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Summary

Nowadays, energy conversion plays a significant role in sustainable growth . Efficient
energy conversion systems are based on power electronic converters thatare switching
circuital structures. In renewable energy conversion, smart grid arrangement, energy stor-
age management, and sustainable transport systems, the multilevel converter topologies
are attractive solutions to increase input voltage management, improve output waveform
quality and reduce harmonic content. The Wide Bandgap (WBG) switching devices,
as GaN transistors, are an important development challenges in recent years to improve
efficiency with a reduction in the application dimensions.
The thesis work treated about the design, with electrical and thermal simulations, of
three level flying capacitor inverter for photovoltaic application for connections to the
American electricity grid. Will be done evaluations of power losses, thermal analysis,
ripple analysis and electrical schematics drawing.
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Chapter 1

Introduction

Nowadays, energy conversion plays a significant role in sustainable growth. Efficient
energy conversion systems are based on power electronic converters that are switching
circuital structures. In renewable energy conversion, smart grid arrangement, energy stor-
age management, and sustainable transport systems, the multilevel converter topologies
are attractive solutions to increase input voltage, improve output waveform quality and
reduce harmonic content. The target of increasing energy efficiency and reliability while
reducing the overall size of the developed solutions is paramount in modern power elec-
tronics applications for energy conversion, both from renewable and traditional sources.
Together with advanced topologies such as multilevel ones, it is necessary to select latest
generation power electronic devices to obtain ever more efficient and compact conversion
systems.
Wide bandgap (WBG) switching devices for converter applications have emerged to ad-
dress these sustainable development challenges in recent years. Among the WBG devices
currently on the market, high electron mobility gallium nitride (GaN) transistors (HEMTs)
offer significant advantages and prospective over existing silicon-based alternatives, such
as super-junction transistors (MOSFETs) or IGBTs and in several high-frequency ap-
plications also respect to other well know WBG devices such as Silicon Carbide (SiC)
MOSFETs.
This thesis is developed at one of the leading international companies designing and
developing GaN FET devices, the Efficient Power Conversion Corporation (EPC). The
thesis work activity was conducted closely with the EPC Centre of Excellence on motor
control applications with GaN FET devices in Volpiano.
The thesis work dealt with the study and design of a three-level flying capacitor inverter
for photovoltaic applications. The inverter is thought of as part of a system which will
include a dc/dc converter between the solar panel and the inverter bus which will be the
subject of future studies. The application is also sized to be connected to the American
grid and therefore with an output voltage of 110𝑉𝑅𝑀𝑆 and a grid frequency of 60𝐻𝑧.
The complete application system block scheme is depicted in Fig.1.1. The thesis work is
composed by the following points:

1



Introduction

Figure 1.1: Overall application system block scheme.

• Study of GaN devices. The characteristics of GaN technology and especially of
GaN FETs have been described. Furthermore, the electrical characteristics of
GaN FETs have been analysed in particular the drain-source voltage behaviour, the
On-Resistance (𝑅𝐷𝑆(𝑜𝑛)) of devices, the threshold GaN FETs voltage and the GaN
transistors in terms of capacitance and charge are explored. The mean methods to
drive a GaN have been investigated;

• Analysis of multilevel converter topologies. The state of art of the topologies for
multilevel converters have been explored by analysing the advantages and disadvan-
tages of each topology. Furthermore, a comparison was made among the several
topologies considered to obtain the best compromise with respect to the application
of three-level inverters and the selected EPC GaN FET devices;

• Design and simulation of the inverter. Simulations were made using LT-Spice and
PLECS environments to define the electrical and thermal behaviour of the inverter.
The power losses of the inverter deriving from the conduction of the switches and
from the commutation of them have been calculated. A thermal analysis and a
study of the system efficiency were achieved to define the maximum inverter output
parameters and the most appropriate configuration. Analysis of ripple across the
dc-link, flying capacitors and phase inductor have been done;

• Sizing and drawing of the electrical schematic. Components were sized and selected
from among the existing ones to be included in a future implementation of the
inverter. Furthermore, the electrical schematic was drawn defining parts such as
power supplies, connectors, measurement circuits to have as complete as possible
design to lead to a future realization of a layout.

2



Chapter 2

GaN Transistor

2.1 Introduction
Gallium nitride (GaN) is a very hard, mechanically stable wide bandgap semicon-

ductor. GaN devices presents higher breakdown strength, faster switching speed, higher
thermal conductivity and lower on-resistance with respect to silicon-based devices. The
crystalline structure of the Gallium Nitride material features a hexagonal shape named
“wurtzite” (Fig. 2.1).This crystal structure also gives GaN piezoelectric properties that
lead to its ability to achieve very high conductivity compared with other semiconductor
materials.
GaN power devices are high electron-mobility transistors (HEMTs) belonging to the
wide-bandgap materials (WBG). The HEMTS transistor use a two-dimensional electron
gas named (2DEG) which is generated by the interaction between two crystalline physical
materials with diverse atomic spacing and band gaps in the junction realized. The effect
of the polarization makes the 2DEG phenomena in the heterojunction (AlGaN/GaN).
This is the cause of the electrons’ high mobility outcome.
In the Fig.2.2, is reported a comparison between significant material properties of Silicon
(SI), Silicon-Carbide and GaN devices. In the chart is reported that the characteristics
of WBG devices are better than Silicon devices. GaN and Silicon-Carbide transistor
have different behaviours, indeed Sic devices present better thermal conductivity with
respect to GaN devises instead an higher electron mobility is a GaN peculiarity due to
HEMT characteristics. GaN devices electron mobility is high. It is typically around
2000𝑐𝑚2/𝑉𝑠. The electron mobility value in GaN-based devices is almost 100 times
higher than Silicon Carbide MOSFETs. This advantage characteristic is reflected in the
reduction of the low ON resistance values. This topic will deeper discuss in the next
sections. As consequence is possible to achieve devices with smaller areas compared
with Si and SiC devices.
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Figure 2.1: Wurtzite GaN crystal space disposal.[1]

Figure 2.2: Radar chart of the significant technological characteristics of Si, 4H-SiC, and
GaN transistors at ambient temperature (25 °C).[2]

2.2 GaN Power Devices Arrangement
The GaN-based power devices are lateral physical structure as field effect transistor

(FET), showing a current conduction channel between the Drain and Source areas. A
gate voltage value controls the conduction current amplitude. As the FET devices, the
depletion mode is the basic GaN structure, featuring a normally on switch. A basic struc-
ture of a depletion GaN FET is depicted in Fig.2.3,the gate electrode is obtained through
a Schottky contact. The application of a negative voltage to the gate with respect to the
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source, leading the device to the OFF state. In the Fig.2.3a the 2DEG created in the het-
erojunction (AlGaN/GaN) above described is highlighted. Starting of this basic structure
the designer developed an off structures. A normally off GaN FET is obtained through
an enhanced structure (e-mode), as depicted in the structure of Fig.2.3b no-conduction
channel is observable. The GaN gate layer, positively charged (p-type), attains the e-
mode structure of the GaN transistor. The gate layer is grown-up on the AlGaN barrier.
The p-type layer does not allow the two-dimensional electron gas at VGS under a device
threshold voltage, obtaining a normally off device. The 2DEG is fully re-established by a
positive voltage between the gate and the source (appropriately greater than the threshold
voltage). In reverse conduction, an equivalent diode action appears when the gate voltage
is under the device threshold voltage. The voltage drop in the GaN equivalent diode
is higher than a typical body diode of a Si MOSFET. No reverse recovery charge, Qrr,
is shown in the GaN equivalent diode because no minority carriers are involved in the
conduction, as described in the next sections.

Figure 2.3: (a) simplified structure of a d-mode GaN FET (normally on). (b) simplified
structure of a e-mode normally off GaN FET. [2]

The cascode layout is a further GaN-based transistor together with a Si MOSFET
(Fig.2.4b). The cascode structure is arranged adding a low voltage (LV) MOSFET in
series with the d-mode GaN source, achieving a normally off switch. The cascode
solution combines the structural simplicity of d-mode GaN technology and its HEMT
characteristics with the simplified gate-driving procedure of the Si MOSFET. The GaN
FET Gate is linked to the Source of the MOSFET to keep the GaN device in the on
state, while the MOSFET is implemented for the commutations. The reverse cascode
operation appears when LV Si MOSFET is turned off. Consequently, the GaN switch
is also turned off. In this condition, a reverse voltage appears to the GaN switch and
a current flows in the body diode of the MOSFET and into the channel of the d-mode
GaN FET with a reduced voltage drop. The GaN FET is a naturally bidirectional device
however a lower-off-state reverse voltage arise (i.e., <1V). This low voltage drop can be
considered during dead times in half-bridge operations. The cascode configuration may
be used in low-voltage applications (<200 V); nevertheless, in high-voltage applications
(from 650 V up to 1200), it features a viable usage for higher-current switches.
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A direct-drive GaN power transistor is a modified arrangement of the cascode configu-
ration (Fig.2.4c). The d-mode GaN gate terminal is not connected, and four terminals
appear. In this device layout arrangement, the Si MOSFET is implemented as a protection
switch to avoid shoot through (it furnish also an enable gate signal after the converter
start-up). A negative unipolar voltage directly drives the d-mode GaN FET to switch-off.
The main advantage is the independent driving of the d-mode GaN FET, using its switch-
ing properties and preventing the uncontrolled switching feasible in the conventional
cascode layout. Compared to the previous cascode solution, a drawback is the increase
in stray inductances. Furthermore, the two gates necessary increase the device package
pins.
The EPC GaN which will be used in this thesis work are e-mode GaN from EPC. All
structures discussed before are represented in the Fig.2.4.

Figure 2.4: a) d-mode GaN FET (normally on) (b) Normally off cascode layout with
d-mode GaN FET. (c) Direct-drive cascode with d-mode GaN. (d) e-mode GaN FET
(Normally off). [2]

2.3 GaN Electrical Characteristics
In this section are discussed the basic electrical characteristics of GaN devices as:

• Drain-Source Voltage;

• ON-Resistance;

• Threshold Voltage;

• Capacitance;

• Reverse conduction.
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2.3.1 Drain-Source Voltage
The rated breakdown voltage (𝐵𝑉𝐷𝑆𝑆) between the source and drain terminals of a

GaN transistor is determined by several factors as:

1. The fundamental breakdown electric field (𝐸𝐶𝑟𝑖𝑡) of GaN;

2. The specific design of the device;

3. The specifics of the epitaxial layers;

4. Internal insulating layers in the device structure above the gate, source and drain
electrodes;

5. The underlying substrate material properties.

A semiconductor transistor will break down and conduct current (𝐼𝐷𝑆𝑆) when the electrical
field of any material which compose it is exceeded and may destroy itself in the process.
When a transistor of any kind is in the blocking state, before breakdown voltage, the
"leakage current" 𝐼𝐷𝑆𝑆 will flow between terminals. There are three components of
leakage current in a transistor and the sum of these components is equal to 𝐼𝐷𝑆𝑆. The
leakage current components are represented in Fig.2.5 [1] that describes measured current
in an enhancement-mode transistor with a breakdown voltage above 700V. The example
in Fig.2.5 introduces a GaN with Silicon substrate material and is connected to source
potential. The current of the example in the Fig.2.5 has been normalized to a 1mm-wide
gate structure. The 𝐼𝐷𝑆𝑆 become a significant factor for power losses. The drain-to-source

Figure 2.5: Leakage current components: drain-gate leakage, drain-source leakage, drain
substrate leakage, and total 𝐼𝐷𝑆𝑆. [1]
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leakage current can also vary with temperature. Fig.2.6 shows a family of curves, from
an available enhancement-mode transistor (EPC2045) with one-meter gate width, that
represent the leakage current measured at various temperature.

Figure 2.6: EPC2045:(a)𝐼𝐷𝑆𝑆 as a function of𝑉𝐷𝑆 varying temperature;(b)𝐼𝐷𝑆𝑆 measured
at 𝑉𝐷𝑆 = 50𝑉 of 6 different devices of the same part type varying temperature. [1]

2.3.2 On-Resistance (𝑅𝐷𝑆(𝑜𝑛))
The on-resistance of a transistor is the sum of all the resistance elements that make

up the device. Fig.2.7 shows the foremost elements that contribute to the RDS(on) of
the device. The source and drain metals must connect to the 2DEG zone by the AlGaN
barrier. These components of resistance are named contact resistance (𝑅𝐶). Electrons
then flow in the 2DEG with a resistance 𝑅2𝐷𝐸𝐺 . This resistance is determined by the
mobility of the electrons (𝜇2𝐷𝐸𝐺), the number of electrons created by the 2DEG (𝑁2𝐷𝐸𝐺),
the distance the electrons have to travel (𝐿2𝐷𝐸𝐺), the width of the 2DEG (𝑊2𝐷𝐸𝐺), and
the universal charge constant, q (1.6 ∗ 10−19𝐶). The 𝑅2𝐷𝐸𝐺 can be described by (2.1).

