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Summary

Food production is one of the most important human activities. Fighting against
animals and vegetable weeds is necessary, as climate change and globalization allow
for the diffusion of exotic pests and illnesses. ICTs could be an innovative solution
for a sustainable struggle against these problems. The purpose of this thesis is to
detect and estimate the number of Popillia Japonica Neuman in vineyards near
Novara, Italy, which is a pest that has been causing problems to Piedmont wine
producers since 2014. This research analyzes the vegetation indexes results obtained
from satellite images and studies the pest and vine leaf spectrometric signatures in
order to define which are the most useful electromagnetic bands to be exploited
in the images data collection. Those are captured through UAS equipped with
remote sensing sensors in the RGB and NIR bandwidths. A protocol is drawn up
to collect useful data about the insect. These data are used to create two datasets
that are exploited in two AI models, one for each band. The algorithm used
belongs to the YOLO family and implements the semantic segmentation approach.
In this specific domain, the result obtained is that remote sensing and artificial
intelligence represent a solution for a quick and autonomous Popillia Japonica
Newman detection.
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Introduction

Since humans became sedentary, food production has been one of the most important
human activities. From the beginning, fighting against animals and vegetable weeds
was necessary. Climate change and globalization have resulted in the diffusion of
exotic pests, such as Popillia Japonica Newman and Asian Debug, which have spread
in Europe from Asia, or Xylella fastidiosa, native to South America. Those exotic
pests attack the local agricultural system which is not able to fight and to eliminate
them. ICT, Information Communication Technology, could provide innovative
and sustainable solutions to address these problems. Actually, in the precision
agricultural domain, ICTs are exploited to control smart connected machines, to
monitor crops and as decision support software. In the north of Italy, the Popillia
Japonica Newman was first discovered in 2014, and since then, research has been
focused on finding sustainable solutions to control this invasive pest.

The objective of this thesis is to verify if remote sensing combined with AI,
Artificial Intelligent, can identify and estimate the number of Popillia Japonica
Newman infestation in a vine quickly and autonomously. The research consists on
on-filed activities, for the data collection, and laboratory activities. All of those
were possible to the support of the DIATI, Dipartimento di Ingegneria dell’Ambiente
del Territorio e delle Infrastrutture of the Politecnico di Torino, and Consorzio
Tutela Nebbioli Alto Piemonte, [1], directed by Andrea Fontana.

Remote sensing refers to the process of acquiring information about object or
area from a distance, without having physical contact with it. This is typically
done using sensors and instruments mounted on satellites, drones or rovers. On the
other hand, spectral characterization, used as support to remote sensing, is done
with spectrometers capable of detecting the spectral signatures of the interested
objects.

The first part of this research involves quantifying Popillia Japonica Newman
through satellite data, such as the images from the project Copernicus, from ESA,
European Space Agency. The aim is to define if computing vegetation indexes
using those data, it is possible to study the impact of the pest on crop fields and
consequently quantify its presence.

The second part of this research involves the spectral characterization of insects
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Introduction

and vine leaves as a preparatory study for the collection of UAS, Unmanned Aereal
System, images. The aim is to exploit remote sensing instruments mounted onboard
of them to collect multispectral data, which are processed according to their
spectral signatures and used for pest quantification. The result of this section is the
definition of a data collection protocol, specifically defined for the quantification of
Popillia Japonica Newman.

In the third part, the collected data are labeled and used as input for an
AI algorithm to understand which is the best computer vision approach and
consequently to estimate the number of insects in the entire plantation.

2



Chapter 1

Overview of agricultural
value, policies and market

1.1 Italian agriculture value

One of the Italian hallmarks in the world is the food, known for its quality and its
long traditions. Food production and more generally agriculture and connected
activities represent a milestone for the Italian economy [2]. To explain that, in
2019 the agriculture economy employed 5% of the active Italian population and
it earned about 61.6 billion euros, this value increases significantly to 133.679
billion euros if the food industry is also considered, which is equal to 8.2% of the
GDP, Gross Domestic Product, [3]. The primary production sector also plays an
essential role from a social and cultural point of view. Since 1992 with EEC 2018/92
regulation, and then in 2006 with EEC 510/2006 regulation, the EU, European
Union, aims to protect regional food products by introducing PGI, Protected
Geographical Indication, IGP in Italian, and PDO, Protected Designation of Origin,
DOP in Italian, certifications. The relative logos are reported respectively in Figure
1.1. Then in 2014, the Italian government applied the EU 1151/2012 European
directive, useful to protect the names of specific products and to promote their
unique characteristics linked to their geographical origin as well as traditional
indication [4]. From that moment to 2021, Italy registered more than 800 food
products, the higher number in the EU. Between them, there are 172 DOP and 140
IGP products and several DOC and DOCG, Denominazione Origine Controllata e
Garantita, wines. These are shown divided by region in Table 1.1.

3
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Figure 1.1: PGI and PDO certification logos.

Region DOCG DOC
Valle D’Aosta 0 1

Piedmont 16 42
Lombardia 5 27

Liguria 0 8
Trentino Alto Adige 0 8
Friuli Venezia Giulia 4 10

Veneto 14 28
Tuscany 11 41
Marche 5 15
Unbria 2 13

Region DOCG DOC
Emilia Romagna 2 18

Abruzzo 1 8
Lazio 3 27
Molise 0 4

Campania 4 15
Puglia 4 28

Basilicata 1 4
Calabria 0 9
Sicilia 1 23

Sardinia 1 17

Table 1.1: In Italy there are more than 400 quality certified wines, between them
74 are denominated DOCG and 341 DOC.

1.2 Italian agricultural economic trend and fu-
ture challenges

According to [2], Italian agriculture in 2019 witnessed a sharp decline in the
production, -12.1%, and value ,-17.5%, of wine, as well as a general reduction in
fruit production ,-6.6%. However, the harvest of dried legumes increased by 8.7%,
and olive oil production rose by 27.6%, due to a massive planting program aimed
at countering the effects of Xylella Fastidiosa in recent years. The reasons behind
these data are closely related to negative climate conditions and the spread of
exotic pests and bacteria, such as the Asian Debug, the Popillia Japonica Newman,
and the Xylella Fastidiosa, or actions taken to counter them.

Anthropogenic climate change exists and has a significant impact on agriculture

4



Overview of agricultural value, policies and market

and food systems in general. One of the main future challenges is to counter extreme
weather events, such as late frosts, greater irregularity of rains, difficulties in water
basin management, high soil disturbance, and variation in the sowing period, as
reported by L. Mercalli in [5]. These events have caused a loss of 450 billion euros
between 1980 and 2016 in Europe, as shown in Figure 1.2. Additionally, exotic
weather conditions allow the spread of exotic and unknown parasites, mainly insects
and bacteria, that the local environment cannot counter, resulting in a weakening of
the food production system until a natural or, more often, a phytosanitary solution
is found.

Figure 1.2: The plot shows clearly the increasing trend in the number of extreme
weather events, between 1980 and 2014, [5].

Going deeper into unusual climate conditions, in Italy in 2018, climate change
showed itself through a 1.5°C increase in the average minimum temperature and 1°C
in the average maximum temperature, with long, dry winters and summers while
the rainfalls are concentrated in short periods during the spring and the autumn.
The forest’s capability to absorb CO2 has decreased by about 42% also due to
the increasing deforestation and soil cementification. The described context has a
strong impact on agriculture in terms of trade, which is an index that takes into
consideration final product prices and intermediate consumption prices. Between
2015 and 2019, considering the terms of trade reported in Figure 1.3, there was a
a 20% decline in profits, basically due to the increasing cost of the intermediate
consumption such as seeds, motive power, phytosanitary, insurance, irrigation
waters, fertilisers and transportation, as shown in Figure 1.4. These findings are
reported in [3]. An example of exotic bacteria, the Xylella Fastidiosa, is reported
in Figure 1.5 and described in [6]. It is the cause of the CoDiRO, Complesso del
Distaccamento Rapido dell’Olivo, that spread in the Puglia region, Italy.
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Figure 1.3: Terms of trade during the period between 2005 and 2019: The input
price or intermediate consumption increase a lot, consequently also the output
price is increased, [3].

Figure 1.4: Representation of the intermediate costs in the food production sector,
[3].
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The olive trees show dry grey spots, as shown in Figure 1.6, and in a period
long between some months to a few years, the tree died without any possibility of
saving it. Around 6.5 million olive trees died in Puglia since the Xylella appeared
in 2013, with significant consequences on the regional and national economy and
on the society.

Figure 1.5: The bacteria Xylella Fastidiosa
which is the cause of CoDiRO.

Figure 1.6: The effect of
CoDiRO on olive trees, on them
grey spots appear.

In [7], L. Meadows reports that a future challenge will be the growing population.
Around 10 billion people are expected to be living on Earth in 2050, and the
quantity of food needs to be increased to meet this demand. However, the loss
of soil fertility, pollution, climate change, and the spread of pests and bacteria
represent strong obstacles to the sustainability of food production. In this scenario,
smart and precision agriculture, and more generally, sustainable agriculture, could
be a solution to these challenges. In particular, new ICTs provide real support in
the farmer decision-making process, which could help to reduce harvest losses.

1.3 Precision farming spreading
According to G. Orefice in [8], the number of investments in smart agriculture has
increased significantly in recent years, with a global turnover of 15 billion euros and
around 750 new startups entering the market. In Italy the precision agriculture
business has grown from 540 million euros in 2020 to 1.6 billion euros in 2021. Of
the total investments, 47% are devoted to purchasing smart connected machines,
while 53% are used for monitoring and controlling crops through sensor systems.
Decision support software and system deployment have also seen a substantial
increase, with 26% of farmers opting for these solutions. In 2021, 60% of farmers
used at least one ICT solution, a 4% increase from the previous year, and 40%
used at least two. These trends indicate that ICTs will play an increasingly crucial
role in the agricultural industry in the years to come.
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In this context, the massive amounts of data collected by Industry 4.0 systems
play a crucial role. While some of these data are used for managing warehouses
and food production, processing and analyzing them to generate trends, models,
and AI software is more challenging.

Examples of new technologies that are transforming agriculture include UAS,
Unmanned Aereal Systems, commonly known as drones, and ground rovers that
are supported by satellite images and positioning systems. These tools are used to
improve phytosanitary shedding, crop disease and pest detection. Weather stations
are also employed to describe microclimates and vegetation health status, while
autonomous machinery can work without farmer monitoring thanks to precise
satellite positioning. Figure 1.7 shows an example of a precision farming drone.

The combination of precision farming and AI represents a major innovation in
the primary sector, and could be a key solution to counteract future agricultural
challenges.

