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Introduction

This thesis is about simulations of two classes of stochastic processes: Lévy processes
and max-stable processes. Let us explain what we mean by simulating a stochastic
process. Since a stochastic process X is a random function, hence an infinite-
dimensional object, it is a difficult object to be managed by a computer. The
aim of a simulation is to find an algorithm that computes the possible values of a
realization of X onto a finite number n of points t1, . . . , tn. This means that the
outcome of a sampling algorithm is a random vector, a finite-dimensional object,
that we would like to be representative of the whole process. In particular, we would
like the random vector Xn (our simulation) to inherit the statistical properties of
X. Then, the most ambitious goal is to compute Xn in such a way that it has the
same distribution of (X(t1) , . . . , X(tn)), the restriction of the stochastic process X
onto the evaluation points t1, . . . , tn. We call this an exact simulation.

Finding such algorithm is, in the vast majority of cases, not possible. There are
several reasons why. One of the reasons, which we will not consider in the body
of the thesis, is that computers do not possess a way of representing exactly real
numbers, hence simulations of all processes with values in R are in practice never
exact. A second reason is that it is difficult to find a source of real randomness and
in fact, in most cases, simulations depend on a pseudo-random number generator, a
deterministic algorithm which produces numbers that in some sense “look random”.

Even assuming to possess a theoretical computer which can represent exactly
real numbers and that owns a true source of randomness, other problems might
arise that make an exact simulation a hard task. Let us explain this through an
example. Consider for a moment the simplest case possible: simulating a random
variable Y . It is well-known that FY

←(U), where U is a uniform random variable
in [0, 1] and FY

← is the generalized inverse of the cumulative distribution function
(cdf) of Y , has the same distribution as Y . Assuming to be able to simulate U ,
this observation gives us a simple procedure to sample from FY . However, there
are some highly non-trivial conditions that need to be satisfied in order to get an
exact sample through this algorithm. We need to be able to compute explicitly the
generalized inverse of FY , we need to know explicitly the cumulative distribution
function, which might require computing the integral of the probability distribution
function (pdf), and, if we do not know directly even the pdf, it might be necessary
to compute the Fourier transform of the characteristic function ϕY of Y . This
shows how even this fairly simple problem is not as trivial as it seemed at first
glance. When we move from the univariate case to the multivariate case, complexity
increases because we need to take into account the relationships between the various
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components.
Two of the aforementioned problems are the ones we will try to solve in this

thesis. In the case of the Lévy processes, the independence of increments let us
simplify the problem from the multivariate case (computing sample-paths) to the
univariate case (computing the independent increments). Problems arise from the
fact that we will assume to only know the characteristic function of increments,
not their distribution. Fortunately the distribution of the increments of a Lévy
process has a semi-parametric form, depending only on a triplet (c, σ, µ) where c, σ
are numbers and µ is a potentially infinite measure, called the Lévy measure. This
measure is a sort of mean measure of a Poisson process, in the sense that it tells us
the expected number of jumps in a subset of the real numbers in the time interval
[0, 1]. If there are no jumps the problem is reduced to sampling a normal random
variable, which is a problem solved decades ago from Box and Muller in [BM58].
The only problem left is to simulate the jumps from µ. A partial solution to this
problem is described in this thesis. In fact, we can find some representations of
the jumps in the form of a Poisson process with, in general, infinite number of
points. A truncation is needed to make this method feasible for a computer and
that will always generate some error. Our strategy will be to find a way of letting
the biggest jumps appear first, in such a way that error is minimized. In this case
there is no chance of getting an exact simulation, however it is possible to estimate
the order of convergence of the error.

In the case of max-stable processes, the problem is different. In fact, simulating
the marginal distributions is in general easy, since they belong to three well known
distributions (Gumbel, Weibull, Fréchet) with known cumulative distribution
functions (and known generalized inverse). The problem here is dealing with the
mutual dependence between points of the simulation. Again, our strategy involves
finding a representation of the process as a Poisson random measure with an infinite
number of points.

Differently from the Lévy case, here we are dealing with component-wise maxima
instead of sums, then there is hope that truncation will not generate errors. The
problem is that in general it is not possible to know for sure the number of iterations
that guarantees our simulation to be exact. In the thesis we show two approaches:
the first one is changing measure in such a way that it is possible during the
algorithm to know exactly whether a truncation leads to an exact-simulation. A
second approach is to compute at each iteration the probability that a truncation
leads to an error and stopping the algorithm when this probability is considered
small enough.

The thesis is organized as follows:

• In chapter 1 we present a summary of the theory of point processes, Poisson
processes and Lévy processes.
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• In chapter 2 we address the problem of simulating a Lévy process. We start
by describing the easy cases in which exact simulations are possible. Then,
we introduce some series representations of a pure jump Lévy process to be
used for an approximate sampling algorithm. These methods are then tested
on the Gamma process, α-stable process and CGMY process.

• In chapter 3 we first introduce the theory of max-stable processes and then
study the simulation approaches for stationary max-stable processes. The
methods are then tested on the Brown-Resnick process.
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Chapter 1

Point Processes and Lévy processes

1.1 Point Processes

1.1.1 Definition of point process

Let E ∈ Rn be a subset of Euclidean space and E := B(E) the σ-algebra of Borel
sets of E. Given a point x ∈ E, the Dirac Measure εx on (E, E) is defined as

εx(A) := 1A(x) =

{
1 ifx ∈ A

0 ifx /∈ A
∀A ∈ E .

This measure is the building block of the so-called counting measures which formalize
the idea of measuring a set by counting the numbers of special points it contains.

Definition 1.1.1.1 (Counting Measure). Let (xi)i≥1 be a sequence of points in E.
We call m : E → N a counting measure with atoms (xi)i≥1 if for all A ∈ E

m(A) =
∞∑
i=1

εxi
(A) = #{i ≥ 1 | xi ∈ A}.

Moreover, m is a point measure if for all K compact m(K) <∞.

More in general a Radon measure is a measure m on (E, E) such that for all K
compact m(K) <∞. Therefore, we can simply define a point measure as a Radon
counting measure.

We would like to define a point process as a random point measure. Following the
guideline of the definition of a random variable, a point process is a measurable map
from the outcome space (Ω,F) to a suitable measurable space of point measures.
Let us call Mp(E) the set of all point measures and C the collection of subsets of

1



CHAPTER 1. POINT PROCESSES AND LÉVY PROCESSES 2

Mp(E) of the form {m ∈ Mp(E) | m(A) ∈ B } for all A ∈ E and B ∈ B([0,∞))1.
By Mp(E) := σ(C) we denote the smallest σ-algebra containing all sets in C.
Equivalently, we can define Mp(E) as the σ-algebra generated by all evaluation
maps m 7→ m(A) for each A ∈ E . Given this definition of the measurable space of
point measures (Mp(E),Mp(E)), the following definition comes naturally.

Definition 1.1.1.2 (Point Process). A point process N is a measurable map from
the outcome space (Ω,F) to the measurable space of point measures (Mp(E),Mp(E)).

The choice of Mp(E) is justified by the fact that, this way, for each A ∈ E ,
N(A) = N(A;ω) is a random variable. This is expressed in the following lemma.

Lemma 1.1.1.3. Let (Ω,F) be the outcome space and (Mp(E),Mp(E)) the space
of point measures. N : Ω→Mp(E) is a point process iff for all A ∈ E, N(A) is a
random variable with values in N and N(K) <∞ for K compact.

See [Res87] Proposition 3.1 for the proof.
Then, we want to define a probability distribution on the measurable space of

point measures (Mp(E),Mp(E)). Given a probability measure P on the outcome
space (Ω,F), we can easily define the probability distribution PN of a point process
N on (Mp(E),Mp(E)) as PN = P ◦N−1.

Since point processes are infinite-dimensional objects, it is difficult to create
simple intuition of the probability distribution PN . The collection of the finite
dimensional distributions

P(N(A1) = k1, . . . , N(Am) = km)

for all possible choices of m <∞, Ai ∈ E and ki = 0, 1, 2, . . . for all i = 1, . . . ,m
helps to overcome this problem. In fact, this collection of distributions uniquely de-
fines the distribution PN . The results follow directly from Corollary 2.2.1 in [Res03].

Remark 1.1.1.4. In the following, we will mostly deal with random point measures
of the form

N :=
∞∑
i=1

εXi
,

where (Xn)n≥1 is a sequence of E-valued random variables such that for each K ∈ E
compact, N(K) <∞ a.s. In general, these random point measures are not point
processes since there might be a K compact and ω ∈ Ω such that PN (N(·;ω)) = 0
and N(K;ω) =∞. However, it is always possible to redefine N on these events of
null probability in order to make it a point process. From now on we will always
consider this little extension to the precise definition of a point process given above.

1In the context of the definition of point processes it is sufficient to consider only B equal to
the singletons {n} for n ∈ N. In order to make it easier to generalize the definition we directly
consider all Borel subsets of the positive real line.
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1.1.2 The Laplace functional and weak convergence of point
processes

In order to define the Laplace functional of a point process we need to give a precise
meaning to the stochastic integral over a point process∫

E

g dN. (1.1)

If we restrict g to the set of measurable non-negative functions, the integral (1.1) is
well-defined path-wise in the sense of the Lebesgue-Stieltjes integral and the map
ω 7→

∫
E
g dN(ω) is measurable. Therefore, the integral (1.1) is a random variable2.

Considering a representation of N =
∑∞

i=1 εXi
we can explicitly write the integral

as ∫
E

g dN =
∞∑
i=1

g(Xi).

We are ready to define the Laplace functional:

Definition 1.1.2.1 (Laplace functional of a point process). Given a point process
N , the Laplace functional ΨN is the measurable functional from the space of
measurable functions g : E → [0,∞] to R defined as

ΨN(g) := E
[
e−

∫
E g dN

]
=

∫
Mp(E)

e−
∫
E g dm PN(dm). (1.2)

Observation 1.1.2.2. The Laplace functional ΨN is well-defined even if
∫
E
g dN(ω) =

∞ for some ω ∈ Ω.

Observation 1.1.2.3. The Laplace functional uniquely determines the distribution
of a point process. In fact, taking a simple function g =

∑m
i=1 ai1Ai

(x) where ai ≥ 0
and Ai ∈ E , then

ΨN(g) = E
[
e−

∑m
i=1 aiN(Ai)

]
is the Laplace transform of (N(A1), . . . , N(Am)) which uniquely determines its dis-
tribution. Hence, the Laplace functional determines uniquely all finite dimensional
distributions and therefore PN .

The Laplace functional is strongly connected to the concept of weak convergence
of (the distribution of) point processes. In fact, weak convergence of point processes
corresponds to point-wise convergence of the Laplace functional.

2The value
∫
E
g dN(ω) = +∞ is not excluded, but it has probability 0 on compact sets
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Definition 1.1.2.4 (Weak convergence of point processes). Let (Nn)n≥1, N be
point processes on (E, E). We say that Nn weakly converges to N (we write
Nn

d−→ N) if
(Nn(A1), . . . , Nn(Am))

d−→ (N(A1), . . . , N(Am))

for all bounded sets Ai ∈ E such that PN(N(∂Ai) = 0) = 1, where i = 1, . . . ,m.

In order to formulate the equivalence between weak convergence of point
processes and point-wise convergence of the Laplace functional we need to restrict
the domain of the Laplace functional. Let us call C+

K(E) the space of non-negative
continuous functions with compact support, then the following theorem holds.

Theorem 1.1.2.5. Let (Nn)n≥1, N be point processes on (E, E). Then, Nn
d−→ N

iff for every g ∈ C+
K we have ΨNn(g)→ ΨN(g).

Proof. See [Res87] Proposition 3.19.

Observation 1.1.2.6. Considering a fixed g ∈ C+
K , the integral

∫
E
g dN is a

random variable. Therefore, from ΨNn(g) → ΨNn(g) we get E
[
e−z

∫
E g dN

]
→

E
[
e−z

∫
E g dN

]
for all positive z. This is equivalent to

∫
E
g dNn

d−→
∫
E
g dN .

1.2 Poisson random measures
We now introduce an important and flexible class of point processes called Poisson
processes or Poisson random measures. In analogy with binomial and Poisson
distributions, it is possible to obtain this class of point processes as the weak limit
of the so-called binomial processes. We will observe this property at the end of the
section.

1.2.1 Definition of Poisson process and Poisson integral

Definition 1.2.1.1 (Poisson process or Poisson random measure). Let N be a
point process on (E, E) and µ be a Radon measure on E. We call N a Poisson
process or a Poisson random measure with mean measure µ (we write N is a
PRM(µ)) if:

1. for each A ∈ E , we have N(A) ∼ Pois(µ(A))3;

2. for each m ≥ 2 and A1, . . . , Am ∈ E disjoint, N(A1), . . . , N(Am) are mutually
independent.

3If µ(A) = 0 this is equivalent to N(A) = 0 a.s., if µ(A) =∞ this is equivalent to N(A) =∞
a.s.
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Observation 1.2.1.2. If µ(E) <∞ we can represent each Poisson random measure
as N =

∑τ
i=1 εXi

where

• τ ∼ Pois(µ(E));

• for i = 1, . . . , τ , Xi
iid∼ F := µ

µ(E)
and independent of τ .

This representation of N can be extended to the case µ(E) = ∞ exploiting the
Radon property of the measure µ. The idea is to write E as a countable union of
disjoint, bounded sets Ei, each with µ(Ei) <∞. Then, for each i write N restricted
to Ei as explained above.

The Laplace Functional of a Poisson Random Measure has a characteristic form.

Proposition 1.2.1.3. Let N be a PRM(µ). The Laplace functional computed on
g ≥ 0 ans measurable on E is

ΨN(g) = exp

{
−
∫
E

(
1− e−g(x)

)
µ(dx)

}
. (1.3)

Proof. We write the proof for simple functions, the result for a generic non-negative
measurable g follows from standard reasoning in measure theory using monotone
convergence. Let g be a simple function

g =
m∑
i=1

ai1Ai

for A1, . . . , Am ∈ E disjoint and ai ≥ 0. We compute the Poisson integral∫
E

g dN =
m∑
i=1

ai

∫
E

1Ai
(x)N(dx) =

m∑
i=1

aiN(Ai),

where N(A1), . . . , N(Am) are mutually independent because N is a PRM. We use
independence to factorize the Laplace functional, which becomes

ΨN(g) = E
[
e−

∑m
i=1 aiN(Ai)

]
=

m∏
i=1

E
[
e−aiN(Ai)

]
. (1.4)

Each factor of (1.4) is the Laplace transform of a Poisson distributed random
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variable with mean µ(Ai) computed at ai. Therefore, we can write

ΨN(g) =
m∏
i=1

E
[
e−aiN(Ai)

]
=

=
m∏
i=1

e−µ(Ai)(1−e−ai ) =

=exp

{
−

m∑
i=1

∫
E

(1− e−ai1Ai
(x))µ(dx)

}

=exp

{
−
∫
E

(
1− e−g(x)

)
µ(dx)

}
.

From Poisson random measures we can define Poisson integrals as special cases
of integrals over a point process. Poisson integrals are of particular interest since
they inherit some good properties from Poisson random measures. In fact, it is
possible to find analytic conditions that ensure Poisson integrals to be a.s. finite.
This allows us to extend the definition of Poisson integrals to real valued functions.
Other interesting properties are that Poisson integrals of functions with disjoint
support are independent and, if two Poisson integrals have 0 correlation, they are
independent. For a more in-depth treatment about the topic, see [Mik04] Chapter
7.

Proposition 1.2.1.4. Let g ≥ 0 be measurable on E and N be a PRM(µ). Then∫
E
g dN is a.s. finite iff ∫

E

(g(x) ∧ 1)µ(dx) <∞.

This property allows one to define a generalized Poisson integral over functions
that are not restricted to be non-negative. In fact, if g is measurable on E and
such that ∫

E

(|g(x)| ∧ 1)µ(dx) <∞

then the integral
∫
E
g dN is a.s. well-defined in the sense of a Lebesgue-Stieltjes

integral.
To give an intuitive idea of Poisson integrals, we consider consider the case in

which µ(E) <∞. As seen in Observation 1.2.1.2, we can write N =
∑τ

i=i εXi
where

τ ∼ Pois(µ(E)) and for i = 1, . . . , τ , Xi
iid∼ F = µ

µ(E)
random variables independent

of τ . Given g we can write the Poisson integral
∫
E
g dN =

∑τ
i=1 Zi where Zi = g(Xi)
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are iid random variables independent of τ with common probability distribution
G := µ

µ(E)
◦ g−1.

Poisson integrals inherit some properties from Poisson random measures. Of
particular interest is that if {gi}i=1,...,m have disjoint support {

∫
E
gi dN}i=1,...,m,

then they are mutually independent. This property follows from the factorization
of the joint Laplace-Stieltjes transform of the random vector (N(A1), . . . , N(Am))
when A1, . . . , Am ∈ E are disjoint. We will heavily exploit this property to prove
the Lévy-Itô representation of a Lévy process.

As anticipated we now see the weak convergence of binomial processes to Poisson
processes.

Example 1.2.1.5 (Weak limit of the binomial process). Let X(n)
1 , . . . , X

(n)
n be iid

random variable with common probability distribution Fn. Then we define the
binomial process Nn as

Nn(A) =
n∑

i=1

εXi
(A) ∼ Bin(n, Fn(A)), A ∈ B(R)

Then, if we consider a partition A1, . . . , Am of R, m > 1, Ai ∈ B(R) for all
i = 1, . . . ,m, we get that

(Nn(A1), . . . , Nn(Am)) ∼ Mult(n;Fn(A1), . . . , Fn(Am)),

where Mult(n; p1, . . . , pm) is the multinomial distribution.
We compute the Laplace functional of Nn. Similarly to the Laplace functional

of a PRM we compute the Laplace functional of a binomial process for a simple
function, then the result can be extended to the general case using monotone
convergence.

Let m ≥ 1 and g(x) =
∑m

i=1 ai1Ai
(x), where ai ≥ 0 and Ai ∈ B(R) for all

i = 1, . . . ,m. We can assume without loss of generality that A1, . . . , Am is a
partition of R. Then,

ΨNn(g) =E
[
e−

∫
R g dNn

]
=E

[
e−

∑n
i=1 g(Xi)

]
=E

[
e−

∑m
j=1 ajNn(Aj)

]
=

(
n∑

i=1

e−ajFn(Aj)

)n

=

(∫
R
e−g(x)Fn(dx)

)n

,

where in the fourth equality we computed the Laplace transform of a multinomial
distribution.
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Now, consider a sequence of probability distribution (Fn)n≥1 and a Radon
measure µ such that (nFn) converges vaguely to µ. Then

ΨNn(g) =

(∫
R
e−g(x)Fn(dx)

)n

=

(
1−

∫
R
(1− e−g(x))Fn(dx)

)n

=

(
1− 1

n

∫
R
(1− e−g(x))nFn(dx)

)n

→ exp

{
−
∫
E

(
1− e−g(x)

)
µ(dx)

}
,

which is the Laplace functional of a PRM(µ). Hence, (Nn)n≥1 converge weakly to
a Poisson Random measure.

