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Summary

Time-frequency localization operators Lpg : L2(RY) — L2(R?) were firstly introduced
by Ingrid Daubechies in 1988 and led to a new geometric approach to localization in
the phase-space. In this thesis, after giving the necessary background, we consider the
problem of maximizing the norm of L 4 under the assumption that the window function ¢
is a normalized Gaussian and two integrability constraints are given for F'. More precisely,
we consider the problem of finding the optimal constant C' such that |Lpe| < C, given
that || F||, < A, ||[F||; < B, where p,q € (1,+00) and A, B > 0. With the help of some
recent results by Nicola and Tilli on a similar problem, we can find both the optimal
constant and weight functions that achieve |Lpy|| = C. Depending on the ratio B/A
different regimes arise: when this ratio is sufficiently large or sufficiently small one of
the constraints is unnecessary and those F' that achieve optimality are time-frequency
translated Gaussians, while if the ratio is in an intermediate regime the solution changes
drastically and optimal weight functions are not Gaussians any more and can be given
only in a implicit way.
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Chapter 1

Introduction

Among all problems in time-frequency analysis, arguably one of the main one is the prob-
lem of localizing a signal (which can be an audio signal, an image, etc.) in order to derive
information about its energy content in a given time domain and for a given frequency
window. Over time, various tools have been developed to achieve this. In the early 1960s,
Landau, Slepain and Pollak investigated in a series of articles the properties of certain
localization operators obtained using time and frequency projection operators. Later, in
1988, Daubechies introduced so-called time-frequency localization operators, which give
a more geometric perspective to the localization problem. These operators, also called
Daubechies’ localization operators, are the focus of this thesis. Before introducing these
operators, basic concepts of functional and Fourier analysis are recalled in Chapter 2.
Subsequently, in Chapter 3, a fundamental tool of time-frequency analysis is introduced,
namely the short-time Fourier transform. These two chapters provide the basis for the
theory of localization operators, which is presented in Chapter 4 in an essential way. Once
these operators have been introduced, a natural question might be the following: how well
can a signal be localized? Is it possible to localize a signal in an arbitrarily small subset of
the time-frequency plane? The negative answer to the latter question stems from the so-
called uncertainty principles. In Chapter 5, various uncertainty principles are presented,
concerning both different transforms and different notions of concentration. Nevertheless,
the central idea of each uncertainty principle is the following: a signal cannot be too
concentrated in both time and frequency. This barrier forces us to change perspective
and instead of asking how well a signal can be concentrated, a more appropriate question
might be: how can a signal be optimally concentrated? Uncertainty principles do indeed
place a lower limit on the ability to localize a signal, but in general do not tell us how to
reach this limit. The last chapter of this thesis focuses precisely on the problem, between
time-frequency analysis and the calculus of variations, of finding upper bounds for the
norm of localization operators and determining which operators reach this limit. In the
first section of Chapter 6, a recent result by Nicola and Tilli concerning this problem is
presented, while in the second section we show the solution of a generalized version of
their problem.



Chapter 2
Preliminaries

This chapter is devoted to a brief recall of some basic definitions and results of functional
and Fourier analysis. In Section 2.1 elemental concepts about operators between Banach
and Hilbert spaces are presented. In addition, certain classes of operators, namely the
trace class and the Hilbert-Schmidt class, are introduced with some of their most impor-
tant properties. Then, in Section 2.2 Fourier transform is defined and some of its essential
properties are given.

2.1 Basics of Functional Analysis

In this section we turn our attention to linear operators between Banach spaces. Through-
out the section, we will refer to a generic Banach space as X (or Y'), endowed with the
norm || - ||x. If we are dealing with a Hilbert space, we will denote it by H (or K) and its
inner product by (-, -)y. Pedex in the norm and scalar product may be dropped in case
there is no ambiguity. Moreover, the whole theory is presented under the assumption that
spaces are infinite dimensional, but, unless otherwise stated, everything can be adapted
almost directly for finite dimensional spaces.

A generic linear operator between two Banach spaces X and Y will be denoted as
T:X — Y. As a standard notation, the image of x € X through T will be indicated as
T(x), or equivalently as T'z.

Definition 2.1. A linear operator T : X — Y is bounded if there exist C' > 0 such that

For linear operators, boundedness is strictly related to continuity, as the following
theorem states.

Theorem 2.2. For a linear operator T the following statements are equivalent:

o T is continuous;

o T is bounded.
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We denote the set of linear bounded (continuous) operators from X to Y as Z(X,Y),
while if X =Y we will just write Z(X).
The smallest constant for which (2.1) holds is the norm of T.

Definition 2.3. Given T € B(X,Y) we define its norm as the following number:

[T |y

[ x

IT]| = inf{C > 0 : [T|ly < Cllzl|x Vo € X} = sup{ re X\ {0}} |

The proof of the equivalence between two definitions is straightforward. Sometimes,
in order to emphasize the spaces between which 7" operates, we may write the norm of T’

as ||T||X*>Y
In what follows we will mostly deal with X and Y being L?(R%), that is a Hilbert

space. For operators between Hilbert spaces, we can express the norm of an operator
using the dual norm:

1Tz = sup{[(Tz, y)ul| : x,y € H, |[zlln = llyllz =1} (2.2)
Among all operators, a rather important class is the one of compact operators.

Definition 2.4. An operator T € B(X,Y) is compact if, for every bounded sequence
{Zn}nen C X, the sequence of the images {Txp}neny CY has a converging subsequence.

It is not difficult to prove that a linear combination of compact operators is still
compact, so the set of compact operators is a subspace of (X, Y’). The following theorem
states that it is also closed.

Theorem 2.5. The set of compact operators is a closed subspace of B(X,Y) with respect
to the operator norm topology.

A first simple example of compact operators is given by finite-rank operators.

Definition 2.6. An operator T' € B(X,Y) is said to be finite-rank if Im(T) is finite-
dimensional.

Finite rank operators are of some importance in the light of the following immediate
corollary of Theorem 2.5.

Corollary 2.7. Let {T,,}neny C B(X,Y) be a sequence of finite-rank operators that con-
verges to T € B(X,Y). Then T is compact.

Therefore, if one wants to show that an operator is compact, a possible approach is to
find a sequence of finite-rank operators that is converging to it. Another crucial property
of compact operators is the following.

Theorem 2.8. Let XY, Z be three Banach spaces and let T € B(X,Y), S € B(Y,Z).
Then, if at least one between T and S is compact, then ST € B(X, Z) is compact.

From now on we suppose that X is over the field C and that T € #(X).
7
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Definition 2.9. The set o(T) = {\ € C: T—\I is not invertible} is called the spectrum
of T.

For operators between finite-dimensional spaces (matrices), the spectrum consists of
eigenvalues, those A € C such that T"— AI is not injective. However, this is no longer
true for infinte-dimensional spaces. The eigenvalues are in the so-called point spectrum,
which is generally only a part of the whole spectrum. However, the following theorem
states that the spectrum of compact operators resembles the spectrum of operators on
finite dimensional spaces.

Theorem 2.10 (Fredholm’s alternative). Let T' € %(X) be a compact operator. Then
one and only one of the following happens:

o T — I is invertible;
o T — I is not injective.

Therefore, for compact operators, all the values in the spectrum, except at most for 0,
are eigenvalues.

In conclusion, we focus our attention on operators on Hilbert spaces. Given T €
PB(H,K), it can be shown that there exists a unique operator T* € Z(K, H), called
adjoint of T, such that:

(Tx,y)k = (x,T"y)y Vrx € H,yeK.

If H = K, then both T and T* are in (H) and if T = T* we say that T is self-adjoint.
If an operator is both compact and self-adjoint the following theorem states that it can
be diagonalized in some suitable basis ([2]).

Theorem 2.11. Let H be a separable Hilbert space and T € B(H) a compact and self-
adjoint operator. Then, there exists an orthonormal basis of H composed of eigenvectors
of T, with corresponding eigenvalues { A, fnen. Moreover lim, 4o Ay = 0.

From this theorem follows the next corollary, which relates the eigenvalues of a compact
self-adjoint operator with its norm.

Corollary 2.12. Let T € B(H) be a self-adjoint compact operator on a separable Hilbert
space H and suppose its eigenvalues are ordered in such a way that |A1| > |Xo| > ...
Then ||T|| = | M)

In light of Theorem 2.11, it is clear that working with compact self-adjoint operators
is of great importance. Thus, if an operator 71" is compact but not self-adjoint, it could be
useful to construct an operator, associated with T', that is also self-adjoint. This task is
easily accomplished considering T*T. The relation between T and T*T is stated by the
following corollary of Theorem 2.11.

Corollary 2.13. Let T € B(H) be a compact operator. Then, there exists orthonormal
sets {en tnen and {yntnen and non-negative real numbers { i, fnen, with lim,_, oo ftn, = 0,

so that
—+o00

T= Zﬂn<'ven>yna (2.3)

n=1

8
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where the series converges in norm. These i, are called singular values of T and are
the square root of the eigenvalues of T*T

2.1.1 Trace-class and Hilbert-Schmidt operators

In this section we are going to introduce two important classes of operators: the trace-class
and the Hilbert-Schmidt class.

The trace of an operator can be defined as it is for matrices. However, since we are
in infinite-dimensional spaces the usual definition has to be handled carefully. Before
proceeding, we must define what it means for an operator to be non-negative.

Definition 2.14. Let H be a Hilbert space. An operator T € ZB(H) is said non-negative
if
(T'r,z) >0 Vze H. (2.4)
Condition (2.4) is sufficient to show that, on Hilbert spaces over the field of complex
numbers, non-negative operators are automatically self-adjoint. This result is an imme-
diate corollary of the following form of the polarization identity.

Proposition 2.15. Let § : H x H — C be a sesquilinear form over a complex Hilbert
space H. Then, for every x,y € H:

S(z,y) = szS x4 ify, x4 iy). (2.5)

4k0

Proof. The proof follows from a direct computation of the right-hand side:

3
szS + Py, x4 i%y) = S(z, z Zz JeryZzz + S(y, )szzk
k=0 k=0

3
+S(y,y)2ikikz’*k =48(z,y) = S(z,y) ZZkS + i*y, x4+ iFy).
k=0 -
]

Proposition 2.16. Let T' € #(H) be a non-negative operator over a complex Hilbert
space H. Then T is self-adjoint.

Proof. First of all we notice that if T" is non-negative, the quantity (7'x, x) is real, therefore
(Tx,x) = (Tx,x) = (x,Tx). Letting T(-,-) = (T-,-), and using the polarization identity
(2.5):

ve 1 ) .
T(y,x) Zz’“T (y +ikz,y + ikz )T pesitive Zz T(y +i*z,y +ix)
43 13

Zz_kT( x4 i), ik(eri_ky))

! LS T i+ i74) = Ty) (26)
k=0



Preliminaries

Non-negative operators are somewhat “special”; since their behaviour resembles, in
some sense, the one of complex numbers. In particular, one can define the square root of
non-negative operator. Before we do this, we need a preceding lemma.

Lemma 2.17. The power series of /1 — z about 0 converges absolutely for all complex
numbers such that |z| < 1.

Proof. The power series of v/1 — z about the origin is given by

n

+o00 +o0 1/2
\/l—z:chz”:1+Z(—1)” 2",
n=0 n=1
where the binomial () is defined by T(T_l)nw for every r € R and every n € N, while

if n =0 we have (j) = 1. Since v/1 — z is analytic for |z| < 1, the series here converges
absolutely, so now we have to consider the case |z| = 1. We notice that ¢, < 0 for every

n > 1 because when n is even (17/L %) is negative, while if n is odd (17/l %) is positive, therefore

+oo
1—Vl—-z= Z(—cn)x"
n=1

is a positive series. Using this fact, given N € N, we have

N N N
Z len] =14 Z(—cn) =1+ lim Z(—Cn)x"
n=0 n=1 r=17 n=1

positive series +oo

< 1+ lim Y (—c)a" =1+ lim (1 -vV1—2) =2

r—1— rz—1-

Since this holds for every N, taking the limit N — 400 we obtain 3,7 |¢,| < 400, which
means exactly that the power series is absolutely convergent. O

Theorem 2.18. Let T' € B(H) be a non-negative operator. Then, there exist a unique
non-negative operator S € B(H) such that S* = T. Moreover, S commutes with all
bounded operators commuting with T'. We call S the square root of T' and we denote it

by S =T.

Proof. If T = 0 we let /T = 0, otherwise we define B = I — ||T||~*T, where I is the
identity operator. Since 7' is non-negative, for every # € H such that ||z|| = 1, we have

(Bz,x) = ((I = |T|7'T),2) = [l«l* = |77 (T,2) < |l]* =1,

which implies, using polarization identity, that ||B|| < 1. Thanks to Lemma 2.17, this
means that the series Y729 ¢, B" is absolutely convergent, therefore convergent, in %(H)
to an operator we indicate with By /5. We define
S = |IT||'/*Byys (2.7)
10
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and we want to show that S is non-negative and satisfies S? = T. We start proving that
By /2, hence S, is non-negative. Taking x € H, we have

+o00
(Bijpw,w) = (I + ) cuB"), ) lel2+ch ") > IIxIIQ+chHBII ]|

n=1 n=1

“+o00
> [l® + D eallz)? =
n=1

where we used the fact that c,, are negative, || B|| < 1 and that 1432 ¢, = V1 — 2]y =
0.
Now we shall prove that S* = T', which means ||T|(By/2)* =T

(B12)* (Z an”> (;f:oo cmBm> = Z (Z ConCr— m) B" = g:zdnB",

n=0

where the rearrangement is justified since all series are absolutely converging. In order to
compute d,, = Y1 _( CmCn—m, We notice the following:

v — (Jiocnx”> (Jio cmxm> = Jio (Zn: CmCn— m> ;
n=0 m=0

n=0

which implies that dy = 1, d; = —1 and d,, = 0 for n > 2, therefore By, = [ — B and, in
the end:

S* = |IT(Byy2)* = ITI(I = B) = |T|(I = I +|T||7'T) = T.

Lastly, since the series that defines By /o, hence S, is absolutely convergent, it commutes
with every bounded operator commuting with 7.

Up to now we only proved the existence of a square root for T, in particular the one
given by the expression (2.7). To prove uniqueness of the square root we start supposing
Sp is another non-negative operator in %( ) such that S = T. We notice that Sp
commutes with T, indeed ST = S5S3 = S3Sy = T'Sy. Therefore, Sy commutes also with
S, thus we have:

(S = 50)*S + (S = S0)*S0 = (S = S0)[(S = S0)S + (S = S0)So]
= (S — Sp)(S* — SpS + 5SSy — S3)
= (S = 80)(5? = 8§) = (S = So)(T = T) = 0.
But (S — S)2S and (S — Sp)2Sy are non-negative operator, so they must vanish, in
particular also their difference (S — Sp)2S — (S — Sp)5 = (S — Sp)? is zero. This implies

(S — So)* = (S — Sp)(S — Sp)? = 0, but since both S and Sy are self-adjoint, for every
x € H we have:

= ((S = o)z, ) = (S — So)*u, (S — So)*u) = [|(S — So)*z|> = (S~ S0)* =0
and with the same argument we conclude that also S — Sy = 0. O

11
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Remark. From expression (2.7) it is clear that, if 7" is compact then also VT is compact,
since it is a limit of compact operators.

Now that we have established the notion of square root of an operator, we will show
how to decompose an operator T into a positive operator and a partial isometry, which
will be defined later. This decomposition is called polar decomposition of T

Definition 2.19. Given an operator T' € H(H) we define its absolute value as
|T| = VT*T. (2.8)

Definition 2.20. A linear operator U € Z(H) is a partial isometry if it is an isometry
over (KerU)*, d.e. ||Ux| = ||z| for every x € (KerU)* .

Proposition 2.21. Let U € A(H) be a partial isometry. Then also U* is a partial
1sometry.

Proof. Since U is a partial isometry, from polarization identity it follows that (Uz, Uy) =
(z,y) for every x,y € (Ker(U))*. Clearly the same equality holds if x € (Ker(U))* while
y € Ker(U), so U*U is the identity over (Ker(U))*. This implies that U* is an isometry
on Im(U) = (Ker(U*))*, hence it is a partial isometry too. O

Theorem 2.22. Given T' € B(H) there exist unique a partial isometry U such that
T=U|T|, (2.9)
which is uniquely determined by the condition KerU = Ker T'.

Proof. We start defining U : Im|T'| — ImT. Every x € Im|T| can be written as z = |T'|y
for some y € H, so we can define U(x) = U(|T|y) := T'y. We notice that

1> = 1Ty 11> = (| Tly. | Tly) = (T PPy, y) = (T*Ty,y) = |Tyl* = |Uz].

This computation ensures us that the definition of U is consistent (if z = |T'|y; = |T'|y; for
some y1,y2 € H, then [T|(y1 —y2) = 0, but [[[T'|(y1 —y2)[| = [|T'(y1 —y2)l|, therefore Ty, =
Tys) and it implies that U is an isometry over Im(|T|), thus it can be uniquely extended
to an isometry of Im(|T'|) over ImT. The definition of the map U is straightforward
extending U to all H defining it 0 on (Im(|T|))*. Since |T) is self-adjoint (Im(|T'|))* =
Ker(|7']). Furthermore, since |||T|y|| = || Ty||, |T|y = 0 if and only if Ty = 0, therefore
Ker|T| = KerT which implies, in the end, that KerU = KerT'.

