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Summary

Electric vehicle (EV) route planning is widely studied recent days. The key problem
is always how to deal the different criteria, drivers may choose the shortest traveling
time or prefer a path with the least energy consumption. Of course, it is more
common to consider both and choose the best. Doing this requires optimizing for
multiple criteria at the same time.

A common approach is to use a Dijkstra’s algorithm with a Pareto set. Obviously,
as the size of the map increases and the criteria considered increase, the resulting
Pareto set will become unmanageable. Therefore, how to deal with the Pareto set
becomes the key to the route planning problem of electric vehicles. For example,
use a comprehensive criterion instead of multiple criteria, such as using the ’cost’
criterion to integrate energy consumption and charging price. But what combination
will yield the best results? This thesis explores this question.

In this thesis, a classic Dijkstra’s algorithm with Pareto sets is constructed
in Matlab. It is used to compare the impact on the final output when different
types of criteria are used and different linear combination ratio of these criteria
too. Then, as temperature has an impact on energy request, this can affect routing.
At the end of the thesis, how temperature can cause bad routes will be examined,
along with possible solutions to deal with the consequent energy request variation.
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Chapter 1

Introduction

Along with the strengthening of people’s awareness of environmental protection,
more and more electric vehicles have appeared on the market and on traffic roads.
On the one hand, these electric vehicles have only a very limited range due to
the limitation of the battery energy, and the use of traditional routing planning
may cause the electric vehicle to break down on the road. On the other hand, by
increasing the optimization criteria, energy consumption can be further reduced,
thereby reducing the charging time during the journey, and a comprehensively
excellent route can be obtained with two birds with one stone.

The existing research on the algorithm of routing planning for electric vehicles
still focuses on the algorithm itself, that is, the calculation speed of the algorithm.
However, there is still a lack of research on the impact of routing on travel time
and energy consumption. This thesis will fill this gap, exploring what routes
the algorithm will give under different criteria, how these routes affect energy
consumption, traveling time and distance, and how to choose better criteria.

In this chapter, we will give a comprehensive introduction to the basics of routing
planning on transportation networks. There are four sections in this chapter. In the
first section, the relevant literature on this issue will be studied. It can be seen
that most of the research is still focused on improving the computing speed rather
than thinking about scenarios related to electric vehicles. The second section
focuses on several methods of expressing and storing map data. For different
representation and storage methods, the algorithms developed and used are quite
different. Therefore, it is particularly important to choose a suitable method of
expressing and storing map data at the beginning. The third section introduces
Dijkstra’s algorithm, which is the most widely used and is the basis of most modern
navigation algorithms. The algorithm developed in this thesis is also based on
Dijkstra’s algorithm. The fourth section will introduce the very commonly used
Fibonacci heap in the Dijkstra’s algorithm. Due to the difficulty of developing the
Fibonacci heap, the appendix of this thesis will also directly give the Matlab code
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Introduction

of the Fibonacci heap.

1.1 Literature analysis
As an important part of graph theory, the shortest path problem has been exten-
sively studied in the field of mathematics and computer algorithms. Since Edsger
W. Dijkstra published his famous Dijkstra’s algorithm [1], due to its excellent
performance, many follow-up studies have focused on trying to expand the scope of
application of Dijkstra’s algorithm and further improve its performance, especially
for Research on real traffic road map [2]. The algorithm does not try to "spot"
the target directly. Instead, the only thing considered when determining the next
"current" intersection vertex is the distance from the starting vertex. Therefore,
the algorithm is extended to interactively consider all the nearest nodes with the
shortest path distance from source to target. This insight shows how algorithms
naturally find the shortest paths. However, this can also reveal a weakness of the
algorithm: it is relatively slow for certain topologies.

Today, with the development of electric vehicles, more and more research on the
shortest path problem begins to consider the range and charging of electric vehicles.
This requires real-time tracking of state of charge (SoC). The usual practice is to
expand the Pareto set to obtain the state of charge for the traditional Dijkstra’s
algorithm to achieve multi-object or multi-criteria electric vehicle routing.

Some algorithmic research on EV routing planning is mainly aimed at the energy
recovery of EVs [3]. The Dijkstra’s algorithm and the A* algorithm developed based
on the Dijkstra’s algorithm do not allow negative cost on the edge. The purpose of
these studies is to allow the Dijkstra’s algorithm and subsequent algorithms based
on Dijkstra’s to allow negative cost in terms of battery energy.

Other studies hope to find ways to plan better paths. For example, the global
path planning is divided into two parts [4], in this way, the obtained path can have
two completely different search objectives in two stages. For example, when the
battery energy is sufficient, it is hoped to find the path that consumes the least
time. When the battery energy is almost exhausted, the goal is to reduce energy
consumption.

Obviously, how to improve the speed of the route planning algorithm in trans-
portation networks is still one of the focuses of current research [5]. Improving the
data structure is the most direct way, Dijkstra’s algorithm use a priority queue
Q of vertices ordered by (tentative) distances from Source s. Then replacing the
traditional priority queue Q with the Fibonacci heap becomes an effective method
to improve the operation speed [6].

Another fundamental way to reduce running time is using bidirectional search
by effectively reduce the search space. This method searches from start to end and
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end to start at the same time. When intending to use this method save computing
time, it is best to use the forward/backward star representation introduced in
Section 1.2 to store map data. Usually it reduces the search space by more than
half, so it also cuts the computation time by half.

Since the Dijkstra’s algorithm does not consider the direction, there are some
Goal-Directed Techniques to guide the search toward the target, thereby reducing
the search space and achieving the effect of speeding up. The most widely used
goal-directed shortest path algorithm is A* search [7]. It uses a potential function
to make the vertices that are closer to the target t to be scanned earlier during the
algorithm. Like bidirectional search, it achieves the purpose of reducing computing
time by reducing the search space. It is generally believed that when using A*
algorithm, the use of bidirectional search will not further reduce the calculation
time.

Another widely used goal-directed shortest path algorithm is the Arc Flags
approach [8]. This algorithm does a pre-processing to the map, and partitions the
graph into K cells that are roughly balanced. In the arc-flag method at each arc a
a vector fa of arc-flags is stored such that fa[i] indicates if a is on a shortest path
into cell i.

Separator-Based Techniques[9] and Bounded-Hop Techniques[10] are also com-
mon ways to speed up Dijkstra’s algorithm. Separator-Based Techniques sets the
separator through pre-processing to separate the graphs. Reduces computation
time by computing shortest paths inside delimiters as well as delimiter-to-delimiter
shortest paths.

The idea behind bounded-hop techniques is to pre-compute distances between
pairs of vertices, implicitly adding “virtual shortcuts” to the graph. Queries can
then return the length of a virtual path with very few hops. Furthermore, they use
only the pre-computed distances between pairs of vertices, and not the input graph.
A naive approach is to use single-hop paths, i. e., pre-compute the distances among
all pairs of vertices u, v ∈ V . A single table lookup then suffices to retrieve the
shortest distance.

1.2 Network representations
To perform a shortest path algorithm on a transportation networks, it is needed to
know how the network is represented. Normally there are two types of information
which need to be stored. a. the network topology, the network’s node and arc
structure and b. the cost function, such as distance, travelling time, and energy
consumption associated with the network’s nodes and arcs.

There are five typical network representations:

• Node-Arc Incidence Matrix
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• Node-Node Adjacency Matrix

• Adjacency Lists

• Forward and Reverse Star Representations

• Compact Forward and Reverse Star Representation

Node-Arc Incidence Matrix stores the network as an n×m matrix N . It
contains one row for each node of the network and one column for each arc. The
column corresponding to arc (i, j) has only two nonzero elements: It has a ‘+1’ in
the row corresponding to node i and a ‘-1’ in the row corresponding to node j.

Figure 1.1: Graph simple

For a graph like the one in Figure 1.1, the Node-Arc Incidence Matrix data is
like: 

1 1 0 0 0 0 0 0
−1 0 1 −1 0 0 0 0
0 −1 0 1 −1 0 −1 0
0 0 −1 0 1 1 0 −1
0 0 0 0 0 −1 1 1


It’s easy to find that the Node-Arc Incidence Matrix has a very special structure:

1. Only 2 m out of its nm entries are nonzero;

2. All of its nonzero entries are +1 or -1;

3. Each column has exactly one +1 and one -1;

4. The number of + 1’s in a row equals the out-degree of the corresponding node
and the number of -1’s in the row equals the in-degree of the node.
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Because the Node-Arc Incidence Matrix N contains so few nonzero coefficients,
the incidence matrix representation of a network is not space efficient. Therefore,
this structure rarely produces efficient algorithms.

Node-Node Adjacency Matrix stores the network as an n × n matrix
H = {hij} . This matrix has a row and a column corresponding to every node. Its
ijth entry hij equals 1 if (i, j) ∈ A and equals 0 otherwise.

For a graph like 1.1, the Node-Node Adjacency Matrix data is like:
0 1 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 1
0 0 1 1 0


To store the arc costs as well as the network topology, it can use a additional

n× n matrix L.
The adjacency matrix has n2 elements, only m of which are nonzero. Conse-

quently, this representation is space efficient only if the network is sufficiently dense;
For sparse networks this representation wastes considerable space. The simplicity
of the adjacency representation permits us to use it to implement most network
algorithms rather easily.

It can determine the cost of any arc (i, j) simply by looking up the ij th element
in the matrix L; It can obtain the arcs emanating from node i by scanning row i,
if the jth element in this row has a nonzero entry, (i, j) is an arc of the network;
Similarly, it can obtain the arcs entering node j by scanning column j, if the ith
element of this column has a nonzero entry, (i, j) is an arc of the network. These
steps permit us to identify all the outgoing or incoming arcs of a node in time
proportional to n. For dense networks it can usually afford to spend this time
to identify the incoming or outgoing arcs; while for sparse networks these steps
might be the bottleneck operations for an algorithm.

Adjacency list stores the node adjacency list of each node as a singly linked
list. A linked list is a collection of cells each containing one or more fields. The
node adjacency list for node i will be a linked list having |A(i)| cells and each cell
will correspond to an arc (i, j) ∈ A. Each cell corresponding to the arc (i, j) will
have:

1. One data field will store node j;

2. One other data fields to store the arc cost cij;

3. One additional link field, which stores a pointer to the next cell in the adjacency
list.
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If a cell happens to be the last cell in the adjacency list, by convention we set
its link to value zero. It also needs an array of pointers that point to the first cell
in each linked list. For a graph like Figure 1.1, the Adjacency Lists data is like
Figure 1.2.

Figure 1.2: Adjacency lists

Forward Star Representations stores the node adjacency list of each node.
It is similar to the adjacency list representation, but instead of maintaining these
lists as linked lists, it stores them in a single array. It provides us with an
efficient means for determining the set of outgoing arcs of any node. To develop
this representation:

1. It first associates a unique sequence number with each arc, thus defining an
ordering of the arc list.

2. First those emanating from node 1, then those emanating from node 2, and
so on.

3. It numbers the arcs emanating from the same node in an arbitrary fashion.

4. It then sequentially stores information about each arc in the arc list.

5. It stores the tails, heads and costs of the arcs in three arrays: tail, head and
cost. If arc (i, j) is arc number 20, we store the tail, head and cost data for
this arc in the array positions tail(20), head(20) and cost(20).

It also maintain a pointer with each node i, denoted by point(i), that indicates
the smallest-numbered arc in the arc list that emanates from node i. If node
i has no outgoing arcs, we set point(i) equal to point(i + 1). Therefore, the
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outgoing arcs of node i at positions point(i) to point(i + 1)− 1 in the arc list. If
point(i) > point(i + 1) − 1, node i has no outgoing arc. For consistency, It sets
point(1) = 1 and point(n + 1) = m + 1. For a graph like Figure 1.1, the Forward
star representation data is like Figure 1.3.

Figure 1.3: Forward star representation

Reverse star representation is used to determine the set of incoming arcs of
any node efficiently. For a graph like Figure 1.1, the Reverse star representation
data is like Figure 1.4. To develop a reverse star representation:

1. It examines the nodes i = 1 to n in order and sequentially store the heads,
tails and costs of the incoming arcs at node i.

2. It maintains a reverse pointer with each node i, denoted by rpoint(i), which
denotes the first position in these arrays that contains information about an
incoming arc at node i.

3. If node i has no incoming arc, it sets rpoint(i) equal to rpoint(i + 1).

4. For consistency, it sets rpoint(1) = 1 and rpoint(n + 1) = m + 1.

5. As before, it stores the incoming arcs at node i at positions rpoint(i) to
rpoint(i + 1)− 1.

Observe that by storing both the forward and reverse star representations, it
will maintain a significant amount of duplicate information. This duplication can
be avoid by storing arc numbers in the reverse star instead of the tails, heads and
costs of the arcs.

So instead of storing the tails, heads and costs of the arcs, Compact Forward
and Reverse Star Representation simply stores arc numbers; and once knowing
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Figure 1.4: Reverse star representation

the arc numbers, it can always retrieve the associated information from the forward
star representation. It stores arc numbers in an array trace of size m.

Figure 1.5: Compact Forward and Reverse Star Representation

For a graph like Figure 1.1, the Compact Forward and Reverse Star Repre-
sentation data is like Figure 1.5. Due to the relatively simple structure, in less
complex application scenarios, usually uses the Node-Node Adjacency Matrix to
represent the transportation networks, like what Matlab build-in function will do.
Also Matlab provides functions to convert the data to a Node-Node Adjacency
Matrix. If do not consider the bi-directional search, Forward Star Representation
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will provide good performance, while, obviously, the Compact Forward and Reverse
Star Representation will do well in bi-directional search.

1.3 Dijkstra’s algorithm
The Dijkstra’s algorithm is a classic method for solving the shortest path problems.
In real life, people often encounter the problem of how to travel from one place to
another through the shortest path. For example in a map like Figure 1.6, how to
travel from Turin to Venice.

Figure 1.6: Map example

If one wants to use computer algorithms to solve this problem, it must first
abstract the map. From the most simple point of view, we can abstract the city
as a vertex, and the path from city to city as an edge. This results in a directed
graph like Figure 1.7.

Figure 1.7: Graph example
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For a directed weighted graph G = (V, E, f), where:

• V is the set of vertices,

• E is the set of oriented edges,

• f is the cost function f : E → R which assigns a numeric value (normally the
distance or travelling time) to an edge e ∈ E.