𝑅2𝐷𝐸𝐺 = 𝐿2𝐷𝐸𝐺/(𝑞 · 𝜇2𝐷𝐸𝐺 ·𝑊2𝐷𝐸𝐺𝑁2𝐷𝐸𝐺) (2.1)

The number of electrons in the 2DEG will depend on the amount of strain induced
by the AlGaN barrier. However, under the gate electrode, 2DEG could have a lower
concentration than in the region between the gate and drain electrodes. The electron
concentration depends on the gate structure related on the particular process used, and
the heterostructure arranged. The voltage applied to the gate influences electron concen-
tration also. For example, fully enhanced gate will show a higher electron concentration
compared with a partially enhanced gate. An approximation of the 𝑅𝐻𝐸𝑀𝑇 represented
in Fig.2.7 is explained in the following formula (Eq.2.2[1]):

𝑅𝐻𝐸𝑀𝑇 = 2 · 𝑅𝐶 + 𝑅2𝐷𝐸𝐺 + 𝑅2𝐷𝐸𝐺 (𝐺𝑎𝑡𝑒) (2.2)
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Figure 2.7: The GaN HEMT cross section featuring the foremost components of 𝑅𝐷𝑆(𝑜𝑛)
[1]

Additional parasitic resistance (𝑅𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐) can come in the form of metal resistance from
the multiple metal buses that conduct the current from the individual source and drain
electrodes to the terminals of the transistor. In a power conversion circuit, the conduction
losses of the transistor are quite significant and therefore the device is typically used
either fully turned on, or fully turned off. For this reason, is important to define a key
parameter for specifying any power transistor that is the on-resistance, 𝑅𝐷𝑆(𝑜𝑛) , defined
in the (2.3) [1]:

𝑅𝐷𝑆(𝑜𝑛) = 𝑅𝐻𝐸𝑀𝑇 (𝐹𝑢𝑙𝑙𝑦𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑) + 𝑅𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐 (2.3)

The 𝑅𝐷𝑆(𝑜𝑛) is function also the gate-to-source voltage as shown in Fig.2.8 . In the graphs
in Fig.2.8 is possible to notice that the resistance of 2DEG rapidly decreases until it is
fully enhanced at about 𝑉𝐺𝑆 = 4.5𝑉 . The Fig.2.8a represent the 𝑅𝐷𝑆(𝑜𝑛) as a function of
several currents while the Fig.2.8b as a function of temperature.

Figure 2.8: 𝑅𝐷𝑆(𝑜𝑛) of an enhancement-mode GaN transistor (EPC2045) as a function of
several drain current (a) and temperature (b).[3]
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2.3.3 Threshold Voltage
For a power device, the threshold voltage is the voltage required to be applied to the

gate-to-source to begin conducting current in the device. In other words, the threshold
voltage defines the voltage below which the device is off. An enhancement-mode or
cascode device has a positive threshold voltage, and a depletion-mode device has a
negative threshold voltage. For a GaN power device, the threshold voltage is when the
2DEG underneath the gate is fully depleted by the voltage applied in the gate electrode
[1]. This condition appears when the voltage on the gate equilibrates the voltage produced
by the piezoelectric strain in the AlGaN/GaN barrier. Because the strain stress in the
AlGaN barrier is relatively constant with temperature, as are the voltages generated by
the internal metallurgy, the threshold voltage in a GaN HEMT is relatively constant with
temperature as shown in Fig.2.9. In the Fig.2.10 is possible to notice the difference of
threshold voltage decrease due the temperature with 100V Infineon BSC060N10NS3 Si
MOSFET. The voltage threshold rapidly decreases with respect to GaN in Fig.2.9 with
increasing temperature.

Figure 2.9: Normalized Threshold Voltage vs. Temperature (EPC2045).[3]

2.3.4 Capacitance and Charge
Capacitance is a significant electric inner component that causes the energy to be lost

in the GaN transistor during a transition from the on-state to the off-state or vice versa.
The capacitance (C) determines the quantity of charge (Q) that needs to be furnished to
the different device terminals to change the voltage across those terminals (Q = C*V).
The faster this charge is supplied, the faster the device will change voltage. There are
three main elements of capacitance related to a FET:

1. gate-to-source capacitance (𝐶𝐺𝑆);
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Figure 2.10: Gate threshold voltage vs. temperature (BSC060N10NS3 Infineon).[4]

2. gate-to-drain capacitance (𝐶𝐺𝐷);

3. drain-to-source capacitance (𝐶𝐷𝑆).

The Fig.2.11 illustrates the physical origin of each of these capacitances. To design the

Figure 2.11: Schematic of GaN transistor capacitive sources.[1]

capacitances of the transistor usually is taken into account the equivalent input terminals
capacitance (𝐶𝐼𝑆𝑆 = 𝐶𝐺𝐷 + 𝐶𝐺𝑆), or output terminals capacitance (𝐶𝑂𝑆𝑆 = 𝐶𝐺𝐷 + 𝐶𝐷𝑆).
These capacitances are a function of the voltage applied to various terminals. Fig.2.12
shows how the values change for an enhancement-mode HEMT, as the voltage from
drain-to-source increases. The reason for the drop in capacitance as VDS increases is
that the free electrons in the 2DEG of GaN are depleted [1]. For example, as shown in
Fig.2.12, the initial step down in 𝐶𝑂𝑆𝑆 is caused by the depletion of the 2DEG near the
surface. The result of integrating the capacitance between two terminals across the range
of voltage applied to the same terminals is the amount of charge (Q) that is stored in the
capacitor. Since current-integrated-over-time equals charge, it is often very convenient
to look at the amount of charge necessary to change the voltage across various terminals
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Figure 2.12: EPC2045 capacitance vs. drain-to-source voltage[3]

in the GaN HEMT. Fig.2.13 shows the amount of gate charge, 𝑄𝐺 , that must be supplied
to increase the voltage from gate-to-source to the desired voltage. 𝑄𝐺 is the integrated
value of 𝐶𝐼𝑆𝑆 from the starting voltage on the gate to the ending voltage. In the Fig.2.13
it can be seen that about 5 nC is needed to bring the gate voltage from 0V yo 5 V, which
will ensure the device is fully turned on. If the gate drive is capable of supplying 1 A
of current, it will take about 5 ns to achieve this voltage. Is also important to notice
that the 𝐶𝐺𝑆 and 𝐶𝐼𝑆𝑆 are typically more variable with respect to the gate voltage than
the drain voltage indeed the Fig2.12 is referred to 𝐶𝐼𝑆𝑆 with 𝑉𝐺𝑆 = 0V.The 𝑄𝐺𝐷 and
𝑄𝐺𝑆 are also specified separately because they impact the voltage and current switching
transition speeds, respectively. Also, the ratio of these two values, called the Miller ratio
(𝑄𝐺𝐷/𝑄𝐺𝑆), is often an important metric to determine the point at which a device might
turn on due to a voltage transient applied across the drain and source. An example is
reported in Fig.2.14 where the Miller ratio is a function of drain voltage. A Miller ratio of
less than one will guarantee 𝑑𝑣/𝑑𝑡 immunity as in the case in Fig. where is represented
a comparison between GaN FETs and Mosfets.

2.3.5 Reverse Conduction
𝑉𝑆𝐷 is the voltage drop across the device when voltage is applied from source-to-drain

that is the reverse direction from the normal forward FET conduction. In a Si MOSFET,
there is a p-n junction that creates a diode from the body (p) in the structure to the drain (n)
of the device. It is, therefore, called a body-drain diode. However, in an enhancement-
mode GaN HEMT transistors do not have a p-n diode, but they do conduct in a way
similar to a diode in the reverse direction. Fig.2.15 shows how this “body diode” forward
voltage drop varies with source-drain current. The body diode is formed by turning on
the 2DEG in the reverse direction using the drain-gate voltage to enhance the channel, if
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Figure 2.13: EPC2045 capacitance vs. gate-to-source voltage[3]

Figure 2.14: Comparison between GaN FETs and Mosfets Miller ratio.

the gate voltage is lowered below 0 V, the forward drop will increase proportionately. For
example, if the gate drive of a circuit turns off the GaN HEMT by applying a negative 1
V to the gate, the 𝑉𝑆𝐷 at 0.5 A will be 2.8 V instead of 1.8 V with 0 𝑉𝐺𝑆. Because the
reverse conduction in a GaN transistor is due to the turning on of the 2DEG, the forward
voltage drop will change with temperature in much the same way as the 𝑅𝐷𝑆(𝑜𝑛) changes
with temperature in forward conduction. In an Si MOSFET, the reverse conduction is due
to a p-n junction diode. Contrary to a GaN HEMT, the diode forward drop goes down
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with temperature in the Si MOSFET [1].

Figure 2.15: EPC2045 𝑉𝑆𝐷 drop vs. source-drain current and temperature. [3]

2.4 Driving GaN
The overall charge accumulating at the gate terminal is lower than a MOSFET with

similar output current and voltage characteristics. This feature results in faster switching
and a significant reduction in gate drive losses. The gate driver circuit is a crucial
system to optimize the advantageous switching characteristics of these HEMT devices.
To be compatible with e-mode GaN FETs, the gate driver must have a suitable Under
voltage lockout (UVLO) control for 5 V drive, low pull-up and pull-down resistances,
small footprint, and isolation with sufficient common-mode transient immunity (CMTI)
to withstand the high 𝑑𝑣/𝑑𝑡. Other beneficial features of some e-mode GaN-compatible
drivers include integrated voltage regulators, bootstrap management, and very narrow
pulse width capability. In case of half-bridge legs, low-side gate drivers can be combined
with high-voltage signal isolators with high CMTI for high-voltage designs without a
single IC solution. The gate-source voltage to turn-on the e-mode GaN FET depending
on the full enhancement of the device channel. It can be achieved by applying 4 V
or greater. The recommended value of the operating turn-on gate voltage is 5 V with a
resistance while the absolute maximum gate-to-source voltage is 6 V. The curves depicted
in Fig.2.16 show the dependences of the gate driver resistance and the Gate voltage to
obtain the output current. The gate voltage of 5 V allows to obtain the enough gain
to reach the device higher current with the minus gate resistance considered and the
high dynamic characteristics. The conductive channel is interrupted by a voltage under
the threshold value (between 0.7 V-2.5 V with typical around 1.4 V – for EPC2010).
Generally, a voltage 𝑉𝐺𝑆 = 0𝑉 is enough for turn-off the device, but the high 𝑑𝑣/𝑑𝑡
impact on the inner capacitors would provokes a shoot through phenomenon especially
in half-bridge topology. From which the suggested gate voltage for a safe turn-off is -2 V
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to prevent any non-desired turn-on events that could appear due to VDS voltage changes.

Figure 2.16: 𝑅𝐷𝑆𝑜𝑛 vs 𝑉𝐺𝑆 for various current to obtain the optimal GaN drive voltage
and resistance for EPC2001.

2.4.1 𝑑𝑣/𝑑𝑡 Immunity
The inner capacitors are involved in the switching characteristics and the 𝑑𝑣/𝑑𝑡 impact

when the GaN is in off-state (e.g. Bridge Configuration) lead an unwanted voltage in the
gate path that can be turn-on the device. A high drain positive voltage slew rate (𝑑𝑣/𝑑𝑡)
of an off-state device can occur in both hard-switching and soft-switching applications
and is characterized by a rapid recharge of device capacitances, as shown in Fig.2.17. In
Fig.2.17a a switching leg with GaN FET and inner capacitances and gate resistance are
shown with the current path due to the 𝑑𝑣/𝑑𝑡 effect. The dead time 𝑡𝑑 , on and 𝑡𝑑 , off
is also considered to avoid cross conduction as shown in Fig.2.17b. The 𝑑𝑣/𝑑𝑡 effect a
spurious gate voltage can be appear and its peak value must have maintained under the
threshold voltage (see Fig.2.17b) During this 𝑑𝑣/𝑑𝑡 event, the drain source capacitance
(𝐶𝐷𝑆) is also charged. At the same time, the gate-drain capacitors are also charged (𝐶𝐺𝐷)
and gate-source (𝐶𝐺𝑆) in series. If not addressed, the charging current through the 𝐶𝐺𝐷
capacitor will flow through and charge 𝐶𝐺𝑆 beyond 𝑉𝑇𝐻 and turn on the device. This
event, sometimes called Miller turn-on and well known to MOSFET users, can be very
dissipative. To determine the 𝑑𝑣/𝑑𝑡 susceptibility of a power device, it is necessary to
evaluate a Miller charge ratio (𝑄𝐺𝐷 /𝑄𝐺𝑆1), as a function of the drain-to-source voltage.
A lower Miller ratio will ensure theoretical 𝑑𝑣/𝑑𝑡 immunity.

2.4.2 𝑑𝑖/𝑑𝑡 Immunity
An increasing current through an off-state device, as shown in Fig.2.18a, will induce

a step voltage across the common source inductance (𝐶𝑆𝐼). This positive voltage step
will generate an opposite voltage across 𝐶𝐺𝑆. Increasing current causes the gate voltage
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Figure 2.17: a) Bridge leg schematic with the device capacitors model and the 𝑑𝑣/𝑑𝑡
current paths during the operative condition of higher GaN turn-on and lower GaN in
off-state. b) qualitative waveforms of node voltage𝑉𝐷𝑆,𝐿𝑆 and gate voltages of both lower
and higher switching devices with shoot-through phenomena highlighted.

to be driven to a negative value. With insufficient off-state gate LCR resonant tank
damping, this initial negative voltage step across the gate could induce a positive spike
and cause an unintentional firing and shoot-through, as shown in Fig.2.18b. It is possible
to avoid this 𝑑𝑖/𝑑𝑡 firing type by damping the gate quench loop sufficiently, although some
undershoot may be preferred, as described in the 𝑑𝑉/𝑑𝑇 immunity case above. However,
increasing gate power loop damping through an increase in gate pulldown resistance
would negatively impact 𝑑𝑣/𝑑𝑡 immunity. Therefore, adjusting the gate resistance alone
for marginal Miller ratio devices may not be sufficient to prevent 𝑑𝑖/𝑑𝑡 and 𝑑𝑣/𝑑𝑡 firing.
The CSI influences Gate and Drain-Source voltage (Fig.2.18b) ringing. Limiting stray
inductance (CSI) through improved packaging and device layout is a viable solution. This
is accomplished by separating the gate and power loops to as close to the GaN device as
possible and minimizing the internal source inductance of the GaN device, optimizing
the package layout; This procedure is valid for both gate and power loop.