Lastly we shall prove that U is unique. Suppose V is another partial isometry such that
T = V|T| and KerV = KerT. First condition implies that 7' = U|T| = VT, so U and
V' coincide over Im|T| (and by continuity over its closure), while second condition implies
that KerT = KerU = KerT, so U and V coincide over Ker|T| = (Im|T|)*, therefore U
and V' coincide over H = Im|T| & Ker|T'|. O

Definition 2.23. Let H be a separable Hilbert space with orthonormal basis {ep}nen-
Given T € B(H) a non-negative operator we define the trace of T as

—+00

tr(T) = > (Ten, ). (2.10)

n=1

12
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Since T is non-negative, every term of the sum in (2.10) is non-negative, so the series
is either convergent or divergent. Nevertheless, in principle, it could depend on the basis
{en}nen. The following theorem states that the definition makes sense, namely that the
trace does not depend on the basis.

Proposition 2.24. The definition of tr given by (2.10) is independent of the basis.

Proof. Let T € Z(H) be a non-negative operator and {e,}neny and {f,}neny be two
orthonormal basis of H. We have

ZOO (Tey, en) = Z|]fen\|2 Z <Z| VTen, fm) )

n=1

_ f (f |<ﬁfm,en>\2> - 2; VT ful?

+oo
= Z <Tfm7fm>7

m=1

where we used the fact that v/T is self-adjoint, while the exchange of series is allowed
because all terms are non-negative. O

Definition 2.25. An operator T € ZB(H) is called Hilbert-Schmidt if and only if
tr(T*T) < +oo. We define the Hilbert-Schmidt norm of an operator as ||T||us =
tr(7+T).

From the definition of the trace we can see that, given an orthonormal basis {e, }nen,

+oo “+oo
|T|3s = tr(T*T) = Z(T*Temen) = Z Ten, Tey) = Z | Ten|? (2.11)
n=1

n=1
So we can say, in an equivalent way, that an operator is Hilbert-Schmidt if and only if
T ||Ten]|? < +oo. Thanks to Proposition 2.24 we immediately see that the Hilbert-
Schmidt norm is independent on the choice of the basis.
We are now going to show some properties of Hilbert-Schmidt and trace-class operators.

Proposition 2.26. Let T' € B(H) be a Hilbert-Schmidt operator. Then, also |T'| and T*
are Hilbert-Schmidt operators and

11T llas = 1T*]|ns = [|T]|ms- (2.12)

Proof. We already know that, for every x € H, ||Tz||*> = || |T|z||?, therefore from (2.11)
we immediately see that |||T|||us = ||7||us-
Consider now an orthonormal basis {e, }nen of H. From (2.11) we have:

||T||%S=§||Ten||2 Z(zwemem )=f(f|em en) )

n=1

“+oo
= Tl = I T"|is,

m=1

where exchange of series is allowed since all terms are non-negative. O

13
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Theorem 2.27. Let T € B(H) be a Hilbert-Schmidt operator. Then, ||T|| < ||T||us and
T is compact Moreover, a compact operator T is Hilbert-Schmidt if and only if 3125 u2,

where {u,}125 are the singular values of T

Proof. Let {ey}nen be an orthonormal basis of H and let x € H. We have:

“+o00 +o00 +oo
1 Tz))? = 3" (T e =D [, Tren) | < |2l Y 1T enl?
n=1 n=1 n=1

(2.12)
= [P s =" e l*|T |-
Taking the supremum over all x € H gives us that ||T'|| < ||T||us.

To prove that T is compact, consider the following sequence of finite-rank operators
Ty =N (- en)Te,. We have that Ty — T in B(H), indeed:

+o0o
|T —Tn|| < |IT - T lis = Z |Ten]|> =0 as N — +o0,
n=N+1

therefore, from Corollary 2.7, T' is compact.

Lastly, if T" is a compact operator then also T*T is compact, as well as self-adjoint,
hence we can consider as orthonormal basis of H the one given by its eigenvectors {e, }nen.
Recalling Corollary 2.13, we know that p2 are exactly the eigenvalues of T*T. For such
basis we have:

+oo “+o00 “+o00 +oo
ITIhs = Y 1 Tenl® =D (Ten, Ten) = Y (T Tenen) =Y pir.
n=1 n=1 n=1 n=1

O

Proposition 2.28. Let T' € B(H) be a Hilbert-Schmidt operator and S € B(H). Then
TS and ST are both Hilbert-Schmidt operators.

Proof. Given an orthonormal basis {e, }nen of H we have:

+oo
IST|fs = D 1STea|® < |15]? Z | Tenll* = [ISI°1T lIfis
n=1 n=1

so ST is Hilbert-Schmidt. Moreover, from Proposition 2.12 follows:
1TSlns = [[(T'S)*lus = 115" |lns < [[S* 1T [lus = IS T |-
O

We can now turn back to trace-class operator. It is evident that trace-class opera-
tors and Hilbert-Schmidt operators are strictly related. Indeed, as seen in the proof of
Proposition 2.24, we have

“+o00
|7 =D (|Tlen, ) = Z /1T lenll* = 1T Ifss:
n=1

14
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so an operator is trace-class if and only if /[T is Hilbert-Schmidt. By virtue of this link,
we can exploit properties of Hilbert-Schmidt operators in order to obtain information
about trace-class operators. First of all, we are going to prove that expression (2.10) is
well-defined for every trace-class operator and not only for non-negative ones.

Theorem 2.29. Let T' € B(H) be a trace-class operator and {e,}nen an orthonormal
basis of H. Then S5 (Tey, e,) converges absolutely and the limit is independent of the
basis.

Proof. We start proving that the series converges absolutely. Letting 7' = U|T| be the
polar decomposition of T', we want to show that:

+oo

S I(Tewsen)l = S WY ITlensen)l = 3 1y Tlens 1100} < 400, 213)

n=1

From Cauchy-Schwarz’ inequality, for every term we have that [(\/[Te,, /[T|U*e,)| <
IV Tlenll 1V]T[U*en]|. Since T is trace-class, 1/|T is Hilbert-Schmidt and, thanks to
Proposition 2.28, also /|T[U* is a Hilbert-Schmidt operator, therefore both {||r/[T]ex||}nen
and {||\/]T|U*en]| }nen are in £2(N). This allows us to use the Cauchy-Schwarz inequality

in the last expression of (2.13), thus obtaining:

400 400 too
S 1Tenendl = 3 1/ ITlews ITI0"ea)] < 311/ ITleall 117107 el
n=1 n=1 n=1
og (oo 12 /o0 1/2
< (anew) (Zuﬁv*enn?) < [Tl
n=1 n=1

The proof of the independence of the basis is exactly the same as the one for Proposition
2.24, because now the exchange of series is allowed since the series is convergent. O

Another immediate corollary of Proposition 2.28 is the following proposition

Proposition 2.30. Let T € B(H) be a trace-class operator. Then T is also Hilbert-
Schmidt.

Proof. Let T = U|T| be the polar decomposition of T". Since T is trace-class /|7 is a
Hilbert-Schmidt operator. Therefore, from Proposition 2.28 follows that T = U+/|T|\/|T
is a Hilbert-Schmidt operator. O

Theorem 2.31. Let T € B(H). Then T is trace-class if and only if it is compact and
S i, where { i, bnen are the singular values of T. Moreover, if T is trace-class then
tr|T| = S pn and additionally, if it is also self-adjoint, trT = 3729 N, where {\, }nen.
Finally, we have ||T|| < tr|T.

Proof. Let T'= U|T| be the polar decomposition of T'. If T" is trace-class \/|T"| is Hilbert-
Schmidt, but from Theorem 2.27 we have that /|T| is compact, therefore also T =
U|T|v/|T| and |T| are compact. Not only |T'| is compact, but it is also self-adjoint and

15
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its eigenvalues are exactly {i, tnen. Letting {e, }nen be an orthonormal basis made up of
eigenvectors of |T'|, we have

“+o00

+oo
|7 =D (|Tlen en) = > in.
n=1

n=1

Conversely, if T' is a compact operator the previous formula still holds and shows that T is
also trace-class. With the same reasoning, if T' is self-adjoint and trace-class, we can write
the trace with respect to the basis made up its eigenvectors thus obtaining tr7" = "7 \,,.

For the last part of the Theorem, we notice that |T'| is a compact self-adjoint non-
negative operator, therefore, assuming its eigenvalues are decreasingly ordered, from
Corollary 2.12 we have that |||T'||| = w1, hence:

400
T =1UITI < T = 1 < o = [T, N
n=1
In the special case H = L?(RY) we are able to give a characterization of Hilbert-Schmidt
operators.

Theorem 2.32. An operator T € B(L*(RY)) is Hilbert-Schmidt if only if there exists a
function Kr € L*(R% x RY), called integral kernel, such that

TH@) = [ Kelo)f)dy VS € (R (2.14)
Moreover ||T||us = || K1]|2-

Proof. We start proving that, given K € L?(R%9), the corresponding integral operator
defined by (2.14) is continuous. Denoting with Tk such operator, for every f € L?(R%),
we have:

2
Tkl = [ 1Tcs@Pde= [ | [ K@nswa| @

< [ ([ melrwla) a

From Fubini’s theorem we have that |K (x,-)| € L?(R%) for almost every z € RY. There-
fore, we can apply Cauchy-Schwarz’ inequality in the inner integral, thus obtaining:

Tk Wy < 1wy [, [ 1K@ dydo = K aan floeey, (219

which shows that Tk is a bounded operator. Moreover, Ty is clearly linear, therefore
Tx € B(L*(RY)).

We can now suppose to have a Hilbert-Schmidt operator T' € #(H) and an orthonor-
mal basis {e, }nen of L2(RY). We want to show that (2.14) holds with the following
kernel:

Kr(z,y) = Z (Ten, em) r2rayem(T)en(y). (2.16)

(m,n)€eN?

16
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We point out that {e, ® &} n)en2 is an orthonormal basis of L%*(R?%). Moreover, from

(2.15), it follows that, for every f € L*(R?), the operator K € L*(R*) — Ap(K) =
Tk f € L*(R?) is linear and continuous. Thus, for every f € L?(RY) we have:

Kr(w,y)f(y)dy = A (Kr)(@) = As( Y2 (Ten,en)em @) (x)

R (m,n)eN2

LS Al(Ten emdem @ 7))
(m,n)eN?

A3 400 400

= Z Z Tep,em)Af(em ® en)(x)
o o

= 3 3 Tenen) [ entalentil i) dy
m=1n=1 R4
+o00 +oo

= Z Z<T(<fa €n)en), €m)em ()
m=1n=1
400
Z(Tﬁ em)em(r) = (T f)(),

where the use of A.2 is justified because, 32, ,yenz{T'en, €m)em @ €, converges uncondi-
tional, while the use of A.3 is justified because Ay is continuous, thus (A.2) implies that
S mmyenz A ((Ten, em)em @ &,;) converges unconditionally. Finally, we have:

“M8

~+o00
||KT”%2(]R2’1) - Z |<Temem - Z Tenyem

(n,m)eN2
o (2.17)

=D ITenllZa@ey = IT llis-

n=1

Conversely, if we have K € L?(R??) and we define T by (2.14), we have to show that
this is a Hilbert-Schmidt operator. We already proved that Tx € B(H). The proof that
it is also Hilbert-Schmidt is straightforward since (2.17) still holds. O

In light of this theorem, operators defined by (2.14) are called Hilbert-Schmidt integral
operators.

Proposition 2.33. Let T be a Hilbert-Schmidt integral operator over L*(R%) with integral
kernel K € L?(R??). Then, its adjoint operator is given by

0= [ Ko dy (2.18)

Therefore T is self-adjoint if and only if K(z,y) = K(y,z).
17
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Proof. Let f,g € L?*(R%). We start showing that K (z,y)f(y)g(z) € L}(R??):

| sGalwlis@idedy ™" [ ([ 1K@l o) ds

C-S
= Ad(ﬂxlf\)(y)lg(y)! < N Tikll2llgllz < 1K 2l fllzllglla < +oo,

where 7| denotes the Hilbert-Schmidt integral operator with kernel |K| and ||| f]|2 <
| K||2]| f||l2 because Tk is Hilbert-Schmidt, therefore ||Tix || < |Tjxk|lus = [|K|2. We are
now in the position to use Fubini’s theorem:

wro= [ ([ Kenrwa)s@a= [ ([ Keps@) o

= /Rd ( Rdmg(w) dw)f(y) dy = (f,T*g),

where the expression of T is exactly the one in (2.18). O

2.2 Fourier Transform and its properties

In this section we introduce the Fourier transform with its elementary properties, its rela-
tion with some fundamental operators in time-frequency analysis and with the convolution
product.

Definition 2.34. Let f € L'(R?). We define the Fourier transform of f the function
as
Ffw) = fw) = / e=2mt (1) . (2.19)
Rd

It is straightforward to see that the definition is makes sense and that .7 f € L>®(R%)
with ||.Z f|leo < ||f]l1. Therefore, # can be seen as a linear operator between L*(R?) and
L>*(RY) with ||.Z| < 1. Actually, taking f > 0 a.e., we have that f(0) = ||f||1, which
gives us the equality.

The Fourier transform of an L'(R%) is not only bounded, as stated by the Riemann-
Lebesgue lemma.

Theorem 2.35 (Riemann-Lebesgue lemma). Let f € LY(R%). Then f € Co(R%) = {f :
R? — C continuous such that limy o | f(t)] = 0}.

Definition 2.36. Let f € L'(RY). We define the inverse Fourier transform of the
function f as

FH(t) = ft) ::/ Xt f (W) dw. (2.20)

Rd

The inverse Fourier transform is denoted with .# ~! because it is actually the inverse
operator of the Fourier transform as stated by the inversion theorem.

18
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Theorem 2.37 (Inversion theorem). Let f € L'(R%) and suppose that also f € L'(R%).
Then

fO=F o Zft)= | flw)e™tdw.
Rd

If fis in L?(RY), the integral in (2.19) in general will not converge. Nevertheless,
we can define the Fourier transform of an L? function through a density argument. For
example, one can use L!'(R?)N L?(R%), which is a dense subspace of L2(R?). On this space
one can show that the Fourier transform is an isometry with respect to the L? norm and
therefore it extends to an isometry on the whole L?(R?). This is stated by the Plancherel
theorem.

Theorem 2.38 (Plancherel theorem). If f € L'(RY) N L2(R?) then ||f]l2 = || f]l2.

Thanks to the polarization identity this implies that .# preserves the inner product in
L(RY):
(fs 92wy = ([, 2rey Vg€ L*(RY), (2.21)

therefore the Fourier transform .% is a unitary operator on L?(R%). Result (2.21) is called
Parseval formula.

So far we have seen that the Fourier transform is defined on L' and L?. It can be
shown, through Riesz-Thorin’s interpolation theorem, that this is enough to extended the
Fourier transform to all LP spaces for 1 < p < 2 (see [9, Section 2.2.4]). Moreover, the
following inequality holds.

Theorem 2.39 (Hausdorff-Young). Let 1 < p <2 and let p’ such that % + Z% = 1. Then
1Al < 111

In what follows we will need the sharp version of the Hausdorff-Young inequality:

1/p

/2
||f”p' < <§1/Zy> ||f”p = Aﬁ”f”pv (2.22)
where A, is the so-called Babenko-Bechner constant.

Having considered the spaces over which the Fourier transform is defined, we can
focus on some of its properties. In particular, we want to focus on the close relationship
that arises between regularity and decay properties. This is explained by the following
theorems.

Theorem 2.40. Let f € L'(RY). If |t|*f € LY(R?) for some k € N, then f € CE(R?)
and the following holds for every a € N® with |a| < k:

F ((—2mit)°f) (w) = O°F f(w). (2.23)

Theorem 2.41. Let f € C*(R?) for some k € N. If f,0°f € L'(RY) for every a € N?
with || < k then

F(0°f) (w) = (2miw)* Z f(w). (2.24)
In particular this implies that f(w) = o (Jw|™) as |w| = +o0.
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In summary, previous theorems establish a duality between regularity and decay: if a
function is smooth, then its Fourier transform decays rapidly and vice versa.

We now introduce some fundamental operators in Fourier and time-frequency analysis.
Given z,¢ € R? and A > 0 we define the time-shift (or translation) operator T,

T.f(t)=f(t—x) VteRY (2.25)

the modulation operator M;
Mef(t) = 2™t f(t) VteRY (2.26)

and the dilation operator D)
Dyf(t) = M f(Xt) Ve R (2.27)

Moreover, time-shift and modulation operators can be combined into a time-frequency
shift operator
m(x, &) f(t) = MeTof(t) Vit e R (2.28)

It is easy to check that all these operators are isometric isomorphisms with respect to the
L' norm. We show how these operators act under the Fourier transform.

Proposition 2.42. Let f € LY(R?). Then the following holds:
(i) F(Mef)(w) = Tef(w);

(i) #(Daf)(w) = F (%)

We point out that the second property, namely that .7 (M, f) = T¢ f, is shedding light
on the role of modulation operator: while T}, acts as a translation in the time domain,
M is a translation in the frequency domain. Therefore the time-frequency shift operator
7(x, &) is indeed a shift operator because it acts as a translation in the joint time-frequency
domain.