Figure 1.7: A few researchers of the Politecnico di Torino using UAS to detect
the Popillia Japonica Newman in vineyards.
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Chapter 2

ICT technologies for
precision farming

EPI-AGRI, [9], is the productivity and sustainability agriculture European part-
nership and it was established in 2012 to achieve the European objective of the
Agenda 2030, [10]. It defines precision farming as "a management approach that
focuses on near real-time observation, measurement, and responses to variability in
crops, fields and animals. It can help increase crop yields and animal performance,
reduce costs, including labour costs, and optimize processes inputs. All of these can
help increase profitability. At the same time, precision farming can increase worker
safety and reduce the environmental impacts of agriculture and farming practices,
thus contributing to the sustainability of agricultural production".

The precision farming tools are ICTs such as remote sensing, UAS, satellites, posi-
tioning systems, on-field sensors which generate a huge amount of data. These tools
have high technological requirements, such as internet coverage, high computational
power or data center and require technicians.

2.1 Remote sensing
Remote sensing is the acquisition of information about an object or phenomenon
without physical contact with it, but based on energy source to illuminate the
target. This energy is in the form of electromagnetic radiation. The remote sensing
instruments are divided into active and passive sensors. The active ones emit
signals, such as microwaves, and then measure the reflected or backscattered energy
to derive information about the target. Examples of active remote sensing sensors
include radar and LiDAR systems. On the other hand, passive sensors detect
natural or ambient electromagnetic radiation, such as sunlight or thermal radiation,
emitted by the target, without emitting any radiation of their own, example in
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Figure 2.1. A represents the sun, while B the sunlight radiation that is reflected by
the Earth’s surface, C. The electromagnetic radiation is captured by the satellite
D. Thanks to base stations and other satellites, E, visual data, such as false colour
maps, are generated, F and G.

Passive sensors are highly sensitive to the spectral characteristics of the target and
are therefore used extensively in applications such as land-use mapping, agricultural
monitoring, and forest inventory, [11]. The detected response generates a specific
spectrometric signature, which is a result of the interaction between electromagnetic
radiation and matter as a function of the wavelength or frequency of the radiation.
The spectrometric signature characterizes each type of matter and is defined in
one or more bands, [11].

Figure 2.1: A schema of a passive remote sensing instrument: the satellite.

Examples of passive sensors include radiometers and cameras, an example is
shown in Figure 2.2, cameras can be multispectral or hyperspectral and can be
mounted on board satellites, drones or rovers, or alternatively, carried by hand. A
camera is defined as multispectral if the number of narrow spectral bands that the
sensor is able to detect is between 3 and 10, while a hyperspectral camera can sense
hundreds or even thousands of very narrow spectral bands, covering a much wider
range of the electromagnetic spectrum than a multispectral camera, a graphical
representation is reported in Figure 2.3.

Cameras and generally remote sensing device have their own spectral resolution
which describes the ability of a sensor to define fine wavelength intervals. The finer
the spectral resolution, the narrower the wavelength range for a particular channel
or band. Table 2.1 reports the bands commonly used in remote sensing. NIR,
Near-infrared Radiation, which falls between 700 nm and 1000 nm, is absorbed
by vegetation chlorophyll, other pigments, and water content in leaves. NIR
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Figure 2.2: In a typical multispectral or hyperspectral camera, each camera lens
is able to cover a specific range of the electromagnetic spectrum.

Figure 2.3: Comparing between multispectral and hyperspectral approach.

radiation is used to determine plant health, leaf area index, and water stress. It
is also used in mineral exploration to detect hydroxyl groups in clay minerals.
Red-Edge is a specific range of wavelengths between 680 nm and 750 nm that is
used in remote sensing for vegetation analysis. This spectral range is particularly
sensitive to changes in chlorophyll content and is used to estimate plant biomass,
leaf area index, and other vegetation parameters. Human-visible radiation is
the type of radiation used in photography to capture photos and video. UV,
Ultraviolet radiation, which has wavelengths between 10 nm and 400 nm, is used
in remote sensing for atmospheric monitoring and aerosol detection. It is also
used in fluorescence spectroscopy to detect the presence of organic compounds and
minerals with fluorescence properties.

The choice of bandwidth depends on the specific remote sensing application
and the information that needs to be extracted from the target surface. Different
bandwidths can provide unique information about the target surface, and combining
multiple bandwidths can enhance the accuracy and reliability of remote sensing
data analysis.
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Band Range(nm)
NIR 700-1000

Red-Edge 680-750
Human visible 400-700

UV 10-400

Table 2.1: The most common bands used in remote sensing in various applications.

Finally the radiometric correction is very important, which is a process used to
correct errors and variations in the brightness values of digital images captured
by remote sensing instruments. The aim of radiometric correction is to convert
the raw digital numbers recorded by the sensor into meaningful physical units of
radiance or reflectance. Radiometric correction is essential for many applications,
such as land cover mapping, vegetation analysis, and environmental monitoring. By
removing the effects of atmospheric attenuation and sensor calibration, radiometric
correction enables the comparison of images acquired at different times, under
different weather conditions, or by different sensors, thus facilitating long-term
studies and trend analysis, [11].

2.2 Vegetation indexes
A VI, Vegetation Index, is a spectral imaging transformation of two or more image
bands designed to enhance the contribution of vegetation properties, allowing
reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity
and canopy structural variations. The values of the image bands are obtained by
measuring the reflectance of vegetation to solar light in several electromagnetic
spectrum bands. Figure 2.4 shows the qualitative electromagnetic responses of a
dead, stressed, and healthy leaf.

In the following list, some VIs are presented:

1. NDVI stands for Normalized Difference Vegetation Index. It is defined as the
vigour index and indicates the health of vegetation through the measurement of
photosynthesising biomass. Its mathematical definition is reported in Equation
2.1. The more the value is low, the lower are photosynthesising abilities of the
vegetation cover. NIR and Red are the surface reflectances of the object to
the solar light in the respective bands.

NDV I = (NIR − Red)/(NIR + Red) (2.1)

2. SAVI instead is the Soil-Adjusted Vegetation Index, which is similar to the
NDVI index but with a bare soil correction factor. It works well with low

12



ICT technologies for precision farming

Figure 2.4: Electromagnetic response of a leaf in the interested bands used to
vegetation indexes computation.

vegetation cover and it allows the comparison of a large variety of fields. It
is defined mathematically in Equation 2.2. NIR and Red are the surface
reflectances of the object to the solar light in the respective bands. L is the
canopy background adjustment, and it is equal to 0.5.

SAV I = (1 + L)(NIR − Red)/(NIR + Red) (2.2)

3. The EVI, Enhanced Vegetation Index, is defined by Equation 2.3 and it can
be considered as an optimized VI with improved sensitivity in high biomass
regions by a de-coupling of the canopy background signal and a reduction
in atmosphere influences. NIR and Red are the surface reflectances of the
object to the solar light in the respective bands. L is the canopy background
adjustment, and it is equal to 1, C1 and C2, respectively equal to 6 and 7.5,
which are the coefficients of the aerosol resistance term. The blue is the aerosol
influences correction factor in the red band, while G is a gain factor equal to
2.5.

EV I = G × (NIR − Red)/(NIR + C1 × Red − C2 × Blue + L) (2.3)

2.3 Remote sensing sensor supports

2.3.1 Satellites
Since the 1960s, satellites have been widely used for communication, navigation,
military purposes, and more recently, remote sensing. This technology allows for the
collection of data that are available for scientific research and public use. One major
advantage of satellite technology in precision farming is the ability to collect a large
amount of data about the field, covering a wide area in a short time. Satellites can
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also provide various weather data and help with machinery positioning. However,
bad weather conditions like dense clouds and fog can limit these opportunities.
Actually for remote sensing purposes, the main active constellations are:

1. Landsat program by NASA is the first space program devoted to data acquisi-
tion through remote sensing;

2. Sentinel2 and Corine Land Cover belong to the Copernicus program by ESA,
they are specifically developed for image acquisition through remote sensing
techniques;

3. Terra and Aqua is operated by NASA, it provides remote sensing data for
studying the Earth’s climate, atmosphere, land, and oceans;

4. SPOT is operated by Airbus Defence and Space, it provides high-resolution
imagery for various applications including agriculture, forestry, and defense.

5. RapidEye is operated by Planet Labs, it provides multispectral imagery for
various applications including agriculture, mapping, and disaster management.

The Landsat program by NASA, National Aeronautics and Space Administration,
is the longest-running civil satellite program. It was launched in 1975, and the most
recent launch was Landsat 9 on September 27, 2021. Only Landsat 8 and Landsat
9 are currently active. This system has eight spectral bands with spatial resolution
ranging from 15 to 60 meters and a temporal resolution of 16 days. It has different
applications in agriculture, cartography, geology, forestry, and surveillance.

In addition, in 2015 the ESA launched the Sentinel-2 mission as part of the
Copernicus program. It comprises a constellation of two polar-orbiting satellites,
Figure 2.5, which aim to monitor variability in land surface conditions. The swath
width is 290 km, and the revisits time is between 10 to 5 days at the equator with
2 satellites under cloud-free conditions and between 2 to 3 days at mid-latitudes in
the same conditions.

The main differences between the constellations are the spatial and temporal
resolution. Landsat satellites have about 30 meters of spatial resolution and a
temporal resolution ranging from 8 to 16 days, which may not be enough during
certain growing seasons. In contrast, Sentinel-2 satellites have a 10-meter spatial
resolution and a temporal resolution ranging from 3 to 5 days. It’s important to
note that some data may be lost due to bad weather conditions, which must be
taken into consideration.

2.3.2 Unmanned Aerial System
UAS is a vehicle that is operated without a human pilot on board, it typically
consists of three main components: the UAS or drone, a ground-based control
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Figure 2.5: Examples of multispectral images acquired by Sentinel-2, the same
image captured by the satellite processed in different ways gives false colour maps

station, and a communication link between the two. They can be equipped with
remote sensing sensors as shown in the first drone in Figure 2.7. Remote sensing
is one of the more common applications connected with UAS technology. On top
of them, high-resolution multispectral or hyperspectral cameras can be carried,
which are able to collect huge amounts of images with high resolution. This feature
is enhanced by the possibility to plan and schedule flights in order to obtain a
repeatable acquisition protocol. The most advanced drones can carry out the
mission without human intervention. This feature allows farmers to automate
and deepen the study of a field portion that may require specific activity. These
systems are often connected to an automatic drone charging station that enables
the industrial drone to land, take off, recharge the batteries, and download and
upload data.

