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Abstract

Industry 4.0 has become an established reality thanks to recent technological
developments. In this context, Reply Concept, a company where I was employed
for a short time to write this thesis, is carrying out a project to build a digital twin
for a chemical plant in Sicily, Italy.

The main purpose is to establish a link between the production environment
and digital information by creating technological models that analyze the system
and connect the real and virtual worlds. The aim of the thesis work is to develop
an Artificial Intelligence pipeline for the management and predictive maintenance
of the chemical filters, analyzing the data collected by sensors (e.g. mixing pumps,
flow meters and pressure sensors) are analyzed.

The importance of determining the Remaining Useful Life (RUL) of filters lies
primarily in the capability to avert the failure of equipment that the filters protect.
If a filter becomes clogged and is not replaced in a timely manner, it can lead to a
decline in equipment performance and even complete failure. By predicting the
RUL of filters, maintenance teams can plan ahead for filter replacement, avoiding
unexpected downtime and reducing maintenance costs.

The research will analyze the results of various machine learning techniques for
predicting the RUL of filters using data-driven prediction. Deep neural networks
with specific feature extraction layers, namely Long Short-Term Memory (LSTM)
and Implicit Neural Networks (SIREN), are used with fully connected layers for
prediction. Moreover, discrete features are represented by continuous values to
increase robustness. During training, the data is injected using the sliding window
method.

As a case study, I used a publicly available dataset created by Omer Faruk Eker
[1] in a realistic experimental rig. The test rig consisted of a pump, a dampener,
particles, flow rate and pressure sensors, and a filter. Since its creation, thorough
research and public challenges have been conducted to investigate accelerated
clogging phenomena and the prediction of RUL. The dataset can be divided into 3
different operational profiles (i.e. the different sizes of the particles) that make it
effective for building applicable predictive models.

State-of-the-art performance metrics have been used by comparing the RUL
diverse models to evaluate the methodology. Results show that using the mentioned
neural network architectures achieves high-performance results without having
much domain expertise. Quantitatively, test results showed less than 20% mean
absolute percentage error as well as more than 90% coefficient of determination
which is considered good forecasting [2]. Comparing different setups also yielded
similar results, which shows the model is robust.
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Chapter 1

Introduction

1.1 Importance of Predictive Maintenance

Individuals who have had access to information have always been able to obtain
benefits throughout history, as exemplified by Hippocrates from ancient Greece,
who utilized data analysis to study disease patterns and create treatments for his
patients. By gathering information on the symptoms, progression, and consequences
of different illnesses, he was able to establish the fundamental principles of modern
medicine.

The crucial importance of data and analysis in modern times cannot be overem-
phasized. For instance, data analysis is crucial in making informed decisions in the
business world, including marketing, sales, and operational activities. Similarly,
data analysis is instrumental in the healthcare sector, enabling healthcare practi-
tioners to enhance patient outcomes and reduce costs. In education, data analysis
facilitates the improvement of student outcomes and informs policy decisions. In
the public sector, data analysis is utilized to inform policy decisions and enhance
public services. In science and research, data analysis is employed to advance
knowledge and stimulate innovation. Through analyzing data related to natural
phenomena, biological processes, and other relevant factors, researchers can devise
new theories, test hypotheses, and achieve breakthrough discoveries.

Data analysis is pivotal, especially in one of the most essential sectors of the
contemporary world: industry.

o Predictive maintenance: Through the analysis of equipment performance data,
firms can anticipate maintenance requirements, minimize costly downtime,
and enhance efficiency. This approach helps to curtail expenses and streamline
operations.

o Process optimization: The collection and analysis of manufacturing process
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Introduction

data enable organizations to recognize areas for improvement and inefficiencies
that may exist within their operations. This information is then utilized to
optimize the processes, mitigate waste and enhance the quality of the products.

e Supply chain management: The analysis of data about the performance of
the supply chain is an effective approach that firms can utilize to recognize
bottlenecks, optimize inventory levels, and improve logistics. By leveraging
this information, organizations can reduce expenses and elevate customer
satisfaction levels.

» Risk management: Through the analysis of data related to safety incidents,
equipment failures, and other risk factors, companies can recognize potential
hazards and implement measures to mitigate them. This proactive approach
serves to enhance safety, curtail liability, and safeguard the reputation of the
organization.

