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Abstract

Braided rivers are a fluvial class characterized by the presence of multiple channels
with different sizes and hydrological properties. The channels diverge and intersect
continuously thus forming an extremely complex network. When a substance (like
a chemical, a nutrient or a pollutant) is introduced in the watercourse, it undergoes
a mixing effect which can be partly attributed to the river geomorphology, i.e. the
properties of the network. This phenomenon manifests itself in a spread of travel
time distributions at the outlet and is known as geomorphological dispersion.
In our thesis work we develop a mathematical model for this dispersion process.
Starting from the original geomorphological instantaneous unit hydrograph (GIUH)
theory, we adjust the hypothesis to apply it to the case of braided rivers and obtain
a closed form to compute outlet discharges with a dependency on geomorphology.
Then we perform numerical simulations on small networks aimed at validating the
model and pointing out the most interesting features of the theory. Our results
suggest that the network structure plays a predominant role over the branches length
or the probability values associated with them, indicating that this phenomenon is
mainly determined at the scale of the entire network rather than the scale of the
individual channel.
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Introduction

Imagine to stand on a bridge over a river channel and to throw some leaves all
together into the water underneath. You will notice that all of them immediately
start flowing downstream, transported by the current; at the same time though
each leaf will be subject to different chaotic motions, along the other directions
(depth and width) of the channel. If someone else is waiting at an outlet point,
further down along the channel, they will not see the leaves arriving all together,
but rather at different times and at different locations in the width of the river.

Figure 1: Sketch representing the effects of transport processes in a river, as
described in the introductory example. The leaves thrown in a channel are not only
carried downstream by the current, they also spread out in the other directions
due to the different transport mechanisms in action.

The behaviour of the leaves, following different trajectories in their travel along
the channel and spreading out in all directions, is the consequence of various
transport processes that are simultaneously in action during water flow. Studying
these phenomena is extremely important in order to trace the presence in natural
rivers of substances which can significantly impact the surrounding environment,
for example the release of pollutants, the distribution of nutrients. . .

More specifically we may be interested in quantifying the time it takes for a
substance particle starting at an injection point in the river to reach a downstream
outlet. This is known as travel time; it can give us an idea of response discharge
of the river network to different input forcings, which are usually in the form of
rainfall. If instead we want to compute the storage capacity of the catchment,
meaning how long particles can stay within a certain control volume, depending on
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Introduction

their injection time but regardless of the exit time, then we deal with residence
time distributions. These two concepts are usually different, but they are certainly
linked (Botter, Bertuzzo, et al. 2011; Rigon, Bancheri, and Green 2016).

The most important transport processes in fluvial networks are advection, that is
the downstream transport due to current, which we easily observe, and dispersion,
that is responsible for the spread in travel time distributions and the chaotic
motions of the leaves in the example above. The term dispersion actually reunites
several mechanisms which all have the same spreading effect, but are to be ascribed
to different reasons (Runkel and Bencala 1995). Physically it is virtually impossible
to separate the processes and observe them individually, but this can be done with
a mathematical approach, in order to understand which mechanisms give larger
contributions and under which conditions.

Our work focuses specifically on the theory of geomorphological dispersion, a
spread in travel times that is caused by the river network geometry exclusively.
Rodriguez-Iturbe and Valdés introduced for the first time in 1979 the theory of
geomorphological instantaneous unit hydrograph (GIUH) relating the discharge
at the outlet to the river geometric properties. Indeed just the complexity of a
network, with bifurcations and confluences, with branches of different lengths, acts
as a natural ‘mixer’ of particles and results in a wider distribution of travel times.
This occurs because the water particles have a multitude of possible paths to follow,
each with its own length, and the path choice results in a different travel time
through the network. Several mathematical models have been proposed to study
this matter (Gupta et al. 1980; Rinaldo, Marani, et al. 1991) over the years. We
have adopted the original theory of Rodriguez-Iturbe and Valdés (1979), but have
removed their simplifying assumptions about the geometry, in order to apply the
model to a very specific and interesting case.

Namely, for our purposes the study of geomorphological dispersion has been
addressed to braided rivers in particular. This term indicates a class of fluvial
networks known for their fascinating morphology, composed of multiple channels of
different sizes, that bifurcate and intersect at various points, forming bars between
channels (an example is shown in figure 2). Braided rivers are also characterized by
a very dynamic behaviour because sediments transported by the current can easily
obstruct some channels, deactivating them, and form new ones, so the number and
the distribution of active channels is in constant evolution. We have made the choice
of restricting ourselves to this category of rivers for two reasons; firstly countless
investigations have been conducted as regards to braided river morphodynamics,
but not as many in terms of mass and chemicals transport. Furthermore we expect
geomorphological dispersion to play a predominant role in the spread of travel
times in such naturally complex networks.

This thesis is organised as follows. In the first chapter the theme is presented
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Figure 2: Picture of the River Tagliamento in Friuli Venezia Giulia. An example
of Italian braided river, famous for being one of the few large rivers in Europe
whose morphology has not been altered by artificial intervention. Photo credit:
www.udine20.it.

from a physical-engineering point of view. Water transport processes in fluvial
networks are described in depth and a special emphasis is put on dispersion
mechanisms. A section is dedicated to investigating the dispersive role of network
geometry, pointing out that it manifests itself not only in rivers but in other types
of networks as well. Afterwards some qualitative notion on braided rivers is given,
in order to address the object of our study.

The second chapter is devoted the mathematical model. We start with a review
of the most significant steps in geomorphological dispersion theory, accurately pre-
senting the most important approaches (Rodriguez-Iturbe and Valdés 1979; Gupta
et al. 1980) and more swiftly the following advancements. Then we further develop
Rodriguez-Iturbe and Valdés’ model consistently with our purposes, justifying the
choices made for this thesis work.

In the third and last chapter we show the results of the simulations, obtained
through the MATLAB implementation of the mathematical model. We perform
tests on simple networks aimed at illustrating the key factors that influence travel
time dispersion in braided rivers. Together with the network structure itself, we
investigate the effect of some network properties such as the branches waiting time
and the volume distribution at bifurcations.
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Chapter 1

Physical aspects

1.1 Transport processes in river networks

As already mentioned, in rivers and streams the motion of water and the substances
dissolved in it is the result of many different physical processes. The necessity
of studying solutes transport can be easily explained through environmental and
biological reasons. For example those substances might be pollutants (like hydrocar-
bons, pesticides. . . ) that penetrate in a watercourse and need to be traced because
they constitute a threat; or they could be natural substances such as nutrients,
whose presence determines the evolution of biological organisms in the waters.

It is possible to accurately measure transport, for example through stream tracer
experiments. The method consists of instantaneously injecting a known amount of
solute at some inlet point upstream of the flow and then waiting further down for
the solute to come out at the outlet, at a given distance from the inlet. In particular
we can measure the concentration of solute in the water over a period of time at
the outlet. If we normalise the maximum concentration to one, we can expect it
to have low values at the beginning, when solute has not yet reached the outlet,
and then grow with time until reaching one, when all the solute is inside the basin
(as qualitatively shown in figure 1.1a). This type of plot is called breakthrough
curve (BTC), and – as we will see later on – it can be put in correlation with the
probability of a particle to be at the outlet at a given time. We might be interested
also in the discharge rate of water at the outlet. The plot of water discharge over
time is called a hydrograph and gives an idea of the network responds to different
inputs of water. Often a case is considered where the input is in the form of unitary
rainfall volume injected instantaneously all over the network, this is referred to the
instantaneous unit hydrograph (IUH). We can mention that in this kind of plot
the area under the IUH curve must always be 1 (or in general the input amount)
to guarantee mass conservation. Some qualitative examples of these curves can be
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found in figure 1.1b.

t

C

1
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Q
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Figure 1.1: Qualitative behaviour of (a) a breakthrough curve (BTC) and (b) an
instantaneous unit hydrograph (IUH) over time.

Let us now review the physics of some transport mechanisms, that are simul-
taneously in action during water flow (Runkel and Bencala 1995). The first one
that comes to mind when thinking about a river is the downstream current. In
this process, called advection, mass is transported downstream at the mean flow
velocity. This movement is due the gravitational force that makes water flow from
higher to lower elevations, therefore mean velocity can be easily linked to the slope
of the riverbed. If for example we suppose to inject dye at a certain point in a
channel, pure advection would cause the dye stain to move downstream, but it
would not modify its shape. Another extremely important mechanism is dispersion.
The term dispersion can indicate several different phenomena which all have the
effect of spreading out the dye stain of the previous example without moving it. In
terms of concentration curves, we can state that advection determines the mean of
travel times while dispersion is responsible for the variance (see fig. 1.2).