2.4.3 Driver Circuit Requirements
As discussed above, the driver circuit must not only provide the necessary voltages

and currents needed by the gate to charge and discharge the internal capacitances. Still,
it must also allow safe switching while avoiding dangerous ringing as much as possible.
The integrated driver circuits solution reduces the parasitic inductances by placing the
gate driver as close as possible to the GaN FET power transistor [5]. The driver circuit
schematic for an inverter leg is reported in Fig.2.19a. The GaN FET model with the
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Figure 2.18: Impact of a positive 𝑑𝑖/𝑑𝑡 of an off-state device with common-source
inductance. b) Qualitative waveforms of node voltage 𝑉𝐷𝑆,𝐿𝑆 and gate voltages of both
lower and higher switching devices with ringing due to the CSI stray inductance.

parasitic capacitors and the stray inductor 𝐿𝑆𝑆 in the source path of 𝐿𝑆 are considered.
With the gate resistance is feasible, (similar to a MOSFET device), to regulate 𝑑𝑖/𝑑𝑡 and
the 𝑑𝑣/𝑑𝑡. In many gate-driving circuit solutions, the on and off paths are done with
separate gate resistances. A bootstrap circuit is used in the integrated solutions to power
the high-side gate driver. The CB capacitance (from Fig.2.19a) must provide the gate
charge required. CB can be found by:

𝐶𝐵 ≥ 𝑄𝐺

𝑉𝑑𝑑 −𝑉𝐹𝐵 − 𝑅𝐵 · 𝐼𝐵 −𝑉𝐺𝐺,𝑜 𝑓 𝑓
(2.4)

where 𝑉𝐺𝐺,𝑜 𝑓 𝑓 is the minimum voltage allowed across the capacitor 𝐶𝐵 during the off-
state of the high-side MOSFET, while 𝑉𝐹𝐵 is the forward diode voltage of the bootstrap
circuit. The PWM command signal processed by the logic circuit is sent through a level
shift circuit to the high-side switch depicted in Fig.2.19b. The level-shifter MOSFET
must maintain the 𝑉𝐷𝐶 voltage but the current request is very low, from which this
MOSFET features low area in IC implementation. The bootstrap solution reported in
Fig.2.19b is an alternative solution compared with the arrangement of Fig.2.19b. In this
case a high-voltage diode (breakdown voltage over the 𝑉𝐷𝐶 considered) is connected to
the high-side drain. The power losses of the driver circuit 𝑃𝐷𝑟 become noteworthy as
the switching frequency increases. The losses depend on the resistor network 𝑅𝐺𝐺 ,on at
turn-on, the 𝑅𝐺𝐺,𝑜 𝑓 𝑓 at turn off and, the to the gate charge by:

𝑃𝐷𝑟 = Δ𝑉𝐺𝑆 · 𝑄𝐺 · 𝑓𝑠𝑤 · ( 𝑅𝐺𝐺,𝑜𝑛

𝑅𝐺𝐺,𝑜𝑛 + 𝑅𝐺 + 𝑅𝐺𝑖
+

𝑅𝐺𝐺,𝑜 𝑓 𝑓

𝑅𝐺𝐺,𝑜 𝑓 𝑓 + 𝑅𝐺 + 𝑅𝐺𝑖
) (2.5)
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In Eq.2.5, the internal gate resistance 𝑅𝐺𝑖 of the GaN FET device is also considered
[1]. The gate current peak 𝐼𝐺 , peak at the turn-on pulse (𝑡𝑜𝑛) is related to the input
capacitances as in Eq.2.6.

𝐼𝐺,𝑝𝑒𝑎𝑘 =
(𝐶𝐺𝑆 + 𝐶𝐺𝐷) · 𝑉𝐺𝑆

𝑡𝑜𝑛
(2.6)

Furthermore, the driving circuit may feature additional monitoring and protection circuits.
As example, for power supply under-voltage and overcurrent, or short-circuit. Short
circuit protection acts in a hard switching fault (HSF) or a fault under load (FUL)
dangerous conditions [6].

Figure 2.19: a) driver circuit and power stage schematic for a switching leg. b) Level
shift circuit principle with an alternative bootstrap circuit solution.
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Chapter 3

Multilevel Topologies

3.1 Introduction
The multilevel converters are an evolution of the two-level converter concept. Modular

Multilevel Converters (MMCs) are based on an identical basic cell, replicated n-times
and interconnected with a few other components, usually diodes and capacitors, until
the specific structure of the converter is obtained. The output of the MMC is a stepped
waveform voltage, which depends on the converter levels. The switching of the power
devices allows the capacitor voltages addition reaching high voltages at the output, while
the power switches have to withstand only reduced voltages ([7]). The MMCs are useful
for the possibility of splitting the total voltage of the DC-link on several active devices.
In this way, they can withstand very high voltages (hundreds of kilovolts) contributing
overall to drive loads of extreme power (hundreds of megawatts). Furthermore, in a
multilevel converter, the availability of different voltage steps allows to more accurately
emulate the trend of a sinusoidal voltage. For this reason, the harmonic level, that can be
calculated according to the Fourier analysis, it is naturally more contained in the multilevel
reconstruction than the only two square wave levels (obtained in the two-level inverters).
This results in a reduced Total Harmonic Distortion (THD). The THD decreases the more
the voltage steps are numerous, increasing the power quality. In Fig.3.1 the evolution
concept of the multilevel solution is shown [8]. In Fig.3.1a the two-level switching pole
is reported with the output voltage waveform, while in Fig.3.1b there is the principle of
the three-level switching pole with the improved output waveform quality. Finally, in
Fig.3.1c the concept of multilevel switching pole is generalised for n levels. The output
voltage of Fig.3.1c is related to 9-levels converter, the output voltage THD, in this case,
is even more reduced than in the previous case
In this section will be proposed several topologies of three level converters taking in exam
the advantages and disadvantages of all of them. The goal of this section is to analyse
the characteristic of following topologies to choose one to be taken into consideration to
develop the most suitable multilevel converter for the objective of the thesis work.
The topologies will be discussed in the next sections are:
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Figure 3.1: Multilevel principle and output waveforms: a) two-level switching pole, b)
three-level switching pole, c) n-level switching pole and output waveforms with n=9.[8]

• Diode Clamped Inverter (NPC) Topology;

• T-Type Converter;

• Cascaded H-Bridge inverter;

• Cascaded Half Bridge inverter;

• MMC Converter;

• Heric Converter;

• Flying Capacitor Converter.

3.2 Diode-Clamped Inverter Topology
The Diode-Clamped inverter or Neutral Point Clamped multilevel converter is dis-

tinguished by the use of diodes clamping (Fig.3.2), which have the role of blocking the
reverse voltage across the dc bus capacity. The neutral point (hence the name of the
topology) to which reference is made for voltage, is the central node common of the
dc-bus capacitors. Using 𝑚 to indicate the number of voltage levels desired, to design the
converter will need a dc bus consisting of 𝑚 − 1 capacitors, 2 · (𝑚 − 1) switching devices
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3.2 – Diode-Clamped Inverter Topology

and (𝑚 − 1) · (𝑚 − 2) clamping diodes. It is very important to properly size the clamping
diodes, because they have to withstand different voltage values depending on how many
capacitors the dc buses are connected to them.
The NPC converter is simple to control. For example, it needs a PWM modulation with
two carriers shifted by 180 degrees in three levels configuration. The NPC topology
presents some disadvantages:

• Use of clamping diodes (components to be sized, reverse recovery, etc. . . );

• Unequal use of the switches during the commutations (switches appropriately
dimensioning, considering the current which can withstand.;

• The NPC inverter has a large commutation loop which increases the parasitic
inductances;

Figure 3.2: NPC three level single phase inverter.
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3.3 T-Type Converter
The basic topology of the three level T-Type Converter is depicted in Fig.3.3. The

conventional two-level VSC topology is extended with an active, bidirectional switch to
the dc-link midpoint. In the case of conventional GaN transistors that cannot block the
voltage in both directions, two GaN switches are used in antiparallel (Fig.3.3). For this
application is important the sizing of the switches because the S1 and S2 switches must
withstand the voltage of dc-bus while the S11 and S22 can be sized with 𝑉𝑑𝑐/2. This
application presents disadvantages discussed below:

• The application will be discussed in this thesis work considering GaN transistor
which are not controlled in bidirectional mode, for this reason will need to use
two different switch in the neutral node. This has an important role in terms of
conduction losses;

• The switches S1 and S2 must withstand the whole dc-bus voltage that could be a
problem to find the right GaN transistor;

Figure 3.3: 3-L T-Type Converter.

3.4 Cascaded H-Bridge Inverter
The Cascaded H-Bridge inverter is composed by a Full-Bridge inverter cells connected

in series to reach the number of levels desired. The single Full-Bridge cell (Fig.3.4) can
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3.5 – Cascaded Half Bridge Inverter

obtain three voltage levels: (+𝑉𝑑𝑐,0,−𝑉𝑑𝑐). To increase voltage levels is possible to
connect another Full-Bridge cell in the "0" point. In that case each new cell is equivalent
to add two more voltage levels. The power switches are very simple to determine because
depending on how many cells are used (4 · 𝑚). It is possible to notice that this topology:
is very modular in its configuration, based on only addition of cells to increase the voltage
levels; is a standard configuration with respect to the control and topology; presents a
number of components less than the others topologies of this section (Tab.3.1). The
disadvantages of this topology are:

• Requires an isolated power supply for each level (or H-bridge);

• The common mode voltage on the dc-bus must be taken into account.

Figure 3.4: Cascaded H-Bridge 3L-single phase inverter.

3.5 Cascaded Half Bridge Inverter
The Cascaded Half Bridge multilevel converter is composed by a series connection

between two-level Half Bridge cells. The single cell can generate in output ±𝑉𝑑𝑐. Adding
one cell with appropriate switch state it is possible to generate the 0V state and add a
voltage level. In this configuration the voltage levels depend on number of cells. For
example, for three levels one need to connect two cells, for four levels three cells in series
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etc. This configuration permits with respect to cascaded H-Bridge to achieve one level
proportional to how many cells are added. The ChalfB inverter produces ±2𝑉𝑑𝑐 while
the switches sense only the 𝑉𝑑𝑐 as voltage stress around themselves [9]. This topology
can be used with unequal DC sources. The disadvantage of this topology are:

• Requires an isolated power supply for each Half-Bridge Cell;

• The connection of two capacitor in series for each cells increases the number of
capacitor each level.

Figure 3.5: Cascaded Half-Bridge 3L-single phase inverter.

3.6 MMC Converter
The MMC Converter topology is composed by several Full-Bridge or Half-Bridge

(Fig.3.6) cells depending on the number of voltage levels desired. This topology is very
interesting because permits to obtain output voltage from different dc source as in case
of solar panels as in Fig.3.6. Moreover, it is a very modular topology which permits
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the increase of voltage levels adding a cell and more simple replacement of cells than
other topologies (for example NPC topology) in case of fault. Another advantage of this
topology is a better output current THD than NPC topology [10]. The disadvantages of
this topology are:

• Requires more components with respect to other topologies discussed in this section
(inductors to size, more flying capacitors (C) ecc.);

• The voltage balance and control of single flying capacitors requires a more difficult
control with respect to standard topologies.

Figure 3.6: N-Level MMC converter..

3.7 Heric Converter
The Heric converter topology develops from Full-Bridge topology adding two more

switches on the load side. This topology has been taken into consideration because
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permits to overcome the problem of Common Mode Voltage on the dc-bus in the Full-
Bridge converter [11]. The leakage current of common mode which is formed in the 0V
state, flows, with appropriate control, through the two "AC Switch" (S1 and S2) shown in
Fig.3.7. With these two more power switches is possible to confine the leakage current
of CM Voltage in the load loop through the inductances of load. The Full-Bridge side
control is the same as Full-bridge converter while the "AC Switches" are controlled in
the 0V state with low switching frequency. The disadvantage of this topology is:

• Considering that the thesis work concerns a multilevel inverter with GaN transistor,
the two "AC Switches" should be GaN. However, these two switches must switch
at a much lower switching frequency than those of the Full-Bridge and therefore it
is disadvantageous to use GaN devices.

Figure 3.7: 3-L Heric Converter.

3.8 Flying Capacitor Converter
The Capacitor-clamped (or Flying Capacitor) topology derives from one simplifica-

tion of the Diode-clamped structure, and provides for the use of supplementary capacitors
(clamping capacitors) in addition to those already present on the dc bus as in Fig.3.8, in
order to synthesize the different voltage levels desired at the output. These capacitors
replace the clamping diodes of the previous configuration. To obtain 𝑚 output volt-
age levels, is required a dc-bus consisting of 𝑚 − 1 capacitors, 2 · (𝑚 − 1) switch and
(𝑚−1) · (𝑚−2)/2 clamping capacitance. The voltage applied to each component, except
the clamping capacitors, is the same and is equal to𝑉𝑑𝑐/(𝑚−1). The clamping capacitors
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are charged to different voltage values, for example 𝑉𝑑𝑐/2 for 3-L converter in Fig.3.8,
to produce the output voltage waveform while the switches are switched to combine the
various charge voltages of the capacitors. The Flying capacitor topology permits to add
output voltage levels inserting another flying capacitor and other two switches replicating
the cell highlighted in yellow in the Fig.3.8.
The disadvantages of this topology are:

• The topology presents more capacitors to size which increase with the increase of
voltage levels;

• The topology needs a specific control strategy for the Start-up and Shut-down to
charge and discharge the capacitors without being damaged.

Figure 3.8: 3-L Flying Capacitor converter.

3.9 Conclusions
A summary of the principal characteristics of the topology discussed in this chapter

is reported in this section. In Tab.3.1 are listed the number of components for each
topologies while in Tab.3.2 are shown the voltage stress for each component in the
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topologies discussed in this chapter. In this tables is considerable to notice that the MMC
topology presents the higher number of switches and components. Another important
data is the voltage stress in the switches which is the whole dc-bus voltage in CHB,
CHalfB and Heric converters. The number of power supply has been important to define
the kind of source which should be used.
In conclusion the topology which is chosen for the application that will be treated in the
next sections is Flying Capacitor topology because:

• Considering the GaN transistors which will be used and the dc-bus voltage of 400V
the voltage stress of switches could not equal to dc-bus total voltage;

• The modularity of this topology permits to add new cells in case to have more
voltage levels;

• The topology presents a defined control mode;

• The topology permits to consider this application on microinverter with single PV
voltage supply.

Table 3.1: 3-L topology components.