2.4 ICT technologies supporting remote sensing

2.4.1 GNSS positioning
GPS, Global Positioning System, GALILEO, GLONASS and BeiDou are GNSS,
Global Navigation Satellite System providing positioning and timing information
worldwide. They are provided respectively by United States government, EU,
Russian Federation and Republic of China. RTK, Real-Time Kinematic instead is
a high precision positioning technique used to determine the location of a receiver
with centimetre-level accuracy in real-time, it exploits the GNSS systems. RTK
positioning relies on a technique called carrier-phase differential GPS, which involves
using two receivers, a base station and a rover, to calculate highly precise positioning
information. The base station receives signals from satellites and calculates its
precise position using carrier-phase measurements, which are extremely accurate
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but prone to errors. The rover also receives signals from satellites, and the difference
between the carrier-phase measurements at the base station and the rover is used
to calculate the precise position of the rover in real time. RTK positioning systems
can also provide additional information, such as heading and velocity, to further
enhance the accuracy of navigation and control applications. RTK positioning is
commonly used in applications that require high accuracy, such as land surveying
and precision agriculture, exploiting UAS. In Figure 2.6, a UAS equipped with
RTK is reported.

Figure 2.6: The RTK positioning service is provided by the circular element on
the top of the UAS.

2.4.2 Optical emission spectroscopy
Optical emission spectroscopy , OES, is a remote sensing technique that is based
on the detection of an object’s reflectance, which is the intensity of radiation
emitted by an object when it is hit by solar or artificial light. The term reflectance
refers to the electromagnetic radiation intensity reflected by an object subject to
incident radiation. In contrast, transmittance refers to the object’s ability to be
penetrated by the incident radiation, and absorbance refers to the electromagnetic
radiation intensity absorbed by an object subject to incident radiation. The sum
of these parameters is always 1, and they together completely describe an object’s
electromagnetic signature.

A spectrometer is generally used to perform this kind of analysis. This term
refers to several tools for measuring electromagnetic radiation. The basic principle
involves exploiting wave interference to decompose radiation into its wavelengths
and measuring them through a photodiode.
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2.5 Others ICTs exploited by precision farming
UASs are an establish technology, their first appearance was in the early twentieth
century. Then, they experienced rapid development during the two world wars
and again with transistor engineering in the sixties. UASs have been affordable
to common users since 2006, but it was only in the last few years that the EU
Commission began working on producing a common European directive for both
recreational and working use.

Currently, different UAS typologies can be used for several purposes, such as
remote sensing, precision farming, surveillance, and search and rescue. In the
near future, drones might be used for the autonomous delivery of drugs and small
packages, as well as flying taxis for people. Example of UASs exploited in smart
farming is reported in Figure 2.7: on the left a multispectral camera-equipped
drone, which is flexible and easy to use and generally able to cover surface lower
than one kilometer square, then a fixed-wing drone in the middle, with a high
precision positioning system which is able to fly very long distances, and finally a
quadcopter spraying fertilizers or pesticides on the right, able to shoulder payloads
up to 30 kilograms. The main potential benefits of using UAS in precision farming

Figure 2.7: Examples of UAS types.

is to have the possibility to cover large areas quickly and efficiently, saving farmers
time and labor cost, to sense and mapping the crop field improving monitoring
activities, to harvest and to spraying pesticides or fertilizers. On the other hand
the drawbacks are high initial investment, technical limitations, such as battery
life and weather condition, and regulatory restrictions.

In the agricultural field, the EU issued the CE 128/09 directive in 2009 [12],
which defines some boundaries in the use of phytosanitary substances through UAS.
In Italy, this directive was adopted earlier, first with Decreto Legislativo 150/2012
and then with PAN, Piano Azione Nazionale, in 2014. This policy introduced
strong limitations on the use of drones in smart agriculture. Article 14 states:
"Aerial spraying of pesticides has the potential to cause significant adverse impacts
on human health and the environment, particularly from spray drift. Therefore,
aerial spraying should generally be prohibited with derogations possible where it
represents clear advantages in terms of reduced impacts on human health and the
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environment in comparison with other spraying methods, or where there are no
viable alternatives, provided that the best available technology to reduce drift is used."
Nowadays, an effective and comprehensive international directive that regulates
the use of flying drones for both working and recreational use is still missing.

In Italy, the size of a drone can vary from a few hundred grams, which only
requires registration with ENAC, Ente Nazionale Aviazione Civile Italiana, to a
few kilograms, which require a complete license.

Satellites and flying drones are limited in their ability to collect data from the
upper portions of plants and areas covered by leaves. To overcome these limitations,
rovers are used as autonomous ground vehicles to collect data, such as images
or other measurements. Rovers can navigate around the field and move in close
proximity to the plants, allowing for more detailed and accurate data collection.
Figure 2.8 shows an example of a rover used for agricultural applications.

Figure 2.8: A small rover moving in a cornfield.

Widely spread in the large farms of the Po Valley, France, Germany, and the
USA are autonomous agricultural machinery tracked by high-quality positioning
systems. A few examples are shown in Figure 2.9. Thanks to the positioning
system, the vehicles can customize the amount of fertilizer, water, and pesticides
specifically for each portion of the field. In addition to that, high-tech sensors can
be installed on these machines to collect data about the ground and plant health
status.

Figure 2.9: Autonomous machinery used without worker monitoring.

18



ICT technologies for precision farming

On-field sensors are an established technology used for several decades in all
sectors of agriculture and livestock. Nowadays, integrated systems based on
networks of sensors and devices are available on the market that collaborate to
generate a complete and in-depth vision of the fields. Alternatively, punctual
solutions can measure the values of a restricted area. An example is the weather
station, which can sense climate parameters such as air temperature and humidity,
wind speed and direction, and rain volumes, as shown in Figure 2.10. More complex
systems can measure the leaf coverage, terrain humidity, and detect pests or illnesses
using cameras and AI image segmentation algorithms.

Figure 2.10: Example of weather station.

2.6 Algorithms
The described systems collect a large amount of data that needs to be processed
and analyzed to extract useful information to manage the entire agricultural
chain. First of all, management software are quite common. They help the
farmer in warehouse management, planning working activities, and controlling and
maintaining machinery.

In this scenario, AI and ML machine learning approaches have a primary role.
In fact, thanks to them, generating trends, models, and predictions are possible.
Examples of algorithms exploited in smart agriculture are:

1. NN, Neural network, for data prediction: CNN, Convolutional Neural Networks,
are often used to learn time-series trends end to predict future values of
temperature and humidity;

2. Computer vision algorithms: R-CNN, Region proposal Convolutional Neural
Network, mask R-CNN and YOLO, You Look Only Once are image and
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semantic segmentation algorithms that can identify determined objects in an
input image, this class of algorithms are exploited to detect pests and illnesses;

3. Remote sensing algorithms and vegetation index: from the computation of the
vegetation indexes is easy to create specific maps for optimizing the irrigation
process and phytosanitary and fertilisers distribution process;

4. Mathematical models correlate the weather condition with plants’ growth
levels.

In the last few years, the concept of blockchain has also affected the agricultural
sector. It allows us to trace the agri-food supply chain and monitor food production,
transformation, and distribution. The goal is to certify the origin of the product,
mainly IGP, DOP, DOC, and DOCG ones, making the customer aware of the entire
supply chain and the high-quality value products.

2.6.1 Computer vision algorithms in precision farming
Computer vision is an interdisciplinary field that deals with how computers can
interpret and understand digital images or videos. It involves developing algorithms
and techniques that allow computers to analyze, process, and extract meaningful
information from visual data. This field combines elements from computer science,
mathematics, physics, and biology to create artificial intelligence systems that can
perform tasks such as image and object recognition, image segmentation, motion
analysis, and 3D reconstruction.

In precision farming, often the background is complex, and the objects to detect
are small and colored in the same way as the surrounding vegetation. Consequently,
computer vision techniques can be difficult to implement. It was necessary to study
and evolve algorithms for almost ten years to obtain efficient AI software that can
detect precise objects in these scenarios.

Image segmentation is a ML method based on digital image breaking down
into subgroups called image segments. An example is shown in Figure 2.11. The
goal is to reduce the image complexity to make further processing possible. In
the object detection a ML model processes the segments and gives as output the
bounding boxes identifying specific labels. In Figure 2.12, a schema is shown about
the logical steps of object detection, [13].

The evolution of image segmentation has led to the development of instance
segmentation and semantic segmentation. Instance segmentation is a special form of
image segmentation that deals with detecting instances of objects and demarcating
their boundaries. It groups pixels in a semantically meaningful way, as shown
in the example in Figure 2.13. In fact, both image segmentation and instance
segmentation are performed with deep learning techniques, which are a class of
ML methods based on NNs. The CNN and the RCNN belong to this family, [13].
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Figure 2.11: On the top row the image is divided into subgroups, called segments
or regions, based on the pixel analysis. On the bottom row instead, the bounding
boxes are obtained from the region’s proposal.

Figure 2.12: In this schema, the input is an image while the output is the searched
objects. In order to obtain that, the first step is the detection of regions of interest
through image segmentation, then those are processed by a ML model.

2.6.2 From image segmentation to instance segmentation
One of the first effective approaches to the problem was proposed in 2014 by R.
Girshick et al [14]. They developed a scalable detection algorithm that improved
the success rate from 30.0% to 53.3%. This method was based on CNN, and then
on a pre-trained supervised ML classification model. The resulting algorithm was
called R-CNN. In the following years, the algorithm was significantly improved
by increasing the number of independent region proposals obtained from CNN to
2000 and by exploiting better classification algorithms, such as the Support Vector
Machine, SVM.
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Figure 2.13: In the instance segmentation the subgroups are obtained considering
not only the single features of a pixel but considering its role in the object detected.

The R-CNN algorithm had two obvious pitfalls: multi-stage training and test
stage resource requirements, and the limitation on the input image size. To fix the
first issue, He et al. [15] proposed Fast R-CNN in 2015, which achieved significantly
higher performance in less time and with fewer resources. In the same year, the
fixed-size input requirement was improved by He et al [16] with the Spatial Pyramid
Pooling, a pooling layer in the CNN that does not require a fixed-size input image.

Another improvement in the R-CNN family algorithms was the Faster R-CNN.
It was able to reduce the region proposal stage from 2 seconds to 10 milliseconds
per image, which was the bottleneck of the system at the time, thanks to the Region
Proposal Network, RPN, algorithm. The RPN is a fully convolutional network that
simultaneously predicts object bounds and objectness scores at each position. Ren
et al. proposed this solution in 2015, [17].

The Mask R-CNN extends the Faster R-CNN by adding a branch for predicting
segmentation masks on each region of interest. Like its predecessors, the Mask
R-CNN is based on two steps, the RPN and the classifier, as reported in [18].