Thanks to these properties, Theorems 2.40 and 2.41 we can compute, as a useful
example, the Fourier transform of Gaussians.

Example 2.43. We want to compute the Fourier transform of Guassians of the kind
eI where A\ > 0 and |¢[? is the Euclidean norm of ¢ € R%. We point out that the
Fourier transform of a Gaussian is well-defined because it is a function in the Schwartz
class, which is a subspace of L!'(R?). We will show that the Fourier transform maps
Gaussian into Gaussians. More precisely, the following formula holds:

F (e 1) (w) e 3 mw|? VweRY (2.29)

1
Y

We start considering the 1-dimensional case and for the ease of notation we let ¢y (t) =
e for t € R. First of all we consider @ = (1, for which we have:

%(t) = —27tp(t).
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If we take the Fourier transform of both members, using (2.24) in the former and (2.23)

in the latter we obtain:

dp dp
(W) = ——(w)

omiwp(w) = —iF
Tiwp(w) i 70

which is exactly the same equation satisfied by ¢, therefore ¢(w) = Ce™™" for some
C e R. Since ¢(0) = [; ¢(t) dt = ||¢|l1 = 1, we obtain that C' = 1.
The general case can be proved using the dilation operator:

2 2 1
t — e*)\ﬂ't — e*?T(\/Xt) — D t ,
thus taking the Fourier transform:
R 1 2.42(i55) 1 ( w ) 1 1o
w)=—=%(D w) = —=p|—=) = —=e 3",
Pa(w) 7 (Dy5¢p)(w) 5"

The passage to the multidimensional case is almost straightforward since e At = H;'l:1 e~

therefore:

Y

d
ﬂ(e_mw)(w) _ / et g —2miwt gy H / ™A p=2miwjt; dt;
RY j=1/R
d
= H L(f_lm‘)fz = 1 e Tl
\ \d/2

We conclude this section by considering how convolution product relates to the Fourier
transform. Given two functions f, g : R? — R?, we recall that their convolution is given
by:

(Feo)a) = [ fwgte =y

The well-posedness of the convolution is given by Young’s theorem.

Theorem 2.44 (Young). Given f € LP(R?) and g € LY(R?), suppose that % + %
with v > 1. Then f+g € L"(RY) and ||f * gll» < || fllpllgllq-

141
We notice that, if p = ¢ = 1, then r = 1 so the convolution of two L' functions is still
in L'. Thanks to this, using Fubini’s theorem it is immediate to see that:
F(fg)=F[f Fy,

which explains the connection between convolution and Fourier transform. Just like as
Young’s inequality, in what follows we will need the sharp version of Hausdorff-Young’s
inequality, namely:

£+ gllr < (ApAg )N fllpllgllg- (2.30)

21



Chapter 3

Short-Time Fourier Transform

The Fourier transform is a widely used tool in both theoretical and applied settings. In
particular, from an applied point of view, the importance of the Fourier transform lies
primarily in the possibility of examining a signal in the frequency domain, and thus ob-
taining information that would otherwise be difficult to derive from the time domain.
However, the distinction between these domains is rigid, whereas it is of great importance
to have a tool with which time and frequency characteristics can be examined simultane-
ously. There are many representations that can accomplish this task, such as the Wigner
distribution, the ambiguity function and so on. The basic time-frequency representation
of a signal is probably the short-time Fourier transform or STFT. In this chapter we will
define the STFT and describe some of its properties. The reference for this chapter is the
book by Gréchenig [10].

3.1 STFT: definition and properties

The short-time Fourier transform or STFT is a powerful tool used in signal processing
and time-frequency analysis to study the properties of a signal locally in both time and
frequency. The main idea behind STFET is the following: if we want some information
about the spectrum (i.e. frequencies) of a signal f at a certain time, say T, we could
choose an interval (T'— AT, T + AT) and take the Fourier transform of fXr—arr+ar)-
Normally, multiplication by a characteristic function will not yield a regular function (not
even continuous) and, in light of the duality between regularity and decay, the Fourier
transform of fxr_ar7r1ar) Will not decay quickly. The problem with this not quick
decay is that in this case the energy in the frequency domain will be spread all over the
domain. Therefore, a sharp cutoff in the time domain leads to a “poor” localization in
the frequency domain. In order to avoid this kind of problem, we could think to multiply
the signal f by a smooth function.

Definition 3.1. Fiz a function y # 0, called window function. The short-time Fourier
transform of a function f with window ¢ is defined as

Vof(z,w) = y f®)o(t —z)e 2™t dt,  (z,w) € R (3.1)

22



Short-Time Fourier Transform

In the above definition we did not specify where f and ¢ are chosen. The reason is
that various combinations of f and ¢ can lead to a “good” definition. We notice that (3.1)
can be seen in an alternative way:

Vof(z,w) = Z(fTud)(w), (3.2)
therefore STF'T is well-defined whenever the Fourier transform of this function is. For
example, if both f and ¢ are in L2(R?) then fT,¢, is in L'(R?) for every € R? and so
the integral in (3.1) is defined. In this special case the STFT can be written as a scalar
product in L2(R%):

Vol (@,w) = (f, MuTod) = (f, m(z,w)¢).
In general, the STFT of f with respect to ¢ will be defined whenever (f, M,T,¢) is an
expression of some sort of duality. For example, if f € S'(RY) and ¢ € S(R?), then
M,T,¢ € S(RY), therefore (f, M,T,¢) can be seen as the usual duality between tempered
distributions and functions in the Schwartz space. Despite this remark, we will mainly
focus on the case in which both the window and the signal are in some Lebesgue space

LP(RY).

3.1.1 Properties of STFT

In this section we will introduce and prove some basic properties of STFT. In particular,
as we did for the Fourier transform, we want to know to which spaces V f belongs.

Theorem 3.2. Let f1, fo, ¢1, 02 € L2(R?). Then V,, fi € L*(R??) and the following holds:

(Vo f1, Ve f2) = (f1, f2) (91, P2). (3-3)

Proof. We start proving that, if f € L?(RY) and ¢ € S(R?), the STFT of f with window
¢ is in L?(R??). Since we supposed ¢ € S(R?), the function f7,¢ is in L?(R%) for every
x € RY, hence:

||V¢f||§—/RM\Vqsf(x,w)Fdxdw Topel /R (/R |V¢f(x,w)\2> du
@[ ([ zurorea) wrmee [ ([ rea=ara) a

e [ s ([ 1ot - 0P d ) de= 1711613

Now, consider f, fo» € L*(R%) and ¢1,¢2 € S(RY). Both V,, fi and Vg, f2 are in
L?(R?%), so their product is in L'(R??), hence we can use Fubini’s theorem in the following;

<V¢1f17v¢2f2> = /de V¢1f1(l‘,W)V¢2f2(fL‘,W) dx dw
Fubin / ( F(HTe80) (@) Z (JoToda) (@) dw) dx
R4 R4
Pars:eval P TES WA o d d
| ([ pan=a Eintt - oy at) do

Fubini /Rd f1(t) fa(t) (/Rd Ga(t — ) (t — ) dx) dt = (f1, f2)(¢2, é1)-
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The transition from S(R?) to whole L?(R?) is done trough a density argument. Indeed,
for fi, f2 € L*(R?) and ¢ € S(R?) fixed, the mapping ¢o € L2(RY) — (Vy, f1, Ve, f2) is
a linear functional and we just showed that it is bounded over S(R?), where it coincides
with (f1, fo){#2, #1). Since Schwartz’s class is a dense subspace of L?(R%) it extends to
a bounded linear operator for every ¢o € L2(R?). Similarly, for fixed fi, fo € L*(R%)
and ¢o € L?(R?) the mapping ¢1 € L*(R?) — (Vy, f1, Vs, fo) is an antilinear functional
that coincides with (f1, fo)(#2, ¢1) over S(R?), therefore it extends to a bounded linear
functional over whole L?(R%). O

Corollary 3.3. If f,¢ € L*(R?) then

Vs fll2 = [/ ll2ll2- (3.4)
In particular, if ||l = 1, Vs is an isometry from L?(R?) into L?(R??).
Proof. 1t is sufficient to consider (3.3) with ¢1 = ¢o = ¢ and f1 = fo = f. O

From the Cauchy-Schwarz inequality we immediately see that Vyf is in L>®(R?):

Vo f (2, w)| = [(f; MuT2 )| NIl = £zl (3.5)

Combing this with (3.4) and using a simple interpolation argument we see that Vs f €
LP(R??) for every p € [2, +00] and that

Vo llp < I fll20lll2- (3.6)

This result is improved by the following theorem due to Lieb [20].
Theorem 3.4. If f,¢ € L*(R?) and 2 < p < +o0, then:

) d
Vol = [ Wato)l dedw < (2) 1718 - Lol 1)

Proof. Using the Cauchy-Schwarz inequality it is immediate to see that fT,¢ € L'(R?)
for every z € R% In addition to that, since V,f = F(fT.¢) € L*(R*), from Fubini’s
theorem we can say that .7 (fT,¢) € L?(R%) for almost every x € R? and therefore also
fTy¢ € L*(RY) for a.e. € RY Through an interpolation argument we obtain that
fT.6 € LY(RY) for every g € [1,2].

We start considering the LP norm of V, f:

Vofll, = (/RM Vo f (z,w)|P da dw)l/p Tonelli {/Rd ( [ \V¢f(x,w)]pdw) da} 1/p _

— [ /Rd ( ” |\ (fT,0)(w)|P dw) dx] 1/p
e20 A% [ /R ) ( y 1f(£)o(t — )P dt)p/pf dw] 1/p7 N
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where the use of Young’s inequality (2.30) is justified since we noticed that fT,¢ is in
LI(RY) for every q € [1,2], so in particular it is in L” (RY). Letting ¢*(t) = ¢(—t) and
considering the inner integral we have

[t de= [ \0F 6@ = 0F de = (11 <1071 @)

so the expression in (3.8) is the LP/P'(R?) norm of |f|P" * |¢*[?'. Since both f and ¢ are in
L2(R%) and p’ < 2 we have that |f[P', |¢*[*" € L?? (RY). Thanks to Young’s theorem 2.44
|f|P" % |¢*|"" belongs to L"(R?), where 7 is given by:
Lo, 1 Ll 1 1 >
= —_ r = g = p — = —,
e @y TETE v

P
therefore, using the sharp version of Young’s inequality (2.30) in (3.8) we obtain:

Vel < A2 (A1 A8 Al N g 116717 o)

However || [|f|P'l2y = (Jpa(|f(2)P)¥? da)?'/? = If|I5" and from a direct calculation
(which can be f01.1nd in B.1) one can see that A, A;% v AEZ f’p y = (2 /p)¥P, which corre-
sponds to the desired result. O

In light of Theorem 3.2, the STFT with window ¢ in L?(R%) can be seen as a unitary
operator from L?(R?) into L?(R2?). Therefore, we can find its adjoint operator. From a
direct computation it can be seen that this is given by:

Vig(t) = /R?d g(z,w)p(t — )™ dr dw = / g(z,w) M T,p(t) drdw Vg € L*(R*?).

R2d

(3.9)
This adjoint operator appears in the following nice property, named inversion formula for
the STFT.

Theorem 3.5. Let f € L2(RY) and ¢,y € L*(R?*?) such that (¢,~) # 0. Then:

1

Proof. Given f,g € L?(R%) from (3.3) we have:

VIV f(t) = <¢ > /de Vo f(x,w)M,Tpy(t)dedw Vit e R?. (3.10)

On the other hand:

therefore, letting I be the identity operator over L?(R?), we have:
VVof g) = (fL9)(7,0) = (VIVs = (v, 0)])f,g9) = 0.

Since this holds for every g € L?(R?) necessarily:

VoV — (v, 0))f =0 = VIVef =T

1
)
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Short-Time Fourier Transform

Therefore, the adjoint operator V acts, in some sense, as an inverse operator. This
will be of paramount importance afterwards.

3.2 Bargmann Transform and Fock Space

In the introduction of the chapter we justified the multiplication of a function f by a
window ¢ in the definition of the STFT through the relation between decay and regu-
larity under the action of Fourier transform. Hence, it seems reasonable to make furhter
consideration on the STFT when the window function is a regular and rapidly-decaying
one. In this section, we will consider the specific case in which the window is a Gaussian.
In particular, we choose a Gaussian of the following form:

o(t) = 24T (3.11)

The factor 2%/4 is chosen so that |||y = 1. The STFT with Gaussian window becomes
Vof(z,w) = 2/4 [ p(t)e I g 2miwt gy (3.12)
Rd

Our goal is to rearrange the terms in the above expression in order to make z = x+iw € C?
appear. We want to highlight the fact that, when talking about complex quantities,
|22 = 22 = |z|* + |w]?.

Vof(z,w) =24 [ ft)e P +2matonlwf o —2mivt gy
Rd

— 9d/4 f(t)efﬂ\ﬂzeQW(wfiw)te—%(\z|2—2i$-w—|w\2)e—%(|$|2+|w\2+2iz-w) dt
Rd

™

_ 2d/4e—7riz-we—§(\z|2+|w\2) f(t)e—ﬂt\Q62W($—iw)<t€—%(m—iw)2 dt.
Rd
The rearrangement may seem arbitrary, but actually it is done in such a way that inside
the integral z and w enter only via Z. This leads to the following definition.

Definition 3.6. The Bargmann transform of a function f on R is the function Bf
on C? given by

Bf(z) =24% [ ft)e>rt=mIt =52 gy (3.13)
Ra
The existence of a connection between the STFT with Gaussian windows and the
Bargmann transform is clear and it is formally stated in the following proposition.

Proposition 3.7. If f is a function on R with polynomial growth then its Bargmann
transform Bf is an entire function on C%. Moreover, letting = = x + iw, the Bargmann
transform of f is related to its STFT through the following

Vof (z,—w) = "B (z)e /2 (3.14)

We recall that a function defined over C? is entire if it is holomorphic over all C.
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Short-Time Fourier Transform

Definition 3.8. The Fock space F?(CY) is the Hilbert space of all entire functions F
on C¢ for which the norm

1Pl = [ PGP i (3.15)
cd

is finite, where dz stands for the Lebesque measure on C?.

Clearly the norm of the Fock space is induced by the following scalar product

(F,G)r2 = /(Cd F(2)G(z)e ™ dz. (3.16)

Proposition 3.9. If f € L*(RY) then

, 1/2
Il = ([ 1B az) = 5715 (3.7

Thus B is an isometry from L*(R?) into F2(C?).
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Chapter 4

Localization Operators

In the previous chapter we defined the STFT, which, roughly speaking, gives us a “time-
frequency picture” of a signal. Once we have our joint representation, we might be in-
terested in highlighting some of its features. For example, we might be interested in
understanding where most of the energy is in phase-space.

In this chapter we will look at two ways in which we can solve the problem of creating
operators able to localize a signal.

4.1 Localization with projections

Our first attempt to localize a signal is arguably the most straightforward one, namely
using a sharp cutoff. If we suppose to have a signal f € L?(R?) and we want to localize it
in a measurable subset 7 C R? of the time domain we can consider the natural projection
operator:

Pr: L*(RY) — LA(RY), Prf(t) = xr(t)f(t). (4.1)

This is clearly a projection operator, which means that P2 = Pr = Pj.

In the same fashion we can define an operator able to localize on a measurable subset
Q C R? in the frequency domain. Its definition it is not as direct as the one for time
projections but it is still easy to understand:

Qq: L*(RY) = L*RY) Qof(t)=F ' (xaZ /) (1) = /Qf(w)€2m't dw. (4.2)

It is also quite simple to show that this is a projection operator:

Q4 =-F 'xaZ F 'xaF = F xaxaZ = F 'xoF = Qq,
* *
Qo = (ff_lXfo) =7 Xq 9_1) = Z 'xoF = Qq,
where we used the fact that the Fourier transform is a unitary operator on L?(R%), namely
that #* = Z L.
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Localization Operators

Since both operators are projections, their norm is less or equal than 1, independently of
T and €, indeed:

| Prfllz2may = I fllz2ery < N fllz2rays

Plancherel Plancherel

1Qaf 2@y = I1F "xaZ fllrzmey = NZflrxe S NF fllegs = I1fllL2@a)-

Clearly, those operators do not answer our original question about localization in time-
frequency, since Pr and Qq act only in time and frequency, respectively. However, we
may think to combine these projections into a single operator:

QaPr, PrQq : L*(R%) — L*(R?),

which hopefully is able to localize a signal both in time and frequency “near” to the set
T x Q.

It is clear that these operators are linear and bounded, in particular their norms are
less or equal than 1. Moreover, they are one the adjoint of the other, indeed:

(QaPr)" = PrQg = QaPr. (4.3)

Up to now the only (essential) hypothesis on 7" and 2 is that they are measurable.
Clearly, by adding some requirements on 7" and 2 we expect QqPr and PrQq to gain
some properties.

