✂

Rd

ω2
j ♣f̂(ω)♣2 dω

1/2

≥ ∥f∥2
2

4π
. (5.6)

We observe that in the left-hand side of (5.6), apart from a square root, we have the
product of two integrals, while in (5.4) we had an estimate for the sum of these. The
transition from the latter to the former estimate can be done through a dilation argument.
Precisely, given f ∈ L2(Rd), we consider the following dilation:

g(t) = λ−d/2f(t/λ) =⇒ ĝ(ω) = λd/2
F (D1/λg)

2.42(iii)
= λd/2f̂(λω).

We remark that this dilation is different from the one considered in Section 2.2, expression
(2.27). Indeed, now we chose the dilation so that ∥g∥2 = ∥f∥2, while previously the
dilation was chosen in order to preserve the L1 norm. Putting g in (5.4) provides us:

∥f∥2
2

2π
≤
✂
Rd

t2j ♣g(t)♣2 dt+

✂
Rd

ω2
j ♣ĝ(ω)♣2 dω (5.7)

=
1

λd

✂
Rd

t2j ♣f(t/λ)♣2 dt+ λd

✂
Rd

ω2♣f̂(λω)♣2 dω

= λ2

✂
Rd

t2j ♣f(t)♣2 dt+
1

λ2

✂
Rd

ω2
j ♣f̂(ω)♣2 dω.

We can choose λ in order to minimize the last expression. Thus, deriving with respect to
λ2 and putting the derivative to 0 we obtain that the minimum is achieved when

λ2 =


✂
Rd

ω2
j ♣f̂(ω)♣2 dω

1/2 ✂
Rd

t2j ♣f(t)♣2 dt
−1/2

. (5.8)
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If we substitute this λ into the last expression we obtain exactly (5.6). Moreover, equality
is achieved if and only if it is achieved in (5.7), but Lemma 5.3 then implies that g(t) = cH0

for some c ∈ C. Recalling the deĄnition of g we obtain f(t) = cλd/2H0(λt). If we put the
explicit expression of f into (5.8) we will see that λ can be chosen arbitrarily, indeed:

λ2 =


✂
Rd

ω2
j ♣c♣2λ−d♣F (DλH0)(ω)♣2 dω

1/2 ✂
Rd

t2j ♣c♣2λd♣H0(λt)♣2 dt
−1/2

(2.42)(iii)+(4.17)
=


✂
Rd

ω2
jλ

−d♣H0(ω/λ)♣2 dω
1/2 ✂

Rd

t2jλ
d♣H0(λt)♣2 dt

−1/2

ξ=ω/λ
=

s=λt
λ2


✂
Rd

ξ2
j ♣H0(ξ)♣2dξ

1/2 ✂
Rd

s2
j ♣H(s)♣2 ds

−1/2

= λ2.

We notice that this result is independent of j. So, to sum up, equality in (5.6) is achieved
for every j = 1, . . . , d if and only if f(t) = cH0(λt) for some c ∈ C and λ > 0.

Now that we have (5.6) we can prove (5.5), starting from:


✂
Rd

♣t♣2♣f(t)♣2 dt
1/2 ✂

Rd

♣ω♣2♣f̂(ω)♣2 dω
1/2

=





d
∑

j=1

✂
Rd

t2j ♣f(t)♣2 dt




1/2



d
∑

j=1

✂
Rd

ω2
j ♣f̂(ω)♣2 dω





1/2

.

We notice that the last expression is the product of the Euclidean norm of vectors
(∥tjf∥2)d

j=1 and (∥ωj f̂∥2)d
j=1. Thus, from Cauchy-Schwarz inequality in Rd, we obtain:


✂
Rd

♣t♣2♣f(t)♣2 dt
1/2 ✂

Rd

♣ω♣2♣f̂(ω)♣2 dω
1/2

≥
d
∑

j=1


✂
Rd

t2j ♣f(t)♣2 dt
1/2 ✂

Rd

ω2
j ♣f̂(ω)♣2 dω

1/2 (5.6)

≥ d∥f∥2
2

4π
.

Finally, equality is achieved if and only if both inequalities in the last expression become
equalities. From the Ąrst part of the proof we know that equality in the latter inequality
is achieved if and only if f(t) = cH0(λt) for some c ∈ C and λ > 0. Moreover, always from
previous computations we saw that in this case f satisĄes (5.8) for every j = 1, . . . , d. This
means exactly that vectors (∥tjf∥2)d

j=1 and (∥ωj f̂∥2)d
j=1 are parallel, therefore equality is

achieved also when using Cauchy-SchwarzŠ inequality.

We shall comment a mathematical interpretation of HeisenbergŠs uncertainty principle.
This can be written in the following form:

(✂
Rd

♣t− a♣2 ♣f(t)♣2
∥f∥2

2

dt

1/2(✂
Rd

♣ω − b♣2 ♣f̂(ω)♣2
∥f̂∥2

2

dω

1/2

≥ d

4π
,

so we may directly assume that f is normalized. In such a case, ♣f ♣2 can be seen as a
probability distribution. If these integrals are Ąnite for some a and b, through the same
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argument of time-frequency shift we already used, it is easy that they are always Ąnite.
Then, from a formal point of view, we can take the derivative with respect a and b, thus
obtaining that their minimum is achieved when

a = t̄ =

✂
Rd

t♣f(t)♣2 dt, b = ω̄ =

✂
Rd

ω♣f̂(ω)♣2 dω,

which are the mean of ♣f ♣2 and ♣f̂ ♣2, respectively. In this case, previous integrals represent
the standard deviation of ♣f ♣2 and ♣f̂ ♣2, which we indicate with ∆xf and ∆ωf . From
an heuristic perspective, it is fair to believe that a function ♣f ♣2 is mostly concentrated
around its mean and that its standard deviation is a measure of how spread it is. In light
of these arguments, HeisenbergŠs uncertainty principle can written as:

∆xf · ∆ωf ≥ d

4π
,

which is a quantiĄcation of the main point of an uncertainty principle, namely that a
function and its Fourier cannot be simultaneously concentrated.

5.2 Donoho-Stark’s uncertainty principle

As we saw, HeisenbergŠs uncertainty principle measures the concentration of a function in
terms of the variance. However, this is not the only way concentration can be stated. In
this section we present an uncertainty principle about the so-called essential support of a
function which, roughly speaking, is the set where a function has most of its energy.

Definition 5.5. A function f ∈ L2(Rd) is ε-concetrated on a measurable set T ⊆ Rd

for some ε ∈ [0,1] if

✂

T c

♣f(t)♣2 dt
1/2

≤ ε∥f∥2,

where T c = Rd \ T denotes the complement set of T .

If ε ≤ 1
2 , this tells us that most of the energy of f is inside T . Therefore, in such case

we may call T the essential support of f .

Theorem 5.6 (Donoho-StarkŠs uncertainty principle). Let f ∈ L2(Rd)\¶0♢, suppose that

f is εT -concentrated on T ⊆ Rd while f̂ is εΩ-concentrated on Ω ⊆ Rd. Then

♣T ♣ ♣Ω♣ ≥ (1 − εT − εΩ)2 (5.9)

Proof. The result is trivial if T or Ω have inĄnite measure. Hence we will suppose that
they both have Ąnite measure.
Concentration can be stated in an equivalent way through projection operators introduced
in Section 4.1, indeed:


✂

T c

♣f(t)♣2 dt
1/2

= ∥f − χT f∥2 = ∥f − PT f∥2 ≤ εT ∥f∥2,


✂

Ωc

♣f̂(ω)♣2 dω
1/2

= ∥f̂ − χΩf̂∥2 = ∥f − F
−1(χΩf̂)∥2 = ∥f −QΩf∥2 ≤ εΩ∥f∥2.
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In Section 4.1 we also noticed that ∥QΩ∥ ≤ 1, hence

∥f −QΩPT f∥2 = ∥f −QΩf +QΩf −QΩPT f∥2 ≤ ∥f −QΩf∥2 + ∥QΩ(f − PT f)∥2

≤ ∥f −QΩf∥2 + ∥f − PT f∥2 ≤ (εΩ + εT )∥f∥2,

and consequently

∥f∥2 = ∥f −QΩPT f +QΩPT f∥2 ≤ ∥f −QΩPT f∥2 + ∥QΩPT f∥2

=⇒ ∥QΩPT f∥2 ≥ ∥f∥2 − ∥f −QΩPT f∥2 ≥ (1 − εΩ − εT )∥f∥2.

Thanks to Proposition 4.1 we know that ∥QΩPT ∥HS =
√

♣T ♣ ♣Ω♣ and from Theorem 2.27
we know that ∥QΩPT ∥ ≤ ∥QΩPT ∥HS, therefore

(1 − εΩ − εT )∥f∥2 ≤ ∥QΩPT f∥2 ≤
√

♣T ♣ ♣Ω♣∥f∥2.

Taking ε = 0 in (5.9) gives us the following corollary.

Corollary 5.7. Let f ∈ L2(Rd) \ ¶0♢, suppf ⊆ T , suppf̂ ⊆ Ω. Then ♣T ♣♣Ω♣ ≥ 1.

Loosely speaking, this result is telling us that f and f̂ cannot concentrate too much
energy in a small subset of the phase space.

5.3 Lieb’s inequality

Up to now we presented two uncertainty principles related to the Fourier transform.
However, uncertainty principles can be stated for every time of time-frequency analysis.
In this and in the following section we present some uncertainty principles for the STFT.

We start considering a weak form and then we will show how LiebŠs inequality (3.4)
provides an uncertainty principle. Like for the Donoho-StarkŠs uncertainty principle, the
notion of concentration is measured in terms of essential support.