Given a graph G = (V, E, f), the path P = (v1, ..., vn) ∈ Vn is a sequence
of vertices from a vertex v1 ∈ V to a vertex vn ∈ V such that exists an edge
ei = (vi, vi+1) ∈ E for i = 1, ..., n−1 where n = |P | is a number of vertices included
in the path P . Then, we define the cost of the path as c(P ) = qn−1

i=1 f(ei) ∈ R.
Shortest Path: Given a graph G = (V, E, f), the shortest path P ∗

u,v ∈ G is a
path P = (u, ..., v) from a vertex u ∈ V to a vertex v ∈ V with the smallest cost
c(P ∗

u,v) = min(c(P )) ∈ R of all possible paths P ∈ G from u to v.
Using Dijkstra’s algorithm, we can solve the shortest path problem. A

pseudo code version of the Dijkstra’s algorithm is given in Algorithm 1. Besides
calculating the distance between s and every other vertex it also outputs an implicit
representation of a shortest path tree, containing a shortest path from s to every
other vertex.

Algorithm 1 Dijkstra’s Algorithm
1: Input: Graph G = (V, E), edge cost c, source vertex s
2: Data: Priority queue Q
3: Output: Distances from s given by dist[·], shortest-path tree given by par-

ent[·]
4: for each v ∈ V do ▷ initialization
5: dist[v] ← ∞
6: parent[v] ← ⊥
7: dist[s] ← 0
8: Q.insert(s, dist[s])
9: while not Q.isEmpty() do ▷ main loop

10: u ← Q.deleteMin()
11: for each (u, v) ∈ E do
12: if dist[v] > dist[v]+c((u, v)) then
13: dist[v] ← dist[v]+c((u, v))
14: parent[v] ← u
15: if Q.contains(v) then
16: Q.decreaseKey((v, dist[v]))
17: else
18: Q.insert((v, dist[v]))
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As input the algorithm gets a graph G = (V, E), an edge cost c : E → R ≥ 0
and a source vertex s. The two arrays dist[·] and parent[·] are the output of the
algorithm, which dist[v] array gives the minimum distance (or any other optimal
object set in cost function) from source s each vertex v, and parent[v] array gives the
previous vertex of this vertex in the shortest path from the source s to this vertex
v. This means that for every vertex v ∈ V reachable from s, which is equivalent to
dist[v] <∞, the shortest path from s to v can be reconstructed by following the
pointers given by parent[·] from v to s. Thus SPw(s, v) = (s = v1, v2, ..., vk = v)
is given by vi − 1 := parent[vi] for all 1 < i ≤ k.

The algorithm makes use of a priority queue data structure Q. This queue
maintains key-value pairs, where the value represents a vertex v ∈ V and the key
represents the tentative distance from s to v. Implementation details of the priority
queue are not important for the understanding of Dijkstra’s algorithm and there are
many other alternatives to priority queues. However, the priority queue normally
match the following interface.

• isEmpty() returns a Boolean value, which is false if and only if the queue
holds at least one element.

• deleteMin() returns the vertex v associated with the minimal key currently
contained in the queue. Afterwards v is removed from the queue.

• contains(v) returns a Boolean value, which is true if and only if v is held by
the queue.

• decreaseKey(v, d) sets the key associated with v to d. Preconditions for this
operation are, that v is already contained in the queue and that the key
currently associated with v is greater than or equal to d.

• insert(v, d) inserts v into the queue and sets its key to d. Precondition for this
operation is, that v is not contained in the queue.

The basic approach of Dijkstra’s algorithm is to grow a graph-theoretic circle
around s, such that for every vertex v contained in this circle the correct distance
form s to v is known and held in dist[v]. Furthermore parent[·] implies a correct
shortest path tree for all vertices within this circle.

The algorithm starts by initializing the arrays dist[·] and parent[·], as well
as the priority queue Q. Since s is the only vertex for which the distance from
s is known at the beginning, dist[s] is set to 0. For all other vertices it is set to
dist[v] =∞. Accordingly, the parent array is initialized with all entries set to ⊥,
representing an empty shortest path tree. The queue Q is initialized by inserting
the source vertex s into it. For a Graph like Figure 1.7, for source s← A, we then
have a dist[·] and a parent[·] like the matrices below:
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A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞
I ∞





A ⊥
B ⊥
C ⊥
D ⊥
E ⊥
F ⊥
G ⊥
H ⊥
I ⊥


After the initialization, the main loop of the algorithm begins in line 9 of

algorithm 1. As long as there are vertices contained in Q, the vertex u with
minimal key, which means vertex u having the minimal distance from s, will be
removed from Q.

Once a vertex has been removed from Q it is called settled. The settled vertex
will not be visited again by this algorithm, this is the main reason why Dijkstra’s
algorithm is fast. At this point, dist[u] contains the correct minimum distance
from s to u and parent[u] implies a shortest path from s to u. Then, the algorithm
examines all outgoing edges of u. This step is not directly reflected in the algorithm,
but implicit in the process of settled vertex u.

For every such edge e = (u, v) it is checked if the shortest path from s to u
extended by the edge e yields a shorter distance from s to v than the current
tentative distance dist[v]. If this is the case, the edge e is relaxed. This means that
the tentative distance of v is set to dist[u]+w((u, v)). In next step, parent[v] is set
to u, since we reached v via u.

Finally, v is either inserted into Q or its key is decreased, depending on it being
previously contained in Q or not. Once a vertex got inserted into Q it is called
visited.

As starting from vertex A, it should check the arcs (a, b), (a, c), (a, h) and (a, i),
like Figure 1.8, and renew the dist[·] and parent[·]:



A 0
B 145
C 230
D ∞
E ∞
F ∞
G ∞
H 245
I 172





A ⊥
B A
C A
D ⊥
E ⊥
F ⊥
G ⊥
H A
I A
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Figure 1.8: Checking Source Vertex

As dist[B] is minimum for any vertex in queue Q, the algorithm will set u← B
then, Searching the arcs connected to vertex B and renew the dist[·] and parent[·]
again, like showing in Figure 1.9 Continuing this process, it will eventually get the
shortest path from Turin (vertex A) to Venice (vertex F ).

Figure 1.9: Checking Vertex u

If only want to search for the shortest path between two vertices, it can end the
loop when judging if u == target t. This will reduce the search time slightly.

1.4 Fibonacci heap
It is obvious that how the queue Q is constructed is critical to the speed of the
algorithm. Fredman and Tarjan [11] introduced Fibonacci heaps. Their paper
also describes the application of Fibonacci heaps to the problems of single-source
shortest paths, all-pairs shortest paths, weighted bipartite matching, and the
minimum-spanning-tree problem.

A Fibonacci heap is a collection of rooted trees that are min-heap ordered. That

13



Introduction

is, each tree obeys the min-heap property: the key of a node is greater than or equal
to the key of its parent. The Fibonacci heap needs to provide several functions:

• Creating a new Fibonacci heap
To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure allocates
and returns the Fibonacci heap object H, where H.n = 0 and H.min = NIL;
there are no trees in H. Because t(H) = 0 and m(H) = 0, the potential of the
empty Fibonacci heap is Φ(H) = 0. The amortized cost of MAKE-FIB-HEAP
is thus equal to its O(1) actual cost.

• Inserting a node
The following algorithm 2 inserts node x into Fibonacci heap H, assuming
that the node has already been allocated and that x.key has already been
filled in.
Lines 1–4 initialize some of the structural attributes of node x. Line 5 tests
to see whether Fibonacci heap H is empty. If it is, then lines 6–7 make x be
the only node in H’s root list and set H.min to point to x. Otherwise, lines
8–10 insert x into H’s root list and update H.min if necessary. Finally, line
11 increments H.n to reflect the addition of the new node.

Algorithm 2 FIB-HEAP-INSERT(H, x)
1: x.degree = 0
2: x.p = NIL
3: x.child = NIL
4: x.mark = FALSE
5: ifH.m == NIL
6: create a root list for H containing just x
7: H.min = x
8: else insert x into H’s root list
9: if x.key < H.min.key

10: H.min = x
11: H.n = H.n + 1

• Finding the minimum node
The minimum node of a Fibonacci heap H is given by the pointer H.min, so
we can find the minimum node in O(1) actual time. Because the potential of
H does not change, the amortized cost of this operation is equal to its O(1)
actual cost.
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Algorithm 3 FIB-HEAP-UNION(H1, H2)
1: H =MAKE-FIB-HEAP()
2: H.min = H1.min
3: concatenate the root list of H2 with the root list of H
4: if(H1.min == NIL) or (H2.min /= NIL and H2.min.key < H1.min.key)
5: H.min = H2.min
6: H.n = H1.n + H2.n

Algorithm 4 FIB-HEAP-EXTRACT-MIN(H)
1: z = H.min
2: ifz /= NIL
3: for each child x of z
4: add x to the root list of H
5: x.p = NIL
6: remove z from the root list of H
7: if z == z.right
8: H.min = NIL
9: else H.min = z.rihgt

10: CONSOLIDATE(H)
11: H.n = H.n− 1
12: return z
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• Uniting two Fibonacci heaps
The algorithm 3 unites Fibonacci heaps H1 and H2, destroying H1 and H2
in the process. It simply concatenates the root lists of H1 and H2 and then
determines the new minimum node. Afterward, the objects representing H1
and H2 will never be used again.
Lines 1–3 concatenate the root lists of H1 and H2 into a new root list H.
Lines 2, 4, and 5 set the minimum node of H, and line 6 sets H.n to the total
number of nodes. Line 7 returns the resulting Fibonacci heap H. As in the
FIB-HEAP-INSERT procedure, all roots remain roots.

• Extracting the minimum node
The process of extracting the minimum node algorithm 4 is the most com-
plicated of the operations presented in Fibonacci heap. It is also where the
delayed work of consolidating-trees in the root list finally occurs. The following
pseudo-code extracts the minimum node. The code assumes for convenience
that when a node is removed from a linked list, pointers remaining in the list
are updated, but pointers in the extracted node are left unchanged. It also
calls the auxiliary procedure CONSOLIDATE.
FIB-HEAP-EXTRACT-MIN works by first making a root out of each of the
minimum node’s children and removing the minimum node from the root list.
It then consolidates the root list by linking roots of equal degree until at most
one root remains of each degree.

To use Fibonacci heap as a priority queue, it is needed to use Fibonacci heap
nodes to save vertex data. The Fibonacci heap node object only needs to provide
the function to create the Fibonacci heap node and the properties used to save
specific data:

• parent: pointer to parent

• child: pointer to one of the children

• left: pointer to left siblings

• right: pointer to right siblings

• degree: number of children

• mark: indicates whether node x has lost a child since the last time x was
made the child of another node

• key: key of the node, it is used to save the cost of vertex
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• value: value of the node, it is used to save the ID of the vertex

• nil: it is used to indicate whether this Fibonacci heap node saves data

Figure 1.10: Fibonacci heap

Figure 1.10 gives an example of a Fibonacci heap structure. The circle represents
a Fibonacci heap node, the number inside is the key of the node and the black
arrow means there is a pointer points to this node.
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Chapter 2

Electric Vehicle Route
Planning Algorithm

As mentioned before, Dijkstra’s algorithm is very suitable for solving the shortest
path problem. But its limitations are also very obvious. It can only track one
criteria. When considering electric vehicles, because of the limitation of the battery
energy of the vehicle, it is necessary to expand the Dijkstra’s algorithm.

In this chapter, the electric vehicle routing problem is first introduced. In order
to enable EV routing for long-distance travel, charging station information must be
added to the map so that the vehicle can be recharged. At the same time, we also
need electric vehicle models to calculate the energy consumption and driving time
of each road section. In the second section, Dijkstra’s algorithm will be extended
to solve this problem. Pseudo-code is provided, and points to be noticed when
implementing this pseudo-code are introduced.

2.1 Electric Vehicle Route Planning Problem
Also for a map like Figure 1.6, we still want to travel from Turin to Venice, but
what changes when we drive an electric vehicle? There are two main differences:

1. Vehicle must be recharged on the travel due to battery constraints

2. Even without considering traffic conditions, travel distance and travel time
are not directly proportional due to the choice of charging stations.

This requires us to always pay attention to the state of charge of the battery of
electric vehicles and to track multiple criteria such as distance, energy consumption
and traveling time at the same time. The abstraction of the map will also change,
the most important thing is to add charging stations to the map. And in addition
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to the length of each edge, it is also necessary to give the driving time and energy
consumption used to pass the edge. Also there are other factors may have influence
on vehicle’s battery energy, like environment temperature, traffic condition and etc.
For the previous example, we can assume that there are convenient supercharging
stations in provincial capital cities. Then the graph will be like Picture 2.1, which
green vertices represents the supercharging charging station.

Figure 2.1: Graph with charging station

The actual map will obviously have more vertices and edges, but the re-
sulting form will be the same. From this we get a directed weighted graph
G = (V, Vc, E, fc, fe), where:

• V is the set of vertices,

• Vc is the set of charging station vertices, which Vc ⊂ V ,

• E is the set of oriented edges,

• fc is the cost function fc : E → R which assigns a numeric value (normally
the distance or traveling time or the linear combination of two) to an edge
e ∈ E.

• fe is another cost function fe : E → R which assigns a numeric value (energy
consumption) to an edge e ∈ E. This is used to limit the feasible paths for
electric vehicles.

Given a graph G = (V, Vc, E, fc, fe), the path P = (v1, ..., vn) ∈ Vn is a sequence
of vertices from a vertex v1 ∈ V to a vertex vn ∈ V such that exists an edge
ei = (vi, vi+1) ∈ E for i = 1, ..., n−1 where n = |P | is a number of vertices included
in the path P . Then, we define the cost of the path as c(P ) = qn−1

i=1 f(ei) ∈ R for
both fc and fe.

19



Electric Vehicle Route Planning Algorithm

After that, we can give the definition of the feasible path as: given a path
P = (v1, ..., vn) ∈ Vn, If the energy consumption of the path e(P ) = qn−1

i=1 fe(ei) ∈ R
is less than the initial energy of the vehicle Binit + the total charged energy of the
vehicle Bcharged_total - the minimum allowable energy of the vehicle Bbott_limit, then
this path is called a feasible path. In other words, P ⊂ Pfeasible when:

Binit + Bcharged_total > Bbott_limit

Shortest Path: Given a graph G = (V, Vc, E, fc, fe), the shortest path P ∗
u,v ∈ G

is a feasible path Pfeasible = (u, ..., v) from a vertex u ∈ V to a vertex v ∈ V with
the smallest cost c(P ∗

u,v) = min(c(P )) ∈ R of all possible feasible paths Pfeasible ∈ G
from u to v.