All processes that produce a spread in the travel times are therefore considered
dispersion mechanisms. These can be classified according to the scale at which
they contribute and to the factors that cause them (Di Lazzaro et al. 2016).
Hydrodynamic dispersion is a microscopic phenomenon influencing the variance
of travel time at the scale of the individual channel. This mechanism is itself the
combination of two transport processes, a diffusion-driven one and a shear-driven
one. Molecular diffusion is due to random thermal motion of particles, which causes
a flux from high to low concentration areas. Since the timescales of molecular
diffusion are extremely long, its role can be significant when flow velocity in the
channel is very slow, but it is normally exceeded by other phenomena. Shear-driven
dispersion, instead, occurs in presence of a velocity profile in the stream; indeed
in this case variations of vertical and horizontal velocities result in a significant
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Figure 1.2: Schematic representation of the effects of (a) pure advection, (b) pure
dispersion and (c) a combination of both on a dye stain introduced in a channel.

mixing of particles.
More often than not, rivers are characterised by turbulent water flow rather than

laminar. This depends on slope and depth of the channels, but also on the riverbed
roughness: a strong presence of sediments can trigger the transition from laminar
to turbulent (Malverti et al. 2008). Large velocity fluctuations are an intrinsic
property of this flow regime and give origin to macroscopic random motions that
have a high spreading effect over solutes. This process is known as turbulent
dispersion (Bouchez et al. 2010).

At the basin scale dispersion can be produced in different ways. An extremely
important dispersion mechanism for river networks, as well as the focus of this
thesis work, is geomorphological dispersion (Rinaldo, Marani, et al. 1991). This
type of dispersion is related to the presence of heterogeneities in path lengths.
Indeed if channels have non uniform geometric properties, solute particles have
a multitude of possible paths to follow and a different choices of the path result
in different travel times for the particles. Geomorphological dispersion will be
described in greater detail in the next section.

If we consider instead a network where all channels have the same length
and cross section but spatially varying flow conditions (velocity, for example), a
dispersive contribution comes up, called kinematic dispersion. This can be divided
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in two components. Channel kinematic dispersion is due to velocities being different
between one channel and the other; under some conditions this contribution is
comparable to the geomorphological one (Botter and Rinaldo 2003). On the other
hand, hillslope-based dispersion is caused by variations in the hillslope responses
of the catchment. Saco and Kumar (2002) have shown that this mechanisms can
both reinforce or counteract geomorphological dispersion.

The processes we have presented so far take place within the main stream.
Another class of transport mechanisms takes in consideration phenomena that
become relevant when the river banks are highly permeable, which is the case for
many natural streams. Lateral inflow (and outflow), for example, indicates the
runoff of water contained in the soil around the channel to the main stream (or
viceversa). Spatial variability in the runoff production can result in a variance
contribution as well (Di Lazzaro et al. 2015; Di Lazzaro et al. 2016). This can occur
for example in cases where infiltration processes or hillslope saturation present very
different values in different areas of the catchment. The mechanism is known as
productivity dispersion.

Transient storage is a transport mechanism related to water exchanges including
two phenomena. The first, called in-channel storage, is associated to the exchange
between the main flow and dead-zones (like eddies or pools); indeed water velocity
is slower. and hyporheic flow, which is the exchange between water in the channel
and water underneath the streambed sediments (Gooseff, LaNier, et al. 2005).
Transient storage is responsible for the long tails in some breakthrough curves;
indeed when solutes get ‘trapped’ in zones of slower flow, this mechanism acts so
that they are released in the main channel, therefore these solutes can reach the
outlet with some delay compared to the substances that did not get trapped.

1.2 Effect of the network on dispersion
We now look a little deeper into the concept of geomorphological dispersion.

Let us consider an ideal river flow where we suppose to neglect hydrodynamic
dispersion and only have advection processes. We instantaneously inject some
known amount of solute at the inlet, and trace it when it reaches the outlet. If our
river is a stream composed of a single straight channel, water only flows straight in
the downstream direction and the substance reaches the outlet all at once. The
IUH curve at the outlet is still a pulse function, just like at the inlet; in particular
the outcome would be as in the first example of figure 1.3.

If instead our network is more complex, composed of several branches of differ-
ent lengths splitting and intersecting, then despite the absence of hydrodynamic
dispersion, the outcome would be more similar to a spread out curve, like in figure
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1.3. We can explain this by following substance during its travel through the river
and seeing what happens. At every bifurcation mass is split (most likely in an
asymmetric way) and different particles take different paths to reach the outlet.
Because of the asymmetry of the network and of the varying length of the river
branches, paths will have different lengths as well. Then, even if we suppose the
flow velocity to be constant in the whole network, different particles will reach the
outlet at different times, depending on the path they followed.

t

Q INLET

t

Q OUTLET

(a)

t

Q INLET

t

Q OUTLET

(b)

Figure 1.3: Schematic explanation for the concept of geomorphological dispersion.
(a) In a straight channel where only advection is considered, an pulse injection at
the inlet results in an pulse discharge rate at the outlet. (b) If once again only
advection is considered, but the river network presents a more complex structure,
one can observe a time spread in the measured outlet discharge rate. This must be
attributed to a dispersion mechanism related exclusively to the network geometry.

Looking again at figure 1.3, we can see that the IUH variance is larger in the
case of the more complex channel network; as we have said, the processes that
contribute to the variance of the IUH are accounted as dispersion mechanisms. In
this case the only factor that can influence the result is be the network geometry.
This explains the concept of geomorphological dispersion: a term that sums up
to the other dispersion contributions, but is entirely due to the geometry of the
network.

Including geometric characteristics of a fluvial basin into the assessment of the
IUH, gave origin to what became known as the geomorphological instantaneous unit
hydrograph (GIUH) theory (Rodriguez-Iturbe and Valdés 1979). More in general
GIUH theory aims to establish how a catchment reacts when subject to rainfall
events and more specifically in what measure this reaction can be ascribed to the
network morphology (shape, dimension. . . ). Ideally one would be able to sum up
the behaviour of the network in the hydrological response function (HRF), which
combined with the rainfall input distribution returns the flow rate at the outlet.
The HRF contains all the information on how the flow is affected by different factors
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during the travel from inlet to outlet (Rinaldo and Rodriguez-Iturbe 1996). We
can choose which transport mechanisms we want to include in the HRF, depending
on the aim of the study.

The hydrological response function is actually just the specific application to
hydrology of a wider concept. Indeed in general by response function one indicate
a mathematical representation for the dynamic response of a system on a generic
input. In particular this means that the function is able to reproduce the system
behaviour in terms of output for different possible inputs. This is vastly used in
electronics, especially in control and signal theory.

1.3 Braided rivers
In this section we provide a brief introduction to braided rivers, which – as we have
said – constitute the object of our study.

Figure 1.4: A well studied example of braided river: River Brahmaputra in Tibet,
India and Bangladesh. Photo credit: Google Earth/patternsofnatureblog.com.

Several classifications for natural riverbeds morphologies have been offered
throughout the 19th century using different criteria and parameters. Rosgen (1994)
proposed an extremely detailed classification and identified 8 types of patterns,
divided in numerous subcategories, that can be ordered so that they are connected
within a continuum.

In general (Alabyan and Chalov 1998; Kleinhans 2010) we can reduce ourselves
to three main categories of river morphologies: straight, meandering and branched
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(fig. 1.5). Pattern formations depend on many factors, but primarily on sediment
characteristics and flow strength.

(a) (b) (c)

Figure 1.5: Three main categories of river morphologies: (a) a straight channel,
(b) a meandering river and (c) a braided network.

In our study we have chosen to address specifically braided rivers, a class of
fluvial networks that stands out for its complex and fascinating morphology. A
braided river is defined as a network of multiples interconnected channels, divided
by emerging sedimentary deposits. This type of river is formed in presence of
very strong flow and large load of unconsolidated sediment (like sand or gravel).
Furthermore braided rivers are usually formed in large unconfined valley settings
and present rather high bank erosion rates (Kleinhans 2010; Connor-Streich 2019;
Schuurman 2015). All these conditions allow the formation of bars in between
channels; said bars are formed through depositional and erosive mechanisms and
are usually free of vegetation (Ashmore 1991).

Erosion and sediment transport contribute to make braided networks extremely
dynamic systems. In particular bars may shift in downstream direction, change
shape, merge with one another or split, be cleared away or be created. Thus the
active channels, where water is flowing, keep rearranging themselves and modifying
their geometry. Some branches may be abandoned (a process known as avulsion) and
possibly reactivated afterwards. Summing up, the river morphology is in constant
evolution (Schuurman 2015) but its behaviour is extremely unpredictable. This
complex dynamism can be very problematic in establishing appropriate management
for fluvial networks, therefore numerical modeling of braided river morphodynamics
has become a highly investigated topic in the last 30 years (Williams et al. 2016),
ever since the seminal work of Murray and Paola (1994). Despite it being one of
the most interesting features of this fluvial class, in this thesis work we will always
neglect morphology evolution. Indeed the time scales of these processes are in
the order of years, much larger than the ones of the dispersive phenomena of our
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interest, which are in the order of minutes or hours. Therefore the two phenomena
do not influence each other and we can freely suppose a fixed network for our
purposes.