Proposition 5.8. Let f, ϕ ∈ L2(Rd) normalized, Ω ⊆ R2d and ε ∈ [0,1]. Suppose that

✂
Ω

♣Vϕf(x, ω)♣2 dx dω ≥ 1 − ε.

Then ♣Ω♣ ≥ 1 − ε.

Proof. From (3.5) we see that ♣Vϕf(x, ω)♣ ≤ 1 for all (x, ω) ∈ R2d, therefore

1 − ε ≤
✂

Ω

♣Vϕf(x, ω)♣2 dx dω ≤ ∥Vϕf∥2
∞♣Ω♣ ≤ ♣Ω♣. (5.10)
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Theorem 5.9 (LiebŠs inequality). Suppose that ∥f∥2 = ∥ϕ∥2 = 1. If Ω ⊆ R2d and
ε ∈ [0,1] are such that ✂

Ω

♣Vϕf(x, ω)♣2 dx dω ≥ 1 − ε.

Then

♣Ω♣ ≥ sup
p>2

(1 − ε)
p

p−2



p

2

 2d
p−2

.

Proof. If ♣Ω♣ = +∞ the result is trivial hence we can suppose that Ω has Ąnite measure.
It is sufficient to use HölderŠs inequality with exponents p/2 and (p/2)′ = p/(p− 2):

1 − ε ≤
✂

Ω

♣Vϕf(x, ω)♣2 dx dω =

✂
R2d

♣Vϕf(x, ω)♣2χΩ(x, ω) dx dω

Hölder
≤


✂
R2d

♣Vϕf(x, ω)♣2 p
2 dx dω


2

p

✂
R2d

χΩ(x, ω)
p

p−2 dx dω


p−2

p

(3.7)

≤


2

p

 2d
p

∥f∥2
2 ∥g∥2

2 ♣Ω♣
p−2

p =



2

p

 2d
p

♣Ω♣
p−2

p .

We point out that the use of HölderŠs inequality is justiĄed because Ω has Ąnite measure
and, since Vϕf ∈ Lq(R2d) for every q ≥ 2, ♣Vϕf ♣2 ∈ Lq(R2d) for every q ≥ 1. Because this
result holds for every p > 2, we can take the supremum over all possible p, which leads to
(5.9).

5.4 Faber-Krahn Inequality for the STFT

LiebŠs uncertainty principle and LiebŠs inequality are general results for the STFT because
they hold for every possible window ϕ ∈ L2(Rd). One may think that for speciĄc choices
of the window it is possible to obtain improved results. In this last section we present a
recent result, due to Nicola and Tilli and presented in [24], about the STFT with Gaussian
window φ given by (3.11). In this work, they considered the following variational problem:

max
f∈L2(Rd)\¶0♢

✁
Ω ♣Vφf(x, ω)♣2 dx dω

∥f∥2
2

, (5.11)

where Ω ⊂ R2d is a measurable set with prescribed measure s > 0. Therefore, we are
asking for the maximal energy of the STFT that can be trapped into a set of a prescribed
measure s and, possibly, which functions achieve the maximum. The problem is completely
solved and the solution is presented in the following theorem.

Theorem 5.10 (Theorem 4.1 [25]). For every f ∈ L2(Rd) such that ∥f∥L2 = 1 and every
measurable subset Ω ⊂ R2d with Ąnite measure we have

✂
Ω

♣Vφf(x, ω)♣2, dxdo ≤ G(♣Ω♣), (5.12)
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where G(s) is given by

G(s) :=

✂ s

0

e(−d!τ)1/d

dτ. (5.13)

Moreover, equality occurs if and only if f is a Gaussian of the kind

f(x) = ce2πix·ω0φ(x− x0) = c π(x0, ω0)φ(x), x ∈ Rd (5.14)

for some unimodular c ∈ C and some (x0, ω0) ∈ R2d and Ω is equivalent, in measure, to
a ball of centre (x0, ω0).

The proof of this theorem is non trivial since it requires some tools from geometric
measure theory, such as the coarea formula and the isoperimetric inequality. However,
it is worth mentioning that the very Ąrst step of the proof is rephrasing the problem in
the Fock space introduced in 3.2. Indeed, recalling the relation between the STFT with
Gaussian window and the Bargmann transform (3.14) and that the latter is an isometry
from L2(Rd) into F2(Cd) we have:

✁
Ω ♣Vφf(x, ω)♣2 dx dω

∥f∥2
2

=

✁
Ω′

♣Bf(z)♣2e−π♣z♣2 dz

∥Bf∥2
F2

,

where Ω′ = ¶(x, ω) : (x,−ω) ∈ Ω♢. Since the Bargmann transform is an unitary operator,
variational problem (5.11) can be rephrased in the following way:

max
F ∈F2(Cd)\¶0♢

✁
Ω ♣F (z)♣2e−π♣z♣2 dz

∥F∥2
F2

.

While, at Ąrst sight, this might just seem a rewriting of the problem, actually the presence
of the Bargmann transform is crucial. It is clear that, for F ∈ F2(Cd), the quantity✁

Ω ♣F (z)♣2e−π♣z♣2 dz is maximized when Ω is the a super-level set of ♣F (z)♣2e−π♣z♣2 . Thus, it

is natural to study the integral of ♣F (z)♣2e−π♣z♣2 over its super-level sets and this is where
regularity of functions in the Fock space comes into play.

For the sake of completeness, we mention that the Theorem in [24] is presented in a
slightly different way, namely:

✂
Ω

♣Vf(x, ω)♣2 dx dω ≤
γ
(

d, π(♣Ω♣/ω2d)1/d


(d− 1)!
,

where ω2d is the volume of the unit ball in R2d and γ is the lower incomplete gamma
function. Recalling the deĄnition of γ:

γ
(

d, π(♣Ω♣/ω2d)1/d


=

✂ π(♣Ω♣/ω2d)1/d

0

td−1e−t dt

and since ω2d = πd/d!, through the change of variable td = d!τ one obtains (5.12).
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Remark. We notice that the numerator of (5.11) can be written also in the following way:

✂
Ω

♣Vφf(x, ω)♣2 dx dω = ⟨χΩVφf,Vφf⟩ = ⟨V∗
φχΩVφf, f⟩ = ⟨LΩ,φf, f⟩, (5.15)

where LΩ,φ is the localization operator with weight χΩ. Therefore, taking the maximum
for all possible f ∈ L2(Rd) \ ¶0♢ such that ∥f∥2 = 1 leads to a bound for the norm of
LΩ,φ (to obtain the norm we have to take the maximum of ⟨LΩ,φf, g⟩ for all possible f
and g normalized). However, we know a posteriori that the maximum is attained when Ω
is a ball and f is a Gaussian, both with the same centre (x0, ω0) ∈ R2d. We mention that
results we obtain in Section 4.2.1 for localization operators with spherically symmetric
weights can be obtained also under the action of a time-frequency shift. Indeed, this
case is considered in [5] and, as expected, the eigenfunctions of these shifted localization
operators are time-frequency shifted Hermite functions. So, if f is a Gaussian it is an
eigenfunction of LΩ,φ and, in the end, the maximum of (5.15) is not only a bound for the
norm of LΩ,φ but it is the actual norm.

Once Theorem 5.10 has been established, arguing like previous section we immediately
obtain an uncertainty principle, which is sharp.

Corollary 5.11. Let f ∈ L2(Rd) with ∥f∥2 = 1, Ω ⊂ R2d measurable, ε ∈ [0,1) and
suppose that ✂

Ω

♣Vφ(x, ω)♣2 dx dω ≥ 1 − ε.

Then

♣Ω♣ ≥ G−1(1 − ε). (5.16)

We point out that G is invertible since it is monotonically strictly increasing. Moreover,
its image is [0,1), therefore its inverse G−1 : [0,1) → [0,+∞) is itself monotonically
increasing. This implies that, letting ε → 0 in (5.16), which means that Ω contains more
and more energy, we have ♣Ω♣ → +∞. If we compare this with LiebŠs uncertainty principle
we immediately realize how strong this result is, since letting ε = 0 in (5.9) yields to:

♣Ω♣ ≥ sup
p>2



p

2

 2d
p−2

,

which is a Ąnite number.
In conclusion, we consider the special case d = 1, when G−1 can be actually computed.

Indeed, in this case we have:

G(s) = 1 − e−s =⇒ G−1(s) = log



1

1 −G(s)



,

therefore (5.16) becomes

♣Ω♣ ≥ log



1

ε



.
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Even if we did not remark it, we already obtain this bound in the case Ω is a ball. Indeed,
in 4.9 we obtained the following expression (4.24):

✂
BR

♣Vϕf(x, ω)♣2 dx dω ≤ 1 − e−πR2

.

If we suppose
✁
BR

♣Vφf(x, ω)♣2 dx dω ≥ 1 − ε for some ε ∈ [0,1), we obtain that:

1 − ε ≤ 1 − e−πR2

=⇒ πR2 ≥ log



1

ε



.

where πR2 is exactly the measure of BR.
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Chapter 6

Maximal norm of localization

operators: recent results

Theorem 5.10 is not only remarkable by itself, but it turns out to be a powerful tool in
the study of the maximal norm of localization operator when the window of the STFT is
a normalized Gaussian. We already mentioned that 5.10 can be rephrased into a result for
the norm of localization operators of the kind LΩ,φ, where Ω ⊂ R2d is a measurable set of
prescribed measure. The latter condition can be seen as a constraint for the L1(R2d) norm
of χΩ. In light of this observation, we may think to consider an analogous problem where
χΩ is replaced by a generic weight function F that satisĄes an integrability, and possibly
boundedness, condition. This last chapter is devoted to the study of this problem. We
start presenting a result from Nicola and Tilli [25] where F is chosen under an Lp and L∞

constraint. Then, we consider a more generic case where the L∞ constraint is replaced by
a Lq one.

