POLITECNICO DI TORINO A.A. 2022-2023 I FACOLTA' DI INGEGNERIA CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA CIVILE

TESI DI LAUREA MAGISTRALE

Identificazione di meccanismi di collasso e valutazione di interventi di miglioramento sismico su torri campanarie: il caso del Campanile di Fossano

RELATORI:

PROF. ING. ROSARIO CERAVOLO

CORRELATORI:

ING. LINDA SCUSSOLINI

ING. MARCO CIVERA

Torino, 2023

CANDIDATO:

Valerio Foti S233183

1 Sommario

2	INT	TRODUZIONE6			
3	VU	ILNER	ABILITA' SISMICA	8	
	3.1	Crite	eri interventi beni architettonici	9	
	3.2	Мес	canismi di collasso delle torri campanarie	. 10	
4	CA	so si	TUDIO DEL CAMPANILE DI FOSSANO	. 15	
	4.1	Des	crizione struttura	. 15	
	4.2	Stat	o di conservazione ed interventi pregressi	. 16	
	4.3	Мос	lello FEM	. 18	
5	Va	lutaz	ione della sicurezza sismica	. 23	
	5.1	Para	imetri meccanici muratura	. 25	
	5.2	Dete	erminazione azione sismica	. 30	
	5.3	Tem	po di ritorno dell'evento sismico considerato	. 30	
	5.3	.2	Parametri di base dell'azione sismica	32	
	5.3	.3	Categoria del sottosuolo	34	
	5.3	.4	Coefficiente di amplificazione stratigrafica	34	
	5.3	.5	Coefficiente di amplificazione topografica	34	
	5.3	.6	Fattore di struttura	34	
	5.3	.7	Categoria di rilevanza	35	
	5.3	.8	Categoria d'uso	35	
	5.3	.9	Fattore d'importanza	35	
	5.4	Spet	ttro di risposta elastico a SLV	. 36	
	5.5	Spet	ttro di risposta elastico a SLD	. 38	
	5.6	VAL	UTAZIONE VULNERABILITÀ SISMICA: LIVELLO LV1	. 40	
	5.6	.1	Verifica per azioni verticali	41	
	5.6	.2	Verifica per azioni orizzontali	42	
6	СА	RATT	ERIZZAZIONE DEL CASO DI STUDIO	.45	
	6.1	Δna	lisi modale	45	
	C 1	711a		رہ . مر	
	0.1.	. 1	Applications analist module at modello FEM.	47	

	6.2	Ana	lisi pushover	54
	6.2	.1	Applicazione analisi non lineare al modello FEM	55
	6.3	Ana	lisi spettro di risposta	70
	6.3	.1	Applicazione spettro di risposta al modello FEM	70
	6.4	Ver	ifiche di sicurezza	76
	6.4	.1	Verifiche pannelli murari livello 1	76
	6.4	.2	Verifica pannelli murari livello 2 e 3	87
7	PR	OGE	TTAZIONE INTERVENTI DI MIGLIORAMENTO	96
	7.1	Sce	ta degli interventi	96
	7.2	Inie	zioni di malta	. 104
	7.3	Frp		. 105
	7.4	Con	nbinazione intervento iniezioni e Frp	. 107
	7.5	Mo	dellazione interventi	. 107
	7.5	.1	Modellazione iniezioni di malta	107
	7.5	.2	Modellazione Frp	109
8	СА	RATI	TERIZZAZIONE DINAMICA POST-INTERVENTO	. 112
	8.1	Ana	lisi modale	. 112
	8.1	.1	Intervento Frp	112
	8.1	.2	Intervento iniezioni di malta	117
	8.1	.3	Intervento iniezioni e Frp	124
	8.2	Ana	lisi pushover	. 131
	8.2	.1	Intervento FRP	131
	8.2	.2	Intervento iniezioni di malta	134
	8.2	.3	Intervento iniezioni e FRP	138
	8.3	Ana	lisi spettro di risposta	. 143
	8.3	.1	Verifiche post-intervento FRP	143
	8.3	.2	Verifiche post-intervento iniezioni di malta	153
	8.3	.3	Verifiche post-intervento combinato iniezioni e FRP	170
	8.4	Stat	o fessurativo	. 180
	8.5	Con	siderazioni post-interventi	. 185
	8.5	.1	Verifiche pannelli murari livello 1	190
	8.5	.2	Verifiche pannelli murari livello 2	193

	8.5.3	Verifiche pannelli murari livello 3	196
9	Conclu	usioni	
10	Bibliog	grafia e Sitografia	

ABSTRACT

Quando una costruzione classificata come bene architettonico presenta importanti segni di usura, tali da comprometterne stabilità e sicurezza, come fessurazioni e /o cedimenti, i tiranti in acciaio consentono un intervento di rinforzo rapido, relativamente semplice e molto efficace, soprattutto per strutture murarie alte come i campanili medievali. Tuttavia il loro design è fortemente impattante sull'estetica esterna della struttura, pertanto essi non sono generalmente considerati una soluzione definitiva accettabile.

Lo studio in esame propone diversi progetti basati su opzioni meno invasive ma altrettanto valide da impiegare in sostituzione del sistema di rinforzo precedentemente descritto.

Tali progetti vengono quindi confrontati considerando molteplici fattori, quali la conservazione del progetto architettonico, le incertezze in termini di proprietà geometriche e meccaniche, il comportamento non lineare delle pareti in muratura danneggiate e il livello di sicurezza strutturale richiesto. Il posizionamento di questi interventi alternativi di rinforzo lungo l'altezza della torre è inoltre ottimizzato in funzione dello specifico schema fessurativo e del meccanismo di collasso più probabile.

Infine, confrontandoli tra loro, viene valutata e classificata la fattibilità di ogni singolo intervento, evidenziando per ognuno di essi aspetti positivi e negativi.

2 INTRODUZIONE

L'Italia è da sempre definita "il Bel Paese": l'unicità dei suoi paesaggi fa infatti da naturale cornice alla maestosità dei monumenti e delle opere architettoniche, tanto da giustificarne un simile appellativo. Tali beni, tuttavia, non sono esenti dalla forza corruttrice del tempo, la quale deteriora inesorabilmente qualsiasi opera umana.

È pertanto necessario intervenire con misure di prevenzione atte a salvaguardare il nostro patrimonio architettonico. Una soluzione di prevenzione efficiente e mirata è di gran lunga da preferire ad un intervento di messa in sicurezza dopo un danneggiamento causato da un evento estremo e imprevedibile. La prevenzione, infatti, comporta un notevole risparmio in termini economici e un migliore risultato nel ripristino dell'opera originaria.

Ogni bene architettonico che necessita di un intervento di manutenzione preventiva comporta una serie di difficoltà in termini di diagnosi e restauro che inevitabilmente limitano l'applicazione delle normative moderne [1]. Infatti, sia in termini di materiali adoperati che di tecniche costruttive, queste antiche opere architettoniche presentano spesso caratteristiche e peculiarità difficili da adattare alle nuove e moderne tecniche di costruzione.

Un intervento atto a manutenzionare o a restaurare un edificio storico monumentale non può solo tener conto di applicare ipso facto le nuove normative antisismiche valide per gli edifici ordinari, ma richiede inevitabilmente un notevole e accurato studio tanto della condizione attuale in cui versa quanto delle modifiche di manutenzione attuate nel corso del tempo. Pertanto diventa fondamentale il concetto di minimo intervento, definito come "intervento che combina in modo ottimale conformità agli standard strutturali con protezione e valorizzazione del valore storico e rispetto dell'autenticità della struttura, per quanto possibile" [1]. La salvaguardia degli edifici storici risulta pertanto dalla combinazione dei principi di conservazione e sicurezza.

In seguito agli ultimi eventi sismici che hanno interessato il territorio italiano sono emerse le peculiarità dell'edilizia storico monumentale e di culto, sia in termini di vetustà e degrado dei materiali costituenti, sia delle diverse tecniche di costruzione tipiche delle opere in muratura. È indispensabile quindi un'approfondita conoscenza dell'opera in esame che permetta una riduzione dei rischi in termini di sicurezza. La seguente tesi si propone di esaminare e analizzare alcuni metodi di consolidazione per edifici storici, ricercando tra essi quelli che più concilino i criteri di minimo intervento, salvaguardia del bene storico architettonico e minor impatto estetico. Nello specifico la tesi tratta il caso del campanile della Cattedrale-Basilica di Santa Maria e San Giovenale situato nel comune di Fossano (CN) tramite modellazione e analisi di interventi che permettano il rispetto dei suddetti criteri.

Alla luce di quanto affermato, nel capitolo 3 viene spiegato a caratteri generali cos'è la vulnerabilità sismica e come questa si rapporta alle costruzioni, in particolare ai campanili.

Nel capitolo 4 viene discusso il caso in esame, descrivendo la struttura, sia dal punto di vista geometrico sia dal punto di vista delle proprietà meccaniche, oltre ai vari interventi che l'hanno portata allo stato attuale.

Nel capitolo 5 viene valutata la sicurezza sismica del campanile mediante un'analisi preliminare (LV1).

Nel capitolo 6 vengono sviluppate ed eseguite le analisi modale, pushover e spettro di risposta sulla configurazione attuale in cui vige la struttura.

Nel capitolo 7 vengono scelti e modellati, tramite software agli elementi finiti, gli interventi di consolidamento strutturale.

Nel capitolo 8 vengono ripetute le analisi e le verifiche, svolte per la configurazione attuale della struttura, anche per la configurazione post interventi e discussi i risultati evidenziando per ogni intervento proposto i vari aspetti positivi e negativi.

Infine nel capitolo 9 sono riportate le conclusioni a seguito dei risultati emersi dalle analisi e verifiche precedenti.

3 VULNERABILITA' SISMICA

La vulnerabilità sismica è la predisposizione di una struttura a subire un danno di un determinato livello, in seguito ad un evento sismico di una data intensità.

Per valutare tale vulnerabilità si può ricorrere a diversi metodi che differiscono tra loro a seconda del grado di approfondimento e della complessità di calcolo scelta.

Per garantire un basso livello di vulnerabilità sismica la normativa impone il rispetto di rigorosi criteri antisismici e una risposta duttile alle sollecitazioni indotte dal sisma.

Le norme tecniche hanno come obiettivo quello di permettere una valutazione attendibile della sicurezza degli edifici esistenti e, nel caso non fosse soddisfatta, suggerire degli interventi di ripristino per garantire il raggiungimento della sicurezza sismica.

Nel capitolo 8 delle NTC 2018 sono contenuti gli step necessari per la valutazione dell'indice di vulnerabilità sismica che possiamo riassumere così:

-Indagine conoscitiva: si definisce lo stato attuale della costruzione mediante rilievi plano-altimetrici, strutturali e dello stato deformativo della struttura.

-Analisi storico-critica: è lo strumento che guida il progettista nella ricostruzione dello stato di sollecitazione attuale alla luce delle modifiche e degli eventi che hanno interessato l'edificio nel tempo.

-Caratterizzazione meccanica dei materiali: valutazione della capacità di resistenza dei materiali mediante indagini svolte in sito o in laboratorio [2].

-Definizione dei livelli di conoscenza e dei conseguenti fattori di confidenza: si definiscono coefficienti riduttivi delle proprietà meccaniche dei materiali via via minori al crescere del grado di approfondimento delle indagini; si va dal livello di conoscenza 1 (LC1), il minimo consentito, al livello di conoscenza 3 (LC3), il massimo consentito [2].

-Analisi strutturale e determinazione della vulnerabilità del sistema strutturale esistente;

-Proposta di eventuali interventi di adeguamento e valutazione del rapporto costi/benefici ottimale [2].

Seguendo questi step è quindi possibile calcolare l'indice di vulnerabilità sismica, che è un valore numerico dato dal rapporto tra la capacità resistente della struttura e la domanda in termini di resistenza o spostamento prevista dalla Normativa Tecnica.

L'indice di vulnerabilità ha quindi il vantaggio di riassumere le vulnerabilità in un unico valore numerico di facile lettura, che però non deve essere considerato come un valore assoluto di sicurezza, infatti all'interno di esso non sono considerati numerosi fattori, come la caduta di elementi non strutturali, l'intensità sismica, la distanza dall'epicentro ecc, altrettanto pericolosi.

3.1 Criteri interventi beni architettonici

Quando si deve trattare con opere di interesse storico il problema principale consiste nella ricerca di quegli interventi che permettano di garantire la sicurezza sismica richiesta senza però al contempo deturpare l'aspetto architettonico della struttura stessa.

Gli adeguamenti sismici su strutture esistenti previsti dalle NTC2008 spesso andavano incontro a problemi sia di natura economica sia soprattutto di natura progettuale, ecco perché le NTC2018 richiedono per gli edifici esistenti dei livelli di sicurezza sismica inferiori ma più facilmente raggiungibili, così da non stravolgere lo schema statico e/o le particolarità architettoniche originarie. Con il termine 'miglioramento' si intende l'esecuzione di opere in grado di conferire all'edificio un grado di sicurezza superiore rispetto alle condizioni attuali, con un livello di protezione sismica non necessariamente uguale a quello previsto per l'adeguamento delle costruzioni di nuova generazione. Pertanto, l'approccio più opportuno per il raggiungimento del delicato equilibrio tra conservazione e sicurezza è certamente quello di limitarsi al cosiddetto "minimo intervento": non si può infatti pretendere di portare la sicurezza ai livelli richiesti per le costruzioni moderne, per cui si deve accettare un rischio maggiore [3].

L'intervento "minimo", quindi, deve essere quello utile a garantire la conservazione in sicurezza. Questo concetto, peraltro, fa parte dei principi fondamentali enunciati da un importante documento di riferimento per il mondo dei Beni Culturali: la CARTA ICOMOS 2003 in cui si chiarisce che "Ciascun intervento deve essere calibrato sugli obiettivi di sicurezza, contenendo quindi gli interventi al minimo necessario per assicurare sicurezza e durabilità con il minimo impatto sul valore storico del bene" [1].

3.2 Meccanismi di collasso delle torri campanarie

Il comportamento sismico delle strutture a prevalente sviluppo verticale, come torri e campanili, è influenzato da specifici fattori come: il grado di ammorsamento dei pannelli murari; la snellezza della struttura; l'eventuale presenza di strutture adiacenti più basse; la presenza nella parte sommitale di elementi architettonici snelli (guglie, vele campanarie, merlature, ecc.) o comunque vulnerabili (celle campanarie). La vulnerabilità è inoltre influenzata dalla presenza di stati di danneggiamento di altra natura, dovuti ad esempio alle vibrazioni indotte dalle campane o a problematiche in fondazione.

Nei campanili infatti, la cella campanaria risulta un elemento particolarmente vulnerabile, in quanto sono presenti ampie forature che producono pilastri spesso snelli e poco caricati, caratterizzati da rotture a taglio per scorrimento [5].

Se si ipotizza di analizzare una "torre isolata" si possono individuare, seguendo lo schema del Prof. F. Doglioni dello I.U.A.V. di Venezia, sei situazioni principali di danno (tabella 1) che fanno riferimento specificatamente ai seguenti cinematismi [6]:

3	Rotazione verso l'esterno di "ambiti di angolata" attorno ad un punto di cerniera formatosi sull'angolata della stessa, all'estremo inferiore della parte interessata dal meccanismo	
4	Traslazione della parete superiore (del tronco)	
5	- della torre campanaria, seguita da rotazio della stessa	

Tabella 1: Abaco meccanismi di danno

A ciascun cinematismo descritto corrisponde un quadro fessurativo collegato.

Nei meccanismi 1 e 2, l'energia dissipata avviene secondo i meccanismi di I modo della meccanica classica della frattura, mentre gli altri meccanismi dissipano secondo il modo II e modo III della meccanica della frattura. La evoluzione del danno risulta complessa in quanto ad ogni oscillazione la

struttura danneggiata risulta cambiata. Numerosi sono i campanili che in seguito ad eventi sismici crollano o vengono demoliti perché pericolanti e successivamente ricostruiti [4, 6].

Il caso di lesioni a Y e lesioni diagonali è tipico di campanili addossati ad un edificio. Infatti, durante l'evento sismico, la torre campanaria oscilla in due direzioni opposte quindi si formano due fratture inclinate ortogonali alle due direzioni di trazione, ciò infatti accade se sussiste una zona di contatto tra l'edificio e il campanile, la quale si comporta come un appoggio attorno a cui ruota con asse orizzontale la struttura snella in elevazione [4, 6].

Il meccanismo 7, rappresentato da lesioni dovute alla combinazione tra rotazione attorno ad un asse verticale e rotazione attorno ad un asse orizzontale, si manifesta con un tipo di danno caratterizzato da lesioni ad andamento obliquo lungo i quattro lati della torre [4, 6].

Quando però, in seguito alla formazione della prima frattura diagonale, la parte del campanile sovrastante la frattura formatasi comincia a slittare, senza dare il tempo per la formazione della seconda fessura diagonale a formare la X, si evidenzia una dislocazione nella parte alta della macrofessura, con sola macrolesione diagonale [4, 6].

Le celle campanarie sono generalmente caratterizzate da numerose e ampie aperture che non consentono ai piedritti di lavorare come una sezione accoppiata nel caso di sollecitazioni orizzontali (figura 1)

Fig. 1 Situazioni principali di danno per la cella campanaria

Quindi, le lesioni principali che si manifestano riguardano gli archi presenti e le rotazioni o scorrimenti dei piedritti. Infatti, per le celle campanarie è frequente l'attivazione di un cinematismo ad arco a più cerniere, che, nonostante la tridimensionalità della cella, può essere ricondotto a un meccanismo piano analogo a quello degli archi trionfali. Un altro meccanismo frequente è quello caratterizzato dallo scivolamento verso l'esterno di un piedritto e dalla rotazione di quello opposto (figura 2) [4, 6].

Cinematismo ad arco a più cerniere

Rotazioni o scorrimento dei piedritti

Fig. 2 Possibili modalità di attivazione dei meccanismi di collasso per la cella campanaria

4 CASO STUDIO DEL CAMPANILE DI FOSSANO

4.1 Descrizione struttura

Il Duomo di Fossano, dedicato a San Giovenale, patrono della città, è situato nel centro storico in piazza Manfredi. La chiesa fu progettata nel 1771 dal Quarini, mentre il campanile, di stile differente, è anteriore, contemporaneo alla precedente costruzione. La cattedrale, che ha sostituito la precedente costruzione duecentesca, presenta una maestosa facciata nel tipico mattone piemontese e segue lo stile neoclassico.

Fig. 3 Stralcio del progetto originale del Quarini (1771)

La torre campanaria oggetto dell'indagine ha base quadrata fino a quota 35 m dal P.C. con pareti dallo spessore medio di 1,5 m, poiché in origine la scala era disposta in spessore. Tali passaggi interni alle pareti furono parzialmente chiusi a seguito di un primo intervento di restauro dei primi del '900, durante il quale le scale furono sostituite da una serie di rampe in legno all'interno della torre; inoltre furono disposti 3 ordini di tiranti in ferro alle quote di 14-21 e 32 m dal diametro medio di 6 cm. Oltre il livello delle serliane è presente la cella campanaria a pianta ottagonale, con pareti di spessore medio pari a 0,5 m; tale struttura si erge fino al colmo del tetto ligneo che tocca quota 46 m. Raggiungendo la cella campanaria, da cui si gode una suggestiva visuale della città dall'alto, la campana situata

nell'angolo a sinistra è stata aggiunta dopo l'epoca napoleonica, quando l'antica torre civica, chiaramente visibile nell'incisione seicentesca del Boetto, fu abbattuta e il campanile del Duomo assunse una funzione civica oltre a quella propriamente religiosa. La struttura presenta tre solai, il primo, in muratura, poggia sulla volta a crociera duecentesca, ed è posto a quota 9,9 m dal P.C. Il secondo, posto a quota 28,2 m, è di tipo ligneo e poggia su travi in legno accoppiate a sezione circolare aventi diametro pari a circa 40 cm. L'ultimo solaio, a quota 35 m, presenta una stratigrafia singolare: lo strato inferiore, in laterizio, poggia su un graticcio di travi ad arco; lo strato superiore invece è ligneo e all'estradosso si confonde con i solai presenti ai livelli inferiori [7, 8].

Fig. 4 a,b Prospetto principale della struttura da Via Roma e Vista interna della torre campanaria

4.2 Stato di conservazione ed interventi pregressi

Negli ultimi anni il campanile della Cattedrale di Santa Maria e San Giovenale a Fossano è stato oggetto di numerosi studi che mediante monitoraggi e l'uso di specifici sensori hanno permesso di evidenziarne lo stato fessurativo. L'edificio infatti evidenzia una diffusa presenza di lesioni generalmente ad andamento verticale, visibili all'interno, sulle murature a nudo; sull'esterno esse sono occultate dall'intonaco, peraltro staccato in più punti dal supporto murario. Certamente esse sono in gran parte (ma non solo) attribuibili al terremoto del 1887, a seguito del quale venne eseguito un intervento di consolidamento particolarmente efficace, come i carotaggi hanno potuto dimostrare.

L'intervento in allora è consistito nel riempimento della scala interna alle murature d'ambito, scala che si spingeva fino in prossimità della cella campanaria, a mezzo di muratura di mattoni di ottima consistenza. L'opera, più che rendere continua la sezione portante (obbiettivo arduo da raggiungere per l'impossibilità di rendere omogeneo vecchio e nuovo tessuto murario e per la difficoltà di realizzare in numero sufficiente efficaci ammorsamenti tra la muratura che si andava realizzando e i sottili setti laterali della scala), è tuttavia servita come risorsa precauzionale in caso di cedimento della sezione muraria originale; in altre parole il dispositivo si configurava come un puntello pronto ad entrare in azione in caso di menomazione della struttura esistente. Inoltre, il campanile venne dotato di alcuni anelli di cerchiaggio costituiti da tiranti metallici di diametro di circa 60 mm, inseriti a filo delle murature interne del campanile, intestati con capochiavi nelle zone angolari esterne del campanile. Scopo di questo intervento era di contrastare l'allargamento delle fessure presenti, migliorando il comportamento d'insieme, soprattutto in vista di future azioni orizzontali dovute a terremoti; col passare degli anni il beneficio si è protratto anche nei confronti delle sempre crescenti vibrazioni del traffico veicolare. L'ultimo intervento risalente al 2012, a seguito di un ulteriore sviluppo di fessure verticali sui paramenti del campanile, prevede in attesa di effettuare un miglioramento permanente la messa in sicurezza provvisoria delle pareti perimetrali mediante cerchiaggio costituito da 11 ordini di tiranti in acciaio posti sia sull'esterno che all'interno dell'edificio [9, 10, 11].

Fig. 6 Stato attuale con intervento di cerchiatura della struttura

4.3 Modello FEM

I metodi agli elementi finiti sono tecniche atte ad approssimare le equazioni differenziali che governano un sistema continuo con un sistema di equazioni algebriche in un numero finito di incognite. La diffusione di questi metodi è soprattutto dovuta alla facilità con cui essi possono essere tradotti in programmi di calcolo. Inizialmente la metodologia FEM venne utilizzata per la risoluzione di problematiche strutturali, ma successivamente grazie alla sua facilità e rapidità di risoluzione venne estesa a numerosi campi.

Uno dei passi più importanti dell'analisi strutturale è dunque l'idealizzazione della struttura che permette di passare dal modello fisico a quello numerico. Tale passaggio riduce il numero di gradi di libertà che nel mezzo continuo sono infiniti, mentre, considerando solo alcuni punti (nodi) della struttura, sono in numero, per l'appunto, finito. Si parla allora di discretizzazione della struttura come quell'operazione che permette di passare dalla struttura reale a quella discretizzata per la quale è possibile applicare il metodo degli elementi finiti al fine di ottenere una soluzione ingegneristica del problema. La modellazione della struttura costituisce quindi uno dei passi più importanti dell'analisi strutturale, in quanto in questa fase vengono formulate diverse ipotesi che permetteranno la semplificazione del modello reale: i risultati saranno influenzati da queste assunzioni, che comunque, una volta note, permetteranno una corretta interpretazione dei valori numerici [12].

Una volta definita la struttura dal punto di vista geometrico il passo successivo è stato quindi quello di realizzare un modello agli elementi finiti della struttura in esame.

Per la realizzazione del modello si è scelto di utilizzare il software agli elementi finiti DIANA FEA (DI splacement ANA lyzer), che può essere utilizzato in un'ampia gamma di settori ingegneristici come:

- Ingegneria civile (inclusa quella strutturale).
- Ingegneria geotecnica
- Tunnel e scavi sotterranei
- Ingegneria geotecnica
- Ingegneria dei terremoti
- Ingegneria del petrolio e del gas

La robusta funzionalità del programma include modelli di materiali estesi, librerie di elementi e procedure di analisi, che si basano sulle più recenti e avanzate tecniche di analisi degli elementi finiti. DIANA FEA è inoltre dotato di potenti risolutori per ottimizzare l'analisi di tutti i tipi di modelli lineari e non lineari con risultati accurati e calcoli veloci.

Il software DIANA FEA a seconda che si abbia a che fare con elementi mono, bi o tridimensionali propone diversi "element class" per modellare un oggetto. Nel nostro caso si è scelto di modellare tutti i pannelli murari del campanile mediante la classe di elemento denominata "regular curved shell" (figura 7) caratterizzato da 8 nodi ciascuno dei quali presenta 5 gradi di libertà: 3 traslazioni e 2 rotazioni. (figura 8)

Fig. 7 Scelta classe elemento

Successivamente si è definito per ogni elemento della struttura la classe e la legge costitutiva del materiale di cui è composto. Avendo a che fare con una struttura interamente realizzata in muratura si è scelto come class "concrete and masonry" e come modello di materiale "linear elastic isotropic" (figura 9)

🗭 Edit material		\times ØE Add new material	\times
Name Aspects to include Thermal effects Maturity effects Crack index	Material 1 Concentration effects Shrinkage	Name Material 1 Class Concrete and masonry Material model Linear elastic isotropic Aspects to include	× ×
 Damping Additional dyna 	Design check parameters mic surface mass Additional dynamic 3D line mass	ass Thermal effects Concentration effects	
V Linear materi	al properties	Crack index Diaxial failure envelope	
Young's modulus* Poisson's ratio*	2.69e+09 N/m ² fx 0.3 fx	 Damping Design check parameters Additional dynamic surface mass 	
Mass density	2000 kg/m ³ fx Close Help	OK Cancel Help	

Fig. 9 Scelta classe e modello materiale

L'ultimo step è stato quello riguardante la creazione della mesh, su questo argomento il software DIANA FEA offre numerose soluzioni, infatti è possibile definire le proprietà della mesh (seeding) nelle "shape". L'impostazione delle proprietà della mesh prevede le seguenti opzioni:

• Operazione

Le proprietà della mesh possono essere assegnate a forme, facce e spigoli

• Selezione della forma

Selezionare la forma per impostare le proprietà della mesh

• Metodo di seeding

I metodi di seeding disponibili dipendono dal tipo di entità geometrica selezionata e sono: Divisions, Element Size e Gradation

Per la nostra struttura si è scelto di adottare una discretizzazione consona al tipo di analisi che si intende operare in modo da avere i risultati di interesse in tempi relativamente brevi, per questo motivo si è impostato come target type l'opzione "Shape" e come seeding method "element size", impostando una misura pari a 0,5 m proprio per cogliere dettagli e particolari durante lo svolgimento delle varie analisi. Infine, per il tipo di mesh si è scelto esagonale e quadratico (figura 10), una volta settati i parametri si è generata la mesh (figura 11).

🥞 Mesh properties	*
💜 Apply 🛛 🗙 Close 🛛 🎧 Preview	
Target type	
Shape	~
Seeding method*	
Element size	~
Shapes* [13]	
💐 shape 60	🖻 🖄 🍯
💐 shape 102	
J shape 103	
J shape 107	
J shape 2	1
J shape 110	Ē
V shape 9	1
Desired size*	
	0.5 m
Size transition smoothness*	
0.5	
Adaptive element size	
Mesher type	
Hexa/Ouad	~

Fig.11 Mesh

Fig. 10 Scelta proprietà della mesh

× × ×

5 Valutazione della sicurezza sismica

Una volta definito il sito e le caratteristiche geometriche del campanile in esame, lo step successivo è quello di determinare la vulnerabilità della struttura stessa. Le linee guida per la valutazione e riduzione del rischio sismico del patrimonio culturale presentano al loro interno 3 diversi livelli di valutazione della sicurezza sismica:

- LV1: per le valutazioni della sicurezza sismica da effettuarsi a scala territoriale su tutti i beni culturali tutelati mediante modelli meccanici semplificati
- LV2: per le valutazioni in presenza di interventi locali su zone limitate del manufatto, definiti nelle NTC riparazione o intervento locale
- LV3: per il progetto di interventi che incidano sul funzionamento strutturale complessivo (definiti nelle NTC interventi di miglioramento) o quando venga comunque richiesta un'accurata valutazione della sicurezza sismica del manufatto.