1.2.2 Operations on Poisson random measures

In order to deeply understand how Poisson random measures work it is necessary
to see how they perform under a change of the space on which they are defined. It
is also interesting to show operations that preserve the properties Poisson processes.
In this context we will define the sum of independent PRMs and independent
marking of PRMs.

How a Poisson integral behaves under transformations on the space E on which
the PRM is defined is well explained by Proposition 2.1 from [Ros01]

Proposition 1.2.2.1. Let M and N be Poisson point processes on measurable
spaces S and T0, with mean measures µ and ν, respectively. Suppose that T0

is a Borel subset of some Borel space T and that for some measurable mapping
h : S → T ,

ν = µ ◦ h−1 on B(T0)

Then
N

d
= M ◦ h−1

Assume in addition that N is defined on a probability space that is rich enough,
that is, there exists on this probability space a uniform Unif(0, 1) random variable
that is independent of N , and also that

M =
∞∑
i=1

εSi

for some S-valued random elements Si, i ≥ 1. Then there exists a sequence (S̃i)i≥1
of S-valued random elements defined on the same probability space as N such that

(S̃i)i≥1
d
= (Si)i≥1
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and

N =
∞∑
i=1

εh(S̃i)
a.s.

This property will be of great use in the context of simulations of Poisson processes.
In fact, it is sometimes easier to simulate a process initially on a different space
and then to transform the points according to our needs.

We conclude this section on Poisson processes describing two operations that
preserve the property of being a Poisson process.

Proposition 1.2.2.2 (Aggregation of independent PRMs). Let m ∈ N and
{Ni}i=1,...,m be mutually independent PRM(µi) for i = 1, . . . ,m on (E, E). Then
N := N1 + · · ·+Nm is a PRM(µ) with µ = µ1, . . . , µm.

Proposition 1.2.2.3 (Independent Marking of a PRM). Let NX =
∑∞

i=1 εXi
be

a PRM(µ) on E1 and (Yi)i≥1
iid∼ F be a sequence of E2-valued random vectors. If

(Xi)i≥1 and (Yi)i≥1 are independent then N :=
∑∞

i=1 ε(Xi,Yi) is a PRM(µ× F ) on
E := E1 × E2.

1.3 Lévy Processes
In this section we introduce a flexible class of stochastic processes. Lévy processes
are additive processes with stationary and independent increments. This class
of processes includes processes with quite different behaviors such as continuous
processes such as the Brownian motion and discontinuous processes such as the
compound Poisson process. This flexibility has found great use for modelling in
applications.

1.3.1 Definition of a Lévy process

We start by defining Lévy processes.

Definition 1.3.1.1 (Lévy Process). An Rd-valued stochastic process X is called a
d-dimensional Lévy process if the following conditions are satisfied:

1. it has independent increments, i.e., for all n ≥ 0 and 0 = t0 < t1 < · · · < tn
the random vectors X(ti)−X(ti−1) for i = 1, . . . , n are independent;

2. it starts at the origin, i.e. X(0) = 0 a.s.;

3. it has stationary increments, i.e. for all h, t ≥ 0 and s > t, X(s) −X(t)
d
=

X(s+ h)−X(t+ h)
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4. it is stochastically continuous, i.e. for any ε > 0, when t ↓ 0 we have
P(∥X(s+ t)−X(s)∥ > ε)→ 0.

It is proved (for example in [Sat99]) that these four conditions ensure that we can
define a version of X such that for each ω ∈ Ω, (X(t;ω))t≥0 has right continuous
path and well-defined left limits (we write càdlàg from the French "continue à
droite, limite à gauche").

Notable examples of Lévy processes are:

• linear functions: X(t) = ct, t ≥ 0;

• the standard Wiener process (or standard Brownian motion): X(t) = W (t)

• compound Poisson processes: X(t) =
∫
[0,t]×Rd xN(dt, dx) where N is a Poisson

random measure on (R× Rd)

These three examples are of fundamental importance, since any Lévy process
can be written as a sort of composition of the three aforementioned processes.
This is informally the statement of an important theorem known as the Lévy-Itô
representation of Lévy processes.

From now on we restrict ourselves to the treatment of the one-dimensional case.
The multidimensional case follows easily, with the downside of more complex and
less transparent notation.

1.3.2 Infinitely divisible distribution and Lévy-Itô decompo-
sition

Given a Lévy process X, we study the distribution of X(t) at a fixed time t ≥ 0. A
first notable property of Lévy processes is that the distribution of X(t) is uniquely
determined by that of X(1). This is evident from the characteristic function of
X(t).

Proposition 1.3.2.1. Let X be a Lévy process and t ≥ 0. The characteristic
function of X(t) is

ϕX(t)(s) = E
[
ei sX(t)

]
=
(
E
[
ei sX(1)

])t
.

Proof. Let us prove the assertion in three steps. First we prove it for t ∈ N, then
for t ∈ Q, finally for t ∈ R. The result is trivially true for t = 0 and t = 1. If
t = N \ {0, 1}, we can write X(t) =

∑t
i=1(X(i)−X(i− 1)), then the characteristic
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function is
ϕX(t)(s) =E

[
ei sX(t)

]
=E

[
ei s

∑t
j=1(X(j)−X(j−1))

]
=

t∏
j=1

E
[
ei s(X(j)−X(j−1)) ]

=E
[
ei sX(1)

]t
,

where we use the independence of increments in the third equality and the station-
arity of increments of a Lévy Process in the last one.

Consider t ∈ Q; we write t = n
m

for n,m ∈ N. Then, using a similar argument
as above we can write

ϕX(1)(s) =
(
ϕX( 1

m)
(s)
)m

and
ϕX( n

m)
(s) = (ϕX( 1

m)
(s))n.

Hence,
ϕX( n

m)
(s) = (ϕX(1)(s))

n
m = (ϕX(1)(s))

t.

If t ∈ R we can find a rational sequence tn ↓ t for n → ∞. Then we have
trivially

ϕX(tn)(s) = (ϕX(1)(s))
tn → (ϕX(1)(s))

t (1.5)

and

ϕX(tn)(s) = E
[
ei sX(tn)

]
= E

[
ei s(X(tn)−X(t))

]
E
[
ei sX(t)

]
→ E

[
ei sX(t)

]
, (1.6)

where we used in the second equality the independence of increments and in the
third one the stochastic continuity4. Comparing (1.5) and (1.6), we get the result.

From the previous theorem we understand that many properties of the Lévy
process X depend on the distribution of X(1). A first general property of this
marginal distribution is that for each m > 0 we have X(1) =

∑m
i=1(X

(
i
n

)
−X

(
i−1
n

)
)

where X
(
i
n

)
−X

(
i−1
n

)
are iid random variables. This means that the distribution

of X(1) must be part of a special class of distributions called infinitely divisible
distributions.

Definition 1.3.2.2 (Infinitely divisible distributions). The distribution of a random
variable Y is said to be infinitely divisible if for all m ≥ 0, there exists iid random
variables Y1, . . . , Ym such that Y

d
= Y1 + · · ·+ Ym.

4X(tn)−X(t)
d
= X(tn − t)

P→ 0, hence it converges in distribution to 0. Then the characteristic
function must converge to e0 = 1.
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The converse is also true: given an infinitely divisible distribution F we can find
a Lévy process X such that X(1) ∼ F . This means that studying Lévy processes is
essentially equivalent to studying the properties of infinitely divisible distributions.

Many well known distributions are infinitely divisible, for instance Poisson,
Gamma, Gaussian, α-stable and many other distributions with unbounded support.
The most important result about infinitely divisible distributions is the so-called
Lévy-Khintchine formula which states that the characteristic function of any in-
finitely divisible distribution must have a specific structure. Before presenting the
result, we define a class of measures that will be of great importance for the theory
of Lévy processes and infinitely divisible distributions.

Definition 1.3.2.3 (Lévy measure). A measure µ on R is called a Lévy measure
on R if it satisfies the following conditions:

• µ({0}) = 0;

•
∫
R(x

2 ∧ 1)µ(dx) <∞.

Theorem 1.3.2.4 (Lévy-Khintchine formula). Let Y be an infinitely divisible
random variable, i.e., a random variable with an infinitely divisible distribution. Its
characteristic function is given by

ϕY (s) = exp

{
i sc− σ2 s

2

2
−
∫
R

(
1− ei sx + i sx1[0,1](|x|)

)
µ(dx)

}
, (1.7)

where c ∈ R, σ ≥ 0, and µ is a Lévy measure on R. The triplet (c, σ, µ) uniquely
determines the distribution of Y , and it is called characteristic triplet.

Let us now consider a Lévy process X with characteristic function

ϕX(t)(s) = exp

{
−t
∫
R

(
1− ei sx + i sx1[0,1](|x|)µ(dx)

)}
.

We want to show that X can be written as the limit of compound Poisson processes.
The first problem we need to address is that, given a Lévy measure µ on R, a
PRM(Leb× µ) on [0,+∞)×R is in general not well-defined since a Lévy measure
µ is not a Radon measure generally. We will overcome this obstacle by changing
the topology of R in such a way that we will consider as bounded sets those that
are far from the origin. In some sense we will interchange the role of ∞ and 0.
With this topology it makes sense to define N as PRM(Leb× µ) on [0,+∞)×R.5

Now, we can state the main result.
5The new topology is induced by a metric, hence the resulting topological space is Hausdorff,

locally compact and with a countable basis. These conditions allow to define a Poisson random
measure.
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Theorem 1.3.2.5 (Lévy-Itô representation of Jump Lévy Process). Let N be a
PRM(Leb× µ) on [0,∞)× R where µ is a Lévy measure. We define

cδ :=

∫
{δ<|x|<1}

xµ(dx) (1.8)

and

Sδ(t) := −cδt+
∫
[0,t]×{δ≤|x|≤1}

xN(ds, dx) +

∫
[0,t]×{|x|>1}

xN(ds, dx) (1.9)

1. The limit process
S(t) := lim

δ↓0
Sδ(t) (1.10)

exists a.s. for all t ≥ 0.

2. S is a Lévy process with characteristic function

ϕS(t)(s) = exp

{
−t
∫
R

(
1− ei sx + i sxI[0,1](|x|)µ(dx)

)}
. (1.11)

Before proving the theorem we state Kolmogorov’s three series theorem, a
classical result in probability theory that we need in order to prove Theorem 1.3.2.5.
A proof for Kolmogorov’s three series theorem can be found in [Bil95].

Theorem 1.3.2.6 (Kolmogorov’s three series theorem). Let (Xn)n≥1 be a sequence
of mutually independent random variables. Then, the series

∑∞
n=1Xn converges a.s.

if the following conditions hold for some A > 0, and only if the following conditions
hold for any A > 0:

1.
∑∞

n=1 P(|Xn| ≥ A) converges;

2. Yn := Xn1{|Xn|<A}, then
∑∞

n=1 E [Yn ] converges;

3.
∑∞

n=1Var(Yn) converges.

We also need Lemma 10.2.1 from [Mik04].

Lemma 1.3.2.7 (Lemma 10.2.1 from [Mik04]). Let (Xn)n≥1 be a sequence of
Lévy processes on [0,∞) and X a stochastic process on [0,∞) such that the finite-
dimensional distributions of Xn converge to those of X: for any choice of 0 ≤ t1 <
· · · < tm and m ≥ 1,

(Xn(t1) , . . . , Xn(tm))
d→ (X(t1) , . . . , X(tm)).

Then X has stationary independent increments and X(0) = 0 a.s.



CHAPTER 1. POINT PROCESSES AND LÉVY PROCESSES 14

We can now prove Theorem 1.3.2.5.

Proof of Theorem 1.3.2.5. In order to prove the first point we use the Three Series
Theorem. Without loss of generality we prove the convergence for t = 1. Let
(δn)n∈N be a monotone decreasing sequence such that δ0 = 1 and δn ↓ 0 and define

Zn =

∫
[0,1]×{δn≤|x|≤δn−1}

x (N(dt, dx)− dt µ(dx))

The sequence (Zn)n≥1 is made such that

Sδn(1) =
n∑

i=1

Zi +

∫
[0,t]×{|x|>1}

xN(ds, dx)

then, the convergence of Sδn(1) is equivalent to the convergence of Zn because
N([0, t]× [1,∞]) <∞ a.s. We use Kolmogorov’s Three Series Theorem considering
A = 1 on (Zn)n≥1 and we get

1.
∑∞

n=1 P(|Zn| ≥ 1) converges. In fact for all n ≥ 1, E [Zn ] = 0. Then

P(|Zn| ≥ 1) = P(|Zn − E [Zn ]| ≥ 1) ≤ Var(Zn),

where we used Chebyshev’s inequality. Finally

∞∑
n=1

P(|Zn| ≥ 1) ≤
∞∑
n=1

Var(Zn)

=
∞∑
n=1

∫
{δn≤|x|≤δn−1}

x2 µ(dx)

=

∫
{0≤|x|≤1}

x2 µ(dx) <∞.

2. Call Yn := Zn1{|Zn|<1}, then
∑∞

n=1 E [Yn ] converges. In fact

0 = E [Zn ] = E
[
Zn1{|Zn|<1} + Zn1{|Zn|≥1}

]
,

then
|E [Yn ]| =

∣∣E [Zn1{|Zn|≥1}
]∣∣ .
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We get
∞∑
n=1

E [Yn ] ≤
∞∑
n=1

|E [Yn ]|

≤
∞∑
n=1

∣∣E [Zn1{|Zn|≥1}
]∣∣

≤
∞∑
n=1

E
[
|Zn|1{|Zn|≥1}

]
≤
∞∑
n=1

E
[
|Zn|2

]
=
∞∑
n=1

Var(Zn) ≤ ∞.

3.
∑∞

n=1Var(Yn) converges since
∑∞

n=1Var(Zn) converges.

Now we prove the second point. Since for all t, Sδ(t) converges to S(t) a.s., it
converges also in distribution in the sense of the finite-dimensional distributions.
Then, we can use Lemma 1.3.2.7 and say that S has independent stationary
increments and S(0) = 0 a.s.

Then, we compute the characteristic function of S(t) for a fixed t ≥ 0. From
the independence of Poisson integrals with disjoint support we have

ϕSδ(t)(s) =E
[
exp

{
−t
∫
{δ<|x|≤1}

(1− ei sx + i sx)µ(dx)

}]
× E

[
exp

{
−t
∫
{|x|≥1}

(1− ei sx)µ(dx)

}]
=E

[
exp

{
−t
∫
{|x|>δ}

(1− ei sx + 1[0,1](|x|) i sx)µ(dx)
}]

which converges to (1.11) for δ ↓ 0.
We only need to prove the stochastic continuity. From (1.11) we have

ϕS(t)(s) = (ϕS(1)(s))
t → 1, t ↓ 0,

hence S(t)
d→ 0 which is a constant, therefore S(t)

P→ 0 as t ↓ 0.

It is important to remark the necessity of centering Sδ with the term tcδ. It is
necessary since in general for a Lévy measure we have that, from Proposition 1.2.1.4,
the term ∫

[0,t]×{δ<|x|<1}
xN(ds, dx)
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explodes a.s. as δ ↓ 0. If µ satisfies
∫
R(|x| ∧ 1)µ(dx) <∞ centering is not needed.

A simple corollary of Theorem 1.3.2.5 is the generalization of the Lévy-Itô
representation to a general Lévy process.

Theorem 1.3.2.8. Let X be a Lévy process. Then,

1. we can write
X(t) = ct+ σB(t) + S(t) (1.12)

where c ∈ R, σ > 0, B is the standard Brownian motion, S is defined as
in (1.10) and B, S are independent.

2. The decomposition (1.12) is uniquely determined by the characteristic triplet
(c, σ, µ) of the infinitely divisible distribution of X(1) of the Lévy-Khintchine
formula (1.7).

This theorem allows us to interpret a Lévy process as the sum of a deterministic
drift, a Brownian (and therefore continuous a.s.) component and a jump component.
Therefore, we define a pure jump Lévy process as a Lévy process with characteristic
triplet (c, 0, µ) which means that there is no Brownian component.

It is worth noticing that when the centering procedure is needed to define the
limit of compound Poisson processes, even if the value c of the characteristic triplet
is uniquely defined, it loses the meaning of slope of the linear drift. In fact, when
computing the compensation constant cδ in (1.8) we arbitrarily restrict the domain
to the set [−1, 1], but we could have chosen every other compact neighborhood of
the origin equivalently. This different choice would have changed the value c, hence
its interpretation as the mean slope of the process is meaningless

1.3.3 Some examples of Lévy Processes

We have already considered some important examples of Lévy processes: the linear
drift, the standard Brownian motion and the Poisson compound process, which, as
shown in Theorem 1.3.2.8, are the building blocks of any Lévy process. We now
consider some other examples and we compute explicitly their characteristic triplet
(c, σ, µ).

Example 1.3.3.1 (Gamma Lévy process). Consider a random variable Y which is
distributed following a Gamma(α, β) distribution, where α is the shape parameter
and β the rate parameter. Its characteristic function is given by

ϕY (s) =

(
1− i s

β

)−α
.
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We see immediately that Gamma(α, β) is an infinitely divisible random variable.
Indeed, for each m > 0 we can write(

1− i s

β

)−α
=

((
1− i s

β

)− α
m

)m

,

hence Y has the same distribution of the sum of m independent random variable,
each one Gamma( α

m
, β) distributed.

Since Gamma(α, β) is an infinitely divisible distribution, we can define a Lévy
process X which has X(1) ∼ Gamma(α, β). We call it a Gamma Process. In order
to write the characteristic triplet, we notice that the characteristic function of a
Gamma(α, β) random variable can be written equivalently as

ϕX(1)(s) =

(
1− i s

β

)−α
= exp

{
−α
∫ ∞
0

(1− ei sx)
e−βx

x
dx

}
Then, we let µ be

µ(dx) =
e−βx

x
dx,

and we compute c as

c = α

∫ 1

0

e−βx dx =
α

β
(1− e−βx).

The characteristic triplet (c, σ, µ) of a Gamma Lévy process is:

c =
α

β
(1− e−βx);

σ = 0;

µ(dx) =
e−βx

x
dx.