6.1 Results from Nicola-Tilli

In this section we show the results in [25]. The aforementioned problem can be precisely
stated as follows: Ąnd the optimal constant C > 0 such that:

∥LF,φ∥L2(Rd)→L2(Rd) ≤ C, (6.1)

where F satisĄes the following constraints:

∥F∥∞ ≤ A and ∥F∥p ≤ B. (6.2)

Clearly the constant C will depend on p, A and B. In [25] this problem is completely
solved: the constant C is computed (explicitly in some cases), weight functions F which
achieve this bound are explicitly found and also function f and g such that ♣⟨LF,φf, g⟩♣ =
∥LF,φ∥ = C are found. Before reporting the main Theorem of [25], we deĄne the following
number which will appear many times:

κp :=
p− 1

p
. (6.3)
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Moreover, for the sake of brevity, we denote the variable (x, ω) ∈ R2d as z and therefore
dx dω as dz.

Theorem 6.1. Assume p ∈ [1,+∞), A ∈ (0,+∞] and B ∈ (0,+∞) with the additional
condition that A < +∞ when p = 1. Let F satisfy the constraints in (6.2).

(i) If p = 1, then
∥LF,φ∥ ≤ A G(B/A), (6.4)

and equality occurs if and only if, for some θ ∈ R and some z0 ∈ R2d

F (z) = AeiθχB(z − z0) ∀z ∈ R2d (6.5)

where B ⊂ R2d is the ball of measure B/A centred at the origin.

(ii) If p > 1 and B/A ≤ κ
d/p
p , then

∥LF,φ∥ ≤ κdκp
p B, (6.6)

with equality if and only if, for some θ ∈ R and some z0 ∈ R2d,

F (z) = eiθλe− π
p−1

♣z−z0♣2 ∀z ∈ R2d, (6.7)

where λ = κ
−d/p
p B.

(iii) If p > 1 and B/A > κ
d/p
p , then

∥LF,φ∥ ≤
✂ A

0

G(uλ(t)) dt, (6.8)

where uλ(t) =
[

− log
(

(t/λ)p−1
]d

and λ > A is uniquely determined by the condition

p
✁ A

0 tp−1uλ(t) dt = Bp. Equality in (6.8) is achieved if and only if, for some θ ∈ R

and some z0 ∈ R2d,

F (z) = eiθ min¶λe− π
p−1

♣z−z0♣2 , A♢ (6.9)

Finally, in all the cases, condition ♣⟨LF,φf, g⟩♣ = ∥LF,φ∥ holds for some, f, g ∈ L2(Rd)
such that ∥f∥2 = ∥g∥2 = 1, if and only if both f and g are of the kind (5.14), possibly
with different cŠs, but with the same (x0, ω0) ∈ R2d which coincides with the centre of F .

We will not give the proof of these results since some of its parts are similar to the one
we will see in the following section. Moreover, we point out that the case A = +∞ means
we are dropping the L∞ constraint.

We shall brieĆy comment this theorem. Except for the case p = 1, when maximal
weight functions are just characteristic functions of a ball, we see that two regime arise. In
the Ąrst one, when B/A ≤ κ

d/p
p (which means that A is ŞsufficientlyŤ big compared to B),

maximal weight functions are Gaussians. We already saw that Gaussian arise naturally
has minimizers of uncertainty principles, so this result is not unexpected. However, in
the second regime, when B/A > κ

d/p
p , maximal weight functions are not Gaussians but

Gaussians truncated above. As pointed out in [25], this seems to be a new phenomenon
in time-frequency analysis.
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6.2 New results in presence of two Lp constraints

In this section we will deal with a generalized version of the problem considered in [25].
Indeed, we want to Ąnd the optimal constant C such that

∥LF,φ∥L2(Rd)→L2(Rd) ≤ C

under the following constraints on F :

∥F∥p ≤ A and ∥F∥q ≤ B, (6.10)

where p, q ∈ (1,+∞) and A,B ∈ (0,+∞). Before presenting the main theorem of this
section we introduce the following notation

Log−(x) = max¶− log(x),0♢.

Theorem 6.2. Assume p, q ∈ (1,+∞), A,B ∈ (0,+∞) and suppose that F satisĄes
constraints (6.10). Then

(i) If B/A ≥ κ
d( 1

q
− 1

p
)

p



p

q

 d
q

(

respectively B/A ≤ κ
d( 1

q
− 1

p
)

q



p

q

 d
p



, then:

∥LF,φ∥ ≤ κdκp
p A (resp. ∥LF,φ∥ ≤ κdκq

q B),

with equality if and only if, for some θ ∈ R and some z0 ∈ R2d,

F (z) = eiθλe− π
p−1

♣z−z0♣2 (resp. F (z) = eiθλe− π
q−1

♣z−z0♣2),

where λ = κ
−d/p
p A (resp. λ = κ

−d/q
q B).

(ii) If κ
d( 1

q
− 1

p
)

q



p

q

 d
p

< B/A < κ
d( 1

q
− 1

p
)

p



p

q

 d
q

, then

∥LF,φ∥ ≤
✂ +∞

0

G(u(t)) dt, (6.11)

where u(t) = 1
d!

[

Log−(λ1t
p−1 + λ2t

q−1)
]d

and λ1, λ2 > 0 are uniquely determined by

p

✂ +∞

0

tp−1u(t) dt = Ap, q

✂ +∞

0

tq−1u(t) dt = Bq.

Moreover, letting T > 0 the unique value such that λ1T
p−1 + λ2T

q−1 = 1, the
function t → − log(λ1t

p−1 + λ2t
q−1) deĄned on (0, T ] is invertible and we denote by

ψ : [0,+∞) → (0, T ] its inverse. Then, equality in (6.11) is achieved if and only if,
for some θ ∈ R and some z0 ∈ R2d, F (z) = eiθψ(π♣z − z0♣2).

Finally, in every case, equality in ♣⟨LF,φf, g⟩♣ = ∥LF.φ∥ is achieved if and only if f and g
are both of the kind (5.14), possibly with different cŠs but same (x0, ω0) ∈ R2d.
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We point out that in, in the second regime, it is not possible to Ąnd an explicit
expression for C and F , although they can be computed numerically.

We split the proof of the theorem in several steps and we start proving the Ąrst state-
ment, which explains how these different regimes arise.

Proof of Theorem 6.2(i). We consider just the Ąrst version, since the other one can be
obtained swapping p and q.

Theorem 6.1(ii) includes the case when F satisĄes just an Lp constraint by taking A
(L∞ constraint) equal to +∞. In the current setting we have an Lp and an Lq bound,
hence, thanks to (6.6), it is straightforward to see that

∥LF,φ∥ ≤ min¶κdκp
p A, κdκq

q B♢.

Suppose that the Ąrst term is smaller than the second, which means:

κdκp
p A ≤ κdκq

q B ⇐⇒ B

A
≥
(

κ
κp
p

κ
κq
q

d

. (6.12)

Clearly, for B sufficiently large we expect that the solution of current problem is the same
as the one with just an Lp constraint, namely the one given by (6.7). Therefore, we want
to compare its Lq norm with the bound given by B:

∥F∥q
q =

✂
R2d

♣F (z)♣q dz = λq

✂
R2d

e− qπ
p−1

♣z−z0♣2 dz

z′=( qπ
p−1 )

1/2
(z−z0)

= λq



p− 1

qπ

d ✂
R2d

e−♣z′♣2 dz′ = λq



p− 1

qπ

d

πd = λq



p− 1

q

d

.

Since we want F to satisfy the Lq constraint we should have

λ



p− 1

q

d/q

≤ B
λ=κ

−d/p
p A

=⇒


p

p− 1

d/p p− 1

q

d/q

A ≤ B,

which is equivalent to
B

A
≥ κ

d( 1

q
− 1

p )
p



p

q

 d
q

. (6.13)

If this condition is met, the solution with just the Lp constraint is a solution also for
the problem with two constraints. Moreover, from 6.1 follows also the last part of the
statement regarding those f and g that achieve equality in ♣⟨LF,φf, g⟩ = ∥LF,φ∥.

If condition (6.13) were less restrictive than condition (6.12) we would have completely
solved the problem. Unfortunately, this is not the case. Indeed it is always true, regardless
of p and q, that

κ
d( 1

q
− 1

p )
p



p

q

 d
q

≥
(

κ
κp
p

κ
κq
q

d

. (6.14)

The proof of this inequality can be found in B.2.
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To sum up, if B/A ≥ κ
d( 1

q
− 1

p )
p

(

p
q

 d
q or B/A ≤ κ

d( 1

q
− 1

p )
q

(

p
q

 d
p , the problem is already

solved and the solution is given by Theorem 6.1. Therefore, from now on, we will considerc
the intermediate case, that is:

κ
d( 1

q
− 1

p )
q



p

q

 d
p

<
B

A
< κ

d( 1

q
− 1

p )
p



p

q

 d
q

, (6.15)

which corresponds to the statement of 6.2(ii). We notice that the condition is well-posed,
since it is actually true that

κ
d( 1

q
− 1

p )
q



p

q

 d
p

< κ
d( 1

q
− 1

p )
p



p

q

 d
q

(6.16)

whenever p /= q (proof is in B.3).
The proof of this part of Theorem 6.2 is much more complex than the Ąrst one. The

starting point is a Theorem from [25] which gives a bound for ∥LF,φ∥ in terms of the
distribution function of ♣F ♣.

