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Summary

In recent years, shared micro-mobility services - including shared bicycles, e-scooters,
etc. - have gained momentum, also as an extension of public transportation such as
metro and buses. Thanks to their abilities to reduce air pollution and to improve
traffic congestion, as well as the advantages of their low cost and flexibility, which
could effectively alleviate "the last mile" problem, shared micro-mobility services
hence have gradually become an indispensable part of the urban transportation
system. However, the enhanced flexibility and the sharp increase in the number
of vehicles have also brought new challenges. One of the most significant is the
spontaneous imbalance problem especially in peak hours, which could lead to
the accumulation of scooters in some areas while unsatisfying demand in others,
resulting in a waste of resources and loss of profit.

In this context, this paper takes a dock-less e-scooters sharing system as the
research object, and proposes joint optimization of relocation and routing strategies.
Specifically, we solve the e-scooter imbalance problem in two phases. In the
first phase, we assume multiple dispatch trucks perform dynamic repositioning
of scooters while considering expected future demand, that is, trucks pick up a
certain number of scooters from the zones with surplus scooters and drop them off
at the zones with unsatisfied demand of scooters. At this phase, each truck is only
taking scooters from a single pick-up zone and bringing them to a single drop-off
zone, i.e., matching couples of zones. The relocation is dynamic: during a time slot,
the relocation operations take place while at the same time the customers are also
using scooters across zones. We formulate the dynamic repositioning problem as a
Mixed Integer Linear Programming (MILP) model to optimize the dispatch trucks’
relocation operation, that is, the number of scooters picked up/dropped off and
the corresponding zones. The model aims at maximizing total profit (that is, the
revenue of satisfied trips minus the relocation cost), taking into account parameters
including the predicted demand, the number and capacity of dispatch trucks, the
unit mileage cost per truck and the unit cost for relocating one scooter, the look-
ahead horizon and the optimization horizon. In the second phase, given the output
of the first model, a set of vertices representing city zones and the corresponding
relocation (positive in case of drop off, negative in case of pick up) is given, the
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dispatch trucks start from the depot with an empty load, passing all vertices and
performing the designated relocation operations follow proper routes, and finally
back to the depot. This problem is actually denoted as the Vehicle Routing Problem
with Pickup and Delivery (VRPPD). Two MILP models are formulated to optimize
the routes of multiple dispatch trucks. The first model M2.1 is constructed on the
basis of the classical Pickup and Delivery Traveling Salesman Problem (PDTSP),
in which each zone is visited exactly once. The objective function is to minimize
total routing cost, with the additional constraint of maximum routing time. While
the model M2.2 relax the traversing constraint, the dispatch trucks are allowed to
ignore the unfavourable zones, and correspondingly we introduce the unit relocation
revenue to incentivize dispatch trucks to fulfil as many designated relocation needs
as possible in profitable situations.

Then, the models are applied to solve toy case problems. We have designed 3
toy cases: One for the first phase, including 4 zones and 100 shared scooters in the
system, 2 scenarios are further distinguished based on different OD matrices. One
for the second phase, two couples of zones having a total number of relocations
of 11 scooters are given. And the third one is for joint optimization of relocation
and routing strategies, which includes 8 zones and 200 scooters. Through these toy
cases, we have verified the correctness and effectiveness of the proposed models, and
further discussed the impact of the different parameters. Specifically, in toy case 1,
larger truck capacities and numbers in most cases lead to higher profits until all trip
demands are met. Relocation costs directly affect relocation decisions and profits,
with higher costs resulting in fewer relocation operations and, in extreme cases, no
relocation at all. The impact of the look-ahead horizon on profit and relocation
strategy is not as straightforward as the other parameters, it is largely influenced
by other factors such as OD matrix, truck capacity, etc. Therefore, the optimal
look-ahead horizon should be customized to the specific scenario and parameter
settings. In toy case 2, we explore the difference between the two models in terms
of the feasible region. As well as in toy case 3, the results of 5 optimization round
is presented, showing a raise of 28.64% on average profit.

Finally, the developed joint optimization is applied to a practical case, in which
a trace of recorded e-scooter trips is collected from the city of Louisville. The result
of the developed joint optimization shows an increase of 6.6% in the average profit,
compared to the one without optimization.
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Chapter 1

Introduction

1.1 Shared mobility and shared micro-mobility
The concepts of shared mobility have gained popularity in recent years as an
alternative to traditional car ownership, providing affordable, convenient, and
sustainable transportation options for urban residents. The earliest shared mobility
service was car sharing, which was launched in Zurich, Switzerland in 1948[1]. Over
the following decades, shared mobility services rapidly developed around the world
and gave rise to various variants, Machado et al. [2] defined several modalities of
shared mobility, including station-based and free-floating car-sharing system (CS),
bike sharing system (BSS), personal vehicle sharing, carpooling, on-demand ride
services, etc.

Nowadays, bike sharing are often classified along with e-scooters, skateboards
and other small-scale vehicles as another innovative urban transportation solution,
known as shared micro-mobility services, due to the rapid development of micro-
transportation including shared bicycles in the past decade. Actually, the earliest
bike sharing appeared as early as 1965 - Amsterdam’s ’White Bicycle’[3], but it was
not until after 2015 that bike sharing services really developed rapidly around the
world and began to attract more and more attention[4]. E-scooters sharing service,
on the other hand, have only emerged in the past few years, but have quickly
become a significant part of micro-mobility services. Compared to other shared
mobility, micro-mobility services have advantages in various aspects, including the
following examples:

• Sustainability: Shared micro-mobility offers a sustainable mode of trans-
portation that reduces the environmental impact of traditional transportation
modes. Bicycles and e-scooters are (almost) emission-free and require minimal
energy to operate. By encouraging the use of shared micro-mobility, cities can
reduce their carbon footprint and improve air quality (see [5][6][7]).
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• Accessibility: Shared micro-mobility offers increased accessibility, expands
the reach of public transportation by providing users with a convenient and
flexible last-mile transportation option. This makes it easier for people to
access transportation in areas where public transit may not be available or
convenient, such as suburban or rural areas, or in places where cars cannot
easily reach, such as narrow streets in inner-city areas (see [8][9][10][11]).

• Flexibility: Shared micro-mobility devices can be faster and more maneuver-
able than cars, especially in congested urban areas and for short trips, such as
commuting to school or running errands, as well as for longer journeys up to
20km (see [12][13]).

• Health benefits: Shared micro-mobility services, particularly bicycles, can
provide health benefits to users by encouraging physical activity and reducing
sedentary behavior. Regular physical activity has been linked to a range of
health benefits, including reduced risk of chronic diseases and improved mental
health (see [14][15]).

In addition to their advantages, researchers have increasingly focused on various
aspects of shared mobility/micro-mobility, including the user behavior and prefer-
ences, as well as service design and optimization. One trend is that free-floating
sharing services are becoming more popular and gradually replacing station-based
sharing services. Taking bike sharing as an example, dock-less bike-sharing system
(DBS) refers to a bike rental service provided by companies in public areas without
fixed parking stations. It can be lock/unlock and pay by simply scanning the
QR code on the bike through a smartphone application, which provides greater
convenience and flexibility for users. In October 2017, a survey conducted in
Tianjin, China revealed the convenience of renting and returning bicycles, as well
as the ease of payment through a smartphone, were the two main reasons to choose
DBS [9]. Similar study refers also to car sharing (see [2][16][17]).

1.2 E-Scooter sharing system
An e-scooter, also known as an electric scooter, is a stand-up scooter powered by
an electric motor as shown in Figure 1.1. E-scooters typically have a maximum
speed of 24 to 32 km/h. These vehicles are designed to be small, lightweight, and
portable, making them an ideal option for short distance travel within urban areas.

The earliest e-scooter sharing system emerged in California in 2017, and rapidly
expanded to various countries over the world within a short span of a few years
[18]. According to statistics [19], by the end of 2019, electric scooter sharing had
already garnered more than 200,000 users in Europe alone, a usage rate four times
higher than that of bike-sharing.
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Presently, the vast majority of e-scooter sharing systems operate with a free-
floating model. A typical e-scooter sharing system operates through a smartphone
app, allowing users to rent the e-scooters offered by carrier. Using the app, users
can first locate nearby e-scooters available for rent, once the user finds a scooter,
they can use the app to scan the QR code on the e-scooter as shown in Figure 1.2,
which unlocks it and allows the user to start riding. When the user is finished with
the ride, they can park the e-scooter in the destination and click on the app to end
the rental. The app then charges the user’s account according to the time they
used the e-scooter.

Figure 1.1: electric-scooters
Figure 1.2: QR code on e-scooters

Similar to DBS, the ease of rental and return procedures is also one of the
reasons why e-scooter sharing has gained popularity. In fact, beyond that, e-
scooters share many similarities with bicycles, including the common benefits of
shared micro-mobility mentioned in 1.1, or the problem of improper parking and
safety concerns.

However, despite the similarities, as an emerging service, e-scooter sharing
systems still possess some distinct features that set them apart. For instance, travel
purposes of DBS and e-scooter sharing system are different [20], with DBS being
primarily utilized for commuting between home and workplace, while e-scooter
sharing system is used for leisurely purposes, owing to the greater fun factor and
less technical skill required for riding an e-scooter compared to a bicycle; [21] found
that e-scooter sharing systems had high repositioning ratios than DBS, as they
require repositioning for battery charging purposes, which is not a concern for DBS.
Conversely, weather conditions have a greater impact on DBS, with hot weather
causing a decrease in DBS trips but having a smaller impact on e-scooter sharing
systems; Due to the difference in propulsion, e-scooter sharing systems have longer
ranges and a broader user base [22].

3



Introduction

Due to the relatively short emergence of e-scooter sharing systems, there has not
been sufficient research and reporting on their unique characteristics, and policy
administrators and system carriers have not given them enough attention. A report
released by the European Road Safety Research Institutes[23] indicates that in
most European countries, e-scooter sharing systems are equated with DBS in the
development of relevant regulations. However, ignoring the differences between
e-scooter sharing systems and DBS could lead to improper management of the
e-scooter sharing systems or inadequate regulations, thereby shortening the life
cycle of shared scooters, increasing greenhouse gas emissions, and going against
the expected sustainability of e-scooter sharing systems [24]. Therefore, it is
important to treating e-scooter sharing systems differently from DBS in research
and developing appropriate system management policies and regulations.

1.3 The re-balancing problem
As the free-floating shared e-scooter systems play an increasingly important role in
cities due to their flexibility and convenience, the accompanying vehicle re-balancing
issue has become a big challenge.

On one hand, the success of shared e-scooter services heavily relies on the
efficient allocation and management of shared vehicles. Which allows users to easily
find available vehicles nearby when they need the service. On the other hand, due
to user behavior, shared e-scooter systems have a natural imbalance characteristic.
At specific times, certain areas have a higher demand for scooter usage, but there
may not be enough scooters available in those areas to satisfy users’ needs. At
the same time, other areas may have a lower demand for scooter usage, but still
be popular destinations, leading to a surplus of scooters. The accumulation of
scooters in some areas while unsatisfying demand in others, would result in a
waste of resources and loss of profit and even negative effects on traffic in those
areas. Hence, the relocation of shared vehicles has become a critical issue to ensure
their availability and accessibility, as well as to increase profitability and reduce
environmental impact.

Overall, the re-balancing issue can be divided into two categories: dynamic
re-balancing and static re-balancing. If during a time slot, the relocation operations
take place while at the same time there are also trips generated by users, it is
considered dynamic re-balancing. Otherwise, it is considered static re-balancing. It
is also possible to classify based on relocation strategies, most of the research is
based on two primary relocation strategies, as follows:

• Carrier-based relocation: Suppliers balance vehicle supply and demand by
utilizing carriers (i.e., employees of car-sharing providers) to drive, tow or
carpool surplus vehicles from low-demand locations to high-demand locations
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(see [25], [26], [27]).

• User-based relocation: Providers incentivize users by Dynamic pricing scheme,
to charge fees and discounts for rentals and returns in certain areas, in an
attempt to reduce rentals from high-demand starting locations to low-demand
end locations or to change their destination and return vehicles to locations
with insufficient supply rather than oversupplied locations (see [28], [29], [30]).

Generally speaking, the relocation costs of user-based relocation strategy are
lower. However, developing and managing such a system is challenging, as it
requires real-time collection and analysis of data on vehicle availability and demand,
monitoring and managing relocation plans, devising rewards and incentives to
encourage users’ participation in re-balancing work, providing real-time information
about relocation operations and communicating with users. It also entails tracking
user engagement and ensuring that vehicles are moved to the correct areas. There-
fore, there is more research on carrier-based relocation strategies. In this thesis, we
focus on dynamic re-balancing issues and carrier-based relocation strategies.