Finally, YOLO was presented for the first time in 2016 [19]. It is currently the
best, fastest, and most accurate computer vision algorithm to perform instance
segmentation. Its main feature is that it predicts multiple bounding boxes and
class probabilities using features from the entire image to predict each bounding
box.
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2.6.3 YOLO family algorithm
As described in the previous section, the YOLO family is a class of deep learning
algorithms used for computer vision, exploiting the instance segmentation process
for object detection, [20]. The main steps are:

1. YOLO takes the input image and splits it into square grids;

2. On each grid, image classification and localization are applied, with only one
object per grid;

3. Each grid is responsible to detect the object for which its centre falls into it;

4. For each grid, some bounding boxes with confidence scores are predicted.

The confidence scores reflect how confident the model is about an object con-
tained in a bounding box.

The YOLO network design is inspired by the GoogLeNet model for image
classification, Figure 2.14, which is a variant of the Inception Network, an important
milestone in the development of CNN classifiers through deep learning [21]. Its
network has 24 convolutional layers used as features extractors, followed by 2 fully
connected layers used to predict the coordinates of bounding boxes. Convolutional

Figure 2.14: GoogLeNet network for image classification, a variant of Inception
Network: the blue boxes are convolutional layers and fully connected layers, the
red ones are max-pooling layers, the yellows are softmax activation layers.

layers are pre-trained with the ImageNet image database, [22], at half the resolution
and then double the resolution for detection. YOLO uses a linear activation function
for the final layer and leaky ReLU for all other layers.

YOLO might have some limitations as it imposes a maximum of 2 bounding
box predictions for each grid cell, which limits the number of nearby objects that
the model can predict. Additionally, it struggles with small objects that appear in
groups, such as flocks of birds.

Other variants include Fast YOLO, which uses 9 convolutional layers instead of
24, and YOLOv2 and YOLOv3. YOLOv2 uses 5 max-pooling layers and a softmax
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layer instead of the Darknet architecture. It includes batch normalization, which
leads to significant improvements in convergence and eliminates other forms of
regularization, and drops out layers without overfitting. Overfitting occurs when
a model is trained too well on the training data, to the point that it starts to
fit the noise in the data rather than the underlying patterns. Consequently, it
performs very well on the training data but generalizes poorly to unseen data. It
can occur when a model becomes too complex and captures both the signal and
the noise in the training data, or when there are too few training examples, [23].
Additionally, it runs a K-Means clustering algorithm on the bounding boxes to get
priors or anchors, which are a set of predefined bounding boxes of a certain height
and width used to capture the scale and aspect ratio of specific object classes to be
predicted. This is useful to detect multiple objects, objects with different scales,
and overlapping objects, improving the speed and efficiency by avoiding the need
to scan the image using a sliding window.

Finally, YOLOv3 uses 9 anchors, employs logistic regression instead of the
softmax function, and uses Darknet-53 with 53 convolutional layers.

Figure 2.15: YOLOv3 network schema.

2.6.4 Image and semantic segmentation in pest detection
According to [24], between 2010 and 2020, China, the USA, Europe, and Brazil
published 980 studies about computer vision in precision farming. In 78.3% of
these studies, the goal was to identify crop pests, with only 3 papers targeting
beneficial insects, bee species, and predatory species. Thanks to the increasing
trend of deep learning methods, such as CNNs, it is now possible to identify up to
28 classes of insects in entomology observations.

The evolution of pest image segmentation algorithms follows the evolution of
computer vision methods from image segmentation to semantic segmentation. As
described by Kasinathan et al., of several ML algorithms analyzed, CNNs achieved
more than 90% precision with 24 classes on insects, while other classifiers such as
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NN, SVM, KNN, k-nearest neighbors, and NB, naive Bayes, achieved classification
accuracy rates between 30% and 75%.

Later, Li et al. [25] compared the most effective deep learning methods in
semantic segmentation. They compared the Faster R-CNN, Mask R-CNN, and
YOLOv5 algorithms, and all obtained classification accuracy rates higher than
97%. The comparison was performed across several databases: for the Baidu AI
insect database characterized by simple background images, YOLOv5 was the best
method, while for the IP102 database with complex backgrounds and abundant
categories, the optimal solution was Faster and Mask R-CNN.

With the spread of Platform as a Service, PaaS, systems in recent years, the
common goal is to provide mobile applications for pest recognition based on cloud
computing. An example is presented by Esmail Karar et al. [26], who provided
a mobile application able to identify pests such as Aphids, Cicadellidae, Flax
Budworm, Flea Beetles, and Red Spider with an accuracy of 99%, exploiting the
Faster R-CNN algorithm.
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Chapter 3

Case study description

The object of this thesis is detecting and quantifying the presence of Popillia
Japonica Neuman that have attacked a vineyard. This is part of a more general
goal, which is to monitor a field and provide a hint to the farmer on how to act
in advance in case the pests start to spread. The way used to achieve this aim is
through advanced technologies, such as remote sensing, satellites, drones, and AI
algorithms. The research was performed near Novara in Piedmont, Italy, thanks to
the technical support of the DIATI department of the Politecnico di Torino and
the collaboration with the Consorzio Tutela Nebbioli Alto Piemonte.

3.1 Popillia Japonica in Italy
The Popillia Japonica is known to the EPPO, European and Mediterranean Plant
Protection Organization, and it was reported in the CE 2000/29 directive by the EU.
This insect is also present in the central-eastern United States, Canada, Central
Europe, Japan, and some Indian areas. In figures 3.1, 3.2, and 3.3, some plots,
reported by [27], show the occurrence of the insect in terms of month, year, and
geographical area.

The Piedmont region website [28] reported that in July 2014, in the Parco
Naturale del Ticino, the beetle Popillia Japonica was found for the first time. This
insect is native to Japan. Since its first detection, many monitoring, containment,
and prevention activities have started. To fight the insect sustainably, farmers and
phytosanitary authorities have used traps, treatments, and biological insecticides
based on entomopathogenic nematodes. However, these actions have failed, and
the pest is present in Piedmont. It attacks all of the eastern region. The area is
shown in Figure 3.4.

Consequently, the Italian government issued the D.M. 22 Gennaio 2018 about
some emergency measures to avoid the spread of the pest within the national borders.
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Figure 3.1: As shown in this plot, the population increases by the end of May and
strongly in June and July. During August, September and October the population
decreases.

Figure 3.2: The number of occurrences per year increases exponentially since the
beginning of the twenty-first century.

In this document, some risk areas were defined, and guidelines were provided on
how to control and monitor larvae and adults, eventually using phytosanitary
treatments. The government also allocated economic aid for farmers.

3.2 The Novara province vineyards
The Novara province is located in the north east of Piedmont, as shown in Figure
3.5, and it is bordered by the Ticino and Sesia rivers. Physically, the region is
characterized by hilly areas covered by vineyards and flat areas of the Po valley.
The elevation ranges from 150 to 300 meters above sea level.

The research was performed in Ghemme and Briona, Figure 3.6, between the
beginning of June 2022 to the end of July 2022. They are known for the production
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Figure 3.3: The geographical spread of the insects: the USA is the country with
the higher number of occurrences, then Canada, Portugal and Japan have a similar
pests diffusion, then Italy has several attacked sites between 100 and 1000.

Figure 3.4: Maps obtained by ATTO DD 872/A1703B/2021 from the Piedmont
government, updating the delimited area for Popillia Japonica presence.
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Figure 3.5: Piedmont region, in
red the Novara province.

of Ghemme DOCG wine, which is obtained from Nebbiolo grapes, 85% and from
Vespoli or Uva Rara grapes, 15%. The wine has a minimum alcohol volume of
12.0%, an intense garnet red color, and a tannic and particularly structured taste.

The Ghemme vineyards are located along slopes or on the top of low hills,

Figure 3.6: A Landscape of Ghemme city vineyards.

which sometimes end with wide highlands. Woods and lawns are widely spread,
contributing to a humid micro-climate that provides a great environment for the
growth of Popillia Japonica. The weather is characterized by warm summers,
between 17°C and 31°C, and very cold winters, between -3°C and 10°C. The wettest
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months are April, May, October, and November, and the sky is mostly cloudy.
Despite this, the climate is changing due to global warming. In 2022, the rains
diminished and were concentrated in a few days at the end of June. Additionally,
the average temperature increased in spring and summer. In these specific weather
conditions, the spread of the analyzed pest was concentrated in a short period after
the rain, thanks to a high level of humidity and warm temperature.

3.3 Popillia Japonica entomology
As previously described in Section 1.2, exotic pests are one of the most invasive
challenges that farmers have to deal with in the near future. In order to develop
an effective ICT solution to counteract the spread of these insects, studying their
entomology and phenology is necessary. From this research, all the technical steps
and studies required to achieve the goal will be derived.

In Figure 3.7, a larvae and an adult are shown. The insect appears in green
and brown on the head, and green and coppery on the back. Finally, it has tufts
on the backside that allow it to be distinguished from other beetles, like Anomala
Vitis, Mimela Junii, Cetonia Aurata and Anisoplia Agricola, shown in Figure 3.7.
It is between 8 and 12 millimetres long and between 5 and 7 millimetres wide. The
larvae are about 30 millimetres long, and their color changes between white and
light brown.

It is a pest, and adult specimens can attack different crops such as fruit trees,
vines, hazel trees, as well as some cereals and vegetables. An example of its impact
on a vine is shown in Figure 3.8. They feed on leaves and fruits, reducing the plant’s
photosynthetic capacity and ultimately causing a reduction in production. On the
other hand, the larvae, which are born in the soil, can harm turf and pastures by
feeding on their roots. The Popillia Japonica sleeps during the night and awakens
with the heat of the sun. At sunrise, it tends to stay stationary. Even though
stressed, it starts to fly when the surrounding temperature reaches a certain value.
This is the moment in which treatment and data collection can be done.

3.4 Popillia Japonica in the literature
In the literature, several proposed solutions aim to avoid the spread and negative
effects of Popillia Japonica. Some solutions adopt a mechanical approach, such as
traps, while others exploit bacteria to counter the pest’s diffusion. The common
goal is to avoid the use of insecticides that can have negative effects on other insects,
crops, and the soil. For example, in their work [29], Pinero and Dudenhoeffer
proposed a novel mass trapping system that captured the Popillia Japonica in
elderberry and blueberry orchards in Missouri, USA. Over 3 years, 10.3 million
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Figure 3.7: Images of the Popillia Japonica Newman adult and larvae and other
similar insects.

Figure 3.8: In the picture is clear the presence of some insects and the loss of
lushness of the leaves.
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insects were collected, reducing the damage. In contrast, Marianelli et al. proposed
an integrated pest management approach to improve pest control and monitoring
in [30]. LLIN, or Long-Lasting Insecticide-treated Nets, are used as an attract-
and-kill strategy. L. Marianelli developed different nets characterized by different
insecticides, and the results showed that the viability of the Japanese beetle
was strongly affected by the exposure to LLINs. After 24 hours, all the treated
individuals were affected, and often 100% of the pests were killed, even after a
short exposure.