Proposition 4.1. Let T,Q C R? with finite measure. Then QqPr and PrQq are Hilbert-
Schmidt integral operators of the form

QuPrfa) = [ K070 (1.4

PrQofa) = | FEaife) (4.5)
where

K(z) = xr(t) /Q e2mir(o=t) g, (4.6)

and || K| gasy = /T,

Proof. Given f € L*(R?) we have:

QuPrfa) = [ e ([ emetpoar) ao™ [ e ([ @ o) s

where the use of Fubini’s theorem is allowed since ) and T have finite measure. This gives
us the expression of QQqPr. In order to obtain also the expression for PrQ)q it suffices to
recall from (4.3) that (QqPr)* = PrQq. Therefore, the integral kernel of PrQq is given
by Proposition 2.33. Lastly, from Theorem 2.32, we have that ||QqPr|lus = || PrQallus =
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||K||L2(R2d), and:

1/2
| K| 2 ey = (/ |K (1) d:vdt)
R2d

_ ( /R xrlt) 2 dz dt) "

:<4wmﬁmg*wm@—wfwﬁfﬂ

Tonelli [/Rd r(t) (/Rd 17 (xa) (@ — t)|2dx> dt] 1/2

= ([ 1me e a)

T isometryi—Plancherel

/ €2m’w- (z—t) Y (w) dew
R4

”XQHZHXTHZ: |T\|Q|-

O

If we compare the integral kernels of Qo Pr and PrQq we see that K(x,t) # K(t,z),
hence, by Proposition 2.33, we immediately conclude that both operator are not self-
adjoint. We already know that, if possible, it is better to deal with self-adjoint operators,
so we should consider the following operators:

(QaPr) QaPr = PrQoQaPr = PrQqPr; (4.7)
(PrQao)" PrQa = Qo PrPrQa = QaPrQq. (4.8)

By construction, these are self-adjoint operators, and since both QqPr and PrQq are
compact, thanks to Proposition 4.1, Theorem 2.27 and Theorem 2.8 they are also compact.
Hence, by Theorem 2.11, they can be diagonalized. In the particular but relevant case
where 7" and Q are intervals (disks in the multi-dimensional case) the eigenfunctions of
these operators are the prolate spheroidal wave functions and have been studied by Slepian,
Pollak and Landau in a series of papers [31, 17, 18, 30].

4.2 Daubechies’ localization operators

The projection operators considered in the previous section fulfil the task of localizing a
signal in both time and frequency. However, those are still treated separately. Indeed, if
we consider, for example, Qo Pr, we see that at the first moment we perform localization
in time and only then in frequency. Since our task is to localize in both domains at the
same time, it would be more natural to have an operator that treats time and frequency
in a joint way. This is exactly what Ingrid Daubechies did in her remarkable 1988-paper
[5].

In Chapter 3 we defined a time-frequency representation of a signal, namely the STFT.
Therefore, to reach our goal, it seems more natural to use STFT instead of the Fourier
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transform. Moreover, from Theorem 3.5 we know that the adjoint operator of V; acts, in
some sense, as an inverse operator. If we choose a window ¢ € L?(R??) normalized, 3.10
becomes

f(t) =ViVof(t).
The key idea is to multiply V,f by a weight function F(x,w), which logically should
highlight some features of V4 f, before applying the adjoint operator. This leads to the
definition of time-frequency localization operators:

Lig: LXRY = L2RY),  Ligf() = ViFVaf(t). (4.9)

Related to this localization operator is the sesquilinear form Zr 4 : L>(RY) x L}(R?) — C
defined by the expression:

Lre(f,9) = /R2d F(z,w)Vsf(z,w)Vsg(x,w) dr dw. (4.10)

Indeed, assuming 7 4 is bounded, we could define Ly 4f through Riesz’ representation
theorem as the only element of L?(R?) such that:

Lrolf.9) = Lrof.o) = [

Lrsf(t)g(t)dt Vg€ L*(RY), (4.11)
R4

and therefore L4 as the operator which maps f into its representation.

Now that we have defined time-frequency localization operators our goal is to study
their properties, starting from boundedness, compactness and the belonging to trace class
or Hilbert-Schmidt class. We recall that the window function ¢ € L*(R?) is fixed, so it is
clear that the properties of Lp g will depend upon F.

Proposition 4.2. Let F € LP(R*?) for p € [1,+oc]. Then L4 is bounded and ||Lr 4| <
1El-

Proof. Letting f,g € L?>(R?), we have:
ZooF0) < [ IPle.)Vad (o)l Vagla. )| do

From (3.6) we know that, given f € L?(R%), V,f € LP(R?) for every p € [2,+o00] and
Vofllp < Ifll2. We want to find an exponent ¢ > 2 in order to apply (generalized)
Holder’s inequality:

1 1 1 2

441 = g= 1

P oqa q p—1

which is greater or equal than 2, regardless of p. Applying Hélder’s inequality with
exponents p, ¢ and ¢ we have:

[Lro (L9 < [ElplVsfllallVoglla < IF 17 l2ll9ll2-

Taking the supremum above all normalized f,g € L?(R%) gives us the boundedness of
L and, in the end, of Lg 4. O
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In previous section we managed to prove that projection operators Qq Pr and PrQq are
Hilbert-Schmidt operators, provided both 7" and €2 have finite measure, which is equivalent
to asking that yr and yq are in L'(R?). An analogous result holds for Daubechies’
localization operators.

Theorem 4.3. Let F € L*(R*®). Then Lp is a Hilbert-Schmidt integral operator with
kernel

Kp(s, 1) = / Fla, ) Mo T (s) Mo Too (1) dar doo. (4.12)
R2d
Moreover, ||Kpll2 < |[F|[1.

Proof. Let f,g € L*(R?). We begin showing that F(x,w)f(t)M,T.0(t) g(s)M,Teé(s)
belongs to L'(R? x R? x RY):

/ (2, 0) f() L To (D) 9(5) MuTao(s)| dar doo dt ds

R4d

Tonelli

s [l ([ o) ([ oM T ds) dedo
:S 2 211912 2 T,w)|ar aw = 1 2{|9]|2-

< [ £ll2llll2]lgll2l| 2 |F(2,w)| dodw = [[F[1] fll2ll9]l

R2d

Now we can apply Fubini’s theorem in the expression of (Lpsf, g):

(rota)= [ Plaw) ([ 10 LT00 @) ([ o6 LT06) ds) drde
Fubini /]R ) [ /R ) ( /R F(, w) My, Tyd(s) My Tpd(t) da dw) 10 dt} g(s) ds

_ /R d ( [ Kets0s(0) dt) o(s) ds.

Since this holds for every f and g we can conclude that Lpgf = [p. Kp(-,t)f(t)dt.
Thanks to Proposition 2.14, we know that such integral operator is a Hilbert-Schmidt
operator if and only if K € L?(R??), so all we have to do is to compute its norm.

1Kl = Ke k0 < [ ([P To) LT 0] drdo)
([ PO OIMET oI MET,0(0) g ) ds
Fubini
o [ @@l POl ([ Mool at
([ LTIV 000) s ) ooy
ol [ IPewldeds [ 1F0.9]duds = IR
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Reminding that Hilbert-Schmidt operators are compact (Theorem 2.27) we observe
that, if F'is integrable, the corresponding localization operator L 4 is compact. Moreover,
since we have the explicit expression of the integral kernel, from Proposition 2.33 follows
immediately the next sufficient condition on F'in order to make L4 self-adjoint.

Proposition 4.4. If FF € L*(R*®) is a real-valued function then Lp gy is self-adjoint.

We will now prove that localization operators with integrable weight function are trace-
class operators. We want to emphasize that, in light of Proposition 2.30, this is a stronger
condition than just being a Hilbert-Schmidt operator.

Theorem 4.5. Let F € LY(R??). Then Ly is a trace-class operator. Moreover, given
an orthonormal basis {e,}nen of L2(R?), the following holds:

+oo
S [(Ligem en)| < |Flh,  trLipg = / Flo,w) da dw. (4.13)
R2d

n=1

Proof. We start proving that Lg4 is a trace-class operator. Given an orthonormal basis
{en}nen of L2(RY):

Z| Lpgen, en)| = Z ’/ (x,w)Vsen(x,w)Vgen(z,w) dmdw‘
/ (2, w)|[Vpen(z,w)||* dr dw

_ / F(z,w)| Z (en, MuTod)|? da du
R2d

n=1
Parseval
v [ IP@lIMTl de do = [6131F = 1P,

where the exchange between series and integral is due to the monotone convergence the-
orem. Now that we know that Lp 4 is trace-class we can compute its trace:

+o0o “+oo
trlpy = > (Lpgenen) = Fl(x, w(z, )2 dz d
rLpg nz::l( F.$€nén) Z/Qd (2, w)|Veen(x,w)|* de dw
= NLHEOOZ/Rz (2, w)|Vgen(z,w)|* dz dw.
Since
N +o0
|F(z,w)] Y Voen(a,w)] < |F(z,w)] Y [Voen(z,w)* = |F(z,w)| € L'(R*),

n=1 n=1

we can apply Lebesgue’s dominated convergence theorem to conclude that:

trLpg = lim Z/ (x,w)|Veen(x, w)[? dxdw—/ F(r,w)dzdw.
R2d R

N—+o00 2d
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So far, except for 4.2, we considered only the case F' € L*(R??). As the last result of
the section we will deal with the more generic case F' € LP(R??) for p < +oo0.

Proposition 4.6. Let F' € LP(R?*?) with 1 < p < +o0. Then the corresponding localiza-
tion operator Lg g is compact.

Proof. Given F € LP(R??), thanks to Theorem 2.5 it is sufficient to consider a sequence
F,, of functions in L'(R??) such that F,, — F in LP(R??). For example, we can suppose
that F), are in Schwartz’s class S(R??), which is a well-known dense subspace of LP(R%*)
for p < 400. Indeed, from Proposition 4.2, we have that ||Lg, o — Lre|| < ||[Fn — F||p, so
L, s — Lpg in B(LA(RY)). Since S(R*) c LY(R??), L, 4 are compact, thus also Lg,
is. t

4.2.1 Spherically Symmetric Weights

In previous section we managed to prove that, if the weight function F is in LP(R?9)
for some p < 400 and it is real-valued then the corresponding localization operator
Lr g is compact and self-adjoint. Thus, it is natural to ask which are its eigenfuctions
with corresponding eigenvalues. However, this in general is not feasible. Hence, we shall
consider some specific class of weight and window functions. In particular, in this section
we will consider the special case in which the window for the STFT is a Gaussian (3.11)
and the weight F' is spherically symmetric. Letting 7§ = 27 + w3 for j = 1,...,d and
r?2 = (r?...,7r2) € R% the hypothesis about F' can be rephrased in the following way

F(z,w) = F(r?). (4.14)

In order to highlight the dependence of F' through &, the corresponding localization
operator will be denoted as Lg . For this operators a complete characterization of the
spectrum and eigenspaces is given in the already cited paper of Daubechies [5].

Before stating we need to introduce some special function, namely Hermite functions.
In dimension d = 1, Hermite functions are given by:

21/4 1 F w2 dk —2mt?

where k € NU{0} := Ny. Hermite functions have lots of interesting and useful properties.
A standard reference is [6, Section 1.7]. We cite some of them which will be useful in the
following.

(i) {Hy}ren, is an orthonormal basis of L?(R);
(il) Ho(t) = ¢(t), where ¢ is the normalized Gaussian given by (3.11);
(iii) Setting H_; = 0, the following recursive relation holds

ImtHy = Vk + 1Hp1 + VEHp_ fork=0]1,...; (4.16)
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(iv) Hermite functions are eigenfunctions of .%, specifically

FHy, = (—i)"Hy,. (4.17)

Hermite functions in generic dimension are just the tensor product of 1-dimensional Her-
mite functions. Explicitly, given a multi-index k = (ki,...,kq) € N&, the corresponding
Hermite function is given by:

d
Hi(t) = H Hy, (t)). (4.18)

It is still true that d-dimensional Hermite functions (now ranging between all possible
multi-indices) form an orthonormal basis of L?(RY). Moreover, using (4.17), it is easy to
see that d-dimensional Hermite functions are still eigenfunction of the Fourier transform
and that the following holds:

FHy, = (—i)M Hy, (4.19)

where |k| = k1 + - - - kg is the length of the multi-index.
The introduction of Hermite functions is necessary, since they are exactly the eigen-
functions of Ly .

Theorem 4.7. Figenfuctions of Ly, are the d-dimensional Hermite functions Hy, with
corresponding eigenvalues:

1 [T +00 s 54 d (514t 52)
- — 21 2d i | e— (51t +sa
A = i, /0 F (7r"“’ 7T> jl_ll si’ | e dsy dsg, (4.20)

where k € Nd and k! = k1! - - kg!.
Before proving the theorem we need the following lemma.

Lemma 4.8. Given z € C, it holds:
—om(t2 42t _ 1 w22/2
/e ( >dt_217e /2, (4.21)
R
Proof. Letting z = Rez + ilmz = u + tv we have:
/ 6727r(t2+zt) dt = / 6727r(t2+ut)6727rivt dt = e7ru2/26727r(t2+ut+u2/4)6727rivt dt
R R

_ e7Tu2/2‘/ 6—27r(t+u/2)2€—27ri'ut dt = 6WU2/29(T_U/2€_2W(')2)(U)
R

2-42(14‘2*43 eﬂ'u2/2€27ri(u/2)v 1 6771'112/27 1 eﬂ(u2+2iuv7v2)/27 1 eﬂ'z2/2

27 = ip =
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Proof of Theorem 4.7. Since Hermite functions are an orthonormal basis of L*(R") it is
sufficient to prove that (Ly ,Hy, H) = (FV,Hy, V,H)) = g H;lzl Ok;,1;, which means
that the scalar product is different from zero if and only if £k = [. We start by computing
the STFT of a Hermite function:

d
VoHpp(x,w) = Hk(t)(f?mw't 9d/4emlt—al® gy — H Hy, (tj)efzmw't 9d/4emlt=xl” gy
Rd ;

e*27‘(‘iw]'tj e*ﬂ'(tjij)z dtj

91/4 dr .
/R ( \/») t2 t]; 727rt?) 6727”0.1_,-15_7-6771'(15]'79;_7-)2 dtj

—27rt2 7T(t2 2iwjt;—t2 +2t]z7—a: )dt
tkf

’ d] —27t2 7 (x;—1w;j)t;
P —

_7rzr [27‘(( iwj)]kj(_l)kj‘/]Re—Zﬂ'[ti—(zj—iwj)tj] dtj
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<
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I
=
Sl

Before computing the scalar product between Ly ,H) and Hj, we introduce the angular
coordinate ¢;, such that x; + iw; = r;e*7. Therefore we have:

(Ly o Hy, Hy) :/ (H 7;; fj lke) e Tw T (it A 2,
R2d

(H rlme zzme,n) e~ miwz = (ri++10)/2 do dy
kit
- / (H T k 5+ il —kj)0; ) R dp deo. - (4.23)
R2d

For every pair of coordinates (z;,w;) we can switch to polar coordinates (r;,6;). Since
F(z,w) = F(r?) is independent of angular coordinates, only functions depending on those
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i(lj—k;)0;

are e , for which:

eilli=k;)0; |2

/ ol —k;)0; d; = T
0

2
d(9j =27 if k‘j = lj

0

0

Therefore, if k # [, the whole integral is 0, otherwise, letting k; = [; in (4.23):

ﬂ.\k\ 400 400 d —
<L{7 ckaa Hk / (7’% Td) —71'(7’1—‘,- +Td) H Tj it drl e de
j=1
1 [T +oo , o
=1 e F(r2, . rhe it H(m‘?)kﬂ' wridry -+ - Trgdrg.
~Jo 0 =1

With the change of variable s; = 7r7°J2-,

1 +o0 +00 d ‘
<Lgv’¢Hk,Hk> = /{:'/ / F (i:,,?) (H 3?3) e*(s1+--.+54) dsy - - dsq,
- JO 0 i

j=1

we finally obtain:

which is exactly the expression (4.20). O

In conclusion, we will consider two meaningful examples, namely when the weight F' is
the characteristic function of a disk centred around the origin and when it is a Gaussian.
In order to make computations easier we confine ourselves in the case d = 1.

Example 4.9 (Localization on a disk). We study arguably the most simple case, namely
when F is the characteristic function of the disk Bg = {(z,w) € R? : 22 + w? < R?}:

1 if 2 +w? =r? < R?

0 otherwise

F(z,w)=5?) = {

In order to highlight that I is the characteristic function of Br we let Ly, = Lg, .
Noticing that F(2) = X[o,rr2|(s), expression (4.20) brings to:

1 +o0o X 1 mR? k )
Me(R) = k!/o X[o,xR2)(8)s" e " ds = k!/o ste *ds =y(k+ 1,7R?),

where v is the lower incomplete gamma function. An easy integration by parts, when
k > 1, leads to:

mR? ) TR?
/ sPe™%ds = —(nR?)Fe ™ 1 k/ sF e ds.
0 0
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Iterating this process gives us the following formula for the k-th eigenvalue:

k 21 7
_ 2 (WR)]
/\k=1—67rR -

. k=01,...

Since (7 R?)7/j! is strictly positive, it follows immediately that the sequence of eigenvalues
is strictly decreasing. Moreover, since F' is real-valued, from Proposition 4.4 we have that
Lg, , is self-adjoint, as well as compact. Therefore, from Corollay 2.12 we conclude that:

|Zapgll = ol = 1 — e

Recalling the definition of the norm for operators between Hilbert spaces 2.2, we obtain
that, for every normalized f € L2(R%):

Mo = Lanoll = |(Lanef. f) = / Vot ()2 der e

Br

— / Vof(z,w)?drdw < 1— e (4.24)
Br

We point out that the left-hand side of the last expression represents the energy of V, f
concentrated on the disk Bg.