2.2 Electric Vehicle Route Planning Algorithm
To solve the Electric Vehicle Route Planning Problem, it is needed to extend the
basic Dijkstra’s algorithm to at least trace one more criterion: the SoC (State
of Charge) of the electric vehicle. A common approach for solving optimization
problems with multiple criteria is to utilize Pareto sets, which contain all Pareto-
optimal solutions. But it should be noted that due to the complexity of the problem,
it is unrealistic to consider all Pareto optimal solutions. Preserving the Pareto set
but only considering linear combinations of each criterion is a more appropriate
approach. So instead of maintaining a simple label of a single cost value, the
extended Dijkstra’s algorithm or Electric Vehicle Route Planning Algorithm needs
to maintain a label-set for every vertex which include all criteria that need to be
considered.

Label-Sets: Dijkstra’s algorithm only uses one label with single criterion for
each vertex v represented by dist[v] and parent[v]. In contrast to that, a label-set
labelSet[v] is used for every vertex v if multiple criteria are given. This label-set
contains all tentative Pareto-optimal s-v-paths. Of course, it is unrealistic to
traverse all the paths, and then a preliminary selection of paths is required. The
label-set object needs to implement the following three functions:

• Key(labelSet) returns a key based on the first unsettled label contained
in the label-set, i.e. the label with the smallest driving time of all unsettled
labels contained in the label-set. Since we will not consider all Pareto sets,
which label is selected first is crucial to the final path. As key we only use the
driving time, energy consumption or distance, SoC is used in order to break
ties.

• Settle(labelSet) returns the smallest (wrt. key) unsettled label contained
in the label-set. Additionally, this label gets marked as settled. This can be
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accomplished in a variety of ways. In Matlab, we use the simplest way to
create another label-set array to store all settled labels, and delete them from
the original label-set array.

• HasUnsettledLabels(labelSet) returns a Boolean value, which is true if
the label-set contains one or more unsettled labels. This is the case if the
label set’s internal pointer points to an actual label. The label set contains
no unsettled labels if the internal pointer points behind the array are used to
store the contained labels.

Just like the Fibonacci heap and the Fibonacci heap node, in addition to the
label-set object, a label object needs to be created to store the required data.
The properties of the label object depend on the criteria that will be traced, like
distance, battery SoC, energy consumption and etc.

When the label-set and label object is completed, and the label containing cost
and energy consumption, then it’s able to build the Electric Vehicle Route Planning
Algorithm 5.

It should be noted that due to the Pareto set setting, the computational
complexity increases exponentially. If the Pareto set is abused, the program will
become difficult to run when the amount of data reaches several hundred, let alone
tens of thousands or even hundreds of thousands of data.

If you simply follow the pseudo-code provided by Algorithm 2, you will find that
the program will fall into a situation similar to an infinite loop. This is due to the
uncontrolled addition of labels to the algorithm. In the pseudo-code, as long as
the original label cannot domain the new label, the new label will be added to the
calculation. And this newly added label will undergo the same calculation as the
previous label in subsequent calculations like a shadow. Because obviously under
the same path, the label that could not be drained before still cannot be domain
after going through the same calculation process.

What’s even more frightening is that if the distance between several charging
stations on the map is close enough, which is very common in maps of city centers,
any independent label will generate tens of thousands or even more shadow labels
after repeated cycles of charging at these charging stations. This is not only close
to an infinite loop in terms of time, but also quickly fills up the memory of the
computer in terms of space.

Another issue to note is that due to the characteristics of Dijkstra’s algorithm’s
label settled, the electric vehicle route planning algorithm limited by battery energy
may be preemptively settled by a local optimal solution with insufficient power but
shorter time-consuming for some key vertices.

Let’s have a map like a Figure 2.2, starting from vertex 1, and the target is
vertex 6. The number in the edge is (x,y), which x: length and y: SoC it needs to
across. The 1,2,4,5,6 is a feasible path, while 1,3,4,5,6 is not because the battery
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Algorithm 5 Electric Vehicle Route Planning Algorithm
1: Input: Graph G = (V, Vc, E, fc, fe)
2: Input: Battery constraints Bcons = [Bbott_limit, Bup_limit]
3: Input: Source and Target vertices s, t
4: Input: Initial SoC B(s)
5: Data: Fibonacci Heap Q
6: Output: Array labelSet[·] containing label-sets for each vertex in V
7: for each v ∈ V do ▷ initialization
8: labelSet[v]←∞
9: labelSet[v]← {(0, B(s),⊥)}

10: Q.insert(s, Key(labelSet[s]))
11: while not Q.isEmpty() do ▷ main loop
12: u← Q.deleteMin()
13: if u = t then stop
14: (dt, b, parent) ← SETTLE(labelSet[u])
15: if HASUnsettledLabels(labelSet[u]) then Q.insert(u,KEY(labelSet[u]))
16: for each (u, v) ∈ V do
17: dt′ ← dt + dt(u, v)
18: b′ ← min(b− cons(u, v),M)
19: if (b′ ∈ B) and not (labelSet[v] domain (dt′, b′, u)) then
20: labelSet[v] ← labelSet[v] ∪{(dt′, b′, u)}
21: if Q.contains(v) then
22: Q.decreaseKey(v, KEY(labelSet[v]))
23: else
24: Q.insert(v, KEY(labelSet[v]))
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runs out. The algorithm is label setting, which means when a vertex is settled, it
will not be visited again. Vertex 4 will be first visited by routes 1,3,4 if we set the
distance as the only optimal target. The distance of route 1,3,4 is 4 while route
1,2,4 is 9. And 1,3,4,5 is 5 which is still less than 9, which means vertex 4 will
be settled before we compute the routes 1,2,4,5. In this case, 1,2,4,5 will not be
computed again and the algorithm will tell you there is no feasible path from 1 to
6. But obviously, 1,2,4,5,6 is a feasible path.

Figure 2.2: Label settled

In order to solve the above two problems, it is necessary to add some additional
rules to the electric vehicle routing planning algorithm:

• Renew settled vertex
If the battery energy of the new label exceeds the battery energy of the label
with the largest battery energy of the settled vertex, reset the settled vertex
to unsettled, and add this label to the vertex. This will solve the problem of
Fig 2.2.

• Prohibit going to the last computed vertex
This is achieved directly by the label-settled feature in the traditional Dijkstra
algorithm. All calculated nodes will not be visited again, so obviously the
previous node will definitely not be visited. But since we may renew the
settled label, we must make some restrictions to avoid endless growth of
computational complexity.
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• Add bigger SoC only
In the pseudo-code, as long as the label cannot be domain will be added to the
calculation. As mentioned above, this can cause major problems. Obviously,
due to the characteristics of Dijkstra’s algorithm, it is impossible for the
new label to outperform the original label in a certain linear combination of
our objects. Therefore, only those labels with larger SoC can be added to
avoid the previous label being eliminated in the subsequent calculation due to
insufficient battery energy and discard the current label that is worse but the
battery energy can satisfy the path.
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Chapter 3

Implementation EV route
planning algorithm

In this chapter, we first introduce the vehicle model for the implementation of the
algorithm. By using this electric vehicle model, we can calculate energy consump-
tion, and track the state of charge of the battery. Obviously, using a Simulink
0-degree-of-freedom power model including batteries and motors as a vehicle model
will have higher accuracy, but the simulation time may be unacceptable. In the
second section, the map of northwestern Italy used is presented. The .XML file is
a common data storage format, and both SUMO and Open Street Map use this
format. In that part will accept how to extract useful map data from the .XML file,
the same method is not only applicable to SUMO-edited maps but also available in
the open source Open Street Map. The third section introduces the specific Matlab
code implementation of the electric vehicle routing planning algorithm.

3.1 Vehicle model
In this thesis, a BMW i3 2017 as the vehicle model is used in the implementation
of the algorithm, the detail of the vehicle’s mechanical data can be found in Table
3.1 and Table 3.2 shows the electric details.

Because it is hoped that the average speed of the vehicle on different roads can
be specified in advance, and the whole calculation process is simple enough, Vmax

and Vtraffic are defined in this thesis, which:

• Vmax: The maximum speed allowed on the road is limited by the speed limit
of traffic laws, the driving style of the driver, and the maximum speed of the
vehicle.
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Vehicle weight 1320 kg
Vehicle Length 3999 mm
Vehicle Width 1775 mm

Drag coefficient Cd 0.3
Frontal area Sf 2.38 mm2

Tire size 245/45R20
f0 0.0037
f2 1.91× 10−7

Transmission ratio τ 4
Transmission efficiency η 0.99

Table 3.1: Vehicle model (mechanical)

Battery Voltage 352V
Motor Voltage 400V
Battery Energy 33200Wh

Battery Capacity 94.3Ah
Battery Maximum Charging Power 7400W

Battery Series 96
Battery parallel 1

Table 3.2: Vehicle model (electric)

• Vtraffic: Average speed of road travel due to current traffic conditions. Obvi-
ously Vtraffic ≤ Vmax

In this thesis, a random normal distribution with Vtraffic as the mean is used to
simulate the speed trajectory of a vehicle on a traffic road. In the velocity trace, all
velocities above Vmax are redefined as Vmax, and likewise, velocities below zero are
redefined as zero. At the same time, the maximum permissible acceleration amax

is given by the driver’s driving style. For the part of the velocity trajectory that
exceeds the maximum acceleration amax, adjust it to the maximum acceleration
and recalculate until it satisfies the condition below at the same time:

• V ≤ Vmax

• a ≤ amax

• mean(V ) = Vtraffic

The influence of temperature on energy consumption is only used as a linearly
changing factor from the SAE study on electric vehicle range [12], which is directly
multiplied by the calculated battery power.
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For a traffic speed Vtraffic of 28 m/s and a temperature of 24 °C, when driving
10,000 meters, the changes in energy consumption and driving time with the
maximum speed Vmax are shown in Figure 3.1: Since the traffic speed Vtraffic is set

Figure 3.1: Energy consumption and driving time - Vmax

as the average passing speed, obviously when the maximum speed Vmax is higher
than Vtraffic, the driving time will not change with the change of Vmax. When Vmax

is lower than Vtraffic, Vtraffic is adjusted to 0.9 times Vmax. In this case, the driving
time varies linearly with Vmax. For energy consumption, it is basically linear with
Vmax.

The change in energy consumption and driving time with traffic speed is shown
in Figure 3.2, and the fixed maximum speed is 36m/s at this time. When the traffic
speed is less than the maximum speed, both energy consumption and driving time
have an approximately linear relationship with the traffic speed. When the traffic
speed is higher than the maximum speed, the maximum speed limit is imposed.
So neither energy consumption nor driving time will change anymore.

As mentioned before, the temperature is simply multiplied directly by the battery
power as an influencing factor. So the curve as a function of temperature will be:
energy consumption varies linearly and driving time is independent of temperature.
As shown in Figure 3.3:
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Figure 3.2: Energy consumption and driving time - Vtraffic

Figure 3.3: Energy consumption and driving time - Temperature
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3.2 Map data
In this thesis, a map of northwest Italy edited with SUMO is used. Contains more
than 50,000 vertices (or in the word in SUMO ’Junctions’), more than 90,000 edges,
and 675 charging stations. There are four basic attributes on the edges of the map:

• Edge From The start vertex to which the edge connects

• Edge To The end vertex to which the edge connects

• Distance The length of the edge

• Maximum speed The maximum speed allowed on this edge
At the same time, SUMO also provides data such as latitude and longitude, the

number of lanes, the shape of lanes, and the type of lanes. This is convenient for
studying traffic conditions, affected by lane capacity; travel costs, affected by road
types, and adding some acceleration algorithms later.

The code below provides an example of a string of SUMO map data. For basic
research, we need to extract the ’id’, ’from’, and ’to’ of the ’edge’ line. The ’speed’
and ’length’ of the ’lane’ line.

1 <edge id=" −136843408 " from=" 282087873 " to=" 282087871 " name="
Strada S t a t a l e 9 Tangenz ia le d i F iorenzuo la " p r i o r i t y=" 13 " type="
highway . trunk " shape=" 206198 .12 ,71746 .04 206176 .65 ,71797 .15
206158 .31 ,71849 .53 ">

2 <lane id=" −136843408_0" index=" 0 " d i s a l l o w=" pede s t r i an
b i c y c l e tram rai l_urban r a i l r a i l _ e l e c t r i c r a i l _ f a s t sh ip " speed="
25 .00 " l ength=" 99 .59 " shape=" 206199 .03 ,71748 .02 206178 .14 ,71797 .72

206163 .05 ,71840 .83 ">
3 <param key=" o r i g I d " va lue=" 136843408 136843407 " />
4 </ lane>
5 <param key=" r e f " va lue=" SS9 " />
6 </ edge>

This map contains the main traffic network information, but it is missing for
some branch roads or rural roads, such as the routing planning algorithm for electric
vehicles and its important charging station information. In order to supplement the
information on the charging station, it can be added manually in SUMO. Figure
?? is an example of adding a charging station.

3.3 Matlab code implementation
In the current research, many shortest-path algorithms are implemented by using
C or Java. It is rarely implemented with Matlab code. However, due to the huge
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and excellent simulation toolbox of Matlab, we can easily use the shortest path
algorithm implemented on Matlab to jointly simulate with the vehicle dynamics
model, vehicle battery model, etc. So it is necessary to implement the shortest
path algorithm on Matlab.

SUMO’s map data is saved in a .XML file. In order for Matlab to read the
map data correctly, we first need to write a small Program [A] to extract useful
information from this .XML file. This program saves a .mat file with Matlab struct
data which includes:

• id: ID of the edge, in the type of string;

• from: The start vertex to which the edge connects, in the type of string;

• to: The end vertex to which the edge connects, in the type of string;

• speed: The maximum speed allowed on this edge, in the type of double;

• length: The length of the edge, in the type of double.

After running the program [A] of extract, we can start to find the shortest path by
using Dijkstra’s algorithm given by Program [B]. The function Dijkstra_sp_000.m
will take three inputs Graph, source and target and return three arrays, dist[·],
prev[·] and S[·]. The dist[target] will store the distance from the source s to
the target t. The prev[·] which is used to generate the path S, is normally not
very useful for a point-to-point problem. Path S stores the path from the source to
the target.