Theorem 6.3. Assume F ∈ Lp(R2d) for some p ∈ [1,+∞) and let µ(t) = ♣¶♣F ♣ > t♢♣ be
the distribution function of ♣F ♣. Then

∥LF,φ∥ ≤
✂ +∞

0

G(µ(t)) dt. (6.17)

Equality occurs if and only if F (z) = eiθρ(♣z − z0♣) for some θ ∈ R, z0 ∈ R2d and some
nonincreasing function ρ : [0,+∞) → [0,+∞). In this case, it holds ♣⟨LF,φf, g⟩♣ = ∥LF,φ∥
for some normalized Gaussians f and g of the kind (5.14), possibly with different cŠs but
with same centre (x0, ω0) ∈ R2d.

Proof. Let f, g ∈ L2(Rd) such that ∥f∥2 = ∥g∥2 = 1. Since we are in a Hilbert space
∥LF,φ∥ can be computed as the supremum of ♣⟨LF,φf, g⟩♣ over all normalized f and g.
Therefore we are interested in estimating the previous scalar product:

♣⟨LF,φf, g⟩♣ = ♣LF,φ(f, g)♣ ≤
✂
R2d

♣F (z)♣ · ♣Vφf(z)♣ · ♣Vφg(z)♣ dz

C-S
≤

✂
R2d

♣F (z)♣ · ♣Vφf(z)♣2 dz
1/2 ✂

R2d

♣F (z)♣ · ♣Vφg(z)♣2 dz
1/2

.

(6.18)

Since the result is symmetric in f and g we can study just one of the terms. Letting
m = ess sup ♣F (z)♣ and assuming m > 0 (otherwise every result is trivial) we can use the
Şlayer cakeŤ representation [21, Theorem 1.13]

♣F (z)♣ =

✂ m

0

χ¶♣F ♣>t♢(z) dt
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in order to Ąnd
✂
R2d

♣F (z)♣ · ♣Vφf(z)♣2 dz =

✂
R2d


✂ m

0

χ¶♣F ♣>t♢(z) dt



♣Vφf(z)♣2 dz

Tonelli
=

✂ m

0


✂
R2d

χ¶♣F ♣>t♢(z)♣Vφf(z)♣2 dz


dt

=

✂ m

0

(✂
¶♣F ♣>t♢

♣Vφf(z)♣2 dz


dt.

We notice that the quantity in the inner integral is exactly the one in Theorem 5.10, hence

✂
R2d

♣F (z)♣ · ♣Vφf(z)♣2 dz ≤
✂ m

0

G (♣¶♣F ♣ > t♢♣) dt =

✂ m

0

G(µ(t)) dt. (6.19)

We point out that since µ(t) = 0 for t > m and that G(0) = 0, the previous expression is
equivalent to (6.17).

Because p < +∞, from Proposition 4.6 we know that LF is a compact operator,
therefore there exist normalized f and g which achieve equality in the supremum of the
norm, namely ♣⟨LF,φf, g⟩♣ = ∥LF,φ∥. Therefore, equality in (6.17) occurs if and only if all
the previous inequalities become equalities. Equality in (6.19) occurs if and only if

✂
¶♣F ♣>t♢

♣Vφf(z)♣2 dz = G(µ(t)) (6.20)

for a.e. t ∈ (0,m). Now, Ąx t0 ∈ (0,m) such that equality holds. From Theorem 5.10 we
can infer that ¶♣F ♣ > t0♢ is (equivalent to) a ball centred in z0 = (x0, ω0) and that f is
a Gaussian of the kind (5.14) with the same centre z0. Now that the centre of f is Ąxed,
still from Theorem 5.10, we obtain that equality in (6.20) a.e implies that also the other
levels sets ¶♣F ♣ > t♢ are equivalent to balls centred at the same z0. Finally, we can extend
the result to every t ∈ (0,m) because ¶♣F ♣ > t♢ =

⋃

s>t¶♣F ♣ > s♢. Since Theorem 5.10
is a Şif and only ifŤ, these conditions on F and f are also sufficient to guarantee equality
in (6.19). Clearly, the same result holds for g which has to be a Gaussian, possibly with
different coefficient c but the same centre z0.

In the end, since all the super-level sets of ♣F ♣ are balls we conclude that it is spherically
symmetric and radially decreasing, as claimed in the theoremŠs statement.

Conditions for f and g imply that Vφg = eiαVφf for some α ∈ R. This provides
equality in (6.18) when using Cauchy-SchwarzŠ inequality. Lastly we shall prove that also
the Ąrst inequality in (6.18), that is

∣

∣

∣

∣

✂
R2d

F (z)Vφf(z)Vφg(z) dz

∣

∣

∣

∣

≤
✂
R2d

♣F (z)♣ · ♣Vφf(z)♣ · ♣Vφg(z)♣ dz

becomes an equality. With the additional information that Vφg = eiαVφf this is equivalent
to prove that:

∣

∣

∣

∣

✂
R2d

F (z)♣Vφf(z)♣2 dz
∣

∣

∣

∣

=

✂
R2d

♣F (z)♣ · ♣Vφf(z)♣2 dz. (6.21)
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The integral on the left-hand side is just a complex number, therefore we have:✂
R2d

F (z)♣Vφf(z)♣2 dz = eiθ

∣

∣

∣

∣

✂
R2d

F (z)♣Vφf(z)♣2 dz
∣

∣

∣

∣

,

so (6.21) becomes✂
R2d

e−iθF (z)♣Vφf(z)♣2 dz =

✂
R2d

♣F (z)♣ · ♣Vφf(z)♣2 dz.

The proof would be complete if ♣Vφf(z)♣2 was always positive, since this would imply
F (z) = eiθ♣F (z)♣. In the proof of Theorem 4.7 we computed the STFT of Hermite
functions. Since φ = H0, letting k = 0 ∈ Nd

0 into (4.22) leads to:

Vφφ(x, ω) = e−πiω·xe−π(♣x♣2+♣ω♣2)/2.

In order to compute the STFT of f = cπ(x0, ω0)φ, all we have to do is to understand how
Vφ interacts with a time-frequency shift:

Vφf(x, ω) = ⟨cπ(x0, ω0)φ, π(x, ω)φ⟩ = c⟨φ, T−x0
Mω−ω0

Txφ⟩.
Then:

T−x0
Mω−ω0

Txφ(t) = e2πi(ω−ω0)·(t+x0)f(t+ x0 − x) = e2πi(ω−ω0)·x0Mω−ω0
Tx−x0

φ(t),

so that we obtain

Vφf(x, ω) = ce2πi(ω−ω0)·x0⟨φ,Mω−ω0
Tx−x0

φ⟩ = ce2πi(ω−ω0)·x0Vφφ(x− x0, ω − ω0).

In the end, taking the modulus of both side we conclude that ♣Vφf(x, ω)♣2 is always strictly
positive, which concludes the proof.

In light of the previous Theorem, it is natural to seek for a sharp upper bound for
the right-hand side of (6.17). Since this involves the distribution function ♣F ♣, we shall
search this bound between all the possible distribution functions. In order to do so, we
need to rephrase constraints (6.10) in terms of µ. This can be easily done thanks to
a more general version of the Şlayer cakeŤ representation (see [21, Theorem 1.13] or [9,
Proposition 1.1.4]):

∥F∥p
p = p

✂ +∞

0

tp−1♣¶♣F ♣ > t♢♣ dt.

Hence, constraints (6.10) become

p

✂ +∞

0

tp−1u(t) dt ≤ Ap and q

✂ +∞

0

tq−1u(t) dt ≤ Bq (6.22)

and we can deĄne the proper space of possible distribution functions

C = ¶u : (0,+∞) → [0,+∞) such that u is decreasing and satisĄes (6.22)♢. (6.23)

We have reached the point where our original question is rephrased in the following vari-
ational problem:

sup
v∈C

I(v) where I(v) :=

✂ +∞

0

G(v(t)) dt. (6.24)

Firstly, we shall prove existence of maximizers.

57



Maximal norm of localization operators: recent results

Proposition 6.4. The supremum in (6.24) is Ąnite and it is attained by at least one
function u ∈ C. Moreover, every extremal function u achieves equality in at least one of
the constraints (6.22).

Proof. Considering, for example, the Ąrst constraint in (6.22), we see that

tpu(t) = p

✂ t

0

τp−1u(t) dτ
u decreasing

≤ p

✂ t

0

τp−1u(τ) dτ ≤ Ap,

hence functions in C are pointwise bounded by Ap/tp. It is straightforward to verify that
G in (5.13) is increasing, that G(s) ≤ s and that G(s) ≤ 1. Using these properties we
have:

I(u) =

✂ +∞

0

G(u(t)) dt =

✂ 1

0

G(u(t)) dt+

✂ +∞

1

G(u(t)) dt
G(s)≤1

≤ 1 +

✂ +∞

1

G(u(t)) dt

G increasing
≤ 1 +

✂ +∞

1

G(Ap/tp) dt
G(s)≤s

≤ 1 +

✂ +∞

1

Ap

tp
dt < +∞,

therefore the supremum in (6.24) is Ąnite.
Let ¶un♢n∈N ⊂ C be a maximizing sequence. Since every un is pointwise bounded by

Ap/tp, thanks to HellyŠs selection theorem C.1 we can say that, up to a subsequence, un

converges pointwise to a decreasing function u. Moreover, u is still in C, indeed:

✂ +∞

0

tp−1u(t) =

✂ +∞

0

lim
n→+∞

tp−1un(t) dt
Fatou’s lemma

≤ lim inf
n→+∞

✂ +∞

0

tp−1un(t) dt ≤ Ap

p
,

and clearly the same holds for q instead of p.
Now we have to prove that u is actually achieving the supremum. We already saw that

the following holds:

♣G(un(t))♣ ≤ χ(0,1)(t) +
Ap

tp
χ(1,+∞)(t)

and that the left-hand side is a function in L1(0,+∞). This allows us to use dominated
convergence theorem to conclude that

I(u) =

✂ +∞

0

G(u(t)) = lim
n→+∞

✂ +∞

0

G(un(t)) dt = lim
n→+∞

I(un) = sup
v∈C

I(v).