Ovviamente Il grado di attendibilità del modello di valutazione sismica è strettamente legato al livello di approfondimento della conoscenza ed ai dati disponibili, di conseguenza la Direttiva-NTC2008 introduce diversi livelli di conoscenza, ad approfondimento crescente, ai quali sono legati fattori di confidenza FC da utilizzare nell'analisi di vulnerabilità sismica del manufatto. In particolare, il fattore di confidenza può essere determinato definendo quattro fattori parziali di confidenza F_{CK} (k=1,4), sulla base dei coefficienti numerici riportati nella Tabella 4.1 della Direttiva-NTC2008, i cui valori sono associati alle categorie di indagine ed al livello di approfondimento in esse raggiunto:

FC1 - Rilievo	Rilievo geometrico completo	0,05
geometrico	Rilievo geometrico completo con restituzione dei quadri fessurativi e deformativi	0,00
	Restituzione ipotetica delle fasi costruttive basata su un limitato rilievo materico e degli elementi costruttivi associato alla comprensione delle vicende di trasformazione (indagini documentazione e tematiche)	0,12
FC2 -Identificazione delle specificità storiche e costruttive della fabbrica	 Restituzione parziale delle fasi costruttive e interpretazione del comportamento strutturale fondate su: a) Limitato rilievo materico e degli elementi costruttivi associato alla comprensione e alla verifica delle vicende di trasformazione (indagini documentarie e tematiche, verifica diagnostica delle ipotesi storiografiche) b) Esteso rilievo materico e degli elementi costruttivi associato alla comprensione delle vicende di trasformazione (indagini documentarie e tematiche) 	0,06
	Restituzione completa delle fasi costruttive e interpretazione del comportamento strutturale fondate su un esaustivo rilievo materico e degli elementi costruttivi associato alla comprensione delle vicende di trasformazione (indagini documentarie e tematiche, eventuali indagini diagnostiche)	0,00
FC3 - Proprietà	Parametri meccanici desunti da dati già disponibili	0,12
meccaniche dei materiali	Limitate indagini sui parametri meccanici dei materiali	0,06
materian	Estese indagini sui parametri meccanici de materiali	0,00
FC4 Torrong o	Limitate indagini sul terreno e le fondazioni, in assenza di dati geotecnici e disponibilità d'informazione sulle fondazioni	0,06
fondazioni	Disponibilità di dati geotecnici e sulle strutture fondazionali; limitate indagini sul terreno e le fondazioni	0,03
	Estese o esaustive indagini sul terreno e le fondazioni	0,00

Tabella 1 – Determinazione del fattore di confidenza

In questa fase preliminare si assume un livello di conoscenza minimo della struttura e delle caratteristiche dei materiali

Rilievo geometrico completo	$F_{C1} = 0,00$
Identificazione delle specificità storiche e costruttive della fabbrica	$F_{C2} = 0,06$
Parametri meccanici desunti da dati già disponibili	$F_{C3} = 0,00$
Terreno e fondazioni	$F_{C4} = 0,06$
	$F_C = 1 + \sum_{k=1}^{4} F_{Ck} = 1,12$

Tabella 2 – Determinazione del fattore di confidenza

5.1 Parametri meccanici muratura

Una volta definito il livello di conoscenza della struttura e il relativo fattore di confidenza si sono determinati i parametri meccanici che caratterizzano la muratura. Per procedere quindi alla definizione di tali parametri ci si affida a quanto riportato nel paragrafo C8.5.4.1 della circolare esplicativa delle NTC18 del 2019 (C.S.LL. PP, 2019) [2].

In particolare, la tabella 8.5.I della suddetta circolare raccoglie i valori indicativi dei parametri meccanici delle tipologie di murature più ricorrenti, riportando per ciascuna categoria i valori massimi e minimi dei parametri meccanici ad essa associati. Il valore finale da adottare per ciascuna caratteristica meccanica dipende dal livello di conoscenza raggiunto associato al proprio fattore di confidenza, a sua volta adottato per ridurre opportunamente le proprietà meccaniche del materiale desunte dalla tabella 8.5. I.

Per il presente caso studio, la conoscenza del manufatto ha permesso di definire come tipologia di muratura quella corrispondente a "muratura in mattoni pieni e malta di calce" (figura 12).

Tipologia di muratura	f (N/mm²) min-max	τ ₀ (N/mm²) min-max	f _{V0} (N/mm²)	E (N/mm²) min-max	G (N/mm ²) min-max	w (kN/m³)
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,0-2,0	0,018-0,032	1	690-1050	230-350	19
Muratura a conci sbozzati, con paramenti di spessore disomogeneo (*)	2,0	0,035-0,051	-	1020-1440	340-480	20
Muratura in pietre a spacco con buona tessitura	2,6-3,8	0,056-0,074	-	1500-1980	500-660	21
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,4-2,2	0,028-0,042	-	900-1260	300-420	13 + 16/**)
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc.,) (**)	2,0-3,2	0,04-0,08	0,10-0,19	1200-1620	400-500	15+10()
Muratura a blocchi lapidei squadrati	5,8-8,2	0,09-0,12	0,18-0,28	2400-3300	800-1100	22
Muratura in mattoni pieni e malta di calce (***)	2,6-4,3	0,05-0,13	0,13-0,27	1200-1800	400-600	18
Muratura in mattoni semipieni con malta cementizia (es.: doppio UNI foratura ≤40%)	5,0-8,0	0,08-0,17	0,20-0,36	3500-5600	875-1400	15

Fig.12. Tabella C8.5.I Circolare esplicativa del 2019 delle NTC18 (C.S.LL. PP, 2019)

Nella tabella sono riportati i seguenti parametri meccanici:

- *f* è la resistenza media a compressione;
- τ_0 è la resistenza media a taglio in assenza di tensioni normali;
- f_{v0} è la resistenza media a taglio in assenza di tensioni normali;
- *E* è il valore medio del modulo di elasticità normale;
- G è il valore medio del modulo di elasticità tangenziale;
- *w* è il peso specifico medio.

Come precedentemente anticipato, la scelta del valore finale viene fatta in funzione del livello di conoscenza conseguito con le indagini, secondo le regole seguenti:

- con un livello di conoscenza LC1 si usano i valori minimi presenti in tabella per ogni caratteristica meccanica;
- con un livello di conoscenza LC2 il valore delle caratteristiche meccaniche è dato dalla media dei valori presenti in tabella;
- con un livello di conoscenza LC3, se sono disponibili almeno tre valori sperimentali di resistenza, è possibile usare la media dei risultati. Se sono disponibili due valori, si può assumere il valore medio corrispondente, purché non ecceda l'intervallo definito dalla tabella, altrimenti si assume il valore massimo tabulato.

Nel caso specifico, si è considerato un livello di conoscenza pari a LC1 per la valutazione delle resistenze, tale scelta risulta giustificata dal fatto che a seguito di una campagna di indagini diagnostiche, svolta nel 2012, con l'utilizzo di martinetti piatti doppi si è notato che ogni provino analizzato aveva avuto una riduzione del modulo di deformabilità non trascurabile, manifestando pertanto un chiaro ingresso in campo plastico. A fronte di ciò si è ritenuto opportuno, a favore di sicurezza, scegliere il valore minimo tra i valori di resistenza forniti in tabella. In termini di deformabilità invece è stato considerato un livello di conoscenza LC2, di conseguenza, per quanto riguarda i moduli elastici, si è considerato il valore medio così come indicato per il livello LC2. Sulla base di quanto fino ad ora scritto, i parametri per la muratura considerata sono diversi per ogni livello del campanile e sono contenuti nella seguente tabella.

Matariala	Flomento	Modulo di Young	Coefficiente di	
whater hate	Elemento	[Mpa]	Poisson [-]	
1	Muratura liv. 1	2690	0,3	
2	Muratura liv. 2	1320	0,3	
3	Muratura liv. 3	1250	0,3	
4	Muratura cella campanaria	2470	0,3	
5	Setti di collegamento in direzione X	500	0,3	
6	Setti di collegamento in direzione Y	500	0,3	

	D ('		
Tabella 4	Parametri	тессапісі	muratura

Qui di seguito si raffigurano i macroelementi in cui è stata suddivisa la struttura. Ognuno di essi è caratterizzato da una differente tipologia di materiale.

Fig.13 Rappresentazione dei macro-elementi

Si possono calcolare ora le resistenze di progetto della muratura seguendo le indicazioni fornite nel NTC18 (D.M. 17 gennaio, 2018) [2].

$$f_d = \frac{f_m}{\gamma_m \cdot FC}$$
$$\tau_d = \frac{\tau_0}{\gamma_m \cdot FC}$$

dove f_d è il valore della resistenza di progetto a flessione, f_m è la resistenza media a flessione della muratura come descritto in precedenza, τ_d è il valore della resistenza di progetto a taglio, τ_0 è la resistenza media a taglio della muratura come descritto in precedenza, γ_m è il coefficiente parziale di sicurezza sulla resistenza del materiale. Il coefficiente γ_m viene definito nella tabella 4.5.II in paragrafo 4.5.6.1 delle NTC18 (D.M. 17 gennaio, 2018) ed è pari a 2 nel caso studio.

Matariala	Flomente	f_m	f_d	$ au_0$	τ_{0d}	W
Iviateriale	Elemento	[N/cm ²]	[N/cm ²]	[N/cm ²]	[N/cm ²]	$[kN/m^3]$
1	Muratura liv. 1	200.0	89.28	6.0	2.67	20.0
2	Muratura liv. 2	90.0	40.17	6.0	2.67	20.0
3	Muratura liv. 3	90.0	40.17	6.0	2.67	20.0
4	Muratura cella campanaria	90.0	40.17	6.0	2.67	20.0
5	Setti di collegamento in direzione X	90.0	40.17	6.0	2.67	20.0
6	Setti di collegamento in direzione Y	200.0	89.28	6.0	2.67	20.0

Tabella 5 Calcolo delle resistenze a progetto della muratura

Nel modello sono state definite 4 sezioni principali:

- Livello 1 si estende dal piano campagna sino ad un'altezza di 9,47 metri;
- Livello 2 da 9,47 m a 21,21 metri;
- Livello 3 da 21,21 m a 34,58 metri;
- Cella campanaria da 34,58 a 42,09 metri.

5.2 Determinazione azione sismica

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. Si ricorda che ai sensi del *Delibera della Giunta Regionale Piemonte 19 gennaio 2010, n. 11 – 13058* [14] il comune di Fossano è classificato in zona sismica 3.

5.3 Tempo di ritorno dell'evento sismico considerato

Lo stato limite per cui si effettua la verifica nei confronti del sisma è definito in funzione del periodo di ritorno, ossia dell'intervallo di tempo mediamente intercorrente tra due eventi aventi intensità pari a quella prevista dall'azione sismica di calcolo. Il tempo di ritorno è a sua volta funzione dei seguenti parametri:

-Vita nominale dell'opera-Classe d'uso dell'opera-Periodo di riferimento

5.3.1.1 Vita nominale

La vita nominale della struttura ossia il periodo in cui deve poter essere utilizzata purché soggetta a manutenzione ordinaria così come definita al punto 2.4.1 del D.M. 14 gennaio 2008, è stata assunta pari a 50 anni [2].

$$V_N = 50 anni$$

5.3.1.2 Classe d'uso

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in 4 classi d'uso. La classe d'uso in cui si è classificata l'opera è la seconda:

"Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti." [2] a cui corrisponde:

$$C_{II} = 1$$

5.3.1.3 Periodo di riferimento

Il periodo di riferimento, dato dal prodotto della vita nominale per il coefficiente corrispondente alla classe d'uso risulta essere pari a 50 anni.

$$V_{R} = V_{N} \cdot C_{U} = 50 \text{ anni}$$

All'evento considerato corrisponde lo Stato Limite di salvaguardia della Vita al quale è riferita una probabilità di superamento del 10% durante il periodo di riferimento V_R che nel nostro caso vale 50 anni. Il tempo di ritorno T_R associato è quindi calcolabile mediante la relazione fornita all'allegato A del D.M. 17 gennaio 2018 [2], intitolato "Pericolosità sismica" e qui di seguito riportata:

$$T_{\rm R} = -\frac{V_{\rm R}}{\ln(1 - P_{\rm Vr})} = -\frac{50}{\ln(1 - 0.90)} = 475$$
 anni

5.3.2 Parametri di base dell'azione sismica

Ricorrendo direttamente al foglio di calcolo *Spettri-NTCver.1.0.3* allegato al testo del D.M. 17 gennaio 2018 [2] e scaricabile gratuitamente dal sito del Consiglio Superiore dei Lavori Pubblici si sono estratti i parametri di base caratterizzanti l'azione sismica per lo stato limite di salvaguardia della vita in riferimento al comune di Fossano (CN).

STATO LIMITE	$T_R[\text{anni}]$	$a_g[g]$	<i>F</i> ∘[-]	$T_C^*[s]$
SLO	30	0,028	2,514	0,194
SLD	50	0,035	2,563	0,209
SLV	475	0,073	2,676	0,288
SLC	975	0,089	2,741	0,297

Tabella 6 Parametri caratterizzanti l'azione sismica in funzione del periodo di ritorno

Con:

- a_g = Accelerazione orizzontale massima attesa su suolo rigido di tipo A [g].
- F_{\circ} = Fattore di amplificazione locale.
- T_C^* = Periodo di inizio spettro a velocità costante [s].

Vengono di seguito riportati i grafici rappresentanti la variabilità dei parametri nei confronti del tempo di ritorno dell'evento considerato:

5.3.3 Categoria del sottosuolo

Il sottosuolo è considerato appartenente alla categoria C (*par.3.2.2 NTC 2018, tab 3.2.II*) così definito: "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina fina)." [2].

5.3.4 Coefficiente di amplificazione stratigrafica

Il coefficiente di amplificazione stratigrafica, per terreni di tipo C vale:

$$1 \le S_s = 1, 7 - 0, 6 \cdot F_0 \cdot \frac{a_g}{g} = 1, 69 \le 1, 5 \rightarrow S_s = 1, 5$$

5.3.5 Coefficiente di amplificazione topografica

Essendo il basamento della struttura giacente su una superficie piana, il coefficiente di amplificazione topografica assume il seguente valore[2]:

$$S_T = 1,00$$

5.3.6 Fattore di struttura

Il fattore di struttura q, data la presenza di strutture adiacenti a contatto, è stato posto, in accordo con il paragrafo 5.4.4 della direttiva 9 febbraio 2011 [13], pari a:

$$q = 2,8$$

"q è il fattore di struttura che, a meno di più accurate valutazioni, può essere assunto, in analogia a quanto fatto per gli edifici, pari a 3.6, nel caso di strutture regolari in elevazione, o ridotto fino a 2.8, in presenza di bruschi cambiamenti di rigidezza lungo l'altezza o di strutture adiacenti a contatto;"

5.3.7 Categoria di rilevanza

La categoria di rilevanza dell'opera, definita al punto 2.4 della direttiva, è stata assunta come elevata.

5.3.8 Categoria d'uso

La categoria d'uso dell'opera, definita al punto 2.4 della direttiva, è stata assunta come saltuario o non utilizzato.

5.3.9 Fattore d'importanza

Il fattore d'importanza concorrente in seguito alla formulazione dell'indice di sicurezza sismica introdotto dalla direttiva è funzione dei seguenti parametri [2].:

-Categoria di rilevanza dell'opera

-Categoria d'uso dell'opera

Come dalla tabella riportata qui di seguito, il fattore d'importanza è stato assunto pari a 0,80.

	Categoria di rilevanza					
Categoria d'uso	Limitata		Media		Elevata	
	P. ecc.	γ_I	P. ecc.	γ_I	P. ecc.	γ_I
Saltuario o non utilizzato	40%	0,50	25%	0,65	17%	0,80
Frequente	25%	0,65	17%	0,80	10%	1,00
Molto frequente	17%	0,80	10%	1,00	6,5%	1,20

Tabella 7 Fattore d'importanza

5.4 Spettro di risposta elastico a SLV

Qui di seguito i parametri relativi allo spettro di risposta in campo elastico a SLV utilizzato della componente verticale per la valutazione dell'azione sismica assumendo un fattore di struttura q unitario.

Parametri indipendenti		
STATO LIMITE	SLV	
aa	0,073	

F。	2,676
T _c *	0,288 s
Ss	1,500
C _c	1,584
ST	1,000
a	1.000

Parametri dipendenti

S	1,500
η	1,000
Τ _B	0,152 s
T _c	0,456 s
T _D	1,893 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$

(NTC-08 Eq. 3.2.5)

$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$T_{\mathbf{C}} = C_{\mathbf{C}} \cdot T_{\mathbf{C}}^{*}$	(NTC-07 Eq. 3.2.7)
$T_{\rm D} = 4,0 \cdot a_{\rm g} / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$0 \le T < T_B$	$\mathbf{S}_{e}(\mathbf{T}) = \mathbf{a}_{g} \cdot \mathbf{S} \cdot \boldsymbol{\eta} \cdot \mathbf{F}_{o} \cdot \left[\frac{\mathbf{T}}{\mathbf{T}_{B}} + \frac{1}{\boldsymbol{\eta} \cdot \mathbf{F}_{o}} \left(1 - \frac{\mathbf{T}}{\mathbf{T}_{B}} \right) \right]$
$T_B \le T < T_C$	$\mathbf{S}_{e}(\mathbf{T}) = \mathbf{a}_{g} \cdot \mathbf{S} \cdot \boldsymbol{\eta} \cdot \mathbf{F}_{o}$
$T_C \le T < T_D$	$\mathbf{S}_{c}(\mathbf{T}) = \mathbf{a}_{g} \cdot \mathbf{S} \cdot \boldsymbol{\eta} \cdot \mathbf{F}_{o} \cdot \left(\frac{\mathbf{T}_{C}}{\mathbf{T}}\right)$
$T_D \leq T$	$\mathbf{S}_{e}(\mathbf{T}) = \mathbf{a}_{g} \cdot \mathbf{S} \cdot \boldsymbol{\eta} \cdot \mathbf{F}_{o} \cdot \left(\frac{\mathbf{T}_{C} \mathbf{T}_{D}}{\mathbf{T}^{2}}\right)$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,110
Гв 🗲	0,152	0,294
「 _c ◀	0,456	0,294
	0,524	0,256
	0,593	0,226
	0,661	0,203
	0,730	0,184
	0,798	0,168
	0,866	0,155
	0,935	0,143
	1,003	0,134
	1,072	0,125
	1, 140	0,117
	1,209	0,111
	1,277	0,105
	1,345	0,100
	1,414	0,095
	1,482	0,090
	1,55 1	0,086
	1, <mark>61</mark> 9	0,083
	1,688	0,079
	1,756	0,076
	1,824	0,073
₀ ←	1,893	0,071
	1,993	0,064
	2,094	0,058
	2,194	0,053
	2,294	0,048
	2,395	0,044
	2,495	0,041
	2,595	0,038
	2,696	0,035
	2,796	0,032
	2,896	0,030
	2,997	0,028
	3,097	0,026
	3,197	0,025
	3,298	0,023
	3,398	0,022
	3,498	0,021
	3,599	0,020
	3,699	0,019
	3,799	0,018
	3,900	0,017
	4,000	0,016
Si riporta quindi lo spettro di risposta elastico a stato limite di salvaguardia della vita funzione dei parametri precedentemente calcolati secondo le relazioni definite dal D.M. 17 gennaio 2018 (NTC) [2].

5.5 Spettro di risposta elastico a SLD

Qui di seguito i parametri relativi allo spettro di risposta verticale in campo elastico a SLD che verrà utilizzato in seguito per la valutazione degli spostamenti relativi dei pannelli murari oggetto di verifica.

Parametri indipendenti

STATO LIMITE	SLD
a,	0.035 g
F。	2.563
T _c	0.209 s
Ss	1.500
Cc	1.760
ST	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
Te	0.123 s
Tc	0.368 s
To	1.738 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_{\rm B} = T_{\rm C} / 3$	(NTC-07 Eq. 3.2.8)
$\mathbf{T}_{\mathbf{C}} = \mathbf{C}_{\mathbf{C}} \cdot \mathbf{T}_{\mathbf{C}}^{\bullet}$	(NTC-07 Eq. 3.2.7)
$T_{D} = 4,0 \cdot a_{g} / g + 1,6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$0 \le T < T_B$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right]$
$T_B \le T < T_C$	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o$
$T_C \le T < T_D$	$\mathbf{S}_{e}(\mathbf{T}) = \mathbf{a}_{g} \cdot \mathbf{S} \cdot \boldsymbol{\eta} \cdot \mathbf{F}_{o} \cdot \left(\frac{\mathbf{T}_{C}}{\mathbf{T}}\right)$
T _D ≤T	$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2}\right)$

Lo spettro di progetto S_d(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S_s(T) sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta T [s] Se [g] 0.000 0.052 T_B 4 0.123 0.133 Tc 🔺 0.368 0.133 0.433 0.113 0.498 0.098 0.564 0.087 0.629 0.078 0.694 0.070 0.759 0.064 0.825 0.059 0.890 0.055 0.955 0.051 1.020 0.048 1.086 0.045 1.151 0.042 1.216 0.040 1.281 0.038 1.347 0.036 1.412 0.035 1.477 0.033 1.542 0.032 1.608 0.030 1.673 0.029 1.738 T_D + 0.028 1.846 0.025 1.953 0.022 2.061 0.020 2.169 0.018 2.277 0.016 2.384 0.015 2.492 0.014 2.600 0.013 2.707 0.012 2.815 0.011 2.923 0.010 3.031 0.009 3.138 0.009 3.246 0.008 3.354 0.008 3.461 0.007 3.569 0.007 3.677 0.006 3.785 0.006 3.892 0.006

4.000

0.005

Si riporta quindi lo spettro di risposta elastico a stato limite di danno funzione dei parametri precedentemente calcolati secondo le relazioni definite dal D.M. 17 gennaio 2018 (NTC) [2].

5.6 VALUTAZIONE VULNERABILITÀ SISMICA: LIVELLO LV1

Per la valutazione della sicurezza nei riguardi dell'azione sismica, si adotta la procedura semplificata descritta dalla Direttiva BB.CC. 2011 al paragrafo 5.4.4, formulata per tipologie costruttive quali "Torri, campanili ed altre strutture a prevalente sviluppo verticale" [13].

Per tale tipologia di struttura la Direttiva-NTC2008 consente di fare riferimento al collasso per pressoflessione, considerando la torre come una mensola sollecitata da un sistema di forze orizzontali generate dal sisma, oltre che dal proprio peso, che può andare in crisi in una generica sezione per schiacciamento nella zona compressa, a seguito della parzializzazione dovuta alla non resistenza a trazione.

Per eseguire tale valutazione il primo step è stato quello di suddividere la struttura in sei blocchi (figura 14).

Fig. 14 Piante e Sezione trasversale della struttura del campanile

							1	
	Lato X	Lato Y	Altezza	Apertura in X	Apertura in Y	Spessore	Area	Volume
Blocco				_	_	_		
	[m]	[m]	[m]	[m]	[m]	[m]	[m2]	[m3]
1	9,70	9,00	9,95	1,30	1,60	1,60	40,32	493,52
2	9,10	9,20	9,05	1,80	1,50	1,50	36,00	415,40
3	9,10	9,20	4,80	1,00	1,00	1,50	39,90	220,32
4	9,10	9,20	4,45	1,00	1,00	1,50	39,90	204,26
5	9,10	9,20	7,75	3,10	3,10	1,50	27,30	355,73
6	9,10	9,20	6,60	1,70	1,60	0,90	23,76	196,02

Nella tabella seguente sono riportate le caratteristiche geometriche di ogni singolo blocco

Tabella 8 Caratteristiche geometriche blocchi

Le successive verifiche sono state condotte in riferimento alla sezione di base di ciascun blocco, sia rispetto alle azioni statiche (verticali come forza peso, carico neve ecc) sia rispetto a quelle dinamiche (orizzontali come sisma ecc)

5.6.1 Verifica per azioni verticali

In accordo con quanto riportato dalla Direttiva BB.CC. 2011 si effettua la verifica a sforzo normale alla base di ogni singolo tronco della struttura [13].

Lo sforzo normale agente sulle singole sezioni corrisponde al peso proprio del blocco

$$W = \sum_{l=1}^{n} W_{i} = 37886,95 \ kN$$

Lo sforzo normale massimo è calcolato mediante la seguente relazione fornita dalla Direttiva BB.CC. del 2007 [15]:

$$N_{Rd,i} = 0.85 \cdot f_d \cdot A_i$$

Blocco	Resistenza di calcolo f_d	Area	Volume	Peso	N _{Ed,i}	N _{Rd,i}	N_{Rd}/N_{Ed}	Verificato
Dioceo	[kPa]	[<i>m</i> ²]	[<i>m</i> ³]	[kN]	[<i>kN</i>]	[kN]	[-]	[-]
1	892,86	40,32	493,52	9.870,40	37.887	30.600	0,81	NO
2	401,79	36,00	415,40	8.307,90	28.017	12.295	0,44	NO
3	401,79	39,90	220,32	4.406,40	19.663	13.627	0,69	NO
4	401,79	39,90	204,26	4.085,10	15.256	13.627	0,89	NO
5	401,79	27,30	355,73	7.114,50	11.125	9.323	0,84	NO
6	401,79	23,76	196,02	3920,40	3.965	8.114	2,05	SI

Tabella 9 Verifica sforzo normale

5.6.2 Verifica per azioni orizzontali

Per la verifica a pressoflessione per azioni orizzontali ad ogni blocco viene applicata una forza statica equivalente proporzionale al momento statico dello stesso rispetto al piano campagna. Alla base di ogni blocco agirà quindi un taglio equivalente pari alla sommatoria dei carichi orizzontali corrispondenti ai blocchi superiori.

Prima di calcolare queste forze statiche equivalenti è stato necessario calcolarsi il periodo proprio della struttura mediante la formula contenuta nelle NTC2018:

$$T_1 = 0.050 \cdot H^{3/4} = 1.0098 s$$

Successivamente si è moltiplicato tale valore per 1,4, come suggerito da normativa, per ottenere il periodo di vibrazione allo stato fessurato, successivamente si è entrati con tale valore nello spettro di risposta elastico a SLV si è ottenuta l'accelerazione in risposta in fase fessurata.

$$S_d(T_1) = 0,098 [g]$$

Con questo parametro è stato possibile calcolare l'azione sismica tramite la formula

$$F_h = 0.85 \cdot S_d(T_1) \cdot W/q = 1127.13 \text{ kN}$$

Successivamente si sono calcolati i rispettivi bracci per ogni sezione di ciascun blocco tramite la formula:

$$z_{F_h} = \frac{\sum_{k=1}^{n} W_k^2 \cdot z_k}{\sum_{k=1}^{n} W_k \cdot z_k} - z_{i*}$$

Con z_k *= Quota sezione di base blocco i-esimo dal piano campagna;

Con z_k = Quota baricentro blocco i-esimo dal piano;

Una volta calcolati tutti e 8 i bracci si è passati alle forze statiche equivalenti calcolate secondo il modello di valutazione semplificato di tipo LV1, suggerito dalla direttiva:

$$\sum_{k=1}^{n} F_h \frac{W_i \cdot z_i}{\sum_{k=1}^{n} W_k \cdot z_k}$$

In seguito, si è calcolato il momento agente su ogni sezione di ogni blocco tramite la formula:

$$M_{ei} = F_{hi} \cdot z_{F_h}$$

Per ottenere l'accelerazione di collasso per pressoflessione alla sezione i-esima si è utilizzata la seguente formula:

$$a_{SLV} = M_{u,i} / M_{e,i} \cdot \frac{S_d(T_1) \cdot T_1}{S \cdot F_0 \cdot T_C}$$

Infine, dividendo il minimo tra i valori di accelerazione di collasso per pressoflessione ottenuti con il valore dell'accelerazione orizzontale massima ottenuta insieme agli spettri di risposta otteniamo il fattore di accelerazione:

$$f_{a,SLV} = \frac{a_{SLV}}{a_g} = 0,11$$

Essendo tale fattore inferiore ad 1, la verifica a pressoflessione per azioni orizzontali non risulta soddisfatta.