One common way to solve the re-balancing problem is to abstract it as a vehicle
routing problem (VRP). The VRP is a highly significant class of problems in the
field of operations research. It involves determining the optimal routes for vehicles
to travel from a depot to various customers, while satisfying certain constraints.
The VRP has numerous practical applications, including logistics distribution,
public transportation, waste collection, and mail delivery, etc.. By optimizing
vehicle routes, it can conserve resources, enhance efficiency, and reduce pollution
and congestion. The classical VRP can be represented as a directed or undirected
network graph, where vertices represent each delivery point and depot, and edges
connect vertices, representing the cost of travelling between vertices, typically is
the distance or time between vertices.

1.4 Thesis overview
In this paper, we developed a joint optimization method for relocation and routing
strategies to explore the following questions:

• What factors should be considered in the decision of the relocation strategy in
e-scooter sharing system, in other words, how do different parameters affect
the decision and result of the relocation strategy?

• On which route should the relocation strategy be implemented, and how will
different vehicle routes affect the result of the relocation?

To this respect, we improved the mixed linear programming(MILP) model
proposed in [31]. We introduced parameters such as distance matrix, revenue per
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trip and relocation cost, to optimize the relocation strategy with maximizing the
total profit as the objective function. And we demonstrate the relationship between
profit, relocation strategy and different parameters in a case study.

In addition, we also proposed two new MILP models to solve the VRP considering
the maximum routing time constraint. One model finds the optimal route while
satisfying all designated relocation tasks, thus considering a sufficiently large
number and capacity of relocation trucks, having an objective function to minimize
the route cost. In the other model, the number and capacity of the dispatch
trucks are limited, but they are allowed to selectively complete the relocation tasks.
Accordingly, we introduce the revenue for completing relocation tasks, with the
objective function of maximizing profit, to incentivize trucks to complete as many
relocation tasks as profitable.

Eventually, our joint optimization algorithm is able to propose optimized reloca-
tion strategies and the corresponding vehicle routes for e-scooter sharing system.

The thesis is organized as follows:
In Chapter 2, we will review the current research related to relocation strategies

and the VRP. In Chapter 3, we will introduce in detail the variables and parameters
of the mathematical models, and their formulation and implementation. In Chapter
4, we will verify the model with three study cases, perform sensitivity and scalability
analysis, and discuss the impact of each parameter. In Chapter 5, the model will
be applied to a practical case and the results obtained will be discussed. Finally,
in Chapter 6, we will summarize the major work and conclusions of this paper and
indicate the shortcomings and further study directions.
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Chapter 2

Literature review

Although the subject of this thesis is e-scooter sharing systems, there is a paucity
of relevant literature, so interesting studies including those on car-sharing and
bike-sharing services are also reviewed.

As mentioned in Section 1.1, the vehicle re-balancing issue has become more
prominent. In recent years, researchers have proposed various optimization models,
algorithms, and strategies to tackle this challenge. Studies related to VRP can
provide a reference for the model building in this thesis, so a review has also been
conducted.

2.1 Relocation strategy

2.1.1 Carrier-based relocation

Huang et al. [25] focus on bike-sharing systems. First, a density-based clustering
method is used to partition the region into multiple clusters to reduce computational
complexity. Then, using rental and return predictors, car rental and return events
at each station are simulated through a Poisson process, and calculating the service
level of each station and the number of bikes that need to be relocated at each
station. Finally, a Monte Carlo tree search-based Dynamic Repositioning (MCDR)
method has been developed to decide the optimal route for relocation trucks.

Zhang et al. [26] have developed a dynamic repositioning model that incor-
porates traffic equilibrium, inventory balancing, and temporal constraints, while
leveraging data-driven neural networks (NN) to forecast the demand for bike sharing.
To compute the solution, researchers employed a hybrid metaheuristic approach
combining an adaptive genetic algorithm (AGA) and a granular tabu search (GTS)
algorithm.

7



Literature review

In [27] the concept of ’beautificator’ was introduced with a focus on the repo-
sitioning of scooters within short distances (even just a few meters) to correct
improper and disorderly parking by users. An integer linear programming model
was proposed to mathematically represent the problem of joint scheduling and
selection of beautification actions as well as traditional relocation operations. A
new matheuristic combining a genetic algorithm with large variable neighborhood
searches based on exact mathematical programming techniques was proposed to
solve the model.

In [32] a novel modular and multi-stage decision-making tool is proposed, which
divides the general relocation problem into three independent decision stages, where
the output of each stage serves as the input of the next. The first stage is the
prediction module, which predicts the maximum inventory imbalance for each
vehicle-sharing area in the short future. The selection module of the second stage
provides the total number of vehicles to be relocated between each feeder-receiver
pair as output. Finally, the schedule module takes a set of relocation processes as
input and schedules a sequence of relocation tasks to implement these processes.
The method has been shown to have good scalability.

Jin et al. [33] proposed a simulation framework, focusing on the optimization of
large-scale bike-sharing systems. The framework consists of a simulation module
and an optimization module. The simulation module simulates the daily state
changes and system operations at each station, where bike borrowing and returning
are generated by using a non-homogeneous Poisson process (NHPP) to create bike
pick-up and drop-off demands, and bike and dock failures are considered. Refers to
the optimization module, using optimization Model P as an example, they employ
a hybrid heuristic method that combines an enhanced k-means clustering method
(EKM) and an Ant Colony Optimization (ACO) algorithm to generate routes and
operational decisions for each bike.

2.1.2 User-based relocation
Losapio et al. [28] designed E-scooter Balancing DQN(ESB-DQN), a multi-agent
system based on Deep Reinforcement Learning (Deep RL) capable of proposing
convenient alternative locations for picking up or returning e-scooters. Monetary
incentives are offered to encourage users to accept the proposing. Similarly, Yun
et al. [34] proposes a deep reinforcement learning (RL) framework, in which it
formulates an agent as the service operator to determine the incentives and the
e-scooter sharing system as an environment.

Sasaki et al. [29] focused on one-way car-sharing system with reservation require-
ments and achieved real-time updates of trip demand through online calculation.
They proposed an optimization model based on queuing theory, and it took into
account three considerations: 1) the origin; 2) the destination; and 3) the departure
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time. For users’ desired departure and destination points during booking, the
system administrator solved the optimization problem to determine the recom-
mended combination of pick-up and drop-off locations and departure time. The
discount amount based on the Vickrey-Clarke-Groves (VCG) mechanism designed
for incentive measures. The robustness of the system was demonstrated in terms
of efficiency, strategy-proofness, individual rationality, and coalition rationality,
proving its ability to deal with false statements. Finally, a numerical simulation
of a car-sharing station in Japan was conducted, and the results showed that the
proposed method could effectively prevent deviations in the number of vehicles
and had the lowest failure rate, meeting more demand. A similar strategy was also
proposed by Sasaki et al. [29], and applied to the electric car sharing system.

Stokkink et al. [30] focused on car-sharing systems with reservation requirements
and aimed to incentivize customers to relocate vehicles by offering discounts.
However, the study also considered the current state of the system and a system
state prediction model based on a Markov chain to forecast future demand. An
adaptive learning algorithm was developed to estimate unknown user preferences
and dynamically adjust the optimal values of incentives and the best pick-up and
drop-off locations for the user.

Wang et al. [35] focuses on electric car-sharing and proposes an adaptive joint
relocation model combining electric car-sharing with bike-sharing. Mixed integer
linear programming (MILP) models were built respectively for user-based vehicle
and bicycle relocation, taking into account factors such as electric vehicle charging
status, cycling distance, station status, and user order history trends. Subsidies
were introduced to encourage users to use bicycles for vehicle relocation, thereby
optimizing the distribution of shared electric vehicles. The genetic algorithm (GA)
was utilized to minimize total relocation costs in solving the model.

Yang et al. [36] focusing on electric bike-sharing, they also takes into account
the battery status. To achieve the aggregation of low-power electric bicycles at
certain stations and reduce the route cost of battery-swapping trucks, this paper
proposes to incentivize selected users according to their destination to choose low-
power electric bicycles. The paper describes the problem as three modules based
on integer programming: the swapping station selection module, user relocation
module, and truck routing module. Additionally, a heuristic algorithm based on
variable neighborhood search (VNS) is proposed to solve this problem.

Zhang et al. [37] proposes a bi-level programming model for the repositioning
of docked bike-sharing systems. Based on the frequency of a station as an origin
or destination, the upper-level model outputs the proportion of trips that need
to be reallocated while enforcing station balance as a constraint. The lower-level
model takes the proportion as a constraint and seeks to maximize user benefits by
producing a reallocation matrix, which indicates the proportion of bikes that should
be redistributed between each unbalanced station. Furthermore, the lower-level
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model’s output can serve as feedback to the upper-level model when the system’s
status changes, allowing for real-time optimization of bike repositioning.

2.1.3 Carrier-based and user-based hybrid relocation
Many researchers have combined the advantages of the two type of strategies and
developed a hybrid relocation strategy.

A two-stage integer stochastic programming model is proposed by Pantuso et
al. [38] for an on-demand rental car-sharing system, i.e allowing users to rent
cars without prior reservation. The model considers the uncertainty of customer
preferences, described by probability distributions. A common pricing scheme is
used, in which the final price is determined by the per-minute fee and the return fee.
The per-minute fee is fixed, while the return fee may vary for each target period
and each origin-destination pair, and may be negative to encourage desired car
movements and increase demand. The model determines the return fee that will be
applied in the target period, takes actions on prices to influence customer demand,
and conducts proactive relocation accordingly to maximize expected profits. The
proposed exact solution algorithm is based on the integer L-shaped method. Finally,
the method is extensively tested on a case study based on the city of Milan. The
results show that the proposed method increases demand by about double and
yields higher expected profits.

Similarly, Liu et al. [39] addressed the system with dynamic demand and
travel time, as well as uncertain user preferences. They formulated the problem
as a Markov decision process. A data-driven approach was proposed, which used
online collected user preference data to instantaneously calibrate their relocation
willingness, and an online module developed through Bayesian learning to learn
the preference model for further enhancing the expected decision. The data results
showed that the proposed method could meet the rapid response needs in real
situations and improve the quality of the solution.

Xu et al. [40] focus on bike-sharing systems. A hybrid rebalancing strategy
is proposed and described as a mixed integer linear programming model. Some
surplus bicycles are designated as ’lucky bikes’, and users who relocate these lucky
bikes to designated locations are rewarded with incentive rewards. Meanwhile,
ordinary bicycles do not provide incentive rewards and need to be redistributed
by the re-balancing truck fleet. Based on an improved adaptive diversity control
hybrid genetic search algorithm (HGSADC), a hybrid genetic algorithm (HGA) is
proposed to solve the problem.

G.Guo et al. [41] considers non-linear elastic demand and congestion effects,
proposing a mixed Basket-Chandy-Muntz-Palacios (BCMP) queuing network that
takes into account charging delay, resource availability, and user wait time. A joint
optimization framework is presented, where nested queuing networks are used to
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describe system behavior. A joint relocation strategy is determined with queue
stability control and wait time constraints, maximizing system commercial value
as the objective.

2.2 Vehicle Routing Problem(VRP)
Considering different additional constraints, VRP has given rise to many variants.
The different VRP variants have been extensively discussed and classified into six-
teen (16) categories in [42]. For instance, based on the varying capacity constraints
of the vehicles, there are the Capacitated Vehicle Routing Problem (CVRP), where
all vehicles possess identical capacity, and the Heterogeneous Fleet Vehicle Routing
Problem (HFVRP), where there exist multiple vehicle types, each with distinct
fixed and variable costs and capacities. Based on customers’ time window require-
ments, there are the Vehicle Routing Problem with Time Windows (VRPTW),
where access to each customer is required within a predetermined time window.
Furthermore, considering the delivery and pick-up operations during the route
execution, there are the Vehicle Routing Problem with Backhauls (VRPB) and the
Vehicle Routing Problem with Pick-Up and Delivery (VRPPD). In this thesis, the
problem is modeled as a VRPPD with capacitated vehicles and maximum travel
time constraint.

2.2.1 Capacitated VRP (CVRP)
The research on CVRP primarily focuses on optimizing and improving its solving
algorithms. Altabeeb et al. [43] proposes an improved Firefly Algorithm, CVRP-FA.
By embedding two types of local search algorithms, improved 2-opt and 2-h-opt, the
proposed algorithm is able to expedite convergence towards the optimal solution.
Moreover, they introduced PMX crossover and two mutations operators to prevent
the fireflies from converging to a local optimum. Additionally, the Taguchi method
is used to determine the optimal values of the parameters of the proposed algorithm.
Subsequently, the researchers further improved the Firefly Algorithm in [44] and
proposed a cooperative hybrid firefly algorithm,CVRP-CHFA, which incorporates
multiple FA populations to enhance the quality of solutions and computational
efficiency.

İlhan et al. [45] proposes an improved simulated annealing algorithm with
crossover operator, named ISA-CO. The algorithm employs a population-based
simulated annealing approach and applies Partially Mapped Crossover (PMX) and
Order Crossover (OX) operators to solutions in the population. A hybrid selection
method is adopted to ensure a balance between exploitation and exploration.
ISA-CO is tested on 91 instances with varying numbers of demand points and
vehicles.
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Sajid et al. [46] addresses the bi-objective CVRP problem by minimizing
both the total distance traveled by the fleet and the longest route distance. To
tackle this problem, the paper proposes a novel giant tour best cost crossover
(GTBCX) operator and a NSGA-II-based routing algorithm employing GTBCX.
The algorithm is tested on 88 CVRP benchmark instances.