An alternative approach is presented in [31], the work of Carl T. Redmond et
al. where the pests are fought with target-selective biopesticides. The Bacillus
Thuringiensis Galleriae has a strong effect on the spread of the Popillia Japonica,
reducing the insect’s leaves feeding for a period between 3 to 14 days. However, it
fails to control the pest in the turfgrass soils.

Improving monitoring and control techniques is another common goal against
the spread of Popillia Japonica. In [32] of Bruce A. Hungate et al., hydrogen
isotope records are used to evaluate the geographic position of the insects. The
hydrogen isotope precipitation, specific to a particular area, can be transferred to
the insects and then analyzed to define the time and the place from which that
generation of pests came. This study is useful for verifying the efficacy of insect
control and monitoring measurements.
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Chapter 4

ICT solutions and
methodologies

4.1 ICTs solutions
The thesis approach is multi-scale, considering satellites and UASs, and multi-
resolution, considering several remote sensing sensors, in order to test a wide
quantity of possible solutions and identify the best one for the proposed case. The
research is composed by three main steps, reported by the schema in Figure 4.1.

Figure 4.1: Research steps schema.
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The step 1 is the VIs analysis, that gives as result the charts of the NDVI, EVI,
SAVI curves. The step 2 is composed by the spectrometric analysis and the data
collection. It gives as results the wine leaf and Popillia Japonica spectrometric
signatures, the data collection protocol and the NIR and RGB datasets. Finally
during step 3 the AI computer vision detection models are developed.

4.1.1 VIs analysis
The first approach to achieve the thesis goal, the detection and counting of Popillia
Japonica in the vineyard, is done with satellites, particularly with the data collected
by the Sentinel-2 mission belonging to the ESA Copernicus program. Those data
does not require the radiometric correction, which is previously applied on them.

The data is available for public and private use through several online services
and APIs such as Google Earth Engine [33]. It is a SaaS, Software as a Service,
provided by Google that allows writing scripts and managing a multi-petabyte
catalog of satellite imagery and geospatial datasets with planetary-scale analysis
capabilities. It provides an online JavaScript dashboard and many Python and
JavaScript APIs, as shown in Figure 4.2.

Figure 4.2: The Google Earth Engine dashboard, it present a terminal for the
output, a map to visualize the results and IDE for coding.

4.1.2 Spectrometric signatures and data collection
The second research step is the vine leaf and Popillia Japonica spectral char-
acterizations in order to identify the best practise in the remote sensing data
collection.
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This analysis is performed with the Ocean Insights HR spectrometer, [34]. The
active instrument is composed of a halogen lamp that generates a light beam using
a collimator. It is then transmitted through an optical fiber to the analyzed object,
which finally reflects the light and generates its spectrometric signature detected
by the instrument. In Figure 4.3, some steps of the experiment are shown.

Figure 4.3: The miniature spectrometer components are visible: on the left the
halogen lamp and the spectrometer, the blue cable is the optical fibre and the
black parallelepiped is the collimator. The white circle is used to calibrate the
instruments. On the right the spectrometric signature acquisition phase on the
Popillia Japonica.

After that there is the data collection. Between the beginning of June 2022
and the end of July 2022, a significant amount of data was collected through UAS
equipped with multispectral and RGB cameras in several missions carried out in
Ghemme and Briona, as detailed in Section 3.2, the locations are shown in Figure
4.4. The basic features of each mission are reported in Table 3.1.

Figure 4.4: Novara city and Ghemme and Briona vineyards geographical position.

The DJI Matrice 300, shown in Figure 4.5, is an industrial UAS capable of
carrying various sensors such as RGB, thermal, and multispectral cameras. More
details can be found on the website [35]. In this thesis, this drone is equipped
with a high-resolution multispectral camera and RTK positioning service. This
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Date Time Location Camera Support Camera Data

3/06/2022 Early
morning

Briona (NO)
Ghemme (NO) DJI Matrice 300 Multispectral Photos

15/06/2022 Early
morning

Loc. Pianazze
Briona (NO)

6X Sensors
Sentera Multispectral Photos

17/06/2022 Early
morning

Briona (NO)
Ghemme (NO)

6X Sensors
Sentera Multispectral Photos

21/06/2022 Early
morning

Loc. Pianazze
Briona (NO)

DJI P4 /
Autel Nano EVO

Multispectral
/HD camera

Photos
/video

30/06/2022 Early
morning

Loc. Pianazze
Briona (NO) Autel Nano EVO HD camera Photos

/video

Table 4.1: Table reporting the characteristics of each mission between the begin-
ning of June 2022 to the end of July 2022, in Ghemme (NO) and Briona (NO).

sensor typology is also used in two other solutions: the DJI P4 Multispectral, a
UAS equipped with RTK positioning service, and the Sentera 6X Sensors, a hand
carried camera. The first one is shown in Figure 4.6, and more details can be found
on the website [36], while the second one is presented in Figure 4.7 and more details
can be found on the website [37]. Finally, during the missions, the Autel Evo Nano
is also used, which is a 249-gram drone with a high-resolution RGB camera capable
of capturing both photos and videos. More details can be found on the website
[38].

All the data were captured in early morning, all the missions were performed in
June and the acquisitions were done in similar light conditions. It is possible to
conclude that no radiometric correction is required.

4.1.3 AI computer vision development
The data collected during the missions are then processed and exploited as training
and testing images for the semantic segmentation algorithm, which has the goal
of identifying and counting the Popillia Japonica presented in the vineyard. The
computer vision algorithm identified is YOLOv3, which is available on GitHub
[39]. Its neural network is composed of 52 convolutional layers with different filter
values, ranging from 32 to 1024, and different activation functions such as mish,
linear, and leaky, as well as some max pool layers. The anchors are 9.

AI algorithms require high computational power, so in order to train the computer
vision algorithm, it was necessary to subscribe to Google Colab Pro, a PaaS,
Platform as a Service, that offers an online software development platform with
strong computational power through GPU Graphical Processing Unit, [40], it is
shown in Figure 4.8.

Given the semantic segmentation algorithm and the cleaned dataset, the main
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Figure 4.5: The DJI Matrice 300 used during the 3 June 2022 mission, fitted
with high technological equipment it is able to fly for more than 50 minutes, more
than 10 kilometres far away and carrying a payload of a few kilograms.

Figure 4.6: The DJI P4 Multispectral used during the 21 June 2022 mission,
fitted with multispectral equipment it is a high performance UAS with about 30
minutes fly time and 7 kilometer of transmission distance, [36].

steps needed to obtain a working computer vision solution are reported below:

1. Dataset labeling and subdivision into training and testing datasets;

2. Algorithm training and parameter tuning;

3. Algorithm testing and performance metrics computation.

Dataset labeling means creating files with the label and the bounding box
coordinates for each pest in each photo. There are many software tools to do this,
and each of them provides a different format for the information detected, based
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Figure 4.7: The Sentera 6X Sensors, used during the 15 and 17 June 2022
missions, is a hand-carried sensor, it is possible to sense closer to the studied object,
[37].

Figure 4.8: The Google Colab Pro notebook dashboard.

on different detection algorithms used. In order to use the chosen algorithm, a
Python GitHub application is used [41]. The layout is reported in Figure 4.9.

The training phase is a fundamental step used to train the network and indeed
to compute its weights, that are the parameters that connect the neurons in one
layer to the neurons in the next layer. These weights represent the strength of the
connections between the neurons, and they are adjusted during the training process
to optimize the network’s performance. The weights are initialized randomly before
training and are learned through the backpropagation algorithm. By adjusting the

38



ICT solutions and methodologies

Figure 4.9: Git Hub application layout used to label the images. In each red
square is contained an insect.

weights, the neural network is able to learn and to make predictions for the input
data it is trained on, and generalize to new input data, [23].

The main performance metric used is a loss function which represents the
difference between the predicted output and the actual output for a given input
example during the training phase. The loss function value represents the error of
the network’s predictions and is used to update the network’s weights in order to
minimize the error. There are many different loss functions that can be used in NN,
each with different properties and intended uses. For example, some common loss
functions include MSE, Mean Squared Error, binary cross-entropy and categorical
cross-entropy. The choice of loss function depends on the type of problem being
solved and the desired characteristics of the network’s output, [23].

4.2 Methodologies

4.2.1 VIs analysis
In this section, how the Sentinel-2 constellation is used for computing VIs is showed,
with the final goal of understanding if it is possible to recognize a field hit by
Popillia Japonica. Algorithm 1 reports the developed script launched with Google
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Earth Engine, common to all the VIs computation. Then, specific VI formulas are
shown in Algorithms 2, 3, and 4. The script inputs are:

1. The interested region’s geographic coordinates, centered at 45°32’36” Nord
and 8°29’45” East;

2. The cloud filter values, in this specific case equal to 10, used to filter images
covered by clouds;

3. The start date, January 2018, and end date, June 2022, of the analysis.

The region of analysis is a polygon, as shown in Figure 4.4, obtained by a list
of coordinates that define the vertices of the figure, Line 2. The collection is then
filtered considering the cloud filter values and the period of analysis, Line 4. Finally,
the desired VI is computed, Line 6, which is exploited to generate a regression
model. The complete used codes are reported in Appendix A.

Algorithm 1 General VI computation.
▷ Inputs list of geographic coordinates, cloud filter values, start date, end date
region = instance of a polygon defined by the list of geographic coordinates
dataset = instance of image collection recovered by Copernicus/S2_SR
datasetfiltered = filtering images considering cloud filter values, start data and
end date
V I = expressionV I

datasetnew = datasetfiltered + V I
model = VI regression modelling through time independent variable
▷ Plotting the datasetnew and the model

Algorithm 2 NDVI expression function.
NIR = image.(′B8′)
Red = image.(′B4′)
return (NIR − Red)/(NIR + Red)

Algorithm 3 SAVI expression function.
NIR = image.(′B8′)
Red = image.(′B4′)
return (NIR − Red)/(NIR + Red + 0.5) ∗ 1.5
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Algorithm 4 EVI expression function.
NIR = image.(′B8′)
Red = image.(′B4′)
Blue = image.(′B2′)
return (NIR − Red)/(NIR + 6 ∗ Red − 7.5 ∗ Blue + 1) ∗ 2.5

4.2.2 Spectrometric signatures
In the following section, how the Ocean Insight HD spectrometer is used to obtain
spectrometric signatures of vine leaves and pests is discussed. The obtained results
will be used to determine whether a multispectral camera can promptly distinguish
between the pest and the vine when scanning the vineyard.

Theoretically, vegetation exhibits a strong reflection in the NIR bandwidth as it
is not useful in the plant’s growth cycle, and it helps to avoid excessive warming
and chlorophyll evaporation. In contrast, it absorbs the incident radiation in the
visible red band, which is used in chlorophyll photosynthesis. However, literature
lacks specific articles about the spectrometric sign of a beetle obtained with incident
light. Nevertheless, we expect a low reflection in the NIR bandwidth due to the
general warming of insects caused by sunlight.