This program only implements the most basic Dijkstra’s algorithm, and its
advantage is that it directly accepts strings as input. Both SUMO and OPEN
street map use .XML files to store data, so the extracted data must be in the form
of strings.

As a test, we can set the source equal to vertex "832544918", and the target
equal to vertex "J1". An example of this path can be drawn using SUMO, as shown
in Figure 3.4. By running the test with Program [B], we can find the program takes
more than 1400 seconds, which is well beyond the allowable range. The reason is
that we directly use strings to solve, and simply use arrays to maintain queue Q.

In order to speed up the operation, we can encode edge from and edge to,
the simplest is to directly replace the original string ID with sequential decimal
numbers as we do in Program [C]. This program will save the map data in the
form of forward star representation like Figure 1.3, by using the edge from index
to behave like a pointer in forward star representation. Also, this program saves all
the vertex information, so we can easily transform a vertex string ID to the encoded
decimal number or vice versa. The use of binary encoding may further save space
and increase speed, but due to the limited time, and for the current amount of
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Figure 3.4: Route example

data, decimal encoding is sufficient. Then the algorithm will work like Program
[D], which only takes 40 seconds to run the same test, from source ’832544918’ to
target ’J1’. That is 40 times faster than directly operating on strings.

In order to further improve the operation speed, the Fibonacci heap can be
used to replace a simple Matlab array. Program [E] and Program [F] respectively
construct two objects of the Fibonacci heap node and the Fibonacci heap. Fibonacci
heaps are very difficult to construct, and when the amount of data is small, the
performance is even worse than binomial heaps due to difficulty in initialization.
But as the amount of data increases, the performance of the Fibonacci heap will
improve. The Fibonacci heap has two properties:

• min: pointer to minimum node

• n: the number of nodes currently in heap

The Fibonacci heap also needs to provide some methods, If it is only for
Dijkstra’s algorithm, it doesn’t need to use all the methods, but for the sake of
overall understanding and the situation that may be used later, all the methods
are provided in Program [F]:

1 f unc t i on H = FibonacciHeap ( ) %Create the f i b o n a c c i heap
2 f unc t i on n i n s e r t (H, x ) %I n s e r t new node in to the heap
3 f unc t i on i n s e r t (H, key , va lue ) %Make a New node and i n s e r t i n to

the heap
4 f unc t i on e l e = minimum(H) %Return the min node
5 f unc t i on H = union (H1 , H2) %Union two nodes
6 f unc t i on z = delMin (H) %Return and d e l e t e the min node

from the heap
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7 f unc t i on c o n s o l i d a t e (H) %Reorganize Fibonacc i heap a f t e r
removing min node

8 f unc t i on a = D(H) %Calcu la te the maximum p o s s i b l e
degree

9 f unc t i on Hlink (H, y , x ) %Link nodes i n s i d e two Fibonacc i
heaps

10 f unc t i on key_decreas ing (H, x , k ) %Decrease the key o f i n t e r n a l
node x

11 f unc t i on cut (H, x , y ) %Remove x from the c h i l d l i s t o f
y , decrementing y . degree

12 f unc t i on cascading_cut (H, y ) %Remove a l l c h i l d r e n o f y
13 f unc t i on del_node (H, x ) %d e l e t e node

The properties required by Fibonacci heap nodes have been mentioned in the
first chapter [1], so it won’t go into detail here. But to create a Fibonacci heap
node, it needs to provide two inputs, a key, and a value. Since Matlab does not
provide a default value function, the following code can be used to set the key and
value to 0 by default when creating a Fibonacci heap node:

1 i f (~ e x i s t ( ’ key ’ , ’ var ’ ) )
2 key=0;
3 end

Now it’s time to update the shortest path algorithm. The program that adds the
Fibonacci heap is shown in Program [G]. For the same test, from source ’832544918’
to target ’J1’ which is 2 times faster than the program without Fibonacci heap.

Although the bi-direction search method can be used to speed up the computing
speed, since it is impossible to know the total energy consumption after reaching
the destination at the beginning, the bi-direction search method cannot be used
for the tracking of the electric vehicle battery SoC. Therefore, this method and
how to write the corresponding Matlab program will not be studied in this thesis.

We can write label and label set objects to extend Dijkstra’s algorithm, so as to
realize the limitation of the vehicle battery SoC. The Matlab codes of the label and
label set are shown in Program [H] and Program [I]. The corresponding Matlab
code of the shortest path algorithm is shown in Program [G]. The Labels object
requires 5 properties:

• distance: total distance from source s to current vertex v, as one of the
criteria to be optimized

• battery SoC: Automotive battery SoC at current vertex v, as constraints on
feasible paths

• energy consumption: total energy consumption from source s to current
vertex v, as one of the criteria to be optimized
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• last vertex: previous vertex of current vertex, used to generate the shortest
path

• travel time: total travelling time from source s to current vertex v, as one of
the criteria to be optimized

The Labels object needs to provide two methods, one is to create a Labels
object, and the other is to compare two Labels objects. To create the Labels object
method, it needs to provide the default input in the same way as the Fibonacci
heap node. Whereas for compare Labels method, an item is considered a better
choice only if all criteria are greater than the other. In this way, more Labels can
be kept as much as possible in order to select the globally optimal solution.

The Program [G] takes into account the limitations of electric vehicle batteries,
but still takes a single shortest distance as the search criteria, and does not include
charging stations for vehicles in the map. That means it can only tell how far the
vehicle is likely to go within the limits of its current battery power. Obviously, it
is possible to approach the destination step by step by searching for the farthest
reachable charging station in a segmented manner until the destination is reached.
But this obviously cannot provide the overall optimal solution.

In order to simulate the charging process of the vehicle, it is first necessary to
add charging stations to the map. in this thesis, we directly add a loop starting
and ending at the same vertex on the edge to represent the charging station.

Adding charging stations in this way can be easily simulated on SUMO, but it
will cause problems for Dijkstra’s algorithm. This is because Dijkstra’s algorithm
is label settled, which means it does not perform secondary retrievals for labels
that have already been retrieved. The entry vertex and exit vertex of the charging
station is the same vertexes, which leads to a dead end once the search enters the
charging station. To avoid this situation, we can directly define the charging station
at its entry and exit vertices in the map data extracted from SUMO. Program [K]
marked the location of the charging stations in the map data, while Program [L]
defined the charging stations at the entry and exit vertices.

After the charging model is selected, the final routing plan algorithm of the
electric vehicle is shown in Program [M]. In this thesis, it is simply assumed that
the charging energy per minute is equal. That is, the charging efficiency will not
change with the change of battery SoC. The matching object programs include
Program [O] and Program [N].
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Chapter 4

Simulation results

4.1 Travelling time and energy consumption
In this section, we will test the variation of the optimal routing for electric vehicles
under the same traffic conditions, which means that the average traffic speed of the
lane is predefined and fixed when the temperature is different. The range of the
experiment is from -7°C to 35°C, and the simulation is performed every 1°C. Road
traffic always allows the car to travel at the maximum speed allowed by the traffic
regulations, regardless of acceleration and deceleration at the starting vertex and
the end vertex. The vehicle will charge its battery every time it travels to a charging
station, and there is no loss of speed entering and leaving a charging station, and
the health of the battery is good, always charging to 100%. The criterion to be
optimized is a linear combination of travel time and energy consumption.

Figure 4.1 shows the variation curve of energy consumption with temperature in
a single criterion. The blue line only considers the path with the shortest traveling
time, while the red line only considers the path with the least energy consumption.
When only the minimum energy consumption is considered, the piece-wise linear
relationship between energy consumption and temperature is good. Since the
energy consumption and temperature also exhibit a piece-wise linear relationship
on a single-segment edge like shown in Figure ??, this shows that when only energy
consumption is considered, the path selection and temperature change little. On
the curve that only considers travel time, although a piece-wise linear relationship
between energy consumption and temperature can also be distinguished, there
are some wrinkles. These wrinkles mean that a different path was chosen, often
because battery power constraints make faster paths infeasible.

Figure 4.2 shows how energy consumption changes in the ratio of traveling time
and energy consumption from 1:0 to 0:1. As expected, energy consumption is
highest when travel time is fully considered, and lowest when energy consumption is
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Figure 4.1: Single criterion energy consumption

Figure 4.2: Linear combination energy consumption
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fully considered. Interestingly, the proportions of different travel times and energy
consumption ratios are not consistent at different temperatures. For example, at
5°C, the ratio of 1:0.2 can achieve energy consumption close to the ratio of 0:1,
but at 24°C, it completely overlaps with the high energy consumption curve at the
ratio of 1:0. Let’s examine the details of this figure, which is shown in Figure 4.3.
There are two places to notice:

• The closer to the optimum temperature, in this case, 24°C, the less wrinkled
the figure will be.
This may be because, at the optimal temperature, the reduction of energy
consumption makes the choice of charging stations for electric vehicles more
flexible, which means that electric vehicles can choose a better path regardless
of the limitation of battery energy. Clearly, for situations where there is no
battery energy limitation, the same optimal path should always be chosen.

• In addition, the reduction of energy consumption and the increase of the
proportion of energy consumption criterion are not linear.
In Figure 4.4, the relationship between energy consumption and energy con-
sumption ratio can be seen more clearly. When the ratio exceeds 0.6:1, the
reduction in energy consumption is no longer significant.

Figure 4.3: Linear combination energy consumption details

As another criterion for linear combinations, the curve of traveling time versus
temperature is equally important. Figure 4.5 shows how energy consumption
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Figure 4.4: Energy consumption

changes in the ratio of traveling time and energy consumption from 1:0 to 0:1.
There are many similarities between this figure and Figure 4.1, but by comparing
the two figures it can be found that when fully considering energy consumption,
just spend less than 0.1kW·h more energy, it can choose a route that saves about
24 minutes of travel time, it takes nearly 24 minutes more to travel. At other
temperatures, saving 10kW·h of energy requires about 1 hour of extra travel.

Figure 4.6 shows how traveling time changes in the ratio of traveling time and
energy consumption from 1:0 to 0:1. Unlike the energy consumption map, where
traveling time contributes the most, traveling time is not necessarily the least at all
temperatures. This is because Dijkstra’s algorithm is essentially a greedy algorithm,
which means that it will always consider the current optimal result in a limited
way. This property is good when there is no battery energy constraint, but under
battery energy constraints, the globally optimal solution will thus be hidden. But
on average, simply considering traveling time does save traveling time. Another
conclusion obtained by comparing the two graphs is that under the same energy
consumption, the travel time obtained by different travel time-energy consumption
ratios is very different. So a reasonable selection ratio is very important. However,
in the average value of all temperatures, increasing the proportion of traveling time
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Figure 4.5: Single criterion traveling time

does obtain a smaller traveling time, as shown in Figure 4.7.
Figure 4.8 shows the detail of Figure 4.6 at near 24℃. It can be seen that under

different ratios, the interval of traveling time is relatively uniform. Therefore, it
may be a good strategy to exclude the proportions whose energy consumption is
significantly greater than other groups on the energy consumption figure, then
select excellent proportions from the traveling time figure. In addition, due to
the characteristics of Dijkstra’s algorithm, when the battery energy limitation is
considered in the routing selection based on this algorithm, simply increasing the
proportion of traveling time does not necessarily result in less traveling time. This
is especially important.

Now we look at how the distance varies, although it is not one of the two criteria
for the linear combination in the experiment. But the change of distance most
directly reflects the change in path selection. Figure 4.6 shows how traveling time
changes in the ratio of traveling time and energy consumption from 1:0 to 0:1. It
can be seen that when simply considering energy consumption, although it is always
necessary to run a long distance, the same path is chosen except at -7°C. And at
-7°C, the chosen path is closer than simply considering traveling time. However, at
other temperatures, there is a gap of close to 20km. When only traveling time is
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Figure 4.6: Linear combination traveling time

Figure 4.7: Travelling time
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Figure 4.8: Linear combination traveling time details

considered, changes in temperature have a greater impact on path selection.
Figure 4.6 shows how traveling time changes in the ratio of traveling time and

energy consumption from 1:0 to 0:1. Since the criteria used are travel time and
energy consumption, it is difficult to see patterns in distance versus temperature.
Figure 4.11 gives a detailed figure at around 24°C. Even on average, the distance
does not absolutely increase with the proportion of energy consumption, but the
general trend does increase with the proportion of energy consumption.

Figure 4.13 shows the variation of the minimum value with temperature for
each ratio. Because energy consumption is directly proportional to temperature in
this thesis, the change of energy consumption is obviously the most obvious with
the change of temperature and the proportional relationship is also very clear. In
contrast, the distance does not vary substantially with temperature. On the one
hand, distance is not one of the two criteria that needs to be optimized, and on
the other hand, there are enough and dense enough charging stations in the map
used. Of course, in reality, as time goes by, charging stations will be built more
densely. Since charging takes time, the trend is the same for travel time and energy
consumption. However, since the speed allowed on each road is different, it has a
stronger relationship with route selection.

Figure 4.14 shows the change of the minimum value at different ratios. It can
be seen that the traveling time and energy consumption have a large change with
the ratio, while the distance basically does not change. Except for a sharp rise
in the minimum travel time when energy consumption is fully considered, the
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Figure 4.9: Single criterion Distance

Figure 4.10: Linear combination distance

41



Simulation results

Figure 4.11: Linear combination distance detail

Figure 4.12: Distance

42



Simulation results

Figure 4.13: Minimum value in different temperature

changes in the other cases are similar. It should be noted that this is the graph of
the minimum value, the temperature at which the energy consumption takes the
minimum value, and the travel time may not be the minimum value. When using
it, you need to refer to the previous graphics for comprehensive consideration.

Figure 4.14: Minimum value in different ratios
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4.2 Distance and energy consumption
In addition to considering the linear combination of the two criteria of travel time
and energy consumption, it is also possible to consider the linear combination of
the two criteria of distance and energy consumption. Since charging time and
energy consumption are very strongly correlated, and the speed allowed by the
road will also affect travel time and energy consumption at the same time. So
directly considering the linear combination of travel time and energy consumption
may not be a very appropriate choice. As for distance and energy consumption,
although there is also a certain relationship, obviously under the same speed,
temperature and other conditions, the longer the distance traveled, the higher the
energy consumption of electric vehicles. But the correlation will not be as strong
as travel time and energy consumption.