Máximo et al. [47] introduces a hybridization of a novel adaptive version of
Iterated Local Search with Path-Relinking(AILS-PR) to the CVRP, which utilizes
adaptive strategies to guide the perturbation intensity and acceptance criteria, thus
ensuring the diversity during the search process. Furthermore, by combining with
Path-Relinking (PR), the algorithm achieves further enhancement in solution quality
and computation time, which is approved on 100 benchmark CVPR instances.

2.2.2 VRP with Time Windows (VRPTW)
D.Wu et al. [48] focuses on the delivery of fresh agricultural products and investi-
gates the time-varying split delivery green vehicle routing problem with multiple
time windows. This is accomplished by utilizing a satisfaction metric based on time
windows and an economic cost metric, with the objective of minimizing the total
economic cost while maximizing the average customer satisfaction level. To address
this problem, a variable neighborhood search combined with a non-dominated
sorting genetic algorithm II (VNS-NSGA-II) is designed.

B.Pan et al. [49] studied the route problem for goods delivery in urban trans-
portation, while taking into account time-varying travel time, multiple trips, time
windows, and maximum travel duration constraints. The researchers modeled the
problem as a multi-trip time-dependent vehicle routing problem with time windows
(MT-TDVRPTW). To solve this model, they designed a hybrid metaheuristic
algorithm that utilizes adaptive large neighborhood search (ALNS) for guided
exploration and variable neighborhood descent (VND) for intensive exploitation.

R.Kuo et al. [50] concerned the collaborative form between trucks and unmanned
aerial vehicles (UAVs), where trucks can not only provide services to customers but
also act as "launch pads" for UAVs. The UAVs can be launched to serve customers
and then recovered at rendezvous points. Simultaneously, the hard time window
constraints were taken into account, as well as some realistic features of UAV
routes, such as limitations on vehicle capacity, UAV battery life, and the setting
time for launching and recovering UAVs at rendezvous points. A mixed-integer
programming (MIP) model was developed, and a VNS-based heuristic with novel
chromosome representation was proposed to solve the problem.

The constraint of time windows can be soft or flexible. In [51] a multi-objective
vehicle routing problem with flexible time windows (MOVRPFlexTW) was proposed.
In this problem, logistics companies aim to save distribution costs by sacrificing
customer satisfaction. A novel Pareto-based multi-objective approach was also
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introduced, which combines the ant colony optimization (ACO) algorithm with a
mutation operator to solve the problem.

Sarbijan et al. [52] presents the real-time collaborative feeder vehicle routing
problem (RTCFVRP) with flexible time windows. The feeder vehicle routing
problem (FVRP) consists of a heterogeneous fleet of vehicles, including trucks
and motorcycles. A Pareto-based bi-objective method was developed, which com-
bines the multi-objective particle swarm optimization (MOPSO) and the variable
neighborhood search (VNS) algorithms.

X.Sun et al. [53] considers flexible time windows and order release dates
simultaneously. And proposes a mixed-integer linear programming model and
six types of valid inequalities to enhance the model. Additionally, according to
the model and the inequalities, a branch-and-cut algorithm (B&C) is proposed to
compute the solution.

2.2.3 VRP with Pick-Up and Delivery (VRPPD)
Berbeglia et al.[54] presents a summary and classification of studies on the Pickup
and Delivery Problem (PDP). The author categorizes PDP into three main types
based on the route structures. These include the Many-to-Many (M-M) problems,
which involves multiple origins and destinations where any location may be a source
or destination for multiple goods; the One-to-Many-to-One (1-M-1) problems, where
some goods need to be delivered from one warehouse to multiple customers while
others need to be collected from multiple customers and transported back to the
warehouse; and the One-to-One (1-1) problems, where each good has a single origin
and destination and must be transported between these locations. The VRPPD is
classified under the One-to-One problem, where each request specifies the size of
goods to be transported as well as the pickup and delivery locations, and vehicles
must visit pickup locations before delivery locations, and the depot cannot request
or supply any goods. In this thesis the problem is modelled as VRPPD, which
focuses on the collection of e-scooters from certain surplus zones and delivery to
zones with e-scooter shortages, which closely mirrors real-world e-scooter relocation
scenarios.

Nagy et al. [55] considers the VRPPD for multiple depots and proposes an
integrated heuristic approach. The approach first uses standard VRP techniques
to generate a weakly feasible solution. The solution is then turned into a strongly
feasible one using route modification routines. Finally, maintaining the strong
feasibility, the routes can be further improved. The proposed heuristic approach is
approved of providing high-quality solutions for VRPPD problems with up to 5
depots and 249 customers within a matter of seconds.

In [56], the VRPPD problem is further classified into three types: Delivery-First
Pickup-Second VRPPD, where delivery requests are processed first followed by
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pickup requests; Mixed Pickup and Delivery VRPPD, where there is no priority
between delivery and pickup, and both types of requests are served in a mixed
sequence; and Simultaneous Pickup and Delivery VRPPD, where both pickup and
delivery requests are served simultaneously, this type of problem is specifically
referred to as VRPSPD, and customers are only visited once. The authors discuss
the VRPSPD with Hard Time Windows (VRPSPDHTW) and develop a heuristic
algorithm to minimize the waiting time between nodes as the model objective.

H.Zhang et al. [57] considers VRPPD with multiple arrival time and traffic
congestion constraints, where different batches of goods arrive at the depots in
different time windows, and the truck can only pick up the goods after they have
arrived. Moreover, varying traffic congestion results in significant differences
in vehicle speeds during different time windows, leading to different delivery
times. To address this problem, the authors propose a Dynamic Memory Memetic
Algorithm(DMMA).

Q.Chen et al. [58] aims to address the issue of unpaired VRPPD with split
deliveries involving multiple commodities. In this problem, pickup and delivery
requests are not pre-matched, multiple vehicles can serve a customer, and supply
and demand points are not separated, as a demand point for one product may be
a supply point for another. The authors propose a variable neighborhood search
heuristic for solving this problem.

Gutiérrez-Jarpa et al. [59] considers the VRP with Delivery, Selective Pickup,
and Time Windows (VRPDSPTW), in which a fleet of vehicles must fulfill all
delivery requests while adhering to time windows, but may choose not to satisfy
all pickup requests. Customers may have delivery requests, pickup requests, or
both; each customer may be visited once or multiple times; and visits to pickup
and delivery vertices may be sequential or unordered. The authors propose an
exact Branch-and-Price algorithm that can handle these multiple variants, and
yield optimal solutions for the instances with up to 50 customers.

2.3 Research group works
The study in this thesis has been carried out on the basis of the work done by the
group SmartData@Polito.

In [60], the authors focus on car-sharing systems, using a variety of machine
learning methods to make long-term and short-term predictions about the spatio-
temporal patterns of user demand for cars.

In [61, 62] and [63], the authors aim to optimize the distribution of charging
stations in the context of the Free Floating Electric Car Sharing system. The
former proposes a data-driven approach to optimize the placement of charging
stations while taking into account complex customer habits. The latter compares
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two different vehicle charging infrastructures: centralised charging centres located
in highly dynamic areas of the city and distributed charging posts around the most
used areas, using a data-driven mobility demand model developed to investigate the
performance and cost of fleet charging management. Using Turin, Milan, New York
City and Vancouver as case studies, it is shown that the distributed infrastructure
performs better in terms of both trip fulfilment and charging relocation costs.

[64] shows the impact of system design options, such as the number of charging
posts, their allocation and the number of cars. The scalability of the overall system
is also investigated. The results show that concentrating charging stations in key
locations can help optimize car distribution in cities to better intercept demand.
The charging infrastructure must intuitively grow in proportion to the demand for
mobility. And fleet size grows much more slowly, showing some good economies of
scale gains.

[65] compared the performance of possible Free Floating Car Sharing (FFCS)
systems using internal combustion engine vehicles (ICEV) or electric vehicles (EV)
in three main areas: meeting demand, emissions and system profitability. The
results show that an EV FFCS system can meet the same demand as an ICEV-based
solution. The EV fleet has fewer emissions, reducing them by more than 50%.
However, there are also higher costs. The use of inexpensive, low-power chargers
can reduce maintenance costs to some extent.

[66] implements a data-driven mobile demand model based on a Poisson process
in the time domain and kernel density estimation in space to spatially characterise
users’ habits towards different shared services. The authors show the importance
of correctly optimizing fixed bandwidth KDEs, in addition to presenting variable
bandwidth KDE methods. The advantages of variable KDEs are also illustrated.

[67] takes a shared electric scooter system as objective and analyses reactive
and active relocation algorithms to understand how they affect the system, both
in terms of performance and cost. The results show that proactive operations are
generally superior to reactive operations and, in particular, can keep the number
of deployed electric scooters low or even reduce them, making the overall system
more profitable and sustainable.

[31] focuses on FFCS systems. Different optimization methods for improved
repositioning strategies considering demand forecasts for multiple relocation steps
are analysed. The methods proposed are based on dynamic programming, linear
programs, mixed integer linear programs and combinations of both, respectively.
Dynamic programming method, which is theoretically able to find the best solution,
has very little scalability. MILP-based method proves to be the best performing
method, while LP-based method always provides good performance in a relatively
short time. The author also discuss the impact of look-ahead horizon on optimiza-
tion performance, showing that a foresighted strategy outperforms a greedy one,
with a two-hour look-ahead horizon improving performance by about 7%.
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Methodology

In this chapter, we presents in details the two phases of the joint optimization for
the relocation and routing strategies in the development of the e-scooter sharing
system.

3.1 Problem description
Due to user behavior, the distribution of scooters tends to be unbalanced. Therefore,
operators need dispatch trucks to pick up a certain number of scooters from zones
with a surplus of scooters and deliver them to zones where the demand is not met.
As the demand for scooters changes frequently over time, an area with high demand
in one time period may have low demand in the next period. Therefore, in this
thesis, we consider multiple dispatch trucks and take into account expected future
demand to avoid shortsightedness, as well as the impact of customers’ usage on
the system. For simplicity, we assume that time is discrete and divided into time
frames.

The joint optimization for the relocation and routing strategies consists of two
consecutive phases, the schematic diagram of the optimization process is shown
in Figure 3.1. We focus on the dynamic repositioning problem in the first phase,
the relocation strategy is to be optimized, each truck only takes scooters from
one pick-up area and brings them to one drop-off area, that is, matching couples
of zones, without considering the specific routes of the dispatched trucks. In the
second phase, the output from the first phase, including a set of zones and the
corresponding relocation operations (positive in case of drop off, negative in case
of pick up), is used as input of the VRP, to obtain the optimal truck routes. The
red vertex represents the depot, the yellow vertexes are the source zones(where the
scooters are picked up), and the blue vertexes represent the destination zones(where
the scooters are dropped off). The arrows indicate the dispatch truck routes, where
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the dispatch trucks depart from the depot with an empty load, visit the relocation
zones and perform the corresponding relocation operations. Once the dispatch
trucks have completed all the relocation tasks or reached the designated maximum
routing time, they return to the depot. The number of trucks is also optimized in
this second phase.

Input of 1st phase Output of 1st phase Input of 2nd phase Output of 2nd phase

Figure 3.1: Optimization process

3.2 Mathematical model

3.2.1 The First Phase - Repositioning problem

In this phase the problem is formulated as a Mixed Integer Linear Programming
(MILP) model. The notation, the mathematical formulation and the implementation
is presented.

Let Z = {0, ..., z} be the set of city zones, 0 be depot. Let A = {(i, j) : i, j ∈
Z, i /= 0, j /= 0, i /= j} be the set of arcs between two zones. Let P be the number
of optimization horizon, i.e. the number of time-frames the optimal relocation
operation is to be found, and T be the number of look-ahead horizon, i.e. the
number of time-frames over which the decisions are made. As shown in Figure
3.2, over the set of time-frames P = {0,1, ..., P − 1}, the optimization procedure
is performed once for each p ∈ P, while in each optimization procedure, the
relocation decisions is made on considering the demand of future time-frames up
to T. As such, the set of time-frames involved in the p-th optimization procedure
is Tp = {p, p + 1, ..., p + T − 1}.