Per il calcolo dell'indice di sicurezza dato dal rapporto tra il periodo di ritorno T_{SL} dell'azione sismica che porta al generico stato limite (SL = SLV, SLD, SLA) ed il corrispondente periodo di ritorno di riferimento $T_{R,SL}$ si sono utilizzate le seguenti formule:

$$T_{SLV} = T_{R1} \cdot 10^{\alpha}$$

$$\alpha = \left[\log(a_g) - \log(a_{g_1}) \right] \frac{\log(\frac{T_{R2}}{T_{R1}})}{\log(\frac{a_{g_2}}{a_{g_1}})} = 1,49$$
$$I_{S,SLV} = \frac{T_{SLV}}{T_{R,SLV}} = \frac{1552}{475} = 3,2$$

 $T_{R1} e T_{R2}$ sono i periodi di ritorno per i quali è fornita la pericolosità sismica; $a_{g1} e a_{g2}$ sono i corrispondenti valori di accelerazione di picco su suolo rigido;

In basse alla verifica semplificata di tipo LV1 proposta dalla Direttiva, la struttura non risulta dunque soddisfare i requisisti di resistenza dettati dalle azioni sismiche previste per un tempo di riferimento di 50 anni, con una vulnerabilità classificabile qualitativamente a un livello alto.

Tutte le sezioni tranne la 6 (quella in cui agisce il carico minore essendo in sommità) mostrano fattori di sicurezza inferiori all'unità nei confronti delle azioni verticali.

La sezione 2 (posizionata nel punto in cui cambiano le caratteristiche meccaniche della muratura) non soddisfa le verifiche a flessione, infatti essa è caratterizzata da un fattore accelerazione pari a 0,11 di molto inferiore all'unità. Essa corrisponde alla porzione di struttura più vulnerabile, essendo caratterizzata dalla concomitanza di elevate sollecitazioni flessionali ed assiali.

6 CARATTERIZZAZIONE DEL CASO DI STUDIO

Una volta definite le proprietà meccaniche dei materiali che compongono la struttura in esame si passa allo svolgimento delle analisi e delle verifiche che riguardano lo stato attuale in cui vige il campanile.

6.1 Analisi modale

L'analisi modale ricerca i modi di vibrare di una struttura e, per ciascun modo di vibrare, calcola il suo periodo naturale di vibrazione, ossia l'intervallo di tempo che la struttura impiega per eseguire un'oscillazione completa secondo una configurazione deformata affine ad un suo modo di vibrare. Dopo aver effettuato l'analisi lineare lo step successivo è stato quello di eseguire il problema agli autovalori mediante l'analisi modale.

Per la definizione di tale problema si parte dall'equazione del moto generica per sistemi a multipli gradi di libertà:

$$[m]{\ddot{u}} + [k]{u} = \{0\}$$
(1)

Dove in Eq. (1):

- [*m*] è la matrice delle masse
- $\{\ddot{u}\}$ è il vettore delle accelerazioni globali
- [k] è la matrice di rigidezza
- $\{u\}$ è il vettore degli spostamenti globali

La soluzione è determinata da una forma spaziale ed una forma temporale del tipo:

$$\{u\} = \{\phi\} e^{j\omega t} \tag{2}$$

Andando a sostituire all'interno della legge del moto, si ottiene:

$$([k] - \omega^2[m]) \{\phi\} = \{0\}$$
 (3)

Definendo così il problema agli autovalori ed autovettori.

Risolvendo l'equazione si nota $\{\phi\} = \{0\}$, ovvero la soluzione banale, che definisce il sistema in quiete e di conseguenza trascurabile dal punto di vista ingegneristico. La soluzione differente dalla banale è determinabile mediante l'annullamento del determinante della matrice dei coefficienti:

$$det([k] - \omega^{2}[m]) = 0$$
(4)

Applicando la radice quadrata ad ogni autovalore si possono ricavare le pulsazioni modali ω . Successivamente introducendo ciascun autovalore all'interno del problema, si individua una soluzione nello spazio, ovvero l'i – esimo modo di vibrare corrispondente all'i – esima pulsazione.

$$U = [\{\phi_1\}\{\phi_2\}\{\phi_3\}\dots\{\phi_n\}]$$
(5)

$$E = \begin{bmatrix} \omega_1^2 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \omega_i^2 \end{bmatrix}$$
(6)

Risolvendo il problema agli autovalori si ottiene una matrice E, i cui elementi sulla diagonale principale sono i quadrati delle pulsazioni naturali del sistema, ed una matrice U le cui colonne rappresentano i modi di vibrare della struttura.

6.1.1 Applicazione analisi modale al modello FEM

Per svolgere l'analisi modale tramite il software Diana il primo step è stato quello di settare l'analisi da svolgere. In Diana questa operazione è effettuata mediante il comando "add an analysis" situato nella command window, una volta aggiunta la nuova analisi è possibile scegliere, tra le varie tipologie proposte dal software, "Structural eigenvalue" (figura 15).

Fig. 15 Creazione analisi modale

Una volta aggiunta l'analisi si procede col settare i parametri in termini di precisione, risoluzione del sistema di equazioni ed output dei risultati.

Le proprietà di precisione del modello vengono definite in funzione della tolleranza del grado angolare imposta uguale a 0.349066 *rad* e tolleranza assoluta degli elementi assemblati uguale a $1 \cdot 10^{-6}$ (figura 16).

💯 Properties - MODEL	×
☑ Evaluate model	
Evaluate elements	
Extended test	
Tolerance for shape	
Tolerance for aspect ratio	
□ Shell interface correction	
✓ Average nodal normals	
Tolerance angle 0.349066 rad	
Evaluate reinforcements Evaluate composed elements	
Assemble elements	
Tolerance 1e-06	
Close Help	

Fig. 16 Settaggio parametri analisi

Per la determinazione dei modi di vibrare sono stati individuati i primi 14 autovalori, ovvero le frequenze del sistema.

I risultati ottenuti dall'analisi modale definiscono i seguenti modi di vibrare della struttura:

Analisi Modale Mode 3, Eigen frequency 3.3023 Hz Displacements DtXYZ min: 0.00m max: 1.05m

Analisi Modale Mode 5, Eigen frequency 3.8632 Hz Displacements DtXYZ min: 0.00m max: 1.01m

₹_×

Dt	XV7	
ſ	m	
	1 01	
		5
	0.07	
	0.70	, ,
)
	0.51	
	0.38	5
	0.25)
	0.13	3
	0.00)

DtXYZ

(m)

1.05

0.92

0.79

0.66

0.52

0.39

0.26

0.13 0.00

Analisi Modale Mode 6, Eigen frequency 6.2706 Hz Displacements DtXYZ min: 0.00m max: 1.00m	
	Γ

D†XYZ (m) 1.00 0.88 0.75 0.63 0.50 0.38 0.25 0.13 0.00 Analisi Modale Mode 7, Eigen frequency 7.0720 Hz Displacements DtXYZ min: 0.00m max: 1.03m

Analisi Modale Mode 9, Eigen frequency 7.3816 Hz Displacements DtXYZ min: 0.00m max: 1.00m

Z X

D	tXYZ
	1.00
	0.88
	0.75
	0.63
	0.50
	0.38
	0.25
	0.13

Ż

DtXYZ

(m)

1.03

0.90

0.77

0.64

0.51

0.39

0.26

0.13

0.00

Analisi Modale Mode 10, Eigen frequency 7.7118 Hz Displacements DtXYZ min: 0.00m max: 1.09m

Al fine di verificare la validità del modello appena creato con il software DIANA FEA, sono state comparate le prime 3 frequenze e i primi 3 modi di vibrare con quelli ottenuti dal modello realizzato tramite il software Ansys e usato nell'articolo "Save what we can: experimentally validated design of stengthening interventions to reduce the seismic vulnerability of a bell-tower" [11].

		Frequenze [Hz]		
	1° Modo	2° Modo	3° Modo	
Modello DIANA FEA	1,149	1,184	3,302	
Modello ANSYS	1,292	1,382	3,481	

Tabella 10 Frequenze modello Diana e modello Ansys

1° Modo

2° Modo

3° Modo

Come si può vedere i due modelli producono gli stessi risultati in termini di forme modali e frequenze molto simili tra loro.

6.2 Analisi pushover

Dopo lo studio preliminare sul comportamento strutturale del campanile, è stato possibile passare all'analisi statica non lineare, denominata pushover, in modo da comprendere con precisione i veri valori di resistenza e rigidezza della struttura

L'analisi statica non lineare consiste nell'applicare all'edificio i carichi gravitazionali ed un sistema di forze orizzontali che, mantenendo invariati i rapporti relativi tra le forze stesse, vengano tutte scalate in modo da far crescere monotonamente lo spostamento orizzontale di un punto di controllo della struttura fino al raggiungimento delle condizioni ultime.

In questo tipo di analisi il comportamento post-elastico della struttura viene modellato attraverso l'utilizzo di cerniere plastiche. Si tratta di particolari cerniere che simulano il comportamento nonlineare della struttura.

Le cerniere plastiche si comportano da incastri finché il momento sollecitante è inferiore al momento resistente della sezione. Superato il momento resistente, per ogni incremento del momento sollecitante dovuto all'applicazione di carichi crescenti, la cerniera plastica esibisce una rotazione. Nell'immagine seguente si può vedere un possibile legame momento-rotazione di una cerniera plastica.

Fig. 17 Legame costitutivo di una cerniera plastica

Con il termine non lineare si introduce la capacità delle strutture di deformarsi in campo plastico, ovvero con deformazioni irreversibili, a differenza dello studio elastico dove si approssima un comportamento infinitamente elastico, ottenendo delle deformazioni totalmente recuperate al termine dell'applicazione del carico.

Un aspetto molto importante nello svolgimento dell'analisi statica non lineare è che il legame carico – spostamento si sviluppa istante per istante e punto per punto della struttura, ovvero ogni istante la struttura presenta una configurazione differente di deformazione, che segue la legge costitutiva del materiale. Detto ciò, per ottenere risultati veritieri ed attendibili occorre considerare l'evoluzione dell'elemento strutturale nel suo complesso, partendo dallo stato iniziale fino al raggiungimento della condizione di collasso.

6.2.1 Applicazione analisi non lineare al modello FEM

La prima operazione da svolgere per eseguire un'analisi non lineare è quella di cambiare le proprietà dei materiali di ogni elemento strutturale che compone il modello del campanile e il tipo di comportamento che seguono. Il software DIANA FEA permette di scegliere in prima istanza la classe di materiale (per la muratura si sceglie "concrete and masonry") e in secondo luogo il modello seguito dallo stesso (nel caso in esame "crack and plasticity model").

Ω ε Add new materia	l	×	
Name	Materiale 1		
Class	Concrete and masonry	~	
Material model	Crack and plasticity	~	
Aspects to inc	clude		
🗌 Thermal e	ffects 🗌 Concentration effects		
Maturity effects Shrinkage			
Damping	□ Additional dynamic surface mas	s	
	OK Cancel Help		

Fig. 18 Definizione nuova classe e modello materiale

Successivamente vengono chieste le proprietà elastiche lineari del materiale e quindi i modelli di comportamento a trazione e compressione. Per quanto concerne il comportamento a compressione il programma permette di scegliere due leggi costitutive, Mohr Coulomb e Drucker-Prager.

La prima definisce il comportamento dei materiali secondo la seguente legge costitutiva:

$$|\tau| \le c - \sigma \tan \phi \tag{1}$$

Dove *c* indica la coesione del materiale mentre ϕ indica l'angolo di attrito interno del materiale. La seconda legge costitutiva presenta la seguente relazione:

$$\tau_m = c_{DP} - \mu_{DP} \sigma_m \tag{2}$$

Dove $c_{DP} e \mu_{DP}$ sono rispettivamente, la coesione ed il coefficiente di attrito interno mentre σ_m è la tensione media. Nell'analisi si è scelta la seconda legge costitutiva come caratteristica del comportamento a compressione della struttura.

Per quanto riguarda il comportamento a trazione, invece, il programma offre il modello "Multidirectional fixed crack model".

Il concetto che è alla base di questo comportamento è la modellazione della fessura decomposta, cioè la decomposizione della deformazione totale ϵ in una deformazione elastica ϵ^{el} e una deformazione di fessurazione (crack) ϵ^{cr} :

$$\epsilon = \epsilon^{el} + \epsilon^{cr} \tag{3}$$

Immediatamente dopo il raggiungimento della tensione di trazione resistente f_t , si procede con una diminuzione lineare della stessa accompagnata da un incremento di deformazione fino all'annullamento della tensione e al raggiungimento del valore ultimo di deformazione definito come:

Fig. 19 Analisi statica non lineare, comportamento post – fessurazione

$$\epsilon_{ultimo}^{cr} = 2 \frac{G_f}{hf_t} \tag{4}$$

Dove:

 G_f è l'energia di frattura a trazione;

h è la dimensione della fessura, imposta uguale a quella della mesh;

 f_t è la resistenza a trazione del materiale.

In assenza di valori sperimentali, sono stati utilizzati dati medi da letteratura poiché l'analisi svolta ha carattere essenzialmente esplorativo ma anche perché le strutture storiche in muratura possono presentare resistenze con ordini di grandezza inferiori rispetto ai valori medi ma la risposta strutturale è simile.

Per la determinazione della deformazione ultima della struttura sono stati definiti i seguenti valori:

$$f_t = 0,50 MPa$$
 ; $G_f = 0,05 \frac{N}{mm}$; $h = 0,5 m$

Per il valore di resistenza a trazione utilizzata nell'analisi, si è fatto riferimento al documento redatto dal DISEG. Per la definizione delle caratteristiche meccaniche della muratura si esegue una prova di trazione indiretta in cui vengono applicate forze di compressione radiali su provino cilindrico che causano uno schiacciamento trasversale ed un allungamento longitudinale [17].

Fig. 20 Prova di trazione indiretta muratura

Per quanto concerne invece l'energia di frattura, il valore utilizzato fa riferimento a documenti individuati durante lo svolgimento delle analisi e al rispetto dei valori di normativa riferiti al rapporto tra la deformazione elastica e quella ultima, indicata pari a 2

In funzione del Modulo di Young di ogni parte strutturale è stata definita la deformazione elastica ϵ^{el} associata, tramite il seguente rapporto:

$$\epsilon^{el} = \frac{f_t}{E_i} \tag{4}$$

Una volta nota la deformazione elastica è possibile sommarla alla deformazione di fessurazione ϵ^{cr} , così da poter ottenere la deformazione ultima della struttura:

$$\epsilon_{ultimo} = \epsilon^{el} + \epsilon^{cr} = \frac{f_t}{E_i} + 2\frac{G_f}{hf_t}$$
(4)

Caratteristiche materiali comportamento a fessurazione							
Elemento	E [MPa]	f _t [MPa]	ϵ^{el} [–]	ϵ^{cr} [-]	ϵ_u [-]		
Muratura liv. 0	2690	0,50	1,86 · 10 ⁻⁴	$4\cdot 10^{-4}$	5,86 · 10 ⁻⁴		
Muratura liv. 1	1320	0,50	$3,79 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	$7,79 \cdot 10^{-4}$ -		
Muratura liv. 2	1250	0,50	$4 \cdot 10^{-4}$	$4\cdot 10^{-4}$	$8 \cdot 10^{-4}$		
Muratura liv. 3	2470	0,50	2,02 · 10 ⁻⁴	$4 \cdot 10^{-4}$	6,02 · 10 ⁻⁴		
Setti di collegamento	500	0,50	$1 \cdot 10^{-3}$	$4 \cdot 10^{-4}$	$1,4 \cdot 10^{-3}$		
Tetto	500	0,50	$1 \cdot 10^{-3}$	$4\cdot 10^{-4}$	1,4 · 10 ⁻³		

Tabella 11 Caratteristiche meccaniche materiali

Materiali caratteristiche plastiche					
Elemento	c [N/m ²]	φ [rad]	δ [rad]		
Muratura liv. 0	240000,00	0,66	0,00		
Muratura liv. 1	240000,00	0,66	0,00		
Muratura liv. 2	240000,00	0,66	0,00		
Muratura liv. 3	240000,00	0,66	0,00		
Setti di collegamento	240000,00	0,66	0,00		
Tetto	240000,00	0,66	0,00		

Tabella 12 Caratteristiche plastiche materiali

ame			Se Edit materia	1	
	muratura livello 1 non lineare		Name		muratura livello 1 non lineare
Aspects to include			Aspe	cts to include	
Thermal effects	Concentrat	tion effects		nermal effects	Concentration effects
Maturity effects	Shrinkage		□ M	aturity effects	Shrinkage
Damping	Additional	dvnamic surface mass		amping	Additional dynamic surface mass
Additional dynamic	3D line mass	-,		dditional dynamic 3D line mass	
Linear material p	roperties	*	1	Linear material properties	
Manual and Look		1.22-+00.11/m ² fr	1	Multi-directional fixed crack m	odel
Young's modulus*		1.32e+09 N/m ² /X	Terret	an aut aff	Construct alterna sub off
Poisson's ratio*		0.3 <i>fx</i>	Tensi	ion cut-off	Constant stress cut-off
Mass density		2000 kg/m ³ <i>fx</i>	Tensi	le strength*	500000 N/m ²
	Constant and a second of		Tensi	ion softening	Linear based on ultimate strain ~
Multi-directional f	fixed crack model		Ultim	ate strain*	0.000779
Mohr-Coulomb ar	nd Drucker-Prager plasticity	· · · · ·	Shear	r retention	Full shear retention ~
			Rate	dependent cracking parameter	·
			· · · · · · · · · · · · · · · · · · ·	Mohr-Coulomb and Drucker-Pr	rager plasticity
	L	Close Help			Close He
	L	Close Help		×	Close He
	L	Close Help	muratura livello 1 non lineare	×	Close He
	L	Close Help	muratura livello 1 non lineare	×	Close He
	L	Close Help	muratura livello 1 non lineare	×	Close He
	L	Close Help	muratura livello 1 non lineard	×	Close He
	L	Close Help	muratura livello 1 non lineard Concentration effects Shrinkage Additional dynamic surfac	× ce mass	Close He
	L	Close Help	muratura livello 1 non lineare Concentration effects Shrinkage Additional dynamic surfar	ce mass	Close He
	L	Close Help	muratura livello 1 non lineare Concentration effects Shrinkage Additional dynamic surfar tass	ce mass	Close He
		Close Help	muratura livello 1 non lineare Concentration effects Shrinkage Additional dynamic surfact texpression k model er-Prager plasticity	ce mass	Close He
	L	Close Help	muratura livello 1 non lineard Concentration effects Shrinkage Additional dynamic surfact ass k model er-Prager plasticity Mohr-Coulomb	ce mass	Close He
	L	Close Help	muratura livello 1 non lineard Concentration effects Shrinkage Additional dynamic surfact re-Prager plasticity Mohr-Coulomb 240000 N/m	ce mass	Close He
		Close Help	k model r-Prager plasticity Mohr-Coulomb 0.66 rad	ce mass	Close He
		Close Help	k model r-Prager plasticity Mohr-Coulomb 0.66 rad 0 rad	ce mass	Close He
		Close Help	k model Pr-Prager plasticity Mohr-Coulomb Concentration effects a Additional dynamic surfact constant cohesion	ce mass	Close He
		Close Help	muratura livello 1 non lineard Concentration effects Shrinkage Additional dynamic surface re-Prager plasticity Mohr-Coulomb 240000 N/mi 0.66 rad 0 rad Constant cohesion Constant friction angle	ce mass	Close He
		Close Help	muratura livello 1 non lineard Concentration effects Shrinkage Additional dynamic surfact ress K model er-Prager plasticity Mohr-Coulomb 240000 N/mi 0.66 rad 0 rad Constant cohesion Constant friction angle	ce mass	Close He

Fig. 21 Definizione nuove leggi e proprietà materiali

Una volta definite le nuove leggi e proprietà della muratura si è passati alla creazione e definizione dei carichi pushover, dovendo analizzare la struttura per tutte e 4 le direzioni (X,-X,Y e -Y) si sono creati 4 diversi carichi impostando per ognuno di essi il modo da considerare

Edit loads	Fdit loads	*
V Update 🔥 Close	Vpdate 👗 Close	
		^
Name*	Name*	
Pushover X	Pushover Y	
Load case*	Load case*	
Pushover X 🛛 🎽	Pushover Y	× 😰
Load target type*	Load target type*	
Shape	Shape	~
Load type*	l and treet	
Modal nuchover	Load type-	
Loaded body* [13]	Modal pushover	
bane 1		12 · 1
	Shape 1	
J shape 9	shape 9	
	shape 60	
shape 102	shape 102	3
Shape 103	Shape 103	<u> </u>
Shape 104	Shape 104	
shape 105	Shape 105	I
💐 shape 106	💭 shape 106	
Loading direction type*	Loading direction type*	
Only in user defined direction	Only in user defined direction	~
Direction of pushover load*	Direction of pushover load*	
X	Y	× 👗
Acceleration*	Acceleration*	
9.806 m/s ²		9.806 m/s ²
Eigen mode to be considered*	Eigen mode to be considered*	
		2
1		~
Edit loads	 Edit loads Update X Close 	
Lit loads ✓ ✓ Update X Close	 Edit loads Update X Close 	_) v
L Edit loads ✓ Update X Close	 Edit loads Update X Close Name* 	
L Edit loads ✓ ✓ Update ¥ Close	Edit loads Vupdate Close	
Edit loads Update Close Name* Pushover -X	Edit loads Vight Close Name* Pushover -Y Load case*	
Load case*	Edit loads Update Close Name* Pushover -Y Load case* Buchaver X	
List Loads Vupdate ★ Close Name* Pushover -X Load case* Pushover -X Y I I I I I I I I I I I I I I I I I I I	Edit loads Update Close Name* Pushover -Y Load case* Pushover -Y	· [2]
Load target type*	Edit loads Update Close Name* Pushover -Y Load case* Pushover -Y Load target type*	· 2
Load target type*	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape 	
Load type*	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* 	· [2]
 Èdit loads ✓ Update X Close Name* Pushover -X Load case* Pushover -X ✓ Ige Load target type* Shape Coad type* Modal pushover 	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover 	· 2
Load target type* Modal pushover Load body* [13]	 Èdit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] 	
Edit loads ✓ Update ★ Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Load type* Modal pushover Loadet body* [13] ✓ shape 1	Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] √ shape 1	
Load type* Modal pushover Load type* Modal pushover Load type* Modal pushover Load body* [13] Load body* [14] Load body* [15] <pli>Linit body* [15] <pli>Linit body* [15] <pli>Linit</pli></pli></pli>	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load trype * Shape Load type* Modal pushover Loaded boy* [13] ✓ shape 1 ✓ shape 9 	
Load type* Modal pushover Load target type* Shape Shape 1 √ shape 1 √ shape 1 √ shape 60	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 1 ✓ shape 9 ✓ shape 60 	
 Edit loads Update Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Loaded body* [13] Shape 1 Shape 102 	 ✓ Edit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 1 ✓ shape 60 ✓ shape 102 	
Edit loads Vupdate ★ Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Load target type* Shape Load body* [13] ✓ shape 1 ✓ shape 60 ✓ shape 102 ✓ shape 103	 Èdit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 1 ✓ shape 1 ✓ shape 60 ✓ shape 102 ✓ shape 103 	
Edit loads Update Close Name* Pushover -X Load target type* Shape Usate 1 Image: 1 Image: 2	 ✓ Edit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load trype type* Modal pushover Loaded body* [13] ✓ shape 1 ✓ shape 9 ✓ shape 9 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 104 	
Load type* Modal pushover Load type* Modal pushover Load type* Modal pushover Load type* Modal pushover Load tody* [13] Shape 1 Shape 1 Shape 1 Shape 102 Shape 103 Shape 104 Shape 104 Shape 105	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load trype* Modal pushover Load type* Modal pushover Loaded boy* [13] ✓ shape 1 ✓ shape 1 ✓ shape 102 ✓ shape 103 ✓ shape 103 ✓ shape 105 	
Load target type* Shape Load target type* Shape Load target type* Shape 1 Shape 10 Shape 102 Shape 103 Shape 105 Shape 105 Shape 105 Shape 105 Shape 105	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 1 ✓ shape 9 ✓ shape 9 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 105 	
 Edit loads ✓ Update Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Loaded body* [13] ✓ shape 1 ✓ shape 1 ✓ shape 10 ✓ shape 103 ✓ shape 103 ✓ shape 105 ✓ shape 106 	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 106 	
Edit loads Vupdate Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Load target type* Shape Load darget type* Shape Load darget type* Shape Load darget type* Image: Close Load target type* Image: Close Image: Close Image: Close Load target type* Image: Close Image: Close Image: Close	 ✓ Edit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 106 	
Edit loads Image: Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Load target type* Shape Load target type* Shape Load target type* Shape Load target type* Shape 102 Image: Shape 102 Image: Shape 103 Image: Shape 103 Image: Shape 103 Image: Shape 105 Image: Shape 106	 ✓ Edit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 1 ✓ shape 1 ✓ shape 102 ✓ shape 103 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 106 	
Edit loads Update Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Load target type* Modal pushover Loaded body* [13] Shape 10 Shape 101 Shape 102 Shape 103 Shape 104 Shape 105 Shape 106 Shape 107 Shape 108 Shape 108 Shape 103 Shape 104 Shape 105 Shape 106 Shape 106	 ✔ Update ✔ Update ✔ Close Name* Pushover -Y Load case* Pushover -Y Load type* Modal pushover Load type* Modal pushover Load dype * Modal pushover Load dype * Modal pushover Load type * Shape 102 Shape 103 Shape 103 Shape 104 Shape 105 Shape 105	
Load body* (13) Shape 10 Shape 102 Shape 103 Shape 103 Shape 104 Shape 105 Shape 105 Shape 105 Shape 105 Shape 105 Shape 106 Shape 106 Shape 107 Shape 108 Shape 108 Shape 109 Shape 109 Shape 100 Shape 100 Shape 100 Shape 100 Shape 100 Shape 105 Shape 105 Shape 106 Shape 107 Shape 108 Shape 108 Shape 109 Shape 109 Shape 100	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 106 Loading direction type* Only in user defined direction Direction of pushover load* Y 	
Edit loads Update Close Name* Pushover -X Load case* Pushover -X Load target type* Modal pushover Loaded body* [13] Shape Loaded body* [13] Shape 10 Shape 101 Shape 102 Shape 103 Shape 103 Shape 104 Shape 105 Shape 105 Shape 105 Shape 106	 ✓ Edit loads ✓ Update X Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 106 Coading direction type* Only in user defined direction Direction of pushover load* Y Acceleration* 	
Edit loads Update Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Load target type* Image: Close Modal pushover Image: Close Load target type* Image: Close Modal pushover Image: Close Load target type* Image: Close Modal pushover Image: Close Loaded body* [13] Image: Close Image: Close Image: Close Loaded body* [13] Image: Close Image: Close Image: Close Loaded body* [13] Image: Close Image: Close Image: Cl	 ✔ Update Close Name* Pushover -Y Load case* Pushover -Y Load target type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 103 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 105 ✓ shape 106 Coading direction type* Only in user defined direction Direction of pushover load* Y Acceleration* 	· · · · · · · · · · · · · · · · · · ·
Edit loads Update Close Name* Pushover -X Load case* Pushover -X Load target type* Shape Shape Load target type* Modal pushover Loaded body* [13] Jameshape 1 Jameshape 1 Jameshape 10 Jahape 103 Jahape 105 Jahape 105 Jahape 105 Jahape 106 Shape 106 Jahape 106 <td< td=""><td> ✓ Edit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 102 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 105 ✓ shape 106 ✓ Coading direction type* Only in user defined direction Direction of pushover load* Y Acceleration* Eigen mode to be considered* </td><td>✓ ✓</td></td<>	 ✓ Edit loads ✓ Update Close Name* Pushover -Y Load case* Pushover -Y Load type* Shape Load type* Modal pushover Loaded body* [13] ✓ shape 10 ✓ shape 102 ✓ shape 102 ✓ shape 102 ✓ shape 102 ✓ shape 103 ✓ shape 104 ✓ shape 105 ✓ shape 105 ✓ shape 106 ✓ Coading direction type* Only in user defined direction Direction of pushover load* Y Acceleration* Eigen mode to be considered* 	✓ ✓

Fig. 22 Creazione carichi analisi pushover

Per la creazione dell'analisi pushover tramite il software DIANA FEA il procedimento è del tutto analogo a quanto visto in precedenza per l'analisi modale, si seleziona, quindi, "Structural non linear" nella sezione "Analysis".

Fig. 23 Creazione analisi pushover

Un'analisi pushover inizia con un'analisi modale. Quindi si è inserita all'interno della nuova analisi appena creata un'analisi modale da effettuare prima dell'analisi pushover

Fig. 24 Creazione analisi modale interna all'analisi pushover

Nell'analisi strutturale non lineare creato un nuovo blocco di esecuzione con passaggi di carico. Si nomina il primo blocco come SW e il secondo come PO. Tra gli effetti non lineari si considerano gli effetti geometricamente non lineari in quanto si applicano carichi fuori piano alle pareti e si applica il peso proprio in un solo step.