Figure 4.15, Figure 4.16 and Figure 4.17 are the energy consumption curves
under this linear combination. Unlike the linear combination of travel time-energy
consumption, the obtained energy consumption diagram does not appear to cross
at all under different linear combination ratios, and even many curves overlap
completely.

Figure 4.15: Single criterion energy

Figure 4.18, Figure 4.19 and Figure 4.20 are the traveling time curves under
this linear combination. The curves of travel time and temperature still have many
intersection points, and the curve considering only distance cannot achieve the
least travel time at all temperatures.
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Figure 4.16: Linear combination energy consumption

Figure 4.17: Linear combination energy consumption detail

Figure 4.21, Figure 4.22 and Figure 4.23 are the distance curves under this
linear combination. It can be seen that the phenomenon of overlapping curves is
very obvious, and the difference between other curves is within 10km except for
the complete consideration of energy consumption. From here we can find that
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Figure 4.18: Single criterion traveling time

Figure 4.19: Linear combination traveling time

we need to make a trade-off in the selection of the criterion to be optimized. To
optimize travel time, it will show a strong correlation with energy consumption,
while the effect of optimizing distance is very insignificant.

Figure 4.24 and 4.25 show the change diagram of the minimum value. Compared
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Figure 4.20: Linear combination traveling time detail

Figure 4.21: Single criterion distance
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Figure 4.22: Linear combination distance

Figure 4.23: Linear combination distance detail
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with the linear combination of traveling time and energy consumption, the change
of traveling time will be more obvious.

Figure 4.24: Minimum value in different temperature
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Figure 4.25: Minimum value in different ratios
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Chapter 5

Conclusions and future
works

5.1 Conclusions
The shortest path algorithm has always been one of the more important research
projects in the field of computer algorithms, and many mature navigation software
have been developed. At the same time, it is also widely used in unmanned driving,
robotic arms, robots, network traffic and other technologies.

With more and more electric vehicles on the market and on the transportation
network, people’s awareness of environmental protection is getting stronger. How
to save energy is an unavoidable topic. This makes it necessary to develop a multi-
criteria routing planning algorithm for electric vehicles to provide energy-saving
and convenient travel routes.

This thesis develops a multi-criteria routing planning algorithm for electric
vehicles on Matlab. Then built the vehicle model, extract useful parts from raw
map data, testing and applying the algorithm. Since temperature has a greater
impact on the energy consumption of electric vehicles, this thesis also compares
the impact on routing at different temperatures in different criteria ratio. It can
be seen that at different temperatures, routing is very sensitive to the ratio of
linear combinations of multiple criteria. Although changes in temperature and
criteria did not simultaneously change the distance of much of the route, only
about 10 km varied over a route approaching 200 km. But it has a big impact on
energy consumption and travel time. So using the same criteria and the same linear
combination ratio of that criteria will not give the same ideal results when the
temperature changes. When it is necessary to change the ratio of linear combination,
energy consumption should be given priority, because it is nonlinear with the change
of ratio, which makes the energy consumption in one or two ratios may be far
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greater than that in other cases, while in other ratios, there is little difference in
energy consumption. In this way, unsuitable ratios can be easily eliminated. Then
consider the traveling time, the change of the average traveling time is almost
linear, so the traveling time is reduced while the energy consumption is almost the
same.

5.2 Future works
In this thesis, the acceleration technology is not considered. In the follow-up work,
the calculation speed can be improved by adding latitude and longitude information
and preprocessing the map such as layering. In addition, the vehicle model used
is relatively rudimentary. Although the more accurate model has nothing to do
with the algorithm itself, it will obviously affect the output results. Finally, more
criteria that need to be optimized can be considered, such as the money spent on
highways and charging stations.
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Appendix A

extract.m

1 c l c
2 c l e a r
3

4 edge_data_f i le = fopen ( " nordovest . net . xml . txt " ) ;
5 edge_count=0;
6

7 whi le ~ f e o f ( edge_data_f i le )
8 t l i n e = f g e t l ( edge_data_f i le ) ;
9 i f c onta in s ( t l i n e ," < edge " )&&~conta in s ( t l i n e , " i n t e r n a l " )

10 edge_count=edge_count+1;
11 end
12 end
13

14 f rewind ( edge_data_f i le )
15 edge_id = s t r i n g s ( [ edge_count , 1 ] ) ;
16 edge_from = s t r i n g s ( [ edge_count , 1 ] ) ;
17 edge_to = s t r i n g s ( [ edge_count , 1 ] ) ;
18 edge_speed = ze ro s ( edge_count , 1 ) ;
19 edge_length = ze ro s ( edge_count , 1 ) ;
20

21 edge_count=0;
22

23 whi le ~ f e o f ( edge_data_f i le )
24 t l i n e = f g e t l ( edge_data_f i le ) ;
25 i f c onta in s ( t l i n e ," < edge " )&&~conta in s ( t l i n e , " i n t e r n a l " )
26 edge_count=edge_count+1;
27 i d s t a r t = s t r f i n d ( t l i n e , ’ id=’ ) +4;
28 idend = s t r f i n d ( t l i n e , ’ from=’ ) −2;
29 edge_id ( edge_count ) = s t r i n g ( t l i n e ( i d s t a r t : idend ) ) ;
30 f r omsta r t = s t r f i n d ( t l i n e , ’ from=’ ) +6;
31 fromend = s t r f i n d ( t l i n e , ’ to=’ ) −2;
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32 edge_from ( edge_count ) = s t r i n g ( t l i n e ( f romsta r t : fromend ) ) ;
33 t o s t a r t = s t r f i n d ( t l i n e , ’ to=’ ) +4;
34 i f c onta in s ( t l i n e , ’ name=’ )
35 toend = s t r f i n d ( t l i n e , ’ name=’ ) −2;
36 e l s e
37 toend = s t r f i n d ( t l i n e , ’ p r i o r i t y=’ ) −2;
38 end
39 edge_to ( edge_count ) = s t r i n g ( t l i n e ( t o s t a r t : toend ) ) ;
40 t l i n e = f g e t l ( edge_data_f i le ) ;
41 sp e ed s t a r t = s t r f i n d ( t l i n e , ’ speed=’ ) +7;
42 speedend = s t r f i n d ( t l i n e , ’ l ength=’ ) −2;
43 edge_speed ( edge_count ) = st r2doub l e ( t l i n e ( sp e e d s t a r t : speedend

) ) ;
44

45 l e n g t h s t a r t = s t r f i n d ( t l i n e , ’ l ength=’ ) +8;
46 i f c onta in s ( t l i n e , ’ a c c e l e r a t i o n=’ )
47 l engthend = s t r f i n d ( t l i n e , ’ a c c e l e r a t i o n=’ ) −2;
48 e l s e i f conta in s ( t l i n e , ’ width=’ )
49 l engthend = s t r f i n d ( t l i n e , ’ width=’ ) −2;
50 e l s e i f conta in s ( t l i n e , ’ customShape=’ )
51 l engthend = s t r f i n d ( t l i n e , ’ customShape=’ ) −2;
52 e l s e
53 l engthend = s t r f i n d ( t l i n e , ’ shape=’ ) −2;
54 end
55 edge_length ( edge_count ) = st r2doub l e ( t l i n e ( l e n g t h s t a r t :

lengthend ) ) ;
56 end
57 end
58

59 f c l o s e ( edge_data_f i le ) ;
60

61

62 edge_struct = s t r u c t ( ’ id ’ , edge_id , ’ from ’ , edge_from , ’ to ’ , edge_to , ’
speed ’ , edge_speed , ’ l ength ’ , edge_length ) ;

63

64 save ( " edge . mat " , " edge_struct " )
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Dijkstra_sp_000.m

1 f unc t i on [ d i s t , prev , S]= Dijkstra_sp_000 (Graph , source , t a r g e t )
2 Nodes = Graph . Nodes .Name ;
3 d i s t = ones ( he ight ( Nodes ) ,1 ) ∗ i n f ;
4 prev = s t r i n g s ( he ight ( Nodes ) ,1 ) ;
5 Q = Nodes ;
6 d i s t ( ismember ( Nodes , source ) ) = 0 ;
7 [ ~ , I ]=min ( d i s t ) ;
8 whi le ~ isempty (Q)
9 u = Q( I ) ;

10 i f u==t a r g e t
11 S=s t r i n g s ( ) ;
12 i f ~ isempty ( prev ( ismember ( Nodes , u ) ) ) | | u==source
13 whi le u~=""
14 S( end+1)=u ;
15 u=prev ( ismember ( Nodes , u ) ) ;
16 end
17 end
18 S=f l i p l r (S) ;
19 S( end ) = [ ] ;
20 re turn
21 end
22 Q( I ) = [ ] ;
23 l ength (Q)
24 i = f i n d ( strcmp ( Graph . Edges . EndNodes ( : , 1 ) ,u ) ) ;
25 i_len = length ( i ) ;
26 set_junc_to=ze ro s ( i_len , 1 ) ;
27 f o r j =1: i_len
28 a l t = d i s t ( strcmp ( Nodes , u ) ) + Graph . Edges . Weight ( i ( j ) ) ;
29 junc_to = f i n d ( strcmp ( Nodes , Graph . Edges . EndNodes ( i ( j ) , 2 ) )

) ;
30 i f a l t < d i s t ( junc_to )
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31 d i s t ( junc_to )=a l t ;
32 prev ( junc_to )=u ;
33 end
34 set_junc_to ( j ) = junc_to ;
35 end
36 [ ~ , I ]=min ( d i s t ( ismember ( Nodes ,Q) ) ) ;
37 end
38 end
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reencode000.m

1 c l e a r
2 c l c
3

4 load ( " edge . mat " )
5 node_name = unique ( [ edge_struct . from ; edge_struct . to ] , " s t a b l e " ) ;
6 encode_edge_struct = ones ( s i z e ( [ edge_struct . from , edge_struct . to ,

edge_struct . l ength ] ) ) ;
7

8 edge_from_index = ones ( l ength ( unique ( edge_struct . from ) ) ,1 ) ;
9

10 f o r i = 1 : l ength ( edge_struct . id )
11 encode_edge_struct ( i , 1 )=f i n d (node_name==edge_struct . from ( i ) ) ;
12 encode_edge_struct ( i , 2 )=f i n d (node_name==edge_struct . to ( i ) ) ;
13 encode_edge_struct ( i , 3 )=edge_struct . l ength ( i ) ;
14 end
15

16 encode_edge_struct=sort rows ( encode_edge_struct , 1 ) ;
17

18 f o r i = 1 : l ength ( edge_from_index )
19 x=f i n d ( encode_edge_struct ( : , 1 )==i ) ;
20 edge_from_index ( i )=x (1) ;
21 end
22

23 save ( ’Node_Name ’ , ’ node_name ’ )
24 save ( ’ encode_edge ’ , " encode_edge_struct " , " edge_from_index " ) ;
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Dijkstra_sp_001.m

1 f unc t i on [ d i s t , prev , S]= Dijkstra_sp_001 (Graph , Graph_index , source ,
t a r g e t )

2 [ source , t a r g e t ] = Node_tras late ( source , t a r g e t ) ;
3 Nodes = unique ( [ Graph ( : , 1 ) ; Graph ( : , 2 ) ] ) ;
4 d i s t = ones ( l ength ( Nodes ) ,1 ) ∗ i n f ;
5 prev = ze ro s ( l ength ( Nodes ) ,1 ) ;
6 Q = Nodes ;
7 d i s t ( source ) = 0 ;
8 [ ~ , I ]=min ( d i s t ) ;
9 whi le ~ isempty (Q)

10 u = Q( I ) ;
11 i f u==t a r g e t
12 S = [ ] ;
13 i f prev (u) ~=0||u==source
14 whi le u~=0
15 S( end+1)=u ;
16 u=prev (u) ;
17 end
18 end
19 S=f l i p l r (S) ;
20 S=decode000 (S) ;
21 re turn
22 end
23 Q( I ) = [ ] ;
24 whi le u>length ( Graph_index )
25 [ ~ , I ]=min ( d i s t ( ismember ( Nodes ,Q) ) ) ;
26 u = Q( I ) ;
27 Q( I ) = [ ] ;
28 end
29 i_s = Graph_index (u) ;
30 i f u==length ( Graph_index )
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31 i_e = i_s ;
32 e l s e
33 i_e = Graph_index (u+1)−1;
34 end
35

36 f o r i=i_s : i_e
37 a l t = d i s t (u) + Graph ( i , 3 ) ;
38 junc_to = Graph ( i , 2 ) ;
39 i f a l t < d i s t ( junc_to )
40 d i s t ( junc_to )=a l t ;
41 prev ( junc_to )=u ;
42 end
43 end
44 [ ~ , I ]=min ( d i s t ( ismember ( Nodes ,Q) ) ) ;
45 end
46 end
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FibonacciHeapNode.m

1 c l a s s d e f FibonacciHeapNode < handle
2 p r o p e r t i e s
3 p % po in t e r to parent
4 c h i l d % po in t e r to c h i l d r e n
5 l e f t % po in t e r to l e f t s i b l i n g s
6 r i g h t % po in t e r to r i g h t s l i b l i n g s
7 degree % number o f c h i l d r e n
8 mark % i n d i c a t e s whether node x has l o s t a c h i l d s i n c e

the
9 % l a s t time x was made the c h i l d o f another node

10 key % key o f node
11 value % value o f the key
12 n i l
13 end
14

15 methods
16 %Create Node
17 f unc t i on x=FibonacciHeapNode ( key , va lue )
18 i f (~ e x i s t ( ’ key ’ , ’ var ’ ) )
19 key=0;
20 end
21 i f (~ e x i s t ( ’ va lue ’ , ’ var ’ ) )
22 value =0;
23 end
24 x . key=key ;
25 x . va lue=value ;
26 x . l e f t=x ;
27 x . r i g h t=x ;
28 x . mark=f a l s e ;
29 x . degree =0;
30 x . p = [ ] ;

60



FibonacciHeapNode.m

31 x . c h i l d = [ ] ;
32 x . n i l=f a l s e ;
33 end
34 end
35 end
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FibonacciHeap.m

1 c l a s s d e f FibonacciHeap < handle
2

3 p r o p e r t i e s
4 min %po in t e r to minimum node
5 n %the number o f nodes c u r r e n t l y in heap
6 end
7

8 methods
9

10 %Create the f i b o n a c c i heap
11 f unc t i on H = FibonacciHeap ( )
12 H. n = 0 ;
13 H. min = [ ] ;
14 end
15