NPC Flying Cap CHB CHalfB MMC T-Type Heric
Switches 4 4 4 4 8/16 2 + 2 4 + 2

Clamping diodes 2 0 0 0 0 0 0
dc-Bus Capacitor 2 2 1 2 2 2 1
Flying Capacitor 0 1 0 0 2 for each cell 0 0

Table 3.2: 3-L topology voltage stress.

NPC Flying Cap CHB CHalfB MMC T-Type Heric
Switches 𝑉𝑑𝑐/2 𝑉𝑑𝑐/2 𝑉𝑑𝑐 𝑉𝑑𝑐 𝑉𝑑𝑐/2 𝑉𝑑𝑐 and 𝑉𝑑𝑐/2 𝑉𝑑𝑐

Clamping diodes 𝑉𝑑𝑐 0 0 0 0 0 0
dc-Bus Capacitor 𝑉𝑑𝑐/2 𝑉𝑑𝑐/2 𝑉𝑑𝑐 𝑉𝑑𝑐 𝑉𝑑𝑐 𝑉𝑑𝑐/2 𝑉𝑑𝑐
Flying Capacitor 0 𝑉𝑑𝑐/2 0 0 𝑉𝑑𝑐/2 0 0

Power Supply 1 1 1 2 1 1 1
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Chapter 4

Application design and simulations

4.1 Introduction
In this chapter will be discussed the design of the application topic of this thesis work.

In a general view, the objective of the chapter is to design via simulations with electrical
and thermal simulation software (PLECS), a multilevel single-phase flying capacitor
GaN transistor-based inverter for PV panel applications. The input voltage on the inverter
dc-bus (𝑉𝑑𝑐) in Fig.4.1 must be 400𝑉 . To obtain the 𝑉𝑑𝑐 from PV panel, the inverter
discussed in this thesis work must be interfaced with the PV panel via a boost converter,
indeed, to have a V-DC voltage of 400V, the panel voltage must be increased via the
DC/DC converter. In this essay only the inverter side will be considered. The output
voltage (𝑉𝑜𝑢𝑡) which the application will have to reach, will have to be the American grid
voltage about 110𝑉𝑅𝑀𝑆. Therefore, the peak output voltage on the load should be around
155𝑉 . The frequency of output voltage will have to be 60Hz which is also the American
grid frequency.
The converter will have to have a series capacitor to obtain the neutral point (N). For
this reason, each capacitors in series have to withstand half the 𝑉𝑑𝑐 voltage. The flying
capacitors connected between 𝑆2𝑝 and 𝑆2𝑛 have to sustain half 𝑉𝑑𝑐 voltage as shown in
the chapter before.
PLECS simulations will be used in this chapter, to design the principal characteristics of
the multilevel inverter which are listed below:

• Application GaN transistor;

• Modulation technique of the three level Flying Capacitor converter;

• Power Losses Analysis;

• Thermal Analysis;

• dc-bus and Flying Capacitor Capacitances.
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Figure 4.1: Electric circuit model of the multilevel application.

4.2 EPC2050 GaN Transistor
The transistor selected for the 3-L Flying Capacitor converter is the EPC2050. The

EPC2050 is an enhancement mode GaN transistor made by Efficient Power Conversion
Corporation. This FET is 1.95𝑥1.95𝑚𝑚 large. The pads to connect source, drain and
gate of the FET are made with solder bumps (Fig.4.2). The pads are set as in Fig.4.3. The
blue circles are the drain pads in the center of the die. The red circles in the two sides of
the die are the source pads while only one pad is used for gate connection (Grey circle).
The EPC2050 GaN transistor can withstand 350V of drain-source voltage (𝑉𝐷𝑆). For this

Figure 4.2: EPC2050 die view[12].

reason, it is suitable for application treated before. Indeed as discussed in the Tab.3.2 of
the last chapter, the transistor of flying capacitor topology must sustain 𝑉𝑑𝑐/2 minimum.
In this case the minimum voltage on which to size the devices is about 200V. The more
appropriate device for this application is the EPC2050 because can withstand over 200V
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Figure 4.3: Pads mechanical schematics. [12]

of rated voltage and also it is able to withstand over 300V of nominal rated voltage. That
voltage characteristic is important to give safety in terms of devices over-voltage stress.
The typical gate-source voltage (𝑉𝐺𝑆) to obtain ON state is typical 5V [12]. In Fig.4.4a
is shown the behaviour of 𝑉𝐷𝑆 during the transistor ON state related to the drain current
𝐼𝐷 ad the 𝑉𝐺𝑆. It is important to notice as at the typical value of 𝑉𝐺𝑆 (5V) the voltage
drop of 𝑉𝐷𝑆 is less than other smaller values. In Fig.4.4b the behaviour of the on state
resistance (𝑅𝐷𝑆,𝑜𝑛) related to 𝑉𝐺𝑆 and 𝐼𝐷 is described. The typical value of 𝑅𝐷𝑆,𝑜𝑛 of
60𝑚Ω is reached when the 𝑉𝐺𝑆 is on the typical value of 5V. The maximum value of
𝑅𝐷𝑆,𝑜𝑛 is 80𝑚Ω [12].
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(a) EPC2050 𝑉𝐷𝑆 vs. 𝐼𝐷 and 𝑉𝐺𝑆

(b) EPC2050 𝑅𝐷𝑆,𝑜𝑛 vs. 𝑉𝐺𝑆 and 𝐼𝐷

Figure 4.4: EPC 2050 datasheet graphs.[12]

Another important feature of EPC2050 is the reverse drain-source characteristic.
GaN devices don’t present reverse recovery charge 𝑄𝑟𝑟 as discussed in the chapter 1 and
therefore does not present a body diode. The current can flow in the device in both ways.
The source-drain current 𝐼𝑆𝐷 causing a voltage drop explained in the graph in Fig.4.5
which depend on the device temperature.
The main characteristics of EPC2050 are reported in the Tab.4.1

32



4.3 – Modulation Technique

Figure 4.5: EPC2050 Reverse Drain-Source Characteristics. [12]

Table 4.1: EPC2050 main characteristics.

Parameter Value Unit
Max Drain-to-Source Voltage (Continuous) 𝑉𝐷𝑆 350 V

Max Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 𝑉𝐷𝑆 420 V
Max Drain Current (Continuous (𝑇𝐴 = 25◦𝐶)) 𝐼𝐷 6 A

Max Drain Current (Pulsed (25°C, 𝑇𝑃𝑈𝐿𝑆𝐸 = 300𝜇𝑠)) 𝐼𝐷 26 A
Max Gate to Source Voltage 𝑉𝐺𝑆 -4 to 6 V

Operating Temperature 𝑇𝑗 -40 to 150 V
Typical 𝑅𝐷𝑆,𝑜𝑛 55 mΩ

Max 𝑅𝐷𝑆,𝑜𝑛 80 mΩ

4.3 Modulation Technique
In a multilevel FC inverter, the modulation technique must consider the behaviour of

Flying Capacitors. The currents of FC must have a zero mean value. To reach zero mean
value capacitor currents it is important that the duty cycles of the cells (m) in Fig.4.6 must
be equal at stady state. To get a multilevel output voltage, the cells must use individual
carriers phase shifted by 2𝜋/𝑚 same as an interleaving. This modulation technique also
obtains a frequency multiplication effect that will be discussed later. In the thesis work
application case, the two carriers are shifted by 2𝜋 because there are only two cells (m) to
reach three voltage levels. A block model of Flying Capacitor inverter control is shown
in Fig.4.7. The 𝑣0(𝑡) is the peak maximum output voltage of the application (110 ·

√
2 V)

that it is normalized on 400V (𝑉𝑑𝑐). After have shifted and saturated the signal, 𝑣𝑐 (𝑡) it is
compared with the two carrier shifted as shown in Fig.4.7. The signals 𝑞1𝑝 (𝑡) and 𝑞1𝑛 (𝑡)
are the gate commands for 𝑆1𝑝 and 𝑆1𝑛 (Fig.4.1) while 𝑞2𝑝 and 𝑞2𝑛 are the commands
for 𝑆2𝑝 and 𝑆2𝑛. The PWM modulation with two carriers shifted as said before creates
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Figure 4.6: Flying capacitor converter circuit scheme. [13]

Figure 4.7: PWM modulation block model. [13]

a doubling effect on the output voltage frequency. In Fig.4.8 it is possible to notice this
effect. The switching frequency on the example in Fig.4.8 it is 100kHz while the square
wave of the output voltage simulated in the PLECS model has 200kHz of frequency and
5𝜇𝑠 of time switching period. Therefore, this will be important in frequency choose and
in ripple sizing.

Figure 4.8: Output Voltage waveform ( 𝑓𝑠𝑤 = 100𝐾𝐻𝑧 and 𝑣0(𝑡) = 110𝑉𝑅𝑀𝑆 ).
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4.4 Power Losses Analysis
In this section will be discussed the power losses of the multilevel converter. In

this analysis will be considered the power losses of the switching cells to arrive, with
simulation results, to select the better compromise in terms of power losses and converter
performance.
The analysis will follow the point of view listed below:

• Devices switching losses;

• Devices conduction losses;

• Devices considerations.

4.4.1 Analysis Model
To analyse the power losses in the switches of the multilevel converter is used simu-

lations results by LT-Spice circuit model. Before start discussing about the results, the
principal characteristics of the model will be explained.
The circuit model of LT-Spice simulations for EPC2050 switching and conduction losses
calculation is shown in Fig.4.9. As shown in Fig.4.9, the circuit is composed by two
EPC2050 devices. The LT-Spice model of EPC2050 was taken from EPC-Co libraries.
In the circuit are modeled also the parasitic inductances between GaN transistors with
100𝑝𝐹 inductors and the parasitic inductances which modeled the connection between
devices and the ground or the voltage source. The Power supply in the circuit is modeled
with a DC voltage source (V1) that will be varied depending on the simulations. The
output is modeled with continuous current source (I1).
The simulation frequency ( 𝑓𝑠𝑤) is set to 100 kHz with a dead time (dt) of 50 ns as in
Fig.4.9. The switches control LT-Spice model is shown in Fig.4.10. The 5V command
to switch on the devices is generated by a pulse voltage source with five and zero voltage
limits and a switching period (𝑇𝑝𝑒𝑟) calculated by 1/𝑝𝑤𝑚. The ON and OFF command
are given by two switches (Example: S2 and S1 in Fig.4.10). To model the gate driver
chosen for this application, that will be discussed in the next chapter, the main charac-
teristics for on-mode case are put into GDon parameters, following gate driver datasheet.
For gate driver off-mode case the parameters are in GDoff side in Fig.4.10. In the control
circuit are also considered the external On-Resistance (𝑅𝑔𝑜𝑛) and OFF-Resistance (𝑅𝑔𝑜 𝑓 𝑓 )
set to 10Ω and 480𝑚Ω to have a right 𝑑𝑣/𝑑𝑡 during switching period. The connection
between the control circuit in Fig.4.10 and the gate of the EPC2050 presents a parasitic
inductance (Fig.4.9) about 1 nF to model the PCB connection.
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Figure 4.9: LT-Spice Power Circuit model.

Figure 4.10: LT-Spice switches control model.
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4.4.2 Switching Losses
During the switches commutations are important to analyse the power losses of the

switches. To find the power losses analysis during the commutation are used the LT-Spice
simulations with the circuit models shown in Fig.4.9 and Fig.4.10. The switching losses
analysis are determined varying the input voltage of the model (V1) and the output current
(I1). The switching losses are fundamental to characterize the behaviour of the switches
during the switching period. The simulations were made with three input voltage values
such as 150V, 200V and 250V and different devices voltages as 25◦𝐶, 90◦𝐶 and 125◦𝐶.
For current values ranging from 0A to 26A have been taken into consideration in the
simulations to describe the EPC2050 behaviour considering until the maximum current
value indicated by the datasheet. To arrive to the switching losses will be evaluated the
energy used during switching through LT-Spice energy calculator.
The switching losses are divided into two cases: switching losses during the on-
commutation of the transistor and switching losses during the off-commutation.
The commutation which the transistor is switched in on-state, is described in the Fig.4.11.
In the on-state commutation the drain-source voltage drops to near 0V while the transis-
tor starts to conduct and the drain current (𝐼𝐷) rises up to 10A that it is the simulation
current value. The energy of the on-state commutation (𝐸𝑜𝑛) is calculated by LT-spice
just when the voltage drops to more than 0V and the current rises to 10A. The results
of the simulations are reported in Figs.4.13,4.14,4.15. As shown in the plots, the 𝐸𝑜𝑛
behaviour depends on the temperature and the voltage applied on the devices. In terms of
voltage it is important to notice that the 𝐸𝑜𝑛 at the same operating temperature, increases
with the devices voltage. For example, in the Fig.4.13a the 𝐸𝑜𝑛 maximum value at 26
A of drain current (𝐼𝐷) is about 50𝜇𝐽 while in the Fig.4.15a it is possible to notice that
the 𝐸𝑜𝑛 reaches more than 90𝜇𝐽. Another important aspect is the increase of 𝐸𝑜𝑛 with
respect to temperature. The increasing of 𝐸𝑜𝑛 is not relevant as in the case dependent on
the temperature but it is possible to note that with the same applied voltage there is an
increase of 𝐸𝑜𝑛 as the temperature increases. For example, in Fig.4.14a the 𝐸𝑜𝑛 at 26 A
𝐼𝐷 is about little more 70𝜇𝐽 while at the same conditions with an increase of temperature
until 125◦𝐶 the 𝐸𝑜𝑛 increase about 75𝜇𝐽.
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Figure 4.11: Switching on of EPC2050 GaN transistor LT-Spice simulation waveforms
(100kHz, 𝐼𝐷 = 10𝐴).