Example 1.3.3.2 (α-stable process). Consider for 0 < α < 2 the collection of
α-stable distributions Sα(σ, β, τ), defined by their characteristic functions

ϕY (s) = exp
{
−σ |s|α

(
1− i β tan

(πα
2

)
sgn(z)

)
+ i τs

}
for α ̸= 1,

ϕY (s) = exp

{
−σ |s|

(
1− i β

2

π
sgn(z) log(|z|)

)
+ i τs

}
for α = 1,

where σ > 0 is the scale parameter, β ∈ [−1, 1] is the skewness parameter and
τ the translation parameter. The infinite divisibility of α-stable distributions is
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evident for symmetric α-stable distributions, i.e. when β = τ = 0. In this particular
case the characteristic function is

ϕY (s) = e−σ
α|s|α ,

therefore, if Y ∼ Sα(σ, 0, 0) and m > 0 we can write Y as sum of m iid random
variables with distribution Sα(σm−1/α, 0, 0).

An α-stable process is a Lévy process X in which X(1) has an Sα(σ, β, 0)
distribution and its characteristic triplet is (c, 0, µα), where the Lévy measure is
given by

µα(dx) :=

{
C+x

−(α+1) dx x > 0

C−|x|−(α+1) dx x < 0

with
C± := Cα

1± β

2
σα, Cα :=

1− α

Γ(2− α) cos(πα
2
)
. (1.13)

Example 1.3.3.3 (Tempered stable process). A modification of an α-stable process
with exponentially light tails is the tempered stable process. It has characteristic
triplet (0, 0, µ) where the Lévy measure is given by

µ(dx) :=

{
C+ e−Mx x−(Y+1) dx x > 0

C− e
Gx |x|−(Y+1) dx x < 0

for C, G, M > 0, 0 ≤ Y < 2.
If Y > 0 and C+ = C− := C, the corresponding Lévy process is called the

CGMY process from the initials of its creators Carr, German, Madan, Yor [Car+02].

Example 1.3.3.4 (Inverse Gaussian process). Let B be the standard Brownian
motion, we define the stopping time6

τs := inf{t > 0 : B(t) + bt > s}

as the first time that the Brownian motion with drift b crosses s. Given the
continuity property of the Brownian motion we have B(τs) + bτs = s a.s.. This
process has a.s. non-decreasing paths, thus it is an example of subordinators, i.e.
Lévy processes with a.s. non-decreasing paths. The characteristic triplet is

c = −2

b

∫ b

0

ey
2/2

√
2π

dy;

σ = 0;

µ(dx) =
1√
2πx3

e−
b2x
2 dx on x > 0.

6with respect to the filtration generated by B(t) with t ≤ s
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For a given s we can also write an analytic expression for the pdf of τs:

µs(dx) =
s√
2πx3

exp

{
sb− 1

2

(s2
x

+ b2x
)}

.



Chapter 2

Simulation of Lévy processes

We start by considering approaches that are taken to generate sample paths of two
very simple Lévy processes: the Brownian motion and the homogeneous Poisson
process.

Let B be a standard Brownian motion and thn := nh be the points of an
equi-spaced grid on the time axis. We call Bh

n a sample of B at time thn. Since
increments of the Brownian motion are independent, simulations of paths is based
on generating the Gaussian increments

∆h
nB := Bh

n −Bh
n−1 ∼ N (0, h)

for which there exist efficient algorithms such as the Box-Muller algorithm [BM58].
Then, the value Bh

n is computed as the sum of all the increments. This method
provides an exact simulation of the Brownian motion at discrete time points.

The approach taken when computing the homogeneous Poisson process N with
rate λ is completely different. We are in fact interested in generating the exact
time at which a jump occurs. There exist two possible methods:

• sample the interarrivals times Ti directly as iid exponential random variables
with rate λ;

• if we are only interested in simulating N until a given time T , Observa-
tion 1.2.1.2 suggests a sampling algorithm. First, we can sample N(T ) ∼
Pois(λT ), then we generate N(T ) jump times Γi as iid random variables with
common distribution Unif(0, T ).

In the following, we approach simulations of a Lévy process similarly to sim-
ulations of Brownian motion, namely we consider a grid of time points (usually
equi-spaced) in which we want to simulate the value of a path of the Lévy process.
Therefore, we seldom consider the problem of exactly identifying the time of a
(big) jump, even if it is sometime stressed the possibility of doing that. Given a

20
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Figure 2.1: Sample paths of standard Brownian motion and homogeneous Poisson
process

grid, the generation of the paths of a Lévy process only requires to sample the
increments. Then, the problem of simulation of Lévy processes became equivalent
to the problem of sampling from an infinitely divisible distribution. This, depending
on the properties of the distribution, can be more or less challenging.

In order to understand when sampling is more or less difficult, let us make a
classification of infinitely divisible distributions depending on their Lévy measure
µ.

• µ(R) < ∞. In this case the jump part of the Lévy process is a compound
Poisson process S(t) =

∫
[0,t]×R xN(ds, dx), where N is a PRM(Leb × µ).

Simulations of these processes are very easy if it is easy to sample from µ
µ(R) .

We talk about this case in Subsection 2.1.3.

•
∫
R(|x| ∧ 1) dx <∞ but µ is not finite. Here Lévy paths have infinitely many

jumps but, despite this, the jump part of the process still has finite variation
paths which helps with the convergence of the methods.

•
∫
R(|x| ∧ 1) dx =∞. In this situation Lévy paths have infinitely many jumps

and the jump part of the process has infinite variation path.

Even if distributions of the second and third kind are in general more difficult
to sample from, there are some lucky cases in which generation of random variates
from them if fairly easy. Examples are distributions of which we know explicitly the
pdf such as the Gamma or the Lognormal distribution. There exist other examples
in which, although there is no analytic expression of the distribution, there are
some specific algorithms that make sampling easy. This is the case for α-stable
distributions.
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2.1 Sampling algorithms
This section deals with some sampling algorithms used for generating random
variates from infinitely divisible distributions, hence for simulation of Lévy process
paths. The first few algorithms are used for some lucky distributions in which
sampling is fairly easy and efficient. The last class of algorithms is thought for
dealing with the general case.

2.1.1 Explicit marginal distribution

The first class of algorithms is about sampling from infinitely divisible distributions
of which we know an analytic expression of the distribution. Many well-known
distributions belong to this category, for instance Normal, Gamma, Log-normal,
Inverse Gaussian, Student’s t, geometric, etc. . . .

For many of these distributions there exist ad-hoc algorithms, but even if that
is not the case it is always possible to resort to inversions or Acceptance-Rejection
methods. An overview of these methods can be found at [AG07] Chapter 2.

2.1.2 α-stable distribution

Sampling from α-stable distributions looks like a non-trivial task. In fact, there
exists an analytic form of the pdf only for symmetric distribution with α = 1 (the
Cauchy distribution) and when α = 1

2
and β = ±1 (Lévy distribution). However, an

efficient sampling algorithm for any distribution Sα(1, β, 0) for all values of α ∈ (0, 2)
and β = [−1, 1] has been invented by Chambers, Mallows and Stuck [CMS76]. The
algorithm for Y ∼ Sα(1, β, 0) is the following:

• sample U ∼ Unif(−π
2
, π
2
) and an independent W ∼ Exp(1)

• If α ̸= 1 compute

Y =
(
1 + ζ2

) 1
2α sin(α(U + ξ))

cos(U)
1
α

(
cos(U − α(U + ξ))

W

) 1−α
α

,

else if α = 1 compute

Y =
1

ξ

[(π
2
+ βU

)
tan(U)− β log

( π
2
W cos(U)
π
2
+ βU

)]
,

where
ζ := −β tan

(πα
2

)
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and

ξ :=

{
1
α
arctan(−ζ) for α ̸= 1

π
2

for α = 1.

For Y ∼ Sα(σ, β, µ) it is sufficient to generate from the preceding algorithm an
X ∼ Sα(1, β, 0) and define Y as:

Y =

{
σX + µ for α ̸= 1

σX + 2
π
βσ log(σ) + µ for α = 1.

Observation 2.1.2.1. The Chambers-Mallows-Stuck algorithm for α = 2 and
β = 0 reduces to the Box-Muller algorithm for sampling from Normal distributions.

2.1.3 Finite Lévy measure

If the Lévy measure of a Lévy process is finite, the jump part reduces to a compound
Poisson process. In fact, call S the pure jump part of a Lévy process with a finite
Lévy measure µ and N be a PRM(Leb× µ), for each t > 0, then we can write

S(t) =

∫
[0,t]×R

xN(ds, dx) =
m∑
i=1

Zi

where m ∼ Pois(t× µ(R)) and for Zi
iid∼ F := µ

µ(R) independent of m.
If we want to simulate S until a fixed time T > 0, a straightforward procedure

is the following:

1. sample m ∼ Pois(T · µ(R));

2. for i = 1, . . . ,m sample the jump times Ui
iid∼ Unif(0, T )1;

3. for i = 1, . . . ,m sample the jump sizes Zi
iid∼ F ;

4. for any t ≤ T compute S(t) =
∑m

i=1 Zi1{Ui≤t}.

It is also interesting to see the procedure for a general Lévy process X with
both a Brownian component B and a compound Poisson component S. There are
two possible approach. The first is to compute the sample path on a predefined
time grid {th}h=1,...,m, that we assume equi-spaced, as follows:

1. simulate B as explained at the beginning of the chapter;
1That the distribution of Ui is uniform conditional to m follows from Observation 1.2.1.2
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2. sample the increments of the Poisson compound process

S
(
thn
)
− S

(
thn−1

)
=

∫ thn

thn−1

∫
R
xN(ds, dx)

d
=

∫ th1

0

∫
R
xN(ds, dx)

using the preceding algorithm;

3. compute X on the grid as the sum of the Brownian and the compound Poisson
component.

Using this approach, the information about the precise times in which a jump
occurs is lost. The second method deals with this problem enriching the (equi-
spaced) grid with the jump times and computing the increments of the Brownian
motion also on the enriched grid. A more extended explanation of this procedure
is in Section 3.5 of [Gla04].

2.1.4 Series representation of a Lévy process

There exists a class of sampling methods which exploits the representation of a
Lévy process in form of a series. For using these methods we will only assume that
the characteristic triplet (c, σ, µ) of an infinitely divisible distribution is known,
hence we know how to write its characteristic function in the form given by the
Lévy-Khintchine formula (1.7). We discuss this class of methods in the next section.

2.2 Series representation of a Lévy process
In this section we will discuss a range of methods which involve writing a pure
jump Lévy process X = {X(t) | t ∈ [0, 1]} as an infinite sum of random variables.
This is done by exploiting the property that the pure jump Lévy process S with
characteristic triplet (0, 0, µ) can be seen as limit of compound Poisson processes

S1/n(t) = −c1/nt+
∫
[0,t]×{ 1

n
≤|x|≤1}

xN(ds, dx) +

∫
[0,t]×{|x|≥1}

xN(ds, dx)

where c1/n and S1/n are defined in (1.8) and in (1.9) respectively, and N is a
(generalized) PRM(Leb× µ) that can be written explicitly as

N =
∞∑
i=1

ε(Ui,Ji), (2.1)

where, for i ≥ 1, Ui
iid∼ Unif(0, 1) is the i-th jump time and (Ji)i≥1 are iid random

variables independent of the jump times representing the jump sizes. Each pure
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jump Lévy process X with characteristic triplet (c, 0, µ) can be written as the a.s.
limit of

Xn(t) := c t+ S1/n(t)

which can be written more explicitly using (2.1) as

Xn(t) =
∑
i∈Λn

Ji 1{Ui≤t} − t bn

where Λn := {i ≥ 1 | |Ji| ≥ n−1} is the random subset of indices whose jump sizes
are greater than n−1 in absolute value and bn := c1/n − c. This representation
becomes useful for simulation when we replace the random set Λn with a nonrandom
set of indices of the form {1, . . . ,m}, and write X as the series

X(t) = lim
m→∞

m∑
i=1

(Ji1{Ui≤t} − tci) a.s.,

where (ci)i≥1 is a suitable sequence of centers.
Let us discuss some ways of sampling the sequence (Ji)i≥1, the problem of

computing the sequence of centers (ci)i≥1 will be discussed later. From now on we
will use the following notation

• (Ui)i≥1 is an iid sequence of Unif(0, 1) random variables

• (Γi)i≥1 is the sequence of the partial sums of iid standard exponential random
variables which are independent of (Ui)i≥1.

Proposition 1.2.2.1 will be used in all of the following methods, and we stick to its
notation. However, this leads to an ambiguity on the letter µ, which might refer to
both the Lévy measure and the mean measure of M . Thus, we decided to denote
here as Q the Lévy measure of the distribution from which we want to sample.

2.2.1 Inverse Lévy measure method

Suppose the Lévy measure Q is concentrated on (0,∞). We define the inverse
Lévy measure as the function Q← such that

Q←(γ) := inf{x > 0 | Q([x,∞)) < γ}, γ > 0.

Call M :=
∑∞

i=1 ε(Ui,Γi) a PRM(µ) on the space S = [0, 1]× (0,∞) where µ =
Leb× Leb. Let T = [0, 1]× (0,∞) and h : S → T be the function defined by

h(u, γ) := (u,Q←(γ)).

Write Ji = Q←(Γi). From Proposition 1.2.2.1 we get

N =
∞∑
i=1

εh(Ui,Γi) =
∞∑
i=1

ε(Ui,Ji) a.s.
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2.2.2 Thinning method

Let F ≪ Q be a probability distribution on R and, for i ≥ 0, Vi
iid∼ F independent

of (Ui)i≥1 and (Γi)i≥1. Consider a PRM(µ) M :=
∑∞

i=1 ε(Ui,Γi,Vi) on the space
S = [0, 1]× (0,∞)× R where µ = Leb × Leb × F . Set T = [0, 1] × [0,∞) and
h : S → T the function defined by

h(u, γ, v) := (u,H(γ, v)),

where

H(γ, v) =

{
v if dQ

dF
(v) ≥ γ

0 otherwise

or equivalently H(γ, v) = v1{dQ
dF

(v)≥γ}. Then, renaming Ji = H(Γi, Vi), from
Proposition 1.2.2.1 we get

N =
∞∑
i=1

εh(Ui,Γi,Vi) =
∞∑
i=1

ε(Ui,Ji) a.s.

which is a PRM(ν) on S with ν = Leb×Q.

2.2.3 Rejection method

Let X0 be a Lévy process on R such that its Lévy measure Q0 satisfies

dQ
dQ0

≤ 1.

We represent the (generalized) Poisson Process associated to X0 as

N0 =
∞∑
i=1

ε(Ui,J0
i )

for a suitable choice of iid random variables (Ji)i≥1 independent of (Ui)i≥1. We
define a PRM(µ) M on the space S = [0, 1]×R× [0, 1] where µ = Leb×Q0 × Leb.
Then, for T = [0, 1]× R and h : S → T we define

h(u, j0, v) := (u,H(j0, v)),

where

H(j0, v) :=

{
j0 if dQ

dQ0
(j0) ≥ v

0 otherwise
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or equivalently H(j0, v) := j01{ dQ
dQ0

(j0)≥v}. Now, for i ≥ 1 we set Vi
iid∼ Unif(0, 1)

independent of (Ui)i≥1 and (J0
i )i≥1. We rename Ji = H(J0

i , Vi). From Proposi-
tion 1.2.2.1 we get

N =
∞∑
i=1

εh(Ui,J0
i ,Vi) =

∞∑
i=1

ε(Ui,Ji) a.s.

which is a PRM(ν) on S with ν = Leb×Q.

2.2.4 Shot noise method

The following method is based on the idea of writing an infinitely divisible distri-
bution as the marginal distribution of a (generalized) shot noise process. A shot
noise process can be imagined as a stochastic process where the present value of
the process is computed as the sum of effects originating from a discrete set of past
events and where the effect of an event in past is a decreasing function of time.
This means that the more time passes from the moment of the event, the less is its
effect on the present time. To write this idea in mathematical form we need the
concept of probability kernel.

Definition 2.2.4.1 (Probability kernel). Let (X,A) and (Y,B) be two measurable
spaces. A map σ : X × B → [0, 1] is called a probability kernel if

1. for each B ∈ B, x 7→ σ(x,B) is A-measurable;

2. for each x ∈ X, σ(x, ·) is a probability measure on (Y,B).

Suppose now to write the Lévy measure Q as

Q(A) =
∫ ∞
0

σ(r;A) dr, A ∈ B(R),

where σ is a probability kernel. Let (Ji)i≥1 be a sequence of conditionally indepen-
dent random variables given (Γi)i≥1 such that

P(Ji ∈ A | (Γi)i≥1, (Jj)j ̸=i) = σ(Γi, A), A ∈ B(R).

If we interpret Ji as the effect on the present time of an event i happened Γi

units of time ago, this means that the probability of this effect being of a certain
amount depends only on the time it occurred. We define a PRM(µ) M on the
space S = [0, 1]× (0,∞)× R where

µ([0, t], [0, γ], A) =

∫
u∈[0,t]

∫
r∈[0,γ]

σ(r;A) dr du, t, γ > 0, A ∈ B(R).



CHAPTER 2. SIMULATION OF LÉVY PROCESSES 28

Then, for T = [0, 1]× R we define h : S → T

h(u, γ, j) := (u, j)

From Proposition 1.2.2.1 we get

N =
∞∑
i=1

εh(Ui,Γi,Ji) =
∞∑
i=1

ε(Ui,Ji) a.s.

which is a PRM(ν) on T with ν = Leb×Q.
Coherently with all the previous methods we can write Ji = H(Γi, Vi) for a

suitable function H and a collection of iid random variables (Vi)i≥1 independent of
(Γi)i≥1 and (Ui)i≥1. In order to show this we state the following Lemma from [Kal02]

Lemma 2.2.4.2 (Lemma 2.22 from [Kal02]). Let σ be a probability kernel from a
measurable space S to a Borel space T . Then, there exists some measurable function
H : S × [0, 1]→ T such that if V ∼ Unif(0, 1), then H(r, V ) has distribution σ(r, ·)
for every r ∈ S.

The explicit expression of H is H(r, v) = sup{x ∈ [0, 1] | σ(s, [0, x]) < t} for all
r ∈ S and v ∈ [0, 1].

Observation 2.2.4.3. All the previous methods can be written in the form of a
shot noise. For instance:

• the inverse Lévy measure method σ(r;A) = εQ←(r)(A);

• the thinning method σ(r; dx) = F (dx)1{dQ
dF

(x)>r}.

2.2.5 Bondesson’s method

The following method is a particular form of the shot noise method where the
probability kernel is taken as σ(r;A) = F ( A

g(r)
) where F is a probability distribution

on R and g : [0,∞)→ [0,∞) is a non-increasing function. It is one of the earliest
series representation method in literature, it was proposed by Bondesson in [Bon82].