Recent improvements in technologies made way for huge developments in pro-
duction speed and quantity in all sectors of the industry. Having unexpected pauses
in the process is becoming more and more costly each day. Affluent sectors, such
as the oil and gas industry can lose $25 M/Day to an interrupt in the platform [3]
while the cost can be $1.3 M/Hour for the auto manufacturing industry [4]. These
troubles make businesses put more emphasis on predictive maintenance.

Predictive maintenance gained a lot of investments when the third industrial
revolution started with the automatization of processes where a huge amount of data
is collected. After the empowerment gained by computers use cases of predictive
maintenance by smart technologies gained a fast pace. Increased applicability and
accuracy of models profit industry, so that research and support for innovation
of those technologies also gained a lot of investments [5]. Overall, it is a growing
sector which attracts more and more businesses every day.

1.2 ATI’s Role

Humans are also well known for their desire to imitate the natural world in their
creations. We wanted to fly, so we invented planes that fly like birds, and we devised
submarines that swim like deep-water fish. Playing god culminated when humans
decided to create themselves, a machine with an artificial intelligence close to ours,
AL In the 1940s creation of the programmable digital computer, “a machine based
on the abstract essence of mathematical reasoning” started the process. Today it
reached a point where an Al is capable of drawing very elaborate pictures from the
abstract description, writing a piece of software with comments, explaining ‘memes’
from the internet, and so much more [6, 7].
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Figure 1.1: A high-quality photo of a dog playing in a green field next to a lake,
totally artificially generated by DALL-E-2 [6].

Although rapid developments make a lot of fear for future advancements, it is
undeniable that AI has huge benefits, especially in industry. Applicability of Al
on predictive maintenance led to the development of more sophisticated methods
which in return benefited the companies. With more advanced methods, businesses
can gain more precision in forecasting maintenance with no hindrance.

As mentioned before, the radius of the applicability of predictive maintenance
is quite wide. It can be a prediction of the time when an aircraft engine stops
working efficiently or of the corrosion in the pipes of an oil refinery to prevent a
halt in the process. Day by day Al is gaining more space in this context due to
the reasons mentioned in the previous paragraph. There is one real case where a
chemical plant in Italy wanted an Al model which predicts the clogging of a filter
in advance.

1.3 The Company

X" REPLY

CONCEPT

I was employed by Concept Reply, a company which is a part of the Reply Group
S.p.A. for a short period in a digital twin project where a customer — a chemical
plant in Sicily, Italy needed a digital solution to predict the clogging of a filter in
advance.

The company is a technology partner that focuses on IoT innovation through
hardware and software development. Their expertise lies in providing solutions for
Smart Infrastructure, Industrial IoT, and Connected Vehicles. They offer services
that cover the entire development process, from the initial idea to implementation,
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operation, and support. Concept Reply has a team of IoT specialists who are
skilled in hardware design and development, software implementation in embedded
systems, as well as edge computing and cloud application development.

1.4 Objectives, Contribution, and Structure

The main scope of the thesis is to research an Al methodology for predicting the
clogging of a filter that can be applied in a real scenario. After providing a detailed
background check for Predictive Maintenance, state-of-the-art methodologies are
investigated. Then the details about publicly available suitable dataset are men-
tioned in the thesis, after which chosen methodology is explained. A preliminary
analysis of the dataset is provided in terms of graphs in the thesis work.

The performance of AI models in terms of forecasting an unknown future is to
be tested in this thesis work. Especially, applications of Artificial Neural Networks,
a sophisticated state-of-the-art branch of Al are tried. The baseline for the models
is set and results from the test phase are present.

Another objective of the thesis is to test the developed models’ robustness and
sensitivity. Datasets with different characteristics, such as the size of the dataset
or the configuration of available data are used to see the sensitivity of the model.

The thesis is structured as follows:

Chapter 2 describes the context and overviews the technologies that enabled
Prognostic and Health Management (PHM). Moreover, a detailed literature review
of the state-of-the-art methodologies and their background is also presented.

Chapter 3 discusses the details of the publicly available dataset that is used for
the experiments. Analysis of the dataset is presented by means of graphs and images.
Furthermore, this chapter overviews the techniques utilized for preprocessing.