16 %I n s e r t new node in to heap
17 f unc t i on n i n s e r t (H, x )
18 x . r i g h t=x ;
19 x . l e f t=x ;
20 i f H. n == 0
21 H. min = x ;
22 e l s e
23 % i n s e r t x to the root
24 x . l e f t = H. min . l e f t ;
25 x . r i g h t = H. min ;
26 H. min . l e f t . r i g h t = x ;
27 H. min . l e f t = x ;
28 i f x . key < H. min . key
29 H. min = x ;
30 end
31 end
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32 H. n = H. n + 1 ;
33 end
34

35 %Make a New node and i n s e r t i n to heap
36 f unc t i on i n s e r t (H, key , va lue )
37 i f (~ e x i s t ( ’ va lue ’ , ’ var ’ ) )
38 value =0;
39 end
40 x=FibonacciHeapNode ( key , va lue ) ;
41 i f H. n == 0
42 H. min = x ;
43 e l s e
44 % i n s e r t x to the root
45 x . l e f t = H. min . l e f t ;
46 x . r i g h t = H. min ;
47 H. min . l e f t . r i g h t = x ;
48 H. min . l e f t = x ;
49 i f x . key < H. min . key
50 H. min = x ;
51 end
52 end
53 H. n = H. n + 1 ;
54 end
55

56 f unc t i on e l e = minimum(H)
57 e l e=H. min ;
58 end
59

60 f unc t i on H = union (H1 , H2)
61 H = FibonacciHeap ( ) ;
62 H. min = H1 . min ;
63 H. min . l e f t . r i g h t = H2 . min . r i g h t ;
64 H2 . min . r i g h t . l e f t = H. min . l e f t ;
65 H. min . l e f t = H2 . min ;
66 H2 . min . r i g h t = H. min ;
67 i f isempty (H1 . min ) | | ( (~ isempty (H2 . min ) )&&H2 . min . key<H1 .

min . key )
68 H. min=H2 . min ;
69 end
70 H. n = H1 . n + H2 . n ;
71 end
72

73 f unc t i on z = delMin (H)
74 z = H. min ;
75 whi le ~ isempty ( z . c h i l d )
76 x = z . c h i l d ;
77 x . r i g h t . l e f t = x . l e f t ;
78 x . l e f t . r i g h t = x . r i g h t ;
79 i f x . l e f t ~= x

63



FibonacciHeap.m

80 x . p . c h i l d = x . l e f t ;
81 e l s e
82 x . p . c h i l d = [ ] ;
83 end
84 x . l e f t = H. min . l e f t ;
85 x . r i g h t = H. min ;
86 H. min . l e f t . r i g h t = x ;
87 H. min . l e f t = x ;
88 x . p = [ ] ;
89 end
90 z . r i g h t . l e f t = z . l e f t ;
91 z . l e f t . r i g h t = z . r i g h t ;
92 i f z == z . r i g h t
93 H. min = [ ] ;
94 e l s e
95 H. min = z . r i g h t ;
96 H. c o n s o l i d a t e ( ) ;
97 end
98 H. n = H. n − 1 ;
99 end

100

101 f unc t i on c o n s o l i d a t e (H)
102 A=H.D( ) ;
103 f o r i =1: l ength (A)
104 A( i ) . n i l = true ;
105 end
106 rawNode=H. min ;
107 nowNode=rawNode ;
108 counter = 0 ;
109 whi le t rue
110 counter=counter +1;
111 nowNode=nowNode . r i g h t ;
112 i f nowNode==rawNode
113 break
114 end
115 end
116 f o r i =1: counter
117 x=nowNode ;
118 nowNode=nowNode . r i g h t ;
119 d=x . degree +1; %d should be the degree , but in matlab ,
120 %index s t a r t s with 1 , so d i s degree+1

now
121 whi le A(d) . n i l~=true
122 y=A(d) ;
123 i f x . key>y . key
124 a=x ;
125 x=y ;
126 y=a ;
127 end
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128 H. Hlink (y , x )
129 A(d)=FibonacciHeapNode ;
130 A(d) . n i l=true ;
131 d=d+1;
132 end
133 A(d)=x ;
134 end
135 H. min=FibonacciHeapNode ;
136 H. min . n i l=true ;
137 f o r i =1: l ength (A)
138 i f A( i ) . n i l~=true
139 i f H. min . n i l==true
140 A( i ) . r i g h t=A( i ) ;
141 A( i ) . l e f t=A( i ) ;
142 H. min = A( i ) ;
143 e l s e
144 %i n s e r t A( i ) i n to H’ s root l i s t
145 A( i ) . l e f t=H. min . l e f t ;
146 A( i ) . r i g h t=H. min ;
147 H. min . l e f t . r i g h t=A( i ) ;
148 H. min . l e f t=A( i ) ;
149 i f A( i ) . key<H. min . key
150 H. min=A( i ) ;
151 end
152 end
153 end
154 end
155 end
156

157 f unc t i on a = D(H)
158 a=log (H. n) / log ((1+5^0.5) /2) ;
159 a=f l o o r ( a ) ;
160 obj . Array (1 , a+1)=FibonacciHeapNode ;
161 a=obj . Array ;
162 end
163

164 f unc t i on Hlink (H, y , x )
165 % remove y from the root l i s t o f H
166 y . r i g h t . l e f t=y . l e f t ;
167 y . l e f t . r i g h t=y . r i g h t ;
168 % make y a c h i l d o f x , increment ing x . degree
169 y . p=x ;
170 i f isempty ( x . c h i l d )
171 x . c h i l d = y ;
172 y . l e f t=y ;
173 y . r i g h t=y ;
174 e l s e
175 x . c h i l d . l e f t . r i g h t = y ;
176 y . l e f t = x . c h i l d . l e f t ;
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177 x . c h i l d . l e f t=y ;
178 y . r i g h t=x . c h i l d ;
179 end
180 x . degree = x . degree +1;
181 % y . mark = f a l s e
182 y . mark = f a l s e ;
183 end
184

185 f unc t i on key_decreas ing (H, x , k )
186 i f k>x . key
187 pr in t ( ’ e r ror , new key i s g r e a t e r than cur rent key ’ )
188 re turn
189 end
190 x . key=k ;
191 y=x . p ;
192 i f ~ isempty ( y ) && x . key<y . key
193 H. cut (x , y )
194 H. cascading_cut ( y )
195 end
196 i f x . key<H. min . key
197 H. min=x ;
198 end
199 end
200

201 f unc t i on cut (H, x , y )
202 %remove x from the c h i l d l i s t o f y , decrementing y . degree
203 i f y . c h i l d==x
204 i f x . r i g h t==x
205 y . c h i l d = [ ] ;
206 e l s e
207 y . c h i l d=x . r i g h t ;
208 x . r i g h t . l e f t=x . l e f t ;
209 x . l e f t . r i g h t=x . r i g h t ;
210 end
211 e l s e
212 x . r i g h t . l e f t=x . l e f t ;
213 x . l e f t . r i g h t=x . r i g h t ;
214 end
215 %add x to the root l i s t o f H
216 H. min . l e f t . r i g h t=x ;
217 x . l e f t=H. min . l e f t ;
218 H. min . l e f t=x ;
219 x . r i g h t=H. min ;
220 %x . p=NIL
221 x . p = [ ] ;
222 %x . mark=f a l s e
223 x . mark=f a l s e ;
224 end
225
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226 f unc t i on cascading_cut (H, y )
227 z=y . p ;
228 i f ~ isempty ( z )
229 i f y . mark == f a l s e
230 y . mark = true ;
231 e l s e
232 H. cut (y , z )
233 H. cascading_cut ( z )
234 end
235 end
236 end
237

238 f unc t i on del_node (H, x )
239 H. key_decreas ing (x,− i n f ) ;
240 H. delMin ( ) ;
241 end
242

243 end %end o f the methods
244

245 end %end o f the c l a s s d e f
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Dijkstra_sp_002.m

1 f unc t i on [ d i s t , prev , S]= Dijkstra_sp_002 ( Nodes , edges , Graph_index , source
, t a r g e t )

2 [ source , t a r g e t ]= Node_tras late ( source , t a r g e t ) ;
3 obj . Array ( l ength ( Nodes ) ,1 ) = FibonacciHeapNode ;
4 Fnodes = obj . Array ;
5 f o r i =1: l ength ( Nodes )
6 Fnodes ( i ) . key = i n f ;
7 Fnodes ( i ) . va lue = i ;
8 end
9 d i s t = ones ( l ength ( Nodes ) ,1 ) ∗ i n f ;

10 prev = ze ro s ( l ength ( Nodes ) ,1 ) ;
11 d i s t ( source ) =0;
12 Fnodes ( source ) . key=0;
13 Q=FibonacciHeap ;
14 Q. n i n s e r t ( Fnodes ( source ) ) ;
15

16 whi le ~ isempty (Q. min )
17 u=Q. delMin ( ) ;
18 i f u==Fnodes ( t a r g e t )
19 S = [ ] ;
20 whi le u~=Fnodes ( source )
21 S( end+1)=u . value ;
22 u=Fnodes ( prev (u . va lue ) ) ;
23 end
24 S( end+1)=u . value ;
25 S=f l i p l r (S) ;
26 S=decode000 (S) ;
27 break
28 end
29 whi le u . value>length ( Graph_index )
30 u=Q. delMin ( ) ;
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31 end
32

33 i_s = Graph_index (u . va lue ) ;
34 i f u . va lue==length ( Graph_index )
35 i_e = i_s ;
36 e l s e
37 i_e = Graph_index (u . va lue +1)−1;
38 end
39 f o r i=i_s : i_e
40 a l t = u . key + edges ( i , 3 ) ;
41 junc_to = edges ( i , 2 ) ;
42 i f a l t < d i s t ( junc_to )
43 d i s t ( junc_to )=a l t ;
44 prev ( junc_to )=u . va lue ;
45 i f Fnodes ( junc_to ) . key==i n f
46 Fnodes ( junc_to ) . key=a l t ;
47 Q. n i n s e r t ( Fnodes ( junc_to ) ) ;
48 e l s e
49 Q. key_decreas ing ( Fnodes ( junc_to ) , a l t ) ;
50 end
51 end
52 end
53 end
54

55 end
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Labels.m

1 c l a s s d e f Labels < handle
2 p r o p e r t i e s
3 d i s t anc e
4 battery_SoC
5 l a s t_ver t ex
6 end
7 methods
8 f unc t i on x=Labels ( d i s tance , battery_SoC , l a s t_ver t ex )
9 i f (~ e x i s t ( ’ d i s t anc e ’ , ’ var ’ ) )

10 d i s t anc e=i n f ;
11 end
12 i f (~ e x i s t ( ’ battery_SoC ’ , ’ var ’ ) )
13 battery_SoC=0;
14 end
15 i f (~ e x i s t ( ’ l a s t_ver t ex ’ , ’ var ’ ) )
16 l a s t_ver t ex =0;
17 end
18 x . d i s t anc e=d i s t anc e ;
19 x . battery_SoC=battery_SoC ;
20 x . l a s t_ver t ex=las t_ver t ex ;
21 end
22 f unc t i on bo = l a b e l _ l e (x , o ther_labe l )
23 i f x . d i s tance<=other_labe l . d i s t anc e &&.. .
24 x . battery_SoC>=other_labe l . battery_SoC
25 bo=true ;
26 e l s e
27 bo=f a l s e ;
28 end
29 end
30 end
31 end
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LabelSet.m

1 c l a s s d e f LabelSet < handle
2

3 p r o p e r t i e s
4 s e t s
5 d i s t a n c e s
6 battery_SoC
7 trave l_t ime
8 n
9 end

10

11 methods
12

13 f unc t i on x=LabelSet ( )
14 x . s e t s=Labels . empty ;
15 x . d i s t a n c e s = [ ] ;
16 x . battery_SoC = [ ] ;
17 x . trave l_t ime = [ ] ;
18 x . n=0;
19 x . add_label ( Labels ( in f , 0 , 0 ) )
20 end
21

22 f unc t i on add_label (x , l a b e l )
23 x . n=x . n+1;
24 x . s e t s ( x . n )=l a b e l ;
25 x . d i s t a n c e s ( x . n )=l a b e l . d i s t ance ;
26 x . battery_SoC ( x . n)=l a b e l . battery_SoC ;
27 x . trave l_t ime ( x . n)=l a b e l . t rave l_t ime ;
28 end
29

30 f unc t i on key=key_label ( x )
31 key=min ( x . trave l_t ime ) ;

71



LabelSet.m

32 end
33

34 f unc t i on y=min_label ( x )
35 [ ~ , idx ] = min ( x . trave l_t ime ) ;
36 idx=idx (1 ) ;
37 y=x . s e t s ( idx ) ;
38 end
39

40 f unc t i on y=s e t t l e _ l a b e l ( x )
41 [ ~ , idx ] = min ( x . trave l_t ime ) ;
42 idx=idx (1 ) ;
43 y=x . s e t s ( idx ) ;
44 x . s e t s ( idx ) = [ ] ;
45 x . d i s t a n c e s ( idx ) = [ ] ;
46 x . battery_SoC ( idx ) = [ ] ;
47 x . trave l_t ime ( idx ) = [ ] ;
48 x . n=x . n−1;
49 end
50

51 f unc t i on check_labe l ( x )
52 whi le 1
53 [ ~ , idx_dis ]=max( x . d i s t a n c e s ) ;
54 [ ~ , idx_ene ]=min ( x . battery_SoC ) ;
55 i f ( idx_dis==idx_ene )&&(x . n~=1)
56 x . s e t s ( idx_dis ) = [ ] ;
57 x . d i s t a n c e s ( idx_dis ) = [ ] ;
58 x . battery_SoC ( idx_dis ) = [ ] ;
59 x . trave l_t ime ( idx_dis ) = [ ] ;
60 x . n=x . n−1;
61 e l s e
62 break
63 end
64 end
65 end
66

67 f unc t i on t=has_unset t l ed_labe l s ( x )
68 i f x . n==0
69 t=f a l s e ;
70 e l s e
71 t=true ;
72 end
73 end
74 end
75 end
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Dijkstra_sp_003.m

1 f unc t i on l abe l_ s e t_se t t l ed=Dijkstra_sp_003 ( Nodes , Charge , B_range ,
B_source , . . .