Lastly, we need to show that u achieves equality at least in one of the constraints (6.22).
Suppose that this is not true. If we let uε(t) = (1 + ε)u(t), then for ε > 0 sufficiently
small constraints are still satisĄed and since G is strictly increasing I(uε) > I(u), which
contradicts the hypothesis that u is a maximizer.

In order to do some ŞmeaningfulŤ calculus of variations we need to enlarge C, because
the monotonicity assumption is quite strict. We will show that removing this hypothesis
leaves the supremum unchanged and that maximizers are indeed monotonic.
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Proposition 6.5. Let C′ = ¶u : (0,+∞) → [0,+∞) such that u is measurable and
satisĄes (6.22)♢. Then

sup
v∈C

I(v) = sup
v∈C′

I(v). (6.25)

In particular, any function u ∈ C achieving the supremum on the left-hand side also
achieves it on the right-hand side.

Proof. Let u ∈ C′. We deĄne its decreasing rearrangement as:

u∗(s) = sup¶t ≥ 0 : ♣¶u > t♢♣ > s♢, (6.26)

with the convention that sup ∅ = 0. It is clear from the deĄnition that u∗ is a non-
increasing function. Moreover, one can see ([11, Section 10.12], [9, Proposition 1.4.5])
that u∗ is right-continuous and that u and u∗ are equi-measurable, which means that they
have the same distribution function. Moreover, we already pointed out that constraints
(6.22) imply that u is pointwise bounded by Ap/tp, therefore u∗ takes only Ąnite values.
Our aim is to show that u∗ ∈ C. Letting ν be the Radon measure with density tp−1, we
start proving that ν(¶u > s♢) ≥ ν(¶u∗ > s♢), indeed:

ν(¶u > s♢) =

✂
¶u>s♢

tp−1 dt
tp−1 increasing

≥
✂ ♣¶u>s♢♣

0

tp−1 dt

equi−measurability
=

✂ ♣¶u∗>s♢♣

0

tp−1 dt
u∗ decreasing

=
right−continuous

✂
¶u∗>s♢

tp−1 dt = ν(¶u∗ > s♢).

Then, using one more time the Şlayer cakeŤ representation:
✂ +∞

0

tp−1u(t) dt =

✂ +∞

0

u(t)dν(t) =

✂ +∞

0

ν(¶u > s♢) ds ≥

=

✂ +∞

0

ν(¶u∗ > s♢) ds =

✂ +∞

0

u∗(t)dν(t) =

✂ +∞

0

tp−1u∗(t) dt.

If we swap p with q we conclude that u∗ ∈ C. Moreover, always from equi-measurability,
we have:

I(u) =

✂ +∞

0

G(u(t)) dt =

✂ +∞

0

✂ u(t)

0

e−(d!τ)1/d

dτ dt =

✂ +∞

0

✂ +∞

0

χ¶u>τ♢(t)e−(d!τ)1/d

dτ dt

Tonelli
=

✂ +∞

0

♣¶u > τ♢♣e−(d!τ)1/d

dτ =

✂ +∞

0

♣¶u∗ > τ♢♣e−(d!τ)1/d

dτ = I(u∗).

Taking the supremum over all possible u ∈ C′ we have:

sup
v∈C′

I(v) = sup
v∈C′

I(v∗) ≤ sup
v∈C

I(v).

Inequality supv∈C′ I(v) ≥ supv∈C I(v) is trivial since C′ ⊃ C.

We are now in the position to Ąnd maximizers of (6.24).
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Theorem 6.6. There exist a unique function u ∈ C achieving the supremum in (6.24)
that is:

u(t) =
1

d!

[

Log−
(

λ1t
p−1 + λ2t

q−1
]d

, t > 0 (6.27)

where λ1, λ2 are both positive and uniquely determined by

p

✂ +∞

0

tp−1u(t) dt = Ap, q

✂ +∞

0

tq−1u(t) dt = Bq.

Proof. We will split the proof in several parts. Firstly we will show that maximizers are
given by (6.27). Then we will show that multipliers λ1 and λ2 are both strictly positive
and unique.
•Expression of maximizers

Let M = sup¶t ∈ (0,+∞) : u(t) > 0♢. From Proposition 6.4 we know that u has to
achieve at least one of the constraints, therefore M > 0. Consider now a closed interval
[a, b] ⊂ (0,M) and a function η ∈ L∞(0,M) supported in [a, b]. Without loss of generality
we can suppose that η is orthogonal, in the L2 sense, to tp−1 and tq−1, explicitly

✂ b

a

tp−1η(t) dt = 0,

✂ b

a

tq−1η(t) dt = 0. (6.28)

On [a, b] we have that u(t) ≥ u(b) > 0, hence, for ♣ε♣ sufficiently small, u + εη is still a
nonnegative function which satisĄes (6.22), therefore u+ εη ∈ C′. Since we are supposing
that u is a maximizer, the function ε → I(u+εη) has a maximum for ε = 0. Given that η
is supported in a compact interval we can differentiate under the integral sign and obtain

0 =
d

dε
I(u+ εη)♣ε=0=

✂ b

a

G′(u(t))η(t) dt.

We would like to extend this result to every η in L2(a, b) satisfying (6.28). Since L∞(a, b)
is dense in L2(a, b), there exist a sequence ¶ηk♢k∈N ⊂ L∞(a, b) such that ηk → η in
L2(a, b). We can consider the projection operator P such that, given ψ ∈ L2(a, b), Pψ is
the orthogonal projection of ψ onto X = span¶tp−1, tq−1♢⊥ ⊂ L2(a, b). Considering P is
continuous we have that Pηk → Pη = η, hence, since Pηk ∈ L∞(a, b):

0 =

✂ b

a

G′(u(t))Pηk(t) dt = ⟨G′(u), Pηn⟩L2(a,b) → ⟨G′(u), η⟩L2(a,b) =

✂ b

a

G′(u(t))η(t) dt

namely ✂ b

a

G′(u(t))η(t) dt = 0. (6.29)

Since (6.29) holds for every η ∈ X it must be that

G′(u) ∈ X⊥ =
(

span¶tp−1, tq−1♢⊥
⊥

= span¶tp−1, tq−1♢ in (a, b).

Letting a → 0+ and b → M− we then obtain

G′(u(t)) = λ1t
p−1 + λ2t

q−1 for a.e. t ∈ (0,M) (6.30)
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for some multipliers λ1, λ2 ∈ R. Since u is decreasing actually (6.30) holds for every
t ∈ (0,M). Finally, recalling the expression of (5.13) we see that G′(s) = e−(d!s)1/d

. Since
u is monotonically decreasing we can invert (6.30) thus obtaining the explicit expression
of maximizers:

u(t) =







1

d!

[− log
(

λ1t
p−1 + λ2t

q−1
)]d

t ∈ (0,M)

0 t ∈ (M,+∞)
(6.31)

We remark that a priori it was possible that M = +∞, but from the explicit expression
of maximizers we see that this is not possible since u has to be nonnegative.
• Maximizers achieve equality in both constraints and multipliers are non-zero

The argument we used to determine the expression of maximizers enables us to say
that these have to achieve equality in both constraints in (6.22). Indeed, if, for example,
we had that q

✁ +∞
0 tq−1u(t) dt < Bq, the second condition of orthogonality in (6.28) could

be removed, because for sufficiently small ε a variation non-orthogonal to tq−1 would
be admissible. This would provide us the solution of the same variational problem but
without the Lq constraint. Since we are working in the intermediate case, we know that
actually this solution does not satisfy the Lq constraint, hence we conclude that u has
to achieve equality in both constraints. With the very same reasoning we can say that
neither λ1 nor λ2 can be 0.
• Multipliers are positive

Suppose that one of the multipliers, for example λ2, is negative. Consider an interval
[a, b] ⊂ (0,M) and an admissible variation η ∈ L∞(0,M) supported in [a, b] and such that✁ b

a t
q−1η(t) dt < 0. An example of such variation can be

η(t) =

{

−t1−p, t ∈ [a, (a+ b)/2)

t1−p, t ∈ [(a+ b)/2, b]

if q < p or

η(t) =

{

t1−p, t ∈ [a, (a+ b)/2)

−t1−p, t ∈ [(a+ b)/2, b]

if q > p. Then the directional derivative of G at u along η is:

✂ b

a

G′(u(t))η(t) dt =

✂ b

a

(λ1t
p−1 + λ2t

q−1)η(t) dt = λ2

✂ b

a

tq−1η(t) dt > 0,

which contradicts the fact that u is a maximizer.
• u is continuous

Now that we now that both multipliers are positive we can prove that u is continuous,
which is equivalent to say that M = T , where T is the unique positive number such that
λ1T

p−1 + λ2T
q−1 = 1 (uniqueness of T follows from the positivity of multipliers).