Variable definition Other variables and notation are introduced as follows:
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Time framesp+1 p+2p p+T1

Optimization at tf = p

Lookahead horizon at tf = p

0 P+Tp+T+1

Figure 3.2: Optimization horizon and look-ahead horizon

• rti ∈ Z: relocation operation in zone i during time-frame t,
rti > 0 if e-scooters are dropped off to zone i
rti < 0 if e-scooters are pick up from zone i
rti = 0 if no relocation performed in zone i

∀i ∈ Z \ {0}, ∀t ∈ Tp

• wtij ∈ N: number of scooters be relocated from zone i to zone j during
time-frame t, ∀(i, j) ∈ A,∀t ∈ Tp

• sti ∈ R+: the number of scooters in zone i at the beginning of time-frame t,
∀i ∈ Z \ {0}, ∀t ∈ Tp

• EOti ∈ R+: the number of scooters leaving zone i during time-frame t,
∀i ∈ Z \ {0}, ∀t ∈ Tp

• EIti ∈ R+: the number of scooters arriving in zone i during time-frame t,
∀i ∈ Z \ {0}, ∀t ∈ Tp

• Oti ∈ N: the number of outgoing trip requests from zone i during time-frame
t, ∀i ∈ Z \ {0}, ∀t ∈ Tp

• Iti ∈ N: the number of incoming trip requests to zone i during time-frame t,
∀i ∈ Z \ {0}, ∀t ∈ Tp

• pt
ij ∈ R+: the probability of a scooter to be moving from zone i to zone j

during time-frame t, ∀(i, j) ∈ A, ∀t ∈ Tp

• N ∈ N: the total number of scooters in the system

• Nt ∈ N: the total number of trucks in the system

• Ct ∈ N: the capacity of each truck

• dij ∈ R+: the distance between zone i and zone j

• I ∈ R+: average revenue per trip
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• Cm ∈ R+: unit mileage cost

• Cn ∈ R+: unit cost per relocated e-scooter

• Decision variable:

xtij =
1 if arc (i, j) is traversed by a truck during time-frame t

0 else

, ∀(i, j) ∈ A, ∀t ∈ Tp

Notice that in reality, all variables related to the number of scooters involved
should ideally take integer values. However, solving integer linear programming
models that involve hundreds of integer variables can be prohibitively expensive,
especially when the number of vehicles, zones, and look-ahead horizon increases,
leading to an exponential increase in the number of variables. Computationally
expensive models are neither economically feasible nor practical. Therefore, the
integer constraints on sti, EIti and EOti have been relaxed to expedite the model’s
solution time.

Assumption Additionally, in this phase, we assume that:

• Dispatched trucks are all homogeneous, they have the same capacity and
speed, etc.

• Each dispatched truck travels from at most one pick-up zone to at most one
drop-off zone, i.e. each truck is matching one couple of zones.

• The cost of arriving at the pick-up zones and of leaving the drop-off zones are
not considered.

• The possibility for multiple or no visits to each zone.

• For each effective trip, a constant average profit is gained.

• E-scooters are uniformly distributed in city zones in the initial system state.

Model M1

max
rti

Ø
t∈Tp

Ø
i∈Z

EOti × I − Cm ×
Ø
t∈Tp

Ø
i∈Z

Ø
j∈Z

xtij × dij − Cn ×
Ø
t∈Tp

Ø
i∈Z

Ø
j∈Z

wtij (3.1)
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subject to

sti = st−1,i + EIt−1,i − EOt−1,i + rt−1,i, ∀i ∈ Z \ {0},∀t ∈ Tp (3.2)
0 ≤ EIti ≤ Iti,∀i ∈ Z \ {0},∀t ∈ Tp (3.3)
0 ≤ EOti ≤ Oti, ∀i ∈ Z \ {0},∀t ∈ Tp (3.4)Ø
i∈Z

rti = 0,∀t ∈ Tp (3.5)Ø
i∈Z

sti = N,∀t ∈ Tp (3.6)

sti ≥ 0,∀i ∈ Z \ {0}, ∀t ∈ Tp (3.7)
− rti ≤ sti,∀i ∈ Z \ {0},∀t ∈ Tp (3.8)

sti + EIti + rti

2 ≥ EOti,∀i ∈ Z \ {0},∀t ∈ Tp (3.9)

EIti =
Ø
j∈Z

pt
ji ∗ EOtj,∀i ∈ Z \ {0},∀t ∈ Tp (3.10)

Ø
t∈Tp

Ø
i∈Z

xtii = 0 (3.11)

wtij ≤ Ct× xtij,∀(i, j) ∈ A, ∀t ∈ Tp (3.12)
wtij ≥ 0,∀(i, j) ∈ A, ∀t ∈ Tp (3.13)Ø
j∈Z

wtji −
Ø
j∈Z

wtij = rti,∀(i, j) ∈ A,∀t ∈ Tp (3.14)
Ø
i∈Z

Ø
j∈Z

xtij ≤ Nt (3.15)
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The objective function (3.1) aims to maximize the total profit within the look-
ahead horizon Tp, which is determined by three components: revenue from effective
trips, costs of traveling, and costs of relocation operations. The revenue from
effective trips is paid by users who actually use the scooters, which is proportional
to the number of effective trips. The costs of traveling are determined by the cost
of traveling between relocation zones, which is proportional to the distance between
zones. The costs of relocation operations refer to the cost of pick-up and drop-off
operations of the scooters, which is proportional to the number of scooters that are
relocated.

Constraint in Equation (3.2) represents the state transition for each zone, where
the current state at the beginning of time-frame t is determined by the starting
state in the previous time-frame, incoming and outgoing trips, and the relocation
of vehicles by the dispatch trucks.

Constraints (3.3) and (3.4) require that the number of vehicles arriving and
leaving each zone during each time-frame must be positive and cannot exceed the
demand for incoming and outgoing trips.

Equation (3.5) ensures that the relocation operations are complete within each
time-frame. A negative value of rti means that vehicles are picked up and a positive
value of rti means that vehicles are dropped off. In other words, all vehicles been
picked up are dropped off then to other zones within each time-frame.

Constraints (3.6) and (3.7) define the total number of vehicles in the system
and ensure the number of vehicles in each zone is always non-negative.

Constraint (3.8) ensures that the number of vehicles picked up from a zone does
not exceed the initial number of vehicles in that zone. This constraint only applies
when rti ≤ 0, i.e., when vehicles are picked up. When rti ≥ 0, i.e., when vehicles
are dropped off, no constraints are necessary regardless of the initial availability of
the zone.

Constraint (3.9) restricts the upper bound of the number of vehicles leaving
each zone to be no more than the sum of the corresponding initial availability and
the average number of vehicles arriving at and relocated to the zone.

Equation (3.10) introduces a probabilistic constraint to balance the incoming
and outgoing vehicles in each zone. The number of vehicles moving from zone i
to zone j must reflect the estimated probability from the flow data, in order to
avoid the model maximizing the number of satisfied trips unrealistically by greatly
enhancing convenience flows.

Equation (3.11) requires that there should be no arcs with the same start and
end zones, meaning that trucks cannot depart and arrive at the same zone.

Constraint (3.12) ensures that the relocation operation between zones can only
be achieved when the dispatching trucks are in transit between the two zones
(xtij = 1), and subject to the capacity constraint of the trucks.

Constraints (3.13) and (3.14) indicate that (wtij) has the same absolute value
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with rti, and it is always positive.
Constraint (3.15) states that the total number of arcs should not exceed the

number of dispatching trucks, with the assumption that each dispatch truck travels
from at most one pick-up zone to at most one drop-off zone.

3.2.2 The Second Phase - VRP
In this second phase, we focus on the VRP, taking the output of the first phase as
input and giving the optimal vehicle route that satisfies the relocation operation.
We present two MILP models of the VRP. The notation and the implementations
are presented.

Let ri /= 0 ∈ Z be the optimized relocation operation in zone i. Let Z ′ =
{1, ..., z′} be the set of zones where relocation operations are performed in phase 1.
Let Z ′ = S∪P where S = {1, ..., n} be the set of source zones and D = {n+1, ..., z′}
be the set of destination zones, i.e. ri > 0 for ∀i ∈ D, and ri < 0 for ∀i ∈ S.

Variable definition Other variables and notation in this phase are introduced:

• rs
i = −ri: number of e-scooters picked up from zone i, ∀i ∈ S

• rd
i = ri: number of e-scooters dropped off to zone i, ∀i ∈ D

• K: the set of trucks

• C ∈ N: the capacity of each truck

• Lk
i ∈ N: the load of truck k when leaving zone i, ∀i ∈ Z ′,∀k ∈ K

• Bk
i ∈ R+: the time of truck k arriving in zone i, ∀i ∈ Z ′,∀k ∈ K

• T ∈ R+: maximum routing time

• Sr ∈ R+: service time per scooter

• Tr ∈ R+: travel time parameter (inverse of truck speed)

• Decision variable:

xk
ij =

1 if arc (i,j) is traversed by truck k
0 else

, ∀(i, j) ∈ A, ∀k ∈ K
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Assumption Additionally, in this phase, we assume that:

• Dispatched trucks are all homogeneous, they have the same capacity and
speed, etc.

• Each dispatched truck departs from the same depot empty and finally returns
to the depot empty.

• The task of relocation is indivisible, meaning that all the e-scooters within a
zone must be picked up or dropped off in their entirety during the relocation
process.

Model M2.1

The Model M2.1 is based on the classical Pickup and Delivery Traveling Salesman
Problem (PDTSP), see, e.g., Parragh [68]. In which one or more dispatch trucks
depart from a depot, with a free initial load. Each zone is visited exactly once, and
every unit picked up is used to satisfy every delivery customer’s requirement.

The model is given as follows:

min
Ø
k∈K

Ø
i∈Z′

Ø
j∈Z′

xk
ij × dij (3.16)

subject to

xk
ii = 0 ∀i ∈ Z ′,∀k ∈ K (3.17)Ø

k∈K

Ø
j∈Z′

xk
ij = 1 ∀(i, j) ∈ A (3.18)

Ø
j∈Z′

xk
0j ≤ 1 ∀k ∈ K (3.19)

Ø
i∈Z′

xk
i0 ≤ 1 ∀k ∈ K (3.20)

Ø
i∈Z′

xk
ij =

Ø
i∈Z′

xk
ji ∀(i, j) ∈ A,∀k ∈ K (3.21)

0 ≤ Lk
i ≤ Ck ∀i ∈ Z ′,∀k ∈ K (3.22)

Lk
i ≥ rs

i × xk
ij ∀i ∈ S,∀j ∈ Z ′,∀k ∈ K (3.23)

Lk
i ≤ Ck − rd

i × xk
ij ∀i ∈ D, ∀j ∈ Z ′,∀k ∈ K (3.24)

xk
ij = 1⇒ Lk

j = Lk
i + rs

j ∀i ∈ Z ′,∀j ∈ S,∀k ∈ K (3.25)
xk

ij = 1⇒ Lk
j = Lk

i − rd
j ∀i ∈ Z ′,∀j ∈ D, ∀k ∈ K (3.26)

0 ≤ Bk
i ≤ T ∀i ∈ Z ′,∀k ∈ K (3.27)

Bk
j ≥ Bk

i + Sr × ri + Tr × dij ∀(i, j) ∈ A,∀k (3.28)
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The objective function (3.16) minimizes the routing cost, which is proportional
to the distance of the path traversed by dispatch trucks

Equation (3.17) requires that there should be no arcs with the same start and
end zones, meaning that trucks cannot depart and arrive at the same zone.

Equation (3.18) ensures that each zone is visited exactly once.
Constraints (3.19) and (3.20) present that one dispatch truck departures from

the depot and returns to the depot at the end of its route. Not every truck has to
be used.

(3.21) is the flow conservation equation. Every truck arriving in a zone leaves.
Constraint (3.22) states the lower and upper bound of the total load of the

truck, which has to be, for sure, positive and smaller than the maximum capacity
of the truck.

Constraints (3.23) and (3.24) restrict further the lower and upper bound of the
truck load considering the intermediate process of relocation. In one case, the truck
is leaving the source zone i after the pick-up operation is completed, therefore
the total load of the truck must be no less than the relocated number of scooters
in zone i. In the other case, the truck is leaving the destination zone i after the
drop-off operation is completed, thus the total load of the truck must be no greater
than the maximum capacity of the truck subtracts the relocated number of scooters
in zone i. These constrains are non-linear, they can be linearized with the "big M"
formulation, obtaining:

Lk
i ≥ rs

i − (1− xk
ij)×M ∀i ∈ S,∀j ∈ Z ′,∀k ∈ K (3.29)

Lk
i ≤ Ck − rd

i + (1− xk
ij)×M ∀i ∈ D, ∀j ∈ Z ′,∀k ∈ K (3.30)

Constraints (3.25) and (3.26) are the load transition equations. The indicator
functions are used to ensure that the relocation operation between zones can only
be achieved when the trucks are in transit between the two zones (xk

ij = 1). They
can also be linearized with the "big M" formulation, obtaining:

Lk
j − (Lk

i + rs
j) ≤ (1− xk

ij)×M ∀i ∈ Z ′,∀j ∈ S,∀k ∈ K (3.31)
(Lk

i + rs
j)− Lk

j ≤ (1− xk
ij)×M ∀i ∈ Z ′,∀j ∈ S,∀k ∈ K (3.32)

Lk
j − (Lk

i − rd
j ) ≤ (1− xk

ij)×M ∀i ∈ Z ′,∀j ∈ D, ∀k ∈ K (3.33)
(Lk

i − rd
j )− Lk

j ≤ (1− xk
ij)×M ∀i ∈ Z ′,∀j ∈ D, ∀k ∈ K (3.34)

Constraint (3.27) presents the lower and upper bound of the travel time of the
truck, which is positive and limited by the maximum routing time T.