Example 4.10 (Localization with Gaussian weight). Another natural choice for the
weight function F' is a Gaussian:

F(z,w) = e_a”(z2+w2),
where a > 0 is a dilation parameter. In this case F(2) = e¢~*%, so from (4.20) and
integrating by parts & + 1 times we obtain the eigenvalues of Ly :

1

)\k:H

+oo
/ sFe=(4)s gg — (1+ oz)_(k+1), k=0,1,...
0

Like the previous case, eigenvalues are already ordered in decreasing order and F' is still
real-valued, therefore
Lyl =1+ .
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Chapter 5
Uncertainty principles

Up to know we put some effort in constructing some tools that have the ability to con-
centrate a signal in the time-frequency domain. In the introduction of Section 3.1 we also
pointed out that a characteristic function is not a “good” window for the STFT because,
in light of the duality between regularity and decay, the Fourier transform of a not regular
functions has a slow decay. Indeed, in Section 4.2.1, we considered the STFT with a
Gaussian window function, which has nice regularity and decay properties. However, a
natural question arises: how good can we concentrate a signal? Is it possible to have a
signal arbitrarily concentrated both in time and frequency? The answer to this questions
is definitely no and it is given by uncertainty principles, which are ubiquitous results in
Fourier and time-frequency analysis. Uncertainty principles arise in different versions but
the main underlying idea is the following:
a function cannot be too concentrated both in time and frequency.

Even if not explicit, we already had a first glimpse of this phenomenon when we
computed the Fourier transform of dilated Gaussian (Example 2.43). Indeed, given A > 0
we recall that:

1
F (e (w) = “Srlw]? Vwe R

T\d/2 €

If we choose A to be very large, the Gaussian in the time domain eI will be strongly

concentrated around the origin. However, in the corresponding Gaussian in the frequency
domain the dilation parameter appears in the denominator of the exponent, so this will
be poorly concentrated.

In this chapter we will present some uncertainty principles, both for the Fourier trans-
form and the STFT and we will give a quantitative description of how good we can localize
a signal.

5.1 Heisenberg’s uncertainty principle

Arguably, the most famous uncertainty principle is the one named after Heisenberg ([12]).
Despite being a fascinating topic, we will not discuss all the implications that this un-
certainty principles has in quantum mechanics. Therefore, our attention is driven to the
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mathematical formulation of the principle.

In literature there are several proofs of Heisenberg’s uncertainty principle. The one that
we will present was given (in the 1-dimensional case) by de Bruijn in [3] and involves, once
again, Hermite functions. Before stating and proving Heisenberg’s uncertainty principle
we are going to need some lemmas.

Lemma 5.1. Let f € L*(R). Then

. 1 I
[el@Pdes [ wfe)fdo = oo Yk I P (5.1)
R R

k=0

where Hy is the k-th Hermite function. In particular we have

[eiroras [ Aipa LB, 52)

with equality if and only if f is a multiple of Hy.

Proof. Our aim is to exploit the fact that Hermite functions are an orthonormal basis of
L?*(R) by computing (tf, Hy,). Before going on we remark that the previous expression is
not an L? scalar product but is a duality between a tempered distribution and a func-
tion in the Schwartz class. However, from the theory of tempered distributions we have
that (tf, Hy) = (f,tHy) and the latter expression is indeed a scalar product in L?(R%).
Moreover, from this observation, we see that tHjy appears. Therefore, using (4.16) we

have:
(f, i) = {fotHy) = 5= (VEF L Hi) + VR Hi)).

1
2/
To compute the similar quantity for f we also need to recall that Hermite functions are
eigenfunction of the Fourier transform (4.17):

(Wi Hy) = (Fowli) = 5= (VET LS, Hi) + VE(f, Hio))

(4.17)+Z unitary 1
T 2w
(=it (VE(f, Hio1) = VE+ T, Hya) )

1
2V
(VEF 1=, Hen) + V(=) 7 f, Hy o))

1
PN
Now, since {H, k}keNg is an orthonormal basis of L?(IR), we can use Parseval’s identity:

“+o00

[ eurora [ Wi = X (16 HIR + . HoP)

k=0

+o00
= o= 3 [+ DI, Her) + K, Hic) ]
k=0

+oo
= > @k DI H
k=0
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Since (2k 4+ 1) > 1, it is immediate to see that inequality (5.2) holds and that equality
is achieved if and only if (f, Hy) = 0 for every k > 1, which means exactly that f is a
multiple of Hy. O

In order to extend previous lemma to the multi-dimensional case we need the follow-
ing result related to the Fourier transform of restrictions. Before stating the lemma we
introduce the following notation:

t'=(ty,...,tg) €RTL W' = (wy,...,wq) € R
(F)wi, t) = Z(f(.)(w), (F o) =F(f(t, )W)

Lemma 5.2. Let f € L*(R?). Then F1f(w1,-) € L*(REY) for almost every wy € R and
FH 1 f(wr, )W) = F f(w).

Proof. Before starting, we point out that, since f € L*(R?), f(-,#) € L*(R) for almost
every t' € R%! therefore .7 f(-, ') is well-defined for almost every ¢ € R4~!. Then we
have:

LA O donde ™ [ () ) e i
Rd—1

Plancherel /Rdl /]R ‘f(tlat/)‘Q dtydt’ = IIf1l2-

which proves that .% f(wy,-) is in L2(R?!) for almost every w; € R.
Now suppose that f € LY(R?) N L2(R?). Since f is in L*(R?) we can use (2.19) to
make %1 f explicit:
Fifent) = [ Jen )t —
g;/((g-lf(wh ))(w/> _ / (/ f(t]_,t/>6_27mw1tl dtl) e—27riw’~t’ dt’
Ri-1 \JR
Fubini / Flty, the 2riwitig=2mi" " gy gt — F f(w).
Rd

Through the density of L'(R?) N L2(R%) in L2(R?) the last part of the statement follows.

]
Lemma 5.3. Let f € L2(R?). Then, for every j =1,...,d:
[ aroras [ GiePd =0 S g0 mk. 63)
Re Re T pend
In particular we have:
2 2 2070, (2 Hf||2
[ asoras [ e (5.4)

with equality if and only if f is a multiple of Hy.
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Proof. Without loss of generality we consider the case j = 1. Moreover, we introduce the
following notation:

(Foon(t) = {f(1),9(. 1)), (f.9) (t) = (f(t1,"),9(t1, ),

From Lemma 5.1, since f(-, ') € L*(R) for a.e. ¢’ € R"! we have:

/ / 1
[P an + [z P o = = 3 @k D P
R R

k1=0

which holds for almost every ¢ € R%!. We can now integrate with respect to ' every
member:

) / /t%‘f(tlvt')\thldt’ Toiem/ B1£(0)]? dt;

Rd-1 R Ré
) / / GRIFLf (o, ) deoy dt’ T / w? / (T f(wr )2 d dowy.
ROTR R Rd—1

From Lemma 5.2 we know that % f(w1) € L*(R471) for a.e. wy € R. Therefore, we
can use Plancherel’s theorem in the inner integral for a.e. w; € R and obtain:

/ /wlldlf wi, V)| dwy dt! —/wl/ FNFLf(wr, ) (W)]? dw’ dwr
Rd—1 Rid—1
022// w1|9f(w1,w')]2dw’dw1=/ Wi (w)|? dw.
R JRd-1 R4

e For the last term we start pointing out that integral and series can be exchanged
because every term is non-negative. Then, from Parseval’s identity we have:

[ MG @R = 5 (. Hir, H P

k'eNd—1
= | (o)
peni-t VR

Fubini
b ‘/ FO Hoom (1 dt‘ 1, Hoor) s
k'eNd—1 k'e Nd L

where we used the fact that multi-dimensional Hermite functions are just the tensor
product of 1-dimensional ones. Plugging this result in the series leads to:

/Rdlz%l“) (f, Hy, ) Z S 2k + DI, Hip))?

k1=0 jr eNd—1

= 3" @k + DI H) P

keNd

and we notice that the rearrangement of the series is allowed since convergence is
unconditional. Putting all these results together leads to (5.3).
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The proof of the last part of the statement is exactly the same as the one in Lemma
5.1. O

We are now in the position to prove Heisenberg’s uncertainty principle.

Theorem 5.4. Let f € L*(RY) and a,b € R%. Then:

([ r-arrora)” ([ o-sifora) " WE - g

Moreover, equality is achieved if and only if f(t) = cMpT,p(At), where ¢ is the normalized
Gaussian given by (3.11), c€ C, A > 0 and a,b € R?.

Proof. Firsly, we notice that it is sufficient to prove the inequality when ¢ = b = 0,
since the generic case can be recovered from this special one by means of a phase-space
translation. Indeed, given f € L?(R?) we can consider g = M_,T_,f for which we have:

[F@OF = [(T.Myg) (1) = |27 g(t — a)|* = |g(t — a) %,
F@)? = |2 (TuMyg) (@) = Mo Thj(w)[* = e glw = b)* = |(w — b),

and || f]l2 = [|g||2- In light of this, we will consider a = b = 0.
We start proving that, for every component, the following holds:

([ gwra)” ([ aifora)” = LB (5:6)

We observe that in the left-hand side of (5.6), apart from a square root, we have the
product of two integrals, while in (5.4) we had an estimate for the sum of these. The
transition from the latter to the former estimate can be done through a dilation argument.
Precisely, given f € L?(R%), we consider the following dilation:
_ R 2.42(i4i) A
g(t) = X[t/ = §(w) = XPF(Dipg) =" AP fOw).

We remark that this dilation is different from the one considered in Section 2.2, expression
(2.27). Indeed, now we chose the dilation so that ||g|l2 = |/f]|2, while previously the
dilation was chosen in order to preserve the L' norm. Putting g in (5.4) provides us:

||f”§ /2 2 / 2 A 2

RLEIE N t2g(t)|” dt : d 5.7

o S | Ble®Pdi+ | wila)P d (5.7)
1

=— | /NP adt /\d/
\ IRdg\f(/)\ +

W[ f )| deo
R

1 ~
—)\Q/Rdt?|f(t)‘2dt+)\2 Rdw]z\f(w)|2dw.

We can choose A in order to minimize the last expression. Thus, deriving with respect to
A? and putting the derivative to 0 we obtain that the minimum is achieved when

A= ( / ) w?|f<w>\2dw)l/2 ( / ) f?lf(t)Ith>1/2- (5.8)
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If we substitute this A into the last expression we obtain exactly (5.6). Moreover, equality
is achieved if and only if it is achieved in (5.7), but Lemma 5.3 then implies that () = cHj
for some ¢ € C. Recalling the definition of g we obtain f(t) = cA%2Hy(\t). If we put the
explicit expression of f into (5.8) we will see that A can be chosen arbitrarily, indeed:

1/2
Az = (/ w]?|c2)\_d|ﬁ’(DAHo)(w)|2dw) (/ t§|c|2>\d|H0()\t)|2dt>
R R
2.42)( 4.17) _ 1/2 —1/2
(242) i)+ (/R ) d]Ho(w/)\)\zdw) <Adt?Ad]Ho(At)]2dt>

= “/A 2(/ 2| Ho(¢ 2d§)12(/Rds?|H(s)|2ds>1/2:/\2.

We notice that this result is independent of j. So, to sum up, equality in (5.6) is achieved
for every j =1,...,d if and only if f(t) = cHy(At) for some ¢ € C and A > 0.
Now that we have (5.6) we can prove (5.5), starting from:

([ resora)” ([ pmiera)”
= (2 / ) t?|f<t>|2dt) N (Z / ) w?-|f<w>|2dw) 1/2.

We notice that the last expression is the product of the Euclidean norm of vectors
(It fll2)9=; and ([|w; fll2)%=;. Thus, from Cauchy-Schwarz inequality in R?, we obtain:

</ |t|2|f(t)|2dt)1/2 (/Rd |w|2’f(w)‘2dw>l/2

>Z(/ 21 f(t y2dt>1/2 (édwi\f(w)\de>l/2 Y d’gr”%.

Finally, equality is achieved if and only if both inequalities in the last expression become
equalities. From the first part of the proof we know that equality in the latter inequality
is achieved if and only if f(t) = cHo(A\t) for some ¢ € C and A > 0. Moreover, always from

—-1/2

previous computations we saw that in this case f satisfies (5.8) for every j = 1,...,d. This
means exactly that vectors (||¢; f Hg)?:l and ([jw; f ||2)§l:1 are parallel, therefore equality is
achieved also when using Cauchy-Schwarz’ inequality. O

We shall comment a mathematical interpretation of Heisenberg’s uncertainty principle.
This can be written in the following form:

P d)”( @) )”2 a
(M T ) ) F e

so we may directly assume that f is normalized. In such a case, |f|? can be seen as a
probability distribution. If these integrals are finite for some a and b, through the same
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argument of time-frequency shift we already used, it is easy that they are always finite.
Then, from a formal point of view, we can take the derivative with respect a and b, thus
obtaining that their minimum is achieved when

a_t‘_/ 1 dt, b—w—/ Wl F ()] dov,
Rd R4

which are the mean of |f|? and | f |2, respectively. In this case, previous integrals represent
the standard deviation of |f|? and |f|?, which we indicate with A,f and A, f. From
an heuristic perspective, it is fair to believe that a function |f|? is mostly concentrated
around its mean and that its standard deviation is a measure of how spread it is. In light
of these arguments, Heisenberg’s uncertainty principle can written as:

A:z:waf Z i;
4

which is a quantification of the main point of an uncertainty principle, namely that a
function and its Fourier cannot be simultaneously concentrated.

5.2 Donoho-Stark’s uncertainty principle

As we saw, Heisenberg’s uncertainty principle measures the concentration of a function in
terms of the variance. However, this is not the only way concentration can be stated. In
this section we present an uncertainty principle about the so-called essential support of a
function which, roughly speaking, is the set where a function has most of its energy.

Definition 5.5. A function f € L*(R?) is c-concetrated on a measurable set T C R?
for some € € [0,1] if
1/2
([ 1rwrae)” <<l
TC

where T¢ = R\ T denotes the complement set of T.

Ife< %, this tells us that most of the energy of f is inside T'. Therefore, in such case
we may call T" the essential support of f.

Theorem 5.6 (Donoho-Stark’s uncertainty principle). Let f € L2(R%)\ {0}, suppose that
f is ep-concentrated on T C RY while f is eq-concentrated on Q C R%. Then

T11Q] = (1 - er —£q)? (5.9)

Proof. The result is trivial if T" or {2 have infinite measure. Hence we will suppose that
they both have finite measure.

Concentration can be stated in an equivalent way through projection operators introduced
in Section 4.1, indeed:

1/2
([ 1r@ra) ™ =1f = xrsla =15 = Prfll < ezl

. 1/2 . . .
([ 1) =1f =xofl = 1f = - ol = 1f = Qo < sall 7
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In Section 4.1 we also noticed that ||Qgq|| < 1, hence

I f = QaPrflla=|f—Qaf +Qaf —QaPrflla < | f —Qafllz + |Qal(f — Prf)ll2
<|f=Qafll2+If = Prfll2 < (eq +e7)| fll2,

and consequently

Ifll2 = If = QaPrf+QaPrfllz <|f — QaPrfll2 + |QaPrfl2
= |QaPrfllz > |fllz = [If — QaPrfll2 = (1 —eq —er)| f]l2.

Thanks to Proposition 4.1 we know that ||QqPr|lus = /||| and from Theorem 2.27
we know that [|QaPr|| < ||QaPr||us, therefore

(1 —ea—cr)|fll2 < QaPrflla < \/IT||Qfll2:

Taking € = 0 in (5.9) gives us the following corollary.
Corollary 5.7. Let f € L*(R%) \ {0}, suppf C T, suppf C Q. Then |T||Q] > 1.

Loosely speaking, this result is telling us that f and f cannot concentrate too much
energy in a small subset of the phase space.

5.3 Lieb’s inequality

Up to now we presented two uncertainty principles related to the Fourier transform.
However, uncertainty principles can be stated for every time of time-frequency analysis.
In this and in the following section we present some uncertainty principles for the STEFT.

We start considering a weak form and then we will show how Lieb’s inequality (3.4)
provides an uncertainty principle. Like for the Donoho-Stark’s uncertainty principle, the
notion of concentration is measured in terms of essential support.

Proposition 5.8. Let f, ¢ € L*(RY) normalized, 2 C R?** and ¢ € [0,1]. Suppose that

/ Vo f(z,w)Pdrdw > 1 —¢.
Q

Then |2 > 1 —e.