1) 🔄 🖳 🔔 🛉 📢 🖓	
👻 🐔 Pushover Y	
👻 🗐 Structural eigenvalue	
Evaluate model	
✓ Define eigenvalue type	
Free vibration	
Execute eigenvalue analysis	
Output eigenvalue analysis	
👻 🗐 Structural nonlinear	4
Evaluate model	
Nonlinear effects	
∽ sw	4
Load steps	
Equilibrium iteration	
Logging information	_
✓ PO	4
Load steps	
Equilibrium iteration	
Logging information	
Solution method	-
Output	

Properties	×	Properties		×
Specify nonlinear effects		 Execute load steps 		
		Load		
Physically nonlinear Si	ettings	Load set	SW	-
Geometrically nonlinear S	ettings	Load steps		
Transient effects	ettings	User specified sizes	1.00000	
Linear stress/strain determination for	linear elements	Ú .	Arc length control Set	ttings
Recompute total stress for modified e	lasticity	 Automatic step sizes 	Settings	
X Close	Help		X Close	Help

Fig. 25 Settaggi analisi pushover

Applichiamo il carico di pushover in modo incrementale fino al collasso, il carico pushover viene applicato in 10 incrementi con un fattore di 0,1. Attiviamo il controllo della lunghezza dell'arco per seguire il percorso di risposta fino a un errore con scala automatica dei passaggi di carico.

💯 Properties - LOAD	×
 Execute load steps Load Load set 	Load combination 2
Load steps User specified sizes	0.100000(10)
O Automatic step sizes	Arc length control Settings Settings
	Close Help

Fig. 26 Settaggi step carichi analisi pushover

DIANA FEA può risolvere il sistema di equazioni attraverso quattro metodologie differenti:

- Metodo di risoluzione Intel PARDISO, ovvero solutore "Parallel Direct Sparse". Questo è il metodo predefinito dal software, ma dal punto di vista pratico, risulta essere nettamente efficiente nel momento in cui il modello è composto da un numero notevole di elementi shell curvi, in quanto il software è in grado di gestire all'interno della matrice di rigidezza il differente ordine di contributi delle rotazioni e traslazioni.
- Metodo di risoluzione sparsa di Cholesky, questa metodologia prevede la scelta autonoma da parte del software DIANA FEA della procedura ottimale per la risoluzione del sistema di equazioni basata nella fase iniziale sul metodo Sparse Cholesky.
- 3) Metodo di risoluzione iterativo, utilizzato esclusivamente per modelli composti da un numero di solidi maggiore di 100 mila unità. Risulta essere altamente efficace siccome modelli del genere hanno un'ottima condizione numerica e questa metodologia fornisce la soluzione con un utilizzo minimo della memoria in tempistiche essenziali.

4) Metodo di risoluzione diretta di Gauss, tramite la ripetizione continua di sostituzione di equazione con la combinazione lineare della stessa e di un'altra equazione, in modo da trasformare il sistema assegnato in un sistema a matrice triangolare superiore, individuando la soluzione del sistema di equazioni tramite una backward substitution, ovvero sostituzione a ritroso.

Nel caso in esame si è scelto di adoperare come metodo di risoluzione quello predefinito del software, ovvero Intel Pardiso

L'ultima opzione da scegliere è la metodologia di risoluzione del sistema di equazioni. In un'analisi non lineare, il sistema di equazioni deve essere risolto in maniera iterativa fino al raggiungimento dell'equilibrio. DIANA FEA propone gli schemi di interazione più conosciuti, ovvero rigidità costante e lineare, Newton - Raphson regolare e modificato, ma anche la metodologia Quasi -Newton. Attraverso il metodo Newton - Raphson normale, per ogni iterazione si esegue uno studio della matrice di rigidezza direttamente dal software. Questa tecnica permette di raggiungere la convergenza dopo poche iterazioni, ma la tempistica di svolgimento di ognuna di esse implica un quantitativo di tempo notevole, siccome occorre rielaborare la matrice di rigidezza per ognuna di esse. Il metodo modificato invece, esamina la matrice di rigidezza nella fase iniziale dell'incremento, in questo modo il tempo di analisi di ogni iterazione è minore rispetto il precedente metodo, però occorre svolgere un numero maggiore di iterazione per il raggiungimento della convergenza del sistema. Utilizzando la tecnica Quasi - Newton, si evita l'eccessivo carico computazionale dei metodi puri, tramite l'utilizzo di informazioni ottenute dalla soluzione della iterazione precedente. In fine, se i metodi descritti prima, durante la fase di analisi tendono a non convergere e di conseguenza non trovare la soluzione, è possibile eseguire l'applicazione di un'ultima tecnica, ovvero quella della rigidità costante e lineare. Il software completa la procedura di iterazione nel momento in cui il sistema raggiunge la convergenza, ottenendo risultati di qualità elevata.

Per l'equilibrio della procedura di iterazione si è scelto di usare il metodo Secant (Quasi-Newton) con un massimo di 50 iterazioni

Usiamo la convergenza di spostamento e forza e scegliamo di continuare l'analisi anche se la convergenza non viene raggiunta nel numero massimo di iterazioni.

Properties		×	🗱 Properties - SOLVE	
terative method			igsquiring Solve the system of equat	tions
Maximum number of iterations Method Type First tangent Line search Continuation iteration	Secant (Quasi-Newton) BFGS Previous iteration Settings	50 * *	Method Maximum number of threads Preconditioning Incomplete LU decomp Diagonal Maximum iterations	Parallel Direct Sparse ~
Convergence norm				
 Satisfy all specified norms Energy Displacement Force 	Settings Settings Settings		 Apply automatic if profile Always on Number of Substructures 	itable
	🗙 Close 🕜 I	Help		Close Help

Fig. 27 Scelta metodo risoluzione analisi pushover

Una volta terminato il settaggio dei parametri è possibile procedere all'analisi vera e propria mediante il comando "run analysis". Il software DIANA FEA procede con l'elaborazione di differenti attività. Innanzitutto, esegue la valutazione del modello, ovvero durante questa fase vengono verificate le definizioni assegnate ad ogni singolo elemento, nello specifico le caratteristiche geometriche e le proprietà dei materiali, per poi passare ai gradi di libertà e la matrice di rigidezza del singolo elemento. Concludendo con l'applicazione dei vettori di carico. La fase centrale dell'analisi è la risoluzione del sistema di equazioni generato precedentemente tramite la metodologia preimpostata. Terminando con i valori di output.

L'output principale dell'analisi pushover è la curva di capacità della struttura. Si tratta di un grafico che mette in relazione il taglio risultante alla base (Fb) con lo spostamento (dc) di un nodo di controllo del modello. In genere come nodo di controllo si sceglie il nodo appartenente all'ultimo impalcato del modello, in posizione prossima al baricentro dell'impalcato, per la struttura in esame si è scelto il nodo nell'angolo dell'ultimo piano, appena prima della cella campanaria (figura 13)

Fig.28 Scelta nodo di controllo

Si riportano di seguito i grafici delle curve di capacità per ognuna delle 4 direzioni di carico analizzate

6.3 Analisi spettro di risposta

Dopo l'analisi modale e l'analisi pushover, l'ultima analisi effettuata sulla configurazione attuale della struttura, è stata quella mediante spettro di risposta.

L'analisi con spettro di risposta è un tipo di analisi dinamica, che permette di stimare la risposta strutturale ad eventi dinamici transitori non deterministici: i terremoti.

6.3.1 Applicazione spettro di risposta al modello FEM

Per eseguire, tramite il software DIANA FEA, l'analisi con spettro di risposta ci si è avvalsi dei due spettri di risposta relativi allo SLV ed SLD ricavati precedentemente

La procedura è del tutto analoga a quanto visto per la creazione dell'analisi modale; infatti, si è creata una nuova analisi mediante il comando "add an analysis" situato nella command window e si è scelto tra le varie proposte, "Structural response spectrum".

Fig.29 Creazione analisi spettro di risposta

Il primo step è stato quello di creare un nuovo carico chiamandolo Earthquake e di scegliere come tipo di carico l'opzione "base excitation".

🤲 Edit global loads
🗸 Update 🗙 Close
Name*
Earthquake
Load case*
Eartquake 🛛 🖉
Load type*
Base excitation
Excitation type
Acceleration
Uniform translational acceleration*
9.806 m/s ²
Direction*
х ~ 🗼

Fig.30 Creazione carico per l'analisi spettro di risposta

Successivamente è stato necessario settare tra le varie combinazioni di carico quella relativa all'analisi appena creata

🐸 Geometry Load Combinations						
> 🕐 🛍 🕌						
	Pesoprio	Pushover Y	Pushover X	Eartquake	Pushover -Y	Pushover -X
Load combination 1	1					
Load combination 2		1				
Load combination 3			1			
Load combination 4	1			1		
Load combination 5					1	
Load combination 6						1
					Cl	ose

Fig.31 Combinazioni carico

Una volta settata la combinazione con il carico Eartquake e il Peso proprio, tramite il pulsante "edit frequency dependency factors" si è inserito lo spettro risposta ricavato precedentemente.

Fig.31 Inserimento spettro SLV nella combinazione di carico

Una volta caricato lo spettro di risposta nella combinazione di carico si è potuta lanciare l'analisi con il comando "run selected analysis"

Terminata l'analisi, la si ripete cambiando però la direzione del carico Earthquake

🤲 Edit global loads	▼
🗸 Update 🛛 🗙 Close	
NI ¥	
Name*	
Earthquake	
Load case*	
Eartquake	~ 😰
Load type*	
Base excitation	~
Excitation type	
Acceleration	\sim
Uniform translational acceleration*	
	9.806 m/s ²
Direction*	
Υ	× 🙏

Fig.32 Cambio direzione carico per l'analisi spettro di risposta

Gli effetti dell'eccentricità accidentali nella distribuzione delle masse ai vari livelli dovrebbero essere tenuti in conto traslando il centro di massa di una distanza pari a $\pm 5\%$ della dimensione massima in pianta perpendicolare all'azione sismica.

In generale tale procedura si traduce in 32 combinazioni di carico, ma poiché l'edificio presenta massa e rigidezza distribuite in maniera simmetrica a causa della particolare regolarità della struttura sia in pianta che in elevazione, le configurazioni vengono ridotte a solamente due. Perciò, gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc.) sono combinati successivamente, applicando le seguenti espressioni:

Che tengono conto del fatto che l'azione sismica può inavvertitamente provenire da due direzioni contemporaneamente provocando un accentuato effetto rototraslazionale sugli elementi murari. Per questo motivo nelle verifiche di sicurezza seguenti saranno presenti per ogni pannello due fattori di sicurezza, uno riferito alla combinazione (1;0,3) e un altro riferito alla combinazione (0,3;1). Per effettuare le successive verifiche di sicurezza si è scelto di suddividere la struttura in 3 livelli ognuno caratterizzato da un diverso modulo di rigidezza.

Successivamente in ciascun livello sono stati identificati i pannelli murari che saranno oggetto di verifiche, nell'immagine seguente sono mostrati i 3 livelli e i pannelli murari che li compongono.

Fig.33 Divisione livelli e numerazione pannelli murari

6.4 Verifiche di sicurezza

Le verifiche di sicurezza ritenute necessarie per dimostrare l'effettiva resistenza della struttura, sono effettuate in prima battuta sui pannelli murari che compongono il primo livello del campanile, e cioè quindi, alle murature interessate dal massimo tagliante sismico si sviluppa alla quota base del piano terra e in seguito anche sulle atre porzioni dell'edificio.

La direzione dell'azione sismica, perciò, viene considerata con alternanza, come prevalente in una direzione principale (X e Y); questo permette di verificare i pannelli allo SLV per forze massime agenti nel e fuori dal loro piano. In seguito, viene effettuata una verifica allo SLD come previsto dall'Ordinanza 3274 [16] e come modificato dall'OPCM 3431 del 3/5/05 [14] per stabilire l'ammissibilità degli spostamenti in sommità dei pannelli murari sottoposti a verifica.

Lo scopo principale di tali verifiche è di determinare un fattore di sicurezza semplificato definito come rapporto resistenza/sollecitazione.

6.4.1 Verifiche pannelli murari livello 1

Qui di seguito, vengono rappresentate le forze per unità di lunghezza nel piano verticale dei pannelli, rispettivamente per le due direzioni principali di azione della forzante sismica che vengono utilizzate per ricavare le azioni stabilizzanti sulle pareti.

Fig.34 Forze dovute ad azione sismica in direzione x

Fig.35 Forze dovute ad azione sismica in direzione y

Individuiamo in pianta e sul primo livello del campanile gli elementi murari che sono oggetto di verifica.

Fig.36 Pianta e pannelli murari livello 1

Negli edifici esistenti la verifica di un maschio murario a taglio per azioni nel piano può essere condotta mediante la relazione seguente (7.8.2.2.2 NTC 2018)

$$V_t = l \cdot t \cdot f_{vd}$$

Dove:

l : è la lunghezza della parte compressa della parete

t: è lo spessore della parete

 f_{vd} : $f_{yk}/FC \cdot \gamma_m$ (resistenza a taglio di progetto della muratura considerando il contributo dello sforzo normale)

 f_{yk} : $f_{vk_0} + 0.4 \cdot \sigma_0$ (resistenza a taglio caratteristica della muratura considerando il contributo dello sforzo normale)

 $f_{\nu k_0}$: 0,7 · τ_0 (resistenza al taglio della muratura in assenza di compressione)

 τ_0 : resistenza al taglio media della muratura

6.4.1.1 Verifica SLV a taglio per fessurazione diagonale (7.8.2.2.2 NTC 2018)

Qui di seguito viene riportata la tabella contenente i risultati ottenuti dalla verifica a taglio nel piano dei maschi murari ottenuti confrontando i valori del taglio agente con il taglio resistente V_t

Verifica SLV a	TAGLIO PER	R FESSURAZ	IONE DIAG	ONALE (7.8.	2.2.2 NTC 2	2018)		
Parete	1	2	3	4	5	6	7	
l[m]	3,35	2,37	7,79	2,49	5,5	3,78	3,41	
h [m]	9,47	9,47	9,47	9,47	9,47	9,47	9,47	
t [m]	1,65	1,65	1,65	1,65	1,65	1,65	1,65	
N_{xx} (sisma x) $[N/m]$	2056320	1827730	2401540	1437730	2056320	2151780	1791540	
N_{xx} (sisma y) $[N/m]$	1812930	2093490	2234010	2232960	1812930	1650820	1873070	
N_{xx} Combinazione (1;0,3) [N]	4290328	4052032	5068376	3477570	4290328	4367593	3883211	
N_{xx} Combinazione (0,3;1) [N]	4009213	4358985	4874879	4396060	4009213	3788984	3977378	
σ_0 (1;0,3) $[N/m^2]$	776179	1036193	394319	846433	472763	700271	690165	
σ_0 (0,3;1) $[N/m^2]$	725321	1114687	379265	1069992	441787	607501	706901	
$ au_0 [N/m^2]$	60000	60000	60000	60000	60000	60000	60000	
$f_{vk_0}[N/m^2]$	42000	42000	42000	42000	42000	42000	42000	
$f_{vk} [N/m^2]$	352472	456477	199727	380573	231105	322109	318066	
$f_{vk} [N/m^2]$	332128	487875	193706	469997	218715	285000	324760	
f_{vd} (1;0,3) $[N/m^2]$	157353	203784	89164	169899	103172	143798	141994	
f_{vd} (0,3;1) [N/m ²]	148272	217801	86476	209820	97640	127232	144982	
V _t (1;0,3) [N]	869771	796899	1146070	698029	936286	896871	798927	
V _t (0,3;1) [N]	819572	851712	1111517	862045	886087	793548	815743	
Q_{xy} (sisma x) [N/m]	188672	179719	201807	70650	66562	85365	62070	
Q_{xz} (sisma y) [N/m]	82283	114409	112978	192358	169883	180080	182928	
V_s Combinazione (1;0,3) [N]	352039	353169	388906	211790	193919	229992	192965	
V_s Combinazione (0,3;1) $[N]$	229160	277736	286308	352362	313255	339388	332556	
Vt/Vs	2,47	2,26	2,95	3,30	4,83	3,90	4,14	
Vt/Vs	3,58	3,07	3,88	2,45	2,83	2,34	2,45	

Tabella 13 Verifiche SLV a taglio per fessurazione diagonale

Le verifiche a taglio dei pannelli murari del primo livello risultano tutte verificate

Fig.37 Schema 3D verifica a taglio livello 1

6.4.1.2 Verifica Pressoflessione nel piano (SLV)

La verifica a pressoflessione di una sezione di un elemento strutturale si effettuerà confrontando il momento agente di calcolo con il momento ultimo resistente calcolato assumendo la muratura non reagente a trazione ed una opportuna distribuzione non lineare delle compressioni. Nel caso di una sezione rettangolare tale momento ultimo può essere calcolato secondo la relazione 8.22 dell'Ordinanza 3431 anche presente nelle NTC 2018 al punto 7.8.2.2.1

$$M_u = \frac{l^2 \cdot t \cdot \sigma_0}{2} \cdot \left(1 - \frac{\sigma_0}{0.85 \cdot f_d}\right)$$

Dove:

 M_u è il momento corrispondente al collasso per pressoflessione

I: è la lunghezza complessiva della parete (inclusiva della zona tesa)

t: è lo spessore della zona compressa della parete

 σ_0 : è la tensione normale media, riferita all'area totale della sezione (= P/lt, con P forza assiale agente positiva se di compressione). Se P è di trazione, $M_u = 0$

 $f_d = f_k / \gamma_m$ è la resistenza a compressione di calcolo della muratura.

Se il valore di M_u risulta negativo poiché $\frac{\sigma_0}{0.85 \cdot f_d} > 1$, l'elemento si romperà a compressione.

Per il calcolo dei momenti agenti M_s , si è ipotizzato di considerare i pannelli murari oggetto di verifica, come aventi comportamento a mensola incastrata alla base (livello +0.00 m) e sollecitati da una forza trasversale pari al taglio V_s definito precedentemente tramite analisi spettrale. Perciò:

$$M_s = V_s \cdot h_{pannello}$$

Qui di seguito viene riportata la tabella contenente i risultati ottenuti dalla verifica di presso-flessione nel piano dei maschi murari ottenuti confrontando i valori del momento reagente con quello resistente:

Verifica SLV a PRESSOFLESSIONE NEL PIANO									
Parete	1	2	3	4	5	6	7		
<i>l</i> [<i>m</i>]	3,35	2,37	7,79	2,49	5,5	3,78	3,41		
h [m]	9,47	9,47	9,47	9,47	9,47	9,47	9,47		
t [m]	1,65	1,65	1,65	1,65	1,65	1,65	1,65		
$N_{xx_{(1;0,3)}}[N]$	4290328	4052032	5068376	3477570	4290328	4367593	3883211		
$N_{xx_{(0,3;1)}}[N]$	4009213	4358985	4874879	4396060	4009213	3788984	3977378		
$\sigma_{0_{(1;0,3)}}[N/m^2]$	776179	1036193	394319	846433	472763	700271	690165		
$\sigma_{0_{(0,3;1)}}[N/m^2]$	725321	1114687	379265	1069992	441787	607501	706901		
$f_d [N/m^2]$	892800	892800	892800	892800	892800	892800	892800		
Q_{xy} (sisma x) [N/m]	188672	179719	201807	70650	66562	85365	62070		
Q_{xz} (sisma y) [N/m]	82283	114409	112978	192358	169883	180080	182928		
V _s (1;0,3)	352039	353169	388906	211790	193919	229992	192965		
V _s (0,3;1)	229160	277736	286308	352362	313255	339388	332556		
$M_{u_{(1;0,3)}}[Nm]$	166690	-1754640	9483610	-499508	4448290	637517	599511		
$M_{u_{(0,3;1)}}[Nm]$	296966	-2421840	9498213	-2243758	4606870	1428489	464491		

$M_{s_{(1;0,3)}}[Nm]$	3333808	3344509	3682937	2005649	1836417	2178023	1827377
$M_{s_{(0,3;1)}}[Nm]$	2170141	2630158	2711338	3336872	2966526	3214001	3149304
$M_{u_{(1;0,3)}}/M_{s_{(1;0,3)}}$ [-]	0,05	0	2,58	0	2,42	0,29	0,33
$M_{u_{(0,3;1)}}/M_{s_{(0,3;1)}}$ [-]	0,14	0	3,50	0	1,55	0,44	0,15

Tabella 14 Verifiche SLV a pressoflessione nel piano

Tutti i pannelli del primo livello, ad eccezione dei pannelli 3 e 5, non soddisfano la verifica a pressoflessione.

Fig.38 Schema 3D verifica pressoflessione nel piano livello 1

6.4.1.3 Verifica pressoflessione fuori piano (SLV)

Per il calcolo del momento resistente si assume che il diagramma delle tensioni normali sia distribuito su metà dello spessore della muratura, che la parte compressa abbia un valore del momento resistente pari a 0,85fd e che la resistenza a trazione sia nulla. I momenti sollecitanti sono definiti direttamente attraverso analisi spettrale considerando gli effetti più sfavorevoli nelle due direzioni principali di azione della forzante sismica.

$$M_u = \frac{l \cdot t^2 \cdot \sigma_0}{2} \cdot \left(1 - \frac{\sigma_0}{0.85 \cdot f_d}\right)$$

Dove:

 M_u è il momento corrispondente al collasso per pressoflessione fuori dal piano

I: è la lunghezza complessiva della parete (inclusiva della zona tesa)

t: è lo spessore della zona compressa della parete

 σ_0 : è la tensione normale media, riferita all'area totale della sezione (= P/lt, con P forza assiale agente positiva se di compressione). Se P è di trazione, M_u = 0

 $\mathbf{f}_{\mathbf{d}} = \mathbf{f}_k / \gamma_m$ è la resistenza a compressione di calcolo della muratura.

Per il calcolo dei momenti agenti M_s , si ipotizza che i pannelli murari oggetto di verifica lavorino come una trave appoggiata-appoggiata soggetta all'azione della forza equivalente F_a

- S_a è l'accelerazione massima, adimensionalizzata rispetto a quella di gravità, che l'elemento subisce durante il sisma e corrisponde allo stato limite in esame.
- W_a è il peso dell'elemento.

 q_a è il fattore di comportamento dell'elemento

Per le pareti resistenti al sisma si può assumere la seguente espressione:

$$S_a = \alpha \cdot S \cdot \left[1, 5 \cdot \left(1 + \frac{Z}{H}\right) - 0, 5\right] \ge \alpha \cdot S$$

dove α è il rapporto tra accelerazione massima del terreno a_g su sottosuolo di tipo A per lo stato limite in esame e l'accelerazione di gravità g, S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche, Z è la quota del baricentro dell'elemento non strutturale misurata a partire dal piano di fondazione e H è l'altezza della costruzione misurata a partire dal piano di fondazione.

Verifica SLV a PRESSOFLESSIONE FUORI PIANO										
Parete	1	2	3	4	5	6	7			
<i>l</i> [<i>m</i>]	3,35	2,37	7,79	2,49	5,5	3,78	3,41			
h [m]	9,47	9,47	9,47	9,47	9,47	9,47	9,47			
t [m]	1,65	1,65	1,65	1,65	1,65	1,65	1,65			
N_{xx} (sisma x) $[N/m]$	2056320	1827730	2401540	1437730	2056320	2151780	1791540			
N_{xx} (sisma y) $[N/m]$	1812930	2093490	2234010	2232960	1812930	1650820	1873070			
$N_{xx_{(1;0,3)}}[N]$	4290328	4052032	5068376	3477570	4290328	4367593	3883211			
$N_{xx_{(0,3;1)}}[N]$	4009213	4358985	4874879	4396060	4009213	3788984	3977378			
$f_d [N/m^2]$	892800	892800	892800	892800	892800	892800	892800			
Q_{xy} (sisma x) [N/m]	188672	179719	201807	70650	66562	85365	62070			
Q_{xz} (sisma y) [N/m]	82283	114409	112978	192358	169883	180080	182928			
$M_{u_{(1;0,3)}}[Nm]$	157293	-1221585	2008724	-331000	1334487	278281	290086			
$M_{u_{(0,3;1)}}[Nm]$	146267	-1686091	2011817	-1486828	1382061	623547	224754			
$M_s[Nm]$	116822	82647	271656	86832	191798	131818	118915			
$M_{u_{(1;0,3)}}/M_{s}[-]$	1,35	0	7,39	0	6,96	2,11	2,44			
$M_{u_{(0,3;1)}}/M_{s}$ [-]	1,25	0	7,41	0	7,21	4,73	1,89			

Tabella 15 Verifiche SLV a pressoflessione fuori piano

Tutti i pannelli murari appartenenti al primo livello, ad eccezione del numero 2 e 4, soddisfano la verifica a pressoflessione fuori piano.

Fig. 39 Schema 3D verifica pressoflessione fuori piano livello 1

6.4.1.4 Verifica locale spostamento pareti (SLD)

Secondo quanto prescritto dal punto 4.11.2 dell'Ordinanza 3431 per l'azione sismica di progetto dovrà essere verificato che gli spostamenti strutturali non producano danni tali da rendere temporaneamente inagibile l'edificio. Questa condizione si potrà ritenere soddisfatta quando gli spostamenti di interpiano (dr) ottenuti dall'analisi siano inferiori al limite indicato qui di seguito: -per edifici con struttura portante in muratura ordinaria

La verifica di sicurezza a SLD è condotta confrontando lo spostamento massimo con il valore limite compatibile per la tipologia di struttura oggetto di indagine con riferimento sia ai singoli pannelli precedentemente analizzati allo SLV sia all'intero edificio.

Gli spostamenti sull'edificio sono valutati facendo riferimento allo spettro di risposta per lo SLD nelle due direzioni (X,Y) con il contributo dell'azione verticale lungo l'asse Z.

Fig.40 Spostamenti analisi con spettro risposta (sisma direzione x)

Fig.41 Spostamenti analisi con spettro risposta (sisma direzione y)

Si riportano di seguito le tabelle contenenti le verifiche di spostamento allo SLD dei pannelli murari appartenenti al primo livello

Spostamenti direzione X (Sisma direzione X)							
Parete	dr	0,003h	0,003h/dr				
1	0,0035	0,02841	8,12				
2	0,0038	0,02841	7,48				
3	0,0037	0,02841	7,68				
4	0,0036	0,02841	7,89				
5	0,0032	0,02841	8,88				
6	0,0027	0,02841	10,52				
7	0,0026	0,02841	10,93				

Spostamenti direzione Y (Sisma direzione X)							
Parete	dr	0,003h	0,003h/dr				
1	0,00100	0,02841	28,41				
2	0,00097	0,02841	31,57				
3	0,00100	0,02841	28,41				
4	0,00115	0,02841	25,83				
5	0,00101	0,02841	28,13				
6	0,00092	0,02841	31,57				
7	0,00089	0,02841	31,92				

Spostamenti direzione X (Sisma direzione Y)							
Parete	dr	0,003h	0,003h/dr				
1	0,0011	0,02841	25,83				
2	0,00099	0,02841	28,70				
3	0,00980	0,02841	2,90				
4	0,00110	0,02841	25,83				
5	0,00100	0,02841	28,41				
6	0,00101	0,02841	28,13				
7	0,00091	0,02841	31,22				

Spostamenti direzione Y (Sisma direzione Y)							
Parete	dr	0,003h	0,003h/dr				
1	0,00330	0,02841	8,61				
2	0,00379	0,02841	7,50				
3	0,00370	0,02841	7,68				
4	0,00320	0,02841	8,88				
5	0,00360	0,02841	7,89				
6	0,00303	0,02841	9,47				
7	0,002910	0,02841	9,76				

Tabella 16 Verifiche spostamento SLD livello 1

Per tutti i pannelli le verifiche risultano soddisfatte allo SLD.