Constraint (3.28) states that the truck arrives to the origin before the destination,
and time variables must be consistent with the service time in the zone and the
travel time between zones. This constraint also eliminates subtours.
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Therefore, the model M2.1 is given by (3.16)-(3.22), (3.27)-(3.34). In addition,
since constraint (3.18) requires each zone to be visited once, and the relocation task
within a zone is indivisible, i.e., all relocation needs must be fulfilled. We make the
following additional assumptions for the model M2.1 to ensure the feasibility of a
solution:

• The available number of dispatched truck is infinite.

• The maximum capacity of dispatched truck is greater than the relocation task
in any zone, i.e. Ck > |ri|, ∀i ∈ Z ′, ∀k ∈ K.

Model M2.2

For the Model M2.2, we relax the constraint (3.18) as follows:Ø
k∈K

Ø
j∈Z′

xk
ij ≤ 1 ∀(i, j) ∈ A (3.35)

The dispatch trucks can selectively visit zones, so although the relocation task
within one zone cannot be split, the total relocation needs can be satisfied partially.

Thanks to the constraint (3.35), the Model M2.2 has a larger feasible region and
does not require the additional assumptions made for the model M2.1. However,
the objective function must be adjusted, otherwise, the optimal solution of the
original objective function (3.16) will simply be 0, which is not consistent with our
purpose. Therefore, we propose an objective function that maximizes the total
profit:

max
Ø
k∈K

Ø
i∈Z

Ø
j∈Z

xk
ij × rd

j × I − xk
ij × dij (3.36)

The total profit is obtained by subtracting the route cost from the relocation
revenue. We introduce the unit relocation revenue I to incentivize dispatch trucks
to fulfill as many relocation needs as possible in profitable situations, while the
route cost is still proportional to the distance of the path traversed by dispatch
trucks.

Other constraints remain the same with the model M2.1, hence, the model
M2.2 is given by the objective function (3.36), the constraints (3.17), (3.35), (3.19),
(3.20), (3.21), (3.22) and (3.27)-(3.34).

3.3 Implementation
3.3.1 Branch and cut Algorithm
The models are solved using the CBC solver through the optimization software
OR-Tools [69] implemented in Python. The CBC (Coin-or branch and cut) is an
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open-source solver, which employs a combination of branch and bound and cutting
plane methods to solve integer linear programming problems.

Branch and Bound (B&B) is a search algorithm commonly used for solving op-
timization problems. It is primarily utilized for solving integer linear programming
problems. In the B&B approach, the optimization problem is decomposed into
multiple subproblems, each of which is a local subset of the original problem. The
algorithm begins the search from one of these subproblems and uses branching
operations to break down the problem into smaller subproblems. Each subproblem
is solved separately until the optimal solution is found or it is determined that the
problem is infeasible. If the optimal solution is not found, the results of the solved
subproblems can be used to prune the search tree, narrowing the feasible solution
space and speeding up the search process. The primary idea behind B&B is to
select a variable for each subproblem and branch on it, dividing the problem into
two subproblems. This process is recursively applied to each subproblem until it
is impossible to continue branching or until the optimal solution is found. It is
often combined with other optimization algorithms to improve the efficiency and
accuracy of the optimization process.

Branch-and-Cut (B&C) algorithm combines B&B with cutting planes to reduce
the feasible solution space and improve the efficiency of the optimization process.
The main steps of the Branch-and-Cut algorithm are as follows:

1. At the beginning, the integer programming problem is transformed into a
linear programming problem, and a feasible solution that satisfies all the
constraints is obtained using a linear programming solver.

2. The current solution is checked to see if it is an integer solution. If it is, the
algorithm terminates. Otherwise, proceed to step 3.

3. A variable xi in the integer programming problem is chosen, and it is split
into two constraints, xi ≤ b and xi ≥ b + 1, which are added to the original
problem to form two subproblems. A linear programming solver is used to
find feasible solutions for the two subproblems, which become the current
solutions for each subproblem.

4. If both subproblems have integer solutions, the subproblem with the smaller
objective function value is chosen as the current solution, and the algorithm
returns to step 2. Otherwise, proceed to step 5.

5. For the subproblems that do not have integer solutions, a cutting plane is
used to find a new constraint, which is added to the subproblem to form a
new subproblem. A linear programming solver is used to find a new feasible
solution for the new subproblem, which becomes the current solution. If
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the new solution satisfies all the constraints, the algorithm returns to step 2.
Otherwise, proceed to step 5.

6. Steps 5 are repeated until an integer solution is found.

Overall, the Branch-and-Cut algorithm uses the Branch and Bound algorithm
to search for feasible solutions while using cutting planes to strengthen the linear
programming relaxation of the integer programming problem. This helps to
efficiently reduce the feasible solution space and find optimal solutions to integer
programming problems.

3.3.2 Implementation - The First Phase
Given the initial system state and the predicted demand, the set of optimal so-
lutions, including the maximum profit, the optimal relocation strategy, and the
corresponding system state sti, incoming trips EIti and outgoing trips EOti, is
obtained by the solver for each round of optimisation starting with time-frame
p ∈ P . Where sti, EIti and EOti are used to update the system state for the
next time-frame. However, as mentioned in Section 3.2.1, they are defined as real
numbers to reduce the computational complexity. Hence, the solver may provide
non-integer solutions for these variables, which is impractical. Therefore, it is not
feasible to use these variables directly for the optimisation of the next time-frame,
and further processing is necessary. Two different procedures are employed, the
rounding_algorithm and the simulate_system, which will be described subse-
quently, and the optimization_solution and the simulation_solution are obtained
respectively, a comparison of the two solution is presented in Chapter ??. The
processed variables are integer values that satisfy the model constraints, and the
resulting sti is the initial system state of the following time-frame. The main
procedure of the algorithms are shown in Algorithm 1 and in Algorithm 2.

When employing the rounding_algorithm, it is imperative to take into account
the constraints specified in Section 3.2.1, as simply rounding each non-integer
variable will not suffice. In order to ensure the feasibility of the results, it is also
necessary to consider the potential errors that may arise from rounding. Algorithm
3 shows the Pseudo-code of the rounding_algorithm.

The simulate_system takes the optimized relocation strategy and the current
time-frame p as input, and is capable of simulating the effect of the relocation
strategy on the system. The simulation system emulates the vehicle movement
through a sequence of trips generated based on the origin-destination (OD) matrix
of the predicted demand. At the start of the simulation, the number of picked up
scooters according to the given relocation strategy is subtracted from the initial
system state. Then the first half of the trips are simulated and if a sufficient number
of scooters are available at the corresponding origin zones, the demand can be
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Algorithm 1 Optimization of relocation algorithm with rounding algorithm.
1: procedure Optimizer(s0, Tp, P )
2: ▷ s0 is the initial system state
3: ▷ Tp is the involved time-frames
4: ▷ P is the optimization horizon
5: ▷ f (s, Tp) is the objective function (3.1)
6: ▷ Initialization
7: s← s0
8: ▷ Execution
9: for p = 0, ..., P do

10: ▷ Solve the the objective function f (s, Tp)
11: r, EO, EI ← f (s, Tp)
12: ▷ Round EO, EI and update system state
13: ▷ Calculate the maximum profit of the time-frame
14: snew, profit← rounding_algorithm(s, r, EO, EI)
15: s← snew

16: end for
17: return r, profit
18: end procedure

Algorithm 2 Optimization of relocation algorithm with simulate system.
1: procedure Optimizer(s0, Tp, P )
2: ▷ Initialization
3: s← s0
4: ▷ Execution
5: for p = 0, ..., P do
6: ▷ Solve the the objective function f (s, Tp)
7: r ← f (s, Tp)
8: ▷ Simulate the system and update system state
9: ▷ Calculate the maximum profit of the time-frame

10: snew, profit← simulate_system(r, s, p)
11: s← snew

12: end for
13: return r, profit
14: end procedure
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satisfied, the trips are effective. Then, the system state is updated by adding the
number of dropped off scooters to the corresponding zones. And the second half of
trips are simulated following the similar procedure. The profit can be calculated
by counting the number of effective trips. Figure 3.3 illustrates the workflow of the
simulate_system.

For each timeframe

Given OD
matrix

Generate trips:
(source zone#, destination

zone#)

Generate sequence of trips then shuffle
[(s, d), …, (s, d)]

N

Start optimization
at initial of the tf

Extract picked up scooters
from initial system state Update system state

In dest. Zone: #sc + 1,
In orig. Zone: #sc - 1
EO += 1

Check
with 1st

part:
#sc > 0Divide sequence of trips into

two parts, each with length
([#trips/2] + [#trips/2])*

Skip the trip

Update system state,
adding dropped off
scooters

All trips in
the 2nd part
of sequence
have been
checked

All trips in
the 1st part

of sequence
have been
checked

Check
with 2nd

part:
#sc > 0

Update system state
[[#sc0], [#sc1 - 1],
[#sc2 + 1], [#sc3]]
EO += 1

Final system state
Actual EO

Skip the trip

Y

N

YN

Y

N

Figure 3.3: The workflow of the simulate_system

3.3.3 Implementation - The Second Phase
Before solving the model, it is necessary to process the input data, which is the
output from the first phase. As the output of the first phase consists of a set
of zones where relocation operations are performed, denoting as Z ′ = {1, ..., z′},
along with the corresponding number of e-scooters to be relocated. Notice that
Z ′ /= Z, the former does not include 0, as relocation operations do not involve the
depot, and z′ ≤ z, because not all zones require relocation operation. It is essential
to match the zone indexes (#), coordinates (x,y), relocation tasks (r), and types
(depot/source/destination) one by one to avoid confusion and accurately identify
the optimal route in the subsequent process. At the same time, the coordinate of
the depot (zone 0) is also defined in this step. The models are also solved with
CBC solver, using branch-and-cut algorithm to find the optimal solution.
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Algorithm 3 Rounding_algorithm.
1: procedure Rounding(s, r, EO, EI)
2: ▷ s is the current system state
3: ▷ r is the set of optimized relocation strategy
4: ▷ EO, EI are the sets of incoming and outgoing trips
5: ▷ Round EO, EI to the nearest integer
6: ÊO ← round (EO)
7: ÊI ← round (EI)
8: ▷ Compute the potential unbalance between incoming and outgoing trips
9: unbalance← q

i ÊO −q
i ÊI

10: ▷ Get the list of indexes of entries which have been rounded
11: indexes_out← get_rounding_indexes(EO, ÊO, unbalance)
12: indexes_in← get_rounding_indexes(EI, ÊI, unbalance)
13: ▷ In case of unbalance > 0, the incoming trips are more than outgoing trips,

therefore, the re-balancing is needed
14: while unbalance > 0 do
15: indexes← indexes_out
16: if len(indexes) > 0 then
17: index← extract_the_first_index(indexes)
18: else
19: index← sample(0, ..., Z − 1)
20: end if
21: ÊO[index]← ÊO[index]− 1
22: unbalance← unbalance− 1
23: end while
24: ▷ In case of unbalance < 0, there are more incoming trips than outgoing

ones, and a similar re-balancing step is required
25: while unbalance < 0 do
26: indexes← indexes_in
27: if len(indexes) > 0 then
28: index← extract_the_first_index(indexes)
29: else
30: index← sample(0, ..., Z − 1)
31: end if
32: ÊI[index]← ÊI[index] + 1
33: unbalance← unbalance + 1
34: end while
35: s← s− ÊO + ÊI + r
36: profit← compute_profit(s, r)
37: return s, profit
38: end procedure
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Chapter 4

Model verification and
sensitivity analysis

To verify the correctness of the established model and explore the influence of
various parameters on the optimization results, we have designed three small-scale
toy cases in total: One for the first phase, including 4 zones and 100 shared scooters
in the system, 2 scenarios are further considered based on different OD matrices.
One for the second phase, two couples of zones having a total number of relocations
of 11 scooters are given. And the third one for joint optimization of relocation
and routing strategies, which includes 8 zones and 200 scooters, the results of 5
optimization round is presented.

All experiments were conducted on a virtual machine which belongs to the
BigData@Polito Cluster1, with 35 CPU threads and 120 GB of memory reserved.

The time limit for the solver to solve the model was set to 3600 seconds, namely
1 hour, to avoid too long execution time.

4.1 Model verification and sensitivity analysis in
toy case 1

In the first phase, the model is supposed to find the optimal relocation strategy
which maximizes the total profit, given a distance matrix between zones, the trips
demand represented by the origin-destination matrix (OD matrix), the initial
system state and other parameters. The designed toy case includes 4 zones with a
total of 100 shared e-scooters. The initial state of the system is set as uniformly
distributed, which means that the initial number of e-scooters in each zone is set

1https://smartdata.polito.it/computing-facilities/
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to 25. Different distance matrices between zones are considered, which will be
introduced in the following sections.