Chapter 4 describes the data-driven methodologies used in this thesis. It
also describes the performance metrics and setup on which the experiments are
undergone.

Chapter 5 shows the results from all of the experiments done in the thesis. It
contains rich visuals and tables to understand the results better.

Chapter 6, being the last chapter of the thesis, provides the overall conclusions
and future improvements.



Chapter 2

Background and Literature
Review

In this chapter related background information is provided with the literature
review of the state-of-the-art methodologies.

2.1 Industry 4.0

Industry 4.0 refers to the fourth industrial revolution, characterized by the integra-
tion of advanced technologies such as artificial intelligence, the Internet of Things
(IoT), and robotics into the manufacturing sector. The concept of Industry 4.0
was first introduced in 2011 at the Hanover Fair in Germany [8], and since then, it
has gained traction as a key driver of digital transformation in the manufacturing
industry.

The first industrial revolution took place in the late 18th and early 19th centuries
and was characterized by the use of steam power and mechanical production
techniques. The second industrial revolution, which occurred in the late 19th
and early 20th centuries, was driven by the widespread use of electricity, the
assembly line, and the introduction of the telephone and telegraph. The third
industrial revolution, also known as the digital revolution, took place from the late
20th century to the present day and was characterized by the widespread use of
computers and the Internet. Industry 4.0 takes the digital revolution a step further
by incorporating technologies such as artificial intelligence and machine learning,
which allow machines to make decisions on their own and operate autonomously.
This leads to the creation of smart factories, where machines are connected and
communicate with each other, enabling real-time data exchange and analysis. This
leads to increased efficiency, reduced downtime, and improved product quality [10].

The implementation of Industry 4.0 also brings about new business models, such
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INDUSTRY 1.0 INDUSTRY 2.0 INDUSTRY 3.0 INDUSTRY 4.0
Mechanization, Mass production, Automation, Cyber Physical Systems,
steam power, assembly line, computers, Internet of things,
weaving loom electical energy electronics networks
o

(e0o0000000)
\. J \\ J \\ J U J

Figure 2.1: Industrial revolution steps in short [9]

as the use of cloud computing and the emergence of Industry 4.0 service providers.
This allows companies to access advanced technology and expertise without having
to invest in expensive equipment and resources.

Industry 4.0 is a major step forward in the evolution of the manufacturing
industry and has the potential to revolutionize the way products are produced
and services are delivered. While the implementation of Industry 4.0 brings about
new challenges and requires significant investment, it has the potential to drive
economic growth and improve the lives of people around the world.

Enabling technologies [11]

o IoT. The Internet of Things (IoT) is a network of physical devices, vehicles,
home appliances, and other items embedded with electronics, software, sensors,
and connectivity which enables these objects to connect and exchange data.
IoT devices can be connected to the Internet and other connected devices,
allowing for the collection and exchange of data to improve efficiency, and
accuracy, and enhance user experiences. The IoT concept has the potential
to revolutionize the way we live, work and interact with our environment
by creating smart homes, smart cities, and a connected world. The specific
branch of IoT adapted to Industry 4.0 is called "industrial Internet".

« Big Data/Industrial Analytics. Big Data refers to the large and complex
6
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data sets that are generated from various sources and are too big, fast, or
complex for traditional data processing systems to handle. The term 'Big
Data" encompasses a wide range of data types including structured, semi-
structured, and unstructured data. With the growth of the Internet, social
media, and [oT devices, organizations are now collecting and storing vast
amounts of data.

Industrial Analytics refers to the use of big data and advanced analytics
techniques to optimize industrial processes and make better-informed decisions.
This involves analyzing vast amounts of data generated by industrial processes,
equipment, and systems to gain new insights, improve efficiency, and make
data-driven decisions. The goal of industrial analytics is to turn big data
into actionable information that can be used to improve operations and drive
business outcomes.

Cloud Manufacturing. Cloud Manufacturing refers to the use of cloud
computing technology to manage and optimize manufacturing processes. It
involves using cloud-based tools and platforms to store, process, and analyze
large amounts of data generated by manufacturing operations. The goal of
cloud manufacturing is to improve efficiency, reduce costs, and enhance the
overall competitiveness of the manufacturing industry.