During the off-state commutation the behaviour is shown in Fig.4.12. To switch on
the current of the devices 𝐼𝐷 goes to zero with ringings due to parasitic inductances of
the simulation model. Instead the devices voltage raise up to 200V which it is the voltage
applied on the devices during the commutation in Fig.4.12. Also in this case thanks
to the model described in the Fig.4.9 and finding the energy (𝐸𝑜 𝑓 𝑓 ) present during the
switching in Fig.4.12 using LT-Spice, the results of the 𝐸𝑜 𝑓 𝑓 depending on the devices
applied voltage and the temperature are described in Figs.4.13,4.14,4.15. The 𝐸𝑜 𝑓 𝑓
reaches much smaller values than 𝐸𝑜𝑛. For example, in Fig.4.15, can be seen how the 𝐸𝑜𝑛
reaches values just under 100𝜇𝐽 while the 𝐸𝑜 𝑓 𝑓 around 4𝜇𝐽. The 𝐸𝑜 𝑓 𝑓 curve is more
constant than 𝐸𝑜 𝑓 𝑓 . In fact, we do not have a steep rise in values with increasing current
but rather there is a trend that grows slightly from 0A to 26A. For example taking into
account the simulation results in Fig.4.13b, the 𝐸𝑜𝑛 increases from about 3𝜇𝐽 to about
50𝜇𝐽 while the 𝐸𝑜 𝑓 𝑓 increases from about 1.30𝜇𝐽 to more or less 2.3𝜇𝐽.
The results of 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 will be used in PLECS simulations to describe the real
behaviour of the EPC2050 devices during the commutations.
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Figure 4.12: Switching off of EPC2050 GaN transistor LT-Spice simulation waveforms
(100kHz, 𝐼𝐷 = 10𝐴).
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(a) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 25◦𝐶 of devices temper-
ature.

(b) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 90◦𝐶 of devices temper-
ature.

(c) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 125◦𝐶 of devices temper-
ature.

Figure 4.13: 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 related to current with 150 V input voltage.
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(a) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 25◦𝐶 of devices temper-
ature.

(b) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 90◦𝐶 of devices temper-
ature.

(c) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 125◦𝐶 of devices temper-
ature.

Figure 4.14: 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 related to current with 200 V input voltage.
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(a) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 25◦𝐶 of devices temper-
ature.

(b) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 90◦𝐶 of devices temper-
ature.

(c) 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 with 125◦𝐶 of devices temper-
ature.

Figure 4.15: 𝐸𝑜𝑛 and 𝐸𝑜 𝑓 𝑓 related to current with 250 V input voltage.
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4.4.3 Conduction Losses
To describe the GaN transistor EPC2050 it is important to define the conduction

losses caused by the passage of current through the transistors.
In a real switch during the on-state the voltage drop across the device is not zero (Fig.4.16).
For this reason the device produces power losses.

Figure 4.16: 𝑉𝐷𝑆,𝑂𝑁 during the on-state of EPC2050. LT-Spice simulation results (125◦𝐶,
200V and 10A).

The conduction losses during on-state depending on on-state resistance (𝑅𝐷𝑆,𝑜𝑛).
However 𝑅𝐷𝑆,𝑜𝑛 is very temperature dependent. As shown in Fig.4.17 the resistance
depending on junction temperature of the device. In the case of EPC2050 the 𝑅𝐷𝑆,𝑜𝑛
increase its value by two times at 150◦𝐶. This aspect greatly influences the trend of the
voltage drop during the on state and therefore the behaviour in terms of conduction losses.
To get an idea of the voltage drop relative to the on state, through simulations with the
LT-Spice model in Fig.4.9, the results shown in Fig.4.18 are taken as a reference. In the
plots is shown the 𝑉𝐷𝑆,𝑂𝑁 as a function of junction temperature of the device in on-state.
The voltage drop increase with the increasing with the increasing of the current across
the device. Moreover, at the same current the voltage drop values obtains by junction
temperature of 125◦𝐶 is more than 25◦𝐶 simulation value results precisely because of
the great dependence of the resistance on the temperature discussed before.
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Figure 4.17: EPC2050 normalized 𝑅𝐷𝑆,𝑜𝑛 as a function of junction temperature 𝑇𝑗 .[12]

Figure 4.18: 𝑉𝐷𝑆,𝑂𝑁 as a function of temperature and current LT-Spice simulation results.

As said in the previous chapter, the GaN transistors do not present body diode but
permit to be crossed by the current from the source to the drain. This behaviour named
reverse conduction is possible when the device is turned off. But also in this case there is
a voltage drop on the device. This voltage drop, as in on-state case, produces power losses
on the devices. The voltage drop in reverse conduction (𝑉𝑆𝐷) is possible to obtain when
the 𝑉𝐺𝑆 is equal to 0V. The behaviour of voltage drop in reverse conduction is described
in Fig.4.19.
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Figure 4.19: Source-to-Drain voltage as a function of temperature and Source-Drain
current.

In terms of currents the voltage drop definitely rises as the current increases. Moreover
the 𝑉𝑆𝐷 increases with temperature at the same Source-to-Drain 𝐼𝑆𝐷 current conditions.
The voltage drops arise from conduction and reverse conduction across EPC2050 will
be inserted as a Look Up Table (LUT) in PLECS simulation model to estimate the real
behaviour of the transistors during the multilevel inverter working.

4.4.4 Power Losses Considerations
The results of switching and conduction losses as described in the previous sections

are used as look up table to describe the real behaviour of the EPC2050 devices during
the inverter working. In the Fig.4.20 is shown an example of LUT inserted in the PLECS
inverter model. LUT are important to describe the power losses of the total system. As
defined before the study of power losses is related only about switches losses and power
losses due to other factors will not be considered.

45



Application design and simulations

Figure 4.20: 𝑉𝐷𝑆,𝑂𝑁 LUT on PLECS model.

To define the power losses is used the PLECS circuit model described in Fig.4.25.
Taking into consideration the circuit model in Fig., in addition to the components already
seen above, there is a heatsink modeled as a blue box on the power cells. Moreover,
the heatsink is connected to a thermal resistance and a temperature generator which
describes the ambient temperature (25◦𝐶). The resistance and generator in thermal side
of the circuit modeled the thermal circuit. However the thermal circuit shown in Fig.4.25
is not the definitive thermal model of the inverter but only a temporary model functional
for the analysis that will be described in this section.
Simulations were made to see, with this temporary model, what were the trends in terms
of power losses for the single device using the model in Fig.4.22a. Furthermore, a
model with several devices in parallel was also considered, in this case two, following the
circuit present in Fig.4.22b. This analysis with two parallel transistors were considered to
understand if there are advantages in terms of power losses considering two devices instead
of one. The trends of power losses are described in the plots in Fig.4.21 which are the
results of simulation with single and parallel devices (𝑉𝐷𝐶 = 400𝑉 and𝑉𝑜𝑢𝑡 = 110𝑉𝑅𝑀𝑆).
As described in Fig.4.21 the conduction losses start to be very relevant after some current
values. This aspect is very important in terms of power losses because conduction losses
in Fig.4.21a they become really relevant as the current increases with respect to the
switching losses in Fig.4.21b which more or less have a trend with a less increasing
curve. Another aspect is highlighted in Fig.4.21a. The conduction losses decrease
significantly in the parallel devices’ configuration. Instead, the switching losses increase
with parallel devices configuration. Therefore considering that the conduction losses are
more decisive as power losses, above all by increasing the output current, then switching
losses, the model in the Fig.4.22b was chosen as the definitive model of the application
treated in this thesis work. Indeed with the parallel devices an increase in output current
is allowed thanks to the fact that the current in the devices will be half and that therefore
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the conduction losses are decreased. Moreover, decreasing the current across the devices
also having a smaller temperature increase in the devices than single device configuration
that will be treated later.

(a) PLECS simulations results. Total conduction
losses with single and parallel devices.

(b) PLECS simulations results. Switching losses
with single and parallel devices.

Figure 4.21: Comparison between single and parallel devices total power losses of PLECS
simulations.
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(a) PLECS inverter circuit model with single devices.

(b) PLECS Inverter circuit model with parallel devices.

Figure 4.22: PLECS Inverter circuit model with temporary thermal model.
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4.5 Thermal Analysis

4.5.1 GaN Thermal Model
When using surface mount packaged power semiconductors, the PCB constitutes the

main heat conduction path for the mounted devices and it is especially critical when
no case-side cooling is implemented. Furthermore, packaged devices have multiple
thermal interfaces between the die and the PCB. In comparison, chip scale packaged
(CSP) devices have direct metallic contacts (solder) that offer good electrical and thermal
conductance path into the PCB. The heat then spreads into the conductive layers of
the PCB where it benefits from the large PCB area (compared to exposed FET area)
and dissipates into ambient. Each of the mentioned PCB components introduce some
thermal resistance to heat flow and should be modeled for an accurate characterization.
In Fig.4.23 are described the thermal resistance between the die of the GaN FET and
the PCB to the ambient. As shown in Fig.4.23 from the die to PCB there is thermal
resistance 𝑅𝐽−𝑃𝐶𝐵𝑇 which modeled the junction-to-PCB thermal resistance. Another
resistance is the 𝑅𝑧,𝑃𝐶𝐵 thermal resistance which modeled the thermal resistance of the
PCB considered conductive layers between FR4 insulating layers. In the model, three
regions are considered for the PCB stack, a top region constituting half of the conductor
layers with their FR4 insulation (typically, 5 or 10 mils thick), a similar bottom stack with
the remaining half of conductor layers and FR4 spacing, and a central region of FR4 core
which separates the bottom and top regions and it is usually thicker and more insulating.
The respective contribution of the top and bottom surface to heat dissipation may differ,
and thus the two layers (top and bottom) are considered as separate heat conduction paths.
If are present thermal vias will behave as thermal connectors to allow heat to conduct
from the top stack to the bottom stack. Two temperature nodes are defined for the PCB
top and PCB bottom node in the region underneath the FET (Fig.4.23) with the respective
thermal resistances to ambient(𝑅𝑃𝐶𝐵𝑇−𝐴 and 𝑅𝑃𝐶𝐵𝐵−𝐴)[14].

Figure 4.23: Thermal resistive circuit showing thermal resistances at PCB side (board-
side).[14]

In applications with high power densities, additional cooling may be required to
limit self-heating effects by adding a thermal solution to dissipate more heat from the
backside (i.e., case-side) of the FETs. The die of CSP GaN FETs is exposed with the
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silicon substrate having a low junction-to-case thermal resistance (𝑅𝑡ℎ,𝐽𝐶 in Fig.4.24), in
comparison to devices plastic packaged [14], and as such can more effectively benefit
from back-side cooling. As in Fig.4.24 the heatsink is situated in the case side of the
transistor to better dissipated the heat [14] and determines the 𝑅𝐻𝑆𝑘 . Another dissipation
interface named heat-spreader it can be placed just below the heatsink which introduces
a high conductivity area (copper material) for heat to spread and conduct away from the
device and reduce hot spots. This introduce the 𝑅𝐻𝑆𝑝 thermal resistance. To ensure
good thermal conductance, thermal-interface materials (TIM) are placed at the contact
between the devices and the heatsink bottom surface. TIMs have good thermal properties
and come in different forms (pads, gels, putties. . . ) and are selected depending on the
application. This is modeled with 𝑅𝑇 𝐼𝑀 thermal resistance. For smaller FETs, the top
surface area may be comparable to that of the die sides and as such, heat removal can be
enhanced by adding more TIM around the FETs using TIM gel or gap filler. This adds a
heat conductance path from the die sides to the sink, and from the top PCB copper to the
sink. These paths are represented by their respective thermal resistances 𝑅𝐺𝐹 shown in
the network of Fig.4.24

Figure 4.24: Thermal resistive circuit showing back-side cooling with TIM pad, gap filler
material, a heatspreader and a heatsink.[14]

After setting up the thermal resistances that constitute the thermal system, the circuit
model would resemble the schematic shown in Fig.4.25a for a single FET, and Fig.4.25b
for a half-bridge configuration. The full circuit is simplified to extract the overall resis-
tances to ambient through the board-side path (𝑅𝑡ℎ,𝐽−𝑃𝐶𝐵−𝐴), and through the case-side
path (𝑅𝑡ℎ,𝐽−𝐶−𝐴) if a back-side cooling solution is present.
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(a) Schematic of a Single FET.

(b) Half-bridge configuration.

Figure 4.25: Full thermal resistive circuit model and circuit model after simplification[14].

4.5.2 Thermal Tool
A tool of EPC-Co named GaN Power Bench tool is used to design the thermal circuit

of the multilevel inverter. This thermal calculator provides quick estimates for the thermal
performance parameters of PCB-mounted GaN devices subject to both board-side cooling
through forced convection, and backside cooling through a thermal solution consisting of
a heat spreader and heatsink. The model accounts for the PCB construction (size, stack-up
and via density), die sizes, power losses, TIM materials and heatsink solution. The model
allows to compare the thermal performance of the GaN FETs with and without backside
cooling and can be used to quickly estimate the effect of using different TIM pads and
TIM gap fillers. In addition, the cooling effect of the heat spreader and heatsink can be
quickly assessed. Two configurations are considered: one for a single FET (Fig.4.25a) and
another for two FETs in a half-bridge circuit (Fig.4.25b). The different input parameters
required for the model can be inputted using a simple and intuitive graphical user interface
(GUI) after which the model calculates individual thermal resistances values (𝑅𝑡ℎ) and
the operating junction temperatures (𝑇𝐽) for a defined power loss [15]. In the Fig.4.26 is
shown an example of GUI page where is possible to choose the number of devices, the
serial number of devices and other features as the number of thermal vias or the power
losses in the device. In the other pages is possible to obtain the heatsink characteristics
with heatsink calculator and it is possible to add TIM and other features that construct
the real FET thermal interface.
At the end of GUI are generated the single thermal resistances to put in a resistive circuit
model to simulate the thermal behaviour of the GaN FET.
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Figure 4.26: Screen of one Graphical User Interface page.