Two scenarios distinguished by different trips demand, i.e., OD matrices, are
considered. In the first scenario, there is the same 50 demand from zones 1, 2, and
4 to zone 3, while no outgoing demand from zone 3. In the second scenario, the
outgoing demands between zones were randomly assigned values ranging from 0 to
10. In this toy case, the OD matrix was identical for each time-frame p ∈ P , and
Figure 4.1, 4.2 illustrates the OD matrices for one time-frame.

The correctness of the model is verified in Section 4.1.1 under scenario 1.
The results included optimization and simulation results obtained through the
rounding_algorithm and simulate_system described in Section 3.3.2.

Furthermore, under each scenario we have carried out the experiments by
changing different parameters. Section 4.1.2 and 4.1.3 presented the impact of
various parameter changes on the average profit of each time-frame. In most cases,
although the optimization and simulation results are different, they have the similar
trend in essence. Unless specifically stated, we will use the optimized result as an
example for the algorithm sensitivity analysis. Section 4.1.4 showed the effect of
various parameter changes on the running time of the algorithm.

Figure 4.1: OD matrix for scenario 1 Figure 4.2: OD matrix for scenario 2

4.1.1 Model verification
In the first scenario, the outgoing demands are the same for zone 1, 2 and 4, all
trips were going to zone 3, namely, a deterministic OD matrix is considered, as
shown in Figure 4.1. The setup of Scenario 1 is very particular and simple, allowing
us to verify quantitatively the correctness of the model.

The optimization and simulation result of an example experiment are presented
in Figure 4.4 and Figure 4.5, with the specific parameter setting shown in Table
4.1.

Notice that the parameters here were consistent with the ones defined in Section
3.3.2: I is the average revenue per trip, Cm and Cn are the unit mileage cost and
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unit cost per relocated e-scooter respectively, Ct and Nt refers to the capacity of
each truck and the total number of dispatch trucks in the system, T and P are the
look-ahead horizon and optimization horizon. And finally the distance#0 refers to
the distance matrix #0 shown in Figure 4.3.

N_zones N_scooter I Cm Ct Nt Cn T P Distance

4 100 10 1 20 3 0.1 2 5 #0

Table 4.1: Parameters setting

Figure 4.3: Distance matrices in the toy case 1

It can be seen that for each time-frame, a set of optimized relocation operation
and optimized profit are presented, as well as the initial system state and the current
system state. The initial system state and the current system state are the number
of shared scooters in each zone at the beginning and at the end of each time-frame,
respectively. The relocation operation consists of the zone index and the specific
operation, taking time-frame 0 as an example, the set of optimized relocation
operation is [(’3’, -5.0), (’2’, 5.0), (’3’, -20.0), (’4’, 20.0)], which means that during
the time-frame, 5 scooters are picked up from zone 3, 5 scooters are dropped off in
zone 2, 20 scooters are picked up from zone 3 and 20 scooters are dropped off in
zone 4. Thus a total of 25 scooters are picked up from zone 3 and dropped off in
zones 2 and 4 respectively. Such a denotation is able to distinguish the behavior
of each truck in the existence of multiple dispatch trucks. In time-frame 0, only
25 scooters are available for relocation due to the limitation of the initial number
of scooters in zone 3. In the following time-frames, all three available trucks are
used and each relocation operation reaches the maximum capacity of each truck in
order to obtain the maximum profit. The relocation path consists of a source zone
index and a destination zone index, allowing a clear representation of the zones
where the relocation operation are performed. In time-frame 0, the relocation path
is [(’3’,’2’), (’3’,’4’)], which are the shorter ones, as expected.

More results were also checked to prove that the model always gives the optimal
relocation strategy. Additionally, it is observed that for the optimization and
simulation results, the optimized relocation operations are identical, since the
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Figure 4.4: Relocation strategy and Optimized Profit - optimization result under
scenario 1

Figure 4.5: Relocation strategy and Optimized Profit - simulation result under
scenario 1

optimization process of the relocation strategy is not affected by the subsequent
algorithms, as shown in Algorithm 1 and 2.

Regarding the profit, the total profit obtained during each time-frame is calcu-
lated as follows:

profitt =
Ø
i∈Z

EOti × I − Cm ×
Ø
i∈Z

Ø
j∈Z

xtij × dij − Cn ×
Ø
i∈Z

Ø
j∈Z

wtij (4.1)

It can be seen that there is a large discrepancy between the optimization results
and the simulation results, which is caused by the different calculation methods
for the outgoing trips EOti in rounding_algorithm and simulate_system. In the
former EOti is subject to the constraint 3.9, which is no more than the sum of the
number of scooters in the zone at the beginning of each time-frame and the average

34



Model verification and sensitivity analysis

number of vehicles arriving and relocated to the zone. While in simulate_system
(see Figure 3.3), the demand is represented by two parts of the sequence of trips,
and the relocated scooters can only be used to satisfy the second part of the trip
sequence. EOti here is the count of effective trips, and since the order of the trip
sequence is random, the number of effective trips is indeterminate. Such as in
time-frame 3 in Figure 4.5, there are 33 trip demands from zone 2 to zone 3 within
the first part of the trip sequence and 17 in the second part of the trip sequence.
Since the initial number of scooters in zone 2 is 0, non of the demand in first part
of the trip sequence is satisfied, but only the 17 trip demands in the second part
of the trip sequence are satisfied thanks to the 20 relocated scooters, and 3 are
stay in zone 2. Therefore in this time-frame the effective trips in zone 2 are 17.
Knowing that the effective trips in zone 1, 3, and 4 are 20, 0, 20, respectively, the
total profit in this time-frame can be found through equation 4.1:

profitt=3 = (20 + 17 + 0 + 20)× 10− 1× (1 + 1 +
√

2)
− 0.1× (20 + 20 + 20) ≈ 560.5858

The result is consistent with the one proposed by the model.

4.1.2 Sensitivity analysis in scenario 1
By analyzing the results of an example solution, we verified the correctness and
effectiveness of the algorithm. More experiments were conducted to explore the
effect of different parameters of the model on the optimization results. A summary
of the specific settings of the parameters for the experiments under this scenario is
shown in Figure 4.6.

Figure 4.6: Parameters setting under scenario 1
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Average profit with different truck capacities The parameter settings for
this experiment are shown in Table 4.2:

N_zones N_scooter I Cm Ct Nt Cn T P Distance

4 100 10 1 [0-95] 1 0.1 2 20 #0

Table 4.2: Parameters setting - with different truck capacities

Figure 4.7 shows the changing trend of average profit with respect to the
maximum truck capacity. Zero maximum truck capacity means, of course, no
relocation is able to be performed. At this point, the average profit is 37.5 with
an average number of effective trips of 3.75, which is generated by the demand
fulfilled by the initial parked e-scooters in the zones. Since it is not possible to
perform relocation operations, all scooters end up accumulating in zone 3, while
the number of scooters in zones 1, 2, and 4 is 0. At this stage, the system state
does not change any more after the first time-frame, and no further travel demand
can be fulfilled, leading to no further increase in profit. As the maximum truck
capacity increases, the generated average profit increases proportionally. This is
due to an increasing number of scooters being allowed to relocate to the required
zones, as shown in Figure 4.8, leading to more travel demand being fulfilled and
generating more revenue. Although Figure 4.9 indicates that relocation costs
also increase proportionally, they are negligible compared to the revenue gained.
Until the maximum truck capacity reaches 70, the average number of relocated
scooters is 64.55 and the average profit reaches 658.55. Although the truck capacity
continues to increase, the number of scooters being relocated no longer significantly
increases, as well as the profit. This is because the number of relocated scooters is
already sufficient to meet the demand in each zone, and any additional relocated
scooters would simply accumulate within the zone without generating new revenue.
Therefore, the algorithm no longer schedules more relocation tasks.

Changing number of trucks In this experiment we analyzed the trend of
average profit with respect to the maximum truck capacity with changing different
number of dispatch trucks. The parameter settings for the experiment are shown
in Table 4.3:

N_zones N_scooter I Cm Ct Nt Cn T P Distance

4 100 10 1 [0-95] [0-4] 0.1 2 20 #0

Table 4.3: Parameters setting - with changing number of trucks

From Figure 4.10, it can be observed that the relocation is not possible to
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Figure 4.9: Average relocation cost
v.s. Ct

perform when the number of trucks is zero, which is similar to the case when the
truck capacity is zero in the previous experiment. The curves representing a larger
number of trucks reach the saturation faster, indicating that when there are more
trucks available, even with small capacity, it can fulfill all demands. The curves
for Nt = 3 and Nt = 4 overlap completely, as only three trucks are employed
to carry out relocation tasks despite the availability of four trucks in the system.
This is due to the optimal relocation paths are, easy to identify, zone3→ zone1,
zone3 → zone2, and zone3 → zone4. The excess trucks are thus idle, which is
expected. Figures 4.11 and 4.12 display identical trends in the number of trips
and relocation. In Figure 4.13, The relocation costs exhibit fluctuations due to the
fact that relocation costs are made up of costs of travelling, which is proportional
to the distance and costs of relocation operations, which is proportional to the
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number of scooters that are relocated as defined in Section 3.2.1. With more
relocation paths passed by multiple trucks incurring more travel costs. Therefore,
when truck capacity is sufficiently large, fewer trucks are utilized to reduce travel
costs, ultimately resulting in a decrease in total costs.

0 25 50 75
Truck Capacity

200

400

600

Av
er

ag
e 

Pr
of

it

N_truck
0
1
2
3
4

Figure 4.10: Average profit v.s. Nt
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Figure 4.11: Average number of trips
v.s. Nt
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Figure 4.12: Average relocation number
v.s. Nt
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Figure 4.13: Average relocation cost
v.s. Nt

Changing unit cost for relocating one scooter The parameter settings for
the experiment are shown in Table 4.4:

Several different values are adopted as unit cost per relocation in this experiment.
Of course, the higher the unit cost, the lower the profit. It is more interesting to
observe how the relocation strategy is impacted by the unit cost. As shown in
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N_zones N_scooter I Cm Ct Nt Cn T P Distance

4 100 10 1 [0-95] 1 [0.1-10] 2 20 #0

Table 4.4: Parameters setting - with changing unit cost for relocating one scooter

Figure 4.16 and 4.17, the relocation strategy is not affected when the unit cost is 4
or lower, because the benefit gained from relocation is always greater than the cost
at this moment. When the unit cost is greater than 4 and less to 10, the number
of relocations is restricted to below 50, despite the larger truck capacity, because
more relocations would lead to a cost higher than the benefit. While for a unit cost
of 10 and higher, the optimal strategy is to not perform relocation, because the
revenue per effective trip is exactly 10, at which point the benefit of each relocation
is 0 or negative.
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Figure 4.14: Average profit v.s. Cn
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Figure 4.15: Average number of trips
v.s. Cn

Changing number of look-ahead horizon With the combination of the
constraint 3.9, the specific parameter setting and the particular OD matrix in
this scenario, changing look-ahead horizon does not have an obvious impact on
the relocation strategy and average profit. The experimental results and detailed
explanations are presented in the Appendix A.

Changing number of optimization horizon The optimization horizon is the
number of time-frames in which the decision of the relocation strategy is made.
In this scenario the OD matrix is identical for each time-frame, so there is no
significant change in the relocation strategy and profit in each time-frame. The
experimental results are presented in the Appendix A.
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Figure 4.16: Average relocation number
v.s. Cn
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Figure 4.17: Average relocation cost
v.s. Cn

Changing distance matrix Changing the distance matrix comes in changing
the relocation cost, and similar to the experiment of changing the unit cost per
relocated scooter, higher cost leads to lower profit. However, the effect on the
relocation strategy in this experiment is reflected in the case of small capacity trucks,
when the number of relocated scooters is low, the benefit gained from relocation
could be less than the cost of creating the relocation path. Therefore, when the
distance between zones increases, relocation operations will only be performed if
the capacity of the truck is large enough. The experimental results are presented
in the Appendix A.

4.1.3 Sensitivity analysis in scenario 2
In scenario 2, a random OD matrix is adopted, as shown in Figure 4.2. Similar
experiments are carried out, with a slightly adjusting on the parameter settings, as
shown in Figure 4.18.

Average profit with different truck capacities The parameter settings for
this experiment are shown in Table 4.5:

N_zones N_scooter I Cm Ct Nt Cn T P Distance

4 100 10 1 [0-50] 1 0.1 2 20 #0

Table 4.5: Parameters setting - with different truck capacities

The trend shows similarity with the first scenario, as shown in Figures 4.19, 4.20,
4.21. Notice that the average number of trips in this scenario is much larger than
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Figure 4.18: Parameters setting under scenario 2

in scenario 1 when the truck capacity is 0, i.e., when no relocation is performed,
reaching 22.75 (instead of 3.75), due to the fact that trips in this scenario no
longer all have the same destination, but commute between zones, so that a certain
number of trips are self-balanced. The curve saturates at a truck capacity of 30,
when the average number of relocations is 19.4 and the maximum average profit is
437.06. This is due to the relatively lower total demand in this scenario compared
to the previous one, with an average of 44 (instead of 66.6), which allows smaller
trucks to meet the total demand.
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Figure 4.19: Average profit v.s. Ct

Changing look-ahead horizon The parameter settings for this experiment are
shown in Table 4.6.