2 edges , Graph_index , source , t a r g e t )
3 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 %∗∗∗∗ Calcu la te the s h o r t e s t path with batte ry c o n s t r a i n s ∗∗∗∗
5 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6

7

8 %%
9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

10 %∗∗ F i r s t s tep :
11 %∗∗∗∗ Trans the source and t a r g e t ver tex from s t r to num∗∗∗∗∗
12 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
13 [ source , t a r g e t ]= Node_tras late ( source , t a r g e t ) ;
14

15 %%
16 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 %∗∗ Second step :
18 %∗∗∗∗∗∗∗∗∗∗∗∗ I n i t a i l l a b e l s e t f o r every ver tex ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
20 l abe l_se t . array (1 , l ength ( Nodes ) )=LabelSet ;
21 l ab e l_s e t_s e t t l ed . array (1 , l ength ( Nodes ) )=LabelSet ;
22 l abe l_se t=labe l_se t . array ;
23 l ab e l_s e t_s e t t l ed=labe l_ s e t_se t t l ed . array ;
24

25 %%
26 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 %∗∗ Third step :
28 %∗∗∗∗∗∗∗ Set the l a b e l s e t o f source ver tex to (0 , 0 , 0 ) ∗∗∗∗∗∗∗
29 %∗∗Which means from source ver tex to source ver tex :
30 %∗∗Have 0 meter d i s tance , 0 Kw/h energy consumption ∗∗∗∗∗∗∗∗∗
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31 %∗∗And the p r ev i c e ver tex to source i s nothing ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
33 l abe l_se t ( source ) . add_label ( Labels (0 , B_source , 0 ) ) ;
34 l abe l_se t ( source ) . check_labe l ( ) ;
35

36 %%
37 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
38 %∗∗ Fourth step :
39 %∗∗∗∗∗ I n i t a i l the Fibonacc i Heap Node f o r every ver tex ∗∗∗∗∗∗
40 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
41 Fnodes . Array ( l ength ( Nodes ) ,1 ) = FibonacciHeapNode ;
42 Fnodes = Fnodes . Array ;
43 f o r i =1: l ength ( Nodes )
44 Fnodes ( i ) . key = i n f ;
45 Fnodes ( i ) . va lue = i ;
46 end
47

48 %%
49 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50 %∗∗ Fi f th s tep :
51 %∗∗∗∗∗And the value from source ver tex l a b e l s e t to
52 % Fibonacc i Heap∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
53 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
54 Q=FibonacciHeap ;
55 Fnodes ( source ) . key=labe l_se t ( source ) . key_label ( ) ;
56 Q. n i n s e r t ( Fnodes ( source ) ) ;
57

58 %%
59 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
60 %∗∗ Sixth step :
61 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Main Loop∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
62 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
63 whi le ~ isempty (Q. min )
64 %%
65 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
66 %∗∗ Seventh step :
67 %∗∗∗From Fibonacc i Heap get the pre sent search ver tex ∗∗∗
68 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
69 u=Q. delMin ( ) ;
70 whi le u . value>length ( Graph_index )
71 u=Q. delMin ( ) ;
72 end
73

74 %%
75 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
76 %∗∗ Extra s tep
77 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Charge ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
78 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
79 i f f i n d ( Charge==u . va lue )
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80 f o r i =1: l ength ( l abe l_se t (u . va lue ) )
81 l abe l_se t (u . va lue ) . battery_SoC ( i )=B_range (2 ) ;
82 l abe l_se t (u . va lue ) . s e t s ( i ) . battery_SoC=B_range (2 ) ;
83 end
84 end
85

86 %%
87 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
88 %∗∗ Eighth step :
89 %∗∗When present search ver tex equal to t a r g e t vertex ,
90 % stop ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
91 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
92 % i f u==Fnodes ( t a r g e t )
93 % the_labe l = labe l_se t (u . va lue ) . s e t t l e _ l a b e l ( ) ;
94 % l abe l_s e t_se t t l ed (u . va lue ) . add_label ( the_labe l ) ;
95 % l abe l_s e t_se t t l ed (u . va lue ) . check_labe l ( ) ;
96 % break
97 % end
98

99 %%
100 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
101 %∗∗ Nineth step :
102 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S e t t l e the cur rent l a b e l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
103 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
104 the_labe l = labe l_se t (u . va lue ) . s e t t l e _ l a b e l ( ) ;
105 l ab e l_s e t_s e t t l ed (u . va lue ) . add_label ( the_labe l ) ;
106 l ab e l_s e t_s e t t l ed (u . va lue ) . check_labe l ( ) ;
107 i f l abe l_se t (u . va lue ) . has_unset t l ed_labe l s ( )
108 Fnodes (u . va lue )=FibonacciHeapNode ( ) ;
109 Fnodes (u . va lue ) . va lue=u . va lue ;
110 Fnodes (u . va lue ) . key=labe l_se t (u . va lue ) . key_label ( ) ;
111 Q. n i n s e r t ( Fnodes (u . va lue ) ) ;
112 end
113

114 %%
115 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
116 %∗∗Tenth step :
117 %∗∗∗∗∗∗∗∗ Check a l l edges connected to ver tex u∗∗∗∗∗∗∗∗∗∗
118 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
119

120 i_s = Graph_index (u . va lue ) ;
121 i f u . va lue==length ( Graph_index )
122 i_e = i_s ;
123 e l s e
124 i_e = Graph_index (u . va lue +1)−1;
125 end
126 f o r i=i_s : i_e
127 a l t = the_labe l . d i s t anc e + edges ( i , 3 ) ;
128 junc_to = edges ( i , 2 ) ;
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129 battery_SoC = the_labe l . battery_SoC−edges ( i , 4 ) ;
130 i f battery_SoC>B_range (1 )&&labe l_se t ( junc_to ) .

has_unset t l ed_labe l s ( )
131 new_label = Labels ( a l t , battery_SoC , u . va lue ) ;
132 mini_labe l = labe l_se t ( junc_to ) . min_label ;
133 i f ~mini_labe l . l a b e l _ l e ( new_label )
134 l abe l_se t ( junc_to ) . add_label ( new_label ) ;
135 l abe l_se t ( junc_to ) . check_labe l ( ) ;
136 i f Fnodes ( junc_to ) . key==i n f
137 Fnodes ( junc_to ) . key=a l t ;
138 Q. n i n s e r t ( Fnodes ( junc_to ) ) ;
139 e l s e i f Fnodes ( junc_to ) . key>a l t
140 Q. key_decreas ing ( Fnodes ( junc_to ) , a l t ) ;
141 end
142 end
143 end
144 end
145 end
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reencode002.m

1 c l e a r
2 c l c
3

4 load ( ’ CSFile2 . mat ’ )
5 load ( " edge . mat " )
6

7 node_name = unique ( [ edge_struct . from ; edge_struct . to ] , " s t a b l e " ) ;
8 edge_size = s i z e ( [ edge_struct . from , edge_struct . to , edge_struct . l ength

] ) ;
9 edge_size (2 )=edge_size (2 ) +1;

10 encode_edge_struct = ze ro s ( edge_size ) ;
11

12 Charge=ones ( l ength ( charg ingSta t i on ) ,2 ) ;
13 f o r i = 1 : l ength ( Charge )
14 b=charg ingSta t i on ( i ) ;
15 Charge ( i , 1 )=f i n d (node_name==edge_struct . from ( edge_struct . id==b .

edge ) ) ;
16 Charge ( i , 2 )=f i n d (node_name==edge_struct . to ( edge_struct . id==b . edge

) ) ;
17 i f encode_edge_struct ( edge_struct . id==b . edge , 4 )==0
18 encode_edge_struct ( edge_struct . id==b . edge , 4 ) =1;
19 e l s e
20 b . edge
21 end
22 end
23

24 edge_from_index = ones ( l ength ( unique ( edge_struct . from ) ) ,1 ) ;
25 edge_to_index = ones ( l ength ( unique ( edge_struct . to ) ) , 1 ) ;
26

27 f o r i = 1 : l ength ( edge_struct . id )
28 encode_edge_struct ( i , 1 )=f i n d (node_name==edge_struct . from ( i ) ) ;
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29 encode_edge_struct ( i , 2 )=f i n d (node_name==edge_struct . to ( i ) ) ;
30 encode_edge_struct ( i , 3 )=edge_struct . l ength ( i ) ;
31 end
32 encode_edge_struct=sort rows ( encode_edge_struct , 1 ) ;
33

34 f o r i = 1 : l ength ( edge_from_index )
35 x=f i n d ( encode_edge_struct ( : , 1 )==i ) ;
36 edge_from_index ( i )=x (1) ;
37 end
38

39 f o r i = 1 : l ength ( edge_to_index )
40 x=f i n d ( encode_edge_struct ( : , 2 )==i ) ;
41 i f isempty ( x )
42 cont inue
43 e l s e
44 edge_to_index ( i )=x (1) ;
45 end
46 end
47

48 save ( ’Node_Name ’ , ’ node_name ’ )
49 save ( ’ edge2 ’ , " encode_edge_struct " , " edge_from_index " , " edge_to_index " , "

Charge " ) ;
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findingchargingstation.m

1 c l e a r
2 c l c
3 %Find charg ing s t a t i o n s edge
4 load edge2 . mat
5 newCharge=ze ro s ( l ength ( Charge ) ,1 ) ;
6 f o r i =1: l ength ( Charge )
7 N_from = Charge ( i , 1 ) ;
8 i_s = edge_from_index (N_from) ;
9 i f N_from==length ( edge_from_index )

10 i_e=i_s ;
11 e l s e
12 i_e = edge_from_index (N_from+1)−1;
13 end
14 whi le i_s==i_e
15 N_from = encode_edge_struct ( encode_edge_struct ( : , 2 )==N_from

, 1 ) ;
16 N_from = N_from (1) ;
17 i_s = edge_from_index (N_from) ;
18 i f N_from==length ( edge_from_index )
19 i_e=i_s ;
20 e l s e
21 i_e = edge_from_index (N_from+1)−1;
22 end
23 % i f i ==373
24 % break
25 % end
26 end
27 newCharge ( i ) = N_from ;
28 end
29 Charge=unique ( newCharge ) ;
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30 save ( ’ edge3 ’ , " encode_edge_struct " , " edge_from_index " , " edge_to_index " , "
Charge " ) ;
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Dijkstra_sp_007.m

1 f unc t i on l abe l_ s e t_se t t l ed=Dijkstra_sp_007 ( Nodes , Charge , B_range ,
B_source , . . .

2 edges , Graph_index , source , target , r a t i o )
3 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 %∗∗∗∗ Calcu la te the s h o r t e s t path with batte ry c o n s t r a i n s ∗∗∗∗
5 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 %∗∗∗∗∗∗And the s imulate with temperature and t r a f f i c ∗∗∗∗∗∗∗∗
7

8 %%
9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

10 %∗∗ F i r s t s tep :
11 %∗∗∗∗ Trans the source and t a r g e t ver tex from s t r to num∗∗∗∗∗
12 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
13 [ source , t a r g e t ]= Node_tras late ( source , t a r g e t ) ;
14

15 %%
16 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 %∗∗ Second step :
18 %∗∗∗∗∗∗∗∗∗∗∗∗ I n i t a i l l a b e l s e t f o r every ver tex ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
20 l abe l_se t . array (1 , l ength ( Nodes ) )=LabelSet_5 ;
21 l ab e l_s e t_s e t t l ed . array (1 , l ength ( Nodes ) )=LabelSet_5 ;
22 l abe l_se t=labe l_se t . array ;
23 l ab e l_s e t_s e t t l ed=labe l_ s e t_se t t l ed . array ;
24 f o r i =1: l ength ( l abe l_se t )
25 l abe l_se t ( i ) . r a t i o=r a t i o ;
26 end
27 f o r i =1: l ength ( l abe l _s e t_se t t l ed )
28 l ab e l_s e t_s e t t l ed ( i ) . r a t i o=r a t i o ;
29 end
30
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31 %%
32 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
33 %∗∗ Third step :
34 %∗∗∗∗∗∗∗ Set the l a b e l s e t o f source ver tex to (0 , 0 , 0 ) ∗∗∗∗∗∗∗
35 %∗∗Which means from source ver tex to source ver tex :
36 %∗∗Have 0 meter d i s tance , 0 Kw/h energy consumption ∗∗∗∗∗∗∗∗∗
37 %∗∗And the p r ev i c e ver tex to source i s nothing ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
38 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
39 l abe l_se t ( source ) . add_label ( Labels_3 (0 , B_source , 0 , 0 , 0 ) ) ;
40 l abe l_se t ( source ) . check_labe l ( ) ;
41

42 %%
43 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
44 %∗∗ Fourth step :
45 %∗∗∗∗∗ I n i t a i l the Fibonacc i Heap Node f o r every ver tex ∗∗∗∗∗∗
46 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
47 Fnodes . Array ( l ength ( Nodes ) ,1 ) = FibonacciHeapNode ;
48 Fnodes = Fnodes . Array ;
49 f o r i =1: l ength ( Nodes )
50 Fnodes ( i ) . key = i n f ;
51 Fnodes ( i ) . va lue = i ;
52 end
53

54 %%
55 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
56 %∗∗ Fi f th s tep :
57 %∗∗∗∗∗And the value from source ver tex l a b e l s e t to
58 % Fibonacc i Heap∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
59 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
60 Q=FibonacciHeap ;
61 Fnodes ( source ) . key=labe l_se t ( source ) . key_label ( ) ;
62 Q. n i n s e r t ( Fnodes ( source ) ) ;
63

64 %%
65 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
66 %∗∗ Sixth step :
67 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Main Loop∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
68 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
69 whi le ~ isempty (Q. min )
70 %%
71 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
72 %∗∗ Seventh step :
73 %∗∗∗From Fibonacc i Heap get the pre sent search ver tex ∗∗∗
74 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
75 u=Q. delMin ( ) ;
76 whi le u . value>length ( Graph_index )
77 u=Q. delMin ( ) ;
78 end
79
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80 %%
81 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
82 %∗∗ Extra s tep
83 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Charge ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
84 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
85 i f f i n d ( Charge==u . va lue )
86 f o r i =1: l ength ( l abe l_se t (u . va lue ) )
87 l abe l_se t (u . va lue ) . t rave l_t ime ( i ) = . . .
88 l abe l_se t (u . va lue ) . t rave l_t ime ( i )+(B_range (2 )−

l abe l_se t (u . va lue ) . battery_SoC ( i ) ) /100 e3 ∗3600 ;
89 l abe l_se t (u . va lue ) . s e t s ( i ) . t rave l_t ime = . . .
90 l abe l_se t (u . va lue ) . t rave l_t ime ( i )+(B_range (2 )−

l abe l_se t (u . va lue ) . battery_SoC ( i ) ) /100 e3 ∗3600 ;
91 l abe l_se t (u . va lue ) . battery_SoC ( i )=B_range (2 ) ;
92 l abe l_se t (u . va lue ) . s e t s ( i ) . battery_SoC=B_range (2 ) ;
93 end
94 end
95