In addition to change of morphology it is interesting to mention that apparent
changes in the network distribution can be observed by varying the water discharge.
Indeed due to spatial variations of the bed elevation, higher water surface levels
will cover the emerging bars until the extreme case of a single-channel stream in
a high water load event; on the other hand, lowering the water level will expose
more and more bars showing the multi-channel nature of the river.

Key elements composing a channel networks are bifurcations and confluences
(Ashmore 1991; Schuurman 2015). In chain-like configurations such as braided
rivers, they must be present with similar frequencies, which leads the average
number of parallel channels per river reach to stay roughly the same (Hiatt et al.
2019). Bifurcations and confluences are the elements where distribution of both
water discharge and sediment transport is determined. A rich schematic of these
elements can be found in Marra et al. (2013). At bifurcations, the flux is usually
partitioned in an asymmetrical way; this lack of symmetry is directly related to
channel instability (Schuurman 2015). This is due to the fact that, when the
discharge division becomes more and more asymmetrical, one of the two outgoing
branches will probably be obstructed by sediment and abandoned by the water
flow at some point, thus eliminating the bifurcation at all. Furthermore together
with sediment transport bars movement and erosion phenomena also have a strong
influence on the evolution of bifurcations and confluences.

The short qualitative physical description of braided rivers we have given can be
useful to understand their nature, why they exist and how they are different from
other types of networks. On the other hand, some quantitative notion is necessary
to develop numerical models, especially considering the fact that a these networks
can often be so complex that some information remains unavailable. We mention
here some significant parameters when dealing with braided rivers, which try to
capture important features of this type of networks.

The braiding index (BI) quantifies how intense the braiding in the river is. BI
can be computed as the number of parallel channels per cross section. If only
active channels are considered we talk of active BI, whereas if inactive channels
are included in the count as well it is called total BI. As we have mentioned it
is not always immediate to distinguish between channels and bars because river
configuration changes drastically with water level, therefore usually a threshold
is defined cross-sectional average bed elevation value to operate the distinction
(Schuurman 2015). As pointed out in Marra et al. (2013), this parameter is useful
in certain applications, but fails to capture the spatial characteristics of channels
distribution.

A metric encapsulating the importance of a single channel within the whole
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network is the betweenness centrality (BC). To derive this the shortest paths
between any two points are computed, a channel which is part of many different
paths, is more central than the others. This parameter is especially important in
morphodynamics, because it tells us that changes involving a channel with high
BC will have a much stronger impact on the flow than those with lower BC values.

1.4 Rivers and graph theory
In order to develop a mathematical model for GIUH theory we also need a mathe-
matical representation of the river network. In our case a river is substituted by a
directed graph. This is a data structure G(N, E) consisting of a set of nodes N
and a set of edges E, which link different nodes. In a directed graph (or digraph)
in particular we can only move in a a specific direction associated to each edge.
The graph comes together with a matrix representation, the so called adjacency
matrix is a square matrix of the same dimension of N , whose elements signal which
nodes are connected by a link and which are not. In our study we have excluded
the case of multiple links between nodes.

(a)

1 2

3

4

5 6

(b)

A =

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0







(c)

Figure 1.6: A simple example of graph extraction from a small network. (a) The
actual river network: the black dots indicate the locations where we set the graph
nodes. Fig. (b) shows the corresponding graph representation, with edges are
directed downstream. In fig. (c) the adjacency matrix of the graph is displayed.

Going back to rivers, the representation with graphs is quite simple: each
branch (or part of a branch) is associated to an edge, while nodes corresponds
to bifurcations, confluences and locations in general. The direction of an edge is
given by the direction of the downstream current. The cases of edges connected by
multiple channels is avoided by adding extra nodes in between. A basic example
can be seen in figure 1.6.
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Even though the identification of rivers with directed graphs seems quite natural,
so far these have been used more as conceptual frameworks rather than actual
object representations (Heckmann et al. 2015; Phillips et al. 2015). Nonetheless
the enormous versatility of graph theory, which is already applied to economics,
neuroscience, sociology, transportation and more (Newman 2010), suggests that
using network analysis to study rivers might be a good idea. Several procedures
have been developed specifically for braided rivers in order to extract a graph either
from imagery or from digital elevation models (Marra et al. 2013; Connor-Streich
2019; Hiatt et al. 2019). In figure 1.7 we show a simplified version of the network
extraction from imagery; first a color cutoff is chosen to define the active channels,
then the graph is plotted based on that.

(a) (b) (c)

Figure 1.7: Simplified example of the extraction of a network from an
image. (a) Picture of the Rakaia River in New Zeland (Photo credit:
www.digitalglobeblog.com). (b) The same picture after the process of color elimi-
nation. (c) Graph representation superimposed on the river image.
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Chapter 2

Mathematical model

2.1 Review of Geomorphological Dispersion
As already mentioned the bases for the concept of Geomorphological Dispersion
rest primarily on the papers of Rodriguez-Iturbe and Valdés (1979) and Gupta
et al. (1980).

2.1.1 Rodriguez-Iturbe’s approach
In their well-known article «The Geomorphologic Structure of Hydrologic Response»,
Rodriguez-Iturbe and Valdés incorporated for the first time the geomorphology of
the river network in a model to quantify hydrological response. This theory has
become popular as the geomorphological instantaneous unit hydrograph theory (or
GIUH, in short).

To give an idea of how it works, let us consider a channel network with a bucket
placed at the outlet, like in figure 2.1. We suppose to inject a certain water volume
at the inlet at time zero and aim to quantify the time it takes for the volume to
flow through the network and fill the bucket downstream.

It is quite natural to imagine that the volume fraction flowing into the outlet at
time t is equivalent to the probability that a single particle injected at time zero
will arrive at the outlet at time t. Therefore the our goal can also be reached by
individually following a particle in its travel from the inlet to the outlet of the river.
The particle takes a certain path, with a certain probability, and its travel time
will depend on the characteristics of the chosen path (the length, for example).
Clearly following a single particle is not realistically achievable from a physical
point of view, but this approach allows a clearer mathematical description. In this
light, the initial aim of studying how fast the bucket is filled can be obtained by
determining the travel time distribution of one particle at the outlet.
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INLET

OUTLET

Figure 2.1: Sketch of the setting for developing Rodriguez-Iturbe and Valdés
(1979)’ mathematical procedure. Water is injected instantaneously at the inlet and
flows downstream through the various branches of the network until reaching the
outlet, where it is collected in a bucket.

Rodriguez-Iturbe and Valdés achieved this with a probabilistic approach, more
specifically in the framework of a semi-Markov process. To establish this kind of
description we suppose to have a certain system that evolves from one state to
another. In our case by ‘system’ we indicate the position of the particle in the
network and by ‘state’ a river branch (or part of a branch). State transitions can
happen at any time, and not necessarily at each time step (as would be the case in
a regular Markov process). Mathematically this translates into defining both the
state occupied by the system and the amount of time spent in a state as random
variables.

In order to consider a semi-Markov process, we must assume a memoryless
system, meaning that only the present state is used to determine the dynamics,
while the sequence of all past states is irrelevant (Howard 1971). In terms of our
problem, this hypothesis states that at every bifurcation the water mass splits
between the two possible next branches with probabilities that do not depend on
the path followed until then, but only on the present branch. In particular we
will assign fixed probabilities at every bifurcation using hydraulic and geometric
properties of the channels, therefore we can consider this a reasonable assumption.

The transition probability matrix P must be known, which describes changes
in the state of the system. If we label states with i, j = 1, . . . , N , each element
pij is the probability that the particle enters branch j after having spent time
in branch i. The notation and mathematical procedure in Rodriguez-Iturbe and
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Valdés (1979) follow the ones in Howard (1971), let us briefly summarise them here,
slightly simplifying the notation.

We define two different random variables representing waiting times

• Tij is the conditional waiting time that the particle spends in state i before
moving to j; to this variable is associated a probability density function hij(τ).

• Ti is the unconditional waiting time, i.e. the time spent in i without knowing
what will be the next state; its probability density function is given by

fi(τ) =
NØ

j=1
pijhij(τ). (2.1)

For Ti we furthermore introduce the cumulative complementary distribution

F̄i(t) =
Ú ∞

t
fi(τ) dτ =

Ú ∞

t

 NØ
j=1

pijhij(τ)
 dτ = P [Ti > t], (2.2)

that is the probability that the particle stays in state i for more than t time.