Figure 4.22 shows that increasing the look-ahead horizon raises the average
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Figure 4.20: Average relocation number v.s.
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Figure 4.21: Average relocation cost
v.s. Ct

N_zones N_scooter I Cm Ct Nt Cn T P Distance

4 100 10 1 [0-50] 1 0.1 [1-4] 20 #0

Table 4.6: Parameters setting - changing look-ahead horizon

profit. With a truck capacity of 20, increasing the look-ahead horizon from 2 to
3 raises the average profit by 3.5%, but increasing it to 4 does not further raise
profits since the relocation strategy remains unchanged. With a truck capacity
of 30 or higher, a look-ahead horizon of 2 or higher has no significant impact on
average profit, which is always between 436.98 and 437.06, but both are higher
than the average profit of 431.6 with a look-ahead horizon of 1.

The impact of look-ahead horizon on profit and relocation strategy is not as
straightforward as the other parameters, it is influenced a lot of other factors such
as OD matrix, truck capacity, etc. Therefore, the optimal look-ahead horizon
should be customized to the specific scenario and parameter settings.

For the other parameters, number of trucks, unit cost, optimization horizon and
distance matrices, the experimental results show similar trends to those in scenario
1, see Appendix A.

4.1.4 Scalability analysis
The scalability are analysed in this section, under both scenario 1 and scenario 2.
Specifically, we demonstrate how the elapsed time required to resolve the model is
affected by: the number of zones and scooters, the optimization horizon and the
look-ahead horizon. The parameter settings are shown in Table 4.7
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Figure 4.22: Average profit v.s. T
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Figure 4.23: Average number of trips
v.s. T
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Figure 4.24: Average relocation number
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Figure 4.25: Average relocation cost
v.s. T

In the first set of parameters, the number of scooters varies with the number of
zones, specifically, N_scooter = N_zones × 25, to guarantee that in the initial
state there are always 25 scooters in each zone. In addition, increasing the number
of zones leads to a change in the OD matrix. Fortunately, the deterministic OD
matrix considered in scenario 1 is relatively unaffected, regardless of the number of
zones, there are always the same 50 trips demand from each zone to one certain
zone, from which there is no outgoing demand. Contrary to scenario 1, scenario 2
considers a random OD matrix. In order to obtain a generalized result, for each
change in the number of zones, we generate 5 different OD matrices and calculate
the average of the 5 elapsed times as the final result.
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N_zones N_scooter I Cm Ct Nt Cn T P

Para.1 [4-120] [100-3000] 10 1 20 1 0.1 [1-4] 20
Para.2 4 100 10 1 20 1 0.1 [1-4] [1-20]

Table 4.7: Parameters setting for scalability analysis

In Figure 4.26, with the increasing N_zones the running time shows an acceler-
ated increasing trend, and a larger look-ahead horizon will further accelerate the
increasing rate of the running time. Ignoring the outliers, solving the optimiza-
tion for 100 zones with T = 4 takes the longest running time, which is 167.262s.
However, as shown in Figure 4.27, even though the averaged results are considered,
there is considerable fluctuation in the running time, especially when the number
of zones and the look-ahead horizon are large. The trend is relatively smoother
when T = 1, and an accelerated increasing trend in running time, similar to that
in scenario 1, is evident in Figure 4.28. It is obvious that for random matrices
it is more difficult to find the optimal solution than for a deterministic one. In
scenario 2, the average running time for solving the cases with 100 to 120 zones
with look-ahead horizon of 1 is 58.22s, which is much larger than the average time
for the same cases in scenario 1, 28.27s.

Figures 4.29 and 4.30 show that in both 2 scenarios, the elapsed time increases
linearly with the optimization horizon. In scenario 1, performing 20 round of
optimization with T = 4 can be solved in 0.44 seconds, and also in scenario 2 it
takes only 3.49 seconds.
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Figure 4.26: Elapsed
time v.s. N_Zones in
scenario 1
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Figure 4.27: Elapsed
time v.s. N_Zones in
scenario 2
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time v.s. N_Zones with
T = 1 in scenario 2
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Figure 4.29: Elapsed time v.s. P in
scenario 1
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Figure 4.30: Elapsed time v.s. P in
scenario 2

4.2 Model verification in toy case 2

In the second phase, we proposed two models 3.2.2 and 3.2.2. Both of them take
the optimized relocation strategy proposed by the first phase as input, and find the
optimal route of dispatch trucks considering the minimum route cost and maximum
total profit respectively. The designed toy case for this phase includes 4 zones and a
depot, and they are represented by points in a two-dimensional coordinate system,
as shown in Figure 4.31. The input consists of zones indexes and the corresponding
relocation tasks, as well as coordinates of each zone, as shown in Figure 4.32. The
distance between each zone is given by the Euclidean distance of each point.
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Figure 4.31: 4 zones and a depot

Figure 4.32: Inputs of the model
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4.2.1 Verification of model M2.1
The model M2.1 is adopted firstly to find the optimal route in this toy case,
with the specific parameters shown in Table 4.8. Notice that the parameters are
consistent with the ones defined in Section 3.2.2: T is the maximum routing time,
Sr and Tr refer to service time per scooter and the travel time between zones.

Ct Nt T Sr Tr

Para.1 7 2 60 1 1
Para.2 7 2 70 1 1

Table 4.8: Parameters setting for model M2.1

The optimal route are shown in Figure 4.33, 4.34. The optimal routes under the
two sets of parameters are different, in the second case the optimal route presented
has a lower routing cost of 61.85 rather than 86.98 in the first case. This is due to
the fact that the maximum routing time in the first case is 60 and one truck is not
able to traverse all the zones in the time limit.
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Figure 4.33: Optimal route for M2.1
with Para.1
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Figure 4.34: Optimal route for M2.1
with Para.2

For the model M2.1, each zone must be visited exactly once, thus the above
two parameter settings are the ’limit case’ to guarantee a feasible solution. Trucks
with capacity less than 7 would fail to complete the relocation task for zones 3 and
4. Or, a smaller number of trucks or maximum routing time would prevent the
more distant zones 3 and 4 from being visited and thus no feasible solution can be
found. Nevertheless, the proposed route can always be verified as optimal if there
is a sufficient number of available trucks and sufficient truck capacity.
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4.2.2 Verification of model M2.2
The model M2.2 has a larger feasible region by relaxing this constraint, more
experiments with different parameter settings are conducted, as shown in Table
4.9.

Ct Nt T Sr Tr

Para.1 5 2 60 1 1
Para.2 10 1 60 1 1
Para.3 10 2 60 1 1
Para.4 10 2 50 1 1
Para.5 10 2 70 1 1
Para.6 15 2 70 1 1
Para.7 15 2 70 2 1

Table 4.9: Parameters setting for model M2.2

With the set of parameters of Para.1, the optimal route includes only zones 1
and 2, due to the limitation of the truck capacity (Figure 4.35). In this model, the
relocation task in each zone is considered as a whole, and since the relocation tasks
in zones 3 and 4 exceed the truck capacity, they are not visited. The routing cost
in this case is 36.72, only partial relocation tasks have been completed.
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Figure 4.35: Optimal route for M2.2 with Para.1

While with Para.2, the truck capacity is large enough, still, only partial relocation
needs are satisfied (Figure 4.36). Due to the restrict of maximum routing time,
one truck is unable to traverse all zones. Under the premise of not exceeding the
maximum routing time, the relocation task of zones 3 and 4 is prioritized as the
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higher relocation needs. When two trucks are involved as with Para.3, finally all
relocation needs can be met (Figure 4.37).

The solution obtained with Para.4 (Figure 4.38) is same as in the first case, but
it is limited by the maximum routing time in this case. The time of 50 is larger
than the travel time of visiting zones 1 and 2 (36.72), but smaller than that of
visiting zones 3 and 4 (50.26).

By increasing the maximum routing time, the optimal route found with Para.
5 (Figure 4.39) is capable of satisfying all relocation tasks with a relatively low
routing cost. And the same solution is proposed with Para.6 (Figure 4.40).

Finally, with Para.7, increasing the unit service time per scooter, zones 3 and 4
are not visited (Figure 4.41). Because a higher number of relocations would require
the trucks to stay in the zone too long to return to the depot within the maximum
routing time.
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Figure 4.36: M2.2 with
Para.2
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Figure 4.37: M2.2 with
Para.3
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Figure 4.38: M2.2 with
Para.4
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Figure 4.39: M2.2 with
Para.5
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Figure 4.40: M2.2 with
Para.6
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Figure 4.41: M2.2 with
Para.7

Overall, in any case, the route proposed by model M2.2 can always be verified
as optimal.
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4.3 Joint optimization in toy case 3

In the third case study, we designed a toy case containing 8 zones and a depot, thus
a total of 9 zones, whose locations are identified by the coordinates (Figure 4.42).
The corresponding distance matrix is calculated and given in Figure 4.43 (presented
in a format preserving three decimal digits). Each time frame has identical OD
matrix as in Figure 4.44, where the trip demand within zones is not considered
and there is no travel demand between the depot and other zones. The number of
travel demands between each zone is a random integer within 10, and the total
number of trips demand in each time-frame is 255.

The total number of e-scooters in the system is set to 200, and the initial state
of the system is set as uniformly distributed, therefore there are 25 e-scooters in
each zone at initial. Other parameters are set as in Table 4.10. The number of
trucks is set to be 4, which means in each optimization round there are at most 4
couples of zones included in the optimized relocation strategy. Figure 4.45 shows
the optimized relocation strategy in each time-frame. Takes that as input, the
following phase, employing the model M2.1 with parameters as in Table 4.11, it
finds the optimal route in each time-frame, as shown from Figure 4.46 to 4.50.

Figure 4.42: Zones in scenario 2

Figure 4.43: Distance matrix in scenario 2
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Figure 4.44: OD matrix in scenario 2

N_zones N_scooter I Cm Ct Nt Cn T P

8 200 10 1 20 4 0.1 2 5

Table 4.10: Parameters setting for M1 in scenario 2

Ct Nt T Sr Tr

40 4 70 1 1

Table 4.11: Parameters setting for M2.1 in scenario 2

The average optimized profit on the 5 time-frames is 2516.28, increased by
28.64% relative to 1956, the one whit no relocation strategy performed.

The capacity and number of dispatch trucks of model M2.1 are set to be large
enough to guarantee the feasible solution. In any case, it can be seen that only
1 truck has been used in phase 2. Moreover, in time-frame 0, the relocation is
carried out in 3 couples of zones, and the optimized profit is 2524.82, the dispatch
trucks depart from the depot, traverse the 6 zones and complete the relocation
tasks, and then return to the depot with a routing cost of 58.34. In time-frame
1, the optimized profit is 2510.29 and the routing cost of 60.06. The relocation
strategy includes 4 couples of zones, but in practice only 6 zones are involved. Due
to the large outgoing demand in zone 4, which is 80, a large number of scooters are
relocated to this zone from multiple source zones. Conversely, zone 5 has a larger
incoming demand(39) than outgoing demand(25), so scooters are accumulated in
this zone, which allows the relocation from this zone to multiple destination zones.
A similar story in next time-frames. Observing the situation in these time-frames,
it is clear that the relocation strategy almost always involves zones 4, 5, 7 and 8
and never takes place in zone 3. This is due to the fact that in zones 4, 7 and 8
there is more outgoing demand than the incoming demand, so scooters in these
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zones often experience shortages, whereas the opposite is true for zone 5. In zone
3, however, the demand is relatively balanced, 29 trips for outgoing and 30 for
incoming, hence no relocation is required.

Figure 4.45: Relocation strategies in scenario 2
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Figure 4.46: Optimal
route over time-frame 0 in
scenario 2
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Figure 4.47: Optimal
route over time-frame 1 in
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5 0 5 10 15
X

5

0

5

10

Y

['0', 0]

['4', 20.0]

['8', 20.0] ['7', 15.0]
['1', -20.0]

['5', -18.0]

['6', -17.0]

Figure 4.48: Optimal
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Chapter 5

Numerical results in
practical case

In this chapter, the developed joint optimization algorithm is applied to a practical
case, in which a trace of recorded e-scooter trips is collected from the city of
Louisville. The dataset is organized and provided by the group SmartData@PoliTO.

5.1 Data processing

5.1.1 Analysis on dataset

The datasets include information about zones and trips which are saved in 3 csv
files. They are processed using the python packages pandas1, numpy2 and scipy3.

Grid matrix The city of Louisville was discretized into zones by 200m× 200m
grids. A total of 1476 zones were obtained and indexed sequentially as shown in
Figure 5.1, each zone can be located by the location index, e.g. the location of
zone 124 is (1, 3)

1https://pandas.pydata.org/docs/
2https://numpy.org/doc/stable/
3https://docs.scipy.org/doc/scipy/
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Numerical results in practical case

Figure 5.1: Grid matrix in practical case

Distance matrix The distance matrix represents the calculated geometric dis-
tances of each zone, which is a matrix of size 1476 × 1476. Figure 5.2 shows a
partial distance matrix.