The instrument is configured as reported in Table 4.2. It needs to be calibrated
with a white circular sample, as shown in Figure 4.3. This practice is used to
eliminate noise generated by the electronic parts of the instrument. After calibration,
the light beam is used to measure four spectrometric signatures: on the vine leaves,
on the head and body of the pest, and on the whole insect.

Parameter Value
Sensed Bandwidth from 350 nm to 1000 nm

Resolution 1.33 nm
Frequency Scan 4500 scans per second

Table 4.2: The Ocean Insight HD spectrometer input parameters.

4.2.3 Data collection
For the thesis purpose, an existing dataset containing Popilla Japonica images is
firstly searched. One supplied by GBIF, Global Biodiversity Information Facility,
[27], with more than 23,000 images was found but those are not fit with the research
goal, because the insects are contextualized in different environments and they are
too much zoomed. Some examples in Figure 4.10.
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Figure 4.10: 3 GBIF datasets’ images, the background change for every photo
and the insect size and resolution are not comparable with the ones obtained with
drones.

Due to the fact that the dataset is not suitable for the thesis purposes, it is
necessary to create a custom dataset. As described in Section 4.1.2 and in Table
3.1, lots of images and videos were collected.

During the first mission on June 3, 2022, some test images were collected using the
DJI Matrice 300 fitted with high-performance equipment, such as a multispectral
camera and RTK positioning system. This UAS allows the user to plan at priori
the flight that the drone will perform autonomously. The time required is between
20 to 30 minutes to capture several photos of the target vineyard.

During the missions dated on June 15 and 17, 2022, the images were collected
with Sentera 6X Sensors, which allows for the capture of high-resolution photos
close to the wine rows. The difficulties faced are reported below:

1. The sensor has a 1.5 m focus distance to the scanned object and the wine
rows’ width is between 1.8 m and 2 m;

2. The sensor needs a battery supply and a device on which the control and
management dashboard is launched. At least 2 people are required.

In the mission on June 21, 2022, the collection tests were performed with a
DJI P4 Multispectral armed with a multispectral camera and with the Autel Nano
EVO. The multispectral drone allowed for covering a wide area in less time than
the Sentera 6X Sensors with only one UAS pilot. On the other hand, the second
drone is small, fast, and manageable, used to collect both images and video.

During the mission on June 30, 2022, several tests were done with the Autel
Nano EVO with the purpose of defining the flying protocol. In order to do that,
several parameters such as flying height, the camera inclination, the flying speed,
and the flying direction were tested.

The collected data needs to be classified and pre-processed before being used in
a precision farming algorithm or service. Firstly, all the wrong photos are deleted,
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and the video is cut in those parts that are useless, such as landing and take-off
phases. Finally, from the described missions, the following were captured:

1. About 150 photos and 15 minutes of video from the Autel Nano EVO;

2. About 100 photos from the DJI P4 Multispectral;

3. About 400 photos from the Sentera 6X Sensors;

4. About 200 from the DJI Matrice 300.

The data is classified by date and location, Ghemme or Briona, then considering
the type of sensors or UAS and finally by format, photo, or video. In the end the
images are labelled exploiting the tool reported in Figure 4.9.

4.2.4 AI computer vision development
As described in Section 4.1.1, the algorithm used for detecting the Popillia Japonica
in the vineyards is the YOLOv3 with the Darknet network.

The framework used is plug and play: the images need to be uploaded and the
training phase launched, tuning the network hyperparameters and setting some
configuration files. Finally the testing phase is run. This framework needs a Google
Drive connection and a specific folders structure for storing the results and cloning
the Darknet network git repository, it is shown in Figure 4.11.

Table 4.3 reports the main hyperparameters for the neural network. The batch
size is set to 64, while the maximum batch size is 6000. A batch is a subset of
the training dataset that is processed at once during the training process. By
using batches, the training process can be more efficient in terms of computational
resources and memory usage, especially for large datasets. Batches allow the model
to update its parameters after processing a subset of the data, rather than waiting
until the entire dataset has been processed. This framework is capable of changing
the batch size considering the system complexity and the computational resources
available, [23].

The learning rate, on the other hand, controls the step size at each iteration
while moving toward a minimum of a loss function during the training process. It
determines how quickly or slowly the model learns the optimal weights and biases
for the problem. If the learning rate is too high, the model may overshoot the
optimal weights and biases and fail to converge to the minimum of the loss function.
On the other hand, if the learning rate is too low, the model may take too long to
converge, and the training process may be slow. In this case, the learning rate is
set low due to the small size of the training dataset, [23].
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Figure 4.11: Schema of the project folders structure: the notebook file is the
main of the project, in the darknet folder there are all the NN configuration files
and settings, such as the searched label and the paths for the training and testing
datasets, while in the training and testing folders, there are respectively the weights
files and the NN results.

Parameter Value
Batch 64

Max Batches 6000
Learning Rate 0.001

Steps 4800,5400

Table 4.3: NN input hyperparameters, those values are set considering the
instruction of the used framework and the results of the training phase.

The algorithm exploits the transfer learning technique for which some pre-trained
weights are loaded in order to speed up and simplified the training process. In this
thesis, two training sessions were performed using RGB images and NIR images,
and two weight files were obtained. Each training session required approximately
14 hours of working time.

The goal is to identify which network guarantees better performance. The MSE
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loss function is used as the performance metric, defined as the average of the
squared differences between the predicted output and the actual output over a set
of examples N. The relative equation is reported in Equation 4.1.

MSE = 1
N

·
NØ

i=1
(ypredictedi

− yi)2 (4.1)

The testing phase consists of two steps: in the first step, the trained NNs
are tested with random RGB and NIR images to generally understand the NN
performances, while in the second step, the testing campaign is extended. During
the test phase, the algorithm provides the input image with the identified pests
labeled and for each detection, a confidence percentage is provided, which represents
how reliable the result is. For each output image, the number of insects detected
is also counted, considering only the number of identified pests with a confidence
percentage greater than 80%.
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Chapter 5

Results and discussion

The application of the Popillia Japonica case study resulted in the collection of a
large amount of data, which are analyzed in the following chapter to obtain several
protocols for identifying and counting pests in a vineyard.

5.1 VIs analysis results

As described in Section 4.2.1, various VIs were computed from the collected data,
and the results are shown in Figure 5.1. Upon examining these curves, it is apparent
they are quite similar, indicating homogenous vegetation coverage. As there is no
bare soil present, the SAVI correction factor is not useful and the EVI correction
factor for canopy background adjustment does not improve the results. A period
in which there are a few differences is from mid 2022 until early 2023 where the
NDVI serie presents lower values. Those were dry months with a few rains and
snowfalls, the health of the vegetation coverage is low and the SAVI and the EVI
indexes are less prone to that.

However, the plot reported in Figure 5.2 shows the cycle of photosynthetic
biomass levels, which correspond to changing seasons. From July to November, the
period during which the vineyard grows grapes, the photosynthetic biomass level is
higher.

While the Popillia Japonica has a significant impact on the reduction of leaf
coverage, as shown in Figure 5.3, its effect on the photosynthetic biomass level is
not detectable from satellites, as the measurements are also influenced by grass or
other plants close to the vine. Therefore, this ICT solution cannot be used for this
specific purpose. Alternatively, UAS can be considered as an alternative solution,
as they can be driven closer to the vine rows, thus increasing image resolution.

46



Results and discussion

Figure 5.1: In blue the EVI serie, in red the NDVI serie and in yellow the SAVI
serie.

5.2 Spectrometric signature resutls

As described in Section 4.2.2, the spectrometric signatures are used to determine
if wine leaves and pests are clearly distinguishable in the NIR bandwidth. The
results obtained through the spectrometer are shown below. In Figure 5.4, the vine
leaf signature is shown, which has a small peak around 550 nm corresponding to
the green color and a larger peak between 700 nm and 900 nm. The leaf also has a
high reflectance at the red edge and NIR bands.

Regarding Figure 5.5, the pest’s iridescent head exhibits low reflectance in the
NIR band, indicating that it absorbs most of the light. The resulting spectrometric
signature is flat and low, except for a slight increase in the infrared bandwidth,
possibly due to the insect’s heating. Similarly, the pest’s body shows a high
absorption factor, but with increasing reflectance between 700 nm and 1000 nm,
which defines its red and brown color, as shown in Figure 5.6. Overall, the
spectrometric signature of the pest is a combination of the head and the body
analysis, resulting in a low-medium reflectance between 700 nm and 1000 nm, as
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Figure 5.2: In blue the NDVI serie while in red the armonic model derived from
the computed values. The NDVI values follow a cyclical pattern meaning the
changing seasons.

Figure 5.3: An example of leaves eaten by the Popillia Japonica in a vine row.

depicted in Figure 5.7. In the collected images, the insect is very little, only a few
pixels represent it, consequently, those represent an averaging between the head
and the body spectrometric behaviours. In addition to that, as shown in Figure 5.8,
the pests look like black points in the NIR band, this is justified by low reflectance
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Figure 5.4: Reflectance diagram of a vine leaf.

at these frequencies.
Finally in the NIR band plants and insects have different spectrometric behaviours,
so working in that range can help pest detection. In the visible range instead, that
difference is not so visible and detecting the Popillia Japonica between leaves is
more difficult. These differences are visible in Figure 5.8 where the same pictures
in both bandwidths are shown.

5.3 Data collection results
As described in Section 4.2.3, in order to collect useful that through UAS equipped
with remote sensing sensors, several devices are tested during the missions presented
in Table 3.1.

The DJI Matrice 300 solution did not allow to obtain useful images because
the studied object is too far from lens camera and the pest are not detected as
exposed in Figure 5.9. The data collected with the Sentera 6X Sensors have enough
image resolution as shown in Figure 5.10. Anyway it is difficult to cover long
distances, such as a wine field, walking and carrying on such kind of sensor. The
most promising solution is to exploit the DJI P4 Multispectral. This UAS is littler
than the DJI Matrice 300, that allows to fly closer to the vine rows, it is equipped
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Figure 5.5: Reflectance diagram of the head of the Popillia Japonica.

Figure 5.6: Reflectance diagram of the body of the Popillia Japonica.

with a high resolution multispectral camera and it allows to cover long distances,
5.11.

The Autel Nano EVO is equipped with an RGB camera and can capture both
photos and videos. It was specifically used to define the best flying protocol for
ensuring correct data collection. Figure 5.12 shows a photo acquired using this
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Figure 5.7: Total body Popillia Japonica reflectance diagram.