We indicate by ϕij(t) the probability for the particle to go from i to j in the
interval (0, t) and we aim to find a formula for it. The particle starts in i at time
zero; afterwards there are two possible situations contributing to the form of ϕij.
Either the particle remains in state i the whole time until entering j at time t, or
it makes a series of transitions to other states k with a final transition to j at time
t. These two mechanisms can be inserted in the following fundamental equation

prob. of going
from i to j in time tú ýü û

ϕij(t) = δijF̄i(t) +
NØ

k=1
pik

Ú t

0
hik(τ)ϕkj(t − τ) dτ

= δijF̄i(t)ü ûú ý
prob. of remaining

in i for longer than t
(only if i = j)

+
Ú t

0

NØ
k=1

pikhik(τ)ϕkj(t − τ) dτü ûú ý
prob. of going from i to other states k in less
than t and from k to j in the remaining time

.
(2.3)

Here the first term contributes only in case j = i (achieved with the Kronecker
delta), and represents the probability for the particle of still being in i at time t,
given by the probability that waiting time in state i is larger that t. In the second
term we find the product between the probability of making a transition from i
to k, the probability that the waiting time in i before going to k is τ < t and the
probability of going from k to j in the interval (0, t − τ).
Equation (2.3) can be easily written in matrix form

Φ(t) = F̄(t) +
Ú t

0
[P□H(τ)] Φ(t − τ) dτ, (2.4)
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where Φ, P and H are N × N matrices directly defined with their ij components,
F̄ is a diagonal matrix such that

è
F̄(t)

é
ii

= F̄i(t) and □ indicates the Hadamard
product of corresponding elements.

We can imagine that the time spent in a branch only depends on its hydraulic
and geometric properties (flow velocity, branch length. . . ); then the next branch
does not influence waiting times and we can consider Ti instead of Tij. The same
can be said for transition probabilities which we can define independent of time,
for example using flow rates. Then it is reasonable to employ an unconditional
description of the system, allowing the following simplifications

Tij = Ti, (2.5)
hij(τ) = fi(τ), (2.6)

P□H(τ) = f(τ)P. (2.7)

Introducing these in equation (2.4), gives us

Φ(t) = F̄(t) +
Ú t

0
[f(τ)P] Φ(t − τ) dτ. (2.8)

Supposing to be able to solve eq.(2.8), we can use Φ to identify the state matrix

X(t) = X(0)Φ(t). (2.9)

X(t) is a 1×N vector whose elements Xi(t) represent the probability for the system
to occupy state i at time t.
Finally, in order to find the probability that the particle reaches the outlet at time
t we only need the component of system (2.9) relative to state i = out:

Xout(t) = X1(0)ϕ1 out(t) + · · · + Xout(0)ϕout out(t). (2.10)

For example, if we suppose to only have one inlet branch, say i = 1, then we are
left with

Xout(t) = X1(0)ϕ1 out(t). (2.11)
As already mentioned, this is equivalent to the water volume fraction that reaches
the outlet at time t. Assuming an instantaneous injection, we would expect Xout(t)
to be close to zero for smaller t, when most of the water is in proximity of the inlet
injection point, and then grow until stabilizing on 1 for larger t values, when the
whole mass has reached the outlet.

We can use Xout(t) to compute the IUH of the basin by deriving with respect
to time

IUH(t) = dXout

dt
(t) = X1(0)dϕ1 out

dt
(t) + · · · + Xout(0)dϕout out

dt
(t). (2.12)

This tells us the discharge rate at the outlet.
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2.1.2 Gupta’s approach
Rodriguez-Iturbe and Valdés’ was basically the first attempt to formalise the effects
of geomorphology on travel times in a coherent theory. The following year Gupta
et al. (1980) proposed a more general and conceptually simpler model. Despite the
fact that we will not eventually be using this model, its clear formulation allows a
deeper understanding of some concepts in the GIUH theory, especially as relates to
the role of the different paths in the network. For this reason we think this review
can be useful.

Gupta et al.’s model can be explained starting from a microscopical interpretation
of mass balance equation. We suppose to inject in a river basin a unit volume of
water, composed of a large number of non-interacting identical particles. Each
particle spends a certain holding time T i

B in the network before reaching the outlet
(now superscript i stands for the particle). The volume of water in the basin at
time t depends on the fraction of particles that are still in the basin at time t,
i.e. the particles whose T i

B is larger than t. We speculate that – particles being
indistinguishable – all holding times are independent and identically distributed as
TB. Then, we can apply the law of large numbers finding that the needed fraction
of particles is equal to the probability that TB is larger than t. The volume in the
basin at time t is then

V (t) = P [TB > t]. (2.13)
Time variations of V only depend on the outflow, since the initial injection is
instantaneous. Differentiating both sides of equation (2.13) with respect to t leads
to

d

dt
V (t) = −fB(t), (2.14)

where fB denotes the probability distribution function of TB, equal to the derivative
of the cumulative distribution FB(t) = P [TB ≤ t]. Finally, by definition of the IUH

IUH(t) = fB(t). (2.15)

It remains now to determine fB(t), using the information on particles motion and
network geometry.

There are several possible paths that each particle might choose; pγ indicates
the probability of path γ being chosen. Then

pγ =
Ù
i∈γ

pi, (2.16)

where i are the branches composing the path. On the other hand, holding time TB

depends on the travel time of the chosen path Tγ, which is itself given by

Tγ =
Ø
i∈γ

Ti. (2.17)
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It follows that

P [TB < t] =
Ø
γ∈Γ

P [Tγ < t ] · pγ (2.18)

=
Ø
γ∈Γ

è
Fi1,γ ∗ Fi2,γ ∗ . . .

é
(t) · pγ, (2.19)

where i1,γ, i2,γ, . . . represents the sequence of branches forming path γ and symbol
∗ indicates the convolution product between cumulative distribution functions.
Then we can find the distribution function by differentiating both sides of equation
(2.19), thus obtaining the IUH:

IUH(t) = fB(t) =
Ø
γ∈Γ

è
fi1,γ ∗ fi2,γ ∗ . . .

é
(t) · pγ. (2.20)

To clarify, supposing to have a Delta distribution in each branch, meaning an
exact travel time rather than a spread distribution, as a result of equation (2.20)
we would obtain a summation of Delta functions, one for each path γ, each peaking
at Tγ and weighted by the probability to choose path γ; a qualitative example of
the resulting IUH is shown in figure 2.2.

t

IUH

Figure 2.2: Illustrative example of the result of Gupta et al.’s model in the
hypothesis of exact waiting times in each edge (delta distributions). The result is
a summation of deltas, each weighted by the probability of observing the relative
travel time.

A clear advantage of Gupta et al.’s model is that no restrictions must be imposed
on the choice of the probability density functions; therefore they could be physically
derived or assumed a priori. In their paper the authors offer two examples using
uniform and exponential forms for the fi(t). On the other hand, despite apparently
being simpler than Rodriguez-Iturbe and Valdés’s, this model requires the ability
to compute the list Γ of all possible paths, which for a large braided network is
virtually unachievable.
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2.2 Further studies
The GIUH theory soon achieved great success. Many studies were published aimed
at extending, perfecting or applying this theory. In this section we give an overview
of these works.

A very important contribution was given by Rinaldo, Marani, et al. (1991). In
their paper the authors assume Gupta et al.’s theory as a starting point and focus
on developing a physical approach to derive travel time distributions. These are
obtained in the Laplace domain by relating them to a 1D advection-dispersion
equation. In the assumption of spatially invariant celerity and dispersion, an analyt-
ical form for the travel time distribution is found; in the formula parameters appear
such as hydrodinamic dispersion coefficient, average path length and kinematic
celerity. Furthermore Rinaldo, Marani, et al. were the ones who introduced the
expression geomorphological dispersion, to indicate the other term that, together
with hydrodinamic dispersion, contributes to the variance of travel times. A few
years later Rinaldo and Rodriguez-Iturbe (1996) provided some extension of their
previous work, reformulating the derivation of travel time distributions with a
Lagrangian approach.

In Saco and Kumar (2002) the assumption of spatially invariant celerity and
hydrodynamic dispersion coefficient is relaxed. Thus a third dispersion mechanism
comes up, called kinematic dispersion. This is entirely due to the spatial variability
of celerity in different channels and its contribution must be added to hydrodinamic
and geomorphological dispersion in order to obtain the total dispersion.

Di Lazzaro et al. (2016) performed a detailed analysis to compare different disper-
sion mechanisms. In particular kinematic dispersion is divided in two components,
one due to channel velocities, one to hillslope velocities. Their analysis focuses on
the latter in particular, but to our ends it is relevant to mention that, especially in
large networks, geomorphological dispersion is the prevailing mechanism.

In almost all of the works described above the study addresses converging tree-
like river networks. This allows to employ some approximations for the network
(Horton’s laws and Strahler’s orderings) that save us the need to have a complete
knowledge of the river geometry; the actual network is substituted by a model.
This approach was almost necessary at the origins of GIUH because then digital
data for river geomorphology were not always available, especially in some areas
(Rigon, Bancheri, Formetta, et al. 2016). In the case of braided rivers the same
empirical laws are not valid, since the morphology is much more complex. Though
some attempts have been published to obtain similar scalings and orderings also
for this class of rivers (De Bartolo et al. 2022; Gleyzer et al. 2004), we have decided
not to introduce such approximations in the model.

Moreover, in most cases the input is given in the form of rainfall, instantaneously
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and uniformly distributed over the entire basin. These are known as rainfall-runoff
models and are quite important for monitoring the quality and quantity of water
into natural stream systems. Nonetheless the same models can work with a punctual
injection in a specific branch, just depending on how we define initial conditions.