Set Vi
iid∼ F for i ≥ 0 independent of (Γi)i≥1 and (Ui)i≥1. Consider a PRM(µ)

M :=
∑∞

i=1 ε(Ui,Γi,Vi) on the space S = [0, 1]× (0,∞)×R where µ = Leb×Leb×F .
If we define T = [0, 1]× [0,∞) and h : S → T as the function defined by

h(u, γ, v) := (u, g(γ)v).

then, renaming Ji := g(Γi)Vi, from Proposition 1.2.2.1 we get

N =
∞∑
i=1

εh(Ui,Γi,Vi) =
∞∑
i=1

ε(Ui,Ji) a.s.

which is a PRM(ν) on S where ν = Leb×Q.
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2.2.6 How to choose the centering sequence

At the beginning of the section we said that when the Lévy process is of infinite
variation we need to center the series with a suitable sequence of (bn)n≥1 such that
the series representation of a Lévy process

Xn(t) =
n∑

i=1

Ji 1{Ui≤t} − t bn

converges a.s. to X(t). Here we quickly state a possible choice of this sequence.
First we notice, that in order to address this problem we can restrict ourselves

to the shot noise representation since all the other methods can be represented as
a shot noise. Given this assumption, the centering sequence proposed in [Ros01] is

bn := A(n)− A(n− 1)

where A is defined as

A(s) :=

∫ s

0

∫
|x|≤1

xσ(r; dx) dr.

This choice has in general nothing in common with cδ in (1.8). The only exception
is the inverse Lévy method and its variants where

A(s) =

∫ 1

Q←(s)

xQ(dx) = cQ←(s),

while for all the other methods it is more difficult to find an equivalent characteri-
zation of A(s). We also notice that the sequence of (bi)i≥1 has the good property
that it does not depend on the realization of the random sequences (Γi)i≥1, (Ui)i≥1
and (Vi)i≥1. Hence, it can be computed once before all simulations and be used for
the generation of all the random variables.

2.2.7 Speed of convergence

In order to make the series representation useful for simulations, we need to truncate
the series at a finite value n. To have an idea of what is a good value of n for
simulation purposes we need to predict what might be the value of a chosen error
criteria.

We first discuss the problem when X is of finite variation. Without loss of
generality we study the error at time 1, thus we change the notation, denoting
X(1) as X. The value we want to compute is

E [ |∆nX| ] = E [ |X −Xn| ] = E

[ ∣∣∣∣∣
∞∑

i=n+1

Ji

∣∣∣∣∣
]
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in the context of noise shot method this becomes equivalent to computing

E
[ ∣∣∣∣∫ ∞

Γn

∫
R
xσ(r; dx) dr

∣∣∣∣ ] ≤ E
[ ∫ ∞

Γn

∫
R
|x|σ(r; dx) dr

]
From the right-hand side we notice that the problem can be studied without loss
of generality on subordinators, where we have

E [ ∆nX ] = E
[ ∫ ∞

Γn

∫
R
xσ(r; dx) dr

]
,

but since the problem of computing the expectation is usually analytically infeasible
we need some estimates. The tool we need is the following standard result from
probability theory.

Theorem 2.2.7.1 (Law of iterated logarithm). Let (Xn)n≥1 be a sequence of iid
random variables with E [Xn ] = 0 and Var(Xn) = 1. Let Sn := X1 + · · · + Xn.
Then

lim sup
n→∞

|Sn|√
2n log log n

= 1 a.s. (2.2)

See [Pet95] for the proof. Let consider the variable Γn = E1 + · · ·+ En where
Ei are standard exponential random variables. We can use theorem 2.2.7.1 on
Sn := Γn − n = (E1 − 1) + · · ·+ (En − 1). Then we can say that for n sufficiently
big there exist ε > 0 such that

n− (1 + ε)
√

2n log log n ≤ Γn ≤ n+ (1 + ε)
√

2n log log n a.s. (2.3)

Since e(n) :=
∫∞
n

∫
R xσ(r; dx) dr is a monotone non-increasing function of n we can

write

e(n+ (1 + ε)
√

2n log log n) ≤ e(Γn) ≤ e(n− (1 + ε)
√

2n log log n) a.s.

Then, we can compute a superior and inferior bound on the order of convergence.
The speed of convergence depends much on the distribution and on the method

used to compute to represent the infinitely divisible random variable. Some examples
and numerical tests are provided at the end of the chapter.

In the case of infinite variation the error cannot be computed this way, since the
value of E [ ∆nX ] does not converge absolutely. However, it is possible to compute
the mean squared error

E
[
(X −Xn)

2
]
= E

[ ∫ ∞
Γn

∫
R
x2σ(r; dx) dr

]
.

Using the same argument as before we can estimate e2(Γn) :=
∫∞
Γn

∫
R x

2σ(r; dx) dr
as

e2(n+ (1 + ε)
√

2n log log n) ≤ e2(Γn) ≤ e2(n− (1 + ε)
√

2n log log n) a.s.
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2.3 Dealing with small jumps
Let us now consider the case of a pure jump Lévy process J . Any method that use
the series representation for the simulation of Lévy processes requires a truncation.
For instance, when using the inverse Lévy measure and its variations, truncating at
a value n means that we do not consider jumps that are in absolute value smaller
than ε(n) := Q←(Γn), we denote this approximation J

(0)
n .

A possible refining strategy for this approximation is to add to J
(0)
n the expected

value µε(n) of the sum of all the (infinite) jumps smaller than ε(n). Which means
that if we call

µε :=

∫
{|x|<ε}

xQ(dx),

the new approximation is J
(1)
n = J

(0)
n + tµε(n).

A more refined proposal is to approximate small jumps with a Brownian Motion
with drift µε(n) and variance σ2

ε(n) :=
∫
{|x|<ε(n)} x

2Q(dx). To make this proposal
mathematically rigorous we need to prove that

J − J
(0)
n − tµε(n)

σε(n)

d→ B, (2.4)

where B is a standard Brownian motion. The problem here is that for n→∞ the
variance goes to 0 and we might need some control over the speed of its convergence.
In [AR01] it is shown that the condition σcσε∧ε ∼ σε when ε → 0 for all c > 0 is
sufficient and necessary for (2.4). In absence of atoms near 0 this is equivalent to
the more intuitive condition

ε

σε

→ 0, (2.5)

i.e., σε goes to 0 slower than ε. This condition is verified, for instance, by α-stable
and CGMY distributions, but not by Gamma distributions. Based on this we
define a new possible approximation of J as

J (2)
n = J (0)

n + tµε(n) + σε(n)B.

2.4 Three examples of series representation
In this section we discuss simulations of Gamma random variables, α-stable random
variables and CGMY random variables using the series representation of Lévy
processes. When possible we discuss the speed of convergence and we show that in
the case of α-stable and CGMY distributions the speed convergence depends on the
parameter α (Y in the case of CGMY), hence this method might be competitive
only for very small value of those parameters.
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2.4.1 Gamma distribution

The first example we provide is the representation of Gamma random variables
which has characteristic triplet (0, 0,Q), where

Q(dx) = a
ex/b

x
,

a is the shape parameter and b is the rate parameter of a Gamma distribution.
In [Ros01] there are provided four different representations. The first uses the

inverse Lévy measure method, we have

X(t) =
∞∑
i=1

bE−11

(
Γi

a

)
1{Ui≤t}

where E−11 is the inverse of the exponential integral function

E1(x) =

∫ ∞
1

e−tx

t
.

The second representation is based on the Bondesson’s method using Vi ∼ Exp(1)
and g(γ) = e−

γ
a . The representation is the following

X(t) =
∞∑
i=1

be
Γi
a Vi 1{Ui≤t}

The third representation is based on the thinning method using Vi ∼ Exp(b),
hence F (dx) = 1

b
e

x
b and the Radon-Nicodym derivative is

dQ
dF

(x) =
ba

x
.

Then, calling

{τ1 ≤ τ2 ≤ · · · } =
{
i ≥ 1 | ba

Vi

≤ Γi

}
we get the representation

X(t) =
∞∑
i=1

Vτi 1{Uτi≤t}.

The fourth representation is based on the rejection method using as Lévy
measure

Q0(dx) =
ab

x(x+ b)
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from which we can sample using the inverse Lévy measure method with

Q0
←(γ) =

b

e
γ
a − 1

.

The jumps are selected using the Radon-Nicodym derivative
dQ
dQ0

(x) = e−
x
b

(
1 +

x

b

)
then, calling

{τ1 ≤ τ2 ≤ · · · } =
{
i ≥ 1 | e−

J0
i
b

(
1 +

J0
i

b

)
≤ Vi

}
we get the representation

X(t) =
∞∑
i=1

J0
τi
1{Uτi≤t}.

The Gamma Lévy process is a subordinator; it is easy to discuss the order of
convergence of the error for two of the former methods.

In the case of Bondesson’s method, calling γn = n − (1 + ε)
√
2n log log n, we

have for n sufficiently big and for ε > 0

E [ ∆nX ] ≤
∫ ∞
γn

∫ ∞
0

xF

(
dx

g(γ)

)
dγ

=

∫ ∞
γn

∫ ∞
0

x
1

b
e−

x
b
e
γ
a dx dγ

= b

∫ ∞
γn

∫ ∞
0

ye−ye
γ
a dy dγ

= b

∫ ∞
γn

e−
γ
a

∫ ∞
0

e−ye
γ
a dy dγ

= b

∫ ∞
γn

e−
γ
a dγ

= abe−
γn
a ∼ O(e−

n−(1+ε)
√
2n log logn
a ),

so we get exponential convergence.
In the case of the rejection method we have

E [ ∆nX ] ≤
∫ Q0

←(γn)

0

xQ(dx)

=

∫ b

eγn/a−1

0

ae
x
b dx

=
a

b
(e

1

(eγn/a−1) − 1) ∼ O(e−
n−(1+ε)

√
2n log logn
a ),



CHAPTER 2. SIMULATION OF LÉVY PROCESSES 34

0 200 400 600 800 1000
n

10 285

10 247

10 209

10 171

10 133

10 95

10 57

10 19

nX

a=1
a=3
a=9

(a) Bondesson’s Method
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(b) Rejection Method

Figure 2.2: Semilog-y plot of the error for Bondesson’s and Rejection method for
Gamma random variables

which is again an exponential convergence. The exponential order of convergence
and the dependence on the shape parameter a is shown in figure 2.2. It is evident
in figure 2.3 how well Bondesson’s method approximates the distribution even for
small value of n.

2.4.2 α-stable distribution

The Lévy measure of α-stable2 processes have a very simple form, this property
allows us to find a series representation based on a simple variation of the inverse
Lévy measure method. Consider an α-stable Lévy process X with Lévy Measure

Q(dx) = (C+1{x>0} + C−1{x<0}) |x|−(α+1) dx

where C+ and C− where defined in (1.13). We call ν the Lévy measure on (0,+∞)
defined as

ν(dx) := (C+ + C−)x
−(α+1) dx = Cα x

−(α+1)

and we consider the inverse Lévy measure

ν←(γ) =

(
αγ

Cα

)− 1
α

.

Then, when α ∈ (0, 1), which corresponds to the finite variation case, or β = 0,
which corresponds to the symmetric case, a series representation is

X(t) =
∞∑
i=1

ν←(Γi)Vi 1{Ui<t} =

(
Cα

α

) 1
α
∞∑
i=1

Γ
− 1

α
i Vi 1{Ui<t}

2In this subsection we restrict without loss of generality to Sα(1, β, 0).
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(c) Q-Q plot n = 10
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(d) Q-Q plot n = 1000
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(e) Lévy path n = 10
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(f) Lévy path n = 1000

Figure 2.3: Simulations of a Gamma Lévy process X using Bondesson’s Series
representation truncated at n = 10 (left column) and n = 1000 (right column).
The first row represents the sample density of 10000 samples of X(1), the second
row the Q-Q plots and the third one example of sample paths.
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where (Vi)i≥1 are iid random variable independent of (Γi)i≥1 and (Ui)i≥1 such that
P(Vi = ±1) = 1±β

2
.

If α ∈ [1, 2) and β ̸= 0 we need a compensation. The series representation
becomes

X(t) =
∞∑
i=1

{(
Cα

α

) 1
α

Γ
− 1

α
i Vi 1{Ui<t} − bi

}
with bi := A(i)− A(i− 1) and

A(n) =

C+−C−
1−α

[
1−

(
αn
Cα

) 1−α
α

]
if α ∈ (1, 2)

C+−C−
α

log(αn
Cα

) if α = 1.

When α ∈ (0, 1) we can study the order of convergence of the mean absolute
error. Calling as before γn = n− (1 + ε)

√
2n log log n, we see that

E [ |∆nX| ] ≤

∣∣∣∣∣
∫ ν←(γn)

−ν←(γn)

xQ(dx)

∣∣∣∣∣ ≤
∫ ν←(γn)

−ν←(γn)

|x| Q(dx)

=

∫ ν←(γn)

0

x ν(dx) = Cα

∫ (αγn
Cα

)
− 1

α

0

x−α dx

=
C

1/α
α

1− α
(αγn)

(1− 1
α
) ∼ O(n(1− 1

α
)).

Thus, we see that for α = 1
2

we have a linear convergence, for α = 1
3

quadratic
convergence and so on. We can see this behavior in figure 2.4.

In figure 2.5 we can see the slow convergence in the case of α = 0.9. Even with
n = 100000 the simulations are very far from being accurate.

When α ∈ (0, 2) it is possible to study the mean squared error and with similar
computations as before we get

E
[
∆nX

2
]
≤
∫ ν←(γn)

−ν←(γn)

x2Q(dx)

=

∫ ν←(γn)

0

x2 ν(dx) = Cα

∫ (αγn
Cα

)
− 1

α

0

x−α+1 dx

=
C

2/α
α

2− α
(αγn)

(1− 2
α
) ∼ O(n(1− 2

α
)).

We can see this behavior in figure 2.6.
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Figure 2.4: Loglog plot of the error for α-stable random variables

For an α-stable variable it is also possible to use the heuristics of approximating
small jumps with Brownian motion. We need to compute the values of µν←(n) (only
in the case of finite variation) and σ2

ν←(n):

µν←(n) =

∫ ( αn
Cα

)−
1
α

0

(C+ − C−)x
−α dx =

C+ − C−
1− α

(
αn

Cα

)1− 1
α

,

σ2
ν←(n) =

∫ ( αn
Cα

)−
1
α

0

Cα x
−α+1 dx =

Cα

2− α

(
αn

Cα

)1− 2
α

.

We can see the effect of the correction in figure 2.7 for X ∼ S1.9(1, 1, 0) and 2.8 for
X ∼ S0.9(1, 1, 0) in both cases with n = 10.

2.4.3 CGMY distribution

The Lévy measure of a CGMY distribution is

Q(dx) = C(1{x>0}e
−Mx + 1{x<0}e

Gx) |x|−(Y+1) dx

and can be exploited for a rejection method representation using as Q0 the Lévy
measure of a symmetric α-stable distribution with α = Y and Cα = C

2
. The

Radon-Nikodym derivative is

dQ
dQ0

(x) = 1{x>0}e
−Mx + 1{x<0}e

Gx ≤ 1.
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(c) Q-Q plot n = 10
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(d) Q-Q plot n = 100000
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(e) Lévy path n = 10
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(f) Lévy path n = 100000

Figure 2.5: Simulations of an α-stable Lévy process X using Inverse Lévy measure
series representation truncated at n = 10 (left column) and n = 100000 (right
column). The first row represents the sample density of 1000 samples of X1, the
second row the Q-Q plots and the third an example of the sample paths.
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Figure 2.6: Loglog plot of the squared error for α-stable random variables
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(a) Q-Q plot no correction
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(b) Density no correction
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(c) Q-Q plot Brownian correction
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(d) Density Brownian correction

Figure 2.7: Simulations of an α-stable random variables X ∼ S1.9(1, 1, 0) without
corrections (up) and using the Brownian correction (down).
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(a) Q-Q plot no correction
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(c) Q-Q plot mean correction
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(e) Q-Q plot Brownian correction

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 Sample Density
Theoretical Density

(f) Density Brownian correction

Figure 2.8: Simulations of an α-stable random variables X ∼ S0.9(1, 1, 0) without
corrections (up), correcting with the mean of small jumps (mid) and using both
mean and Brownian correction (down).
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(a) α-stable Lévy process path
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(b) CGMY Lévy process path

Figure 2.9: Realization of a sample path of an α-stable Lévy process and the
corresponding path of the CGMY Lévy process computed using the rejection
method truncated at n = 106

In figure 2.9 there is a comparison on the path of an α-stable Lévy process and
the corresponding path of the CGMY Lévy process computed using the rejection
method.

When x is small enough dQ
dQ0 (x) ∼ O(1), hence this method inherits the conver-

gence property of the inverse method for α-stable distributions, as can be seen in
figure 2.10.

2.5 Simulation of Lévy-driven stochastic differen-
tial equations

In the context of simulation of Lévy processes it is interesting to simulate paths
of solutions of stochastic differential equations driven by a Lévy process. In order
to do so it is necessary to provide some theoretical background. We need to give
meaning to stochastic integrals driven by Lévy processes, give some conditions to
the equation in order to guarantee the existence and the uniqueness of a solution and
then find some suitable numerical methods and estimate their order of convergence.

The first problem is the following: given a Lévy process X and a stochastic
process H, what is the meaning of

∫ t

0
H dX? The approach cannot be naive since

Brownian Motion is an example of a Lévy process and this means that path by
path Lebesgue-Stieltjes integral might be ill-defined. We know anyway that at least
in the case of a compound Poisson process that Lebesgue-Stieltjes integration is
possible.

Theory of integration over Lévy process is not in the scope of this thesis, it is
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Figure 2.10: Loglog plot of the error for CGMY random variables

anyway important to say that Lévy processes are semimartingales, therefore it is
possible to define an integral driven by them that have two fundamental properties:
linearity and a form of bounded convergence theorem; see [Pro13].

It is also interesting that there exists some conditions that allows to define
the integral in a naive way. The condition required is the boundedness of the
p-variation for a value 0 < p < 2. The p-variation, 0 < p <∞, of a real function f
on an interval [a, b] is defined as

vp(f) = vp(f ; [a, b]) = sup
κ

n(κ)∑
i=1

|f(xi)− f(xi−1)|p ,

where the supremum is taken over all partitions κ of [a, b] and n(κ) is the number of
elements in the partition. It is possible to prove that symmetric α-stable processes
have bounded p-variation for all p > α; see [MN00] for a treatment of this topic for
stochastic differential equations.