Proof. From (3.5) we see that |V, f(z,w)| < 1 for all (z,w) € R?*, therefore

l—e< / Vo (@,w)? do dw < [V fl3.101 < 19]. (5.10)
Q
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Theorem 5.9 (Lieb’s inequality). Suppose that ||f]la = |6l = 1. If Q@ C R*? and
e € [0,1] are such that

/ Vo f(z,w)*drdw > 1 —¢.
Q
Then

9] 2 sup(1 - )77 (5).

p>2

Proof. 1f |Q] = 400 the result is trivial hence we can suppose that {2 has finite measure.
It is sufficient to use Holder’s inequality with exponents p/2 and (p/2)" = p/(p — 2):

1—5§/]V¢f(x,w)\2dxdw:/ Vs f(z,w)Pxa(z,w) dr dw
9] R2d

P

Hélder ) 2 L =2
< (/ Vo f (2, w) |2 da dw) (/ xa(z,w)r2 dxdw)
R2d R2d

2d

(3.7) 2>2§ b2 [2\ % . p2
< |- flZ gl 197 = () Q| r .
(p 1F112 11gllz 1€ ’ |€2]

We point out that the use of Holder’s inequality is justified because 2 has finite measure
and, since Vyf € LY(R??) for every ¢ > 2, |V, f|? € LI(R??) for every ¢ > 1. Because this
result holds for every p > 2, we can take the supremum over all possible p, which leads to
(5.9). O

A

5.4 Faber-Krahn Inequality for the STFT

Lieb’s uncertainty principle and Lieb’s inequality are general results for the STFT because
they hold for every possible window ¢ € L?(R?). One may think that for specific choices
of the window it is possible to obtain improved results. In this last section we present a
recent result, due to Nicola and Tilli and presented in [24], about the STFT with Gaussian
window ¢ given by (3.11). In this work, they considered the following variational problem:

\% 2drd
e N @f(wi2)‘ vdo
FeL?(RY)\{0} £l

(5.11)

where Q C R?? is a measurable set with prescribed measure s > 0. Therefore, we are
asking for the maximal energy of the STFT that can be trapped into a set of a prescribed
measure s and, possibly, which functions achieve the maximum. The problem is completely
solved and the solution is presented in the following theorem.

Theorem 5.10 (Theorem 4.1 [25]). For every f € L*(R?) such that || f| 12 = 1 and every
measurable subset Q C R24 with finite measure we have

/Q Vy f(z,w)|?, dzdo < G(|Q]), (5.12)
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where G(s) is given by
G(s) :—/ e gy (5.13)
0

Moreover, equality occurs if and only if f is a Gaussian of the kind
f(z) = ce® @0 p(x — xq) = cm(zo,wo)p(z), = €RY (5.14)

for some unimodular ¢ € C and some (xq,wg) € R* and Q is equivalent, in measure, to
a ball of centre (xg,wo).

The proof of this theorem is non trivial since it requires some tools from geometric
measure theory, such as the coarea formula and the isoperimetric inequality. However,
it is worth mentioning that the very first step of the proof is rephrasing the problem in
the Fock space introduced in 3.2. Indeed, recalling the relation between the STFT with
Gaussian window and the Bargmann transform (3.14) and that the latter is an isometry
from L?(RY) into F2(C?%) we have:

Jo Vel (@,w)Pdudw  [o, |1Bf(2)]2e ™ dz
1115 B 1B |5 ’

where Q' = {(z,w) : (x,—w) € Q}. Since the Bargmann transform is an unitary operator,
variational problem (5.11) can be rephrased in the following way:

F 2 —m|z|? d
e Jo | (Z)\e2 z
FeF?(C4)\{0} | F']] %

While, at first sight, this might just seem a rewriting of the problem, actually the presence
of the Bargmann transform is crucial. It is clear that, for FF € F2(CY), the quantity
Jo |F(2)|2e ™" dz is maximized when €2 is the a super-level set of | F(z)|2e~™**. Thus, it
is natural to study the integral of |F(z)|2e~*I" over its super-level sets and this is where
regularity of functions in the Fock space comes into play.

For the sake of completeness, we mention that the Theorem in [24] is presented in a
slightly different way, namely:

7 (d w12 /waa) /)
(d—1)! ’

/ Vf(z,w)|*drdw <
Q
where waq is the volume of the unit ball in R?? and v is the lower incomplete gamma
function. Recalling the definition of ~:

(|9 /w2q) /¢

¥ (d, 7(12] fwaa) /1) = et dt
0

and since wog = 7¢/d!, through the change of variable t¢ = d!7 one obtains (5.12).
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Remark. We notice that the numerator of (5.11) can be written also in the following way:

/Q |V¢f(27, w)|2 dz dw = <XQV<pf7 chf> = <V;X9wa7 f> = <LQ,<pf7 f>7 (5'15)

where Lq , is the localization operator with weight xq. Therefore, taking the maximum
for all possible f € L?(R9) \ {0} such that ||f]2 = 1 leads to a bound for the norm of
Lq., (to obtain the norm we have to take the maximum of (Lqf,g) for all possible f
and g normalized). However, we know a posteriori that the maximum is attained when 2
is a ball and f is a Gaussian, both with the same centre (g, w) € R??. We mention that
results we obtain in Section 4.2.1 for localization operators with spherically symmetric
weights can be obtained also under the action of a time-frequency shift. Indeed, this
case is considered in [5] and, as expected, the eigenfunctions of these shifted localization
operators are time-frequency shifted Hermite functions. So, if f is a Gaussian it is an
eigenfunction of Lo, and, in the end, the maximum of (5.15) is not only a bound for the
norm of Lg , but it is the actual norm.

Once Theorem 5.10 has been established, arguing like previous section we immediately
obtain an uncertainty principle, which is sharp.

Corollary 5.11. Let f € L*(R?) with |f|la = 1, Q C R?? measurable, ¢ € [0,1) and
suppose that

/ Vp(z,w)|* dzdw > 1 —¢.
Q

Then
Q] > G7H(1—e). (5.16)

We point out that G is invertible since it is monotonically strictly increasing. Moreover,
its image is [0,1), therefore its inverse G=! : [0,1) — [0, +o0) is itself monotonically
increasing. This implies that, letting ¢ — 0 in (5.16), which means that {2 contains more
and more energy, we have |Q2] — +o00. If we compare this with Lieb’s uncertainty principle
we immediately realize how strong this result is, since letting € = 0 in (5.9) yields to:

2d

Q2 > sup (p> -
p>2 2

In conclusion, we consider the special case d = 1, when G~! can be actually computed.
Indeed, in this case we have:

which is a finite number.

G(s)=1—e¢* = G '(s) =log (1) ,

1—-G(s)
o121 1)
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Even if we did not remark it, we already obtain this bound in the case 2 is a ball. Indeed,
in 4.9 we obtained the following expression (4.24):

/ Vs f(z,w)Pdrdw <1— e
Br
If we suppose f@R Vo f (z,w)|* dzdw > 1 — € for some € € [0,1), we obtain that:
—mR? 2 1
l1—-e<1-e¢ — 7R Zlog<€>.

where mR? is exactly the measure of Bp.
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Chapter 6

Maximal norm of localization
operators: recent results

Theorem 5.10 is not only remarkable by itself, but it turns out to be a powerful tool in
the study of the maximal norm of localization operator when the window of the STFT is
a normalized Gaussian. We already mentioned that 5.10 can be rephrased into a result for
the norm of localization operators of the kind Lq ., where 2 C R?? is a measurable set of
prescribed measure. The latter condition can be seen as a constraint for the L!(R??) norm
of xq. In light of this observation, we may think to consider an analogous problem where
xq is replaced by a generic weight function F' that satisfies an integrability, and possibly
boundedness, condition. This last chapter is devoted to the study of this problem. We
start presenting a result from Nicola and Tilli [25] where F is chosen under an L? and L
constraint. Then, we consider a more generic case where the L* constraint is replaced by
a L9 one.

6.1 Results from Nicola-Tilli

In this section we show the results in [25]. The aforementioned problem can be precisely
stated as follows: find the optimal constant C' > 0 such that:

HLF#P”L?(]R‘J)ﬁL?(Rd) <C, (6.1)
where [ satisfies the following constraints:

|Fl<A and |F],< B. (6.2)

Clearly the constant C' will depend on p, A and B. In [25] this problem is completely
solved: the constant C' is computed (explicitly in some cases), weight functions F' which
achieve this bound are explicitly found and also function f and g such that |[(Lr,f, 9)| =
|Lr|| = C are found. Before reporting the main Theorem of [25], we define the following
number which will appear many times:

Kp = ——. (6.3)
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Moreover, for the sake of brevity, we denote the variable (z,w) € R?? as z and therefore
drdw as dz.

Theorem 6.1. Assume p € [1,4+00), A € (0,+00] and B € (0,+00) with the additional
condition that A < 400 when p = 1. Let F' satisfy the constraints in (6.2).

(i) If p=1, then

|Lrell < AG(B/A), (6.4)
and equality occurs if and only if, for some 8 € R and some z, € R*?
F(z) = Ae¥xg(z — z9) Vz e RY (6.5)

where B C R?? is the ball of measure B/A centred at the origin.
(i) If p>1 and B/A < ng/p, then
| Ll < 55 B, (6.6)
with equality if and only if, for some @ € R and some zy € R??,
F(z) = e e 712 vy e R2, (6.7)
where \ = Ii;d/pB.

(iii) If p>1 and B/A > ﬁg/p, then
A
|Lpgll < / Glur(t)) dt, (6.8)
0

d
where uy(t) = {7 log ((t/)\)pfl)} and X > A is uniquely determined by the condition

pfOA tP=Yuy(t) dt = BP. Equality in (6.8) is achieved if and only if, for some 0 € R
and some zy € R,

F(z) = ¢¥ min{/\e_P%llz_ZO‘z, A} (6.9)

Finally, in all the cases, condition |(Lr,f,g)| = |[Lryl| holds for some, f,g € L*(R%)
such that || fll2 = |lgll2 = 1, if and only if both f and g are of the kind (5.14), possibly
with different c’s, but with the same (xq,wy) € R?*? which coincides with the centre of F.

We will not give the proof of these results since some of its parts are similar to the one
we will see in the following section. Moreover, we point out that the case A = 400 means
we are dropping the L* constraint.

We shall briefly comment this theorem. FExcept for the case p = 1, when maximal
weight functions are just characteristic functions of a ball, we see that two regime arise. In
the first one, when B/A < H;l/ ? (which means that A is “sufficiently” big compared to B),
maximal weight functions are Gaussians. We already saw that Gaussian arise naturally
has minimizers of uncertainty principles, so this result is not unexpected. However, in
the second regime, when B/A > ng/ P maximal weight functions are not Gaussians but
Gaussians truncated above. As pointed out in [25], this seems to be a new phenomenon
in time-frequency analysis.
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6.2 New results in presence of two L” constraints

In this section we will deal with a generalized version of the problem considered in [25].
Indeed, we want to find the optimal constant C' such that

HLF7<P||L2(Rd)_>L2(Rd) < C
under the following constraints on F"
IFl, <A and |F||, < B, (6.10)

where p,q € (1,+00) and A, B € (0,+00). Before presenting the main theorem of this
section we introduce the following notation

Log_ (z) = max{—log(x),0}.

Theorem 6.2. Assume p,q € (1,400), A,B € (0,+00) and suppose that F satisfies
constraints (6.10). Then

4G

d L g
(i) If B/A > Ky (p) ! (respectz’vely B/A< HZ(E ») (p) ), then:
q q

ILFell < fig'i”A (resp. || Lry| < ,.;g’qu%
with equality if and only if, for some 6 € R and some zy € R??,
F(z) = ei@)\e*ﬁ\zizoh (resp. F(Z) _ ei@)\equ—ﬁzfzo‘z)’

where A = ﬁ;d/pA (resp. A = /@;d/qB).

d L g
(ii) If /ﬁg(;_;) <p>p < B/A< HZ(E 2 (p) , then
q q

+oo
ILrell= | Glu®)dt, (6.11)

where u(t) = 4 [Log_(AtP~! + Mt ] and Ay, Ay > 0 are uniquely determined by

“+oo “+oo
p/ P~ () dt = AP, q/ t7y(t) dt = BY.
0 0

Moreover, letting T > 0 the unique value such that \\TP~' + X179 = 1, the
function t — —log(MtP~1 + X\ot9™Y) defined on (0,T) is invertible and we denote by
¥ 10, +00) — (0,T] its inverse. Then, equality in (6.11) is achieved if and only if,
for some 0 € R and some 29 € R*?, F(z) = e (n|z — 20/?).

Finally, in every case, equality in [(Lr,f,g)| = ||Lry| is achieved if and only if f and g
are both of the kind (5.14), possibly with different c’s but same (xg,wo) € R4,
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We point out that in, in the second regime, it is not possible to find an explicit
expression for C' and F', although they can be computed numerically.

We split the proof of the theorem in several steps and we start proving the first state-
ment, which explains how these different regimes arise.

Proof of Theorem 6.2(i). We consider just the first version, since the other one can be
obtained swapping p and q.

Theorem 6.1(ii) includes the case when F' satisfies just an LP constraint by taking A
(L*° constraint) equal to +o0o. In the current setting we have an LP and an L? bound,
hence, thanks to (6.6), it is straightforward to see that

|Lre| < min{xd*» A, xi% B}

Suppose that the first term is smaller than the second, which means:

- Rq
A Kq

o\ d
B P
Rl A < KB = = > (”” ) . (6.12)

Clearly, for B sufficiently large we expect that the solution of current problem is the same
as the one with just an LP constraint, namely the one given by (6.7). Therefore, we want
to compare its L? norm with the bound given by B:

1Rl = [ FEpd = [
R2d R2d

S —(ar 1/2 2z o d _ d _ d
(p71)2 ( 0) A\ (p 1) / 6_‘Z/‘2 dy — \d <p 1) 7_‘_d — \? <pl> .
qm R2d qm q

Since we want I’ to satisfy the LY constraint we should have

— 1\ %4 /P dfp sy 1\ 9/4
() 0 () (1) s
q p—1 q

da
B d(:-1 a
52 w2 3) (p>q . (6.13)
If this condition is met, the solution with just the LP constraint is a solution also for

the problem with two constraints. Moreover, from 6.1 follows also the last part of the
statement regarding those f and g that achieve equality in [(Lr,f,9) = || Lrl|l- O

which is equivalent to

If condition (6.13) were less restrictive than condition (6.12) we would have completely
solved the problem. Unfortunately, this is not the case. Indeed it is always true, regardless

of p and ¢, that
d(i-1) /p : KpP ¢
G () > ( gq) . (6.14)
q Kq

The proof of this inequality can be found in B.2.
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d(i-1 a d(i-1 d
To sum up, if B/A > /-ip(q ) (g) “or B/A < /{q(q ) (Z)p, the problem is already
solved and the solution is given by Theorem 6.1. Therefore, from now on, we will considerc

the intermediate case, that is:

(G (p);f B g < x2G3) <p>57 (6.15)

which corresponds to the statement of 6.2(ii). We notice that the condition is well-posed,
since it is actually true that

(G3) (z;)?f <D (1) (6.16)

whenever p # ¢ (proof is in B.3).

The proof of this part of Theorem 6.2 is much more complex than the first one. The
starting point is a Theorem from [25] which gives a bound for ||Lp| in terms of the
distribution function of |F.

Theorem 6.3. Assume F € LP(R*) for some p € [1,+00) and let pu(t) = |{|F| > t}| be
the distribution function of |F|. Then

+oo
ILroll < [ Gl ar (6.17)

Equality occurs if and only if F(2) = e“p(|z — 2]) for some 0 € R, 2y € R* and some
nonincreasing function p : [0, +00) — [0, +00). In this case, it holds |(Lr,f, g)| = ||LF||
for some normalized Gaussians f and g of the kind (5.14), possibly with different ¢’s but
with same centre (xg,wo) € R,

Proof. Let f,g € L*(RY) such that ||f]l2 = |lglz = 1. Since we are in a Hilbert space
|LFry|| can be computed as the supremum of |(Lgf,g)| over all normalized f and g.
Therefore we are interested in estimating the previous scalar product:

(Lol )| = 2o F0)| < [ IFE V) Vgl dz

L([wermasore)” ([ o vaere)”

Since the result is symmetric in f and g we can study just one of the terms. Letting
m = esssup |[F(z)| and assuming m > 0 (otherwise every result is trivial) we can use the
“layer cake” representation [21, Theorem 1.13]

(6.18)

F(z)| = / iirton () dt
55



Maximal norm of localization operators: recent results

in order to find
LG wer@R az= [ (" ximen ) dr) wosof d:
(] xarea VeGP @

:/Om (/{|F|>t}\v¢f(z)]2dz> dt.

We notice that the quantity in the inner integral is exactly the one in Theorem 5.10, hence

[ F@I @R < [T GUIF > ) d= [T Guoya (©619)
R2d 0 0

We point out that since pu(t) = 0 for ¢ > m and that G(0) = 0, the previous expression is
equivalent to (6.17).

Because p < +o0, from Proposition 4.6 we know that Ly is a compact operator,
therefore there exist normalized f and g which achieve equality in the supremum of the
norm, namely |(Lrf, 9)| = ||Lry||. Therefore, equality in (6.17) occurs if and only if all
the previous inequalities become equalities. Equality in (6.19) occurs if and only if

/ V() dz = Gu(t)) (6.20)
{IF|>t}

for a.e. t € (0,m). Now, fix ¢y € (0, m) such that equality holds. From Theorem 5.10 we
can infer that {|F| > to} is (equivalent to) a ball centred in zp = (xg,wo) and that f is
a Gaussian of the kind (5.14) with the same centre z;. Now that the centre of f is fixed,
still from Theorem 5.10, we obtain that equality in (6.20) a.e implies that also the other
levels sets {|F'| > t} are equivalent to balls centred at the same zy. Finally, we can extend
the result to every t € (0,m) because {|F| > t} = U, {|F| > s}. Since Theorem 5.10
is a “if and only if”, these conditions on F' and f are also sufficient to guarantee equality
in (6.19). Clearly, the same result holds for g which has to be a Gaussian, possibly with
different coefficient ¢ but the same centre zj.