4.5.3 Multilevel Inverter Thermal Circuit Model
To define the thermal circuit model for thermal analysis in PLECS simulator is nec-

essary to make the following assumptions considered as a input on the thermal calculator
of GUI discussed in the previous section:

• For this model an aluminium heatsink above the case with a size of 50mm and
15 fins is considered. It is also considered a TIM with thermal conductivity of
6𝑊/𝑚 · 𝐾 and TIM gap/bondline thickness of 0.5𝑚𝑚. The air flow to heatsink is
defined on 100 LFM that is the worse case airflow condition;

• The PCB is composed by 6 copper layers with 2𝑜𝑧 of thickness. The total PCB
thickness is 1.6𝑚𝑚. The air flow also in this case is set on 100 LFM;

• Are not considered liquid or gel gap fill and heatspreader;

• For the 𝑆2𝑝, 𝑆2𝑝1, 𝑆2𝑛,𝑆2𝑛1 in Fig.4.28, is used the "Two Devices: Symmetric"
configuration in Fig.4.26. This configuration uses the half bridge simplified model
shown in Fig.4.25b. It is assumed that these devices thermally influence each other
without affecting the other devices. The resistances obtained with this configuration
will be named in the thermal circuit as 𝑅𝑡ℎ...

• For the 𝑆1𝑝,𝑆1𝑝1,𝑆1𝑛,𝑆1𝑛1, in Fig.4.28, is used another configuration with respect to
the other devices. The configuration is named "Parallel Devices" also considering
the half bridge model. In this configuration the devices are considered as an array
of 4 transistors which influence each other in terms of heat dissipation. The GUI
page to set the parallel setup is shown in Fig.4.27. It is assumed that the two
devices in parallel, in addition to being thermally connected to themselves, are also
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connected to the other two devices in parallel via other 𝑅𝑝𝑡ℎ 𝑗12.... The resistances
obtained with this configuration will be named in the thermal circuit as 𝑅𝑝𝑡ℎ...

Figure 4.27: Parallel Devices GUI page.

The definitive thermal circuit model obtained from the assumptions discussed above is
shown in Fig.4.28. As in the simplified half bridge circuit model in Fig.4.25b are defined:

• Thermal resistances from junction to ambient in the case-side named 𝑅𝑡ℎ 𝑗−𝐴𝑐 and
𝑅𝑝𝑡ℎ 𝑗−𝐴𝑐 ;

• 𝑅𝑡ℎ 𝑗−𝐴𝑏 and 𝑅𝑝𝑡ℎ 𝑗−𝐴𝑏 which represent the junction-to-ambient thermal resistances
considering PCB side;

• 𝑅𝑡ℎ 𝑗12𝑏 ,𝑅𝑡ℎ 𝑗12𝑐 , 𝑅𝑝𝑡ℎ 𝑗12𝑐 , 𝑅𝑝𝑡ℎ 𝑗12𝑏 as thermal resistance between the two neighbor-
ing transistor junctions board-side and case-side.

The thermal resistances obtained with the GaN POWER BENCH are reported in the
Tab.4.2.
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Table 4.2: Thermal resistance values.

Parameter Value Unit
𝑅𝑡ℎ 𝑗−𝐴𝑐 22 ◦𝐶/𝑊
𝑅𝑡ℎ 𝑗−𝐴𝑏 44.9 ◦𝐶/𝑊
𝑅𝑝𝑡ℎ 𝑗−𝐴𝑐 26.6 ◦𝐶/𝑊
𝑅𝑝𝑡ℎ 𝑗−𝐴𝑏 56.9 ◦𝐶/𝑊
𝑅𝑡ℎ 𝑗12𝑏 41.5 ◦𝐶/𝑊
𝑅𝑡ℎ 𝑗12𝑐 137.6 ◦𝐶/𝑊
𝑅𝑝𝑡ℎ 𝑗12𝑐 89.9 ◦𝐶/𝑊
𝑅𝑝𝑡ℎ 𝑗12𝑏 38.1 ◦𝐶/𝑊

Figure 4.28: Multilevel inverter thermal resistive circuit.
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4.6 Switching Frequency
The switching frequency of the inverter is defined with two parameters: efficiency

and thermal management of the system.
To get an idea of the efficiency trend of the total system, efficiency maps have been
produced taking into account two possible switching frequencies to be evaluated: 100𝑘𝐻𝑧
and 200𝑘𝐻𝑧. In this efficiency map, as for the analysis of power losses, other power
losses other than those in the switches have not been considered. The map is represented
in Fig.4.29. It is possible to analyse that the efficiency varying due to the switching
frequency and the current. The 100𝑘𝐻𝑧 curve has higher values in terms of efficiency
than the 200𝑘𝐻𝑧 curve. Moreover the 100𝑘𝐻𝑧 switching frequency presents a peak
value above to 98.5%. For this reason, the switching frequency chosen for the multilevel
inverter is 100𝑘𝐻𝑧 to stay with high efficiency percentages to have a margin on power
losses in the output inductor and other power losses of the application. Furthermore, will
be considered as output current a value from 10𝐴 to maximum 15𝐴 as going further, the
efficiency would drop considerably.

Figure 4.29: Efficiency map with two switching frequency values depending on output
current of the system.

To validate the maximum output current in terms of thermal point of view simulations
have been made. The thermal model in Fig.4.28 is used with a ambient temperature of
60◦𝐶 to be consistent with the application for solar panels exposed to the sun, and an
output current of 15𝐴 at 100𝑘𝐻𝑧 of switching frequency. The simulations results are
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shown in Fig.4.30. The temperature in the four devices 𝑆1.. is between 90◦𝐶 and 95◦𝐶
while the temperature in 𝑆2.. devices is between 85◦𝐶 and 90◦𝐶. In both cases the
temperature is consistent with the maximum temperature values allowed by the device
(150◦𝐶).

(a) Thermal behaviour of 𝑆1.. switches at 15𝐴
and 100𝑘𝐻𝑧 of switching frequency.

(b) Thermal behaviour of 𝑆2.. switches at 15𝐴
and 100𝑘𝐻𝑧 of switching frequency.

Figure 4.30: Junction temperature of application devices.

4.7 Ripple Evaluation

4.7.1 dc-link Capacitance
To define the analysis of dc-link voltage ripple, the system was studied with 15𝐴 output

current, 110𝑉𝑅𝑀𝑆 output reference voltage at 60𝐻𝑧. The voltage ripple is calculated
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through the (4.1).
Δ𝑣 =

Δ𝑄

𝐶
(4.1)

Assuming a ripple of 2% of the input voltage, to find the correct value of dc-link
capacitance, the designer has to consider the current in the dc-link and integrate it to find
the charge. In Fig.4.31a is shown the dc-link current waveform. It is possible to notice
how the current waveform has half time period with respect to 60𝐻𝑧 output frequency.
The current has been integrated giving the waveform in Fig.4.31b. Calculating the delta
of the charge and 2% of 400𝑉 (input voltage of the system) the capacitance result value
is 21𝜇𝐹.

(a) dc-link simulation current wave-
form.

(b) dc-link charge simulation wave-
form.

Figure 4.31: dc-link simulation results.

4.7.2 Flying Capacitor capacitance
The voltage behaviour of the flying capacitor is shown in Fig.4.32a. The voltage ripple

is represented in the Fig.4.32b. The ripple of flying capacitor presents peak values which
will be considered for the capacitance calculation. The ripple of the flying capacitor has a
particular characteristic. It increases as the modulation index decreases. For this reason,
an output voltage 90% lower than that defined for the application will be considered for
the voltage ripple analysis. The output current is imposed to maximum system value of
15𝐴 and 60𝐻𝑧 of output frequency.
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(a) Flying capacitor simulation voltage
waveform.

(b) Zoom of flying capacitor voltage
simulation waveform.

Figure 4.32: Flying capacitor simulation waveform.

Assuming a voltage ripple of 5% of the voltage applied across the flying capacitor
(200𝑉), the capacitance value is defined with the eq.4.1. The flying capacitor current
is shown in Fig.4.33a. Integrating the current is defined the charge of the capacitor in
Fig.4.33b. Getting the Δ𝑄 on the peak value of charge, the capacitance value of flying
capacitor results 2.68𝜇𝐹

(a) Flying capacitor simulation current
waveform.

(b) Flying capacitor charge simulation
waveform.

Figure 4.33: Flying capacitor simulation waveform.

4.7.3 Inductor ripple
To estimate the inductance of the phase inductor has been imposed a current ripple

from 10% to 20%. For this consideration an approximation of the inductance chosen
for this application could be from 50𝜇𝐻 to 100𝜇𝐻. With a 100𝜇𝐻 output inductor the
simulated current waveform is shown in Fig.4.34.
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Figure 4.34: Phase inductor current.

4.8 Conclusions
The multilevel inverter GaN based for PV application designed can present the fol-

lowing characteristics:

• An output current from 10𝐴 to 15𝐴;

• Switching frequency of 100𝑘𝐻𝑧;

• Output Power from 800𝑊 to around 1𝑘𝑊 .
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Chapter 5

Converter Schematic

5.1 Introduction
The components chosen for the flying capacitor 3-L inverter will be analysed in this

chapter. The characteristics of each component will be described in order to have an
idea on the realization of the application prototype. Furthermore, the schematic project
(Appendix A) for the construction of a future board will be analysed.

5.2 dc-link Capacitors
The dc-link chosen structure is described in the schematic in Fig.5.1. The dc-link

structure is composed by a series of capacitors to obtain the neutral point connection for
the single phase multilevel converter. For this reason, the capacitance calculated in the
design chapter, it will have to be doubled to have the connection in series. The hybrid
structure presented in the Fig.5.1 permit to achieve roughly the desired capacitance value
without having a lot of capacitors. The capacitors have been sized to sustain more than
200𝑉 which is the half dc-bus voltage.
The hybrid structure is composed by one electrolytic capacitor and 10 ceramic capacitors.
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Figure 5.1: dc-link capacitors schematic.

The chosen electrolytic capacitor is a 68𝜇𝐹 capacitor of Nichicon which of which can
have an indicative example in Fig.5.2. The main characteristics of the UCY2E680MHD
capacitor is described in Tab.5.1.

Figure 5.2: Example of Nichicon electrolytic capacitor.

Table 5.1: UCY2E680MHD Capacitor main characteristics.

Parameter Value Unit
Rated Capacitance 68 𝜇𝐹

Rated Voltage 250 𝑉

Rated Current 615 𝑚𝐴𝑅𝑀𝑆

The chosen ceramic capacitors are 2.2𝜇𝐹 capacitors of TDK. The C5750X7T2E225K250KA
capacitor is shown in Fig.5.3. The main characteristics are described in Tab.5.2 and in
Fig.5.4. As shown in Fig.5.4a the real capacitance at 200V is around 800𝑛𝐹 due the
capacitance change with increasing voltage. For this reason, the considered capacitance
for this application is 800𝑛𝐹. In the Fig.5.4b are shown the temperature behaviour with
respect to the capacitor current. The considered curve is the red one which describe the
temperature increasing with 100𝑘𝐻𝑧.
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5.2 – dc-link Capacitors

Figure 5.3: Example of TDK ceramic capacitor.

Table 5.2: C5750X7T2E225K250KA Capacitor main characteristics.

Parameter Value Unit
Rated Capacitance 2.2 𝜇𝐹

Rated Voltage 250 𝑉

Dissipation Factor 2.5 %
Temperature Characteristic X7T

(a) TDK C5750X7T2E225K250KA Capac-
itance behaviour. (b) TDK C5750X7T2E225K250KA.

Figure 5.4: TDK C5750X7T2E225K250KA datasheet characteristics [16].

Considering the structure in Fig.5.1 the total capacitance of the dc-link is around
38𝜇𝐹 that is more than the capacitance value described in the design chapter. The ripple
obtained with this capacitance value is less than 2%.
Through simulations in PLECS, the maximum current reached by the dc-link is 3.9𝐴𝑅𝑀𝑆
in the case in which there is a maximum output current of 15𝐴𝑝𝑒𝑎𝑘 . To verify if the
chosen capacitors can support this current value, it is advisable to calculate the series
resistances (ESR) of the capacitors. The ESR is calculated with the following equation:

𝐸𝑆𝑅 =
𝐷𝐹

𝑤 · 𝐶 (5.1)

In the (5.1), DF is the dissipation factor, w is the angular frequency of the system
and C the capacitance. The Nichicon capacitor has 4.68𝑚Ω while the TDK capacitor
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Converter Schematic

5.5𝑚Ω. Considering that there is a series connection the resistance value considered
above should be multiplied by two. Furthermore, having 10 TDK capacitors per series,
the total resistance must be divided by ten. With these considerations, by partitioning the
current, the Nichicon capacitor will have to withstand 410𝑚𝐴 and the remaining value
will be divided on the ten TDK capacitors. Two considered capacitor can be considered
suitable at these conditions.

5.3 Flying Capacitors
The Flying capacitor bench is composed by nine 1𝜇𝐹 TDK C4532X7T2E105K250KE

capacitors. The main characteristics of the capacitors are described in the Tab.5.3 and in
the Fig.5.5.

Table 5.3: TDK C4532X7T2E105K250KE Capacitor main characteristics.

Parameter Value Unit
Rated Capacitance 1 𝜇𝐹

Rated Voltage 250 𝑉

Dissipation Factor 2.5 %
Temperature Characteristic X7T

(a) TDK C4532X7T2E105K250KE current
behaviour.

(b) TDK C4532X7T2E105K250KE current
behaviour.

Figure 5.5: TDK C4532X7T2E105K250KE datasheet characteristics [17].

The capacitance at 200𝑉 which is the flying capacitor voltage (as described in the
design chapter), is around 362𝑛𝐹 as shown in Fig.5.5b. For this reason, with nine
capacitors in parallel the total flying capacitor capacitance is more than 2.68𝜇𝐹 obtained
in the previous chapter. This means that will have a lower ripple than desired, but the
capacitors will be able to support the maximum current of 7𝐴𝑅𝑀𝑆 obtained by simulation
at a maximum output current of 15𝐴𝑝𝑒𝑎𝑘 .
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5.4 – Gate Driver

5.4 Gate Driver
The chosen gate driver is the onsemi NCP51820 gate driver. The gate driver shown

in Fig.5.6 is an high-speed gate driver suitable to drive enhancement mode (e-mode) high
electron mobility transistor (HEMT) and gate injection transistor (GIT), gallium nitrade
(GaN) power switches in off-line, half-bridge power topologies. The NCP51820 can
withstand up to 650𝑉 of voltage. The main characteristics are reported in Tab.5.4.