2.3 Residence Time Distributions
Apart from Rinaldo, Marani, et al.’s paper, which proposes a physical approach to
determine travel time distributions in a single reach, the other models presented
above require to specify an explicit form for said distributions. By introducing the
hypothesis of exponential waiting time, for example, Rodriguez-Iturbe and Valdés
have been able to simplify the equations at the point of obtaining an analytical
solution. In Gupta et al.’s paper two examples were given using respectively an
exponential and a uniform distribution.

We have decided to follow Rodriguez-Iturbe and Valdés’ example and employ
exponential distributions for the residence time in each branch. In this section we
support this choice presenting some literature aimed at finding the most appropriate
analytical residence time distributions (RTD) given experimental breakthrough
curves.

As we have explained in the first chapter, when referring to natural streams,
transient storage mechanisms give a substantial contribution to residence times
dispersion (Gooseff, LaNier, et al. 2005). In particular we have mentioned in-channel
storage and hyporheic exchange . The first is due to the exchange of the fast water
in the main channel with dead zones (side pools or eddies), where the flow slows
down and water can remain trapped. Hyporheic exchange includes the exchange
between surface water and groundwater beneath streambed sediments (hyporheic
zones). Generally natural streams present bed sediment and permeable banks,
therefore hyporheic mass exchange occurs and realistically we should consider both
contributions when modeling residence time distributions (Deng and H. S. Jung
2009). Hyporheic exchange is typically responsible for lengthening the tail of RTDs,
because it traps water longer than dead zones do, releasing it later on.

Models usually derive RTDs starting from experimental breakthrough curves,
obtained through stream tracer techniques. Some models require an a priori
specification of the expected distribution form, which often falls on the exponential
(Gooseff, Wondzell, et al. 2003), some other allow to avoid this upfront choice
(Deng and H. S. Jung 2009).

It has been observed (Gooseff, Wondzell, et al. 2003) that for small streams,
regardless of the reach geomorphology, the exponential RTD shows a good corre-
spondence in shorter time periods, but it fails to capture the tail of the distribution,
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meaning that solute released after a while is not well detected. In this case a
power-law RTD constitutes a better choice. As we have said, a long tail should
mainly be due to hyporheic exchange.

Gooseff, Wondzell, et al. (2003) were able to separate the contribution of the two
mechanisms with an experiment on two different reaches of the same river. In the
first reach the bed had been cleared from debris by an alluvial event; thus making
it naturally subject to in-channel storage only. The second reach, of similar length,
presented alluvium on the riverbed, which would cause hyporheic exchange as
well. Performing a long-timescale experiment, the authors found that breakthrough
curves in the first reach had short tails, to be ascribed to water coming from the
in-channel dead zones; in this case RTDs were better approximated by exponentials.
On the other hand in the second reach hyporheic exchange was also present, tails
were much longer and power laws would give a much better fit.

t

RTD

long tail

Figure 2.3: Qualitative comparison of residence time distributions (RTDs) ob-
tained using a power-law distribution (continuous line) and an exponential distri-
bution (dashed line). The long tail of the power-law-type curve is highlited.

Summing up, we can neglect hyporheic transport if we choose to consider small
streams with relatively smooth riverbeds; moreover we can imagine the timescale of
hyporheic exchange to be quite different from the one of geomorphological mixing
processes, that constitute our object of interest. In conclusion it seems reasonable
for us to adopt exponential time distributions to further develop the model as in
Rodriguez-Iturbe and Valdés (1979).

2.4 Model
The mathematical model we employed in this thesis work follows the one of
Rodriguez-Iturbe and Valdés. This spared us the need to compute all possible
paths between inlet and outlet (Gupta et al. 1980; Rinaldo, Marani, et al. 1991),
which would have been particularly problematic in the case of a braided network.
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Furthermore the matrix form of the equations in Rodriguez-Iturbe and Valdés
(1979) is well suited to the graph representation of the river network that we intend
to employ. As we have explained each edge of the graph is a river channel – or
part of it – and nodes are in correspondence to bifurcations and confluences. We
suppose the network to be fixed, thus ignoring changes in the morphology. From
now on we will use without distinction the terms graph and river network and the
terms edge and channel.

The main difference with Rodriguez-Iturbe and Valdés’ model is the interpreta-
tion that must be attributed to the states. In their paper Strahler’s ordering is
applied to the network and a state is associated to the order of a stream. As for
our case, since stream ordering in braided rivers is extremely complex (Gleyzer
et al. 2004), each state corresponds to an edge of the graph. The semi-Markov
probabilistic approach is very general, so that there are no restrictions on adopting
this interpretation.

We assume the waiting times to be exponentially distributed in each channel.
This hypothesis is justified by the explanation in the previous section and is
essential for reaching an analytic solution (as done in Rodriguez-Iturbe and Valdés
1979; Howard 1971). If by N we indicate the total number of edges in the
graph, labeled i = 1, . . . , N , then introducing exponential forms means defining
the unconditional waiting time distributions and the cumulative complementary
distributions respectively as

fi(t) = λie
−λit, F̄i(t) =

Ú ∞

t
fi(τ) dτ = e−λit. (2.21)

Parameter λi represents the inverse of the mean holding time in channel i. The
qualitative behaviour of these functions is shown in figure 2.4. We now need to
insert these exponentials into equation (2.8) to further develop the calculations.

Let us proceed as in Howard (1971) and transfer our computation in the Laplace
domain through the transform L [g](s) = ĝ(s) =

s ∞
0 g(t)e−st dt, defined in variable

s. Then the functions in equation (2.21) transform into

f̂i(s) = λi

s + λi

, ˆ̄Fi(s) = 1
s + λi

. (2.22)

We transfer equation (2.8) in the s-domain exploiting some properties of the Laplace
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F̄
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Figure 2.4: Qualitative behaviour of the exponential forms of (a) the unconditional
waiting time distribution fi(t) and (b) the cumulative complementary distribution
F̄i(t), as described by eq. (2.21).

transform

Φ(t) = F̄(t) +
Ú t

0
[f(τ)P] Φ(t − τ) dτ, (2.23)

=⇒ Φ̂(s) = ˆ̄F(s) + f̂(s)P Φ̂(s) (2.24)

= [ ˆ̄F−1(s) − ˆ̄F−1(s)f̂(s)P]−1 (2.25)

=




. . . 0
s + λi

0 . . .

 −


. . . 0

λi(s + λi)
s + λi

0 . . .

 P


−1

(2.26)

= [sI + Λ − ΛP]−1 (2.27)
= [sI − Λ(P − I)]−1 (2.28)
= [sI − A]−1 (2.29)

where Λ =


λ1 . . . 0
... . . . ...
0 . . . λN

 is the diagonal matrix containing the inverses of mean

holding times and A = Λ(P − I) is called the transition matrix.
The great advantage of the expression in equation (2.29) lies in the fact that

it allows analytical anti-transform in time domain. Therefore we end up with the
following closed form for matrix Φ(t), i.e. the probability of going from one edge
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to another in time t:

Φ(t) = eAt = I + At + A2t2

2! + . . . (2.30)

which we can finally insert in equation (2.9) to find the solution for X(t) = X(0)Φ(t),
probability for the particle of being in a certain state at time t. In particular, when
limiting ourselves to the columns relative to outlet branches, we can write

Xout(t) = X1(0)
è
eAt

é
1 out

+ · · · + Xout(0)
è
eAt

é
out out

. (2.31)

For the IUH we can differentiate the equation above and exploit the fact that
d
dt

eAt = AeAt, thus obtaining

IUH(t) = X1(0)
è
AeAt

é
1 out

+ · · · + Xout(0)
è
AeAt

é
out out

. (2.32)

Matrix A contains the information on the network: the mean waiting time for
each branch (Λ) and the existing links between them (P); while the components of
vector X(0) tell us how the initial instantaneous input is distributed in space.

In particular if we consider the case of a network with a single inlet and a single
outlet channel, we are left with

IUH(t) = Xin(0)
è
AeAt

é
in out

. (2.33)

Once the IUH is computed, we find ourselves in possess the network response
function. With this we can easily know the values that reach the outlet as a
consequence of any input function, by performing a time convolution between the
IUH and the initial distribution i0(t); this is called the ‘response’ of the network.
At the outlet we will then have the following discharge

Q(t) =
Ú t

0
IUH(t − τ)i0(τ) dτ. (2.34)

Let us recall that differently from most works, where i0 is given as spatially uni-
form rainfall, in our case the input distribution refers to one inlet branch exclusively.