We start supposing that M < T , which means that limt→M− u(t) > 0. Consider the
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following variation

η(t) =



















−1 + α
t

M
+ β, t ∈ (M −Mδ,M)

1, t ∈ (M,M +Mδ)

0, otherwise

where δ > 0 is small enough so that M − Mδ > 0 and M + Mδ < T , while α and β
are constants, depending on δ, to be determined. Since we want this to be an admissible
variation, we impose that η is orthogonal to tp−1 and tq−1. For example, the Ąrst condition
is:

0 =

✂ M+Mδ

M−Mδ

tp−1η(t) dt = −
✂ M

M−Mδ

tp−1 dt+

✂ M

M−Mδ

tp−1



α
t

M
+ β



dt+

✂ M+Mδ

M

tp−1 dt

τ=t/M
= Mp

✂ 1

1−δ

τp−1(ατ + β) dτ −Mp

✂ 1

1−δ

τp−1 dτ +Mp

✂ 1+δ

1

τp−1 dτ

therefore, dividing by δ:
✥ 1

1−δ

τp−1(ατ + β) dτ = α

✥ 1

1−δ

τp dτ + β

✥ 1

1−δ

τp−1 dτ =

✥ 1

1−δ

τp−1 dτ −
✥ 1+δ

1

τp−1 dτ.

The equation stemming from the orthogonality with tq−1 is analogous. Therefore, we
obtained a nonhomogeneous linear system for α and β:

(✤ 1

1−δ τ
p dτ

✤ 1

1−δ τ
p−1 dτ✤ 1

1−δ τ
q dτ

✤ 1

1−δ τ
q−1 dτ





α
β



=

(✤ 1

1−δ τ
p−1 dτ −

✤ 1+δ

1 τp−1 dτ✤ 1

1−δ τ
q−1 dτ −

✤ 1+δ

1 τ q−1 dτ



. (6.32)

This system has a unique solution if and only if the determinant of the matrix is not 0.
We can show this directly:

✥ 1

1−δ

τp dτ

✥ 1

1−δ

τ q−1 dτ −
✥ 1

1−δ

τ q dτ

✥ 1

1−δ

τp−1 dτ =

=
1

δ2

✂
(1−δ,1)2

(

τpσq−1 − τp−1σq


dτ dσ =
1

δ2

✂
(1−δ,1)2

τp−1σq−1 (τ − σ) dτ dσ =

=
1

δ2

(✂
Q1

τp−1σq−1 (τ − σ) dτ dσ +

✂
Q2

τp−1σq−1 (τ − σ) dτ dσ



,

where Q1 = (1 − δ,1)2 ∩ ¶τ > σ♢ and Q2 = (1 − δ,1)2 ∩ ¶τ < σ♢. In the second integral
we can consider the change of variable that swaps τ and σ. In this case, the new domain
is Q1, hence:

✥ 1

1−δ

τp dτ

✥ 1

1−δ

τ q−1 dτ −
✥ 1

1−δ

τ q dτ

✥ 1

1−δ

τp−1 dτ =

=
1

δ2

✂
Q1

(

τp−1σq−1 − τ q−1σp−1


(τ − σ) dτ dσ.
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In Q1 we have that τ − σ > 0 and the sign of τp−1σq−1 − τ q−1σp−1 is constant, indeed:

τp−1σq−1 − τ q−1σp−1 > 0 ⇐⇒


τ

σ

p−q

> 1
τ>σ⇐⇒ p > q.

Therefore the determinant of the matrix is always not 0.
Now that we have an admissible variation, we can compute the directional derivative

of G along η. Since u is supposed to be a maximizer, this derivative has to be nonpositive,
therefore:

0 ≥
✂ M+Mδ

M−Mδ

G′(u(t))η(t) dt = −
✂ M

M−Mδ

(

λ1t
p−1 + λ2t

q−1


dt+

+

✂ M

M−Mδ

(

λ1t
p−1 + λ2t

q−1




α
t

M
+ β



dt+

✂ M+Mδ

M

dt =

= −
✂ M

M−Mδ

(

λ1t
p−1 + λ2t

q−1


dt+ λ1M
p

✂ 1

1−δ

tp−1(αt+ β) dt+

+ λ2M
q

✂ 1

1−δ

tq−1(αt+ β) dt+Mδ.

Dividing by Mδ and rearranging we obtain:

✥ M

M−Mδ

(

λ1t
p−1 + λ2t

q−1


dt ≥ 1 + λ1M
p−1

✥ 1

1−δ

tp−1(αt+ β) dt

+ λ2M
q−1

✥ 1

1−δ

tq−1(αt+ β) dt.

(6.33)

We notice that the last two terms are exactly the ones that appear in the orthogonality
condition, therefore, to understand their behavior as δ approaches 0, we need to study the
right-hand side of the system (6.32). If we expand the Ąrst component in the right-hand
side of (6.32) in its Taylor series with respect to δ we have:



1 − p− 1

2
δ + o(δ)



−


1 +
p− 1

2
δ + o(δ)



= −(p− 1)δ + o(δ)

and similarly for the other component. If we let δ → 0+ in (6.33) we obtain

λ1M
p−1 + λ2M

q−1 = lim
δ→0+

✥ M

M−Mδ

(

λ1t
p−1 + λ2t

q−1


dt

≥ 1 + lim
δ→0+



λ1M
p−1

✥ 1

1−δ

tp−1(αt+ β) dt+ λ2M
q−1

✥ 1

1−δ

tq−1(αt+ β)

]

= 1 + λ1M
p−1 lim

δ→0+
[−(p− 1)δ + o(δ)] + λ2M

q−1 lim
δ→0+

[−(q − 1)δ + o(δ)]

= 1.

The function λ1t
p−1 + λ2t

q−1 is strictly increasing because λ1 and λ2 are both positive,
therefore this implies that M ≥ T , which is absurd because we supposed that M < T .
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This allows us to write u as in (6.27).
• Uniqueness of multipliers

Lastly we shall prove that multipliers λ1, λ2, and hence maximizer, are unique. For
this proof it is convenient to express u in a slightly different way:

u(t) =
1

d!

[

Log−
(

(c1t)
p−1 + (c2t)

q−1
]d

.

To emphasize that u is parametrized by c1, c2 we write u(t; c1, c2). If we let u into (6.22)
we obtain the following functions of c1 and c2:

f(c1, c2) = p

✂ T

0

tp−1u(t; c1, c2) dt, g(c1, c2) = q

✂ T

0

tq−1u(t; c1, c2) dt.

We want to highlight that, even if it is not explicit, also T depends on c1 and c2. Neverthe-
less, these functions are differentiable since both T and u are differentiable with respect
to (c1, c2) and tp−1u, tq−1u and their derivatives are bounded in (0, T ). Our maximizer u
satisĄes the constraints only if f(c1, c2) = Ap, g(c1, c2) = Bq. Therefore, to prove unique-
ness of the maximizer we need to show that level sets ¶f = Ap♢ and ¶g = Bq♢ intersect
only in one point.

First of all we need to study endpoints, namely when one of c1 or c2 is 0. For example,
if c2 = 0:

f(c1,0) = p

✂ 1/c1

0

tp−1 1

d!

[

− log(c1t)
p−1
]d
dt

τ=c1t
=

=
p(p− 1)d

cp
1d!

✂ 1

0

τp−1 [− log(τ)]d dτ =
κd

p

cp
1

= Ap =⇒ c1,f =
κ

d/p
p

A
.

The same can be done for g and setting c1 = 0 instead of c2 = 0. Thus, we obtain four
points:

c1,f =
κ

d/p
p

A
, c1,g =



p− 1

q

d/q 1

B
, c2,f =



q − 1

p

d/p 1

A
, c2,g =

κ
d/q
q

B
.

In the regime we are considering one has that c1,f < c1,g and c2,f > c2,g, indeed:

c1,f < c1,g ⇐⇒ κ
d/p
p

A
<



p− 1

q

d/q 1

B
⇐⇒ B

A
< κ

d( 1

q
− 1

p )
p



p

q

d/q

,

c2,f > c2,g ⇐⇒


q − 1

p

d/p 1

A
>
κ

d/q
q

B
⇐⇒ B

A
> κ

d( 1

q
− 1

p )
q



p

q

d/p

,

which are exactly conditions in (6.15). Because of this arrangement of these points we
expect there is an intersection between level sets. Firstly we notice that, for every value
c1 ∈ (0, c1,f ), there exists a unique value of c2 for which f(c1, c2) = Ap. Indeed, from
previous computations we notice that f(c1,0) is a decreasing function hence f(c1,0) > Ap,
while limc2→+∞ f(c1, c2) = 0, therefore from the intermediate value theorem it follows that
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f(c1, c2) = Ap for some c2. The uniqueness of this value follows from strict monotonicity
of f(c1, ·), indeed:

∂f

∂c1
(c1, c2) = −p(p− 1)

(d− 1)!
cp−2

1

✂ T

0

t2(p−1)

(c1t)p−1 + (c2t)q−1

[

− log
(

(c1t)
p−1 + (c2t)

q−1
]d−1

dt,

(6.34)
is always strictly negative. We point out that the term ∂T

∂c1
(c1, c2)u(T ; c1, c2), that should

appear since T depends on c1, is 0 because u is 0 in T . The same is true for g, therefore
on the interval (0, c1,f ) the level sets of f and g can be seen as the graph of two functions
φ, γ. Since f and g are both differentiable, from the implicit function theorem we have
that φ and γ are differentiable with respect to c1.