Figure 5.6: Onsemi NCP51820 gate driver.

Table 5.4: Onsemi NCP51820 gate driver main characteristics.

Parameter Value Unit
Recommended low-side and logic-fixed supply voltage 𝑉𝐷𝐷 9𝑡𝑜17 𝑉

Maximum Voltage 650 𝑉

Typical source current 1 𝐴

Typical sink current 2 𝐴

Low-side driver positive bias voltage output 𝑉𝐷𝐷𝐿 -0.3 to 5.5 𝑉

High-side driver positive bias voltage output 𝑉𝐷𝐷𝐻 -0.3 to 5.5 𝑉

The application treated in this thesis work needs three gate driver components. Two
to control the switches 𝑆2𝑝 and 𝑆1𝑝 (Fig.4.1) and one to control the switches 𝑆1𝑛 and 𝑆2𝑛.
As shown in Fig.5.7, the gate driver to control 𝑆1𝑛 and 𝑆2𝑛 received two PWM signals
from microcontroller through the two input ports 𝐻𝑖𝑛 and 𝐿𝑖𝑛. The gate driver is used in
d-mode connecting the 𝐷𝑇 input port to 𝑉𝐷𝐷 which is set at 12𝑉 . The two half bridge
output ports are connected to drive the two power switches gates.
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Converter Schematic

Figure 5.7: 𝑆1𝑛 and 𝑆2𝑛 gate driver schematic.

To drive the 𝑆2𝑝 or 𝑆1𝑝 instead a single gate driver is used. This choice was made to
avoid that, if the switches are turned on together, the bootstrap is not charged and therefore
the abnormal shutdown of one of the devices happens. In this case, as shown in Fig.5.8,
gate driver receives a single PWM input signal. To use this gate driver to control single
device, only the 𝐻𝑖𝑛 input port is used. The input port 𝐿𝑖𝑛 is connected to ground. As the
same for the input also only the high-side output port is used and connected with power
switches gates. Another difference between the is that the bootstrap capacitor in 𝐵𝑠𝑡 input
port, in this case, is connected to a charge pump (will be discussed in next section) which
has the role of always keeping it charged and always allowing the gate driver to turn on.

Figure 5.8: 𝑆2𝑝 or 𝑆2𝑛 gate driver schematic.
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5.5 – Capacitors pre-charge

5.5 Capacitors pre-charge
To avoid damaging the dc-link capacitors and the flying capacitors, when switched

on and off, the converter needs a discharge and charge circuit.
During the start up at first the switches 𝑆2𝑝 and 𝑆2𝑛 are turned-on to permit, through a
soft-start resistance, to charge the flying capacitors from 0V to 200𝑉 . After the flying
capacitor reaches the desired voltage, the switches are turned off to allow charging of the
dc-link up to 400V.
The shut-off is composed by two phases. At first when the dc supply is disconnected, the
dc-link capacitor is discharged by a resistance connected in parallel. When the voltage
of dc-link capacitors drops to 200𝑉 , the switches 𝑆2𝑝 and 𝑆2𝑛 in reverse conduction
mode, permit to discharge the flying capacitor which with the dc-link capacitors will be
discharged to 0𝑉 using the resistance.
In the application case it was chosen to use a PTC to avoid the use of a relay. To choose
the right component, the charge energy of the dc-link and the flying capacitor was added.
The charge energy of the capacitors is described in the following equation:

𝐸𝐶 =
1
2
· 𝐶 · 𝑉2 (5.2)

The 𝐸𝐶 depends on the capacitance (C) and the square of the applied voltage (V). The total
charge energy, calculated with the capacitance values discussed in the previous sections,
is around 3𝐽.
The resistance chosen, in this application, for the charge and discharge of the capacitors
is the PTC Thermistor PTCEL13R600LBE of Vishay (Fig.5.9). This thermistor is also
Inrush Current Limiter and Energy Load-Dump. The main characteristics are described
in the Tab.

Figure 5.9: PTC Thermistor PTCEL13R600LBE of Vishay.

5.6 Charge Pump
To supply the gate driver bootstraps of 𝑆2𝑝 and 𝑆1𝑝 is used a charge pump. In the

Fig.5.10 is shown the schematic of the application charge pump. With SN74LVC2G14DCKR
Dual Schmitt-Trigger Inverter of Texas Instrument, connects to resistances and capacitors
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Converter Schematic

Table 5.5: PTC Thermistor PTCEL13R600LBE main characteristics.

Parameter Value Unit
𝑉𝐿𝐼𝑁𝐾 MAX (𝑉𝐷𝐶) 500 𝑉

𝐸𝑀𝐴𝑋 (1 CYCLE AT 25◦𝐶) 150 𝐽

Thermal time constant 105 𝑠

Operating temperature range -40 to 105 ◦𝐶
Dissipation Factor 14 𝑚𝑊/𝐾

circuit is obtained a 300𝑘𝐻𝑧 oscillator which produces a square wave of 0 − 5𝑉 . The
square wave is used as the input for ST L6743BD gate driver which in turn produces a
square wave of 0-12V. This square wave signal is connected at the gate driver bootstrap
capacitor (CP1 port) through a capacitor. The simulated value of this capacitor is around
0.47𝜇𝐹 as described in Fig.5.8. The charge pump system needs two different supply: 5𝑉
for the Texas Instrument component and 12𝑉 for the gate driver of ST.

Figure 5.10: Charge Pump schematic.

5.7 Power Supplies
In this section are listed the application power supplies. The power supplies leaving

aside the 400 V that will be supplied by the solar panel after a stage with a boost converter,
which are used for the system have been:

• 12𝑉 to supply power cells gate drivers and charge pump gate driver;

• 5𝑉 to supply the Dual Schmitt-Trigger Inverter of Texas Instrument of the charge
pump;

• 3.3𝑉 to supply sensing devices.
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5.8 – 5 V Power Supply

5.7.1 12 V Power Supply
To supply power cells gate drivers a 12𝑉 power supply is required. This power supply

is obtained using a DC/DC converter that brings the voltage from 400V to 12𝑉 . The
chosen DC/DC converter is the EPM1210SJ of Tamura which is shown a component
example in Fig.5.11. The main characteristics are reported in the Tab.5.7. The DC/DC
converter is connected to the power input of 400𝑉 .

Figure 5.11: Tamura DC/DC converter example.

Table 5.6: Tamura EPM1210SJ DC/DC converter main characteristics.

Parameter Value Unit
Input Voltage range 110 to 450 𝑉𝐷𝐶

Rated output voltage 12 𝑉

Rated Power 12 𝑊

5.8 5 V Power Supply
To supply the charge pump, Dual Schmitt-Trigger Inverter of TI, is required 5𝑉 power

supply. The circuit in Fig.5.12. From 12𝑉 , obtained by the DC/DC converter discussed
above, is obtained 5𝑉 of voltage output. The 5𝑉 is obtained through the MP4581. The
MP4581 is a Buck Converter of Monolithic Power Systems (MPS). The MPS converter
can sustain an output voltage from 10 to 100𝑉 suitable with the 12𝑉 supplied. The output
is in the range from 1𝑉 to 30𝑉 . In this case the output voltage will be used is 5𝑉 which
is in the output voltage range described in the datasheet.
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Converter Schematic

Figure 5.12: 12V to 5V circuit schematic.

5.9 3.3 V Power Supply
To supply the voltage sensing and the current sensing, need 3.3𝑉 . For this reason,

there was a need to have a power supply to get 3.3V. The Fig.5.13 shown the schematic
circuit of 3.3 voltage supply. To obtain 3.3𝑉 from 5𝑉 is used a TLV75533PDRVR of
Texas Instrument which is low-dropout regulator as described in Fig.5.13.

Figure 5.13: 3.3 voltage supply schematic circuit.

5.10 Sensing circuits
In this section are analysed the sensing circuits that will be used as microcontroller

input signals for the system control. The sensing circuits which will be discussed are:
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5.10 – Sensing circuits

• Voltage sensing for dc-link, flying capacitors and phase voltage;

• Current sensing for the phase current.

5.10.1 Voltage sensing
The dc-link capacitors voltage it is important to measure to always have under control

that its value is 400V which is the desired input voltage. For this reason, as shown in
Fig.5.14, a voltage divider has been created. The voltage divider is composed by three
resistors of 43.2𝑘Ω and one resistance of 1𝑘Ω. To size the 1𝑘Ω resistance a voltage
divider was made considering the maximum input voltage (400𝑉) in such a way as to
have, in the resistance in parallel to the output capacitor, 3.3𝑉 which is the maximum
output measurable by the microcontroller.

Figure 5.14: Voltage divider for dc-link voltage sensing.

The voltage sensing of the flying capacitors was realized using a differential amplifier
as shown in Fig.5.15 where the input are the two flying capacitors connection nodes. At
the inputs of differential amplifier circuit three resistors were chosen, two with a value
of 330k and one with a value of 1k. To choose the values of the remaining resistances,
the gain to be obtained at the output considering 3.3V at the output of the operational
amplifier and 250𝑉 at the input was calculated using the eq.(5.3). To obtain the value of
the resistances the gain has been multiplied by the sum of the input resistances as in the
eq.(5.4) and the resulting value is 9𝑘Ω. The operational amplifier used for this circuit is
the OPA2365 of Texas Instrument.

𝐺 =
3.3
250

(5.3)

𝑅7 = (330𝑘 + 330𝑘 + 1𝑘) · 𝐺 (5.4)
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Converter Schematic

Figure 5.15: Voltage flying capacitors sensing. Differential amplifier schematic circuit.

To sense the phase voltage a differential amplifier was also created in this case. The
input are connected on the phase and neutral point nodes. The possible maximum output
voltage of the application, as discussed in the previous chapter, is about 110 ·

√
2 of

amplitude (around 156𝑉). For this reason, the input voltage of the differential amplifier
is of 200V to have a margin. In this case, however, since the signal is sinusoidal, a level
shifter must be used to make the output signal in the range of 0 − 3.3𝑉 . The level shifter
is obtained with the resistances 𝑅71 and 𝑅63. The other resistance values are obtained
likewise the flying capacitors voltage sensing considering 400𝑉 of voltage input. To
obtain the level shifter resistances, the resistances of 5.49𝑘Ω were multiplied by two to
obtain a value around 11𝑘Ω.

Figure 5.16: Phase voltage sensing. Differential amplifier schematic circuit.

5.11 Phase inductor
As discussed in the design chapter, the inductance value to obtain the required ripple

chosen is 100𝜇𝐻. The inductor chosen is the CODACA CPER3231-101MC inductor
(Fig.5.17). The main characteristics of the CODACA inductor are reported in the Tab.??.
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5.11 – Phase inductor

Figure 5.17: CODACA CPER3231-101MC inductor [18].

Table 5.7: Tamura EPM1210SJ DC/DC converter main characteristics.

Parameter Value Unit
Inductance 100 𝜇𝐻

Typical 𝐼𝑅𝑀𝑆 25 𝐴
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Chapter 6

Conclusions

The thesis work involved designing and engineering of a flying capacitor three levels
GaN based inverter for photovoltaic applications. The inverter of the application described
in this thesis work is the last stage between the solar panel and the grid connection. A
dc/dc converter must be provided to bring the voltage from the output voltage of the
photovoltaic panel to that of the inverter’s dc bus of 400V. The inverter is designed to
provide an output voltage equal to the American grid voltage of 110𝑉𝑅𝑀𝑆 and with a
frequency of 60𝐻𝑧.
The converter system is simulated using the LT-Spice and PLECS software. The converter
can reach an output power slightly higher than 1𝑘𝑊 with a maximum output current of
15𝐴. The last generation of WBG GaN FETs characteristics permits to increase the
switching frequency of the system with an increase in system efficiency with consequent
size reduction. The inverter GaN devices have very low switching losses. Two devices
in parallel for each power cell has been designed to decrease the converter conduction
losses.
In general my personal contributions to this thesis were:

• Study and insight into GaN transistor technology with a focus on e-mode devices;

• The Analysis of state of art of multilevel converter topologies. Different topologies
comparison have been carried out to obtain the best compromise compatible with
the devices of EPC source;

• Converter design through LT-Spice and PLECS environments to study electrical
and thermal characteristics of the 3-L application inverter;

• Drawing of the electrical schematic of the system and overall design of the inverter
in all its parts including the sizing of the components to be used.