A Lévy-driven stochastic differential equation is usually written in the form

dY (t) = a(t, Y (t)) dt+ b(t, Y (t)) dX(t) ,

which is a notation expressing the following integral equation

Y (t) = Y (0) +

∫ t

0

a(s, Y (s)) ds+

∫ t

0

b(s, Y (s)) dX(s) ,

where the integrator X is a Lévy Process.
For a general SDE driven by a semimartingale, therefore also for Lévy-driven

SDE, we have the following theorem:
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Theorem 2.5.0.1. Let Z be a semimartingale with Z(0) = 0, Ft be the filtration
generated by Z(t) and f : R+ × Ω× R→ R be such that

1. for fixed x, (t, ω) 7→ f(t, ω, x) is càglàd3 and adapted to the filtration generated
by Z;

2. for each (t, ω), |(t, ω, x)− f(t, ω, y)| ≤ K(ω) |x− y| for some finite random
variable K.

Let Y0 be finite and F0 measurable. Then the equation

Y (t) = Y0 +

∫ t

0

f(s, ·, Y (s−)) dZ(s)

admits a solution. The solution is unique and it is a semimartingale.

The simplest numerical method for the solution of Lévy-driven SDE is the
Euler Method : given a discrete (equi-spaced) grid thn := nh the approximation Y h

n

is computed iteratively as

Y h
n = Y h

n−1 + a(thn−1, Y
h
n−1)h+ b(thn−1, Y

h
n−1)[X(thn)−X(thn−1)],

hence in order to use this method it is necessary to know how to sample the
increments of the Lévy process X, which might be possible to do only approximately.
Higher order methods are in general not used since they require the computation
of the quadratic variation, which is in general not trivial.

We would like to study the error of this method. There exist two types of error
criteria:

• Strong errors. The following criteria belong to this category: E
[ ∥∥Y h

N − Y (T )
∥∥ ],

E
[ ∥∥Y h

N − Y (T )
∥∥2 ] and E

[
sup0≤t≤T

∥∥∥Y h
[t/h] − Y (t)

∥∥∥ ];
• Weak errors. A weak error criterion have the form

∣∣E [ g(Y h
N)
]
− E [ g(Y (T )) ]

∣∣
where g is test function satisfying some smoothness condition.

We concentrate on weak errors of the form
∣∣E [ g(Y h

N)
]
− E [ g(Y (T )) ]

∣∣. It has
been shown in [PT97] that an Euler scheme for a Lévy-driven equation of the form

dY (t) = f(Y (t−)) dX(t)

is of order O(n−1) if
3with left-continuous path and well-defined right limits, from the French "continue à gauche,

limit à droite"
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• f ∈ C4 and all derivatives up to order 4 of f are bounded;

• g ∈ C4 and moreover |∂Ig(x)| = O(∥x∥M
′
) for |I| = 4 and some M ′ ≥ 2;

•
∫
{∥x∥≥1} ∥x∥

γQ(dx) < ∞ for 2 ≤ γ ≤ M ′∗ := max(2M ′, 8), where Q is the
Lévy measure of X;

• Y0 ∈ LM ′∗(Ω).

It is worth noticing that an SDE driven by α-stable processes do not satisfy the
third condition.

In [Jac+05] the previous results are extended to the case of Euler schemes where
increments are sampled only approximately. This is for example the case when
a truncated series representation of a Lévy process is used for sampling from an
infinitely divisible distribution. The condition on the sampling algorithm is that,
calling ζn1 the approximation of the increment for a step wide n−1

|δn(h)| =
∣∣∣∣E [h(ζn1 ) ]− E

[
h

(
Y

(
1

n

))]∣∣∣∣ ≤ Kun

n
∥h∥E

for some functions h in a normed space DE with norm ∥·∥E. Then, under some
smoothness conditions we get∣∣E [ g(Xh

N)
]
− E [ g(X(T )) ]

∣∣ ∼ O(un ∧ n−1)

Even in this case α-stable processes are excluded.
We now show in figure 2.11 some sample paths of the following two equations

using the Euler scheme:

• Langevin Equation: dY (t) = −βY (t) dt+ dX(t),

• Geometric Lèvy processs : dY (t) = cY (t) dt+ γY (t−) dX(t).

They both satisfy the conditions in Theorem 2.5.0.1. The solution of the Langevin
equation is also called Ornstein-Uhlenbeck process which has the notable property
of being positive if Y0 > 0 and X is a subordinator.
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(d) Geometric Lévy CGMY

Figure 2.11: Simulation of sample paths of the solution of a Lévy-driven SDE.
The upper plots are two Ornstein-Uhlenbeck process paths with β = 1, in the left
one the subordinator is an α-stable process S0.9(1, 0, 0), in the right one it is a
Gamma Process where X(1) ∼ Gamma(3, 0.5). The lower plots are two Geometric
Lévy processes paths with c = 0.03 and γ = 0.2, in the left one Y is a symmetric
α-stable process where S0.9(0, 0, 0), in the right Y is a CGMY Process where
C = G = M = 1 and Y = 0.9.



Chapter 3

Simulations of max-stable processes

In this chapter we discuss the theory behind simulations of max-stable processes.
Max-stable processes are a class of stochastic processes that can be obtained as the
weak limit of the renormalized point-wise maxima of iid realizations of a stochastic
process. Similarly to what is done for the series representation of a Lévy process,
it is possible to find representations of max-stable processes in such a way that
an approximate simulation algorithm can be implemented easily truncating the
representation at a finite number n of terms. However, in contrast to the Lévy case
where truncating the series always provides an error, we will see that in this case it
is possible to obtain an exact simulation of a max-stable process.

3.1 Max-stable distributions
Before introducing the definition of max-stable processes, we need to explain what
max-stable distributions are and to explicitly state their connection with Poisson
random measures.

Definition 3.1.0.1 (max-stable distribution). Let (Xn)n≥1 be a sequence of iid
random variables with common distribution H and (Mn)n≥1 be the sequence of
partial maxima

Mn := max
i=1,...,n

Xi.

The non-degenerate distribution H is said to be max-stable if there exist two
sequences (bn)n≥1 and (cn)n≥1 with cn > 0, such that for each n ≥ 1 integer

c−1n (Mn − bn) ∼ H.

The following 3 examples provide a complete characterization of all possible

46
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types1 of max-stable distributions.

Example 3.1.0.2 (Fréchet distribution). Let α > 0 and H = Φα where

Φα(x) = e−x
−α

, x > 0.

Φα is called the Fréchet distribution and it is max-stable. In fact, taking cn = n
1
α

and bn = 0 we get

P(n−
1
αMn ≤ x) =P(Mn ≤ n

1
αx)

=(P(X1 ≤ n
1
αx))n

=(e−(n
1
α x)−α

)n = e−x
−α

= Φα(x).

Example 3.1.0.3 (Gumbel distribution). Let H = Λ where

Λ(x) = e−e
−x

, c ∈ R.

Λ is called the Gumbel distribution and it is max-stable. In fact, taking cn = 1 and
bn = log n we get

P(Mn − log n ≤ x) =P(Mn ≤ x+ log n)

=(P(X1 ≤ x+ log n))n

=(e−e
−(x+logn)

)n = e−e
−xn−1n = e−e

−x

= Λ(x).

Example 3.1.0.4 (Weibull distribution). Let α > 0 and H = Ψα where

Φα(x) = e−|x|
α

, x < 0.

Ψα is called the (negative) Weibull distribution and it is max-stable. In fact, taking
cn = n−

1
α and bn = 0 we get

P(n
1
αMn ≤ x) =P(Mn ≤ n−

1
αx)

=(P(X1 ≤ n−
1
αx))n

=(e−(n
− 1

α |x|)α)n = e−|x|
α

= Ψα(x).

.
1We say that a distribution F belongs to the type of a distribution H if there exist a ∈ R+

and b ∈ R such that for all x ∈ R, F (x) = H(ax+ b).
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Max-stable distributions have a role in the theory of maxima of iid random
variables similar to the role of α-stable distributions in the context of summation
of iid random variables. In fact, the generalized central limit theorem tells us that
a suitable normalization of the sum of iid random variables converges weakly to an
α-stable distribution while, in the context of maxima, it is possible to prove that, in
many cases, a suitable renormalization of the maximum of n iid random variables
converges weakly to a Fréchet, Gumbel or Weibull distribution as n goes to infinity.
Moreover, Fréchet, Gumbel or Weibull distributions are the only non-degenerate
distributions for which this is possible. This is the informal statement of the
Fisher–Tippett theorem [FT28]

Definition 3.1.0.5 (Maximum domain of attraction of a max-stable distribution).
Let H ∈ {Φα,Λ,Ψα} and F be a probability distribution. F is in the maximum
domain of attraction of H (we write F ∈ MDA(H)) if there exist two sequences
(an)n≥1 and (dn)n≥1 with an > 0 such that for each sequence of iid random variables
(Xn)n≥1 with common distribution F and x ∈ supp(H) we have

P
(
Mn − dn

an
≤ x

)
→ H(x)

where Mn = maxi=1,...,n Xi.

The properties of the domain of attraction are strictly linked to the weak
convergence of binomial point processes to a Poisson random measure. In fact,
consider a distribution F ∈ MDA(H) with normalization and centering sequence
(an)n≥1 and (dn)n≥1 respectively and a sequence (Xn)n≥1 of iid random variables
with common distribution F . We can define a sequence of binomial point processes
(Nn)n≥1 as

Nn =
n∑

i=1

εa−1
n (Xi−dn).

We have that

Nn(A) =
n∑

i=1

εa−1
n (Xi−dn)(A) ∼ Bin(n, Fn(A))

where Fn(A) := F (anA+dn). The link between the maximum domain of attraction
of a max-stable distribution and Poisson random measures is expressed in the
subsequent theorem.

Theorem 3.1.0.6. Consider a sequence (Xn)n≥1 of iid random variables with
common distribution F and let H be a max-stable distribution. Then the following
statements are equivalent:

1. F ∈ MDA(H);
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2. there exist two sequences (an)n≥1 and (dn)n≥1 with an > 0 such that

nF̄ (anx+ dn)→ − logH(x)

for every x ∈ suppH; 2

3. there exist two sequences (an)n≥1 and (dn)n≥1 with an > 0 such that the
binomial processes (Nn)n≥1 converge weakly to N , a PRM(µH) with state
space E = suppH and mean measure µH given by

µH((a, b]) = logH(b)− logH(a)

for a, b ∈ E.

Proof. We prove the following: 1⇔ 2, 2⇒ 3, 3⇒ 1.

1⇔ 2. The equivalence can be seen with some algebraic manipulations. The first
point means that there exist two sequences (an)n≥1 and (dn)n≥1 with an > 0
such that

P(a−1n (Mn − dn) ≤ 0) = (F (anx+ dn))
n = en log(1−F̄ (anx+dn)) → H(x)

This is equivalent to

n log(1− F̄ (anx+ dn))→ log(H(x)).

A Taylor expansion of log(1 + x) leads to

−n(F̄ (anx+ dn)(1 + o(1)))→ log(H(x))

which is equivalent to point 2.

2⇒ 3. From example 1.2.1.5 it is sufficient to prove that nFn converges vaguely
to µh. From point 2 we know that

nFn((x,∞))→ µH((x,∞)).

The intervals (x,∞) for x ∈ supp(H) generate the Borel sets in supp(H),
hence we get

nFn(A)→ µH(A), A ∈ B(supp(H)).

2We use the notation F̄ (x) to mean 1− F (x) = P(X > x)
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3⇒ 1. If Nn
d→ N , then Nn((x,∞))

d→ N((x,∞)) for each continuity point of H
(which in this case corresponds to all points in x ∈ suppH). From this we
get in particular that

P(a−1n (Mn − dn) ≤ x) = P(Nn((x,∞)) = 0)

→ P(N((x,∞)) = 0)

= e−µH((x,∞)) = H(x).

We notice the following connection between Poisson random measures and
max-stable distributions. Let H be a max stable distribution and N be a PRM(µH)
defined as in Theorem 3.1.0.6. Then, if we call (Yi)i≥1 the points of N , we get that

sup
i≥1

Yi ∼ H.

In fact, calling yf = sup(supp(H)),

P(sup
i≥1

Yi ≤ y) =P(N((y, yf )) = 0)

=e−µH((y,yf ))

=e−(log(H(yf ))−log(H(y)))

=elog(H(y)) = H(y)

Using Proposition 1.2.2.1 we can find some explicit representation of Poisson
random measures with this property.

Example 3.1.0.7 (A PRM representation of a Fréchet random variable). Let us
consider a standard Poisson process N on the positive real line, i.e., a PRM(Leb)
with state space the interval [0,∞). We can write N as

N =
∞∑
i=1

εΓi

where the sequence (Γi)i≥1 is obtained as the cumulative sum of standard exponential
variables. Let us transform the points via the function h defined as h(γ) = γ−

1
α .

Then we can define a PRM(ν) on (0,∞), M , where ν := Leb ◦ h−1. We write this
explicitly. Given 0 < a < b <∞, we have

ν((a, b]) = Leb(h−1(a, b]) = a−α − b−α = µΦα((a, b])

Therefore, we get
max
i≥1

Γ
− 1

α
i = Γ

− 1
α

1 ∼ Φα.
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This representation can be extended to a more general one.

Example 3.1.0.8 (A more general PRM representation of a Fréchet random
variable). Set α > 0 and consider M , a PRM(Leb× FV ) on [0,∞)× [0,∞) with
representation

M =
∞∑
i=1

ε(Γi,Vi),

where (Γi)i≥1 is defined as before and (Vi)i≥1
iid∼ FV and independent of (Γi)i≥1.

We also ask E [V α
1 ] <∞. We transform the points of the PRM via a function h

defined as h(γ, v) = γ−
1
αv. As before we can define a new Poisson random measure

N on R with mean measure ν := (Leb × FV ) ◦ h−1. Given 0 < a < b < ∞ we
compute ν((a, b]):

ν((a, b]) =(Leb× FV )(h
−1(a, b])

=(Leb× FV )({(γ, v) | a < γ−
1
αv ≤ b})

=(Leb× FV )

({
(γ, v) |

(
b

v

)−α
≤ γ <

(a
v

)−α})

=

∫ ∞
0

(∫ ( v
a)

α

( v
b )

α
dγ

)
FV (dv)

=(a−α − b−α)E [V α
1 ] .

This means that

P(sup
i≥1

Γ
− 1

α
i Vi ≤ y) =P(N((y,∞)) = 0)

=e−ν((y,∞))

=e−y
−αE[V α

1 ]

= exp

{
−

(
y

E [V α
1 ]

1
α

)−α}

=Φα

(
y

E [V α
1 ]

1
α

)
= Φα

(
y

∥V1∥Lα

)
.

In particular, if E [V α
1 ] = 1, then supi≥1 Γ

− 1
α

i Vi ∼ Φα.
In the following, we always restrict ourselves to E [V α

1 ] = 1 since we can always
get to this easier situation simply through rescaling. It is also possible to restrict
ourselves to the case of α = 1. In fact, one can obtain any max-stable random
variable from a random variable with distribution Φ1 through simple transformation.
Explicitly, let X ∼ Φ1, then



CHAPTER 3. SIMULATIONS OF MAX-STABLE PROCESSES 52

• X
1
α ∼ Φα

• log(X) ∼ Λ

• −X− 1
α ∼ Ψα.

Hence, using the same notation as before and with E [V1 ] = 1, we can represent a
Gumbel random variable Y as

Y
d
= max

i≥1
(log(Vi)− log(Γi))

and a Weibull random variable Z as

Z
d
= −min

i≥1

(
Γi

Vi

) 1
α

.

3.2 Introduction to max-stable processes
We are interested in finding an infinite-dimensional object which has similar prop-
erties as max-stable random variables. By this we mean that this random object X
should have the property that a suitable renormalization of the point-wise maxima
of n independent realizations of X is still distributed as X. This leads to the
definition of max-stable processes.

Definition 3.2.0.1 (Max-stable process). A stochastic process X = (X(t))t∈T
with T ⊆ R is a max-stable process if there exist two sequences (bn)n≥1 and (cn)n≥1,
with cn > 0 for each integer n ≥ 1, such that, taking n iid copies X(1), . . . , X(n) of
X, we have

c−1n

(
max

i=1,...,n
X(i)(t)− bn

)
t∈T

d
= X,

where d
= is interpreted in the sense of the finite-dimensional distributions.

It is evident from the preceding definition that, for each t ∈ T , X(t) is either
degenerate or a max-stable random variable. Hence, it is possible to define max-
stable processes such that the marginals are of a given max-stable distribution type.
For example, consider the Fréchet case.

Definition 3.2.0.2 (Max-stable process with Fréchet marginals). A max-stable
process X is a max-stable process with Fréchet marginals if we can take bn = 0 and
cn = n

1
α in definition 3.2.0.1. This means that for each n ≥ 1 integer and n iid

copies X(1), . . . , X(n) of X we have

n−
1
α

(
max

i=1,...,n
X(i)(t)

)
t∈T

d
= X,
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in the sense of the finite-dimensional distributions.3

Equivalent definitions can be stated for max-stable processes with Gumbel or
Weibull marginals. In the following we treat mostly the Fréchet case with α = 1.
In fact, as observed in the preceding section it is possible to obtain all the other
max-stable distributions through simple transformations of Fréchet distributed
random variables with α = 1. Equivalently, applying the same transformations
point-wise we can obtain max-stable processes with Fréchet, Gumbel or Weibull
marginals from a max-stable process with Fréchet marginals with α = 1.

We consider a first example of a max-stable process

Example 3.2.0.3. Let (Γi)i≥1 be the cumulative sum of iid independent standard
exponential and (Ui)i≥1 a sequence of iid Unif(0, 1) random variables independent
of (Γi)i≥1. Then, consider a stochastic process f from (Ω,F) = ([0, 1],B([0, 1])) to
RT

+ such that for each t ∈ T , E [ f(t;U) ] <∞. We define the stochastic process X
as

X(t) := sup
i≥1

Γ−1i f(t;Ui) .

X is a max-stable process with Fréchet marginals.
Let us prove the previous statement. From definition 3.2.0.2 we need to show that

for each m ≥ 1 and collection of times t1, . . . , tm ∈ T and values x1, . . . , xm ∈ R+,

P
(
X(t1) ≤ x1, . . . , X(tm) ≤ xm

)
=

(
P
(
X(t1)

n
≤ x1, . . . ,

X(tm)

n
≤ xm

))n

.

To do so, first we write

P
(
X(t1) ≤ x1, . . . , X(tm) ≤ xm

)
=P
(

max
j=1,...,m

X(tj)

xj

≤ 1
)

=P
(
max
i≥1

Γ−1i max
j=1,...,m

f(tj;Ui)

xj

≤ 1
)
.