In the end, since all the super-level sets of | F'| are balls we conclude that it is spherically
symmetric and radially decreasing, as claimed in the theorem’s statement.

Conditions for f and g imply that V,g = ei“Vw f for some o € R. This provides
equality in (6.18) when using Cauchy-Schwarz’ inequality. Lastly we shall prove that also
the first inequality in (6.18), that is

| PVt

< [ IFEI VG- Vgl dz

becomes an equality. With the additional information that V, g = eng, f this is equivalent
to prove that:

[ FEWre

= [ PGVt )P (6.21)
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The integral on the left-hand side is just a complex number, therefore we have:

/ F)Vof ()2 dz = ¢ / F)Vof (o) dz|
R2d R2d

so (6.21) becomes
/ e F(2) Vo f(2))? dz = / |F(2)| - Vo f(2)|? dz.
R2d R2d

The proof would be complete if |V, f(z)]* was always positive, since this would imply
F(z) = €“|F(z)|. In the proof of Theorem 4.7 we computed the STFT of Hermite

functions. Since ¢ = Hy, letting k = 0 € NZ into (4.22) leads to:
Vop(z,w) = e mwzemal+wl)/2,

In order to compute the STFT of f = cm(xo, wo)ep, all we have to do is to understand how
V, interacts with a time-frequency shift:

Vol (2, w) = (em(z0, wo) @, m(x,w)p) = {0, Ty Mis—uoy Top)-
Then:
T g My Top(t) = 2 @mw0) (h0) (3 4y — ) = 2mi@mwo) 2o g Ty pop(t),
so that we obtain
Vof(a,w) = ce®™ @m0l M, Ty gop) = ce?™@70020Y o(r — 24, w — wp).

In the end, taking the modulus of both side we conclude that |V, f(z,w)|? is always strictly
positive, which concludes the proof. ]

In light of the previous Theorem, it is natural to seek for a sharp upper bound for
the right-hand side of (6.17). Since this involves the distribution function |F'|, we shall
search this bound between all the possible distribution functions. In order to do so, we
need to rephrase constraints (6.10) in terms of p. This can be easily done thanks to
a more general version of the “layer cake” representation (see [21, Theorem 1.13] or [9,
Proposition 1.1.4]):

+o0o
Tal / PUIF] > ] dt.

Hence, constraints (6.10) become
+o00 too
p/ t~tu(t) dt < AP and q/ ttu(t) dt < B4 (6.22)
0 0

and we can define the proper space of possible distribution functions
C ={u:(0,4+00) = [0,+00) such that u is decreasing and satisfies (6.22)}.  (6.23)

We have reached the point where our original question is rephrased in the following vari-
ational problem:

400
supI(v) where I(v) ::/0 G(v(t)) dt. (6.24)

veC
Firstly, we shall prove existence of maximizers.

57



Maximal norm of localization operators: recent results

Proposition 6.4. The supremum in (6.24) is finite and it is attained by at least one
function u € C. Moreover, every extremal function u achieves equality in at least one of
the constraints (6.22).

Proof. Considering, for example, the first constraint in (6.22), we see that

u decreasing

t ¢
tPu(t) = p/ ™ u(t) dr < p/ ™ (1) dr < AP,
0 0

hence functions in C are pointwise bounded by AP/tP. 1t is straightforward to verify that
G in (5.13) is increasing, that G(s) < s and that G(s) < 1. Using these properties we
have:

+00 1 400 G(s)<1 400
I(u) = G(u(t))dt = / G(u(t))dt + Gu(t)dt < 1+ G(u(t))dt
0 0 1 1
G increasing +oo G(s)<s +oo pp
< 1+ G(AP/#)dt < 1+ / = dt < oo,
1 1

therefore the supremum in (6.24) is finite.

Let {up }nen C C be a maximizing sequence. Since every wu, is pointwise bounded by
AP /tP | thanks to Helly’s selection theorem C.1 we can say that, up to a subsequence, u,
converges pointwise to a decreasing function u. Moreover, u is still in C, indeed:

+oo 1 +oo . 1 Fatou’s lemma +oo 1 AP
/ P u(t) —/ lim 7" u,(t) dt < hmmf/ P g () dt < —,
0 0 0

n——+00 n——+00 p

and clearly the same holds for ¢ instead of p.
Now we have to prove that u is actually achieving the supremum. We already saw that
the following holds:
AP
|G (un ()] = X01)(t) + 5 X(1+00) (1)

and that the left-hand side is a function in L!(0, +00). This allows us to use dominated
convergence theorem to conclude that

+o0 +oo
I(u) —/0 G(u(t)) = lim G(un(t))dt = lim I(u,)=supl(v).

n—+o00 0 n—-+4o00 vel

Lastly, we need to show that u achieves equality at least in one of the constraints (6.22).
Suppose that this is not true. If we let u.(t) = (1 + )u(t), then for £ > 0 sufficiently
small constraints are still satisfied and since G is strictly increasing I(u.) > I(u), which
contradicts the hypothesis that v is a maximizer. O

In order to do some “meaningful” calculus of variations we need to enlarge C, because
the monotonicity assumption is quite strict. We will show that removing this hypothesis
leaves the supremum unchanged and that maximizers are indeed monotonic.
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Proposition 6.5. Let C' = {u : (0,+00) — [0,400) such that u is measurable and
satisfies (6.22)}. Then

sup I(v) = sup I(v). (6.25)
velC vel!

In particular, any function u € C achieving the supremum on the left-hand side also
achieves it on the right-hand side.

Proof. Let u € C'. We define its decreasing rearrangement as:
u*(s) =sup{t > 0: [{u >t} > s}, (6.26)

with the convention that sup® = 0. It is clear from the definition that u* is a non-
increasing function. Moreover, one can see ([11, Section 10.12], [9, Proposition 1.4.5])
that u* is right-continuous and that v and u* are equi-measurable, which means that they
have the same distribution function. Moreover, we already pointed out that constraints
(6.22) imply that u is pointwise bounded by AP /tP, therefore u* takes only finite values.
Our aim is to show that u* € C. Letting v be the Radon measure with density t*~!, we
start proving that v({u > s}) > v({u* > s}), indeed:

tP~1 increasing [{u>s}]
v({u>s}) = / tr=tat > /O tr=tdt

{u>s}

equi—messurability / R / Pt = v({u* > s})
0 {u*>s}

right—continuous

Then, using one more time the “layer cake” representation:

/0 T (e d = /0 T b du(t) = /0 T > shds >
= [Tt s spas= [ wawn = [ et
0 0 0

If we swap p with ¢ we conclude that u* € C. Moreover, always from equi-measurability,
we have:

+o0 +oo  pu(t) 1 400 p+oo i
I(u) = / G(u(t)) dt = / / @Y g gp — / / N (D@ g
0 0 0 0 0
Tonenti [ —@n g [T —@)Y g Tyt
= {u > 1}e dr = {u" > 1}e dr = I(u”).
0 0

Taking the supremum over all possible u € C’ we have:

sup I(v) = sup I(v*) < sup I(v).
vel’ vel’ vel

Inequality sup,cer [(v) > sup,ec I(v) is trivial since ¢’ D C.

We are now in the position to find maximizers of (6.24).
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Theorem 6.6. There exist a unique function uw € C achieving the supremum in (6.24)
that is:

u(t) = % [Log_ (Mt~ + Ath—l)}d, t>0 (6.27)

where A1, Aa are both positive and uniquely determined by

+oo +oo
p/ () dt = AP, q/ t7tu(t) dt = BY.
0 0

Proof. We will split the proof in several parts. Firstly we will show that maximizers are
given by (6.27). Then we will show that multipliers A; and Ag are both strictly positive
and unique.
« Expression of maximizers

Let M = sup{t € (0,+00) :u(t) > 0}. From Proposition 6.4 we know that u has to
achieve at least one of the constraints, therefore M > 0. Consider now a closed interval
[a,b] C (0, M) and a function n € L*°(0, M) supported in [a, b]. Without loss of generality
we can suppose that 7 is orthogonal, in the L? sense, to tP~! and t97!, explicitly

b b
/tp‘ln(t)dtza /tq—ln(t)dt:o. (6.28)

On [a,b] we have that u(t) > u(b) > 0, hence, for || sufficiently small, u + en is still a
nonnegative function which satisfies (6.22), therefore u +en € C’. Since we are supposing
that u is a maximizer, the function € — I(u+¢en) has a maximum for € = 0. Given that n
is supported in a compact interval we can differentiate under the integral sign and obtain

0= 1w+ en)lemo= / G (u(t))n(t) dt.

We would like to extend this result to every n in L?(a,b) satisfying (6.28). Since L*°(a, b)
is dense in L?(a,b), there exist a sequence {ng}lren C L*(a,b) such that n, — 7 in
L*(a,b). We can consider the projection operator P such that, given ¢ € L?(a,b), P is
the orthogonal projection of 1) onto X = span{t?~! t9=1}+ c L?(a,b). Considering P is
continuous we have that Pn, — Pn = n, hence, since Pny € L*(a,b):

0= / G (u(t)) Pr(t) dt = (G (), Prn) ey — (G (0)om) 1200y = / G (u(t))n(t) dt

a

namely
/ ' G wlt))n(t) dt = 0. (6.29)
Since (6.29) holds for every n € X it must be that
G'(u) € X+ = (span{tpfl, t"fl}L)l = span{tP~1 t971} in (a,b).
Letting a — 0" and b — M~ we then obtain

G'(u(t)) = MtP™H + \pt?™ ! for ae. t € (0, M) (6.30)
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for some multipliers A1, A2 € R. Since u is decreasing actually (6.30) holds for every
t € (0, M). Finally, recalling the expression of (5.13) we see that G'(s) = ¢~ (@9)"" Since
u is monotonically decreasing we can invert (6.30) thus obtaining the explicit expression
of maximizers:

d!
0 t e (M,+0)

ult) = {1 [—log (Mt~ + Mt H]? ¢ € (0, M) (6.31)

We remark that a priori it was possible that M = +o00, but from the explicit expression
of maximizers we see that this is not possible since u has to be nonnegative.
» Maximizers achieve equality in both constraints and multipliers are non-zero
The argument we used to determine the expression of maximizers enables us to say
that these have to achieve equality in both constraints in (6.22). Indeed, if, for example,
we had that ¢ f0+oo 1= 1u(t) dt < BY, the second condition of orthogonality in (6.28) could
be removed, because for sufficiently small ¢ a variation non-orthogonal to t9~! would
be admissible. This would provide us the solution of the same variational problem but
without the L7 constraint. Since we are working in the intermediate case, we know that
actually this solution does not satisfy the L? constraint, hence we conclude that u has
to achieve equality in both constraints. With the very same reasoning we can say that
neither \; nor Ay can be 0.
o Multipliers are positive
Suppose that one of the multipliers, for example Ao, is negative. Consider an interval
[a,b] C (0, M) and an admissible variation n € L*°(0, M) supported in [a, b] and such that
f: t971n(t) dt < 0. An example of such variation can be

o —t'"? t€a,(a+b)/2)
n(t) = Pt € [(a+Db)/2,b]

ifg<por

. ' te€a,(a+b)/2)
n(t) = {_251—107 t€l(a+b)/2,0b

if ¢ > p. Then the directional derivative of G at u along 7 is:

/ " G () (t) di = / " OuP 1 At V() dt = g / 1) dt > 0,

which contradicts the fact that u is a maximizer.
e u is continuous

Now that we now that both multipliers are positive we can prove that u is continuous,
which is equivalent to say that M =T, where T is the unique positive number such that
MTP~t 4+ \T% 1 = 1 (uniqueness of T follows from the positivity of multipliers).

We start supposing that M < T, which means that lim;_, ;- u(t) > 0. Consider the
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following variation

—1l+a—+p, te(M—-MsM)
n(t) = 1, te (MM + Mo
0, otherwise

where ¢ > 0 is small enough so that M — M > 0 and M + M§ < T, while a and (3
are constants, depending on d, to be determined. Since we want this to be an admissible
variation, we impose that 7 is orthogonal to t?~! and t9~!. For example, the first condition

1S
M+M6 M M t M+Mé
_/ tPin(t) dt = —/ P! dt+/ Pt <a+6> dt+/ tr=tat
M—Mo M—Mé M—Mo M M

T=t/M !

= M”/l1 Tp_l(ozT—l—ﬁ)dT—Mp/

1+6
Pl d7'+Mp/ P dr
-5 1-6 1

therefore, dividing by 9:
1 1 1 1 145
][ ™ ar + B)dr = a][ ™’dr + ™ ldr :][ Pl dT—][ ™ 1dr.
1-6 1-5 1-5 1-§ 1

The equation stemming from the orthogonality with t?~! is analogous. Therefore, we
obtained a nonhomogeneous linear system for o and :

1 1 _ 1 _ 1446 _
<JE15 dr f TP 1d7> <O‘) - <f15 TPhdr — f, TP 1d7>. (6.32)

f1175 T4dTt fllfé 79 Vdr ) \S f11_6 T4 dr — f11+5 9=V dr

This system has a unique solution if and only if the determinant of the matrix is not 0.
We can show this directly:

1 1 1 1
][ TP dT][ T dr — ][ T4 dT][ Pl dr =
1-6 1-6 1-6 1-6

1 1
== /(1 . (Tp()'q_l — Tp_laq> drdo = 2 /(1 e ™o (1 — ) drdo =

1

== </ Plgal (tr—0) drdo +/ Plga—t (1 —0)dr da) ,
0 Q1 2

where Q1 = (1 —6,1)2N{r >0} and Q2 = (1 —6,1)> N {7 < o}. In the second integral
we can consider the change of variable that swaps 7 and ¢. In this case, the new domain

is ()1, hence:
1 1 1 1
][ Tpd’l'][ 9 Vdr — ][ quT][ P ldr =
1-96 1-6 1-6 1-96

1
— 52/ (Tp_laq_l — Tq_lap_1> (1 — o) dr do.
Q1
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In Q1 we have that 7 — ¢ > 0 and the sign of 77~1g9=1 — 797 15P~! is constant, indeed:

p—1_gq—1 q—1 _p-1 T\ 729
™ot =1 o >0<:><0> >1 &< p>q.
Therefore the determinant of the matrix is always not 0.
Now that we have an admissible variation, we can compute the directional derivative
of G along 7. Since u is supposed to be a maximizer, this derivative has to be nonpositive,
therefore:

M+Ms Y
M—M$ M—Ms§
M+M§

M
t
+/ Mt 4 At <a+ﬂ) dt+/ dt =
M—Mé( ! ? ) M M

M 1
= —/ (At Aot dt + )qu/ = (at + B) di+
M—Mé 1-96

1
+ )\qu/ t7(at + B) dt + M.
1-6

Dividing by M¢ and rearranging we obtain:

M 1
][ (Mt + aot971) dt > 1+ AlMp—l][ = ot + B) dt
M—Ms§ 1-5
1 (6.33)
+ Mg Ma7! ][ t7 (ot + B) dt.
1-6
We notice that the last two terms are exactly the ones that appear in the orthogonality
condition, therefore, to understand their behavior as § approaches 0, we need to study the
right-hand side of the system (6.32). If we expand the first component in the right-hand
side of (6.32) in its Taylor series with respect to § we have:

(1 _ 1%15 + 0(5)> _ (1 + 1%15 + 0(6)) — —(p—1)5 + 0(6)

and similarly for the other component. If we let § — 0" in (6.33) we obtain

M
M MP~L £ MO = Tim (Altp*1 + Agtffl) dt
d—0+ M—MS§S
1 1
> 1+ lim [AlMplf '~ (at + B) dt+)\2M‘11][ t7 (at + B)
=0+ 1-6 1-6

=1+ M MP7! lim [—(p — 1)6 + 0(8)] + Ao M9 lim [—(g — 1)6 + 0(0)]
6—0+ 6—0t
=1.

The function AP~ 4+ \ot?~! is strictly increasing because A\; and Ay are both positive,
therefore this implies that M > T, which is absurd because we supposed that M < T.
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This allows us to write u as in (6.27).
¢ Uniqueness of multipliers

Lastly we shall prove that multipliers A1, A2, and hence maximizer, are unique. For
this proof it is convenient to express u in a slightly different way:

ul(t) = % [Log_ ((clt)p*I + (CQt)qﬂ)}d

To emphasize that u is parametrized by c1, co we write u(t; 1, c2). If we let u into (6.22)
we obtain the following functions of ¢; and c¢s:

T T
flei,e) =p / Pt cr,c0) dt,  glere2) = ¢ / t u(t; e, c0) dt.
0 0

We want to highlight that, even if it is not explicit, also T" depends on ¢; and ¢o. Neverthe-
less, these functions are differentiable since both 7" and u are differentiable with respect
to (c1,c2) and tP~tu, 971y and their derivatives are bounded in (0,7). Our maximizer u
satisfies the constraints only if f(cq,co) = AP, g(c1, c2) = BY. Therefore, to prove unique-
ness of the maximizer we need to show that level sets {f = AP} and {g = BY} intersect
only in one point.