Figure 5.8: On the left the RGB picture, on the right the same picture in NIR
bandwidth.

camera, and the features of the defined protocol are reported in Table 5.1. The
optimal flying height should be close enough to the vine row to capture the pests
in the picture, while also avoiding turbulence produced by the propeller that moves
the leaves. Additionally, the flying direction and camera inclination should provide
images containing both the top and side of the trees. Finally, the acquisition speed
should be adjusted to avoid out-of-focus photos. Although the flying protocol and
the NIR band, the images appear quite hard, as well, to be analysed by sight, in
fact, the pests are small and the background has different colours and shared areas.
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Figure 5.9: On the left an RGB image and on the right a NIR image
captured with DJI Matrice 300.

Figure 5.10: Images captured With the Sentera 6X Sensors.

Figure 5.11: Results obtained with DJI P4 Multispectral.
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Figure 5.12: This is an example of an image collected following the protocol
defined during the missions

Parameter Value
Flying height 2 m from the wine row top

Flying direction Perpendicular to the wine row
Camera inclination 45°

Flying speed 0.5-2.5 m/s
Acquisition method Photos and video

Resolution FullHD/Ultra HD and 2.7k

Table 5.1: Flying protocol features to collect as best as possible images for the
dataset creation.

5.4 AI computer vision development results

5.4.1 Labelling phase
The background in the collected images is complex, as shown in Figure 5.11.
Consequently, visually recognizing each Popillia Japonica present in both RGB
and NIR images is quite difficult, due to the color similarity between the insect
and the leaves. However, in NIR images, the labeling is slightly easier because of
the strong color difference between insects and leaves. On the other hand, strong
light absorption is not an exclusive pest feature.
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Labeling is essential, as "garbage in produces garbage out", meaning that
providing incorrect input to a system results in incorrect output. To improve the
labeling process quality, an automatic system can be used to exploit pre-trained
NNs to identify the desired object. Ultimately, two datasets of 72 images each were
labeled for the training phase, and four groups of 15 images were labeled for the
testing phase.

5.4.2 Training phase
As described in Section 4.2.4, two training phases of the YOLOv3 algorithm were
performed, one on the RGB dataset and one on the NIR one. The interim results
for the RGB dataset are reported in Table 5.2 and Figure 5.13, while the NIR
results are presented in Table 5.3 and Figures 5.14.

Iteration Loss Delta Loss Time left(h)
600 0.252 11.15
1700 0.126 1.15E-04 12.58
2900 0.073 4.38E-05 5.95
3600 0.065 1.09E-05 4.64
4800 0.044 1.82E-05 2.77
5900 0.043 9.09E-08 0.39
6000 0.043 7.00E-06 0.19

Table 5.2: Interim results of the RGB training phase.

Iteration Loss Delta Loss Time left(h)
1000 12.981 10.07
3000 12.695 1.43E-04 8.38
3600 10.078 4.36E-03 5.36
4200 8.827 2.09E-03 2.47
4800 8.644 3.05E-04 1.83
5400 6.645 3.33E-03 0.41
6000 8.412 -2.95E-03 0.05

Table 5.3: Interim results of the NIR training phase.

In the RGB training, the loss function decreases exponentially from about 0.3
to less than 0.05. During this phase, the YOLOv3 algorithm learns very fast and
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Figure 5.13: Plots on the RGB training phase: above the loss metric function
of the number of iteration, below the evolution of the estimated time needed to
complete the training.

precisely from the training images. However, this could be a case of overfitting,
which is a common problem in machine learning. It can occur when a model
becomes too complex and captures both the signal and the noise in the training
data, or when there are too few training examples. Both of these situations could
be linked to this case.
On the other hand, in the NIR training, the loss function is one to two orders of
magnitude higher, and it has a linear behavior. There is no overfitting problem,
but the testing accuracy could be low.
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Figure 5.14: Plots on the NIR training phase: above the loss metric function
of the number of iteration, below the evolution of the estimated time needed to
complete the training.

5.4.3 Testing phase

The testing phase is composed of two steps. In the first step, the general behavior
of the trained models is analyzed with different images, while in the second step,
we studied only the most promising cases. Table 5.4 reports the tests done during
this phase and the variables taken into account.

Considering the RGB tests, as expected, the NN trained with RGB images is
not able to detect Popillia Japonica in new data. As shown in Figure 5.15, only
one insect is detected in a picture recovered by Sentera 6X Sensors.

In Figure 5.16, there are no pests, as no insect is recognized by the algorithm,
and there are no false positive cases.

On the other hand, the results for the NIR tests are much better, as shown in
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Device Resolution Size Band Pests present Pests detected
Sentera 6X 5184X3888 2.7 MB RGB Severals 1
Sentera 6X 5184X3888 2.6 MB RGB None 0
Sentera 6X .png convertion NIR Severals Severals

DJI P4 1600X1300 856 KB RGB Severals 0
DJI P4 1600X1300 742 KB RGB None 0
DJI P4 1600X1300 742 KB NIR Severals Severals

Table 5.4: In table are reported the tests performed during the first step: the
NIR NN model guarantee better performance.

Figure 5.17, where YOLOv3 is able to detect several insects in an input test image,
which belongs to the same dataset used for training and it shares some features
with it. In the end with the same dataset size the NIR trained NN has obtained

Figure 5.15: The RGB trained NN is able to catch only one insect in the picture,
small violet square on the bottom.

much better results than the RGB trained one. Thanks to the complex background
and small dataset used, the RGB trained NN is proned to overfitting. The issue is
partially fixed with NIR trained NN where the environment is simplified thanks to
the lower amount of information carried out by the single NIR band.

In the second step the tests were performed on 4 groups of 15 images each:

1. Train-like NIR images, recovered with DJI P4 Multispectral, dated 21 June
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Figure 5.16: Image in which there are not false positive, no insect are present in
the picture.

Figure 5.17: The NN detects several pests, represented by the violet squares.

2022, in Briona (NO);

2. Sentera 6X Sensors NIR images, dated 15 June 2022, Briona (NO);
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3. Sentera 6X Sensors NIR images, dated 17 June 2022, Ghemme (NO);

4. Sentera 6X Sensors NIR images, dated 17 June 2022, Briona (NO);
In Table 5.5 the percentage of insects identified for each group are reported. A

threshold of 80% confidence value is applied on the detected pests.

Dataset Size Labelled
pests

Detected
pests

Detected
pests >80%

Perf.
tot. (%)

Perf.
>80% (%)

Train-like 15 329 170 159 52 48
15/06/2022 15 290 128 54 44 19
17/06/2022
Ghemme 15 703 155 5 22 8

17/06/2022
Briona 15 955 62 15 7 2

Table 5.5: In table are reported the performance recovered from the application
of the NIR NN model on each testing dataset.

Analyzing the Train-like dataset, example in Figure 5.18, about half of the
insects are detected and the 93% of the insect gain a score higher than 80%, as
shown in Figure 5.19. This dataset images are similar to the ones used in the
training phase.

Next, for the 15/06/2022 dataset, as shown in Figure 5.20, although the total
number of detected pests is similar to the previous case, the percentage of images
with 80% or higher confidence drops from 93% to 36%. This is due to a change in the
background, making it more difficult for the NN to identify the Popillia Japonica.
Finally, when the NN is applied to the 17/06/2022 Ghemme and 17/06/2022
Briona datasets, as shown in Figure 5.21, it exhibits similar behavior to group 2.
The confidence score distribution is shown in Figure 5.22. For groups 2, 3, and 4,
the percentage of labels with 80% or higher confidence drops below the threshold
value, indicating an increase in false positive probability.

5.4.4 Conclusions
In Section 2.6.3, it was noted that YOLO family algorithms limit the number of
nearby objects that the model can predict to a maximum of 2 bounding boxes for
each grid cell. In the 17/06/2022 Ghemme and 17/06/2022 Briona datasets, the
number of pests increased significantly, including the relative aggregates, which
presented the worst cases for the algorithm, and thus led to lower performance.
However, despite this, in the literature, the YOLO algorithm is successfully used
in this scenario, achieving results higher than 95% with careful training.
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Figure 5.18: Image example of group 1.

Figure 5.19: Group 1 label confidence distribution.

As previously described, the RGB trained NN is prone to overfitting due to
the complex background and small dataset size, and the hand-made labelling can
be challenging and inaccurate. Furthermore, the NIR-trained NN has difficulties
generalizing to the background of leaves and vegetation. Therefore, to have an
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Figure 5.20: Image example of group 2.

Figure 5.21: Images example of group 3 and 4.

efficient NN training, it is recommended to:

1. Exploit automatic labelling software in order to have more accurate results;

2. It is a good practise, often found in literature, using at least 500 training
pictures. If necessary, turn to data augmentation techniques such as flipping,
rotating, or scaling images, which can increase the effective size of the dataset
and improve the model’s performance with a smaller number of original images;

3. Collect photos from different points of view of the vine rows, possibly including
small parts of the sky, in order to change the background and reduce the
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Figure 5.22: Group 2 label confidence score distribution.

probability of overfitting.

In addition, to address overfitting, regularization techniques such as dropout, weight
decay, or early stopping can be applied. These techniques help the model to better
generalize to new, unseen data and improve its overall performance.

Finally, considering the results of the testing phase, it is possible to conclude
that the YOLOv3 algorithm can be used for insect detection, but adjustments and
tips need to be taken into account to have efficient software. NIR band allows
for extremely high performance compared to the RGB band, making it easier and
faster to achieve optimal NN training.
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Chapter 6

Conclusion

ICTs represent a set of innovative solutions that support the farmer’s decision-
making process and activity management, in particular, they are an effective
response to exotic pest fight. The objective of this thesis was to verify if remote
sensing combined with AI computer vision can identify and estimate the number
of pests in a vineyard attacked by Popillia Japonica Newman. To achieve this goal,
a VIs analysisis is firslty performed, then through a spectrometer the wine leaf and
the pest spectrometric signatures are obtained. Finally UASs are used to collect
datasets which are exploited in the AI computer vision algorithm.

From the tests performed it is derived that the VIs analysis cannot identify the
effects of the Popillia Japonica in a vineyard, due to the low image resolution and
large scale. On the other hand, UASs represent an effective way to collect NIR and
RGB datasets, consequently a specific data collection protocol is defined. At the
same time , the spectral signatures of the wine leaf and the insect were derived and
the strong differences between them were exploited to identify and to count the
pests with the YOLOv3 algorithm. In particular the NIR model performs better
than the RGB model which is affected by overfitting.

This research proves that the described technologies can be exploited to achieve
the thesis purposes and provides a list of tips and protocols for data collection and
processing, with the aim of speeding up future improvements. From this study, the
prominent role of data collection methodologies is apparent: the devices used, the
sensors exploited, the acquisition time, and the flying characteristics need to be
carefully defined. Equally important is knowledge of the studied environment, the
vineyard in this thesis, including which insects could be found in a vine field, which
agricultural treatments are done, and the entomological features of the studied
pest.