To cover the case of multiple entries and multiple exits, we can generalise
the approach. We start by computing multiple IUHs, one for each inlet-outlet
combination IUHini outj

(t) with the model presented until now. Afterwards we
convolve every IUHini outj

(t) with the initial distribution at the relative inlet ini,
thus obtaining a Qini outj

(t) representing the contribution at outlet outj due to
the injection in inlet ini. Finally we can sum over the inlets to find a Qoutj

(t),
which gives us the total discharge at outlet outj as a consequence of all different
inputs. This allows us to have, together with the time spread of each discharge,
a knowledge of the spatial distribution of the injected volume among all possible
outlets.
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Chapter 3

Results

In order to validate the theoretical model described so far, we have performed
some numerical simulations aimed at pointing out the most interesting features
of the GIUH theory. The mathematical model of chapter 2 was implemented in
MATLAB and applied to small networks with realistic geometries. In this chapter
we summarise and remark on the results thus obtained.

3.1 Toy networks
We start by quickly showing the results of an ad-hoc built experiment, aimed at
illustrating the basic features of geomorphological dispersion. The experiment can
be described as follows.

IN

OUT

(a) 1st iteration.

IN

OUT

(b) 2nd iteration.

IN

OUT

(c) 3rd iteration.

IN

OUT

(d) 4th iteration.

Figure 3.1: Toy graphs are formed by keeping inlet and outlet fixed and adding
a new path of different length between them at every iteration. So that the first
graph (a) only has 1 path of length 1, the second (b) has an extra path of length 2,
the third (c) an extra path of length 3, and so on.
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We generate a graph consisting of three edges, respectively an inlet, an outlet
and a link between them. Notice that this network represents a straight channel.
We compute the IUH of this network, which gives us the outlet discharge rate in
response to the introduction of a delta distribution at the inlet. Then, keeping the
existing network fixed, we add two new edges forming a second path between the
inlet and the outlet and compute again the IUH of the new network. We continue
this process so that at the nth iteration we add a path formed of n edges, finding
ourselves with a total of n different paths with lengths going from 1 to n. At
each iteration we also compute the IUH. Figure 3.1 illustrates how the graphs are
created.

The aim of this experiment is observing the changes in the IUH as the number
of available paths and path lengths increases. Considering what we explained in
section 2.1, we would expect the IUH to spread out over time when the network
grows. Quantitatively this must be reflected by the IUH variance values, which
should increase along with the number of paths.

IN

OUT

(a) 1st iteration.

IN

OUT

(b) 5th iteration.

(c) 10th iteration.

IN

OUT

(d) 15th iteration.

Figure 3.2: Toy graphs for the simulations whose results are shown in fig. 3.3.

In order to verify this we perform 15 iterations of the process and attribute
travel times equal to 1 to all edges. In figure 3.3 we report the results referring
to four iterations only, for the sake of clarity. The black dashed lines represents
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an input delta function, to remind us that the IUH coincides with the network
response to the introduction of this kind of distribution. The blue lines are the IUHs
curves, they all present different line pattern since they each refer to a different
iteration, as explained in the legend. Looking at the IUHs we observe that, as the
iteration number increases, the peaks lower and the curves spread out over the
horizontal axis. This is confirmed by the values of the parameters indicated within
the legend. Indeed at higher iterations, as the number of possible path lengths
grows, both the mean travel time and the variance value show a clear increase.
This is exactly the concept of geomorphological dispersion that we gave: a larger
number of possible paths and path lengths determines a spread in the travel times
at the outlet. Therefore we must attribute this dispersion contribution to the
network geometry.
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IUH iter. 1: 7 =2.0, <2 =2.0
IUH iter. 5: 7 =4.0, <2 =6.0
IUH iter.10: 7 =6.5, <2 =14.7
IUH iter.15: 7 =9.0, <2 =27.6

Figure 3.3: Resulting IUHs from four iterations 1, 5, 10 and 15 of the toy experi-
ment; the graphs are shown in fig. 3.2. The black dashed line represents the input
delta distribution and the blue lines are the IUHs of the different networks.
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3.2 The Borbera network
The simulations are performed on networks relative to a reach of the Borbera
Stream, in Southern Piedmont. A graph representation of this river reach (fig.
3.7), extracted in a previous work using DEM data, has been made available by
the Department of Environment, Land and Infrastructure Engineering (DIATI) at
Politecnico di Torino.

3.2.1 Site description

Figure 3.4: Geographic location of the Borbera Stream. Image produced with
Google Earth software.

The Borbera Stream is a small river located in the south of the Piedmont region,
in the province of Alessandria. The Borbera originates on the Ligurian Appennine,
between Mount Chiappo and Antola and follows a course of approximately 38 km,
until the confluence into the Scrivia River. The hydrological regime of the Borbera
is the typical regime of a mountain river, with very wide seasonal variations with
heavy flow rates in spring and autumn.

3.2.2 Graph description
As we have explained in chapter 1, the active river channels change according to
the values of the average flow rate, and this result in different graph geometries.
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Figure 3.5: Zoom of a braided reach in the Borbera Stream. Both active and
inactive channels are visible. Image produced with Google Earth software.

Several networks had been made available, for different values of flow rate, velocity
and water level threshold. We chose to use only the network obtained with flow
rate equal to 45 m3 s−1, since in this case we find ourselves with only one connected
component.

The full network is shown in figure 3.6. It is composed of Nn = 3212 nodes
and Ne = 3800 edges. The majority of network elements consist in bifurcations
(590) and confluences (589) where two edges are involved, nevertheless few splits
with three or four channels can be identified (30 ingoing and 35 outgoing). Water
flows from left to right. The graph comes with a directed adjacency matrix of

Figure 3.6: Entire available graph representation of the Borbera network. Water
flows from left to right. This network consists of Nn = 3212 nodes and Ne = 3800
edges.

dimensions Nn ×Nn, which turns out to be sparse given that only Ne = 3800 matrix
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elements are nonzero. From this description we can easily move to an edge-driven
one by building a matrix R of dimensions Ne × Ne, whose elements Rij are equal
to 1 if edge i outlet node coincides with the inlet node of edge j. Matrix R is
used to set the structure of Pij, the probability matrix of the model. It is worth
mentioning that, due to the network complexity, no ordering of the edges or the
nodes is possible in the graph. In addition to this both the adjacency matrix and
the probability matrix are highly sparse matrices, due to the relatively low number
of links compared to the total number of edges.

Since this network is very large, we do not use it as it is, but rather extract
from it smaller sub-networks to test. Thus the test-networks will have realistic
geometries. On the other hand the values we assign to waiting times are not
physically derived, but rather we impose values of our choice. This does not affect
the dynamics of the system; in particular we can suppose that the travel times
have been normalised by the factor of a typical network timescale.

3.3 Numerical simulations on a single-inlet single-
outlet network

3.3.1 Network description

For the first set of simulations we extrapolate a small network from the upstream
part of the network. In order to have a unique inlet and outlet, we add to the graph
two dummy edges (those indicated with ‘IN’ and ‘OUT’). Consequently dummy
links are inserted to connect each of them to the main network, respectively four
for the inlet and six for the outlet. The resulting graph is shown in figure 3.7. It
is composed of Nn = 56 nodes and Ne = 68 edges. We identify 8 bifurcations, 8
confluences and one trifurcation, in addition to the splits of four and six dummy
branches. In this graph there are a total of 30 paths from inlet to outlet, the
shortest consists of 6 edges, the longest of 24. These properties are summarised in
table 3.1.

Property Value

Nn 56
Ne 68

Bifurcations 10
Confluences 9

Paths 30

Table 3.1: Summary of some properties relative to the graph in figure 3.7.
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IN

OUT

Figure 3.7: Graph with a single inlet and single outlet. The graph has been
extracted from the network in figure 3.6, afterwards 2 dummy edges were added to
have a unique inlet and outlet, 4 dummy links to the inlet and 6 dummy links to
the outlet. Some properties of the graph are summarised in table 3.1.

3.3.2 Equal waiting times and symmetric bifurcations
For the first test, we set the average waiting time equal to 1 in each edge and
suppose that mass is split equally at every bifurcation. This means that if two
edges depart from a node, we attribute to each probability 0.5, if there are three
edges, probabilities are distributed as 0.33 - 0.33 - 0.33, and so on. We use a time
discretisation step of dt = 0.3 for all following simulations.

We start by computing the network response function, that is the IUH, using
the model developed in chapter 2. Once the IUH is obtained, we just need to
perform a numerical convolution in order to find the response of the network to
any input distribution.

Figure 3.8 shows some examples of network response to different inputs. In
green we represent a square function of width 9 and its response, while in orange
we have a gamma distribution of the form

γ(t) = βαt(α−1)e−βt

Γ(α) , α = 6, β = 0.15.

All input functions (fig. 3.8a) are normalised so that the area underneath equals
1; this is equivalent to injecting a volume 1 of water into the inlet. The area
remains 1 in the response curves of figure 3.8b as well, ensuring mass conservation.
Unsurprisingly, going through the network has a time spreading effect on all the
input curves, as we can gather from the variance values σ2.
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Figure 3.8: Results of the first simulation performed on the network of fig.
3.7. (a) On the left three different initial distributions to be injected in the inlet
are represented. (b) The right figure shows the network response to each input
distribution (with corresponding colour), obtained by convolution. The blue curve
representing the discharge due to a delta coincides with the IUH of the network.
Mean values of the curves are indicated by the dashed lines, while variance values
are indicated within the legends.