6.4.2 Verifica pannelli murari livello 2 e 3

Qui di seguito, vengono rappresentate le forze per unità di lunghezza nel piano verticale dei pannelli appartenenti al livello 2 e 3, per le due direzioni principali di azione della forzante sismica

Fig.42 Forze dovute ad azione sismica in direzione x

Fig.43 Forze dovute ad azione sismica in direzione y

La muratura del corpo centrale del campanile, interposta tra i pannelli di base relativi al piano terra e la cella campanaria, è caratterizzata da bassissime caratteristiche meccaniche. La parte verso l'interno del campanile presenta un tessuto con prevalenza di mattoni, mentre il centro e l'esterno contengono anche ciottoli, alcuni di grosse dimensioni, il tutto connesso da malta inconsistente. A tal proposito, si è considerato opportuno sottoporre a verifica anche questa porzione della struttura in previsione di una maggiore incapacità della muratura di resistere ad un eventuale evento sismico.

x Î,

Secondo quanto prescritto nelle NTC 2018, cap.7.8.1.5.2, il modello deve tener conto del contributo dei soli elementi murari continui dalle fondazioni alla sommità, collegati ai soli fini traslazionali alle quote dei solai, ragione per cui si è ipotizzato di individuare le sezioni resistenti come rappresentato in figura:

Fig.44 Pianta e pannelli murari livello 2 e 3

6.4.2.1 Verifica SLV a taglio per fessurazione diagonale (7.8.2.2.2 NTC 2018)

Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018)									
Parete	Y1	Y2	X1	X2					
l [m]	7,79	7,79	7,79	7,79					
$h\left[m ight]$	18,1	18,1	18,1	18,1					
t [m]	1,45	1,45	1,45	1,45					
N_{xx} (sisma x) $[N/m]$	1340000	1240490	1242940	1294270					
N_{xx} (sisma y) $[N/m]$	1242620	1200270	1241830	1442670					
N_{xx} Combinazione (1;0,3) [N]	2483540	2320828	2342459	2504253					
N_{xx} Combinazione (0,3;1) [N]	2384699	2280005	2341332	2654879					
σ_0 (1;0,3) $[N/m^2]$	219870	205465	207380	221704					
σ_0 (0,3;1) [N/m ²]	211119	201851	207280	235039					
$ au_0 \left[N/m^2 \right]$	60000	60000	60000	60000					

$f_{\nu k_0}[N/m^2]$	42000	42000	42000	42000
$f_{vk} [N/m^2]$	129948	124186	124952	130681
$f_{vk} [N/m^2]$	126448	122740	124912	136015
f_{vd} (1;0,3) $[N/m^2]$	58012	55440	55782	58340
f_{vd} (0,3;1) $[N/m^2]$	56450	54795	55764	60721
V _t (1;0,3) [N]	655280	626224	630087	658979
V _t (0,3;1) [N]	637630	618934	629886	685876
Q_{xy} (sisma x) [N/m]	175860	175651	138175	140026
Q_{xz} (sisma y) [N/m]	135000	150440	200984	165622
V_s Combinazione (1;0,3) [N]	313722	320135	287782	275083
V_s Combinazione (0,3;1) [N]	272249	294546	351533	301063
Vt/Vs	2,09	1,96	2,19	2,40
Vt/Vs	2,34	2,10	1,79	2,28

 $Tabella \ 17 \ Verifiche \ SLV \ a \ taglio \ per \ fessurazione \ diagonale \ livello \ 2$

Ve	rifica SLV a	TAGLIO PE	R FESSURA	ZIONE DIA	GONALE (7.	8.2.2.2 NTC	C 2018)	
Parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6
<i>l</i> [<i>m</i>]	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27
h [m]	7	7	7	7	7	7	7	7
t [m]	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45
N_{xx} (sisma x)	1050420	809609	1055690	1156060	703214	809609	659302	855650
[N/m]								
N_{xx} (sisma y)	850293	836436	682247	969864	1147700	1157830	995782	1064220
[<i>N</i> / <i>m</i>]								
$N_{xx_{(1;0,3)}}[N]$	1892986	1537783	1827528	2098178	1518910	1677589	1389153	1703628
$N_{xx_{(0,3;1)}}$ [N]	1689858	1565012	1448483	1909189	1970063	2031033	1730680	1915327
σ_0 (1;0,3) [$N/$	604402	490991	583502	669916	461464	509673	422043	517584
m^2]								
σ_0 (0,3;1) [$N/$	539546	499685	462479	609575	598530	617054	525803	581901
m^2]								
$\tau_0 [N/m^2]$	60000	60000	60000	60000	60000	60000	60000	60000
$f_{vk_0}[N/m^2]$	42000	42000	42000	42000	42000	42000	42000	42000
$f_{vk} [N/m^2]$	283761	238396	275401	309967	226586	245869	210817	249034
$f_{vk} [N/m^2]$	257818	241874	226991	285830	281412	288822	252321	274760
<i>f_{vd}</i> (1;0,3) [<i>N</i> /	126679	106427	122947	138378	101154	109763	94115	111176
m^2]								
f _{vd} (0,3;1) [N/	115097	107979	101335	127603	125630	128938	112643	122661
m^2]								
V _t (1;0,3) [N]	396758	333329	385069	433400	332950	361285	309779	365935
V _t (0,3;1) [N]	360485	338191	317383	399652	413513	424400	370766	403738
Q_{xy} (sisma x)	36319	28735	41912	34973	73507	76094	66857	70854
[N/m]								
Q_{xz} (sisma y)	69444	71000	67295	82113	37486	35310	40000	32557
[N/m]								

Vs	82871	72551	90046	86430	122892	125696	114343	116901
Combinazione								
(1;0,3) [<i>N</i>]								
V_s	116493	115450	115809	134277	86330	84300	87083	78029
Combinazione								
(0,3;1) [<i>N</i>]								
Vt/Vs	4,79	4,59	4,28	5,01	2,71	2,87	2,71	3,13
Vt/Vs	3,09	2,93	2,74	2,98	4,79	5,03	4,26	5,17

Tabella 18 Verifiche SLV a taglio per fessurazione diagonale livello 3

Le verifiche a taglio dei pannelli murari del secondo e terzo livello risultano tutte verificate.

Fig.45 Schema 3D verifica a taglio livello 2 e 3

Verifica SLV a PRESSOFLESSIONE NEL PIANO								
Parete	Y1	Y2	X1	X2				
l[m]	7,79	7,79	7,79	7,79				
h [m]	18,1	18,1	18,1	18,1				
t [m]	1,45	1,45	1,45	1,45				
$N_{xx_{(1;0,3)}}$ [N]	2483540	2320828	2342459	2504253				
$N_{xx_{(0,3;1)}}$ [N]	2384699	2280005	2341332	2654879				
$\sigma_{0(1;0,3)} [N/m^2]$	219870	205465	207380	221704				
$\sigma_{0(0,3;1)} [N/m^2]$	211119	201851	207280	235039				
$f_d [N/m^2]$	401700	401700	401700	401700				
Q_{xy} (sisma x) [N/m]	175860	175651	138175	140026				
$Q_{\chi z}$ (sisma y) [N/m]	135000	150440	200984	165622				
<i>V</i> _s (1;0,3)	313722	320135	287782	275083				
V _s (0,3;1)	272249	294546	351533	301063				
$M_{u_{(1;0,3)}}[Nm]$	3444313,593	3600022,714	3582404,515	3420654,813				
$M_{u_{(0,3;1)}}[Nm]$	3545276,085	3630697,815	3583345,484	3222545,207				
$M_{s_{(1;0,3)}}[Nm]$	5678368,2	5794449,835	5208850,399	4979007,187				
$M_{s_{(0,3;1)}}[Nm]$	4927708,71	5331285,949	6362745,943	5449244,101				
$M_{u_{(1;0,3)}}/M_{s_{(1;0,3)}}$ [-]	0,61	0,62	0,69	0,69				
$M_{u_{(0,3;1)}}/M_{s_{(0,3;1)}}$ [-]	0,72	0,68	0,56	0,59				

6.4.2.2 Verifica pressoflessione nel piano (SLV)

 $Tabella \ 19 \ Verifiche \ SLV \ a \ pressoflessione \ nel \ piano \ livello \ 2$

Verifica SLV a PRESSOFLESSIONE NEL PIANO									
Parete	X3	X4	X5	X6	Y3	Y4	Y5	Y6	
l [m]	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27	
h [m]	7	7	7	7	7	7	7	7	
t [m]	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45	
$N_{xx_{(1;0,3)}}[N]$	1892986	1537783	1827528	2098178	1518910	1677589	1389153	1703628	
$N_{xx_{(0,3;1)}}$ [N]	1689858	1565012	1448483	1909189	1970063	2031033	1730680	1915327	
$\sigma_{0_{(1;0,3)}}[N/m^2]$	604402	490991	583502	669916	461464	509673	422043	517584	
$\sigma_{0(0,3;1)} [N/m^2]$	539546	499685	462479	609575	598530	617054	525803	581901	
$f_d [N/m^2]$	401700	401700	401700	401700	401700	401700	401700	401700	
Q_{xy} (sisma x) [N/m]	36319	28735	41912	34973	73507	76094	66857	70854	
Q_{xz} (sisma y) [N/m]	69444	71000	67295	82113	37486	35310	40000	32557	
V _s (1;0,3)	82871	72551	90046	86430	122892	125696	114343	116901	
V _s (0,3;1)	116493	115450	115809	134277	86330	84300	87083	78029	
$M_{u_{(1;0,3)}}[Nm]$	-1574472	-727397	-1399215	-2179931	-605980	-938122	-372175	-997484	
$M_{u_{(0,3;1)}}[Nm]$	-1058862	-783314	-554527	-1619188	-1683576	-1860740	-1060605	-1530923	
$M_{s_{(1;0,3)}}[Nm]$	580095	507855	630320	605010	860241	879873	800399	818304	
$\overline{M_{s_{(0,3;1)}}[Nm]}$	815448	808148	810666	939940	604312	590103	609580	546204	

Tabella 20 Verifiche SLV a pressoflessione nel piano livello 3

Nessun pannello murario appartenente ai livelli 2 e 3 soddisfa la verifica a pressoflessione nel piano.

Fig.46 Schema 3D verifica pressoflessione nel piano livello 2 e 3

×

Verifica SLV a PRESSOFLESSIONE FUORI DAL PIANO							
Parete	Y1	Y2	X1	X2			
l [m]	7,99	7,99	7,79	7,79			
$h\left[m ight]$	18,1	18,1	18,1	18,1			
t [m]	1,45	1,45	1,45	1,45			
N_{xx} (sisma x) $[N/m]$	1340000	1240490	1242940	1294270			
N_{xx} (sisma y) $[N/m]$	1242620	1200270	1241830	1442670			
N_{xx} Combinazione (1;0,3) [N]	2483540	2320828	2342459	2504253			
N_{xx} Combinazione (0,3;1) [N]	2384699	2280005	2341332	2654879			
σ_0 (1;0,3) [N/m ²]	152016	122053	95659	109238			
$\sigma_0(0,3;1) [N/m^2]$	145966	119906	95613	115808			
$f_d [N/m^2]$	401700	401700	401700	401700			
$Q_{xy}(\text{sisma x}) [\text{N/m}]$	175860	175651	138175	140026			
Q_{xz} (sisma y) [N/m]	135000	150440	200984	165622			
$V_{s}(1;0,3)$	313722	320135	287782	275083			
$V_{s}(0,3;1)$	272249	294546	351533	301063			
$M_{u_{(1;0,3)}}[Nm]$	641111	670094	666815	636707			
$M_{u_{(0,3;1)}}[Nm]$	659904	675804	666990	599832			
$M_s[Nm]$	1304809	1304809	1304809	1304809			
$M_{u_{(1;0,3)}}/M_{s}[-]$	0,49	0,51	0,51	0,49			
$M_{u_{(0,3;1)}}/M_{s}$ [-]	0,51	0,52	0,51	0,46			

6.4.2.3 Verifica pressoflessione fuori piano (SLV)

Tabella 21 Verifiche SLV a pressoflessione fuori piano livello 2

Verifica SLV a PRESSOFLESSIONE FUORI DAL PIANO									
Parete	X3	X4	X5	X6	Y3	Y4	Y5	Y6	
<i>l</i> [<i>m</i>]	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27	
h [m]	7	7	7	7	7	7	7	7	
t [m]	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45	
N_{xx} (sisma x) $[N/m]$	1050420	809609	1055690	1156060	703214	809609	659302	855650	
N_{xx} (sisma y) $[N/m]$	850293	836436	682247	969864	1147700	1157830	995782	1064220	
N_{xx} Combinazione (1;0,3) [N]	1892986	1537783	1827528	2098178	1518910	1677589	1389153	1703628	
N_{xx} Combinazione (0,3;1) [N]	1689858	1565012	1448483	1909189	1970063	2031033	1730680	1915327	
σ_0 (1;0,3) [N/m ²]	246939	221370	299317	329489	197483	283104	214800	246560	
$\sigma_0(0,3;1)[N/m^2]$	220441	225290	237236	299811	256140	342750	267609	277198	
$f_d [N/m^2]$	401700	401700	401700	401700	401700	401700	401700	401700	

$Q_{xy}(\text{sisma x}) [\text{N/m}]$	36319	28735	41912	34973	73507	76094	66857	70854
$Q_{xz}(\text{sisma y}) [\text{N/m}]$	69444	71000	67295	82113	37486	35310	40000	32557
$V_{s}(1;0,3)$	82871	72551	90046	86430	122892	125696	114343	116901
$V_{s}(0,3;1)$	116493	115450	115809	134277	86330	84300	87083	78029
$M_{u_{(1;0,3)}}[Nm]$	378265	356035	411588	423331	348625	423552	367499	397212
$M_{u_{(0,3;1)}}[Nm]$	355153	359697	370289	411824	404929	448503	413410	419865
$M_s[Nm]$	70451	70451	70451	70451	74039	74039	74039	74039
$M_{u_{(0,3;1)}}/M_{s}$ [-]	0,78	0,84	0,78	0,84	0,49	0,58	0,55	0,58
$M_{u_{(1;0,3)}}[Nm]$	0,52	0,53	0,55	0,53	0,80	0,91	0,81	0,92

Tabella 21 Verifiche SLV a pressoflessione fuori piano livello 3

Nessun pannello murario appartenente ai livelli 2 e 3 soddisfa la verifica a pressoflessione fuori piano.

Fig.47 Schema 3D verifica pressoflessione fuori piano livello 2 e 3

Š

Spostamenti direzione X (Sisma direzione X)								
Parete	dr	0,003h	0,003h/dr					
X1	0,0077	0,0543	7,05					
X2	0,0078	0,0543	6,96					
Y1	0,0075	0,0543	7,24					
Y2	0,0077	0,0543	7,05					
Х3	0,0121	0,021	1,74					
X4	0,0121	0,021	1,74					
X5	0,0119	0,021	1,76					
Х6	0,0118	0,021	1,78					
Y3	0,0121	0,021	1,74					
Y4	0,0121	0,021	1,74					
Y4	0,012	0,021	1,75					
Y5	0,0121	0,021	1,74					

Spostamenti direzione Y (Sisma direzione X)						
Parete	dr	0,003h	0,003h/dr			
X1	0,028	0,0543	1,94			
X2	0,028	0,0543	1,94			
Y1	0,028	0,0543	1,94			
Y2	0,028	0,0543	1,94			
Х3	0,0079	0,021	2,66			
X4	0,0079	0,021	2,66			
X5	0,0081	0,021	2,59			
X6	0,008	0,021	2,63			
Y3	0,0079	0,021	2,66			
Y4	0,0079	0,021	2,66			
Y4	0,0078	0,021	2,69			
Y5	0,0079	0,021	2,66			

Tabella 22 Verifiche spostamento SLD livello 2 e 3

Per tutti i pannelli le verifiche risultano soddisfatte allo SLD.

7 PROGETTAZIONE INTERVENTI DI MIGLIORAMENTO

7.1 Scelta degli interventi

Come è stato analizzato nel capitolo 4.2, a causa del grave quadro fessurativo in cui vige la struttura si è reso necessario un rapido intervento per la messa in sicurezza del campanile e si è optato per una soluzione efficace, anche se temporanea, quale la cinturazione mediante cerchiaggi interni ed esterni in acciaio. Purtroppo questo tipo di approccio, seppur efficace, mal concilia con il criterio di "minimo intervento" esposto nel capitolo 2. Questa tesi ha quindi come obiettivo quello di scegliere, progettare e modellare soluzioni alternative al fine di conciliare al meglio i criteri di minimo intervento con la salvaguardia del bene storico architettonico garantendo così la sicurezza sismica della struttura e, al tempo stesso, il minor impatto estetico.

Si sono svolte quindi numerose ricerche sugli interventi di consolidamento più usati sulle opere in muratura. Da tali ricerche è emerso che per quanto riguarda le strutture come torri e campanili, i principali interventi di consolidamento usati in Italia risultano essere:

La **cinturazione**: un sistema in trazione richiuso su sé stesso che fa uso, in prevalenza, di cinghie messe in tensione con dispositivi a cremagliera. [19].

Fig.48 Conformazione delle cinturazioni secondo il poligono funicolare

Fig.49 Cerchiature nel Torrazzo Gonzaga

La **gabbionatura**: un intervento complesso in cui la struttura viene avviluppata e i ritegni sono principalmente chiusi in sé stessi e con controventi. La principale differenza con il sistema della cinturazione è che, in questo caso, si ha una forte interazione fra vecchia e nuova struttura [19].

Fig.50 Schema gabbionatura

Il **puntellamento**: un tipo di intervento esterno che impedisce il ribaltamento delle pareti e sviluppa azioni di sostentamento. Presenta numerosi svantaggi come il notevole tempo di costruzione, l'aumento di masse che il sisma poteva attivare e l'ostacolo alle successive operazioni di consolidamento [19].

Fig.51 Facciata sud ed est del campanile di Casumaro Cento (FE) in seguito al sisma dell'Emilia del 2012 e sistema di pronto intervento a puntello

Fig.52 Puntellamento dei due campanili della cattedrale di Santa Maria Assunta a Camerino

Il **metodo scuci e cuci**: un tipo di intervento tradizionale che avviene attraverso il ripristino della continuità muraria con la rimozione degli elementi lapidei o di laterizio lesionati da eventuali sismi e la realizzazione di una nuova tessitura muraria con nuovi elementi, senza però spezzare la funzione statica della muratura nel corso dell'applicazione stessa. [19].

Fig.53 Bologna, Palazzo d'Accursio: esempio di antica sarcitura di una lesione con la tecnica dello scuci-cuci.

L'intonaco armato: è un intervento usato prevalentemente nel caso di murature gravemente danneggiate e incoerenti, sulle quali non sia possibile intervenire efficacemente con altre tecniche, o in porzioni limitate di muratura, pesantemente gravate da carichi verticali, curando in quest'ultimo caso che la discontinuità di rigidezza e resistenza tra parti adiacenti, con e senza rinforzo, non sia dannosa ai fini del comportamento della parete stessa [19].

Fig.54 Tecnica di rinforzo dell'intonaco armato sottile

L'iniezione di malta: è un intervento che produce un miglioramento delle caratteristiche meccaniche della muratura. Questo tipo di intervento risulta particolarmente idoneo nel caso in cui siano presenti problemi di schiacciamento locale o spanciamento degli elementi portanti prodotto da carichi verticali statici

Fig.55 Applicazione di malta per iniezione

L'impiego dei materiali compositi: è uno degli interventi più innovativi e recenti nel campo del consolidamento strutturale e dell'adeguamento sismico; infatti, tale intervento riesce a conferire un incremento della capacità portante senza però l'apporto di nuove masse strutturali.

Fig.56 Rinforzo di volta mediante FRP

Al fine di poter rispettare i criteri di minimo intervento e di salvaguardia del bene storico e, soprattutto, i rigidi parametri della normativa in riferimento alla sicurezza sismica, la nostra scelta è ricaduta sui tre interventi di seguito esposti:

- Fasciature con materiali compositi: la tecnica consiste nell'incollare alla struttura, mediante resine epossidiche, delle fasce ad alta resistenza, composte da tessuti di fibre di materiale composito (carbonio) immerso in una matrice polimerica.

- Iniezioni di malta all'interno della compagine muraria: il cui scopo è quello di dare maggior compattezza alla parete e incrementarne le caratteristiche meccaniche intrinseche.

-Combinazione dei due interventi.

7.2 Iniezioni di malta

L'intervento di consolidamento mediante iniezioni di miscele leganti mira al miglioramento delle caratteristiche meccaniche della muratura da consolidare, esse permettono infatti di colmare i vuoti e conferire maggiore compattezza alla muratura. Dal punto di vista meccanico ne incrementano la resistenza e la rigidezza, inoltre sono anche utili in presenza di lesioni diffuse e per murature che presentano vuoti interni e buone caratteristiche meccaniche degli inerti.

Nel caso in esame, come abbiamo visto nel capitolo 4.2 l'edificio presenta un quadro fessurativo che evidenzia una diffusa presenza di lesioni generalmente ad andamento verticale, visibili all'interno, sulle murature a nudo; sull'esterno esse sono occultate dall'intonaco, peraltro staccato in più punti dal supporto murario, quindi questa soluzione di intervento rispetta tutti i parametri cercati (minimo intervento, minor impatto estetico ecc). Per quanto riguarda il tipo di malte liquide da utilizzare, da ricerche effettuate si è visto che sono nella maggior parte dei casi leganti idraulici. Nelle murature storiche, infatti, è discutibile, se non addirittura proibita, l'applicazione di leganti organici, principalmente per lo sviluppo sfavorevole nel tempo delle caratteristiche sia fisiche, che meccaniche dei leganti organici, nonché per la loro incompatibilità fisico-chimica con i materiali in situ. I leganti idraulici dal punto di vista chimico-fisico e meccanico risultano essere più adeguati per l'utilizzo in murature storiche.

Studi scientifici hanno dimostrato che le malte composte con cemento puro, che costituiscono la prima applicazione in strutture murarie, sono inadeguate per il riempimento di piccoli vuoti e fessure in murature storiche (iniettabilità inadeguata a causa di intasamento). Sono state così sviluppate malte con elevate caratteristiche di iniettabilità e caratteristiche meccaniche adeguate. D'altro canto, è stata riconosciuta la necessità di disporre di malte con ampio spettro di caratteristiche meccaniche, al fine di soddisfare le necessità specifiche di ogni singola struttura storica [22].

Alla luce dei risultati delle ricerche sul tipo di malta da utilizzare, la scelta è ricaduta su una malta a base di calce idraulica naturale, fibrorinforzata, con granulometria massima dell'inerte 1,2 mm, utilizzata prevalentemente per il consolidamento di strutture in muratura (anche di interesse storico).

Questo tipo di intervento può essere attuato attraverso due modalità: iniezioni di malte a pressione e iniezioni di malta per colo, entrambe le modalità però prevedono, a seguito dell'iniezione, una fase di consolidazione della miscela appena iniettata. Proprio per questo, durante la modellazione dell'intervento su DIANA FEA si è voluto tenere conto di questa fase intermedia, si è infatti visto che appena dopo l'iniezione della miscela, le caratteristiche meccaniche della muratura risultano ancora invariate e, parallelamente a questo, la struttura subisce un aumento di massa dovuto al peso dell'iniezione della miscela legante. E' stato quindi necessario valutare il duplice effetto di questo tipo di intervento: positivo per l'aumento delle caratteristiche meccaniche della muratura e negativo per l'aumento di massa dovuto al gran quantitativo di acqua presente nella malta legante.

7.3 Frp

Il termine FRP (Fiber Reinforced Polymer) sta ad indicare un materiale polimerico fibrorinforzato. Gli FRP sono materiali costituiti da fibre di rinforzo immerse in una matrice polimerica. Nei compositi fibrorinforzati le fibre svolgono il ruolo di elementi portanti sia in termini di resistenza che di rigidezza, mentre la matrice, oltre a proteggere le fibre, funge da elemento di trasferimento degli sforzi tra le fibre e tra queste ultime e l'elemento strutturale a cui il composito è stato applicato. Le fibre possono essere disposte in tutte le direzioni, secondo i dati di progetto, in maniera tale da ottimizzare le proprietà meccaniche del composito nelle direzioni desiderate. La caratteristica peculiare dei compositi strutturali è quella di fornire prestazioni meccaniche migliori o, perlomeno, più "complete" di quelle che sarebbero fornite dalle singole fasi componenti.

I rinforzi possono essere costituiti da:

- Fibre di carbonio che si distinguono in fibre ad alta resistenza ed elevato modulo elastico ed in fibre ad alta resistenza ed elevatissimo modulo elastico
- Fibre di vetro del tipo vetro E e del tipo vetro A.R. resistenti agli alcali
- Fibre di basalto che hanno proprietà intermedie alle fibre di carbonio e vetro, in quanto posseggono caratteristiche meccaniche comparabili in termini di resistenza meccanica alle fibre di carbonio e modulo di elasticità simile alle fibre di vetro
- Fibre metalliche quali fibre di acciaio ad altissima resistenza meccanica.

L'intervento mediante l'uso di FRP si è rivelato molto efficace per interventi di presidio strutturale in situazioni eccezionali, quali interventi di somma urgenza per la messa in sicurezza e la conservazione provvisoria di strutture danneggiate da eventi sismici. Un ulteriore settore di notevole interesse applicativo è costituito dal rinforzo strutturale per le costruzioni di rilevante carattere storico-artistico, laddove si devono privilegiare i requisiti della "reversibilità", della "trasparenza" e della "selettività" dell'intervento.

L'applicazione di lamine di composito ai pannelli di muratura conferisce una forte resistenza a trazione alla muratura, ne limita in modo apprezzabile l'ampiezza delle fessure, e favorisce il richiudersi di quelle formate. Il fenomeno del degrado della rigidezza e della resistenza viene fortemente ridotto se non del tutto eliminato. Inoltre i nastri FRP, grazie all'estrema leggerezza, vengono messi in opera senza l'ausilio di particolari attrezzature e macchinari da un numero limitato di operatori, in tempi estremamente brevi e, spesso, senza che risulti necessario interrompere l'esercizio della struttura.

L'uso di questo tipo di intervento su una struttura esistente dipende da molti fattori che a loro volta costituiscono la discriminante di scelta nella tipologia di materiale FRP da utilizzare nel consolidamento. Le soluzioni più utilizzate risultano essere:

Tessuto FRP che si distingue in monoassiale (U), biassiale (BI) e multiassiale (MultiAx). Quest'ultima soluzione garantisce un comportamento isotropo del rinforzo eliminando la direzione preferenziale dello stesso. Nella Tabella seguente sono riportate le peculiarità delle tre tipologie di tessuto differenziandone l'utilizzo in funzione della tecnologia costruttiva, delle proprietà meccaniche da migliorare e delle sollecitazioni nei confronti delle quali l'elemento strutturale è precario.[23]

	Unidirezionale	Biassiale	Multiassiale				
Caratteristiche	Elevate resistenze meccaniche Elevata resistenza alla corrosione Compatibilità con malte a base di calce						
Vantaggi	Durabilità ed efficació Adattabilità a geon Bassissimi spessori e t	+ isotropia					
Materiale da rinforzare	c.a. c.a. c.a.p. muratura muratura leano		c.a. c.a.p. muratura				
Sollecitazioni	tioni Taglio, flessione Meccanismi locali Pressoflessione Taglio Ribaltamento fuori piano Duttilità Meccanismi locali Cerchiatura		Taglio Meccanismi locali Rinforzo nodi				

Tabella 23 Tipologie tessuti FRP

Alla luce delle diverse soluzioni e tipologie di rinforzo, per la struttura in esame si è scelto di progettare e modellare un tessuto FRP multidirezionale termosaldato in fibra di carbonio ad alta

tenacità, da incollare al supporto per mezzo di resine polimeriche termoindurenti con le seguenti proprietà meccaniche:

Modulo elastico $E_f = 300000 MPa$

Coefficiente di Poisson $v_f = 0$

Peso specifico $\gamma_f = 1780$

7.4 Combinazione intervento iniezioni e Frp

Le iniezioni di malta non escludono gli interventi di rinforzo superficiale mediante materiali compositi. Anzi, l'intervento con iniezione è spesso complementare ad un rinforzo con reti in fibra di carbonio, qualora risulti necessario ripristinare preliminarmente la compattezza e la consistenza del nucleo della muratura, prima di applicare ulteriori rinforzi.

L'intervento combinato di iniezioni e FRP è possibile, quindi, proprio per la natura non mutuamente escludente dei singoli interventi; infatti, se da un lato l'intervento mediante iniezioni di malta necessita di un periodo di consolidamento della malta stessa per poter essere efficace, dall'altro l'applicazione dei nastri FRP produce sin da subito l'effetto benefico di resistenza e confinamento alla muratura

In definitiva la possibilità di combinare questi 2 interventi, permette di poter ottenere soluzioni di rinforzo delle murature dalle prestazioni molto elevate.