From example 3.1.0.8 we notice that

sup
i≥1

Γ−1i max
j=1,...,m

f(tj;Ui)

xj

3It is important to notice that this does not mean that all marginals are Φ1 distributed. In
fact, it is possible for X(t) to be degenerate at some points t. In order to have all the marginals
Fréchet distributed we need stationarity, which, in the following of this thesis, will be in most
cases assumed.
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can be seen as a Fréchet random variable. Hence,

P
(
sup
i≥1

Γ−1i max
j=1,...,m

f(tj;Ui)

xj

≤ 1
)
= Φ1(1)

E

[
maxj=1,...,m

f(tj ;Ui)
xj

]

= Φ1(1)
nE

[
maxj=1,...,m

f(tj ;Ui)
nxj

]

=

(
P
(
max
i≥1

Γ−1i max
j=1,...,m

f(tj;Ui)

nxj

≤ 1
))n

=

(
P
(
X(t1)

n
≤ x1, . . . ,

X(tm)

n
≤ xm

))n

.

The preceding example provides a representation of all max-stable processes
with unit Fréchet marginals when T is countable. This result is summarized in this
theorem by de Haan in [Haa84]

Theorem 3.2.0.4. The finite-dimensional distribution of a max-stable sequence
(X(t))t∈Z with unit Fréchet marginals satisfy the relation

P(X(t1) ≤ x1, . . . , X(tm) ≤ xm) = exp

(
−
∫
Rm
+

max
j=1,...,m

yj
xj

Gt1,...,tm(dy)

)

where m ≥ 1 and for j = 1, . . . ,m, xj > 0 and Gt1,...,tm is the m-dimensional
restriction to Rm

+ of a finite measure G on RZ
+. Moreover, X has a representation

X(t)
d
= sup

i≥1
Γ−1i f(tj;Ui) , (3.1)

for t ∈ Z and a suitable non-negative stochastic process f such that E [ f(t;U) ] =∫ 1

0
f(t;u) du <∞.

In the same paper, de Haan proves that representation (3.1) is valid for a general
T ⊆ R under the condition of the process X being stochastically continuous. This
representation is not unique. We will use this property to find the most useful
representation of a max-stable process for simulation purposes.

Example 3.2.0.5 (Brown-Resnick process). Consider the process X = (X(t))t∈T
with representation

X(t) = sup
i≥1

Γ−1i eWi(t)− 1
2
σ2(t), (3.2)

where (Γi)i≥1 is the cumulative sum of iid standard exponential random variables,
(Wi)i≥1 are iid realization of a Gaussian process on R with stationary increments,
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E [W1(t) ]=0 and σ2(t) = Var(W1(t)). The process X is called the Brown-Resnick
process.

It is possible to write X in the form of (3.1) and to show that it is a max-
stable process. Moreover, it is also possible to prove that the process is strictly
stationary. An intuition of the stationarity can be seen from the fact that for t ∈ T ,
E
[
eWi(t)− 1

2
σ2(t)

]
= 1, hence X(t) ∼ Φ1.

Kabluchko et al. in [KSH09] proved that the distribution of X only depends on
the variance function σ2(t) = Var(W1(t)) and the variogram which is the function
γ : T → R defined as

γ(h) := E
[
(W1(h+ t0)−W1(t0))

2
]
.

Possible choices of the Gaussian processes with stationary increments are

Brownian Motion. The Brown-Resnick max-stable process was originally con-
sidered for W Brownian motion in [BR77]. In this case σ2(t) = t and γ(t) = t
and Cov(W (s),W (t)) = s ∧ t.

Fractional Brownian motion. Let H ∈ (0, 1). The fractional Brownian motion
W (H) is a 0-mean Gaussian process with stationary increments. It has variance
function σ2(t) = Var(W (H)(t)) = t2H ,variogram γ(t) = |t|2H and covariance
Cov(W (s),W (t)) = 1

2
(|t|2H + |s|2H − |t− s|2H).

3.2.1 Crash course in regular variation

In the next section, we address the problem of simulations of max-stable processes.
More precisely, we will pay particular attention to strictly stationary max-stable
processes on a discrete set T . In order to have the theoretical tools to approach
simulations, we introduce here the concept of regular variation of a strictly stationary
random sequence. To do so, first we define regular variation in the univariate and
multivariate settings. Then, we can introduce the multivariate Fréchet distribution.
After that we extend the concept of regular variation to strictly stationary sequences
and we see that max-stable processes with unit Fréchet marginals are regularly
varying and all the finite-dimenional distributions are multivariate Fréchet. Finally,
we state a condition on the distributions of the spectral process that allows us
to change the representations of a max-stable process. The concept of regular
variation might be extended also to a more general domain; see [DR15].

Definition 3.2.1.1 (Regularly varying function). A measurable function U : R+ →
R+ is regularly varying at ∞ with index α ∈ R if

lim
t→∞

U(tx)

U(x)
= xα, x > 0.
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We call α the exponent of variation. If α = 0 the function U is said to be slowly
varying.

Definition 3.2.1.2 (Regularly varying random variable). A positive random
variable X with distribution F is said to be regularly varying with index α > 0
if the survival function F̄ (x) := 1 − F (x) = P(X > x) is regularly varying with
exponent of variation −α.

Observation 3.2.1.3. Let X ∼ F be a regularly varying random variable with
exponent α. Suppose we can define a sequence (an)n≥1 such that F̄ (an) = 1

n
.4

From the regular variation of F̄ we have

lim
n→∞

nF̄ (anx) = lim
n→∞

F̄ (anx)

F̄ (an)
= x−α,

then, from Theorem 3.1.0.6 we have X ∈ MDA(Φα). An equivalent result would
have been proved with the less restrictive condition on (an)n≥1

lim
n→∞

nF̄ (an)→ 1.

We extend the concept of regular variation to the multivariate case.

Definition 3.2.1.4 (Regularly varying random vector with positive and identically
distributed components). For an integer d ≥ 2, let us consider a random vector
X = (X(1), . . . , X(d))T with all components positive and identically distributed
following a regularly varying distribution F with exponent α.5 Let us consider a
sequence such that nF̄ (anx)→ 1 as n→∞. The vector X is regularly varying, we
write X ∈ RV(α, µ), if there exists a non-null Radon measure µ on B(Rd

+,0) such
that for every µ-continuity set A we have

µn := nP(a−1n X ∈ A)→ µ(A), n→∞, (3.3)

i.e., the sequence of measures (µn)n≥1 converges vaguely to µ

Observation 3.2.1.5. From (3.3), with an argument similar to the one made in
Example 1.2.1.5, we can find a sequence of binomial processes (Nn)n≥1 defined by

Nn(A) =
n∑

i=1

εa−1
n Xi

(A), A ∈ B(Rd
+,0)

that converges weakly to a PRM(µ).
4In order to be sure we can define such a sequence we need F continuous
5We restrict ourselves to the case of identically distributed components, the reason is that

we will deal only with strictly stationary max-stable processes and this makes the theory easier.
However, it is possible to relax this hypothesis.
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Observation 3.2.1.6. Consider a sequence (Xn)n≥1 of iid regularly varying random
vectors with positive and identically distributed components and let the sequence
(Mn)n≥1 be the sequence of component-wise maxima

Mn = (M (1)
n , . . . ,M (d)

n )T = ( max
i=1,...,n

X
(1)
i , . . . , max

i=1,...,n
X

(d)
i )T .

Then, taking a vector x ∈ Rd
+,0 we have

P(a−1n Mn ∈ [0,x]c) = P(Nn([0,x]
c) = 0)→ P(N([0,x]c) = 0) = e−µ([0,x]

c)

as n→∞. We call H := e−µ a multivariate Fréchet distribution and µ its exponent
measure.

We show a different characterization of the regular variation property which
will be useful for the extension of regular variation to the countable infinite case.

Proposition 3.2.1.7. For an integer d ≥ 2, let us consider a random vector
X = (X(1), . . . , X(d))T with all components positive and identically distributed with
distribution F , a value α > 0 and a Radon measure µ on Rd

+,0. Then, the following
statements are equivalent:

1. X ∈ RV(α, µ)

2. X(1) ∈ RV(α) and

lim
x→∞

P(x−1X ∈ A)

P(X(1) > x)
= µ(A)

for all µ-continuity sets in B(Rd
+,0)

Proof. 2⇒ 1. Consider a sequence (an)n≥1 such that limn→∞ nF̄ (an) → 1, then
nP(a−1n X ∈ A) → µ(A) for all µ-continuity sets in B(Rd

+,0). Which means
X ∈ RV(α, µ).

1⇒ 2. We only need to show that for all A µ-continuity sets

lim
x→∞

P(x−1X ∈ A)

P(X(1) > x)
= µ(A).

Consider a sequence (an)n≥1 such that anF̄ (n)→ 1. The sequence (an)n≥1 is
regularly varying with index 1

α
, hence we can define a function as

a(x) := x
1
αL(x)

with L slowly varying and such that a(x) = a[x], where [x] denotes the integer
part of x. For every regularly varying function a with positive index there
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exist a continuous function ã such that a ∼ ã for x → ∞. Then for every
µ-continuity set A we can write

µ(A) = lim
x→∞

P (a(x)−1X ∈ A)

P (X(1) > a(x))

= lim
x→∞

P
(

ã(x)
a(x)

X
ã(x)
∈ A

)
P
(

X(1)

ã(x)
> a(x)

ã(x)

)
= lim

x→∞

P (ã(x)−1X ∈ A)

P (X(1) > ã(x))

= lim
x→∞

P(x−1X ∈ A)

P(X(1) > x)
.

We extend this concept to stationary random sequences.

Definition 3.2.1.8 (Regularly varying stationary sequence). A stationary process
(X(t))t∈Z is regularly varying with index α > 0 if for every integer h ≥ 0 there
exists a non-null Radon measure µh on Rh

+,0 such that

lim
x→∞

P(x−1(X(0) , . . . , X(h)) ∈ A)

P(X(0) > x)
= µh(A)

for all µh-continuity sets in B(Rh
+,0).

Now, consider a max-stable process X with representation

X = sup
i≥1

Γ−1i Vi(t) (3.4)

where, using the usual notation, (Γi)i≥1 is the cumulative sum of standard expo-
nentials and Vi are iid realizations of a generic stochastic process V , independent
of the sequence (Γi)i≥1, that we call spectral process.

Proposition 3.2.1.9. Consider a max-stable process X = (X(t))t∈T with T ⊆ Z
and representation (3.4). Then, for each integer m > 1, t1, . . . , tm ∈ T and
x1, . . . , xm ∈ R+ we have

P(X(t1) < x1, . . . , X(tm) < xm) = exp

{
−E

[
max

i=1,...,m

V (ti)

xi

]}
, (3.5)

which is a multivariate Fréchet distribution with exponent measure

µt1,...,tm([0,x]
c) = E

[
max

i=1,...,m

V (ti)

xi

]
.

Moreover, X is regularly varying with α = 1.
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Proof. We start by proving (3.5). Fix m > 1 integer, t1, . . . , tm ∈ T and x1, . . . , xm ∈
R+. Then,

P(X(t1) < x1, . . . , X(tm) < tm) = P
(

max
j=1,...,m

X(tj)

xj

< 1

)
= P

(
max

j=1,...,m
sup
i≥1

Γ−1i Vi(tj)

xj

< 1

)
= P

(
sup
i≥1

Γ−1i max
j=1,...,m

Vi(tj)

xj

< 1

)
= Φ1

(
E
[

max
j=1,...,m

Vi(tj)

xj

]−1)

= exp

{
−E

[
max

j=1,...,m

V (tj)

xj

]}
.

Now, we prove that X is regularly varying. We show that X(0) ∈ RV(1) and for
each integer h ≥ 1 there exists a Radon measure µh such that

lim
y→∞

P(y−1(X(0) , . . . , X(h)) ∈ [0,x]c)

P(X(0) > y)
= µh([0,x]

c).

We have that
P(X(0) > y) = 1− Φ1(y) ∼ y−1,

then X(0) ∈ RV(1). Moreover, by (3.5),

P(y−1(X(0) , . . . , X(h)) ∈ [0,x]c) = P((X(0) , . . . , X(h)) ∈ [0, yx]c)

= 1− P((X(0) , . . . , X(h)) ∈ [0, yx])

= 1− exp

{
−E

[
max

j=0,...,h

V (j)

yxj

]}
= 1− exp

{
−1

y
E
[

max
j=0,...,h

V (j)

xj

]}

∼
E
[
maxj=0,...,h

V(j)
xj

]
y

.

Then,

lim
y→∞

P(y−1(X(0) , . . . , X(h)) ∈ [0,x]c)

P(X(0) > y)
= E

[
max

j=0,...,h

V (j)

xj

]
= µh([0,x]

c).

Sets of the form [0,x]c define a π-system, therefore we can extend the measure to
a general A ∈ B(Rh+1

+,0 ).
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Now, consider two different representations of a max-stable process,

X
d
= sup

i≥1
Γ−1i Vi

d
= sup

i≥1
Γ−1i Wi (3.6)

where Vi and Wi are iid realizations of two different stochastic processes. In order to
have the equality in distribution in the sense of the finite-dimensional distributions
we need for each t1, . . . , tm ∈ T and x1, . . . , xm

µ
(V )
t1,...,tm([0,x]

c) = µ
(W )
t1,...,tm([0,x]

c),

which more explicitly means

E
[

max
i=1,...,m

V (ti)

xi

]
= E

[
max

i=1,...,m

W (ti)

xi

]
. (3.7)

.

3.3 Simulation of max-stable processes
In this section we approach simulations of max-stable processes. We will describe
three general-purpose methods for max-stable processes: the threshold method, the
extremal functions method and the probability threshold method. The threshold
method and probability threshold method provide two different ways to truncate
the so-called spectral representation of a max-stable process. On the contrary, the
extremal functions method aims at directly sampling the elements of the spectral
representation that contribute to the maximum, which are called extremal functions.
In this section we do not provide numerical results, they are postponed to the last
section of this chapter.

3.3.1 Threshold method

Let us consider a max-stable process X with representation (3.4). The idea of the
threshold method is to iteratively simulate the truncated process

X(j)(t) = sup
1≤i≤j

Γ−1i Vi(t) . (3.8)

Iterations must stop at a value N , which is chosen to be an a.s. finite random
variable depending on a threshold τ :

N = Nτ = min{j ∈ N | Γ−1j+1τ < inf
t∈T

X(j)(t)}.

This choice means that we stop at the first iteration at which, after sampling Γj+1,
we have X(j+1) ≠ X(j) only if supt∈T Vj+1(t) > τ . Since we asked V (t) to have
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finite first moment, the method provides an exact sample as τ →∞. This cannot
be done in practice, therefore, if the spectral process V is not bounded, this method
does not provide an exact simulation. On the contrary, if we can find an upper
bound such that supt∈T V (t) < τ a.s. then choosing τ as threshold we know for
sure that X(Nτ ) = X on T , hence the method provides an exact simulation of X.
The pseudocode of the algorithm can be seen in Algorithm 1.

Algorithm 1 Threshold method
procedure ThresholdMethod(Domain K, threshold τ)

X(t)← 0 for all t ∈ K
Simulate Γ ∼ Exp(1)
while τ/Γ ≥ inft∈K X(t) do

Simulate V ∼ FV

X(t)← max{Γ−1V (t), X(t)} for all t ∈ K
Simulate E ∼ Exp(1)
Γ← Γ + E

end while
return X

end procedure

The spectral process V in representation (3.4) is not unique. Hence, we are free
to choose it in such a way that it is more suitable for simulations. Then, it might
be useful to choose V bounded and easy to simulate.

Whether a spectral process V is easy to simulate depends on each case and
therefore cannot be studied on an abstract setting. However, it is possible to
provide some ideas as to find some spectral representations with a bounded spectral
process. The main idea is to find a spectral process which is normalized with
respect to a norm.

Consider a process X with representation (3.4) and a norm ∥·∥ on RT
+. We

want to find a way to change the representation to

X
d
= sup

i≥1
Γ−1i V

∥·∥
i (t) ,

where V ∥·∥ is a spectral process such that
∥∥V ∥·∥∥∥ = θ∥·∥ constant a.s. First, we

show that the value θ∥·∥ does not depend on the representation. Let T be a compact
set, then.

lim
n→∞

nP(∥X∥ ≥ n) = lim
n→∞

P(∥X∥ ≥ n)

P(Γ−11 ≥ n)

= lim
n→∞

P(Γ−11 ∥V1∥ ≥ n)

P(Γ−11 ≥ n)
= E [ ∥V ∥ ]

(3.9)
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where in the last equality we used Breiman’s lemma.6
This proves that E [ ∥V ∥ ] does not depend on the representation. Moreover,

since
∥∥V ∥·∥∥∥ = θ∥·∥ a.s., we have also that E [ ∥V ∥ ] = E

[ ∥∥V ∥·∥∥∥ ] = θ∥·∥ . Then,
θ∥·∥ does not depend on V ∥·∥ .

More generally, we can extend this proof for a 1-homogeneous functional l
on the space of the spectral process. Then, we can extend our reasoning to, for
instance, functionals of the form l(v) = v(t), which appear naturally in the context
of regular variation. In the following we see how we can find an explicit form for
the distribution of an l-normalized spectral process.

Proposition 3.3.1.1. Let X = supi≥1 Γ
−1
i Vi where Vi

iid∼ FV and consider a stochas-
tic process Y with distribution FY ≪ FV

7 and an FV -a.s. positive 1-homogeneous
functional l : C0 → R+. Then,

X
d
= sup

i≥1
Γ−1i E [ l(Y ) ]

Y

l(Y )

if and only if FY (dv) =
l(v)

E[ l(v) ]FV (dv).

Proof. From Proposition 3.2.1.9, we only need to show that for each integer m ≥ 1
and t1, . . . , tm ∈ T and x1, . . . , xm we have

EFV

[
max

i=1,...,m

V (ti)

xi

]
= EFY

[
max

i=1,...,m

E [ l(Y ) ]

l(Y )

Y (ti)

xi

]
.

We wrote E [ l(Y ) ] not specifying the measure since, as we showed in (3.9), it does
not depend on the representation, but only on the process X. We have

EFY

[
max

i=1,...,m

E [ l(Y ) ]

l(Y )

Y (ti)

xi

]
=E [ l(V ) ]

∫
v∈C0

max
i=1,...,m

1

l(v)

v(tj)

xj

FY (dv)

=E [ l(V ) ]

∫
v∈C0

max
i=1,...,m

1

l(v)

v(tj)

xj

dFY

dFV

(v)FV (dv)

=

∫
v∈C0

max
i=1,...,m

v(tj)

xj

FV (dv),

where the last equality is true for all integers m ≥ 1, t1, . . . , tm ∈ T and x1, . . . , xm

if and only if dFY

dFV
(v) = l(v)

E[ l(V ) ]
.