The blue curve in figure 3.8b represents our IUH, that is the network response
to the introduction of a delta distribution. We can observe that the mean of the
IUH is located at t = 13.1 and that the curve completes its descent around t = 27,
consistently with the fact that the longest path is composed of 24 edges (we recall
that each edge has a mean waiting time of 1).

3.3.3 Enhanced network
We can exploit the already computed IUH to reproduce with a trick the case of
a larger network. Suppose to double the graph of figure 3.7 so that the outlet
serves as the inlet to another network, identical to the previous one. Figure 3.9
shows the network doubled in this way. Now this new graph has roughly twice as
many edges as the previous one, therefore computing its IUH from scratch – which
implies computing an exponential matrix twice the size– requires a much higher
computation time.

Rather than doing this expensive operation, we can just focus on the smaller
graph and suppose to re-inject the outlet discharge in its inlet. This is achieved by
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IN
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Figure 3.9: Graph obtained by ‘doubling’ the network in fig. 3.7, i.e. overlapping
the outlet of a first copy of the graph with the inlet of a second copy.

performing a convolution of the known IUH with itself. Rephrasing, finding the
response of the network in figure 3.9 to the introduction of a delta, is equivalent
to computing the convolution between the IUH of the graph in fig. 3.7 and itself.
Figure 3.10 shows the IUHs of the doubled and tripled version of the initial graph
computed with this convolution trick rather than from scratch. We can now use
this curves as response functions for the larger networks and convolve them with
any input distribution. Unsurprisingly we observe that the IUH becomes more and
more spread out by enlarging the network and that its mean value shifts to the
right approximately 13.4 by 13.4.

The importance of this result lies in the fact that if we adequately choose a small
river section, so that it encapsulates the average properties of the entire network
(number of parallel channels, number of bifurcations. . . ), and compute its IUH,
then the function obtained with the convolution trick will be a good approximation
of the actual response function of entire network. But this procedure saves us the
expensive computation of a large exponential matrix.

3.3.4 Multiple waiting times
As a second experiment we allow waiting times to be different in each edge. We
assign random values extracted from a uniform distribution in the range 0.2 - 1.9
with an average equal to 1. The new waiting time values are indicated for each
edge in figure 3.11.

The resulting response curves are presented in figure 3.13a. We notice that
the variance are slighly higher than those of figure 3.8b, while there is very little
difference in terms of mean value.
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Figure 3.10: IUHs of the graph in fig. 3.7, its doubled version and its tripled
version, respectively associated to the continuous, dashed and dotted blue lines.
These response functions are not directly computed from large networks, but are
obtained as convolutions with the of the small graph IUH with itself.
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Figure 3.11: Network with the same geometry of the one in fig. 3.7, but different
mean waiting times in each edge. These values are selected randomly in the range
0.2 - 1.9 so that the average is 1 and are shown on the edges in the graph.
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3.3.5 Non-symmetric bifurcations
Another variation we can introduce regards the mass distribution at bifurcations.
For simplicity we set again all waiting times equal to 1 and vary the probability
values at bifurcations: instead of symmetric volume division like 0.5 - 0.5, we assign
random values so that they add up to 1. The new non-bifurcations are shown in
figure 3.12.

0.02

0.9
8 0.17

0.8
3

0.
40

0.60

0.70
0.3

0

0.10
0.9

0
0.94

0.06

0.68

0.3
2

0.97

0.03

0.26

0.41

0.
33

0.36

0.
26

0.03

0.
34

IN

OUT

Figure 3.12: Network with the same geometry of the one in fig. 3.7, but with
non-symmetrical bifurcations. The non-trivial probability values at bifurcations,
randomly assigned, are indicated on the edges.

We illustrate the response curves in figure 3.13b. In this case mean values and
variances are basically the same of figure 3.8b. As an effect we can observe that
if that in the first test we had a smaller peak around 5, this has now become
even higher than the peak at 13, due to the fact that the paths of length 5 have
become more likely. Despite it not being visible in this case, a typical effect of
non symmetric bifurcations is actually of reducing the response curve variance.
This can be explained by understanding that if some paths have a much higher
probability than others, it is almost like the number of paths – and thus their
diversity – has been reduced.

3.3.6 IUH dependency on time and bifurcation values.
An interesting observation we can make with the results obtained so far concerns
the relative influence on the IUH of waiting time or bifurcation values with respect
to the network structure. The question we ask here is: are these parameter values
really important or is the IUH mostly determined by the network geometry?

To answer this, we perform a series of numerical simulations where we randomly
change the waiting times and bifurcation probabilities (first one at a time, then
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(b) Non-symmetric bifurcations.

Figure 3.13: Resulting IUHs from the simulations on (a) the graph with multiple
waiting times (fig. 3.11) and (b) the graph with non-symmetric bifurcations (fig.
3.12). The input distributions considered are the same of fig. 3.8a.

together) but we maintain the network fixed. For every simulation we obtain a
certain IUH and, by averaging over all these curves, we find a mean IUH, which we
then compare with a benchmark curve.

More specifically in our test we performed 50 simulations where we randomly
varied waiting times, 50 simulations for the bifurcation values, and 50 changing
both parameters at the same time. The results of these experiments are shown in
figure 3.14. The benchmark case, as already mentioned, consists of a graph with
waiting times equal to 1 and probability values symmetrically distributed at every
bifurcation; its IUH is represented by the blue curves. The blue curve instead
represents the curve obtained as the mean of all IUHs. For clarity reasons we do
not plot the results of all 50 simulations; we only display the range that they cover
– the yellow bars – and the value of one standard deviation, given by the dashed
lines.

As we can see it seems that the the benchmark IUH and the mean curve are
extremely close. To quantify this we compute the norm of the difference between
them, obtaining in all cases a value of the order 10−2. These norm values do not
seem to depend on the number of test iterations we consider, that is the sample
size, though when we increase the number of tests the spread of the sample data
also increases. Table 3.2 reports some quantitative parameters relative to the
benchmark IUH and the mean curves in each case. Together with the mean value
and the variance, which we have already discussed, we display values for skewness
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(b) Varying bifurcation values.
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(c) Varying both network parameters.

Figure 3.14: Results from a series simulations on the graph in fig. 3.7. In (a)
we attribute random waiting times to all edges; (b) shows the case where random
probability values are given at bifurcations; in (c) both network parameters are
varied simultaneously at every iteration. For each case we perform 50 iterations.
The blue curve represents the IUH of the benchmark graph (waiting times 1 and
symmetric bifurcations), the orange curve is obtained as the mean of all 50 IUHs,
while the yellow bars are the upper and lower envelopes and the dashed lines show
one standard deviation of the IUHs distribution.
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and kurtosis of the curves. The Skewness gives a measure of the curve symmetry,
while Kurtosis relates to the presence of long or short tails in the data distribution.

Curve Mean µ Variance σ2 Skewness Kurtosis

Benchmark IUH 13.15 35.15 1.39 3.50
Mean curve (a) 13.16 39.42 1.30 3.17
Mean curve (b) 12.90 34.52 1.38 3.41
Mean curve (c) 13.00 39.50 1.29 3.10

Table 3.2: Some quantitative parameters for the benchmark IUH and the mean curves of each
test; letters (a), (b), (c) refer to the subfigures of fig. 3.14.

3.4 Numerical simulations on a multiple-inlet
multiple-outlet network

In this section we perform simulations on a network with multiple inlets and
multiple outlets. The procedure to compute the discharge at the exits in this
case requires a few more steps, reproducing the mathematics explained at the end
of section 2.4. First we compute all the IUHs from each inlet to each outlet, in
the same way as in the previous tests. Afterwards the discharge at each outlet is
determined by convolution of the IUH with an input distribution function (which
can be different in each inlet). Finally we combine the discharges by summing all
contributions to the same outlet, and we obtain a discharge distribution for each
exit. In this set of simulations we especially monitor the volume fraction reaching
each outlet, in order to have an idea of the discharge spatial distribution along
with the time distribution, that is how much water ends up at which outlet.

3.4.1 Network description
Like in the earlier, the graph we work on is also extracted from the initial part of
the complete network. It counts 98 nodes and 110 edges, of whom 2 inlets and 3
outlets, which we indicate with numbers as shown in fig. 3.15. Table 3.3 sums up
these values and specifies some more information regarding the number of paths
from each inlet to each outlet. We rapidly observe that there is a big gap in the
paths distribution among the exits, with a total of 16 paths leading to outlet 1
versus 6 and 6 paths to outlet 2 and 3 respectively. Of course these values must
be weighted with the path probabilities too, but, if we suppose all paths equally
likely, we can already foresee a tendency for injected water to reach outlet 1 in
larger quantities than the others.
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Figure 3.15: Graph with a 2 inlets and 3 outlets, extracted from the initial part
of the network in figure 3.6. Here we suppose that all edges have mean waiting
time 1 and at each bifurcation probabilities are distributed symmetrically among
the outgoing edges. Some properties of the graph are summarised in table 3.3.