7.5 Modellazione interventi

7.5.1 Modellazione iniezioni di malta

Analizzando lo stato fessurativo e soprattutto i parametri meccanici della struttura in esame si è subito notato che i "tronchi" che necessitano dell'intervento di consolidamento sono soprattutto il tronco centrale e finale, caratterizzati da muri meno spessi e caratteristiche meccaniche della muratura molto scadenti, si è scelto, quindi, di modellare l'intervento solo per il tronco centrale e finale del campanile, in modo tale da ripristinare un modulo di elasticità più costante possibile per tutta la struttura

Durante la fase di modellazione, per tenere conto della fase intermedia di malta iniettata ma non ancora consolidata, abbiamo modellato le due fasi:

Fase 1: intervento con malta non consolidata: caratterizzato da un modulo di elasticità invariato e un aumento di massa dovuto al peso della malta ipotizzata, valutato considerando un quantitativo di malta pari a 50 kg/m^3 tramite cui è stato possibile ricavarsi la variazione di densità di massa ρ ed assegnarla alla struttura

$$\Delta \rho_{muratura} = \frac{massa_{malta}}{volume_{struttura}}$$

Nuova $\rho_{muratura} = \rho_{muratura pre-iniezione} + \Delta \rho_{muratura}$

Fase 2: intervento con malta consolidata: caratterizzato da un modulo di elasticità superiore, ottenuto moltiplicando il modulo elastico iniziale per un coefficiente correttivo della tabella C8.5.II, e lo stesso aumento di peso presente nel caso di malta non consolidata

	S	stato di f	atto	Interventi di consolidamento				
Tipologia di muratura		Ricorsi o listature	Connessione trasversale	Iniezione di miscele leganti (*)	Intonacoarmato (**)	Ristilatura armata con connessione dei paramenti (**)	Massimo coefficiente complessivo	
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,5	1,3	1,5	2	2,5	1,6	3,5	
Muratura a conci sbozzati, con paramenti di spessore disomogeneo	1,4	1,2	1,5	1,7	2,0	1,5	3,0	
Muratura in pietre a spacco con buona tessitura	1,3	1,1	1,3	1,5	1,5	1,4	2,4	
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,5	1,2	1,3	1,4	1,7	1,1	2,0	
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc.,)	1,6	-	1,2	1,2	1,5	1,2	1,8	
Muratura a blocchi lapidei squadrati	1,2	-	1,2	1,2	1,2	-	1,4	
Muratura in mattoni pieni e malta di calce	(***)	-	1,3 (****)	1,2	1,5	1,2	1,8	
Muratura in mattoni semipieni con malta cementizia (es,: doppio UNI foratura ≤40%)	1,2	-	-	1	1,3		1,3	

Tabella C8.5.II -Coefficienti correttivi massimi da applicarsi in presenza di: malta di caratteristiche buone; ricorsi o listature; sistematiche connessioni trasversali; consolidamento con iniezioni di malta; consolidamento con intonaco armato; ristilatura armata con connessione dei paramenti.

(*) I coefficienti correttivi relativi alle iniezioni di miscele leganti devono essere commisurati all'effettivo beneficio apportato alla muratura, riscontrabile con verifiche sia nella fase di esecuzione (iniettabilità) sia a-posteriori (riscontri sperimentali attraverso prove soniche o similari).

(**) Valori da ridurre convenientemente nel caso di pareti di notevole spessore (p.es. > 70 cm).

(***) Nel caso di muratura di mattoni si intende come "malta buona" una malta con resistenza media a compressione f
m superiore a 2 N/mm². In tal caso il coefficiente correttivo può essere posto pari a fm^{0.5} (fm in N/mm²).

(****) Nel caso di muratura di mattoni si intende come muratura trasversalmente connessa quella apparecchiata a regola d'arte.

Fig.57 Tabella coefficienti correttivi
7.5.2 Modellazione Frp

Una volta scelto il tessuto (multiassiale) e il tipo di fibra (carbonio) per l'intervento mediante nastri FRP, lo step successivo è stato quello di capire dove posizionare quest' ultimi nella nostra struttura. Per risolvere questo problema ci si è avvalsi del documento "Linee guida per la Progettazione, l'Esecuzione ed il Collaudo di Interventi di Rinforzo di strutture di c.a., c.a.p. e murarie mediante FRP" che, integrato con le numerose ricerche di interventi simili svolti su strutture a torre e campanili, ha prodotto le seguenti considerazioni:

Nonostante la parte di campanile che necessita dell'intervento sia quella centrale e finale si è scelto di applicare i nastri in direzione verticale, per tutta l'altezza della struttura (esclusa la cella campanaria) al fine di evitare discontinuità nelle caratteristiche meccaniche.

Si è cercato, ove possibile, di mantenere un interasse minimo tra due nastri orizzontali contigui di almeno 2 metri. Purtroppo, a causa delle aperture presenti lungo le facciate, questo interasse non è stato sempre soddisfatto.

Le zone della struttura caratterizzate dalla mancanza di questo interasse minimo sono state "infittite" di nastri FRP mediante disposizione di questi ultimi a croce di sant'Andrea, infatti dalle ricerche effettuate è emerso che questo tipo di disposizione dei nastri FRP produce un notevole aumento della resistenza a taglio [24].

Fig.58 Applicazione intervento FRP sul campanile di Serra San Quirico (AN)

Alla luce di queste considerazioni quindi si è operato in questo modo:

Le prime fasce orizzontali sono state posizionate su tutte le pareti portanti del perimetro esterno del campanile alla quota dei solai e all'ultimo piano, subito prima della cella campanaria, per la realizzazione di cordoli perimetrali. Le fasce orizzontali successive sono state posizionate appena

prima e subito dopo le aperture. Successivamente si sono posizionate le fasce verticali per tutta l'altezza della struttura, con il duplice scopo di rinforzare le pareti sia nei confronti di fenomeni di pressoflessione fuori del piano che di fenomeni di pressoflessione nel piano. Infine, si sono rinforzate le murature a taglio utilizzando la disposizione a croci di Sant'Andrea.

Per la modellazione dell'intervento su DIANA FEA è stato necessario creare un nuovo tipo di materiale, caratterizzato da una class "composite and rubber" e modello lineare elastico isotropo

β ε Add new materia	al	×			
Name	Frp				
Class	Composites and rubber	×			
Material model	Linear elastic isotropic	~			
Aspects to inc	clude				
Thermal effects Damping					
Woehler diagram Design check parameters					
Additional	dynamic surface mass				
	OK Cancel Help				

1				
🗭 Edit material				×
Name	Frp			
Aspects to include				
□ Thermal effects		Damping		
Uvehler diagram		Design check pa	arameters	
Additional dynamic	surface mass	Additional dyna	mic 3D line mass	
V Linear material pr	operties		¥	
Young's modulus*		3e+11	N/m ² fx	
Poisson's ratio*		0	fx	
Mass density		1750	kg/m ³ fX	
		Close	Help	

💋 Shape properties	•
🗸 Apply 🗙 Close	
Target selection* [1]	
polygon 1	
Element class*	
Regular Curved Shells	~
Material*	
Frp ~	Οε
Geometry*	
Element geometry 1	l <mark>↔</mark> l
Data	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Una volta definito la classe e il modello del materiale si è passati a disegnare e posizionare le fasce di nastro FRP



Fig.60 Disposizione dei nastri FRP sul campanile

# 8 CARATTERIZZAZIONE DINAMICA POST-INTERVENTO

Una volta modellati gli interventi su DIANA FEA si è passati al testare l'efficacia di quest'ultimi riproponendo le stesse analisi svolte nel capitolo 4 per la configurazione attuale del campanile

# 8.1 Analisi modale

#### 8.1.1 Intervento Frp

Si riportano di seguito i risultati dell'analisi modale, prime 14 forme modali e relative frequenze, condotta sulla struttura modellata con l'intervento di nastri FRP.





Analisi Modale Mode 5, Eigen frequency 4.0403 Hz Displacements DtXYZ min: 0.00m max: 1.01m

1



C	tXYZ
	1.01
	0.88
	0.63
	0.51
	0.38
	0.13
	0.00









Il solo inserimento di fasce in FRP, dato il ridotto peso del materiale costituente, non va ad influenzare la massa del campanile, motivo per il quale la rigidezza totale si assesta su valori simili a quelli riscontrati nello stato di fatto. Inoltre, il fatto che i materiali costituenti la muratura restino invariati, fa sì che si riscontrino nuovamente i modi di vibrare che mettono in evidenza la carenza di resistenza della porzione intermedia della struttura. Tuttavia analizzando e confrontando i modi 8 e 11 dello stato di fatto con gli stessi modi derivanti dall'intervento con FRP è possibile notare l'efficacia di questo intervento, infatti questi modi si creano a causa di un meccanismo locale delle pareti murarie,

e l'applicazione di nastri FRP riesce ad innalzare le frequenze corrispondenti a quei modi dimostrando così l'efficacia di questo tipo di intervento sul materiale degradato. I nastri FRP infatti non agiscono né sul meccanismo globale né sul collasso ultimo bensì sui meccanismi dei singoli pannelli murari e soprattutto sul degrado del materiale.



#### 8.1.2 Intervento iniezioni di malta

Si riportano di seguito i risultati dell'analisi modale (prime 14 forme modali e relative frequenze) condotta sulla struttura modellata con l'intervento di iniezioni di malta, distinguendo le due fasi di applicazione esposte nel capitolo 7.5.1

Osservando i risultati dell'analisi modale relative alle due diverse fasi di intervento si nota subito che durante la fase 1 (malta non consolidata) i risultati, sia in termini di frequenze sia in termini di forme modali si assestano a valori simili a quelli dello stato di fatto in cui vige la struttura





K



Analisi Modale Mode 8, Eigen frequency 7.1502 Hz Displacements DtXYZ min: 0.00m max: 1.23m



0.64

0.51

0.39

0.26

0.00



119

DtXYZ (m)

1.08

0.95

0.81

0.68

0.54

0.41

0.27

0.14

0.00

D†XYZ

(m)

1.00 0.88

0.75

0.63

0.50

0.38

0.25

0.13

0.00



Discorso diverso invece se si analizzano i risultati provenienti dalla fase 2 (malta consolidata), qui si può vedere come sia le frequenze che le forme modali cambiano anche in maniera considerevole rispetto alla configurazione attuale della struttura.













Dal punto di vista dinamico, la struttura, in seguito al ripristino delle caratteristiche meccaniche del tronco centrale e finale, subisce una distribuzione più omogenea di rigidezza su tutto il suo sviluppo; questo è deducibile anche dai nuovi valori di frequenze naturali ricavati. È possibile notare, inoltre, dalla variazione delle deformate modali, che scompaiono quei modi di vibrare intermedi che mettevano in evidenza il forte indebolimento dovuto alla qualità scadente della muratura del tronco centrale e finale del campanile.

## 8.1.3 Intervento iniezioni e Frp

Dai risultati del caso di intervento combinato si nota subito che sia per le frequenze che per le forme modali, l'intervento delle iniezioni risulta avere un'incidenza maggiore rispetto al contributo dei nastri FRP, motivo per cui i valori si assestano vicini a quelli ottenuti per il caso di iniezioni con malta consolidata













Come già fatto per lo stato di fatto nel capitolo 5.1.1, anche per le configurazioni post-interventi si è deciso di confrontare i risultati dell'analisi modale condotta sul modello FEM realizzato tramite DIANA FEA con quelli risultanti dal modello FEM realizzato tramite il software Ansys e utilizzato per la realizzazione dell'articolo "Save what we can: experimentally validated design of stengthening interventions to reduce the seismic vulnerability of a bell-tower"

Intervento iniezioni		Frequenze [Hz]	
Intervento intezioni	1° modo	2° modo	3° modo
Modello DIANA FEA	1,3593	1,3999	4,0361
Modello ANSYS	1.569	1.697	4.449

Tabella 24 Frequenze (post-intervento iniezioni) modello Diana e modello Ansys







Intervento FRP	Frequenze [Hz]				
	1° modo	2° modo	3° modo		
Modello DIANA FEA	1,2048	1,2402	3,4788		
Modello ANSYS	1.331	1.424	3.580		

Tabella 25 Frequenze (post-intervento FRP) modello Diana e modello Ansys







# 8.2 Analisi pushover

Si riportano di seguito le curve di capacità della struttura ottenute mettendo in relazione il taglio risultante alla base (Fb) con lo spostamento (dc) dello stesso nodo di controllo scelto nel capitolo 5.2 per il caso dello stato attuale del campanile.

#### 8.2.1 Intervento FRP







# 8.2.2 Intervento iniezioni di malta



134









#### Pushover Y









0,04

0,05

Displacement [m]

0,07

0,08

0,06

0,09

0,1

0,00 0

0,01

0,02

0,03

# 8.2.3 Intervento iniezioni e FRP









Pushover -Y





Una volta definite le curve di capacità per ogni configurazione di intervento (FRP, iniezioni non consolidate, iniezioni consolidate e combinazione iniezioni + FRP) e per ogni direzione del carico (X,-X,Y,-Y), si è scalata la curva di capacità andando a dividere il taglio alla base e lo spostamento del nodo di controllo per il fattore di partecipazione modale (ottenuto in DIANA FEA come output dall'analisi modale svolta in precedenza)

$$F^* = \frac{F_d}{\Gamma} \qquad \qquad d^* = \frac{d_c}{\Gamma}$$

Ottenuta la curva scalata (sistema equivalente), lo step successivo è stato quello di bilinearizzarla, riconducendo così la curva del sistema strutturale reale a quella di un sistema a 1 GDL dal comportamento elastico perfettamente plastico.

Indicata con  $F_{bu}^*$  la resistenza massima del sistema equivalente calcolata a partire dalla resistenza massima del sistema strutturale reale  $F_{bu}$ , ( $F_{bu}^* = F_{bu}/\Gamma$ ), "la rigidezza elastica del sistema bilineare equivalente si individua tracciando la secante alla curva di capacità nel punto corrispondente ad un taglio alla base pari a 0,7 volte il valore massimo del taglio alla base, mentre il tratto orizzontale della curva bilineare si individua tramite l'uguaglianza delle aree sottese dalle curve tracciate fino allo spostamento ultimo del sistema." (NTC2018 al § 7.8.1.6) [2].

Una volta definita la nuova curva si sono individuati i diversi stati limite della struttura, come definito dalla Circolare Applicativa 2019 al § C7.8.1.5.4 [2].

Si riporta nella tabella seguente i vari stati limite relativi ai diversi interventi e alle diverse direzioni di carico

Configurazione Struttura	Direzione	SLC	SLD	SLV	SLO
	Х	9,1497E-05	4,3138E-05	6,8622E-05	2,8759E-05
Stato di fatto	Y	8,26982E-05	4,19172E-05	6,20237E-05	2,79448E-05
	-X	9,2159E-05	4,0587E-05	6,912E-05	2,7058E-05
	-Y	7,84765E-05	3,84297E-05	5,88574E-05	2,56198E-05
	Х	9,19201E-05	4,23874E-05	6,894E-05	2,82583E-05
Inizziona (non consolidata)	Y	8,3115E-05	4,1531E-05	6,2336E-05	2,7687E-05
Integione (non consolidata)	-X	9,2536E-05	3,9877E-05	6,9402E-05	2,6584E-05
	-Y	7,8965E-05	3,7984E-05	5,9224E-05	2,5323E-05
	Х	5,8654E-05	2,6223E-05	4,3991E-05	1,7482E-05
Inizziana (concelidate)	Y	5,22261E-05	2,40487E-05	3,91696E-05	1,60325E-05
Intezione (consolidata)	-X	5,99155E-05	2,50695E-05	4,49366E-05	1,6713E-05
	-Y	4,8897E-05	2,3312E-05	3,6673E-05	1,5541E-05
	Х	9,0893E-05	4,3332E-05	6,817E-05	2,8888E-05
Frp	Y	8,4784E-05	4,2022E-05	6,3588E-05	2,8015E-05
-	-X	9,1378E-05	3,9984E-05	6,8534E-05	2,6656E-05
	-Y	7,7979E-05	3,8863E-05	5,8484E-05	2,5909E-05
	Х	5,8267E-05	2,6023E-05	4,37E-05	1,7349E-05
Inieizioni + Frp	Y	5,1719E-05	2,3587E-05	3,8789E-05	1,5725E-05
	-X	5,9571E-05	2,4605E-05	4,4678E-05	1,6403E-05
	-Y	4,8527E-05	2,2984E-05	3,6395E-05	1,5323E-05

Tabella 26 Stati limite configurazioni pre e post interventi

L'ultimo parametro che è stato analizzato a seguito dell'analisi pushover è il fattore di duttilità, espresso come rapporto tra lo spostamento ultimo e lo spostamento al limite elastico

$$\mu = S_u/S_e$$

 $\mu = duttilità$ 

S_u = Spostamento ultimo

 $S_e = Spostamento al limite elastico$ 

L'importanza di questo parametro progettuale consiste proprio nel fatto che esso racchiude in sé la capacità che ha la struttura di resistere, oltre i propri limiti elastici, a terremoti di elevata intensità.

Direzione	Stato di fatto	Frp	Iniezione (non consolidata)	Iniezione (consolidata)	Inieizioni + Frp
+Y	3.18	3.33	3.34	4.02	4.03
-Y	2.53	2.51	2.55	2.72	2.83
+X	2.56	2.53	2.61	2.82	2.84
-X	3.15	2.53	3.33	3.52	3.56

Tabella 27 Fattore di duttilità

Purtroppo, la sola analisi pushover con relativa curva di capacità non è sufficiente a determinare e stabilire l'efficacia e il miglioramento di un intervento rispetto ad un altro, quindi risulta necessario ripetere le verifiche (taglio, pressoflessione nel piano e fuori piano) condotte nei capitoli precedenti sui pannelli murari del campanile

# 8.3 Analisi spettro di risposta

# 8.3.1 Verifiche post-intervento FRP

### 8.3.1.1 Verifiche pannelli murari livello 1

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del primo livello per la configurazione post-intervento FRP



Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018)							
parete	1	2	3	4	5	6	7
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65
Nxx (sisma x) [N/m]	1910820	1696110	2194220	1381750	1910820	2194220	1831600
Nxx (sisma y) [N/m]	1703530	1922950	2087240	2087380	1703530	1677190	1922950
Combinazione (1;0,3) [N]	3996100	3750442	4653647	3313141	3996100	4450672	3974000
Combinazione (0,3;1) [N]	3756680	4012442	4530085	4128143	3756680	3853502	4079510

σ01 [N/m2]	722949	959070	362053	806411	440342	713592	706301
σ05[N/m2]	679635	1026069	352440	1004781	413959	617846	725053
t0[N/m2]	60000	60000	60000	60000	60000	60000	60000
fvk0	42000	42000	42000	42000	42000	42000	42000
fvk[N/m2]	331180	425628	186821	364564	218137	327437	324520
fvk[N/m2]	313854	452428	182976	443912	207584	289138	332021
fvd1[N/m2]	147848	190012	83402	162752	97382	146177	144875
fvd5[N/m2]	140113	201977	81686	198175	92671	129080	148224
Vt1 [N]	817230	743044	1072011	668667	883746	911707	815140
Vt5 [N]	774476	789829	1049947	814203	840992	805069	833981
Qxz(sisma x) [N/m]	159835	150685	170240	60902	55277	76631	61480
Qxz(sisma y) [N/m]	60690	98907	104132	163745	141658	165614	170244
(1;0,3) [N]	293769	297589	332441	181542	161328	208420	185713
(0,3;1) [N]	179257	237786	256087	300326	261098	311195	311335
Vt/Vs 1	2,78	2,50	3,22	3,68	5,48	4,37	4,39
Vt/Vs 5	4,32	3,32	4,10	2,71	3,22	2,59	2,68


	V	erifica SLV	a PRESSOFL	ESSIONE NE	EL PIANO		
parete	1	2	3	4	5	6	7
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65
(1;0,3)	3996100	3750442	4653647	3313141	3996100	4450672	3974000
(0,3;1)	3756680	4012442	4530085	4128143	3756680	3853502	4079510
σ01	722949	959070	362053	806411	440342	713592	706301
σ05	679635	1026069	352440	1004781	413959	617846	725053
fd	892800	892800	892800	892800	892800	892800	892800
Qxz(sisma x)	159835	150685	170240	60902	55277	76631	61480
Qxz(sisma y)	60690	98907	104132	163745	141658	165614	170244
(1;0,3)	293769	297589	332441	181542	161328	208420	185713
(0,3;1)	179257	237786	256087	300326	261098	311195	311335
Mu1[Nm]	316919	-1172382	9478271	-258354	4612727	501995	469456
Mu5[Nm]	657082	-1674065	9450121	-1665373	4695514	1353536	310046
Ms1	2781995	2818170	3148219	1719203	1527774	1973738	1758700
Ms5	1697562	2251830	2425140	2844085	2472596	2947021	2948344
Mu/Ms[-]	0,11	0,00	3,01	0,00	3,02	0,25	0,27
Mu/Ms[-]	0,39	0,00	3,90	0,00	1,90	0,46	0,11



	Verifica SLV a PRESSOFLESSIONE FUORI PIANO											
parete	1	2	3	4	5	6	7					
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41					
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47					
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65					
Nxx(sisma x)	1910820	1696110	2194220	1381750	1910820	2194220	1831600					
Nxx(sisma y)	1703530	1922950	2087240	2087380	1703530	1677190	1922950					
(1;0,3)	3996100	3750442	4653647	3313141	3996100	4450672	3974000					
(0,3;1)	3756680	4012442	4530085	4128143	3756680	3853502	4079510					
fd	892800	892800	892800	892800	892800	892800	892800					
Qxz(sisma x)	159835	150685	170240	60902	55277	76631	61480					
Qxz(sisma y)	60690	98907	104132	163745	141658	165614	170244					
Mu1[Nm]	156094	-816215	2007593	-171198	1383818	219125	227156					
Mu5[Nm]	323638	-1165488	2001630	-1103560	1408654	590829	150022					
Ms	109034	77138	253545	81043	179011	123030	110987					
Mu/Ms[-]	1,43	0	7,92	0	7,73	1,78	2,05					
Mu/Ms[-]	2,97	0	7,89	0	7,87	4,80	1,35					



# 8.3.1.2 Verifiche pannelli murari livello 2-3

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del secondo e terzo livello per la configurazione post-intervento FRP



Verifica SLV a TAGLIC	PER FESSURAZIO	ONE DIAGONALE	(7.8.2.2.2 NTC 20	008) LIVELLO 2-3
parete	Y1	Y2	X1	X2
I	7,79	7,79	7,79	7,79
h	18,1	18,1	18,1	18,1
t	1,45	1,45	1,45	1,45
Nxx(sisma x)	1292440	1214900	1216450	1268110
Nxx(sisma y)	1230620	1128870	1230440	1179330
(1;0,3)	2409358	2252663	2299094	2351768
(0,3;1)	2346610	2165343	2313294	2261656
σ01	213302	199430	203541	208204
σ05	207747	191700	204798	200226
t0	60000	60000	60000	60000
fvk0	42000	42000	42000	42000
fvk	127321	121772	123416	125282
fvk	125099	118680	123919	122091
fvd1	56840	54363	55097	55929
fvd5	55848	52982	55321	54505
Vt1	642033	614052	622343	631749
Vt5	630828	598459	624879	615658
Qxz(sisma x)	156843	156495	119528	120672
Qxz(sisma y)	113729	131046	178499	148224
(1;0,3)	276894	283923	250963	239452
(0,3;1)	233134	258092	310818	267417
Vt/Vs 1	2,32	2,16	2,48	2,64
Vt/Vs 5	2,71	2,32	2,01	2,30

Verifica	a SLV a TAG	GLIO PER FE	SSURAZION	IE DIAGON	ALE (7.8.2.2	2.2 NTC 200	8) LIVELLO	2-3
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27
h	7	7	7	7	7	7	7	7
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45
Nxx(sisma x)	1019590	1074250	982691	1140500	667137	668179	54069	831003
Nxx(sisma y)	858079	68303	619862	997648	1180630	1086400	897881	1028510
(1;0,3)	1851670	1587374	1694542	2087702	1480923	1441444	468978	1652356
(0,3;1)	1687736	566338	1326270	1942707	2002118	1865938	1325447	1852826
σ01	591210	506824	541041	666571	449923	437929	142482	502007
σ05	538869	180823	423458	620277	608269	566896	402688	562912
t0	60000	60000	60000	60000	60000	60000	60000	60000
fvk0	42000	42000	42000	42000	42000	42000	42000	42000
fvk	278484	244730	258417	308629	221969	217172	98993	242803
fvk	257547	114329	211383	290111	285308	268758	203075	267165
fvd1	124323	109254	115365	137781	99093	96952	44193	108394
fvd5	114977	51040	94368	129514	127370	119981	90659	119270
Vt1	389380	342185	361322	431529	326166	319116	145462	356779
Vt5	360106	159857	295559	405637	419237	394919	298403	392577
Qxz(sisma x)	38920	28123	34722	36066	70209	100555	92553	71410
Qxz(sisma y)	62725	88594	89469	68901	37698	28665	35569	32784
(1;0,3)	83719	79317	89266	82268	118202	158274	149674	117806
(0,3;1)	107881	140695	144834	115595	85203	85306	91836	78600
Vt/Vs 1	4,65	4,92	4,05	5,25	2,76	2,02	1,81	3,03
Vt/Vs 5	3,34	2,27	2,04	3,51	4,92	4,63	3,66	4,99



Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 2-3										
parete	Y1	Y2	X1	X2						
I	7,79	7,79	7,79	7,79						
h	18,1	18,1	18,1	18,1						
t	1,45	1,45	1,45	1,45						
(1;0,3)	2409358	2252663	2299094	2351768						
(0,3;1)	2346610	2165343	2313294	2261656						
σ01	213302	199430	203541	208204						
σ05	207747	191700	204798	200226						
fd	401700	401700	401700	401700						
Qxz(sisma x)	156843	156495	119528	120672						
Qxz(sisma y)	113729	131046	178499	148224						
(1;0,3)	276894	283923	250963	239452						
(0,3;1)	233134	258092	310818	267417						
Mu1[Nm]	3521935	3649360	3616773	3574532						

Mu5[Nm]	3578915	3698851	3605937	3643388
Ms1	5011790	5139002	4542424	4334078
Ms5	4219721	4671466	5625810	4840250
Mu/Ms[-]	0,70	0,71	0,80	0,82
Mu/Ms[-]	0,85	0,79	0,64	0,75

		Verifica SLV	a PRESSOF	LESSIONE N	EL PIANO L	IVELLO 2-3		
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27
h	7	7	7	7	7	7	7	7
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45
(1;0,3)	1851670	1587374	1694542	2087702	1480923	1441444	468978	1652356
(0,3;1)	1687736	566338	1326270	1942707	2002118	1865938	1325447	1852826
σ01	591210	506824	541041	666571	449923	437929	142482	502007
σ05	538869	180823	423458	620277	608269	566896	402688	562912
fd	401700	401700	401700	401700	401700	401700	401700	401700
Qxz(sisma	34722	36066	70209	100555	92553	71410	34722	36066
Qxz(sisma y)	89469	68901	37698	28665	35569	32784	89469	68901
(1;0,3)	89266	82268	118202	158274	149674	117806	89266	82268
(0,3;1)	144834	115595	85203	85306	91836	78600	144834	115595
Mu1[Nm]	-1069814	-2146959	-534011	-462305	-60156	-881905	-1069814	-2146959
Mu5[Nm]	-344047	-1713376	-1775784	-1398377	-641529	-1364015	-344047	-1713376
Ms1	624861	575873	827412	1107918	1047721	824639	624861	575873
Ms5	1013839	809166	596421	597140	642849	550201	1013839	809166
Mu/Ms[-]	0	0	0	0	0	0	0	0
Mu/Ms[-]	0	0	0	0	0	0	0	0



Verifica	SLV a PRESSOFLE	SSIONE FUORI DA	L PIANO LIVELLO	2-3
parete	Y1	Y2	X1	X2
I	7,99	7,99	7,79	7,79
h	18,1	18,1	18,1	18,1
t	1,45	1,45	1,45	1,45
Nxx(sisma x)	1292440	1214900	1216450	1268110
Nxx(sisma y)	1230620	1128870	1230440	1179330
(1;0,3)	2409358	2252663	2299094	2351768
(0,3;1)	2346610	2165343	2313294	2261656
σ01	213302,4	199430,2	203540,7	208204
σ05	207747,4	191699,6	204797,8	200226,3
fd	401700	401700	401700	401700
Qxz(sisma x)	175860	175651	138175	140026
Qxz(sisma y)	135000	150440	200984	165622
(1;0,3)	313722	320135,4	287781,8	275083,3
(0,3;1)	272249,1	294546,2	351532,9	301063,2
Mu1[Nm]	655559,2	679277,6	673211,9	665349,3
Mu5[Nm]	666165,2	688489,6	671195	678166
Ms1	1304809	1304809	1304809	1304809
Mu/Ms[-]	0,50	0,52	0,52	0,51
Mu/Ms[-]	0,51	0,53	0,51	0,52