6Breiman’s Lemma informally says that for a regularly varying random variable X > 0 with
index α > 0 and a random variable Y > 0 with finite α-th moment we have P(XY > x) ∼ P(X >
x)E [Y α ] as x→∞.

7By ≪ we mean absolute continuity of all the finite dimensional distributions.
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Observation 3.3.1.2. From Proposition 3.3.1.1 we can directly find the distribution
of V l = E [ l(Y ) ] Y

l(Y )
as

P(V l ∈ A) = EFV

[
l(V )

E [ l(V ) ]
1{E[ l(V ) ] V

l(V )
∈A}

]
.

Now we consider two examples of spectral normalization: sup-normalization
and sum-normalization.

Sup-normalized threshold method

This kind of normalization is the more natural one. In fact, given the fact that we
are looking for a bounded spectral process, this normalization let us know exactly
the sup and therefore an optimal threshold for the threshold method. More precisely:
given a max-stable process X on a compact set K with representation (3.4), we
want to find the distribution of the sup-normalized spectral process V ∥·∥∞ defined
as

V ∥·∥∞ =
θ∥·∥∞
∥Y ∥∞

Y

where ∥Y ∥∞ := supt∈K Y (t) and Y is a stochastic process with the distribution
given by Proposition 3.3.1.1 with l(·) = ∥·∥∞. Then, one can use the threshold
method using τ = θ∥·∥∞ .

This method works well in theory, but it has several problems in practice.
Two are the main problem that are difficult to overcome in order to have exact
simulations:

• In general, there is no analytic expression for the coefficient θ∥·∥∞ (which is
known in the literature as extremal coefficient). There exist some estimation
procedures for θ∥·∥∞ , but there is no chance to find the exact value.

• There exists no generic simple algorithm for exact sampling from Y .

Sum-normalized threshold method

Consider a finite number of points t1, . . . , tm ∈ T and the l1-norm in Rm
+

∥x∥1 :=
m∑
i=1

xi.

Given a max-stable process X on T with representation (3.4) we want to simulate
its restriction to t1, . . . , tm. The sum-normalized spectral process on t1, . . . , tm is

V ∥·∥1 =
θ∥·∥1
∥Y ∥1

Y
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where the distribution of Y is given by the relation in Proposition 3.3.1.1 with
l(·) = ∥·∥1. Since in Rm

+ we have ∥x∥∞ ≤ ∥x∥1, if we put τ = θ∥·∥1 we are sure that

max
i=1,...,m

V ∥·∥1(ti) ≤ τ.

Hence, we can use this threshold for exact simulations. This normalization is found
to be the most useful for simulations. The first reason is that it is usually easy to
compute θ∥·∥1 . In fact

θ∥·∥1 = E [V (t1) + · · ·+ V (tm) ] = E [V (t1) ] + · · ·+ E [V (tm) ]

If we assume X strictly stationary, then E [V (t1) ] = · · · = E [V (tm) ]. Moreover,
assuming that the marginals are unit Fréchet we need to have E [V (t1) ] = 1, then
θ∥·∥1 = m.

The second reason is that it is easy to simulate the process Y . In fact, let us call
Y lt the process such that E

[
Y lt(t)

]
Y lt

Y lt(t)
is the spectral process for X normalized

under the functional lt defined by lt(v) = v(t). We want to prove that Y
d
= Y lT

where T is a random variable sampled uniformly from {t1, . . . , tm}. To show this,
from Proposition 3.3.1.1 we have

FY (dv) =
1

m

(
m∑
i=1

v(ti)

)
FV (dv)

=
1

m

(
m∑
i=1

v(ti)FV (dv)

)

=
1

m

(
m∑
i=1

F
Y

lti
(dv)

)

=
m∑
i=1

P
(
Y lT ∈ dv | T = ti

)
P(T = ti) = P

(
Y lT ∈ dv

)
.

Then, we only need to be able to simulate from Y lti for simulating V ∥·∥1 . If we are
directly interested in simulating V ∥·∥1 , instead of sampling Y lT we can equivalently
sample directly from

V lT :=
Y lT

Y lT (T )
.

In fact,

V ∥·∥1 =
m

∥Y ∥1
Y =

m

∥Y lT ∥1
Y lT =

mY lT (T )

∥Y lT ∥1
Y lT

Y lT (T )
=

m

∥V lT ∥1
V lT .

We will use this method in our simulations.
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3.3.2 Extremal functions method

This method is completely different in its concept from the threshold method. In
order to explain it, we need to define what are called extremal functions in this
context.

Definition 3.3.2.1 (Extremal function). Consider a max-stable process X with
representation (3.4) on a compact set K. We denote ϕi = Γ−1i Vi for i = 1, 2, . . .
Then ϕi is called K-extremal if there exists t ∈ K such that ϕi(t) = X(t). We
denote by Φ+

K the set of extremal functions in K and by ϕ+
t the a.s. unique extremal

function in t ∈ K

The idea of the extremal functions method is to directly sample extremal
functions on K. Moreover, it is possible to show that for a stochastically continuous
max-stable process X on a compact set K, Φ+

K is finite, then there is a chance
to find an algorithm that provide an exact sample after an a.s. finite number of
iterations.

The problem now is, given a set of points t1, . . . , tm, finding a way of sampling
ϕ+
ti for i = 1, . . . ,m. The following theorem (Theorem 1 in [DEO16]) gives us a

way of iteratively sampling ϕ+
ti . In the following we denote by Pt the distribution

of the lt-normalized spectral process V lt and we call Xn the process defined by

Xn(t) := max
1≤i≤n

ϕ+
ti
(t)

Theorem 3.3.2.2. The distribution of (ϕ+
ti )1≤i≤m is given by the following sequential

procedure. The initial distribution for the extremal function ϕ+
t1 has the same

distribution as Γ−11 V t1. For n = 2, . . . ,m the conditional distribution of ϕ+
tn given

(ϕ+
ti)1≤i≤n−1 is equal to the distribution of

ϕ̃+
tn =

{
argmaxϕ∈Φ̃n

ϕ(tn) , Φ̃n ̸= ∅
argmaxϕ∈Φ+

{t1,...,tn−1}
ϕ(tn) , Φ̃n = ∅

where Φ̃n is the set of the points of a Poisson random measure NΦ̃n
with intensity

1{f(ti)≤Xn−1(ti), i=1,...,n−1} 1{f(tn)>Xn−1(tn)} µ(df)

where µ is the mean measure of the Poisson random measure

N =
∞∑
i=1

εΓ−1
i Vi

.

In order to make this theorem useful for simulations we add two remarks.



CHAPTER 3. SIMULATIONS OF MAX-STABLE PROCESSES 66

• Given Proposition 3.3.1.1 we can equivalently sample from N using any other
spectral process which satisfies the conditions of the proposition. In particular
at the n-th iteration a good candidate for the spectral process is V tn .

• We can sample from NΦ̃n
simply by rejecting from N the points f that do not

satisfy the conditions f(ti) ≤ Xn−1(ti) for all i = 1, . . . , n − 1 and f(tn) >
Xn−1(tn). Moreover, since N has a.s. infinitely many points, if we sample
using the spectral process V tn we can use the condition f(tn) > Xn−1(tn) as
a stopping criterion. In fact, in this case f(tn) = ΓiV

tn
i (tn) = Γi. Hence, as

soon as Γi < Xn−1(tn) the second condition cannot be satisfied anymore and
we can stop generating points from N .

Algorithm 2 Extremal functions Method
procedure ExtremalFunctionsMethod(Domain K = {t1, . . . , tm})

X(ti)← 0 for all i ∈ 1, . . . ,m
for i =1,. . . ,m do

Simulate Γ ∼ Exp(1)
while Γ−1 > X(ti) do

Simulate V ti ∼ FV ti

if k = 1 or Γ−1V ti(tk) ≤ X(tk) for all k = 1, . . . , i− 1 then
X(t)← max{Γ−1V ti(ti) , X(ti)}

end if
Simulate E ∼ Exp(1)
Γ← Γ + E

end while
end for
return X

end procedure

3.3.3 Probability threshold method

This method is a variation on the threshold method, where instead of fixing a
threshold on the value of the spectral process we fix a confidence value such that
the approximate process is an exact simulation. To use this method we need to find
an expression of the probability that the truncated process X(j) defined in (3.8) is
equal to X at the points of the simulation t1, . . . , tm.
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Proposition 3.3.3.1. Let X be a max-stable process with representation (3.4) and
X(j) the truncated process defined in (3.8). Then,

P
(
X(t1) = X(j)(t1) , . . . , X(tm) = X(j)(tm) | X(j),Γj

)
= exp

{
−E

[(
max

i=1,...,m

V (ti)

X(j)(ti)
− Γj

)
1{

maxi=1,...,m
V(ti)

X(j)(ti)
≥Γj

} ∣∣∣ X(j),Γj

]}
(3.10)

Observation 3.3.3.2. If our interest is to compute at a single time t the probability
P
(
X(t) = X(j)(t) | X(j)

)
, equation (3.10) becomes

P
(
X(t) = X(j)(t) | X(j)

)
= exp

{
− 1

X(j)(t)
E
[ (

V (t)−X(j)(t) Γj

)
1{V(t)>X(j)(t)Γj}

∣∣∣ X(j),Γj

]}
. (3.11)

Where the expected value can be seen as the fair price of a European call option
with strike price S = X(j)(t) Γj. We will see that in the case of Brown-Resnick
process we have an analytic formula to compute this value.

Proof (Proposition 3.3.3.1). Define the point process Nj as

Nj =
∑
i>j

εΓ−1
i Vi

.

Nj is a PRM(ν ◦h−1) where ν = Leb×FV is the mean measure of the Mj , a Poisson
random measure on [0,∞)× C0 defined as

Mj =
∑
i>j

ε(Γi−Γj ,Vi)

and h : [0,∞)× C0 → C0 is the function defined by

h(γ, v) := (γ + Γj)
−1v.

Given Γj and X(j) we have that the event

{X(t1) = X(j)(t1) , . . . , X(tm) = X(j)(t1)}

is equivalent to

Nj

({
f ∈ C0 | max

i=1,...,m

f(ti)

X(j)(ti)
> 1

})
= 0.
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Then, we want to compute its mean measure

ν

(
h−1

({
f ∈ C0 | max

i=1,...,m

f(ti)

X(j)(ti)
> 1

}))
=ν

({
(v, γ) ∈ C0 × R+ | max

i=1,...,m

v(ti)

(Γj + γ)X(j)(ti)
> 1

})
=

∫
C0

∫ ∞
0

1{
maxi=1,...,m

v(ti)

(Γj+γ)X(j)(ti)
>1

} dγFV (dv)

=

∫
C0

∫ (
maxi=1,...,m

v(ti)

X(j)(ti)
−Γj

)
+

0

dγFV (dv)

=

∫
C0

(
max

i=1,...,m

v(ti)

X(j)(ti)
− Γj

)
+

FV (dv) = E
[(

max
i=1,...,m

V (ti)

X(j)(ti)
− Γj

)
+

]
,

where V ∼ FV is independent of V1, . . . , Vj. Then, the result follows from the fact
that P(Nj (A) = 0) = exp{−ν(h−1(A))}.

The idea of the method is the following: fix a value p ∈ [0, 1], then iteratively
compute X(j) on t1, . . . , tm until

P
(
X(t1) = X(j)(t1) , . . . , X(tm) = X(j)(tm) | X(j),Γj

)
> p.

The main problem with this method is that the value (3.10) is in general not known
analytically and an estimation might be computationally expensive. We can think
of some possible ways to overcome this difficulty.

• We can approximate (3.10) as

P
(
X(t1) = X(j)(t1) , . . . , X(tm) = X(j)(tm) | X(j),Γj

)
∼

m∏
i=1

P
(
X(ti) = X(j)(ti) | X(j),Γj

)
which in most cases is much smaller than the original probability we want to
compute, since if two points t and s are close to each other, then the events
X(t) = X(j)(t) and X(s) = X(j)(s) are positively correlated.

• As a reference we can use the value P
(
X(t) = X(j)(t) | X(j),Γj

)
at time t.

This value is in general much higher than what we would like to compute,
therefore we need a higher threshold to have the same behavior. This is
the most efficient solution. A possible choice for the time might be taking
t = argmins∈t1,...,tm X(j)(s)
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• We can use something in between the two preceding solutions: we com-
pute P

(
X(ti) = X(j)(ti) | X(j),Γj

)
onto a subset I ⊂ {1, . . . ,m}, and then

approximate

P
(
X(t1) = X(j)(t1) , . . . , X(tm) = X(j)(tm) | X(j),Γj

)
∼
∏
i∈I

P
(
X(ti) = X(j)(ti) | X(j),Γj

)
.

The pseudocode can be found in Algorithm 3, where we have denoted the
probability in (3.10) (or its approximation) by P (X,Γ).

Algorithm 3 Probability Threshold Method
procedure ProbabilityThresholdMethod(Domain K, threshold p)

X(t)← 0 for all t ∈ K
Simulate Γ ∼ Exp(1)
repeat

Simulate V ∼ FV

X(t)← max{Γ−1V (t), X(t)} for all t ∈ K
Simulate E ∼ Exp(1)
Γ← Γ + E

until P (X,Γ) > p
return X

end procedure

3.4 Simulation of the Brown-Resnick process
In this section we apply the 3 methods described in the preceding section to
the Brown-Resnick process (Example 3.2.0.5). We focus on the Brown-Resnick
process with unit Fréchet marginals since we can obtain all the other choices of
marginals (Fréchet with α ̸= 1, Gumbel or Weibull) through simple transformations.
An example of the same sample of a Brown-Resnick process with three possible
marginals is in Figure 3.1.8

The main problem with the simulation of a Brown-Resnick process

X(t) = sup
i≥1

Γ−1i eWi(t)− 1
2
σ2(t)

8In the following, we sometimes plot the Brown-Resnick process with Gumbel marginals
instead of the one with Fréchet marginals, since the heavy tail of the Fréchet distribution make
in some cases the figures less clear.
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Figure 3.1: Transformations of the same sample path of a Brown-Resnick process
in order to have three different marginal distributions. The blue line corresponds
to Φ1 marginals, the orange line corresponds to Λ marginals and the green line
corresponds to Ψ1 marginals.
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is that, even if the spectral process

V = eW(t)− 1
2
σ2(t)

has E [V (t) ] = 1 for all t ∈ T , we have that V (t) → 0 a.s. as t → ∞. We
prove that for H = 1

2
using the law of the iterated logarithm (Theorem 2.2.7.1).

Consider t ∈ N and write V (t) = e−
t
2 e

∑t
s=1(W(s)−W(s−1)). Since for each s = 1, . . . , t,

W (s)−W (s− 1)
iid∼ N (0, 1), we can apply the law of iterated logarithm and say

that
|W (t)| ∼

√
2t log log t a.s. as t→∞.

Hence, W (t)− t
2
→ −∞ a.s. and V (t)→ 0 a.s. In practice, this tells us that for

big t it is not efficient to use V as spectral process in the simulations. We can also
see this from formula (3.11) applied in the context of the Brown-Resnick process.

Proposition 3.4.0.1. Let X be a Brown-Resnick process with WH fractional
Brownian motion with Hurst exponent H ∈ (0, 1), then

E
[ (

V (t)−X(j)(t) Γj

)
+

∣∣∣ X(j),Γj

]
= FN (d

(H)
1 )−X(j)(t) ΓjFN (d

(H)
2 ) (3.12)

where V = eW
H(t)− 1

2
σ2(t) is independent of WH

1 , . . . ,WH
j , FN is the cumulative

distribution function of a standard normal random variable and

d
(H)
1 =

− log(X(j)(t) Γj) +
1
2
t2H

tH

d
(H)
2 =

− log(X(j)(t) Γj)− 1
2
t2H

tH

Proof. The proof only require to compute explicitly E
[ (

V (t)−X(j)(t) Γj

)
+

]
for

general X(j)(t), Γj deterministic. In the following we write K := X(j)(t) Γj.

E
[
(V (t)−K)+

]
=E

[(
eW

H(t)− 1
2
σ2(t) −K

)
+

]
=

1

(2πσ2(t))
1
2

∫ +∞

−∞

(
ew−

1
2
σ2(t) −K

)
+
e
− w2

2σ2(t) dw

=
1

(2πσ2(t))
1
2

∫ +∞

logK+ 1
2
σ2(t)

(
e−

1
2
( w
σ(t)
−σ(t))2 −Ke

− w2

2σ2(t)

)
dw

=
1√
2π

∫ ∞
logK− 1

2σ2(t)

σ(t)

e−
1
2
z2 dz − K√

2π

∫ ∞
logK+1

2σ2(t)

σ(t)

e−
1
2
z2 dz

=FN

(− logK + 1
2
σ2(t)

σ(t)

)
−KFN

(− logK − 1
2
σ2(t)

σ(t)

)
,
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where σ(t) = |t|H in the case of fractional Brownian motion.

From the preceding proposition we see that

E
[ (

V (t)−X(j)(t) Γj

)
1{V(t)>X(j)(t)Γj}

∣∣∣ X(j),Γj

]
→ 1

as t→∞ for fixed X(j) and Γj, hence we get from (3.11)

P(X(t) = X(j)(t) | X(j)(t)) ∼ e
− 1

X(j)(t) , as t→∞,

but, since for any finite j, limt→∞X(j)(t) = 0 a.s. because Vj → 0 a.s., we have

lim
t→∞

P(X(t) = X(j)(t)) = 0.

This means that for t big enough we need a lot of iterations to have enough
confidence on the precision of the approximated simulation of the value X(t). We
can see this behavior in Figure 3.2 where we presented log(X(j)) (or equivalently
X(j) for a Brown-Resnick process with Gumbel marginals). We notice that even
with 106 iterations the process starts having a descending direction for very small t.

See the different behaviors of the Brown-Resnick process when the Gaussian
process is a fractional Brownian motion for different values of the Hurst parameter
H. In Figure 3.3 we see that for smaller H the sample paths are much rougher, while
for higher H we can see smoother sample paths and the creations of “mountains”
of high values.

3.4.1 Exact simulation methods for the Brown-Resnick pro-
cess

In this subsection we provide a comparison between two methods for exact simula-
tions of the Brown-Resnick process: the sum-normalized threshold stopping method
introduced in [DM15] and extremal functions method introduced in [DEO16].