Property Value

Nn 98
Ne 110

Inlets 2
Outlets 3

Bifurcations 14
Confluences 15

Inlet → Outlet Paths

IN 1 → OUT 1 1
IN 1 → OUT 2 2
IN 1 → OUT 3 2
IN 2 → OUT 1 15
IN 2 → OUT 2 4
IN 2 → OUT 3 4

Table 3.3: Summary of some properties relative to the graph in figure 3.15.

3.4.2 Equal waiting times and symmetric bifurcations
Just like we did earlier we start with the case of symmetric bifurcations and equal
mean waiting times in all edges.

First we suppose to inject in each inlet an amount 1 in the form a delta
distribution, and we observe how this is reflected at the outlets. Figure 3.17
represents this case.

As indicated in table 3.3 the path from inlet 1 to outlet 1 is unique. Along this
path there is only one bifurcation which allows a deviation to the other outlets,
then 50% of the input mass must reach outlet 1 while the other half is divided
among 2 and 3. This is exactly reproduced by the area values in fig. 3.17a, wich
shows that the volume fraction reaching outlet 1 is equal to 0.5. Here we observe
the case where a single path has a much higher probability of being covered than
the other four, so it carries by itself the majority of water volume. The fact that
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the path is unique also explains why the IUH is so narrow (compared for example
to the blue curve of fig. 3.17b where the paths are 15); all visible time spreading
in this case is due to the use of exponential laws rather than geomorphological
dispersion.

For inlet 2, instead, we see from table 3.3 that there are 15 paths leading to
outlet 1 and half as many leading to the other outlets. Furthermore the first
three bifurcations we encounter all lead to outlet 1 directly, which attributes high
probabilities to many of the 15 paths. This explains why almost all the water
volume (94%) ends up at the first outlet (see fig.3.17b).

Finally the curves in figure 3.17c are obtained by summing the contributions to
each outlet coming from both the inlets. In light of the considerations we made
for figures 3.17a and 3.17b, it is not surprising that outlet 1 receives most of the
volume.

Figure 3.18 shows the results of a test performed on the same network with
symmetric bifurcations, where instead of a deltas we introduce gamma distributions.
We use different parameters for the two inlets, in particular:

γ(t) = βαt(α−1)e−βt

Γ(α) ,
IN 1: α = 15, β = 0.3
IN 2: α = 11, β = 0.4

Afterwards the values are normalised so that the area under each curve – i.e. the
injected volume – is equal to 1. The gamma input distributions are represented
by the dashed lines in fig. 3.18a and 3.18b, for each outlet respectively. As we
can see the area values reported within the legend virtually coincide with those of
the previous case, this is because the volume fraction distribution only depends
on bifurcations probabilities and not on the input form. We mention that the two
injected distributions have quite different mean values: the first one peaks around
t = 27 (fig. 3.18a), while the second one around t = 50 (3.18b). This difference in
the injection times is reflected by the multiple peaks we can observe in the blue
curve of figure 3.18c, where both gammas are considered simultaneously.

3.4.3 Non-symmetric bifurcations
For the second set of simulations we refer to the graph in figure 3.16. Now non-
symmetric probabilities are attributed at bifurcations, whose values are indicated
on the edges. These probability values are selected randomly, with some exceptions.
In particular, at those bifurcations where flow is distributed as 0.1 - 0.9, values
have been specifically imposed by us, so as to direct more water volume towards
outlet 2 and 3, differently from the previous case.

The simulation results are shown in figures 3.19 and 3.20. These must be
compared respectively to 3.17 and 3.18, since the input distributions we use (the
dashed black lines) are the same as the above paragraph: two deltas for the first
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Figure 3.16: Same graph with 2 inlets and 3 outlets as in fig. 3.15. Mean waiting
times are still supposed equal to 1 in all edges, but we introduce the hypothesis of
non-symmetric bifurcations. The non-trivial probability values at bifurcations are
shown here; some of them have been randomly chosen, some others are imposed
specifically to redirect the flow towards outlet 2 and 3.

case and two different gammas for the second. The injected volume is always
normalised to 1.

In all figures we see that the red curve corresponding to outlet 3 is now above
the blue curve of outlet 1. This means that we have indeed been able to redirect
the volume away from outlet 1. Percentages have dropped from 50% to 10% as far
as concerns inlet 1 and from 94% to 34% for the second inlet. Consequently the
volume fractions reaching outlet 2and 3 are also much higher.

Comparing 3.19c to 3.17c, we notice the presence of two peaks which were absent
earlier. We can explain this by looking again at the graph in figure 3.16. The
paths going to outlet 2 or 3 can have very different lengths depending on whether
they start at inlet 1 or 2. This is reflected in a consistent shift of the peak of the
red and green IUHs in fig. 3.19a with respect to fig. 3.19b. In the previous set of
simulations the two distinct peaks could not be detected because of the very low
volume fractions reaching outlet 2 and 3.

Again if we inject two gammas instead (fig. 3.20 the area values and the features
we have pointed out are the same. The curves shape obviously changes, since these
are obtained convolving gamma distributions with the very narrow IUHs of fig.
3.19.

What we intend to show with these numerical simulations, is that the bifurcation
probability values can have a strong impact on how the volume is distributed among
different outlets.
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Figure 3.17: Travel time distributions at the outlets of the network in figure 3.15,
in the case of waiting times equal to 1 in each edge and symmetric bifurcations,
supposing delta distributions in input (the dashed black lines). Within the legend
we report the colors corresponding to each outlet and the values of the area under
each curve. (a) Discharges considering the input from inlet 1 only. (b) Discharges
considering the input from inlet 2 only. (c) Total discharges considering both inlets.
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Figure 3.18: Travel time distributions at the outlets of the network in figure 3.15,
in the case of waiting times equal to 1 in each edge and symmetric bifurcations,
supposing gamma distributions in input (the dashed black lines). Within the legend
we report the colors corresponding to each outlet and the values of the area under
each curve. (a) Discharges considering the input from inlet 1 only. (b) Discharges
considering the input from inlet 2 only. (c) Total discharges considering both inlets.
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Figure 3.19: Travel time distributions at the outlets of the network in figure 3.15,
in the case of waiting times equal to 1 in each edge and non-symmetric bifurcations,
supposing delta distributions in input (the dashed black lines). Within the legend
we report the colors corresponding to each outlet and the values of the area under
each curve. (a) Discharges considering the input from inlet 1 only. (b) Discharges
considering the input from inlet 2 only. (c) Total discharges considering both inlets.
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Figure 3.20: Travel time distributions at the outlets of the network in figure 3.15,
in the case of waiting times equal to 1 in each edge and non-symmetric bifurcations,
supposing gamma distributions in input (the dashed black lines). Within the legend
we report the colors corresponding to each outlet and the values of the area under
each curve. (a) Discharges considering the input from inlet 1 only. (b) Discharges
considering the input from inlet 2 only. (c) Total discharges considering both inlets.
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Conclusions

The intent of our thesis work was to investigate solute transport processes in
river networks. We decided to focus on dispersion mechanisms and in particular
geomorphological dispersion. This term indicates a class of dispersive phenomena
related only to the network structure and properties. In addition, we identified the
object of our study with braided rivers, a class of fluvial network characterized by
the presence of multiple channels, of different size that bifurcate and merge forming
an extremely complex and fascinating network morphology. For this reason, we
expected the geomorphological contribution to take an extremely important part
in determining dispersion values for rivers with a braided pattern.

For this purpose, we developed a mathematical model to compute the discharge
rate distribution at a river outlet, given the network properties and the injected
distribution at the inlet. Our model is based on the original GIUH theory approach.
A quite uncommon graph-method was used to enclose the river geometry within a
matrix form and to allow MATLAB implementation.

Finally we performed some numerical simulations on small networks, which
gave some interesting qualitative results. We used graphs both built ad-hoc and
extracted from a network representation of Stream Borbera.

To start with, our simulations confirmed the theoretical explanation of how the
number of available paths from inlet to outlet is directly related to dispersion. In
particular a higher number of paths with a wide range of possible path lengths
leads to higher spread in travel time distributions. Then we examined the influence
on outlet discharges of some network parameters such as the branches length and
the probability values assigned at bifurcations. Surprisingly we found that the role
of the graph structure seems to prevail on any parameter value. This result has
powerful consequences in the fact that, when studying solute transport, events at
scale of the entire network are more important than those at the individual channel
scale. Therefore one might avoid focusing so much on determining the properties
of each branch and bifurcation, which can be extremely laborious. In the last set
of simulations we focused on the case of multiple inlets and outlets. This has been
done to show how to combine different functions from different input to contribute
to the several outlet discharges.
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Conclusions

To conclude, we think that this work opens the door to interesting generalizations
of the renowned and well-respected GIUH theory. Furthermore it supports and
encourages the application of graph theory to the study of river networks. In the
end, it gives some meaningful suggestions on how to rethink and simplify the study
of transport processes in fluvial networks.
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