Future developments could be addressed to the improvements of the labeling
techniques and AI computer vision performance. For instance, in this work, the
RGB and NIR images are analyzed separately without considering the possibility
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of mixing red, green, blue, and NIR channels. It is supposed that mixing the
NIR and the Red channels could fix the non-exclusive Popillia Japonica Newman
spectrometric behavior problem and improve labeling techniques. Also, data pre-
processing can help achieve this goal by cleaning wrong or useless data, which
is mandatory to achieve high-quality results. Regarding the computer vision
algorithm, expanding and diversifying the data collection could improve the testing
confidence score. Moreover, the analysis of the distances between the insects might
allow the identification of pest agglomerations and the estimation of the relative
component numbers.

The potential of this project is very high. Popillia Japonica Newman detection
through remote sensing and AI computer vision could be supported by charging
stations that enable the UAS to land, takeoff, recharge the batteries, and upload
the collected data to a cloud, creating a completely autonomous pest detection
system.

Finally, what is expected in the near future is that ICTs will support all activities
in the agriculture sector with the goal of improving the quality and quantity of
agricultural products while taking into account environmental, social, and economic
sustainability.
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Appendix A

Popillia Japonica Satellite
Case Study

1 // Ghemme (NO) f i e l d geog raph i ca l c oo rd ina t e s
2 var r o i = ee . Geometry . Point ( [ 8 . 4 9 0 , 4 5 . 5 4 5 ] )
3 var l i s t _ c o o r d i n a t e s = [ [ 8 . 48395586013794 , 45 .54224663397568 ] ,
4 [ 8 .500628471374512 , 45 .54224663397568 ] ,
5 [ 8 .500628471374512 , 45 .55037651450808 ] ,
6 [ 8 .48395586013794 , 45 .55037651450808 ] ]
7 var r eg i on = ee . Geometry . Polygon ( l i s t _ c o o r d i n a t e s )
8 var t imeSta r tF i e ld= ’ system : time_start ’ ;
9 var timeEndField= ’ system : time_end ’ ;

10 // cloud image f i l t e r i n g value
11 var CLOUD_FILTER = 10
12

13 var s e n t i n e l 2 = ee . ImageCol l ec t ion ( ’COPERNICUS/S2_SR ’ ) . f i l t e r B o u n d s (
r eg i on )

14 // . f i l t e r D a t e ( t imeStar tF ie ld , timeEndField )
15 . s e l e c t ( ’B1 ’ , ’ B2 ’ , ’ B3 ’ , ’ B4 ’ , ’ B5 ’ , ’ B6 ’ , ’ B7 ’ , ’ B8 ’ , ’

B8A’ , ’ B9 ’ , ’ B11 ’ , ’ B12 ’ )
16 . f i l t e r ( ee . F i l t e r . l t ( ’CLOUDY_PIXEL_PERCENTAGE’ ,

CLOUD_FILTER) ) ;
17 Map. centerObject ( ro i , 10) ;
18

19 var addVar iables = func t i on ( image ) {
20 var dateStar t =ee . Date ( image . get ( t imeSta r tF i e ld ) ) ;
21 var dateEnd =ee . Date ( image . get ( timeEndField ) ) ;
22 var years = dateStar t . d i f f e r e n c e ( ee . Date . fromYMD(1980 ,1 ,1 ) , ’ year ’ )

;
23 var NDVI = image . no rma l i z edDi f f e r ence ( [ ’ B5 ’ , ’B4 ’ ] ) . rename ( ’NDVI’ ) ;
24 var EVI = image . exp r e s s i on (
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25 ’ 2 . 5 ∗ ( (NIR − RED) / (NIR + 6 ∗ RED − 7.5 ∗ BLUE + 1) ) ’ , {
26 ’NIR ’ : image . s e l e c t ( ’B8 ’ ) . d i v id e (10000) ,
27 ’RED’ : image . s e l e c t ( ’B4 ’ ) . d i v i d e (10000) ,
28 ’BLUE’ : image . s e l e c t ( ’B2 ’ ) . d i v id e (10000)
29 }) . rename ( " EVI " ) ;
30 var SAVI = image . exp r e s s i on (
31 ’ ( (NIR − Red) / (NIR + Red + 0 . 5 ) ) ∗ 1 . 5 ’ , {
32 ’NIR ’ : image . s e l e c t ( ’B8 ’ ) . d i v id e (10000) ,
33 ’Red ’ : image . s e l e c t ( ’B4 ’ ) . d i v id e (10000)
34 }) . rename ( ’SAVI ’ ) ;
35

36 re turn image
37 . addBands (NDVI) . f l o a t ( )
38 . addBands (EVI) . f l o a t ( )
39 . addBands (SAVI)
40 . addBands ( ee . Image ( years ) . rename ( ’ t ’ ) . f l o a t ( ) )
41 . addBands ( ee . Image . constant (1 ) ) ;
42 } ;
43

44 // adding bands f o r char t s c r e a t i o n
45 var f i l t e r e d S e n t i n e l 2 = s e n t i n e l 2
46 . f i l t e r B o u n d s ( r o i )
47 .map( addVar iables ) ;
48

49 // c r e a t i n g a image c o l l e c t i o n
50 var sudyarea = s e n t i n e l 2
51 . f i l t e r B o u n d s ( r eg i on )
52 var f i n a l = ee . ImageCol l ec t ion ( sudyarea .map( addVar iables ) ) ;
53

54

55 // p r i n t i n g some s t a t i s t i c s
56 var count = f i l t e r e d S e n t i n e l 2 . s i z e ( ) ;
57 pr in t ( ’ Count : ’ , count ) ;
58 var range = f i l t e r e d S e n t i n e l 2 . reduceColumns ( ee . Reducer . minMax( ) , [ "

system : t ime_start " ] ) //["2022 −05 −01"])
59 pr in t ( ’ Date range : ’ , ee . Date ( range . get ( ’ min ’ ) ) , ee . Date ( range . get ( ’

max ’ ) ) )
60

61

62 // p r i t i n g char t s : in order to change from to NDVI to SAVI or EVI
j u s t change

63 // . s e l e c t ( ’NDVI’ ) with . s e l e c t ( ’SAVI ’ ) or . s e l e c t ( ’EVI ’ )
64 var s e n t i n e l 2 c h a r t = ui . Chart . image . s e r i e s ( f i l t e r e d S e n t i n e l 2 . s e l e c t ( ’

NDVI’ ) , r o i )
65 . setChartType ( ’ ScatterChart ’ )
66 . s e tOpt ions ({
67 t i t l e : ’ Sent ine l −2 NDVI time s e r i e s at p i x e l ROI s i n c e 2017 ’ ,
68 t r e n d l i n e s : { 0 : {
69 c o l o r : ’ cc0000 ’
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70 }} ,
71 l ineWidth : 1 ,
72 po in tS i z e : 3 ,
73 }) ;
74

75 pr in t ( s e n t i n e l 2 c h a r t ) ;
76

77 // l i n e a r model , in order to change from to NDVI to SAVI or EVI j u s t
change

78 // St r ing ( ’NDVI’ ) with St r ing ( ’SAVI ’ ) or S t r ing ( ’EVI ’ )
79 var independents = ee . L i s t ( [ ’ constant ’ , ’ t ’ ] ) ;
80 var dependent = ee . S t r ing ( ’NDVI’ ) ;
81

82 // c a l c u l a t i n g a l i n e a r trend by " j o i n " the dep v a r i a b l e ( ( VI ) ) to
the indep one ( ( time ) ) and c r e a t i n g a l i n e a r r e g r e s s i o n

83 var trend = f i l t e r e d S e n t i n e l 2 . s e l e c t ( independents . add ( dependent ) )
84 . reduce ( ee . Reducer . l i n e a r R e g r e s s i o n ( independents . l ength ( ) , 1) ) ;
85

86 // c r e a t i n g a l i n e a r trend map on VI changes a c r o s s time
87 // Map. addLayer ( trend , {} , ’ trend array image ’ ) ;
88

89 var c o e f f i c i e n t s = trend . s e l e c t ( ’ c o e f f i c i e n t s ’ )
90 . a r rayPro j e c t ( [ 0 ] )
91 . a r rayF la t t en ( [ independents ] ) ;
92

93 var harmonicIndependents = ee . L i s t ( [ ’ constant ’ , ’ t ’ , ’ cos ’ , ’ s in ’ ] ) ;
94

95 var harmonicSent ine l = f i l t e r e d S e n t i n e l 2 .map( func t i on ( image ) {
96 var timeRadians = image . s e l e c t ( ’ t ’ ) . mul t ip ly (2∗Math . PI ) ;
97 re turn image
98 . addBands ( timeRadians . cos ( ) . rename ( ’ cos ’ ) )
99 . addBands ( timeRadians . s i n ( ) . rename ( ’ s in ’ ) ) ;

100 }) ;
101

102 var harmonicTrend = harmonicSent ine l
103 . s e l e c t ( harmonicIndependents . add ( dependent ) )
104 . reduce ( ee . Reducer . l i n e a r R e g r e s s i o n ({
105 numX: harmonicIndependents . l ength ( ) ,
106 numY: 1
107 }) ) ;
108

109 var harmonicTrendCoe f f i c i ent s = harmonicTrend . s e l e c t ( ’ c o e f f i c i e n t s ’ )
110 . a r rayPro j e c t ( [ 0 ] )
111 . a r rayF la t t en ( [ harmonicIndependents ] ) ;
112

113 var f i t tedHarmonic = harmonicSent ine l .map( func t i on ( image ) {
114 re turn image
115 . addBands ( ee . Image . constant (0 ) )
116 . addBands ( ee . Image . constant (0 ) )
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117 . addBands (
118 image . s e l e c t ( harmonicIndependents )
119 . mul t ip ly ( harmonicTrendCoe f f i c i ent s )
120 . reduce ( ’ sum ’ )
121 . rename ( ’ f i t t e d ’ ) ) ;
122 }) ;
123

124 // In order to change from NDVI to SAVI or EVI j u s t change ’NDVI’
with ’SAVI ’ or ’EVI ’

125 pr in t ( u i . Chart . image . s e r i e s (
126 f i t tedHarmonic . s e l e c t ( [ ’ f i t t e d ’ , ’NDVI ’ ] ) , ro i , ee . Reducer . mean ( ) ,

30)
127 . se tSer iesNames ( [ ’NDVI’ , ’ f i t t e d ’ ] )
128 . s e tOpt ions ({
129 t i t l e : ’ Harmonic model : o r i g i n a l and f i t t e d values ’ ,
130 l ineWidth : 1 ,
131 po in tS i z e : 3 ,
132

133 }) ) ;
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