Cloud manufacturing enables manufacturers to access their data and systems
from anywhere, at any time, using any device with an Internet connection.
This allows them to make real-time decisions based on up-to-date information
and reduces the need for expensive on-premise IT infrastructure. Additionally,
cloud manufacturing enables manufacturers to collaborate more effectively
with suppliers, customers, and other stakeholders, improving supply chain
management and increasing agility.

Machine Learning (ML) and Artificial Intelligence (AI). Machine
learning involves training algorithms to learn patterns and relationships in
data, allowing them to make predictions and decisions based on new data
inputs. In Industry 4.0, machine learning algorithms are used in a variety
of applications such as predictive maintenance, quality control, and supply
chain optimization. For example, ML algorithms can analyze large amounts
of production data to identify potential equipment failures before they occur,
reducing downtime and maintenance costs.

Al on the other hand, refers to the development of computer systems that can
perform tasks that typically require human intelligence, such as recognizing
patterns, making decisions, and solving problems. In Industry 4.0, Al is used
to automate and optimize manufacturing processes, resulting in increased
efficiency and productivity. For example, Al-powered robots can be used to

7
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perform repetitive tasks, freeing up workers to focus on more complex and
creative tasks.

ML itself is divided into 3 main categories:

e Supervised learning is a form of machine learning that deals with problems
where data has already been labelled. This means that each data point
includes features and a related label. Supervised learning algorithms aim to
learn a function that can map the features to the corresponding label, based
on input-output pairs from the data [12]. The algorithm uses this labelled
training data, consisting of a set of examples, to create an inferred function
[13]. Each example consists of an input object and a desired output value,
known as the supervisory signal. By analyzing the training data, the algorithm
creates a function that can be used to predict the label for new examples. To
be successful, the algorithm must be able to accurately determine the class
labels for unseen instances, which requires it to generalize from the training
data in a sensible manner. The ability of the algorithm to do this is measured
by the generalization error.

o Unsupervised learning is a machine learning technique that handles situations
where there is no labelling information available for the data. The objective
of unsupervised learning is to identify patterns or relationships in the data
without being given a specific outcome to predict. The algorithm is given a
set of data and must independently uncover the structure within it.

e Reinforcement learning involves training an agent to make decisions by
experiencing the consequences of its actions in an environment. The agent is
rewarded or punished based on its decisions and gradually learns to choose
actions that maximize its reward.

Over the decades, many ML algorithms have been developed for various purposes.
Well-conducted surveys ([14, 15, 16]) are present in the literature. For example,
[14] talks about state-of-the-art techniques, along with real-world applications and
research directions very thoroughly. Future prospects have been analyzed in [15].

A detailed review is dedicated to Deep Learning (DL) which is "a part of a
broader family of ML methods based on artificial neural networks (ANN) with
representation learning [17]" in upcoming pages of this section.

2.2 Digital Twin

A digital twin is a virtual representation of a physical object or system, created using
real-time data and computer simulations. It is a digital replica of a physical product,

8



Background and Literature Review

process, or service, and is used to analyze, design, and optimize various aspects of
the real-world counterpart. Digital twins are becoming increasingly popular across
various industries, such as manufacturing, healthcare, and transportation, due to
their ability to improve operational efficiency, reduce costs, and enhance customer
experiences.

The concept of a digital twin was first coined in 2002 by Dr Michael Grieves
at the University of Michigan [18]. It has since evolved into a powerful tool for
businesses to gain insight into their operations, optimize processes, and make
data-driven decisions. Digital twins use sensors and other sources of data to create
a virtual model of a physical object or system, which is then used to simulate and
analyze its behaviour. This allows companies to identify potential problems, test
solutions, and make changes to improve the performance of the physical system.

The benefits of digital twins have been analyzed thoroughly in research conducted
by [19]. One of the main benefits of digital twins is the ability to improve operational
efficiency. By creating a virtual representation of a system, businesses can optimize
processes and reduce downtime, resulting in increased productivity and reduced
costs. For example, in the manufacturing industry, digital twins can be used to
optimize production processes, reduce waste, and improve product quality. This
can result in increased efficiency, lower production costs, and a better end-product
for customers.