First of all we need to study endpoints, namely when one of ¢; or ¢; is 0. For example,

if co = 0:

1/es 1 d T=c1t
fler0) =p [ o [ logterty ] e =0
0

d!
/P
Cplp=D* @, Ky Ky
—W ; Tp [—10g(7')] dT—?i—Ap — Cl’f_T-

The same can be done for g and setting ¢; = 0 instead of ¢o = 0. Thus, we obtain four
points:

_Iﬂ?g/p B p—l d/ql B q_]- d/pl _Iﬁ?g/q
CLf = A Clg = q E’ Co,f = p Z’ C2,9 = B

In the regime we are considering one has that c¢; y < ¢1,4 and cp 5 > ¢ 4, indeed:

d/p _ 1\ d/q 1.1 d/q
Kp p—1 l E 4(3-3) (p)
cLy <y = << . ) 5 = 1< :

_1\d/p d/q 11 d/p

sy e (D)L B i 1y

which are exactly conditions in (6.15). Because of this arrangement of these points we
expect there is an intersection between level sets. Firstly we notice that, for every value
c1 € (0,c1,¢), there exists a unique value of ¢y for which f(ci,c2) = AP. Indeed, from
previous computations we notice that f(c1,0) is a decreasing function hence f(c1,0) > AP,
while lime, 400 f(c1,c2) = 0, therefore from the intermediate value theorem it follows that
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f(c1,c2) = AP for some co. The uniqueness of this value follows from strict monotonicity
of f(cy,-), indeed:

of ( — 1) -2 r 21 p—1 q—1 d—1
871(01’ ¢2) = _I%Cq /0 (crt)P=1 + (cot)a~1 [_ log ((Clt) +(cat) )} di,
(6.34)

is always strictly negative. We point out that the term g—CTl(cl, c2)u(T; c1, c2), that should
appear since T' depends on ¢y, is 0 because u is 0 in T'. The same is true for g, therefore
on the interval (0, ¢ ¢) the level sets of f and g can be seen as the graph of two functions
©,7. Since f and g are both differentiable, from the implicit function theorem we have
that ¢ and v are differentiable with respect to ¢;.

After defining ¢ and v we want to prove that (¢ — )" < 0. Again by the implicit

function theorem we have

d e
— e (Cl
dor (o —)(c1) ngZ

(

c1,¢(c1)) N 5 (e1,7(er))
(c1,0(c

N ey ST

T(er) = g (enple) g2 e1(en)) = 5fer (e g ern(en)) > 0

As for (6.34) the other derivatives are computed. To simplify the notation we define

1 1
(d— 1) (c1t)7~1 + (cat)o1

d—1

h(t;c1,c) = [_ log ((Clt)p*1 + (C2t)qil)]

From Fubini’s theorem, we can write the product of the integrals as a double integral:
I(er) = p(p — Dl — 1)6‘1’_27(01)‘1‘2/ h(t; e1,(ca))h(s; e1,7(c2))2® DY dt ds
(0,17

— pla— Valp — DA %p(cr)? /[ s plea) s ex 2 a5 .
0,772

When level sets intersect we have ¢(c1) = 7(c1). In this situation we can factorize the
terms outside the integral and notice that the sign of 7 depends only on the sign of

/ h(t;c1,@(c1))h(s;cr,v(cr)) (tz(pfl)sz(qfl) — tp+q*23p+q*2) dt ds
(0,772
:/ h(t; 1, p(c1))h(s;er,y(cr))tP 25772 (P59 — t9sP) dt ds.

(0,77

In order to simplify the notation once again, we set H (¢, s;¢1) = h(t; c1, p(c1))h(s; c1,v(c1)).
Let Ty = [0, T)> N {t > s} and Ty = [0,7]> N {t < s}. We can split the above integral in
two parts:

H(t,s;01)tP7 25172 (tPs? — t9sP) dtds + [ H(t,s;cp)tP~ 25972 (tPs? — t9sP) dt ds.
T1 T2
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Then, considering the change of variables that swaps ¢t and s, the domain of integration
becomes 77 and since H is symmetric in ¢ and s, we have that the previous quantity is
equal to

H(t,s;c1) (tp_zsq_Q - tq_2sp_2> (tPs? —t9sP) dt ds =
T
1
= A H(t,s; cl)@ (tPs? — t9sP)? dt ds,
which is strictly positive.We are now in the position to prove the uniqueness of multipliers.
First of all, since (¢ —~)" < 0 whenever ¢(c1) = v(c1), we point out that for every point
of intersection there exist § > 0 such that ¢(t) > ~(t) for t € (¢1 — 0, ¢1) and p(t) < y(t)
for t € (¢1,¢1 +0).
Define ¢} = sup{ci € [0,c1¢] : Vt € [0,c1] ¢(t) > ~(t)}. This is an intersection point
between ¢ and v (if p(cf) > v(¢f) due to continuity there would be ¢ > 0 such that
o(c;+¢€) > (¢t +¢) which contradicts the definition of ¢}) and it is the first one, because
we saw that after every intersection point there is an interval where ¢ < . Lastly, since
©(0) > ~(0) and ¢(c1,¢) =0 < y(c1, f), we have that 0 < ¢} < ¢y 7.
Suppose now that there is a second point of intersection ¢; after the first one. Since imme-
diately after ¢j we have that ¢ becomes smaller than -, this second point of intersection
is given by ¢; = sup{c1 € [c],c17] : Vt € [¢],c1] p(t) < v(t)}. Considering that this is
an intersection point, there exists an interval before é; where ¢ is strictly greater than
which is absurd, hence ¢j is the only intersection point between ¢ and 7.
Therefore, the pair (¢}, p(cj) = ¢b) is the unique pair of multipliers for which

T T
p/ P u(t; ¢, ch) dt = AP, q/ t7u(t; ¢t cy) dt = BY
0 0
and, in the end, u(t; cj, ¢3) is the unique maximizer for (6.24). O
We are now in the position to prove the second part of Theorem (6.2).

Proof of Theorem 6.2(ii). We recall that from Theorem 6.3 we have

+oo
Ll < i G(p(t)) dt,

where p(t) = |{|F| > t}| is the distribution function of F' and equality is achieved if and
only if F(z) = e¢?p(|z — 2z0|) for some 6 € R, some z € R?>? and some non-increasing
function p : [0,4+00) — [0, +00). Then, Theorem 6.6 gives us a bound on the right-hand

side, namely that:
+o0 +00

Gu)dt< [ Glu(t)dt,
0 0

where u is given by (6.27). This is sufficient to prove (6.11). Then, from u we can

reconstruct p. If F(z) = e?p(|z — 2|), then its super-level sets are balls with centre z.

Since u is the distribution function of F, for ¢ € (0,7") and some radius r > 0 we have:
dy2d

d!

1 d
=u(t) = |~ Tog (At~ + Mt
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where the left-hand side is the measure of a 2d-dimensional ball of radius r. If we simplify
this expression we obtain:

ar? = —log(MtP ™t + Mt?Y) = t = (nr?).

However, it is clear that p(r) = t, therefore p(r) = 9 (mr?). O
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Unconditional convergence

In some cases we had to deal with series over multiple indices. Formally, the possibility
of manipulating these series is related to the property of unconditional convergence.

Definition A.1. Let {z;};jcs be a countable subset of a Banach space X. The series
2jeg Tj is said to converge unconditionally to some x € X if, for every e > 0, there
exist a finite subset Jy of J such that

lz = all <e
je€J
for every finite set J 2 Jy.

The notion of unconditional convergence is of crucial importance in cases where an
exchange between an operator and a series or a certain order of summation is required.
Here we present two results that are useful in such situations.

Proposition A.2. Let A € B(X,Y). If 3,72 converges unconditionally to x in X,
then ;e 7 Ax; converges unconditionally to Az in'Y.

Proof. Let ¢ > 0. By definition, there exist Jo C J finite such that ||z —37,;c;7j[lx <e
for every finite set J 2 Jy. Then:

1Az = >~ Azjlly = |A(z = Y _z)lly < [Allllz = Y z5llx < [lAlle,
jeJ jeJ jeJ
thus the series > ;c 7 Az; converges unconditionally to Ax. O

Proposition A.3. Suppose that 3, ,yenz Tnm converges unconditionally to x € X.

Then the inner partial sum s,y = Z%I:l Tn,m converges to some y, € X for everyn € N
and x = Y, cnYn with unconditional convergence. Similarly, Zﬁ;l Tpm converges to
some zy, € X for everym € N and x =), cn 2m-

Proof. Since 3, ;myene Tn,m 1s unconditionally convergent to z, given € > 0, by definition
there exist Jo C N such that ||z — 3, n)es Tnm| < € for every finite set J containing
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Jo. Without loss of generality, we can suppose that Jy is of the form Jo = {(n,m) € N? :
n < Ng, m < My} for some Ny, My € N. In such a way we have:

||z — Z Z Tnml|l <€ (A.1)

n=1m=1

for every N > Ny and M > M,. Consider now I C N finite and My, My € N such that
My < M7 < Ms. Then:

Mo M, Mo
1D smaty =D snanl =132 D7 @nm =23 wnml =132 X Tnmll =

nel nel nel m=1 nel m=1 nel m=M+1
Mo
=12 2 mt D Tam— D nl
nel m=M;+1 (n,m)€Jo (n,m)€Jo

Letting J = JoU (I x {M; +1,..., My}) C N? and using triangular inequality we obtain:

1Y (npse = snp)| S lle = D0 wnmll +llo = Y wnml <2¢ (A.2)

nel (n,m)eJ (n,m)eJo

because J DO Jy. This proves that, for every n € N and for every I C N finite, the
sequence {>,c Sn,m }amen is a Cauchy sequence in X which is a Banach space, therefore
it is convergent. In particular, taking I = {n}, we obtain that the sequence {s, s }ren
converges to some y, € X for every n € N. Moreover, since [ is finite, we have that
M —+o00

Znel Sp,M T Znel Yn-

Now we have to show that }_ -y, converges unconditionally to x. Consider I C N
finite such that {1,..., No} C I. First of all we notice that:

nel nel nel

Therefore, taking the limsup,,~,;, in (A.3) we obtain

1" snan = D yall = limsup | Y snar, — Y snan |l < 2. (A.3)
nel nel Mo2My ey nel
Then we have:
(A1)+(A.3)
e =3 gl <l =D snan |+ 11D snan — 2wl < 3e.
nel nel nel nel

The last part of the statement easily follows swapping n and m in previous computa-
tions. ]
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Calculations

B.1 The constant in Lieb’s inequality

In the last part of the proof of Lieb’s inequality (3.4) we used the following equality
Ag,A%/ PAY = (2/p)¥/P without proving it. We recall that the Babenko-Bechner

2/p" “(p/p')
. /P 1/2
L p’l/P’ ’

constant A, is given by:
Since there is an exponent 1/2 in the Babenko-Bechner constant it is better to compute
the square of AZ,AE%? A‘é{fp,),. For the sake of clarity we are going to compute every single
term and then we are going to multiply them.
. AZ — ﬂ.
P’ pl/p ?

e In order to compute A;'/i/,p/ we start computing (2/p’)":

(2)’_ 2/pf 2
) 2p—1 2-p’
therefore

e (2>p'/2 (2_p/><2p/>/2 2/p 2 <2_p/><2p/>/(p'> _
2/p p/ 9 p/ 2

2(1-1/p' 2
_ 2 ( /p)(2 — )Pt = &(2 — /=i,
p/

p/

o Like the previous case, we start computing (p/p’)":

(p)': p/P_ p
Y p/V =1 p—p’
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hence

- 7 1P "
2 < P )(p ?)/p (p/>p/p p _ ( e )1/p 1/p (p/>1/p:
(p/P") p—7p D p—p »

1/p—1/p' 1 1
= <1 — p’) ol (pl> o = (2 _p/)l/p—l/p’ <p’> /p.
p b b

We are now ready to calculate the product of the three constant:

/1/p" 92/p /N 1/p
2 42:2/p 42/p0 _ P 1/p'—1 1/p=1/p (P .
Ap/Ag/p, A(p/p,), = W?Q -7 /p /p(Q —7) /p—1/p (p) _

2
— 22/pp72/pp/1/p’+1/p71 — (12)) v

which is the desired result.

B.2 A curious inequality between conjugate expo-
nents

We consider inequality (6.14), which we rewrite for the sake of clarity:

a K d
d(i-1 P
K)P(q P) (Z)q Z (:gq>
q

Firstly we want to restate in a more concise way. Recalling that , = z%’ where p’ is the
conjugate exponent of p, we have:

1 1 1 1 1 1 1 1
1\Ne > A 1\ 1\ ¢ I\Nea » & 1\7 A
(p) (q) Z(y) (q,) = (p,) (q,) (q> =1

but, since % + 1% =1 and % —-1= %, in conclusion we have:

P\T (p\F
(7)(5) =
q q

In order to prove that this inequality holds for every pair of p,q > 1 we consider the
left-hand side as function of x = % and y = % (therefore 1% =1—zand % =1—vy). If we
take the logarithm of this quantity we want to show that:

f(z,y) = (1 —y) llog(1 —y) —log(1 — x)] + y [log(y) — log(x)] > 0.

The partial derivative of f with respect to x is:

O pyy=izv _¥v_ 2=y
dx l—x o z(l-—2x)

Since x € (0,1), %(az, y) is negative for x < y and positive for z > y, so f has a minimum
for x = y where f(z,z) = 0.
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B.3 Another inequality between conjugate exponents

We want to prove that inequality (6.16) holds, namely that:

nj(i_%) (§>Z _ mz(%_%) (5)3

whenever p # ¢. As for the previous section, since k), = z% and kg = % we can write the
inequality in a more concise way:

1 1_1 1 11, 1 , 117
)G <G) G =) =) T
q q P q qp p—1

If ¢ > p the base is greater than 1 while the exponent is less than 1, whereas if ¢ < p the
converse happens, which proves that inequality holds whenever p # q.

T =
Q=
S =
D =
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Helly’s selection theorem

In this chapter we prove Helly’s selection theorem, which was used in the proof of Propo-
sition 6.4.

Theorem C.1. Let {f,}nen be a sequence of monotonically increasing functions on R
and suppose that the sequence is uniformly bounded, namely that f,(z) € [a,b] for every
n € N, every x € R and some a < b in R. Then, there exist a monotonically increasing
function f and a subsequence { fn, }ren such that f,, is pointwise convergent to f.

Proof. We begin by constructing f over rational numbers. Let {¢1, g2, ...} be an enumer-
ation of Q.

Since {fn(q1)}nen is a bounded sequence in R, it follows from Bolzano-Weiestrass’

theorem that there exist S; C N countable such that {f,(q1)}nes, is convergent to some
y1 € [a,b]. Then, if we consider the sequence {f,(¢2)}nes,, we see that this is a bounded
sequence in R and again, from Bolzano-Weiestrass’ theorem it follows that there exist
Sy € Sy countable such that {f,(g2)}nes, converges to some ys € [a,b]. Repeating this
argument lead to a family of countable subsets of N such that S; D Sy O --- such that
{fn(%‘)}nesz‘ converges to ;.
Consider now the set S C N built in the following way: the first element of S is the first
element of Sy, the second element of .S is the second element of Sy and so on. Then, if we
consider ¢; € Q, we have that, up to the first i — 1 terms, {f,(¢;) }nes is a subsequence
of {fn(4i) }nes,, therefore { f,,(¢;) tnes converges to y;. Moreover, we notice that if ¢; < g;
then, by the monotonicity of f,, we have f,(¢;) < fn(g;) for every n € S. Taking the
limit for n — +o00 we conclude that y; < y;.

Up to now we built a subsequence of {f,(¢q1)}nen that is pointwise convergent over
rational numbers. Through the density of Q in R it is immediate to create a monotonically
increasing function g over R. Indeed, if ¢ € Q we simply let g(¢q) = y,, while if r € R\ Q we

let g(r) = supgeq g(g). We point out that the supremum is finite because y, are bounded
g<
from above. Moreover, it is clear from the definition that g is monotonically increasing.

The proof is still not complete because, up to now, we only know that the subsequence
{fn}nes is pointwise converging to g only over rational numbers. However, we can show
that if ¢ is continuous in r € R, then limn 1o fn(x) = g(x). If ¢ is continuous in r, given

nes
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e > 0 there exist 6 > 0 such that |g(y) —g(z)| < € if |y — x| < J. In particular, we can pick
q1,q2 € Q such that r —§ < q1 <7 < g3 <r+ 4. Since g is monotonically increasing this
implies that 0 < g(r) — g(q1) < € and 0 < g(q2) — g(r) < e. Moreover, for n sufficiently
large, we have that |f,(¢1) — 9(q1)| < € and | f.(g2) — 9(g2)| < €. These, together with the
fact that f,, are monotonically increasing leads to:

falqr) < f(2) < fulge) =
—2e < fulq1) — g(q1) + 9(q1) — g9(z) < fu(®) — 9(z) < fulaz) — 9(q2) + g(q2) — g(x) < 2¢,

which means that f,(x) converges to g(z).

In order to conclude, we have to deal with the points where g is not continuous. It is
well known that a monotonic function on an open interval is continuous except possibly
on a countable subset J C R (see [27, Section 6.1 Theorem 1] or [28, Theorem 4.30]).
Since J is at most countable we con consider an enumeration {j1, jo, ...}. If we repeat the
same argument we used at the beginning of the proof, we see that there exist a countable
subset P C S such that {f, }nep is pointwise converging to g in R\ J and to some values
in J. Taking f as the limit function of {f,},ecp the proof is complete. O
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