After deĄning φ and γ we want to prove that (φ − γ)′ < 0. Again by the implicit
function theorem we have

d

dc1
(φ− γ)(c1) = −

∂f
∂c1

(c1, φ(c1))
∂f
∂c2

(c1, φ(c1))
+

∂g
∂c1

(c1, γ(c1))
∂g
∂c2

(c1, γ(c1))
< 0 ⇐⇒

I(c1) =
∂f

∂c1
(c1, φ(c1))

∂g

∂c2
(c1, γ(c1)) − ∂f

∂c2
(c1, φ(c1))

∂g

∂c1
(c1, γ(c1)) > 0

As for (6.34) the other derivatives are computed. To simplify the notation we deĄne

h(t; c1, c2) =
1

(d− 1)!

1

(c1t)p−1 + (c2t)q−1

[

− log
(

(c1t)
p−1 + (c2t)

q−1
]d−1

.

From FubiniŠs theorem, we can write the product of the integrals as a double integral:

I(c1) = p(p− 1)q(q − 1)cp−2
1 γ(c1)q−2

✂
[0,T ]2

h(t; c1, φ(c2))h(s; c1, γ(c2))t2(p−1)s2(q−1) dt ds

− p(q − 1)q(p− 1)cp−2
1 φ(c1)q−2

✂
[0,T ]2

h(t; c1, φ(c2))h(s; c1, γ(c2))tp+q−2sp+q−2 dt ds.

When level sets intersect we have φ(c1) = γ(c1). In this situation we can factorize the
terms outside the integral and notice that the sign of I depends only on the sign of

✂
[0,T ]2

h(t; c1, φ(c1))h(s; c1, γ(c1))
(

t2(p−1)s2(q−1) − tp+q−2sp+q−2


dt ds

=

✂
[0,T ]2

h(t; c1, φ(c1))h(s; c1, γ(c1))tp−2sq−2 (tpsq − tqsp) dt ds.

In order to simplify the notation once again, we setH(t, s; c1) = h(t; c1, φ(c1))h(s; c1, γ(c1)).
Let T1 = [0, T ]2 ∩ ¶t > s♢ and T2 = [0, T ]2 ∩ ¶t < s♢. We can split the above integral in
two parts:

✂
T1

H(t, s; c1)tp−2sq−2 (tpsq − tqsp) dt ds+

✂
T2

H(t, s; c1)tp−2sq−2 (tpsq − tqsp) dt ds.
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Then, considering the change of variables that swaps t and s, the domain of integration
becomes T1 and since H is symmetric in t and s, we have that the previous quantity is
equal to ✂

T1

H(t, s; c1)
(

tp−2sq−2 − tq−2sp−2


(tpsq − tqsp) dt ds =

=

✂
T1

H(t, s; c1)
1

t2s2
(tpsq − tqsp)2 dt ds,

which is strictly positive.We are now in the position to prove the uniqueness of multipliers.
First of all, since (φ−γ)′ < 0 whenever φ(c1) = γ(c1), we point out that for every point

of intersection there exist δ > 0 such that φ(t) > γ(t) for t ∈ (c1 − δ, c1) and φ(t) < γ(t)
for t ∈ (c1, c1 + δ).
DeĄne c∗

1 := sup¶c1 ∈ [0, c1,f ] : ∀t ∈ [0, c1] φ(t) ≥ γ(t)♢. This is an intersection point
between φ and γ (if φ(c∗

1) > γ(c∗
1) due to continuity there would be ε > 0 such that

φ(c∗
1 + ε) > γ(c∗

1 + ε) which contradicts the deĄnition of c∗
1) and it is the Ąrst one, because

we saw that after every intersection point there is an interval where φ < γ. Lastly, since
φ(0) > γ(0) and φ(c1,f ) = 0 < γ(c1, f), we have that 0 < c∗

1 < c1,f .
Suppose now that there is a second point of intersection c̃1 after the Ąrst one. Since imme-
diately after c∗

1 we have that φ becomes smaller than γ, this second point of intersection
is given by c̃1 = sup¶c1 ∈ [c∗

1, c1,f ] : ∀t ∈ [c∗
1, c1] φ(t) ≤ γ(t)♢. Considering that this is

an intersection point, there exists an interval before c̃1 where φ is strictly greater than γ
which is absurd, hence c∗

1 is the only intersection point between φ and γ.
Therefore, the pair (c∗

1, φ(c∗
1) = c∗

2) is the unique pair of multipliers for which

p

✂ T

0

tp−1u(t; c∗
1, c

∗
2) dt = Ap, q

✂ T

0

tq−1u(t; c∗
1, c

∗
2) dt = Bq

and, in the end, u(t; c∗
1, c

∗
2) is the unique maximizer for (6.24).

We are now in the position to prove the second part of Theorem (6.2).

Proof of Theorem 6.2(ii). We recall that from Theorem 6.3 we have

∥LF,φ∥ ≤
✂ +∞

0

G(µ(t)) dt,

where µ(t) = ♣¶♣F ♣ > t♢♣ is the distribution function of F and equality is achieved if and
only if F (z) = eiθρ(♣z − z0♣) for some θ ∈ R, some z0 ∈ R2d and some non-increasing
function ρ : [0,+∞) → [0,+∞). Then, Theorem 6.6 gives us a bound on the right-hand
side, namely that: ✂ +∞

0

G(µ(t)) dt ≤
✂ +∞

0

G(u(t)) dt,

where u is given by (6.27). This is sufficient to prove (6.11). Then, from u we can
reconstruct ρ. If F (z) = eiθρ(♣z − z0♣), then its super-level sets are balls with centre z0.
Since u is the distribution function of F , for t ∈ (0, T ) and some radius r > 0 we have:

πdr2d

d!
= u(t) =

1

d!

[

− log(λ1t
p−1 + λ2t

q−1)
]d
,
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where the left-hand side is the measure of a 2d-dimensional ball of radius r. If we simplify
this expression we obtain:

πr2 = − log(λ1t
p−1 + λ2t

q−1) =⇒ t = ψ(πr2).

However, it is clear that ρ(r) = t, therefore ρ(r) = ψ(πr2).
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Appendix A

Unconditional convergence

In some cases we had to deal with series over multiple indices. Formally, the possibility
of manipulating these series is related to the property of unconditional convergence.

Definition A.1. Let ¶xj♢j∈J be a countable subset of a Banach space X. The series
∑

j∈J xj is said to converge unconditionally to some x ∈ X if, for every ε > 0, there
exist a Ąnite subset J0 of J such that

∥x−
∑

j∈J

xj∥ ≤ ε

for every Ąnite set J ⊇ J0.

The notion of unconditional convergence is of crucial importance in cases where an
exchange between an operator and a series or a certain order of summation is required.
Here we present two results that are useful in such situations.

Proposition A.2. Let A ∈ B(X, Y ). If
∑

j∈J xj converges unconditionally to x in X,
then

∑

j∈J Axj converges unconditionally to Ax in Y .

Proof. Let ε > 0. By deĄnition, there exist J0 ⊆ J Ąnite such that ∥x −∑

j∈J xj∥X ≤ ε
for every Ąnite set J ⊇ J0. Then:

∥Ax−
∑

j∈J

Axj∥Y = ∥A(x−
∑

j∈J

xj)∥Y ≤ ∥A∥∥x−
∑

j∈J

xj∥X < ∥A∥ε,

thus the series
∑

j∈J Axj converges unconditionally to Ax.

Proposition A.3. Suppose that
∑

(n,m)∈N2 xn,m converges unconditionally to x ∈ X.

Then the inner partial sum sn,M =
∑M

m=1 xn,m converges to some yn ∈ X for every n ∈ N

and x =
∑

n∈N yn with unconditional convergence. Similarly,
∑N

n=1 xn,m converges to
some zm ∈ X for every m ∈ N and x =

∑

m∈N zm.

Proof. Since
∑

(n,m)∈N2 xn,m is unconditionally convergent to x, given ε > 0, by deĄnition
there exist J0 ⊂ N2 such that ∥x −∑

(n,m)∈J xn,m∥ < ε for every Ąnite set J containing
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J0. Without loss of generality, we can suppose that J0 is of the form J0 = ¶(n,m) ∈ N2 :
n ≤ N0, m ≤ M0♢ for some N0,M0 ∈ N. In such a way we have:

∥x−
N
∑

n=1

M
∑

m=1

xn,m∥ < ε (A.1)

for every N ≥ N0 and M ≥ M0. Consider now I ⊂ N Ąnite and M1,M2 ∈ N such that
M0 ≤ M1 < M2. Then:

∥
∑

n∈I

sn,M2
−
∑

n∈I

sn,M1
∥ = ∥

∑

n∈I

M2
∑

m=1

xn,m −
∑

n∈I

M1
∑

m=1

xn,m∥ = ∥
∑

n∈I

M2
∑

m=M1+1

xn,m∥ =

= ∥
∑

n∈I

M2
∑

m=M1+1

xn,m +
∑

(n,m)∈J0

xn,m −
∑

(n,m)∈J0

xn,m∥

Letting J = J0 ∪ (I × ¶M1 + 1, . . . ,M2♢) ⊂ N2 and using triangular inequality we obtain:

∥
∑

n∈I

(sn,M2
− sn,M1

)∥ ≤ ∥x−
∑

(n,m)∈J

xn,m∥ + ∥x−
∑

(n,m)∈J0

xn,m∥ < 2ε (A.2)

because J ⊇ J0. This proves that, for every n ∈ N and for every I ⊂ N Ąnite, the
sequence ¶∑n∈I sn,M ♢M∈N is a Cauchy sequence in X which is a Banach space, therefore
it is convergent. In particular, taking I = ¶n♢, we obtain that the sequence ¶sn,M ♢M∈N

converges to some yn ∈ X for every n ∈ N. Moreover, since I is Ąnite, we have that
∑

n∈I sn,M
M→+∞−→ ∑

n∈I yn.
Now we have to show that

∑

n∈N yn converges unconditionally to x. Consider I ⊂ N

Ąnite such that ¶1, . . . , N0♢ ⊆ I. First of all we notice that:

lim
M2→+∞

(

∑

n∈I

sn,M1
−
∑

n∈I

sn,M2



=
∑

n∈I

sn,M1
−
∑

n∈I

yn.