Starting from the work described in this thesis, a prototype will be created including the
layout and the experimental tests to validate the achieved target with the simulations.
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Appendix A

Multilevel Converter schematics
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COLB100 

PIR101 

PIR102 

COR1 

PIR201 

PIR202 

COR2 

PIR501 

PIR502 

COR5 

PIR601 

PIR602 
COR6 

PID10K 

NL3V3 PO3V3 

PIC2302 

PIR601 

POAGND 

PIC1202 
PIC1302 PIC1402 PIC1502 PIC1602 PIC1702 PIC1802 PIC1902 PIC2002 PIC2102 PIC2202 

POGND 

PIC102 
PIC202 PIC302 PIC402 PIC502 PIC602 PIC702 PIC802 PIC902 PIC1002 PIC1102 

PIC1201 PIC1301 PIC1401 PIC1501 PIC1601 PIC1701 PIC1801 PIC1901 PIC2001 PIC2101 PIC2201 

NLN 
PON 

PIC2301 

PID10A 

PIR502 

PIR602 

POVsnsDC 

PIR102 
PIR201 

PIR202 
PIR501 

PIC101 PIC201 PIC301 PIC401 PIC501 PIC601 PIC701 PIC801 PIC901 PIC1001 PIC1101 

PIR101 

NLVDClink PO400V 

PO3V3 

PO400V 

POAGND 

POGND 

PON 

POVsnsDC 
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250V

1uF

C24
250V

1uF

C25
250V

1uF

C26
250V

1uF

C27
250V

1uF

C28
250V

1uF

C29
250V

1uF

C30
250V

1uF

C31
250V

1uF

C32

V
CP

V
C

N

Flying Cap Voltage sense

CP

CN

3V3 3V3

AGND

AGND

330k 0805

R8

330k 0805

R9

330k 0805

R12

330k 0805

R13

1k 0603

R10

1k 0603

R14

9k 0805

R7

9k 0805
R15

1
2

3

4
8 U1A

OPA2365

CP

CN

470 pF

C33

470 pF
C35

AGND

56R

R11

0805
1nF 50V

C34

AGND

Vsns Flying Cap

Input range 0-250 V

Output range 0-3.3V3V3

AGND

PIC2401 
PIC2402 

COC24 PIC2501 
PIC2502 

COC25 PIC2601 
PIC2602 

COC26 PIC2701 
PIC2702 

COC27 PIC2801 
PIC2802 

COC28 PIC2901 
PIC2902 

COC29 PIC3001 
PIC3002 

COC30 PIC3101 
PIC3102 

COC31 PIC3201 
PIC3202 

COC32 

PIC3301 PIC3302 

COC33 

PIC3401 

PIC3402 
COC34 

PIC3501 
PIC3502 
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PIR701 PIR702 
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PIR801 PIR802 
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PIR1101 PIR1102 
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PIR1201 PIR1202 
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PIR1301 PIR1302 
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PIR1401 PIR1402 

COR14 

PIR1501 

PIR1502 
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PIU101 

PIU102 

PIU103 

PIU104 

PIU108 COU1A PIU108 

NL3V3 PO3V3 

PIC3402 

PIC3501 
PIR1501 

PIU104 

POAGND 

PIC2402 PIC2502 PIC2602 PIC2702 PIC2802 PIC2902 PIC3002 PIC3102 PIC3202 

PIR801 
NLCN 

POVCN 
PIC2401 PIC2501 PIC2601 PIC2701 PIC2801 PIC2901 PIC3001 PIC3101 PIC3201 

PIR1201 
NLCP 

POVCP 

PIC3301 

PIR701 

PIR1002 

PIU102 

PIC3302 

PIR702 
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PIC3502 

PIR1402 

PIR1502 

PIU103 

PIR802 PIR901 PIR902 PIR1001 

PIR1202 PIR1301 PIR1302 PIR1401 

PO3V3 

POAGND 

POVCN POVCP 

POVsns Flying Cap 
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+DC IN10
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PI01012 
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POGND 
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PIR1801 
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PIR1901 PIR1902 

COR19 

PIR2001 

PIR2002 
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PIR2101 PIR2102 
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PIR2201 

PIR2202 
COR22 

PIU201 

PIU202 

PIU203 

PIU204 

PIU205 

PIU206 

PIU207 

PIU208 

PIU209 

PIU2010 

PIU2011 

PIU2012 

PIU2013 

PIU2014 

PIU2015 

COU2 

PIC3602 

PID20A 

PIR1901 PIR2001 

PIU2014 

NL12V PO12V 

PIC3601 

PIC3902 

PIC4001 

PIC4102 
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PIR1801 
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PIU208 PIU2010 
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PIC3701 PIU201 PIC3702 PIC3802 

PIU204 POVCN 

PIC3801 

PIR1602 

PIU2015 

PIC3901 

PIR1702 

PIR1802 
PIU2012 

PIC4002 
PIU205 

PIC4101 

PIR2102 

PIR2202 

PIU2011 

PIC4201 

PIR2002 

PIU2013 

PID20K PIR1601 

PIR1701 POPWMQ3 

PIR1902 

PIU209 
PIR2101 POPWMQ4 

PIU202 POG3H 
PIU203 POG3L 

PIU206 POG4H 
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POGND 
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GND

GND

fs: 417 kHz

GND

Power indicator

VCC

12V

10 Vmin. to 100 Vmax.

5 V 400 mA max.

12V

GND

PSU disconnect

GND

On-Timer

5

Logic

8

GND

Vin

Ilim + ZCD

6

2

FREQ SW3

FB
4

VCC

BST

1V
SS

BST RegVCC + VEN REF1

7,9

MP4581
U3

GND

GND

0805
100nF 100V

C46

12V

0805
100kE 0.25W

R2412V

0805
1uF 25V

C45

GND

GND

VCC 5V

0805
100nF 100V

C44

0805
10uF 25V

C47
0805
10uF 25V

C48
0805
80.6kE 0.125W

R26

0805
10kE 0.125W

R30

0805
40.2kE 0.125W

R27

0805
0E 0.125W

R25

0805
0E 0.125W

R29

0805
0E 0.125W

R23

0805
2.2uF 100V

C43

GND

current measure

0805
680pF 50V

C49

LTST-C193KGKT-5A
0603 Green

D3

33uH 0.85A

L1

small size inductor

0603
2k 0.1W

R28

PIC4301 

PIC4302 
COC43 

PIC4401 

PIC4402 
COC44 

PIC4501 

PIC4502 
COC45 

PIC4601 

PIC4602 
COC46 

PIC4701 

PIC4702 
COC47 

PIC4801 

PIC4802 
COC48 

PIC4901 

PIC4902 
COC49 

PID30A 

PID30K 

COD3 

PIL101 PIL102 

COL1 

COLB100 

PIR2301 PIR2302 

COR23 

PIR2401 PIR2402 
COR24 

PIR2501 PIR2502 
COR25 

PIR2601 

PIR2602 

COR26 

PIR2701 

PIR2702 

COR27 PIR2801 

PIR2802 

COR28 

PIR2901 PIR2902 

COR29 

PIR3001 

PIR3002 

COR30 

PIU301 

PIU302 

PIU303 

PIU304 

PIU305 

PIU306 

PIU307 

PIU308 

PIU309 

COU3 

PIC4301 PIC4401 
PIR2302 

PIR2401 

PIU308 

NL12V 

PIC4302 PIC4402 

PIC4502 

PIC4702 PIC4802 

PID30K 

PIR2602 

PIR3002 

PIU307 PIU309 

POGND 

PIC4501 

PIU302 

PIC4601 PIU305 

PIC4602 
PIL101 PIU306 

PIC4701 PIC4801 

PIC4901 

PIL102 PIR2501 

PIR2701 

PIC4902 PIR2702 
PIR2902 

PIR3001 
PID30A 

PIR2802 

PIR2301 PO12V 

PIR2402 PIU301 

PIR2601 
PIU303 

PIR2901 

PIU304 

PIR2502 

PIR2801 

NLVCC PO5V PO5V 

PO12V 

POGND 
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3V3

GND

3V35V 3V3

Power indicator

3V3 500 mA max.

GND

GND

LTST-C193KSKT-5A
0603 Yellow

D4

0805
0E 0.125W

R32 0805
330E 0.125W

R31

0805
22uF 16V

C50

5 V to 3.3 V GND

GND

5V 5V 3V3

GND

EN

U_AP1020
AP1020.SCHDOC

PIC5001 

PIC5002 
COC50 

PID40A 

PID40K 

COD4 

COLB100 

PIR3101 

PIR3102 

COR31 PIR3201 

PIR3202 

COR32 
PIC5001 

PIR3101 

NL3V3 PO3V3 

PIR3201 

NL5V PO5V 

PIC5002 

PID40K POGND 

PID40A 

PIR3102 
PIR3202 

PO3V3 PO5V 

POGND 
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GND GND

5V

GND

3V3

GND

0603
1uF 25V

C52
0603
1uF 25V

C51

0603
0E 0.1W

R33

GND

0603
0E 0.1W

R34

EN5V to 3V3[3B]

IN

EN
GND

OUT

NCNC

TLV75533PDRVR
U4

PIC5101 

PIC5102 
COC51 

PIC5201 

PIC5202 
COC52 

COLB100 

PIR3301 PIR3302 

COR33 
PIR3401 PIR3402 

COR34 
PIU401 

PIU402 

PIU403 

PIU404 

PIU405 

PIU406 

PIU407 

COU4 

PIC5102 

PIC5202 
PIU403 PIU407 

POGND 

PIC5101 

PIR3401 PIU401 

PIC5201 

PIR3302 PIU406 PIR3301 PO5V PIR3402 PO3V3 

PIU402 

PIU404 POEN 

PIU405 

PO3V3 PO5V 

POEN 
POGND 
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VCC5

1 6

3 4

GND 2

U5

SN74LVC2G14DCKR

VCC4

PWM2

EN3

GND6

BOOT 1

UGATE 8

PHASE 7

LGATE 5

EP
9

U51 ST L6743BD

5V

0805
0E 0.125W

R35

0603
100pF 16V

C54

300kHz Oscillator

0805
0E 0.125W

R37

CP_1

CP_2

12V

GND GND

GND

GND
CONN

CONN

0603
2.2kE 0.1W

R36

0603
1k 0.1W

R39
22k 0805

R38

0603
100nF 16V

C53

0805
1uF 25V

C55

PI0201 

PI0202 

PI0203 

PI0204 

PI0205 PI0206 

PI0207 

PI0208 

PI0209 

CO02 

PIC5301 

PIC5302 
COC53 

PIC5401 

PIC5402 
COC54 

PIC5501 

PIC5502 
COC55 

COLB100 

PIR3501 PIR3502 

COR35 

PIR3601 PIR3602 

COR36 

PIR3701 PIR3702 

COR37 

PIR3801 PIR3802 

COR38 PIR3901 

PIR3902 

COR39 

PIU501 

PIU502 

PIU503 PIU504 

PIU505 

PIU506 

COU5 

PIR3802 

PIU501 

PIU504 

NLCONN 

PI0206 

PI0207 

PI0209 PIC5302 

PIC5502 

PIR3902 

PIU502 

POGND 
PI0201 

PI0203 

PIC5501 

PIR3701 

PO12V 

PI0202 

PIR3602 

PIU506 

PI0204 PIR3702 

PI0205 POCP02 

PI0208 POCP01 

PIC5301 

PIR3502 

PIU505 

PIC5401 

PIR3801 

PIU503 

PIC5402 

PIR3601 

PIR3901 

PIR3501 

PO5V PO5V 

PO12V 

POCP01 

POCP02 

POGND 
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312

11
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613
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Hin

Lin

Bst

Logic
Level
Shift

UVLOUVLO

PGND

Dead-
Time

&

VDD

Reg

DT

EN

SGND

Level
Shift

Reg

NCP51820AMNTWG
U6

G1H
G1L

12VPWMQ1

VCP

GND

12V

SS1H20LW RVG
200V 1A SOD123W

D5

C58
0.47uF 600V

SS1H20LW RVG
200V 1A SOD123WD

7

SS1H20LW RVG
200V 1A SOD123WD

6

0603
1uf 16V

C57

CP1

12V 12V

0805
2.2E 0.4W

R40

0805
10k 0.125W

R41

0805
1kE 0.25W

R42

0805
100pF 50V

C59

0603
10nF 50V

C63

0603
1uf 16V

C56

GND

GND

GND

GND

GND

GND GND

0603
1uf 16V

C60

0603
1uf 16V

C62

0805
470nF 25V

C61

PIC5601 PIC5602 

COC56 

PIC5701 

PIC5702 
COC57 

PIC5801 

PIC5802 
COC58 PIC5901 

PIC5902 
COC59 

PIC6001 

PIC6002 
COC60 

PIC6101 

PIC6102 
COC61 

PIC6201 

PIC6202 
COC62 

PIC6301 

PIC6302 
COC63 

PID50A PID50K 

COD5 

PID60A 

PID60K 

COD6 

PID70A 

PID70K 

COD7 

COLB100 

PIR4001 PIR4002 

COR40 

PIR4101 

PIR4102 
COR41 

PIR4201 

PIR4202 

COR42 

PIU601 

PIU602 

PIU603 

PIU604 

PIU605 

PIU606 

PIU607 

PIU608 

PIU609 

PIU6010 

PIU6011 

PIU6012 

PIU6013 

PIU6014 

PIU6015 

COU6 

PIC5601 

PIR4201 

PIU6014 

NL12V 
PO12V 

PIC5602 

PIC5902 

PIC6202 

PIC6302 

PIR4101 

PIU608 

PIU609 

PIU6010 

PIU6011 

POGND 

PIC5701 

PID50A PID60K 

PIC5702 
PIC6002 PIC6102 

PID70A 

PIU604 POVCP 

PIC5801 

POCP1 

PIC5802 

PID60A 

PID70K 

PIC5901 

PIR4002 

PIR4102 
PIU6012 

PIC6001 

PIU601 

PIC6101 

PID50K 

PIU6015 

PIC6201 
PIU605 

PIC6301 
PIR4202 

PIU6013 

PIR4001 POPWMQ1 

PIU602 POG1H 
PIU603 POG1L 

PIU606 

PIU607 

PO12V 

POCP1 

POG1H 
POG1L 

POGND 

POPWMQ1 

POVCP 
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SW

C67
0.47uF 600V

SS1H20LW RVG
200V 1A SOD123WD

9

0603
1uf 16V

C66

SS1H20LW RVG
200V 1A SOD123WD

10

CP2

5

1

2
312

11
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7
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4
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Hin

Lin

Bst

Logic
Level
Shift

UVLOUVLO

PGND

Dead-
Time
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VDD

Reg

DT

EN

SGND

Level
Shift

Reg

NCP51820AMNTWG
U7

G2H
G2L

12VPWMQ2

GND

12V

12V 12V

0805
2.2E 0.4W

R43

0805
10k 0.125W

R44

0805
1kE 0.25W

R45

0805
100pF 50V

C68

0603
10nF 50V

C71

0603
1uf 16V

C64

GND

GND

GND

GND

GND

GND GND

SS1H20LW RVG
200V 1A SOD123W

D8

0603
1uf 16V

C69

0603
1uf 16V

C70

0805
470nF 25V

C65
PIC6401 PIC6402 

COC64 

PIC6501 

PIC6502 
COC65 PIC6601 

PIC6602 
COC66 

PIC6701 

PIC6702 
COC67 PIC6801 

PIC6802 
COC68 

PIC6901 

PIC6902 
COC69 
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