	Ver	rifica SLV a l	PRESSOFLES	SIONE FUOI	RI DAL PIAN	O LIVELLO 2	-3	
parete	X3	X4	X5	X6	Y3	Y4	Y5	Y6
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27
h	7	7	7	7	7	7	7	7
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45
Nxx(sisma x)	1019590	1074250	982691	1140500	667137	668179	540690	831003
Nxx(sisma y)	858079	68303	619862	997648	1180630	1086400	897881	1028510
(1;0,3)	1851670	1587374	1694542	2087702	1480923	1441444	468978	1652356
(0,3;1)	1687736	566338	1326270	1942707	2002118	1865938	1325447	1852826
σ01	591210	506824,5	541041,5	666571,5	449923,3	437929,1	356852,1	502007
σ05	538868,5	180823,1	423458	620276,9	608269,2	566895,9	466999,1	562912,3
fd	401700	401700	401700	401700	401700	401700	401700	401700
Qxz(sisma x)	36319	28735	41912	34973	73507	76094	66857	70854
Qxz(sisma y)	69444	71000	67295	82113	37486	35310	40000	32557
(1;0,3)	82870,69	72550,75	90045,73	86430,01	122891,6	125696,2	114342,7	116900,6
(0,3;1)	116492,6	115449,7	115809,5	134277,1	86330,25	84300,39	87082,8	78029,14
Mu1[Nm]	-982002	-557414	-718162	-1441246	-341109	-295305	-38425,6	-563331
Mu5[Nm]	-707491	193151,3	-230958	-1150183	-1134311	-893236	-409787	-871287
Ms1	70451,14	70451,14	70451,14	70451,14	74038,92	74038,92	74038,92	74038,92
Mu/Ms[-]	0	0	0	0	0	0	0	0
Mu/Ms[-]	0	0	0	0	0	0	0	0

×



Z Y

# 8.3.2 Verifiche post-intervento iniezioni di malta

### 8.3.2.1 Verifiche pannelli murari livello 1 (malta non consolidata)

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del primo livello per la configurazione post-intervento iniezione di malta (non consolidata)



Verifica SLV a TAC	Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018) LIVELLO 1											
parete	1	2	3	4	5	6	7					
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41					
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47					
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65					
Nxx (sisma x) [N/m]	1874740	1592810	2172690	1357290	1874740	2172900	1817060					
Nxx (sisma y) [N/m]	1691580	1901980	2042680	2041710	1691580	1673940	1903700					
Combinazione (1;0,3) [N]	3930653	3569617	4596065	3250175	3930653	4413885	3940481					
Combinazione (0,3;1) [N]	3719103	3926708	4445904	4040680	3719103	3837587	4040550					
σ01 [N/m2]	711109	912829	357573	791086	433130	707694	700343					
σ05[N/m2]	672836	1004145	345891	983493	409819	615294	718128					
t0[N/m2]	60000	60000	60000	60000	60000	60000	60000					
fvk0	42000	42000	42000	42000	42000	42000	42000					
fvk[N/m2]	326443	407131	185029	358434	215252	325077	322137					
fvk[N/m2]	311135	443658	180356	435397	205927	288117	329251					
fvd1[N/m2]	145734	181755	82602	160015	96095	145124	143811					
fvd5[N/m2]	138899	198062	80516	194374	91932	128624	146987					
Vt1 [N]	805543	710753	1061729	657423	872059	905138	809154					
Vt5 [N]	767766	774520	1034914	798584	834282	802227	827024					
Qxz(sisma x) [N/m]	175807	167683	186684	62742	59843	83348	63635					
Qxz(sisma y) [N/m]	72320	100700	102685	178598	158491	183477	186197					
(1;0,3) [N]	325880	326523	358858	191930	177194	228345	197165					
(0,3;1) [N]	206352	249158	261839	325744	291132	343994	338724					
Vt/Vs 1	2,47	2,18	2,96	3,43	4,92	3,96	4,10					
Vt/Vs 5	3,72	3,11	3,95	2,45	2,87	2,33	2,44					



	Verific	a SLV a PRE	SSOFLESSIC	ONE NEL PIA	NO LIVELLO	21	
parete	1	2	3	4	5	6	7
	3,35	2,37	7,79	2,49	5,5	3,78	3,41
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65
(1;0,3)	3930653	3569617	4596065	3250175	3930653	4413885	3940481
(0,3;1)	3719103	3926708	4445904	4040680	3719103	3837587	4040550
σ01	711109	912829	357573	791086	433130	707694	700343
σ05	672836	1004145	345891	983493	409819	615294	718128
fd	892800	892800	892800	892800	892800	892800	892800
Qxz(sisma x)	175807	167683	186684	62742	59843	83348	63635
Qxz(sisma y)	72320	100700	102685	178598	158491	183477	186197
(1;0,3)	325880	326523	358858	191930	177194	228345	197165
(0,3;1)	206352	249158	261839	325744	291132	343994	338724
Mu1[Nm]	414452	-858110	9466670	-171725	4639904	562683	518239
Mu5[Nm]	706315	-1503865	9423959	-1488967	4704351	1372335	369944
Ms1	3086083	3092177	3398382	1817580	1678027	2162430	1867155
Ms5	1954158	2359527	2479614	3084796	2757024	3257626	3207720
Mu/Ms[-]	0,13	0	2,79	0	2,77	0,26	0,28
Mu/Ms[-]	0,36	0	3,80	0	1,71	0,42	0,12



	Verifi	ca SLV a PRE	SSOFLESSIO	NE FUORI P	IANO LIVELLO	01	
parete	1	2	3	4	5	6	7
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65
Nxx(sisma x)	1874740	1592810	2172690	1357290	1874740	2172900	1817060
Nxx(sisma y)	1691580	1901980	2042680	2041710	1691580	1673940	1903700
(1;0,3)	3930653	3569617	4596065	3250175	3930653	4413885	3940481
(0,3;1)	3719103	3926708	4445904	4040680	3719103	3837587	4040550
fd	892800	892800	892800	892800	892800	892800	892800
Qxz(sisma x)	175807	167683	186684	62742	59843	83348	63635
Qxz(sisma y)	72320	100700	102685	178598	158491	183477	186197
Mu1[Nm]	204133	-597418	2005135	-113794	1391971	245616	250761
Mu5[Nm]	347886	-1046995	1996089	-986665	1411305	599035	179005
Ms1	109034,2	77137,658	253545,3	81043,36	179011,44	123029,7	110987,1
Mu/Ms[-]	1,87	0	7,91	0	7,78	2,00	2,26
Mu/Ms[-]	3,19	0	7,87	0	7,88	4,87	1,61



### 8.3.2.2 Verifiche pannelli murari livello 2-3 (malta non consolidata)

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del secondo e terzo livello per la configurazione post-intervento iniezioni di malta (non consolidata)











Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018)									
parete	Y1	Y2	X1	X2					
Ι	7,79	7,79	7,79	7,79					
h	18,1	18,1	18,1	18,1					
t	1,45	1,45	1,45	1,45					

Nxx(sisma x)	1351190	1242810	1245220	1300250
Nxx(sisma y)	1257690	1206490	1256870	1459300
(1;0,3)	2506321	2326898	2352307	2520158
(0,3;1)	2411418	2290033	2364132	2681594
σ01	221887	206002	208252	223112
σ05	213485	202739	209299	237404
t0	60000	60000	60000	60000
fvk0	42000	42000	42000	42000
fvk	130755	124401	125301	131245
fvk	127394	123095	125719	136961
fvd1	58373	55536	55938	58591
fvd5	56872	54953	56125	61144
Vt1	659348	627308	631846	661819
Vt5	642401	620725	633957	690647
Qxz(sisma x)	177465	176639	137818	140216
Qxz(sisma y)	137281	149891	202427	167106
(1;0,3)	317041	321329	287892	276004
(0,3;1)	276255	294180	353470	303298
Vt/Vs 1	2,08	1,95	2,19	2,40
Vt/Vs 5	2,33	2,11	1,79	2,28

۱	Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018)												
parete	X3	X4	X5	X6	Y3	Y4	Y5	Y6					
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27					
h	7	7	7	7	7	7	7	7					
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45					
Nxx(sisma x)	1025820	1103270	1065410	1168240	711551	806912	665262	855678					
Nxx(sisma y)	859180	829343	621581	968945	1161630	1167130	1001100	1073940					
(1;0,3)	1861182	1960506	1815232	2115439	1537058	1677724	1400108	1707897					
(0,3;1)	1692043	1682470	1364746	1913155	1993888	2043345	1740984	1929433					
σ01	594247	625960	579576	675428	466978	509714	425371	518881					
σ05	540244	537187	435743	610841	605769	620795	528933	586187					
t0	60000	60000	60000	60000	60000	60000	60000	60000					
fvk0	42000	42000	42000	42000	42000	42000	42000	42000					
fvk	279699	292384	273830	312171	228791	245886	212148	249552					
fvk	258097	256875	216297	286336	284308	290318	253573	276475					
fvd1	124866	130529	122246	139362	102139	109770	94709	111407					
fvd5	115222	114676	96561	127829	126923	129606	113202	123426					
Vt1	391079	408815	382874	436482	336190	361309	311735	366697					
Vt5	360875	359166	302430	400360	417767	426599	372606	406257					
Qxz(sisma x)	35549	27965	41206	34507	74623	76894	67356	71233					
Qxz(sisma y)	70912	71912	65930	82094	42309	35012	39675	32435					
(1;0,3)	82393	71831	88428	85746	126608	126727	114925	117397					
(0,3;1)	118286	116437	113523	134047	93809	84216	86829	78017					
Vt/Vs 1	4,75	5,69	4,33	5,09	2,66	2,85	2,71	3,12					
Vt/Vs 5	3,05	3,08	2,66	2,99	4,45	5,07	4,29	5,21					





Verifica SLV a	PRESSOFL	ESSIONE NE	EL PIANO LI	VELLO 2-3
parete	Y1	Y2	X1	X2
I	7,79	7,79	7,79	7,79
h	18,1	18,1	18,1	18,1
t	1,45	1,45	1,45	1,45
(1;0,3)	2506321	2326898	2352307	2520158
(0,3;1)	2411418	2290033	2364132	2681594
σ01	221887	206002	208252	223112
σ05	213485	202739	209299	237404
fd	401700	401700	401700	401700
Qxz(sisma x)	177465	176639	137818	140216
Qxz(sisma y)	137281	149891	202427	167106
(1;0,3)	317041	321329	287892	276004
(0,3;1)	276255	294180	353470	303298
Mu1[Nm]	3418246	3595174	3574070	3401900
Mu5[Nm]	3519929	3623474	3563804	3182624
Ms1	5738451	5816057	5210842	4995678
Ms5	5000211	5324656	6397807	5489688
Mu/Ms[-]	0,60	0,62	0,69	0,68
Mu/Ms[-]	0,70	0,68	0,56	0,58

× z



Z v x

	Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 2-3											
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6				
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27				
h	7	7	7	7	7	7	7	7				
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45				
(1;0,3)	1861182	1960506	1815232	2115439	1537058	1677724	1400108	1707897				
(0,3;1)	1692043	1682470	1364746	1913155	1993888	2043345	1740984	1929433				
σ01	594247	625960	579576	675428	466978	509714	425371	518881				
σ05	540244	537187	435743	610841	605769	620795	528933	586187				
fd	401700	401700	401700	401700	401700	401700	401700	401700				
Qxz(sism a x)	35549	27965	41206	34507	74623	76894	67356	71233				
Qxz(sism a y)	70912	71912	65930	82094	42309	35012	39675	32435				
(1;0,3)	82393	71831	88428	85746	126608	126727	114925	117397				
(0,3;1)	118286	116437	113523	134047	93809	84216	86829	78017				
Mu1[Nm]	-1488239	-1764314	-1367260	-2234741	-641391	-938426	-390601	-1007346				
Mu5[Nm]	-1063965	-1041680	-407057	-1630214	-1751912	-1897426	-1085036	-1569685				
Ms1	576749	502817	618998	600222	886254	887086	804474	821780				
Ms5	828004	815060	794662	938328	656663	589514	607800	546120				
Mu/Ms[-]	0	0	0	0	0	0	0	0				
Mu/Ms[-]	0	0	0	0	0	0	0	0				



×



Z X

	Verifica SLV a PRESSOFLESSIONE FUORI DAL PIANO LIVELLO 2-3									
parete	Y1	Y2	X1	X2						
I	7,79	7,79	7,79	7,79						
h	18,1	18,1	18,1	18,1						
t	1,45	1,45	1,45	1,45						
Nxx(sisma x)	1351190	1242810	1245220	1300250						
Nxx(sisma y)	1257690	1206490	1256870	1459300						
(1;0,3)	2506321	2326898	2352307	2520158						
(0,3;1)	2411418	2290033	2364132	2681594						
σ01	221887	206002	208252	223112						
σ05	213485	202739	209299	237404						
fd	401700	401700	401700	401700						
Qxz(sisma x)	175860	175651	138175	140026						
Qxz(sisma y)	135000	150440	200984	165622						
(1;0,3)	313722	320135	287782	275083						
(0,3;1)	272249	294546	351533	301063						
Mu1[Nm]	636259	669192	665263	633216						
Mu5[Nm]	655186	674459	663353	592401						
Ms1	1304809	1304809	1304809	1304809						
Mu/Ms[-]	0,49	0,51	0,51	0,49						
Mu/Ms[-]	0,50	0,52	0,51	0,45						

	Verifica SLV a PRESSOFLESSIONE FUORI DAL PIANO LIVELLO 2-3											
parete	X3	X4	X5	X6	Y3	Y4	Y5	Y6				
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27				
h	7	7	7	7	7	7	7	7				
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45				
Nxx(sisma x)	1025820	1103270	1065410	1168240	711551	806912	665262	855678				
Nxx(sisma y)	859180	829343	621581	968945	1161630	1167130	1001100	1073940				
(1;0,3)	1861182	1960506	1815232	2115439	1537058	1677724	1400108	1707897				
(0,3;1)	1692043	1682470	1364746	1913155	1993888	2043345	1740984	1929433				
σ01	594247	625960	579576	675428	466978	509714	425371	518881				
σ05	540244	537187	435743	610841	605769	620795	528933	586187				
fd	401700	401700	401700	401700	401700	401700	401700	401700				
Qxz(sisma x)	36319	28735	41912	34973	73507	76094	66857	70854				
Qxz(sisma y)	69444	71000	67295	82113	37486	35310	40000	32557				
(1;0,3)	82871	72551	90046	86430	122892	125696	114343	116901				
(0,3;1)	116493	115450	115809	134277	86330	84300	87083	78029				
Mu1[Nm]	-999050	-1184377	-917837	-1500174	-409699	-599435	-249503	-643459				
Mu5[Nm]	-714236	-699276	-273256	-1094356	-1119063	-1212012	-693085	-1002662				
Ms1	70451	70451	70451	70451	74039	74039	74039	74039				
Mu/Ms[-]	0	0	0	0	0	0	0	0				
Mu/Ms[-]	0	0	0	0	0	0	0	0				



#### 8.3.2.3 Verifiche pannelli murari livello 1 (malta consolidata)

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del primo livello per la configurazione post-intervento iniezione di malta (consolidata)



Verifica SLV a TAC	Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018) LIVELLO 1										
parete	1	2	3	4	5	6	7				
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41				
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47				
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65				
Nxx (sisma x) [N/m]	2338900	2007830	2697990	1594530	2338900	2698260	2258690				
Nxx (sisma y) [N/m]	1990650	2390780	2528090	2526900	1990650	1976850	2392890				
Combinazione (1;0,3) [N]	4844557	4496356	5703088	3881790	4844557	5430670	4911319				
Combinazione (0,3;1) [N]	4442328	4938663	5506854	4958677	4442328	4597441	5066320				
σ01 [N/m2]	876446	1149816	443699	944819	533835	870718	872891				
σ05[N/m2]	803678	1262924	428432	1206931	489513	737124	900439				
t0[N/m2]	60000	60000	60000	60000	60000	60000	60000				
fvk0	42000	42000	42000	42000	42000	42000	42000				
fvk[N/m2]	392579	501926	219480	419928	255534	390287	391156				
fvk[N/m2]	363471	547169	213373	524773	237805	336850	402176				
fvd1[N/m2]	175258	224074	97982	187468	114078	174235	174623				
fvd5[N/m2]	162264	244272	95256	234273	106163	150379	179543				
Vt1 [N]	968740	876243	1259412	770211	1035256	1086706	982518				
Vt5 [N]	896913	955226	1224370	962512	963429	937915	1010197				
Qxz(sisma x) [N/m]	210090	202867	227501	78761	68918	101024	78251				
Qxz(sisma y) [N/m]	97492	120373	123809	211083	193629	231234	238358				
(1;0,3) [N]	394907	394315	436662	234442	209561	281150	247101				
(0,3;1) [N]	264856	299035	316898	387274	353602	431543	432025				
Vt/Vs 1	2,45	2,22	2,88	3,29	4,94	3,87	3,98				
Vt/Vs 5	3,39	3,19	3,86	2,49	2,72	2,17	2,34				



	Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 1										
parete	1	2	3	4	5	6	7				
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41				
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47				
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65				
(1;0,3)	4844557	4496356	5703088	3881790	4844557	5430670	4911319				
(0,3;1)	4442328	4938663	5506854	4958677	4442328	4597441	5066320				
σ01	876446	1149816	443699	944819	533835	870718	872891				
σ05	803678	1262924	428432	1206931	489513	737124	900439				
fd	892800	892800	892800	892800	892800	892800	892800				
Qxz(sisma x)	210090	202867	227501	78761	68918	101024	78251				
Qxz(sisma y)	97492	120373	123809	211083	193629	231234	238358				
(1;0,3)	394907	394315	436662	234442	209561	281150	247101				
(0,3;1)	264856	299035	316898	387274	353602	431543	432025				
Mu1[Nm]	-1257125	-2744806	9225802	-1184130	3950773	-1512629	-1258041				
Mu5[Nm]	-439245	-3887073	9339868	-3644936	4336257	249108	-1611318				
Ms1	3739770	3734165	4135190	2220163	1984543	2662495	2340050				
Ms5	2508190	2831858	3001023	3667481	3348613	4086712	4091276				
Mu/Ms[-]	0	0	2,23	0	1,99	0	0				
Mu/Ms[-]	0	0	3,11	0	1,29	0,06	0				



	Verifica SLV a PRESSOFLESSIONE FUORI PIANO LIVELLO 1									
parete	1	2	3	4	5	6	7			
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41			
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47			
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65			
Nxx(sisma x)	2338900	2007830	2697990	1594530	2338900	2698260	2258690			
Nxx(sisma y)	1990650	2390780	2528090	2526900	1990650	1976850	2392890			
(1;0,3)	4844557	4496356	5703088	3881790	4844557	5430670	4911319			
(0,3;1)	4442328	4938663	5506854	4958677	4442328	4597441	5066320			
fd	892800	892800	892800	892800	892800	892800	892800			
Qxz(sisma x)	210090	202867	227501	78761	68918	101024	78251			
Qxz(sisma y)	97492	120373	123809	211083	193629	231234	238358			
Mu1[Nm]	-619181	-1910941	1954117	-784665	1185232	-660275	-608729			
Mu5[Nm]	-216345	-2706190	1978277	-2415319	1300877	108738	-779670			
Ms1	109034	77138	253545	81043	179011	123030	110987			
Mu/Ms[-]	0	0	7,71	0	6,62	0	0			
Mu/Ms[-]	0	0	7.80	0	7.27	0.88	0			



#### 8.3.2.4 Verifiche pannelli murari livello 2-3 (malta consolidata)

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del secondo e terzo livello per la configurazione post-intervento iniezioni di malta (consolidata)

Y4

Y1

x3 X4



X5





Verifica SLV a TAGLIC	PER FESSURAZIO	ONE DIAGONALE	(7.8.2.2.2 NTC 20	18) LIVELLO 2-3
parete	Y1	Y2	X1	X2
I	7,79	7,79	7,79	7,79
h	18,1	18,1	18,1	18,1
t	1,45	1,45	1,45	1,45
Nxx(sisma x)	1706100	1505310	1509890	1577710
Nxx(sisma y)	1605820	1420120	1604510	1863150
(1;0,3)	3172377	2800452	2887302	3098150
(0,3;1)	3070593	2713984	2983342	3387871
σ01	280853	247926	255615	274282
σ05	271842	240271	264118	299931
t0	120000	120000	120000	120000
fvk0	84000	84000	84000	84000
fvk	196341	183171	186246	193713
fvk	192737	180108	189647	203972
fvd1	87652	81773	83146	86479
fvd5	86043	80406	84664	91059
Vt1	990077	923662	939171	976822
Vt5	971901	908221	956321	1028558
Qxz(sisma x)	202264	201601	174284	172931
Qxz(sisma y)	173239	179170	235319	188676
(1;0,3)	368642	370260	355076	332824
(0,3;1)	339181	347493	417026	348805
Vt/Vs 1	2,69	2,49	2,64	2,93
Vt/Vs 5	2,87	2,61	2,29	2,95

Verifica	Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018) LIVELLO 2-3												
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6					
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27					
h	7	7	7	7	7	7	7	7					
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45					
Nxx(sisma x)	1267180	1280170	1256570	1351950	767435	967162	752321	990441					
Nxx(sisma y)	912381	982189	827071	1119880	1291190	1342490	1198180	1243140					
(1;0,3)	2234297	2283499	2181802	2447475	1674448	1986368	1612074	1976905					
(0,3;1)	1874176	1981048	1745861	2211924	2206060	2367326	2064621	2233395					
σ01	713377	729086	696616	781442	508719	603484	489769	600609					
σ05	598396	632519	557427	706234	670229	719224	627258	678534					
t0	120000	120000	120000	120000	120000	120000	120000	120000					
fvk0	84000	84000	84000	84000	84000	84000	84000	84000					
fvk	369351	375635	362647	396577	287488	325394	279907	324244					
fvk	323358	337007	306971	366494	352092	371690	334903	355414					
fvd1	164889	167694	161896	177043	128343	145265	124959	144752					
fvd5	144356	150450	137041	163613	157184	165933	149510	158667					
Vt1	516432	525218	507058	554499	422440	478140	411302	476450					
Vt5	452124	471209	429211	512436	517370	546168	492114	522252					
Qxz(sisma x)	36227	30223	35743	26754	89655	94266	79014	79804					
Qxz(sisma y)	84033	73505	78790	99075	50733	37854	42303	37080					
(1;0,3)	89084	75798	86101	81891	152069	153152	132972	131846					
(0,3;1)	137607	119729	129794	155297	112563	95894	95710	88481					
Vt/Vs 1	5,80	6,93	5,89	6,77	2,78	3,12	3,09	3,61					
Vt/Vs 5	3,29	3,94	3,31	3,30	4,60	5,70	5,14	5,90					



Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 2-3										
parete	Y1	Y2	X1	X2						
I	7,79	7,79	7,79	7,79						
h	18,1	18,1	18,1	18,1						
t	1,45	1,45	1,45	1,45						
(1;0,3)	3172377	2800452	2887302	3098150						
(0,3;1)	3070593	2713984	2983342	3387871						
σ01	280853	247926	255615	274282						
σ05	271842	240271	264118	299931						
fd	892800	892800	892800	892800						
Qxz(sisma x)	202264	201601	174284	172931						
Qxz(sisma y)	173239	179170	235319	188676						
(1;0,3)	368642	370260	355076	332824						
(0,3;1)	339181	347493	417026	348805						
Mu1[Nm]	7783437	7344191	7458013	7705815						
Mu5[Nm]	7675723	7224062	7575895	7980418						
Ms1	6672416	6701713	6426868	6024115						
Ms5	6139183	6289622	7548172	6313374						
Mu/Ms[-]	1,17	1,10	1,16	1,28						
Mu/Ms[-]	1,25	1,15	1,00	1,26						

	Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 2-3									
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6		
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27		
h	7	7	7	7	7	7	7	7		
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45		
(1;0,3)	2234297	2283499	2181802	2447475	1674448	1986368	1612074	1976905		
(0,3;1)	1874176	1981048	1745861	2211924	2206060	2367326	2064621	2233395		
σ01	713377	729086	696616	781442	508719	603484	489769	600609		
σ05	598396	632519	557427	706234	670229	719224	627258	678534		
fd	892800	892800	892800	892800	892800	892800	892800	892800		
Qxz(sisma x)	36227	30223	35743	26754	89655	94266	79014	79804		
Qxz(sisma y)	84033	73505	78790	99075	50733	37854	42303	37080		
(1;0,3)	89084	75798	86101	81891	152069	153152	132972	131846		
(0,3;1)	137607	119729	129794	155297	112563	95894	95710	88481		
Mu1[Nm]	144688	96822	193331	-78585	626490	461660	648843	467961		
Mu5[Nm]	428049	356254	500535	165725	292498	140407	406435	268381		
Ms1	623585	530586	602707	573236	1064480	1072065	930805	922919		
Ms5	963246	838105	908556	1087077	787939	671258	669973	619365		
Mu/Ms[-]	0,23	0,18	0,32	0,14	0,59	0,43	0,70	0,51		
Mu/Ms[-]	0,44	0,43	0,55	0,15	0,37	0,21	0,61	0,43		







Z X

Ve	Verifica SLV a PRESSOFLESSIONE FUORI PIANO LIVELLO 2-3										
parete	Y1	Y2	X1	X2							
I	7,79	7,79	7,79	7,79							
h	18,1	18,1	18,1	18,1							
t	1,45	1,45	1,45	1,45							
Nxx(sisma x)	1706100	1505310	1509890	1577710							
Nxx(sisma y)	1605820	1420120	1604510	1863150							
(1;0,3)	3172377	2800452	2887302	3098150							
(0,3;1)	3070593	2713984	2983342	3387871							
σ01	280853	247926	255615	274282							
σ05	271842	240271	264118	299931							
fd	892800	892800	892800	892800							
Qxz(sisma x)	175860	175651	138175	140026							
Qxz(sisma y)	135000	150440	200984	165622							
(1;0,3)	313722	320135	287782	275083							
(0,3;1)	272249	294546	351533	301063							
Mu1[Nm]	1448778	1367019	1388205	1434330							
Mu5[Nm]	1428729	1344659	1410147	1485444							
Ms1	1304809	1304809	1304809	1304809							
Mu/Ms[-]	1,11	1,05	1,06	1,10							
Mu/Ms[-]	1,09	1,03	1,08	1,14							

	Verifica SLV a PRESSOFLESSIONE FUORI PIANO LIVELLO 2-3									
parete	X4	X5	X6	Y3	Y4	Y5	Y6			
I	2,16	2,16	2,16	2,16	2,16	2,16	2,16			
h	7	7	7	7	7	7	7			
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45			
Nxx(sisma x)	1280170	1256570	1351950	767435	967162	752321	990441			
Nxx(sisma y)	982189	827071	1119880	1291190	1342490	1198180	1243140			
(1;0,3)	2283499	2181802	2447475	1674448	1986368	1612074	1976905			
(0,3;1)	1981048	1745861	2211924	2206060	2367326	2064621	2233395			
σ01	729086	696616	781442	508719	603484	489769	600609			
σ05	632519	557427	706234	670229	719224	627258	678534			
fd	892800	892800	892800	892800	892800	892800	892800			
Qxz(sisma x)	28735	41912	34973	73507	76094	66857	70854			
Qxz(sisma y)	71000	67295	82113	37486	35310	40000	32557			
(1;0,3)	72551	90046	86430	122892	125696	114343	116901			
(0,3;1)	115450	115809	134277	86330	84300	87083	78029			
Mu1[Nm]	64996	129782	-52754	400181	294893	414459	298918			
Mu5[Nm]	239152	336007	111251	186838	89687	259617	171433			
Ms1	70451	70451	70451	74039	74039	74039	74039			
Mu/Ms[-]	1,92	1,84	1,30	5,41	3,98	5,60	4,04			
Mu/Ms[-]	3,39	4,77	1,58	2,52	1,21	3,51	2,32			



### 8.3.3 Verifiche post-intervento combinato iniezioni e FRP

#### 8.3.3.1 Verifiche pannelli murari livello 1

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del primo livello per la configurazione post-intervento combinato iniezioni e FRP



Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018) LIVELLO 1										
parete	1	2	3	4	5	6	7			
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41			
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47			
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65			
Nxx (sisma x) [N/m]	2344990	1963970	2726080	1547110	2344990	2726080	2240320			
Nxx (sisma y) [N/m]	1941230	2386030	2526560	2526790	1941230	1945990	2386030			
Combinazione (1;0,3) [N]	4830142	4421635	5748679	3803493	4830142	5461297	4877613			
Combinazione (0,3;1) [N]	4363800	4909115	5518234	4935023	4363800	4560293	5045908			
σ01 [N/m2]	873839	1130708	447246	925762	532247	875629	866900			
σ05[N/m2]	789471	1255368	429318	1201174	480859	731168	896811			
t0[N/m2]	60000	60000	60000	60000	60000	60000	60000			
fvk0	42000	42000	42000	42000	42000	42000	42000			
fvk[N/m2]	433535	536283	262898	454305	296899	434252	430760			
fvk[N/m2]	399788	586147	255727	564470	276344	376467	442724			
fvd1[N/m2]	193543	239412	117365	202815	132544	193862	192304			
fvd5[N/m2]	178477	261673	114164	251995	123368	168066	197645			
Vt1 [N]	1069807	936221	1508556	833264	1202838	1209119	1081996			
Vt5 [N]	986531	1023271	1467405	1035323	1119562	1048226	1112049			
Qxz(sisma x) [N/m]	217650	209221	232625	88433	73188	116567	78288,1			
Qxz(sisma y) [N/m]	106934	247938	114997	220892	196910	239375	247938			
(1;0,3) [N]	412055	467944	440755	255256	218231	310826	251905			
(0,3;1) [N]	284178	512662	304894	408246	361130	452669	447850			
Vt/Vs 1	2,34	1,84	2,88	2,96	4,73	3,51	3,88			
Vt/Vs 5	3,11	1,85	4,02	2,35	2,63	2,06	2,25			



	Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 1										
parete	1	2	3	4	5	6	7				
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41				
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47				
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65				
(1;0,3)	4830142	4421635	5748679	3803493	4830142	5461297	4877613				
(0,3;1)	4363800	4909115	5518234	4935023	4363800	4560293	5045908				
σ01	873839	1130708	447246	925762	532247	875629	866900				
σ05	789471	1255368	429318	1201174	480859	731168	896811				
fd	892800	892800	892800	892800	892800	892800	892800				
Qxz(sisma x)	217650	209221	232625	88433	73188	116567	78288				
Qxz(sisma y)	106934	247938	114997	220892	196910	239375	247938				
(1;0,3)	412055	467944	440755	255256	218231	310826	251905				
(0,3;1)	284178	512662	304894	408246	361130	452669	447850				
Mu1[Nm]	-1225583	-2567265	9194899	-1041329	3966820	-1587951	-1183758				
Mu5[Nm]	-294643	-3805895	9334093	-3580934	4396441	314741	-1563698				
Ms1	3902159	4431429	4173948	2417274	2066644	2943524	2385537				
Ms5	2691164	4854910	2887350	3866091	3419897	4286779	4241142				
Mu/Ms[-]	0	0	2,20	0	1,92	0	0				
Mu/Ms[-]	0	0	3,23	0	1,29	0,07	0				



	Verifica SLV a PRESSOFLESSIONE FUORI PIANO LIVELLO 1										
parete	1	2	3	4	5	6	7				
I	3,35	2,37	7,79	2,49	5,5	3,78	3,41				
h	9,47	9,47	9,47	9,47	9,47	9,47	9,47				
t	1,65	1,65	1,65	1,65	1,65	1,65	1,65				
Nxx(sisma x)	2344990	1963970	2726080	1547110	2344990	2726080	2240320				
Nxx(sisma y)	1941230	2386030	2526560	2526790	1941230	1945990	2386030				
(1;0,3)	4830142,3 5	4421635	5748679	3803493	4830142	5461297	4877613				
(0,3;1)	4363799,5 5	4909115	5518234	4935023	4363800	4560293	5045908				
fd	1785600	1785600	1785600	1785600	1785600	1785600	1785600				
Qxz(sisma x)	181939	38787	29703	37520	28844	91055	96830				
Qxz(sisma y)	190424	84974	97003	101096	99047	52366	38399				
Mu1[Nm]	-603645,39	- 1787336,7	1947572	-690037	1190046	- 693153,148	- 572785,929				
Mu5[Nm]	-145122,82	- 2649673,4	1977054	- 2372908	1318932	137387,044	- 756628,155				
Ms1	109034,24	77137,658	253545, 3	81043,36	179011, 4	123029,682	110987,094				
Mu/Ms[-]	0	0	7,68	0	6,65	0	0				
Mu/Ms[-]	0	0	7,80	0	7,37	1,12	0				



# 8.3.3.2 Verifiche pannelli murari livello 2-3

Si riportano di seguito i risultati delle verifiche condotte sui pannelli murari del secondo e terzo livello per la configurazione post-intervento combinato iniezioni e FRP





X5



Y6

□ _{¥4}



verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7 8 2 2 2 NTC 2018) LIVELLO 2-3										
parete	Y1	Y2	X1	X2						
I	7,79	7,79	7,79	7,79						
h	18,1	18,1	18,1	18,1						
t	1,45	1,45	1,45	1,45						
Nxx(sisma x)	1706980	1536110	1540140	1604820						
Nxx(sisma y)	1632020	1429050	1631370	1841880						
(1;0,3)	3185049,7	2848996	2942849	3128206,8						
(0,3;1)	3108965,3	2740330	3035447	3368822,7						
σ01	281975,1	252224	260532,9	276942,75						
σ05	275239,28	242603,7	268730,7	298244,67						
t0	120000	120000	120000	120000						
fvk0	84000	84000	84000	84000						
fvk	196790,04	184889,6	188213,1	194777,1						
fvk	194095,71	181041,5	191492,3	203297,87						
fvd1	87852,696	82540	84023,73	86954,062						
fvd5	86649,872	80822,09	85487,62	90757,977						
Vt1	992340,13	932330,6	949090	982189,61						
Vt5	978753,63	912926	965625,4	1025156,7						
Qxz(sisma x)	207046	208055	185124	181939						
Qxz(sisma y)	182926	184897	240903	190424						
(1;0,3)	379789,51	382109,9	373222,6	346645,99						
(0,3;1)	355307,71	358604,6	429838,3	355258,27						
Vt/Vs 1	2,61	2,44	2,54	2,83						
Vt/Vs 5	2,75	2,55	2,25	2,89						

Verific	Verifica SLV a TAGLIO PER FESSURAZIONE DIAGONALE (7.8.2.2.2 NTC 2018) LIVELLO 2-3									
parete	X3	X4	X5	X6	Y3	Y4	Y5	Y6		
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27		
h	7	7	7	7	7	7	7	7		
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45		
Nxx(sisma x)	1437200	1224090	1116770	1359080	802375	869446	673000	1062560		
Nxx(sisma y)	995830	874992	807000	1261670	1537630	1282810	1019450	1214300		
(1;0,3)	2517126	2155552	1970362	2519492	1832313	1818719	1419311	2068933		
(0,3;1)	2069136	1801218	1655945	2420621	2578597	2238284	1770958	2222949		
σ01	803680	688235	629106	804436	556680	552550	431205	628568		
σ05	660644	575101	528718	772868	783411	680019	538040	675360		
t0	120000	120000	120000	120000	120000	120000	120000	120000		
fvk0	84000	84000	84000	84000	84000	84000	84000	84000		
fvk	405472	359294	335643	405774	306672	305020	256482	335427		
fvk	348257	314041	295487	393147	397364	356008	299216	354144		
fvd1	181014	160399	149840	181149	136907	136170	114501	149744		
fvd5	155472	140197	131914	175512	177395	158932	133579	158100		
Vt1	566937	502370	469300	567359	450630	448203	376880	492883		
Vt5	486938	439096	413154	549704	583895	523125	439674	520386		
Qxz(sisma x)	38787	29703	37520	28844	91055	96830	103303	82105		
Qxz(sisma y)	84974	97003	101096	99047	52366	38399	43432	38098		
(1;0,3)	93205	85266	98381	84909	154809	157107	168682	135625		
(0,3;1)	140085	153575	162910	156165	115540	97800	107913	90958		
Vt/Vs 1	6,08	5,89	4,77	6,68	2,91	2,85	2,23	3,63		
Vt/Vs 5	3,48	2,86	2,54	3,52	5,05	5,35	4,07	5,72		



Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 2-3										
parete	Y1	Y2	X1	X2						
I	7,79	7,79	7,79	7,79						
h	18,1	18,1	18,1	18,1						
t	1,45	1,45	1,45	1,45						
(1;0,3)	3185050	2848996	2942849	3128207						
(0,3;1)	3108965	2740330	3035447	3368823						
σ01	281975	252224	260533	276943						
σ05	275239	242604	268731	298245						
fd	1785600	1785600	1785600	1785600						
Qxz(sisma x)	207046	208055	185124	181939						
Qxz(sisma y)	182926	184897	240903	190424						
(1;0,3)	379790	382110	373223	346646						
(0,3;1)	355308	358605	429838	355258						
Mu1[Nm]	7796189	7408656	7527215	7737850						
Mu5[Nm]	-8291260	-7425865	-6988997	-7000689						
Ms1	6874190	6916190	6755329	6274292						
Ms5	6431070	6490743	7780073	6430175						
Mu/Ms[-]	1,13	1,07	1,11	1,23						
Mu/Ms[-]	2,08	1,85	2,36	2,14						

	Verifica SLV a PRESSOFLESSIONE NEL PIANO LIVELLO 2-3										
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6			
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27			
h	7	7	7	7	7	7	7	7			
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45			
(1;0,3)	2517126	2155552	1970362	2519492	1832313	1818719	1419311	2068933			
(0,3;1)	2069136	1801218	1655945	2420621	2578597	2238284	1770958	2222949			
σ01	803680	688235	629106	804436	556680	552550	431205	628568			
σ05	660644	575101	528718	772868	783411	680019	538040	675360			
fd	1785600	1785600	1785600	1785600	1785600	1785600	1785600	1785600			
Qxz(sisma	38787	29703	37520	28844	91055	96830	103303	82105			
x)											
Qxz(sisma	84974	97003	101096	99047	52366	38399	43432	38098			
y)											
(1;0,3)	93205	85266	98381	84909	154809	157107	168682	135625			
(0,3;1)	140085	153575	162910	156165	115540	97800	107913	90958			
Mu1[Nm]	-160485	216716	363900	163345	554119	561242	695575	403230			
Mu5[Nm]	289276	471099	542413	48186	94606	263997	584937	277678			
Ms1	652434	596860	688665	594365	1083663	1099749	1180776	949374			
Ms5	980593	1075026	1140373	1093157	808777	684597	755392	636704			
Mu/Ms[-]	0,25	0,36	0,53	0,27	0,51	0,51	0,59	0,42			
Mu/Ms[-]	0,30	0,44	0,48	0,04	0,12	0,39	0,77	0,44			



×



Z X

Verifica SLV a PRESSOFLESSIONE FUORI PIANO LIVELLO 2-3										
parete	Y1	Y2	X1	X2						
I	7,79	7,79	7,79	7,79						
h	18,1	18,1	18,1	18,1						
t	1,45	1,45	1,45	1,45						
Nxx(sisma x)	1706980	1536110	1540140	1604820						
Nxx(sisma y)	1632020	1429050	1631370	1841880						
(1;0,3)	3185050	2848996	2942849	3128207						
(0,3;1)	3108965	2740330	3035447	3368823						
σ01	194955	149829	120178	136456						
σ05	190297	144115	123959	146951						
fd	892800	892800	892800	892800						
Qxz(sisma x)	175860	175651	138175	140026						
Qxz(sisma y)	135000	150440	200984	165622						
(1;0,3)	313722	320135	287782	275083						
(0,3;1)	272249	294546	351533	301063						
Mu1[Nm]	1451152	1379018	1401086	1440293						
Mu5[Nm]	1436493	1351606	1421399	1482519						
Ms1	1304809	1304809	1304809	1304809						
Mu/Ms[-]	1,11	1,06	1,07	1,10						
Mu/Ms[-]	1,10	1,04	1,09	1,14						

Verifica SLV a PRESSOFLESSIONE FUORI PIANO LIVELLO 2-3								
parete	Х3	X4	X5	X6	Y3	Y4	Y5	Y6
I	2,16	2,16	2,16	2,16	2,27	2,27	2,27	2,27
h	7	7	7	7	7	7	7	7
t	1,45	1,45	1,45	1,45	1,45	1,45	1,45	1,45
Nxx(sisma x)	1437200	1224090	1116770	1359080	802375	869446	673000	1062560
Nxx(sisma y)	995830	874992	807000	1261670	1537630	1282810	1019450	1214300
(1;0,3)	2517126	2155552	1970362	2519492	1832313	1818719	1419311	2068933
(0,3;1)	2069136	1801218	1655945	2420621	2578597	2238284	1770958	2222949
σ01	328357	310301	322710	395650	238230	306920	219463	299429
σ05	269917	259293	271214	380124	335259	377724	273837	321719
fd	892800	892800	892800	892800	892800	892800	892800	892800
Qxz(sisma x)	36319	28735	41912	34973	73507	76094	66857	70854
Qxz(sisma y)	69444	71000	67295	82113	37486	35310	40000	32557
(1;0,3)	82871	72551	90046	86430	122892	125696	114343	116901
(0,3;1)	116493	115450	115809	134277	86330	84300	87083	78029
Mu1[Nm]	-107733	145481	244285	-109653	353953	358503	444310	257570
Mu5[Nm]	194190	316247	364120	-32347	-60431	168632	373638	177371
Ms1	70451	70451	70451	70451	74039	74039	74039	74039
Mu/Ms[-]	1,50	2,06	3,47	1,60	4,78	4,84	6,00	3,48
Mu/Ms[-]	2,76	4,49	5,17	1,63	2,72	2,28	5,05	2,40



#### 8.4 Stato fessurativo

Tra i vari output dell'analisi pushover, il software DIANA FEA permette anche di visualizzare il quadro fessurativo, "crack pattern", che si manifesta a seguito della formazione delle cerniere plastiche dovute agli step di carichi dell'analisi non lineare. Infatti, la deformazione plastica può essere utilizzata per conoscere ed identificare le aree in cui possono formarsi delle cricche.

Si riporta di seguito il confronto tra i crack pattern risultanti dall'analisi pushover dello stato di fatto con quelli ottenuti dalla stessa analisi condotta sulle configurazioni post interventi



Fig.60 Stato fessurativo configurazione attuale pushover X e -Y


Fig. 61 Stato fessurativo configurazione attuale pushover -X e Y



Fig. 62 Stato fessurativo configurazione post-intervento iniezione pushover X e Y



Fig. 63 Stato fessurativo configurazione post-intervento iniezione pushover -X e -Y



Fig. 64 Stato fessurativo configurazione post-intervento FRP pushover X e -X



Fig. 65 Stato fessurativo configurazione post-intervento FRP pushover Y e -Y



Fig. 66 Stato fessurativo configurazione post-intervento combinato pushover -X e -Y



Fig. 67 Stato fessurativo configurazione post-intervento combinato pushover X e Y

Dalle figure si osserva che le fessurazioni si concentrano per lo più alla base del campanile sia nella configurazione pre intervento, sia in quelle post interventi, ma se si analizzano i valori della deformazione plastica presente nella configurazione attuale del campanile si nota subito che questa ha valori inferiori rispetto a quella presente nelle configurazioni post-intervento in particolare nel caso intervento combinato di iniezioni e nastri FRP, infatti questo aumento di deformazione plastica tra configurazione pre intervento e post intervento è dovuto al fatto che le cricche iniziano a formarsi per valori di spostamenti maggiori nelle configurazioni con struttura rinforzata, portando la struttura ad un miglioramento globale del suo comportamento. Il quadro fessurativo ha quindi confermato sia l'efficacia degli interventi sia l'aumento di duttilità che essi producono nella struttura, infatti avere delle deformazioni plastiche superiori nelle configurazioni post intervento si traduce in un raggiungimento "più lento" dello spostamento (collasso) ultimo rispetto alla configurazione attuale in cui le deformazioni plastiche inferiori si traducono in un rapido raggiungimento dello spostamento ultimo.

## 8.5 Considerazioni post-interventi

Per un rapido confronto visivo nelle figure successive sono rappresentati, sullo stesso grafico, le curve di capacità relative ai singoli interventi:







In generale, è osservabile che tutti i tipi di intervento (iniezioni di malta, applicazione di nastri FRP, e combinazione dei due interventi) portano ad un aumento della resistenza della struttura in termini di forza di taglio alla base. In particolare, il massimo miglioramento si ha nel caso di un intervento combinato con iniezioni di malta e nastri FRP.

Complessivamente e localmente si verificano spostamenti minori nella fase di post-interventi, probabilmente attribuibili alla maggior rigidezza che gli interventi proposti conferiscono alla struttura. Tale diminuzione degli spostamenti risultanti è apprezzabile soprattutto nel caso delle iniezioni di malta consolidata.

Confrontando nello specifico le due fasi dell'intervento di iniezione (malta non consolidata e malta consolidata) si può notare, come già anticipato nel capitolo 6.2 e 6.5.1, il risultato risulti totalmente opposto; infatti, se da un lato l'iniezione non consolidata produce un aumento dello spostamento del nodo di controllo addirittura superiore a quello dello stato di fatto, dall'altro le iniezioni consolidate producono una diminuzione dello spostamento del nodo di controllo del 26 %. Questo aspetto evidenzia la necessità di sorvegliare la struttura anche e soprattutto durante la fase intermedia dell'intervento con iniezioni.







Un altro parametro da tenere in considerazione è l'aumento del fattore di duttilità " $\mu$ " a seguito dei diversi interventi; infatti, la duttilità risulta essere un parametro fondamentale nella sopravvivenza degli edifici in zona sismica. L'importanza di questo parametro progettuale consiste proprio nel fatto che esso racchiude in sé la capacità che ha la struttura di resistere, oltre i propri limiti elastici, a terremoti di elevata intensità.



Fig. 68 Fattore duttilità

Dal seguente grafico si puo notare come il fattore di duttilità della struttura aumenta grazie agli interventi proposti e nello specifico raggiunge i suoi massimi con l'intervento combinato FRP e iniezioni

## 8.5.1 Verifiche pannelli murari livello 1

Per rendere più immediata la visione dell'evolversi dei coefficienti nei vari interventi rispetto a quelli trovati per lo stato di fatto, si allegano qui di seguito dei grafici con i coefficienti di sicurezza ante e post-intervento.







Per quanto riguarda i pannelli murari del primo livello, la verifica di fessurazione a taglio è soddisfatta per ognuno di essi, sia per la configurazione pre-intervento, sia per la configurazione post-intervento.

Per quanto concerne la verifica di pressoflessione nel piano dei pannelli del primo livello, si può notare come gli unici due pannelli che soddisfano tale verifica, sia nella configurazione pre-intervento sia per quella post-intervento, siano il pannello 3 e 5 che risultano essere quelli più grandi. Il non superamento della verifica da parte degli altri 5 pannelli, infatti, è probabilmente da imputarsi, oltre che all'intensità della forzante sismica che tende a diminuire lo sforzo di compressione agente sui







Nella verifica a pressoflessione fuori piano tutti i pannelli murari, ad eccezione del 2 e 4 soddisfano la verifica a pressoflessione fuori piano.



## 8.5.2 Verifiche pannelli murari livello 2

## **FESSURAZIONE DIAGONALE**



Nelle verifiche condotte sui pannelli murari appartenenti al livello 2 l'intervento più performante risulta essere sempre quello delle iniezioni, anche perché come si è visto nel capitolo 7.5.1, alla luce del quadro fessurativo e della qualità di muratura di cui è costituito ogni livello, si era preferito applicare l'intervento di iniezioni solo nel livello 2 e 3. Nel dettaglio, la verifica di fessurazione a taglio risulta verificata per tutti i pannelli.

**PRESSOFLESSIONE NEL PIANO** 1,40 1,26 1,24 1,25 1,20 COEFFICIENTI SICUREZZA 1,00 0,80 0,60 0,40 0,20 1,15 1,12 1,00 0,98 0,85 0,79 0,75 0,72 0,68 0,64 0,59 0,56 0,00 **Y1 Y2 X1** X2 Pannelli Murari Iniezioni FRP e Iniezioni Stato Attuale ■ FRP





Per quanto riguarda la verifica di pressoflessione nel piano si può notare che l'intervento con FRP produce sì un innalzamento del coefficiente di sicurezza ma non ancora sufficiente per raggiungere o superare l'unità, mentre l'intervento con iniezioni e quello combinato iniezioni e FRP soddisfa la verifica per tutti i pannelli.





Risultati analoghi per la verifica di pressoflessione fuori piano, infatti anche in questo caso l'intervento con nastri FRP non soddisfa la verifica mentre sia l'intervento con iniezioni sia quello combinato FRP+ iniezioni soddisfano la verifica a pressoflessione fuori piano.



## 8.5.3 Verifiche pannelli murari livello 3



Per i pannelli murari appartenenti al livello 3 la verifica di fessurazione a taglio risulta soddisfatta sia per la configurazione pre-intervento sia per quella post interventi.

Nelle verifiche condotte sui pannelli murari appartenenti ai livelli 2 e 3 si può notare un'inversione di tendenza; infatti, in queste verifiche l'intervento più performante risulta essere sempre quello delle iniezioni, anche perché come abbiamo visto nel capitolo 7.5.1, alla luce del quadro fessurativo e della qualità di muratura di cui è costituito ogni livello, si era preferito applicare l'intervento di iniezioni solo nel livello 2 e 3. Nel dettaglio, la verifica di fessurazione a taglio risulta verificata per tutti i pannelli.





Per quanto riguarda la verifica a pressoflessione nel piano, nessuno dei pannelli risulta verificato, nel dettaglio si può vedere che l'intervento mediante iniezioni e quello combinato producono sì un aumento del coefficiente di sicurezza ma non ancora sufficiente da raggiungere o superare l'unità.





#### PRESSOFLESSIONE FUORI PIANO

Infine nella verifica a pressoflessione fuori piano del livello 3 si può notare che tutti i pannelli murari non soddisfano la verifica nella configurazione pre-intervento e post-intervento con nastri FRP, mentre sia tramite l'intervento con iniezioni di malta, sia con l'intervento combinato di nastri FRP e iniezione di malta, tutti i pannelli soddisfano la verifica. Per una visione globale e complessiva dell'esito delle tre verifiche, si riportano di seguito gli schemi 3D, completi dei 3 livelli, per ogni tipo di verifica e per ogni configurazione del campanile:



Verifica SLV a taglio per fessurazione diagonale (configurazione pre-intervento)



Verifica SLV a pressoflessione nel piano (configurazione pre-intervento)



Verifica SLV a pressoflessione fuori dal piano (configurazione pre-intervento)



Verifica SLV a taglio per fessurazione diagonale (configurazione post-intervento FRP)



 $Verifica\ SLV\ a\ pressoflessione\ nel\ piano\ (configurazione\ post-intervento\ FRP)$ 

× ×



Verifica SLV a pressoflessione fuori dal piano (configurazione post-intervento FRP)



Verifica SLV a taglio per fessurazione diagonale (configurazione post-intervento Iniezioni)



Verifica SLV a pressoflessione nel piano (configurazione post-intervento Iniezioni)



Verifica SLV a pressoflessione fuori dal piano (configurazione post-intervento Iniezioni)



Verifica SLV a taglio per fessurazione diagonale (configurazione post-intervento FRP + Iniezioni)



Verifica SLV a pressoflessione nel piano (configurazione post-intervento FRP + Iniezioni)



Verifica SLV a pressoflessione fuori dal piano (configurazione post-intervento FRP + Iniezioni)

# 9 Conclusioni

Sulla base delle verifiche effettuate, si può dedurre che gli interventi proposti producono innalzamenti dei coefficienti di sicurezza sulla maggior parte dei pannelli murari della struttura. Analizzando nel dettaglio i coefficienti risultanti da tali verifiche si può subito notare che, per quanto concerne la verifica a taglio per fessurazione diagonale nel primo livello, ove le caratteristiche meccaniche della muratura risultano migliori, le verifiche risultano soddisfatte sia per la configurazione pre, che per quella post intervento; diverso è il discorso delle verifiche di pressoflessione, dove i coefficienti di sicurezza subiscono sì un innalzamento, ma risultano, in alcuni casi, inferiori all'unità sia per la configurazione pre-intervento, sia per quella post-interventi. Il vero cambiamento lo si può notare nel tronco centrale e ancor di più in quello finale, dove le caratteristiche meccaniche della muratura risultano molto scadenti e i pannelli murari analizzati risultano molto più piccoli se confrontati con quelli del primo livello. Un altro aspetto da analizzare è quello riguardante i diversi coefficienti che risultano all'interno dello stesso intervento durante le due fasi di applicazione: si può notare infatti che nel caso dell'intervento con iniezione di malta consolidante, durante la prima fase del processo, quando la malta non è ancora consolidata, tale intervento non produce alcun beneficio per la struttura (anzi in alcuni pannelli si possono notare dei decrementi dei coefficienti di sicurezza) mentre, a malta consolidata, nella maggior parte dei pannelli esaminati si può notare il miglior risultato tra i tre interventi proposti.

Per quanto riguarda l'intervento tramite l'applicazione dei nastri FRP si evince che questi ultimi producono sì un piccolo miglioramento, ma non sufficiente da solo a consolidare e ripristinare la configurazione statica e meccanica della struttura, a fronte di un costo in termini economici non indifferente.

Le analisi svolte hanno quindi confermato che entrambi gli interventi migliorano la sicurezza statica e sismica del campanile.

Nello specifico l'intervento che produce il miglior risultato in termini di aumento di duttilità, minor spostamento del nodo di controllo e maggior aumento dei coefficienti di sicurezza risulta essere quello combinato Frp e Iniezioni.

#### 10 Bibliografia e Sitografia

- ICOMOS. (2003). CARTA ICOMOS PRINCIPI PER L'ANALISI, LA CONSERVAZIONE E IL RESTAURO STRUTTURALE DEL PATRIMONIO ARCHITETTONICO. Ratificato dalla XIVa Assemblea Generale dell'ICOMOS a Victoria Falls – Zimbabwe, ottobre 2003.
- [2] NTC2018 Norme tecniche per le costruzioni D.M. 17 gennaio 2018
- [3] https://www.ingenio-web.it/articoli/miglioramento-sismico-degli-edifici-storici-problematichecriteri-progettuali-e-proposte-innovative/
- [4] Dinamica non regolare di torri storiche in muratura. Il caso studio della Torre Civica dell'Orologio a Rotella (AP), Marco Marasca Tesi di laurea magistrale dell' Università Politecnica delle Marche 2019
- [5] https://legislazionetecnica.it/node/1393382#comment-form
- [6] F. Doglioni, A. Moretti, V. Petrini, Le chiese ed il terremoto, LINT, Trieste 1994
- [7] http://www.museodiffusocuneese.it/siti/dettaglio/article/fossano-cattedrale-di-san-giovenale/
- [8] http://www.ciceronefossano.it/monumenti/campanile-duomo/
- [9] M. Civera, M. Ferraris, R. Ceravolo, C. Surace, R. Betti, The Teager-Kaiser Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool. Scienze Applicate . 9, 5064 (2019). https://doi.org/10.3390/app9235064
- [10] Civera, M, Pecorelli, ML, Ceravolo, R, Surace, C, Zanotti, Fragonara, L. A multi-objective genetic algorithm strategy for robust optimal sensor placement. Comput Aided Civ Inf. 2021; 36: 1185–1202. https://doi.org/10.1111/mice.12646
- [11] Ceravolo, Rosario & Novello, G. & Pecorelli, Marica & Pistone, Giuseppe. (2014). Save what we can: experimentally validated design of strengthening interventions to reduce the seismic vulnerability of a bell-tower.
- [12] https://www.ingegneriastrutturale.net/documenti/articoli/adepron13_0012.pdf
- [13] "Direttiva del Presidente del Consiglio dei Ministri per la valutazione e riduzione del rischio sismico del patrimonio culturale tutelato" 9 febbraio 2011
- [14] "Ordinanza 03/05/2005 n. 3431" Ulteriori modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003, recante «Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica».
- [15] Direttiva del Presidente del Consiglio dei Ministri del 12 ottobre 2007 "Valutazione e la

riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni", pubblicata sulla Gazzetta Ufficiale n. 24 del 29 gennaio 2008, suppemento ordinario n. 25;

- [16] "Istruzioni per l'applicazione delle nuove norme tecniche per le costruzioni del Consiglio Superiore dei Lavori Pubblici di cui al D.M. 14 gennaio 2008 "Norme tecniche per le costruzioni", Circolare 2 febbraio 2009, n. 617.
- [17] DISEG Centro di Ricerca sui Ponti in Muratura. "Caratteristiche meccaniche della muratura"
- [18] Ordinanza n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica.
- [19] A. Di Tommaso, S. Casacci, Soprravvivenza di torri e campanili in ambiente sismico, https://core.ac.uk/download/pdf/16377982.pdf
- [20] https://ilcapochiave.it/2019/02/11/consolidamenti-tradizionali-lo-scuci-cuci/
- [21] https://www.darioflaccovio.it/blog/informazione-tecnica/adeguamento-sismico-edificimuratura
- [22] Elizabeth N. Vintzileou, Iniezione di malta liquida in muratura a cassetta:risultati sperimentali e previsione delle caratteristiche meccaniche
- [23] https://www.ingenio-web.it/articoli/rinforzo-frp-su-elementi-in-c-a-e-muratura-tessuto-laminao-rete-quale-soluzione-scegliere/
- [24] Cosenza, E., Iervolino, I.: Case study: seismic retrofitting of a medieval bell tower with FRP. J. Compos. Constr. 11, 319–327 (2007).