Figure 5.2: Partial distance matrix in practical case

Trips count The basic format of the trips count data is shown in Figure 5.3.
Where the original_id and destination_id are the indexes of the trips’ departure
and arrival zones, from 0 to 1475, hour is the time at which the trips occurred,
from 0 to 23, and start_time indicates the number of trips started at this time.

Figure 5.3: Trips count in practical case

In order to understand the data in a more intuitive way, we plot the line graphs
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Numerical results in practical case

using the plotnine4 package in python. Figures 5.4 and 5.5 are representing the
number of outgoing and incoming trips in each area during the day, as well as a
graph representing the number of trips per hour in Figure 5.6.
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It can be noticed that the origins and destinations of trips have a strong
consistency, the highly active zones of e-scooter usage are mostly concentrated in
zones indexed 200 to 300, and in zones 1100 to 1200 also have relatively high usage.
The number of outgoing trips among these zones is around 2000 and more, within
zone 299 the largest number of trips even reaches 5408. However the use of shared
scooters is rather unevenly distributed spatially. Including the zones mentioned
here, there are only 22 zones counting number of outgoing trips more than 1,000
and only 164 zones with outgoing trips more than 100, while more than a half of
the zones (799) counts outgoing trip less than 10.

Besides, a certain trend of (in total of outgoing and incoming) trips can be seen
in the temporal distribution. From 0:00 to 5:00 the number of trips remaining very
small, as people rarely travel during the night, which is intuitive. The number
of trips continues to rise during the daytime and peaks at 16:00, after a slight
decrease, it reaches a sub-peak at 20:00 and continues to decrease for the rest of
the day.

According to the analysed characteristics of the trips, We have performed
aggregation of the data over space and time, in order to improve the performance
of the algorithm.

5.1.2 Zones aggregation
Spatially the zones are aggregated by 2 × 2. Starting from zone 0, the four
geometrically neighboring zones are aggregated into a new zone and re-assigned

4https://plotnine.readthedocs.io/en/stable/index.html
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Numerical results in practical case

sequentially, as shown in Figure ]5.7. Note that due to the odd number of zones
in one row, in the last column, 2 zones are aggregated into a new zone. After
aggregation, a total of 378 new zones are obtained, assigned the index numbers 0
to 377.

0 1 19 20

357 358 376 377

Figure 5.7: Zones aggregation

Due to the presence of many ineffective zones (i.e., in which no or very few trips
present), a further filtering step is performed. We first sort the zones according to
the number of trips in descending order, and show the relationship of number of
zones involved versus the ratio of covered trip demand to the total demand, as in
Figure 5.8, and the same step has also been employed on the origin zones, as in
Figure 5.9. For the original region, 308 zones need to be involved to cover 90% of
the trip demand, while the aggregated zones can cover 91.64% of the trip demand
by involving only the first 100 zones.
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5.1.3 OD matrix aggregation

In temporal, we aggregate the 24 hours into 7 time-frames. The number of trips
during night hours are very low, hence hours from 0:00 to 5:00 are aggregated as
time-frame 0, the trips starts within these hours are simply summed up with their
origin and destination zones unchanged. The other hours are aggregated by 3, as
shown in Figure 5.10. The trips then are represented by 7 different OD matrices,
each with size of 100× 100.

Figure 5.10: OD aggregation

5.2 Optimization results

To improve the computing efficiency, the joint optimization for the practical case
will involve only the first 100 aggregated zones in the shared e-scooter system, and
adopt the 7 aggregated OD matrices.

The parameter setting in this expreiment is shown as in Figure 5.11. In the first
phase, the total number of shared scooters in the system is assumed to be 2000,
and they are uniformly distributed in the initial state of the system, so that each
zone has 20 scooters at initial. The total number of dispatch trucks available within
the system is 7, each with a capacity of 20. The average revenue per effective trip
is 10€. The unit mileage cost is 0.25€ per kilometer and the unit service cost per
relocated scooter is 0.2€.

The algorithm runs for 5 optimization rounds, considering the demand of 2
time-frames for each optimization round. The proposed relocation strategy is shown
in Figure 5.12. The average optimized profit on the 5 time-frames is 26926.41€,
increased by 6.6% relative to 25260€, the one whit no relocation strategy performed.

Figure 5.11: Parameter setting in practical case
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Figure 5.12: Relocation strategy in practical case

In the second phase, the model M2.1 is adopted thus the number and capacity of
trucks are set to be sufficiently large. As indicated in Section 5.1.3, each time-frame
comprised 3 hours or 5 hours, so a reasonable maximum routing time is set to
3600s, i.e., the relocation tasks need to be completed within 1 hour. The service
time per relocated scooter is 30s. Assuming that the average speed of the dispatch
truck is 20 km h−1, which is around 5.56 m s−1, Tr is set to the inverse of this value,
i.e., 0.18 s m−1. The proposed optimal routes are shown in Figures 5.13 to 5.17.

In time-frame 0, the designated relocation zones are gathered in three orientations
far apart. Due to the maximum routing time constraint, four dispatch trucks are
employed to complete all the relocation tasks, and the optimal routes are:

Truck 0: 0 -> 32 -> 31 -> 30 -> 29 -> 51 -> 0
Truck 1: 0 -> 257 -> 279 -> 258 -> 0
Truck 2: 0 -> 159 -> 160 -> 0
Truck 3: 0 -> 250 -> 251 -> 0

The total routing length is 14103.87m. Zones 250 and 251 are the farthest from
the depot, although they are in the same direction with zones 159 and 160, the
relocation time required to visit them in the same path would result in exceeding
the maximum time limit, so these two couples of zones are visited by two trucks
separately.

In time-frame 1, there are also four dispatch trucks employed. The optimal
routes are:

Truck 0: 0 -> 50 -> 29 -> 48 -> 27 -> 0
Truck 1: 0 -> 90 -> 89 -> 69 -> 70 -> 91 -> 0

57



Numerical results in practical case

5 10 15 20
X

0

5

10

Y

['0', 0]

['258', 40.0]

['51', 38.0]
['31', 20.0]

['251', 14.0]

['160', 13.0]

['257', -20.0]
['279', -20.0]

['29', -20.0]['30', -18.0]['32', -20.0]

['250', -14.0]

['159', -13.0]

Figure 5.13: Optimal
route over time-frame 0 in
practical case

6 9 12
X

0

3

6

9

Y ['0', 0]

['70', 20.0]

['29', 20.0]['27', 20.0]

['89', 20.0] ['91', 20.0]

['194', 20.0]

['139', 20.0]

['69', -20.0]
['50', -20.0]['48', -20.0]

['90', -40.0]

['215', -20.0]

['138', -20.0]

Figure 5.14: Optimal
route over time-frame 1 in
practical case

4 8 12 16
X

0

2.5

5

7.5

10

12.5

Y

['0', 0]

['27', 20.0]

['89', 20.0]['91', 20.0]

['52', 20.0]

['132', 20.0]

['215', 20.0]

['183', 13.0]

['48', -20.0]

['90', -40.0]
['73', -20.0]

['111', -20.0]

['236', -20.0]

['182', -13.0]

Figure 5.15: Optimal
route over time-frame 2 in
practical case
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Figure 5.16: Optimal
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practical case
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Figure 5.17: Optimal
route over time-frame 4 in
practical case

Truck 2: 0 -> 215 -> 194 -> 0
Truck 3: 0 -> 138 -> 139 -> 0

The total routing length is 11344.18m.
In time-frame 2, the optimal routes having the total length of 13436.43m, are:

Truck 0: 0 -> 182 -> 183 -> 0
Truck 1: 0 -> 111 -> 132 -> 236 -> 215 -> 0
Truck 2: 0 -> 73 -> 52 -> 0
Truck 3: 0 -> 90 -> 89 -> 48 -> 27 -> 91 -> 0

All the designated 13 zones are visited.
In time-frame 3, the optimal routes with a total length of 13365.50m, are:

Truck 0: 0 -> 278 -> 277 -> 257 -> 0
Truck 1: 0 -> 111 -> 132 -> 0
Truck 2: 0 -> 299 -> 300 -> 279 -> 280 -> 0
Truck 3: 0 -> 73 -> 72 -> 93 -> 94 -> 0
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In time-frame 4, 11 zones are involved, served by 3 dispatch trucks. In this case
the total length is only 7967.44m.

Truck 0: 0 -> 48 -> 47 -> 26 -> 27 -> 0
Truck 1: 0 -> 69 -> 90 -> 89 -> 112 -> 0
Truck 2: 0 -> 72 -> 73 -> 94 -> 0

59



Chapter 6

Conclusions

This thesis proposes a joint optimization of carrier-based relocation and routing
strategies for e-scooter sharing system. We develop a mixed integer linear program-
ming (MILP) model to optimize the relocation strategy. The objective function
of the model is to maximize total profit, which is obtained by subtracting the
total revenue from satisfied trips from the mileage cost and the repositioning cost,
considering predicted demand, number and capacity limitation of dispatched trucks,
look-ahead horizon and optimization horizon. A toy case including 4 zones and 100
shared scooters was used for verification, sensitivity and scalability analysis. In
most cases, a larger number and capacity of dispatch trucks leads to higher profits.
Using a truck with a capacity of 30 for relocation increases expected profits by
92.3%. The unit cost of relocation directly affects the relocation strategy and the
profit. The higher the cost, the lower the profit. In the scenario which considers
random OD matrix, the number of relocations decreases from 19 to 8 as unit costs
increases, until the relocation stops when the unit cost reaches as much as the
revenue per trip. The impact of look-ahead horizons on profitability and relocation
strategies is not as straightforward as other parameters, it is influenced by many
other factors such as OD matrix, truck capacity etc. Therefore, the optimal look-
ahead horizon should be customized to the specific scenario and parameter settings.
In this case, With a truck capacity of 20, increasing the look-ahead horizon from 2
to 3 raises the average profit by 3.5%, but increasing it to 4 does not further raise
profits.

We have also developed two MILP models for the VRP. The first model is based
on the classical pickup and delivery travel salesman problem (PDTSP). where each
area is visited exactly once. The objective function is to minimize the total routing
cost with an additional constraint of the maximum routing time. While the other
model relaxes the traversal constraint to allow trucks to ignore unfavourable zones,
accordingly we introduce unit relocation revenue to incentivize trucks to meet as
many relocation demands as is profitable. The two models are verified in a toy case
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containing two couples of zone with a total number of 11 scooters to be relocated.
Moreover, the joint optimization for relocation and routing strategies was applied
in the third toy case, which included 8 zones and 200 scooters. The results of the 5
rounds of optimization are presented and the optimized average profit is increased
by 28.64% compared the one without optimization.

We analyzed the dataset of recorded e-scooter trip traces collected from Louisville.
The highly active zones of e-scooter usage are mostly concentrated in zones indexed
200 to 300, but the use of shared scooters is rather unevenly distributed spatially.
Besides, temporally, during night hours the number of trips remains very small,
then it continues to rise during the daytime and peaks at 16:00. According to
the analyzed characteristics, we have performed the aggregation of zones by 2*2,
and the aggregation of hours by 3(daytime) and 5(night hours) to obtain 378
aggregated zones and 7 time-frames. By which, the aggregated OD matrices are
further obtained. Taking them as parameters, the joint optimization is applied
to the practical case, and the results of the 5 optimization rounds are presented,
with the optimized average profit increasing by 6.6% compared to the one before
optimization.

In the future, further improvements can be made in the following aspects:
Firstly, an improvement can be made to the optimization method, by constructing
a single model for the joint optimization rather than in two phases. Secondly, the
models proposed are all solved by an exact algorithm, which shows limitations
on the scalability performance, an attempt to develop heuristic or meta-heuristic
algorithms could lead to improvements in computational performance. Finally,
when constructing the routing optimization model, only one depot is set up in the
study area and each dispatch truck must depart from the depot and return to the
depot after completing relocation tasks. In future research, the design of a model
for the case of multiple depots working together to provide collaborative services
can be considered.
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Appendix A

Sensitivity analysis in toy
case 1

A.1 Scenario 1
Changing number of look-ahead horizon Intuitively, when T = 1, the
relocation strategy should only consider the demand for the current time-frame, so
the number of relocations should be less than 50, however, since in constraint 3.9,
only half of the number of relocations is considered to be effectively used. Hence,
there is tolerance for the maximum number of relocations to be greater than the
current demand. In this case, it is reaching about 62. And when T is greater
than 1, theoretically, the number of relocations should be higher, considering that
the future demand is not less than 100. In practice the number of relocations is
limited by the average number of scooters presenting in zone 2, which happens
to be around 62 as well. In summary, due to the combination of this particular
OD matrix, the total number of scooters and the parameter settings, the corner
situation emerges where the look-ahead horizon has no effect on the relocation
strategy as shown in the Figures A.1 to A.4.

A.2 Scenario 2
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Figure A.9: Average profit v.s. P Figure A.10: Average profit v.s. dis-
tance matrix
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