In figure 3.4, we can see two examples of sample paths simulated with the two
different methods, in which we highlighted in black the extremal functions that
contributed to the sample paths. The approaches of the two methods are completely
different, in the threshold method the first processes ΓiVi that are simulated are the
ones that have the highest probability to be extremal functions. On the contrary,
in the extremal functions method we start simulating processes from above, and we
accept them only when they are small enough. In practice, extremal functions tend
to appear later in the simulation compared to the sum-normalized method. For
this reason approximate procedures using variations of these methods tends to be
much more efficient for the sum-normalized threshold method, as shown in [OS22].



CHAPTER 3. SIMULATIONS OF MAX-STABLE PROCESSES 73

0 20 40 60 80 100
t

50

40

30

20

10

0

lo
g(

X
(j)
)

j=106
j=104
j=102
j=100

Figure 3.2: Naive simulation of a Brown-Resnick process with Gumbel marginal
for different values of the truncation value j. Here the Gaussian process W is a
standard Brownian motion
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Figure 3.3: Simulations of a Brown-Resnick process with unit-Fréchet marginal for
three different values of Hurst parameter H.

Then, we see a comparison in the efficiencies of the two methods for different
values of m. In figure 3.5 we have compared the number of iterations needed to
reach the stopping criteria for the two methods. We simulated sample paths on
m = 100 and m = 1000 points. In the first case we simulated 1000 sample paths,
while in the second, which is computationally more expensive, 100 paths. We can
see that the results are consistent for the two values of m: the extreme functions
method is more efficient while the sum-normalized threshold stopping method suffer
both from having a higher median cost and being more subject to outliers with
very high computational cost.

3.4.2 Probability threshold method for Brown-Resnick pro-
cess

As we have seen in Proposition 3.4.0.1, given the peculiar structure of the Brown-
Resnick process, it is possible to find an analytic expression for the probability
3.11 at a single point t. We can therefore implement the probability threshold
method efficiently. Before doing the simulations, we provide an analytic estimate
for the number of iterations needed to reach the probability threshold p at given
time t using as spectral process eWH(t)− 1

2
σ2(t). As we have shown in (2.3) Γj ∼ O(j)
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Figure 3.4: Realizations of two sample paths of a Brown-Resnick process using the
sum-normalized threshold method and the extremal functions method. In order
to make the plots more readable in the case of the extremal functions method we
simulated a Brown-Resnick with Gumbel marginals. In red we see the simulation
of X, in black we see the extremal functions (processes that contributed to the
point-wise maxima), in grey all the other processes that have been simulated and
that do not contributed to the max-stable process.
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Figure 3.5: Box-plots comparing the efficiencies of the sum-normalized threshold
method and extremal functions method. On the left-hand side we compare the
number of iteration needed to reach the stopping condition. In the right column
we see a comparison between their computation times. The first row uses 1000
simulations and m = 100 for each method. The second row uses 100 simulations
and m = 1000 for each method.
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where j is the number of iterations needed to reach convergence. We only need to
estimate the order of Γj. Consider X(j) fixed (we assume X(j) = 1), we have

p ≤ exp

{
−
(
FN

(− log Γj +
1
2
t2H

tH

)
− ΓjFN

(− log Γj − 1
2
t2H

tH

))}
=exp

{
−FN

(− log Γj +
1
2
t2H

tH

)}
exp

{
ΓjFN

(− log Γj − 1
2
t2H

tH

)}

∼ exp
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1
2 t2H
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)2
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Then, we have

− log(− log p) ≤
(− log Γj +

1
2
t2H

tH

)2

,

from which we get
Γj ≥ e

1
2
t2H et

H(− log(− log(p)))
1
2 ,

where in all this derivation we meant by ≤ and ≥, asymptotically ≤ and asymptot-
ically ≥ for Γj →∞ (which happens when p→ 1 or t→∞). From this derivation
we get

j ∼ O(e
1
2
t2H et

H(− log(− log(p)))
1
2 ).

This shows that simulating the Brown-Resnick process by using as spectral process
the process eW(t)− 1

2
σ2(t) is not efficient. In fact, for a standard Brownian motion

and t = 10 we need O(105) iterations to get to a p = 0.99 if X(t) = 1. Comparing
this with plots in Figure 3.5 makes clear that this is not an efficient method for the
Brown-Resnick process even if t is relatively small. Using another spectral process is
surely a better choice, but we need a way of estimating the probability (3.10) which
might be done only through expensive Monte Carlo simulations making the method
infeasible. In Figure 3.6 we can see the mean number of iterations depending
on the value t and p computed on 1000 simulations. We see that the order of
magnitude of the number of iterations is coherent with the expected theoretical
order of magnitude.
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Figure 3.6: On the left-hand side there is a loglog plot of the number of iterations
vs − log(p), for p = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.995, 0.999. The dotted lines
represent the theoretically expected slopes, not the expected numbers of iterations.
We can see that the slopes of the realized numbers of iterations are similar to the
theoretical slopes, meaning that the results are consistent with the theory. On
the right-hand side there is a semilogy plot of the number of iterations vs t. As
before the dotted lines represent the theoretically expected slopes, not the expected
numbers of iterations. Here we notice that the realized slopes tend to be steeper
than the expected ones. This can be justified by the influence of samples in which
X(j)(t) < X(t), in these cases the numbers of iterations needed to converge tend to
exceed the expectations. Anyway, we can see an exponential grow in t as predicted.



List of abbreviations and symbols

Abbreviation Explanation
or Symbol

a.s. almost sure, almost surely
B(E) the Borel σ-algebra of the set E
Bin(n, p) the binomial distribution with parameters (n, p)
C+

K(E) the space of non-negative continuous functions with compact support
X

d
= Y equality in distribution, X has the same distribution as Y

Xn
d→ X Xn converges in distribution to X

E [X ] mean of X
EF [X ] mean of X with respect to the distribution F
Exp(λ) exponential distribution with rate λ
Φα(x) Fréchet distribution with index α
ϕX characteristic function of X
Γn often Γn = E1 + · · ·+ En where Ei

iid∼ Exp(1)
Gamma(α, β) gamma distribution with shape parameter α and rate β
H often a max-stable distribution

or Hurst exponent of a fractional Brownian motion
1A indicator function of the set A
1{X∈A} abbreviation for 1A(X)
iff if and only if
iid independent and identically distributed
(Xn)n≥1

iid∼ F (Xn)n≥1 is a sequence of iid random variables with distribution F
(Jn)n≥1 often a sequence of jumps
K often a compact set
l 1-homogeneous functional
Λ(x) Gumbel distribution
M,N often a point process or a Poisson process
µ, ν often mean measure of a Poisson process or a Lévy measure
MDA maximum domain of attraction
N natural numbers
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N (µ, σ2) normal distribution with mean µ and variance σ2

FN distribution of a standard normal random variable
f = o(g) for x0 ∈ R ∪∞, limx→x0

f(x)
g(x)

= 0

f = O(g) for x0 ∈ R ∪∞, lim supx→x0

∣∣∣f(x)g(x)

∣∣∣ <∞
P probability measure
Xn

P→ X Xn converges in probability to X
Pois(λ) Poisson distribution with rate λ
PRM Poisson random measure
Ψα(x) (negative) Weibull distribution
ΨN Laplace functional of the point process N
Q Lévy measure
R real numbers
R+ R ∪ [0,+∞)
Rd

+,0 Rd
+ \ {0}

Sα(σ, β, µ) α-stable distribution with tail index α, scale parameter σ,
skewness parameter β, location parameter µ

Unif(a, b) uniform distribution between a and b
U, Un uniform random variables between 0 and 1
V, Vn often spectral process of a max-stable process
W,Wn often Gaussian process with independent increments
Z integers
X ∼ F X is a random variable with distribution F

f ∼ g for x0 ∈ R ∪∞, limx→x0

f(x)
g(x)

= 1

F←, µ← generalized inverse or inverse Lévy measure



Bibliography

[AG07] S. Asmussen and P.W. Glynn. Stochastic Simulation: Algorithms and
Analysis. Stochastic Modelling and Applied Probability. Springer New
York, 2007. isbn: 9780387690339. url: https://books.google.dk/
books?id=vMI2MdxchU0C.

[AR01] Søren Asmussen and Jan Rosiński. “Approximations of small jumps of
Lévy processes with a view towards simulation”. In: Journal of Applied
Probability 38.2 (2001), pp. 482–493. doi: 10.1239/jap/996986757.

[Bil95] P. Billingsley. Probability and Measure. Wiley Series in Probability and
Statistics. Wiley, 1995. isbn: 9780471007104. url: https://books.
google.dk/books?id=z39jQgAACAAJ.

[BM58] G. E. P. Box and Mervin E. Muller. “A Note on the Generation of
Random Normal Deviates”. In: The Annals of Mathematical Statistics
29.2 (1958), pp. 610–611. doi: 10.1214/aoms/1177706645. url: https:
//doi.org/10.1214/aoms/1177706645.

[Bon82] Lennart Bondesson. “On simulation from infinitely divisible distribu-
tions”. In: Advances in Applied Probability 14 (Dec. 1982), pp. 855–869.
doi: 10.1017/S0001867800020851.

[BR77] Bruce M. Brown and Sidney I. Resnick. “Extreme Values of Independent
Stochastic Processes”. In: Journal of Applied Probability 14.4 (1977),
pp. 732–739. issn: 00219002. url: http://www.jstor.org/stable/
3213346 (visited on 04/20/2023).

[Car+02] Peter Carr et al. “The Fine Structure of Asset Returns: An Empirical
Investigation”. In: The Journal of Business 75 (Feb. 2002). doi: 10.
1086/338705.

[CMS76] J. M. Chambers, C. L. Mallows, and B. W. Stuck. “A Method for
Simulating Stable Random Variables”. In: Journal of the American
Statistical Association 71.354 (1976), pp. 340–344. doi: 10 . 1080 /
01621459.1976.10480344. eprint: https://www.tandfonline.com/

81

https://books.google.dk/books?id=vMI2MdxchU0C
https://books.google.dk/books?id=vMI2MdxchU0C
https://doi.org/10.1239/jap/996986757
https://books.google.dk/books?id=z39jQgAACAAJ
https://books.google.dk/books?id=z39jQgAACAAJ
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1017/S0001867800020851
http://www.jstor.org/stable/3213346
http://www.jstor.org/stable/3213346
https://doi.org/10.1086/338705
https://doi.org/10.1086/338705
https://doi.org/10.1080/01621459.1976.10480344
https://doi.org/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480344


BIBLIOGRAPHY 82

doi/pdf/10.1080/01621459.1976.10480344. url: https://www.
tandfonline.com/doi/abs/10.1080/01621459.1976.10480344.

[DEO16] Clément Dombry, Sebastian Engelke, and Marco Oesting. “Exact simula-
tion of max-stable processes”. In: Biometrika 103.2 (May 2016), pp. 303–
317. issn: 0006-3444. doi: 10.1093/biomet/asw008. eprint: https:
//academic.oup.com/biomet/article-pdf/103/2/303/17460729/
asw008.pdf. url: https://doi.org/10.1093/biomet/asw008.

[DM15] A. Dieker and Thomas Mikosch. “Exact simulation of Brown-Resnick
random fields at a finite number of locations”. In: Extremes 18 (June
2015). doi: 10.1007/s10687-015-0214-4.

[DR15] Clement Dombry and Mathieu Ribatet. “Functional regular variations,
Pareto processes and peaks over threshold”. In: Statistics and Its Inter-
face 8 (Jan. 2015), pp. 9–17. doi: 10.4310/SII.2015.v8.n1.a2.

[FT28] R. A. Fisher and L. H. C. Tippett. “Limiting forms of the frequency
distribution of the largest or smallest member of a sample”. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 24.2 (1928),
pp. 180–190. doi: 10.1017/S0305004100015681.

[Gla04] P. Glasserman. Monte Carlo Methods in Financial Engineering. Appli-
cations of mathematics : stochastic modelling and applied probability.
Springer, 2004. isbn: 9780387004518. url: https://books.google.
dk/books?id=e9GWUsQkPNMC.

[Haa84] L. De Haan. “A Spectral Representation for Max-stable Processes”. In:
The Annals of Probability 12.4 (1984), pp. 1194–1204. doi: 10.1214/
aop/1176993148. url: https://doi.org/10.1214/aop/1176993148.

[Jac+05] Jean Jacod et al. “The approximate Euler method for Lévy driven
stochastic differential equations”. In: Annales de l’IHP Probabilités et
statistiques. Vol. 41. 3. 2005, pp. 523–558.

[Kal02] O. Kallenberg. Foundations of Modern Probability. Probability and
Its Applications. Springer New York, 2002. isbn: 9780387953137. url:
https://books.google.dk/books?id=L6fhXh13OyMC.

[KSH09] Zakhar Kabluchko, Martin Schlather, and Laurens de Haan. “Stationary
max-stable fields associated to negative definite functions”. In: The
Annals of Probability 37.5 (2009), pp. 2042–2065. doi: 10.1214/09-
AOP455. url: https://doi.org/10.1214/09-AOP455.

[Mik04] T. Mikosch. Non-Life Insurance Mathematics: An Introduction With
Stochastic Processes. Non-life insurance mathematics: an introduction
with stochastic processes v. 13. Springer, 2004. isbn: 9783540406501.
url: https://books.google.dk/books?id=2n8IzUYrks4C.

https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480344
https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480344
https://doi.org/10.1093/biomet/asw008
https://academic.oup.com/biomet/article-pdf/103/2/303/17460729/asw008.pdf
https://academic.oup.com/biomet/article-pdf/103/2/303/17460729/asw008.pdf
https://academic.oup.com/biomet/article-pdf/103/2/303/17460729/asw008.pdf
https://doi.org/10.1093/biomet/asw008
https://doi.org/10.1007/s10687-015-0214-4
https://doi.org/10.4310/SII.2015.v8.n1.a2
https://doi.org/10.1017/S0305004100015681
https://books.google.dk/books?id=e9GWUsQkPNMC
https://books.google.dk/books?id=e9GWUsQkPNMC
https://doi.org/10.1214/aop/1176993148
https://doi.org/10.1214/aop/1176993148
https://doi.org/10.1214/aop/1176993148
https://books.google.dk/books?id=L6fhXh13OyMC
https://doi.org/10.1214/09-AOP455
https://doi.org/10.1214/09-AOP455
https://doi.org/10.1214/09-AOP455
https://books.google.dk/books?id=2n8IzUYrks4C


BIBLIOGRAPHY 83

[MN00] Thomas Mikosch and Rimas Norvaiša. “Stochastic integral equations
without probability”. In: Bernoulli (2000), pp. 401–434.

[OS22] Marco Oesting and Kirstin Strokorb. “A Comparative Tour through
the Simulation Algorithms for Max-Stable Processes”. In: Statistical
Science 37.1 (2022), pp. 42–63. doi: 10.1214/20-STS820. url: https:
//doi.org/10.1214/20-STS820.

[Pet95] V.V. Petrov. Limit Theorems of Probability Theory: Sequences of In-
dependent Random Variables. Oxford science publications. Clarendon
Press, 1995. isbn: 9780198534990. url: https://books.google.dk/
books?id=4LkdSaI4xXMC.

[Pro13] P. Protter. Stochastic Integration and Differential Equations: A New
Approach. Stochastic Modelling and Applied Probability. Springer Berlin
Heidelberg, 2013. isbn: 9783662026199. url: https://books.google.
dk/books?id=fMruCAAAQBAJ.

[PT97] Philip Protter and Denis Talay. “The Euler scheme for Lévy driven
stochastic differential equations”. In: The Annals of Probability (1997),
pp. 393–423.

[Res03] S. Resnick. A Probability Path. Modern Birkhäuser Classics. Birkhäuser
Boston, 2003. isbn: 9780817640552. url: https://books.google.dk/
books?id=T9-PMDSVDNsC.

[Res87] S.I. Resnick. Extreme Values, Regular Variation, and Point Processes.
Applied probability : a series of the applied probability trust. Springer,
1987. isbn: 9783540964810. url: https://books.google.dk/books?
id=DXi1QgAACAAJ.

[Ros01] Jan Rosiński. “Series Representations of Lévy Processes from the Per-
spective of Point Processes”. In: Lévy Processes: Theory and Applica-
tions. Ed. by Ole E. Barndorff-Nielsen, Sidney I. Resnick, and Thomas
Mikosch. Boston, MA: Birkhäuser Boston, 2001, pp. 401–415. isbn:
978-1-4612-0197-7. doi: 10.1007/978- 1- 4612- 0197- 7_18. url:
https://doi.org/10.1007/978-1-4612-0197-7_18.

[Sat99] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge
studies in advanced mathematics. Cambridge University Press, 1999.
isbn: 9780521553025. url: https://books.google.dk/books?id=
tbZPLquJjSoC.

https://doi.org/10.1214/20-STS820
https://doi.org/10.1214/20-STS820
https://doi.org/10.1214/20-STS820
https://books.google.dk/books?id=4LkdSaI4xXMC
https://books.google.dk/books?id=4LkdSaI4xXMC
https://books.google.dk/books?id=fMruCAAAQBAJ
https://books.google.dk/books?id=fMruCAAAQBAJ
https://books.google.dk/books?id=T9-PMDSVDNsC
https://books.google.dk/books?id=T9-PMDSVDNsC
https://books.google.dk/books?id=DXi1QgAACAAJ
https://books.google.dk/books?id=DXi1QgAACAAJ
https://doi.org/10.1007/978-1-4612-0197-7_18
https://doi.org/10.1007/978-1-4612-0197-7_18
https://books.google.dk/books?id=tbZPLquJjSoC
https://books.google.dk/books?id=tbZPLquJjSoC

	Introduction
	Point Processes and Lévy processes
	Point Processes
	Definition of point process
	The Laplace functional and weak convergence of point processes

	Poisson random measures
	Definition of Poisson process and Poisson integral
	Operations on Poisson random measures

	Lévy Processes
	Definition of a Lévy process
	Infinitely divisible distribution and Lévy-Itô decomposition
	Some examples of Lévy Processes


	Simulation of Lévy processes
	Sampling algorithms
	Explicit marginal distribution
	-stable distribution
	Finite Lévy measure
	Series representation of a Lévy process

	Series representation of a Lévy process
	Inverse Lévy measure method
	Thinning method
	Rejection method
	Shot noise method
	Bondesson's method
	How to choose the centering sequence
	Speed of convergence

	 Dealing with small jumps
	Three examples of series representation
	Gamma distribution
	-stable distribution
	CGMY distribution

	Simulation of Lévy-driven stochastic differential equations

	Simulations of max-stable processes
	Max-stable distributions
	Introduction to max-stable processes
	Crash course in regular variation

	Simulation of max-stable processes
	Threshold method
	Extremal functions method
	Probability threshold method

	Simulation of the Brown-Resnick process
	Exact simulation methods for the Brown-Resnick process
	Probability threshold method for Brown-Resnick process


	List of abbreviations and symbols
	Bibliography