Therefore, taking the lim supM2≥M1
in (A.3) we obtain

∥
∑

n∈I

sn,M1
−
∑

n∈I

yn∥ = lim sup
M2≥M1

∥
∑

n∈I

sn,M1
−
∑

n∈I

sn,M2
∥ ≤ 2ε. (A.3)

Then we have:

∥x−
∑

n∈I

yn∥ ≤ ∥x−
∑

n∈I

sn,M1
∥ + ∥

∑

n∈I

sn,M1
−
∑

n∈I

yn∥
(A.1)+(A.3)

< 3ε.

The last part of the statement easily follows swapping n and m in previous computa-
tions.
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Appendix B

Calculations

B.1 The constant in Lieb’s inequality

In the last part of the proof of LiebŠs inequality (3.4) we used the following equality

Ad
p′A

2d/p′

2/p′ A
d/p′

(p/p′)′ = (2/p)d/p without proving it. We recall that the Babenko-Bechner
constant Ap is given by:

Ap =

(

p1/p

p′1/p′

1/2

.

Since there is an exponent 1/2 in the Babenko-Bechner constant it is better to compute

the square of Ad
p′A

2d/p′

2/p′ A
d/p′

(p/p′)′ . For the sake of clarity we are going to compute every single
term and then we are going to multiply them.

• A2
p′ =

p′1/p′

p1/p
;

• In order to compute A2·2/p′

2/p′ we start computing (2/p′)′:



2

p′

′
=

2/p′

2/p′ − 1
=

2

2 − p′ ,

therefore

A
2·2/p′

2/p′ =





2

p′

p′/2 2 − p′

2

(2−p′)/2
]2/p′

=
2

p′



2 − p′

2

(2−p′)/(p′)

=

=
22(1−1/p′)

p′ (2 − p′)2/p′−1 =
22/p

p′ (2 − p′)1/p′−1/p;

• Like the previous case, we start computing (p/p′)′:



p

p′

′
=

p/p′

p/p′ − 1
=

p

p− p′ ,
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hence

A
2/p′

(p/p′)′ =





p

p− p′

(p−p′)/p p′

p

p′/p
]1/p′

=



p

p− p′

1/p′−1/p p′

p

1/p

=

=



1 − p′

p

1/p−1/p′


p′

p

1/p

= (2 − p′)1/p−1/p′



p′

p

1/p

.

We are now ready to calculate the product of the three constant:

A2
p′A

2·2/p′

2/p′ A
2/p′

(p/p′)′ =
p′1/p′

p1/p

22/p

p′ (2 − p′)1/p′−1/p(2 − p′)1/p−1/p′



p′

p

1/p

=

= 22/pp−2/pp′1/p′+1/p−1 =



2

p

2/p

which is the desired result.

B.2 A curious inequality between conjugate expo-

nents

We consider inequality (6.14), which we rewrite for the sake of clarity:

κ
d( 1

q
− 1

p )
p



p

q

 d
q

≥
(

κ
κp
p

κ
κq
q

d

Firstly we want to restate in a more concise way. Recalling that κp = 1
p′

, where p′ is the
conjugate exponent of p, we have:



1

p′

 1

q
− 1

p


p

q

 1

q

≥


1

p′

 1

p′



1

q′

− 1

q′

⇐⇒


1

p′

 1

q
− 1

p
− 1

p′



1

q′

 1

q′



p

q

 1

q

≥ 1

but, since 1
p + 1

p′
= 1 and 1

q − 1 = 1
q′

, in conclusion we have:



p′

q′



1

q′


p

q

 1

q

≥ 1

In order to prove that this inequality holds for every pair of p, q > 1 we consider the
left-hand side as function of x = 1

p and y = 1
q (therefore 1

p′
= 1 − x and 1

q′
= 1 − y). If we

take the logarithm of this quantity we want to show that:

f(x, y) = (1 − y) [log(1 − y) − log(1 − x)] + y [log(y) − log(x)] ≥ 0.

The partial derivative of f with respect to x is:

∂f

∂x
(x, y) =

1 − y

1 − x
− y

x
=

x− y

x(1 − x)
.

Since x ∈ (0,1), ∂f
∂x (x, y) is negative for x < y and positive for x > y, so f has a minimum

for x = y where f(x, x) = 0.
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B.3 Another inequality between conjugate exponents

We want to prove that inequality (6.16) holds, namely that:

κ
d( 1

q
− 1

p )
q



p

q

 d
p

< κ
d( 1

q
− 1

p )
p



p

q

 d
q

whenever p /= q. As for the previous section, since κp = 1
p′

and κq = 1
q′

we can write the
inequality in a more concise way:



1

q′

 1

q
− 1

p


p

q

 1

p

<



1

p′

 1

q
− 1

p


p

q

 1

q

⇐⇒


q p′

q′ p



1

q
− 1

p

< 1 ⇐⇒


q − 1

p− 1

 1

q
− 1

p

< 1.

If q > p the base is greater than 1 while the exponent is less than 1, whereas if q < p the
converse happens, which proves that inequality holds whenever p /= q.
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Appendix C

Helly’s selection theorem

In this chapter we prove HellyŠs selection theorem, which was used in the proof of Propo-
sition 6.4.

Theorem C.1. Let ¶fn♢n∈N be a sequence of monotonically increasing functions on R

and suppose that the sequence is uniformly bounded, namely that fn(x) ∈ [a, b] for every
n ∈ N, every x ∈ R and some a < b in R. Then, there exist a monotonically increasing
function f and a subsequence ¶fnk

♢k∈N such that fnk
is pointwise convergent to f .

Proof. We begin by constructing f over rational numbers. Let ¶q1, q2, . . .♢ be an enumer-
ation of Q.

Since ¶fn(q1)♢n∈N is a bounded sequence in R, it follows from Bolzano-WeiestrassŠ
theorem that there exist S1 ⊆ N countable such that ¶fn(q1)♢n∈S1

is convergent to some
y1 ∈ [a, b]. Then, if we consider the sequence ¶fn(q2)♢n∈S1

, we see that this is a bounded
sequence in R and again, from Bolzano-WeiestrassŠ theorem it follows that there exist
S2 ⊆ S1 countable such that ¶fn(q2)♢n∈S2

converges to some y2 ∈ [a, b]. Repeating this
argument lead to a family of countable subsets of N such that S1 ⊇ S2 ⊇ · · · such that
¶fn(qi)♢n∈Si converges to yi.
Consider now the set S ⊆ N built in the following way: the Ąrst element of S is the Ąrst
element of S1, the second element of S is the second element of S2 and so on. Then, if we
consider qi ∈ Q, we have that, up to the Ąrst i − 1 terms, ¶fn(qi)♢n∈S is a subsequence
of ¶fn(qi)♢n∈Si , therefore ¶fn(qi)♢n∈S converges to yi. Moreover, we notice that if qi < qj

then, by the monotonicity of fn, we have fn(qi) ≤ fn(qj) for every n ∈ S. Taking the
limit for n → +∞ we conclude that yi ≤ yj .

Up to now we built a subsequence of ¶fn(q1)♢n∈N that is pointwise convergent over
rational numbers. Through the density of Q in R it is immediate to create a monotonically
increasing function g over R. Indeed, if q ∈ Q we simply let g(q) = yq, while if r ∈ R\Q we
let g(r) = supq∈Q

q≤r
g(q). We point out that the supremum is Ąnite because yq are bounded

from above. Moreover, it is clear from the deĄnition that g is monotonically increasing.
The proof is still not complete because, up to now, we only know that the subsequence

¶fn♢n∈S is pointwise converging to g only over rational numbers. However, we can show
that if g is continuous in r ∈ R, then limn→+∞

n∈S
fn(x) = g(x). If g is continuous in r, given
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ε > 0 there exist δ > 0 such that ♣g(y)−g(x)♣ < ε if ♣y−x♣ < δ. In particular, we can pick
q1, q2 ∈ Q such that r − δ < q1 < r < q2 < r + δ. Since g is monotonically increasing this
implies that 0 ≤ g(r) − g(q1) < ε and 0 ≤ g(q2) − g(r) < ε. Moreover, for n sufficiently
large, we have that ♣fn(q1) − g(q1)♣ < ε and ♣fn(q2) − g(q2)♣ < ε. These, together with the
fact that fn are monotonically increasing leads to:

fn(q1) ≤ f(x) ≤ fn(q2) =⇒
−2ε < fn(q1) − g(q1) + g(q1) − g(x) ≤ fn(x) − g(x) ≤ fn(q2) − g(q2) + g(q2) − g(x) < 2ε,

which means that fn(x) converges to g(x).
In order to conclude, we have to deal with the points where g is not continuous. It is

well known that a monotonic function on an open interval is continuous except possibly
on a countable subset J ⊂ R (see [27, Section 6.1 Theorem 1] or [28, Theorem 4.30]).
Since J is at most countable we con consider an enumeration ¶j1, j2, . . .♢. If we repeat the
same argument we used at the beginning of the proof, we see that there exist a countable
subset P ⊆ S such that ¶fn♢n∈P is pointwise converging to g in R \ J and to some values
in J . Taking f as the limit function of ¶fn♢n∈P the proof is complete.
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