96 %%
97 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
98 %∗∗ Eighth step :
99 %∗∗When present search ver tex equal to t a r g e t vertex ,

100 % stop ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
101 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
102 i f u==Fnodes ( t a r g e t )
103 the_labe l = labe l_se t (u . va lue ) . s e t t l e _ l a b e l ( ) ;
104 l ab e l_s e t_s e t t l ed (u . va lue ) . add_label ( the_labe l ) ;
105 l ab e l_s e t_s e t t l ed (u . va lue ) . check_labe l ( ) ;
106 break
107 end
108

109 %%
110 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
111 %∗∗ Nineth step :
112 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S e t t l e the cur rent l a b e l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
113 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
114 the_labe l = labe l_se t (u . va lue ) . s e t t l e _ l a b e l ( ) ;
115 l ab e l_s e t_s e t t l ed (u . va lue ) . add_label ( the_labe l ) ;
116 l ab e l_s e t_s e t t l ed (u . va lue ) . check_labe l ( ) ;
117 i f l abe l_se t (u . va lue ) . has_unset t l ed_labe l s ( )
118 Fnodes (u . va lue )=FibonacciHeapNode ( ) ;
119 Fnodes (u . va lue ) . va lue=u . va lue ;
120 Fnodes (u . va lue ) . key=labe l_se t (u . va lue ) . key_label ( ) ;
121 Q. n i n s e r t ( Fnodes (u . va lue ) ) ;
122 end
123

124 %%
125 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
126 %∗∗Tenth step :
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127 %∗∗∗∗∗∗∗∗ Check a l l edges connected to ver tex u∗∗∗∗∗∗∗∗∗∗
128 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
129

130 i_s = Graph_index (u . va lue ) ;
131 i f u . va lue==length ( Graph_index )
132 i_e = i_s ;
133 e l s e
134 i_e = Graph_index (u . va lue +1)−1;
135 end
136 f o r i=i_s : i_e
137

138 junc_to = edges ( i , 2 ) ;
139 [ driving_time , energy_consumption ]=speed_curve ( edges ( i , 4 ) ,

edges ( i , 5 ) , edges ( i , 3 ) , edges ( i , 6 ) ) ;
140 new_distance = the_labe l . d i s t anc e + edges ( i , 3 ) ;
141 battery_SoC = the_labe l . battery_SoC−energy_consumption ;
142 trave l_t ime = the_labe l . t rave l_t ime + driving_time ;
143 i f battery_SoC>B_range (1 )&&labe l_se t ( junc_to ) .

has_unset t l ed_labe l s ( )
144 new_label = Labels_3 ( new_distance , battery_SoC , u . value

, energy_consumption , trave l_t ime ) ;
145 mini_labe l = labe l_se t ( junc_to ) . min_label ;
146 i f ~mini_labe l . l a b e l _ l e ( new_label )
147 l abe l_se t ( junc_to ) . add_label ( new_label ) ;
148 l abe l_se t ( junc_to ) . check_labe l ( ) ;
149 i f Fnodes ( junc_to ) . key==i n f
150 Fnodes ( junc_to ) . key=trave l_t ime ∗ r a t i o (1 )+

energy_consumption∗ r a t i o (2 ) ;
151 Q. n i n s e r t ( Fnodes ( junc_to ) ) ;
152 e l s e i f Fnodes ( junc_to ) . key>new_distance ∗ r a t i o (1 )+

energy_consumption∗ r a t i o (2 )
153 Q. key_decreas ing ( Fnodes ( junc_to ) , trave l_t ime ∗

r a t i o (1 )+energy_consumption∗ r a t i o (2 ) ) ;
154 end
155

156 end
157 end
158 end
159 end
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LabelSet_5.m

1 c l a s s d e f LabelSet_5 < handle
2

3 p r o p e r t i e s
4 s e t s
5 d i s t a n c e s
6 battery_SoC
7 energy_consumption
8 r a t i o % wieght o f d i s t anc e and energy_consumption , d e f a u l t

= [ 1 , 0 ] ;
9 trave l_t ime

10 n
11 end
12

13 methods
14

15 f unc t i on x=LabelSet_5 ( r a t i o )
16 x . s e t s=Labels_3 . empty ;
17 x . d i s t a n c e s = [ ] ;
18 x . battery_SoC = [ ] ;
19 x . energy_consumption = [ ] ;
20 x . trave l_t ime = [ ] ;
21 x . n=0;
22 i f (~ e x i s t ( ’ r a t i o ’ , ’ var ’ ) )
23 r a t i o = [ 1 , 0 ] ;
24 end
25 x . r a t i o = r a t i o ;
26 x . add_label ( Labels_3 ( in f , 0 , 0 , i n f ) )
27 end
28

29 f unc t i on add_label (x , l a b e l )
30 x . n=x . n+1;
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31 x . s e t s ( x . n )=l a b e l ;
32 x . d i s t a n c e s ( x . n )=l a b e l . d i s t ance ;
33 x . battery_SoC ( x . n)=l a b e l . battery_SoC ;
34 x . energy_consumption ( x . n)=l a b e l . energy_consumption ;
35 x . trave l_t ime ( x . n)=l a b e l . t rave l_t ime ;
36 end
37

38 f unc t i on key=key_label ( x )
39 key=min ( x . trave l_t ime ∗x . r a t i o (1 )+x . energy_consumption∗x .

r a t i o (2 ) ) ;
40 end
41

42 f unc t i on y=min_label ( x )
43 [ ~ , idx ] = min ( x . trave l_t ime ∗x . r a t i o (1 )+x .

energy_consumption∗x . r a t i o (2 ) ) ;
44 idx=idx (1 ) ;
45 y=x . s e t s ( idx ) ;
46 end
47

48 f unc t i on y=s e t t l e _ l a b e l ( x )
49 [ ~ , idx ] = min ( x . trave l_t ime ∗x . r a t i o (1 )+x .

energy_consumption∗x . r a t i o (2 ) ) ;
50 idx=idx (1 ) ;
51 y=x . s e t s ( idx ) ;
52 x . s e t s ( idx ) = [ ] ;
53 x . d i s t a n c e s ( idx ) = [ ] ;
54 x . battery_SoC ( idx ) = [ ] ;
55 x . energy_consumption ( idx ) = [ ] ;
56 x . trave l_t ime ( idx ) = [ ] ;
57 x . n=x . n−1;
58 end
59

60 f unc t i on check_labe l ( x )
61 whi le 1
62 [ ~ , idx_trave l ]=max( x . trave l_t ime ) ;
63 [ ~ , idx_ene ]=max( x . energy_consumption ) ;
64 [ ~ , idx_soc ]=min ( x . battery_SoC ) ;
65 i f ( idx_trave l==idx_ene )&&(x . n~=1)&&(idx_ene==idx_soc

)
66 x . s e t s ( idx_trave l ) = [ ] ;
67 x . d i s t a n c e s ( idx_trave l ) = [ ] ;
68 x . battery_SoC ( idx_trave l ) = [ ] ;
69 x . energy_consumption ( idx_trave l ) = [ ] ;
70 x . trave l_t ime ( idx_trave l ) = [ ] ;
71 x . n=x . n−1;
72 e l s e
73 break
74 end
75 end
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76 end
77

78 f unc t i on t=has_unset t l ed_labe l s ( x )
79 i f x . n==0
80 t=f a l s e ;
81 e l s e
82 t=true ;
83 end
84 end
85

86 end
87 end
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Labels_3.m

1 c l a s s d e f Labels_3 < handle
2 p r o p e r t i e s
3 d i s t anc e
4 battery_SoC
5 energy_consumption
6 l a s t_ver t ex
7 trave l_t ime
8 end
9 methods

10 f unc t i on x=Labels_3 ( d i s tance , battery_SoC , last_vertex ,
energy_consumption , trave l_t ime )

11 i f (~ e x i s t ( ’ d i s t ance ’ , ’ var ’ ) )
12 d i s t anc e=i n f ;
13 end
14 i f (~ e x i s t ( ’ battery_SoC ’ , ’ var ’ ) )
15 battery_SoC=0;
16 end
17 i f (~ e x i s t ( ’ l a s t_ver t ex ’ , ’ var ’ ) )
18 l a s t_ver t ex =0;
19 end
20 i f (~ e x i s t ( ’ energy_consumption ’ , ’ var ’ ) )
21 energy_consumption=i n f ;
22 end
23 i f (~ e x i s t ( ’ t rave l_t ime ’ , ’ var ’ ) )
24 trave l_t ime=i n f ;
25 end
26 x . d i s t anc e=d i s t anc e ;
27 x . battery_SoC=battery_SoC ;
28 x . l a s t_ver t ex=las t_ver t ex ;
29 x . energy_consumption=energy_consumption ;
30 x . trave l_t ime=trave l_t ime ;
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31 end
32 f unc t i on bo = l a b e l _ l e (x , o ther_labe l )
33 i f x . travel_time<=other_labe l . t rave l_t ime &&.. .
34 x . energy_consumption<=other_labe l . energy_consumption
35 bo=true ;
36 e l s e
37 bo=f a l s e ;
38 end
39 end
40 end
41 end

89



Bibliography

[1] E.W. DIJKSTRA. «A Note on Two Problems in Connexion with Graphs.»
In: Numerische Mathematik 1 (1959), pp. 269–271. url: http://eudml.org/
doc/131436 (cit. on p. 2).

[2] F. Zhan and Charles Noon. «Shortest Path Algorithms: An Evaluation Using
Real Road Networks». In: Transportation Science 32 (Feb. 1998), pp. 65–73.
doi: 10.1287/trsc.32.1.65 (cit. on p. 2).

[3] Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Hasel-
mayr. «Efficient energy-optimal routing for electric vehicles». In: Proceedings
of the AAAI conference on artificial intelligence. Vol. 25. 1. 2011, pp. 1402–
1407 (cit. on p. 2).

[4] Michael T. Goodrich and Paweł Pszona. Two-Phase Bicriterion Search for
Finding Fast and Efficient Electric Vehicle Routes. 2014. arXiv: 1409.3192
[cs.DS] (cit. on p. 2).

[5] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck.
Route Planning in Transportation Networks. 2015. arXiv: 1504.05140 [cs.DS]
(cit. on p. 2).

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009.
isbn: 0262033844 (cit. on p. 2).

[7] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. «A Formal Basis for the
Heuristic Determination of Minimum Cost Paths». In: IEEE Transactions
on Systems Science and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/
TSSC.1968.300136 (cit. on p. 3).

[8] Moritz Hilger, Ekkehard Köhler, Rolf Möhring, and Heiko Schilling. «Fast
Point-to-Point Shortest Path Computations with Arc-Flags». In: vol. 74. July
2009, pp. 41–72. isbn: 9780821843833. doi: 10.1090/dimacs/074/03 (cit. on
p. 3).

90

http://eudml.org/doc/131436
http://eudml.org/doc/131436
https://doi.org/10.1287/trsc.32.1.65
https://arxiv.org/abs/1409.3192
https://arxiv.org/abs/1409.3192
https://arxiv.org/abs/1504.05140
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1090/dimacs/074/03


BIBLIOGRAPHY

[9] Alexandros Efentakis, Dieter Pfoser, and Agnès Voisard. «Efficient Data
Management in Support of Shortest-Path Computation». In: Proceedings
of the 4th ACM SIGSPATIAL International Workshop on Computational
Transportation Science. CTS ’11. Chicago, Illinois: Association for Computing
Machinery, 2011, pp. 28–33. isbn: 9781450310345. doi: 10.1145/2068984.
2068990. url: https://doi.org/10.1145/2068984.2068990 (cit. on p. 3).

[10] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck. «PHAST: Hardware-accelerated shortest path trees». In: Journal
of Parallel and Distributed Computing 73.7 (2013). Best Papers: International
Parallel and Distributed Processing Symposium (IPDPS) 2010, 2011 and 2012,
pp. 940–952. issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.
2012.02.007. url: https://www.sciencedirect.com/science/article/
pii/S074373151200041X (cit. on p. 3).

[11] Michael L. Fredman and Robert Endre Tarjan. «Fibonacci Heaps and Their
Uses in Improved Network Optimization Algorithms». In: J. ACM 34.3 (July
1987), pp. 596–615. issn: 0004-5411. doi: 10 . 1145 / 28869 . 28874. url:
https://doi.org/10.1145/28869.28874 (cit. on p. 13).

[12] Mar. 2019. url: https://www.sae.org/site/news/2019/03/aaa-ev-
range-thermal-effect-study (cit. on p. 26).

91

https://doi.org/10.1145/2068984.2068990
https://doi.org/10.1145/2068984.2068990
https://doi.org/10.1145/2068984.2068990
https://doi.org/https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/https://doi.org/10.1016/j.jpdc.2012.02.007
https://www.sciencedirect.com/science/article/pii/S074373151200041X
https://www.sciencedirect.com/science/article/pii/S074373151200041X
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://www.sae.org/site/news/2019/03/aaa-ev-range-thermal-effect-study
https://www.sae.org/site/news/2019/03/aaa-ev-range-thermal-effect-study

	List of Tables
	List of Figures
	Introduction
	Literature analysis
	Network representations
	Dijkstra's algorithm
	Fibonacci heap

	Electric Vehicle Route Planning Algorithm
	Electric Vehicle Route Planning Problem
	Electric Vehicle Route Planning Algorithm

	Implementation EV route planning algorithm
	Vehicle model
	Map data
	Matlab code implementation

	Simulation results
	Travelling time and energy consumption
	Distance and energy consumption

	Conclusions and future works
	Conclusions
	Future works

	extract.m
	Dijkstra_sp_000.m
	reencode000.m
	Dijkstra_sp_001.m
	FibonacciHeapNode.m
	FibonacciHeap.m
	Dijkstra_sp_002.m
	Labels.m
	LabelSet.m
	Dijkstra_sp_003.m
	reencode002.m
	findingchargingstation.m
	Dijkstra_sp_007.m
	LabelSet_5.m
	Labels_3.m
	Bibliography