Another benefit of digital twins is their ability to enhance customer experiences.
By using digital twins, companies can gather data on customer behaviour and
preferences, and use this information to create personalized experiences. For exam-
ple, in the healthcare industry, digital twins can be used to create individualized
treatment plans for patients, based on their unique needs and conditions. This
leads to better outcomes and improved patient satisfaction.

Digital twins also have the potential to revolutionize the way businesses approach
maintenance and repairs. By having a digital representation of a physical system,
businesses can use predictive analytics to identify potential problems before they
occur, reducing the likelihood of unexpected downtime. This allows companies
to take proactive steps to address problems, resulting in improved operational
efficiency and reduced costs.

The use of digital twins is also becoming increasingly popular in the field of the
Internet of Things (IoT). IoT devices and sensors can be used to collect real-time
data, which is then fed into the digital twin. This allows companies to analyze the
behaviour of their physical systems in real-time, and make data-driven decisions to
optimize performance.

Despite its many benefits, the use of digital twins is not without challenges. One
of the main challenges is data privacy and security. As digital twins rely on large
amounts of data, it is important to ensure that this data is protected from cyber
threats and unauthorized access. Another challenge is the need for specialized skills
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and knowledge to create and maintain digital twins. Companies must invest in the
necessary resources, such as specialized software and trained personnel, in order to
effectively use digital twins. Review done by [20] found that multidisciplinarity,
standardization, and global advancements are the main challenges to open research.
In conclusion, digital twins are a powerful tool that can revolutionize the way
businesses operate. By creating a virtual representation of a physical system,
businesses can optimize processes, reduce costs, enhance customer experiences, and
improve operational efficiency. However, the use of digital twins is not without
challenges, and companies must be aware of the potential risks and invest in the
necessary resources to effectively utilize this technology. As the use of digital twins
continues to grow, it is likely that they will become an essential tool for businesses
across various industries, helping to drive innovation and improve outcomes.

2.3 Maintenance

There are 2 main categories in maintenance philosophies [1]:
1. Reactive Maintenance
2. Proactive maintenance

Reactive maintenance is usually done when the issue is noticed or a breakdown
happens. No planning is done for reactive maintenance and usually, the problem
halts the whole process or the part that needs care becomes useless or inefficient.
Chain reaction causes ineffective work processes and in huge applications, big
amounts of money are lost. This form of maintenance is the oldest type of
maintenance and is gradually vanishing in large-scale applications. Nevertheless, it
is still widely used in basic components such as valves at home where there is little
to no risk and/or unnecessary maintenance time and the cost is needed.

Proactive maintenance, on the other hand, is planned beforehand. Starting from
the last mid-century proactive maintenance has gained preference over reactive
maintenance, which is done after the need occurs [21]. Tt became apparent when
industrial advancement brought upon frequent equipment wear out which is intol-
erable as it requires more downtime and labour cost. 2014 Gartner report [22] cites
that downtime costs can be $300.000 per hour on average, sometimes reaching as
high as half a million. As the industry goes forward, this cost is also multiplying.
So companies are eager to invest more and more not to halt the process.

One way of doing proactive maintenance is to schedule a timetable for when the
care is needed, which is called preventative maintenance. Maintenance is done in a
fixed period of time without any feedback from the system. Although it is a more
effective way than reactive, it has still some complications, such as a waste of time
and resources in case of the absence of fault.

10
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The mere idea of having resources dedicated to unnecessary maintenance led to
the development of predictive maintenance. The main trait that distinguishes it
from its predecessor is having the ability to determine the scheduling time based on
system needs. As it is a highly complex and costly task, predictive maintenance is
only limited to critical and technically possible tasks [23]. A comprehensive survey
has been conducted by Ran et al. [24] with emphasis on system architectures,
purposes and approaches.

Condition-Based Maintenance (CBM) is a type of predictive maintenance in
which maintenance activities are performed based on the actual condition of the
equipment. The equipment’s health is constantly monitored and when it reaches a
predetermined point of degradation, maintenance is triggered to prevent failure
[25, 26].

There are two main branches of CBM: Diagnostics and prognostics. Diagnostics
in the context of CBM involves identifying and reporting any anomalies in signals,
determining the cause of the issue, and evaluating the current state of the asset [1].
With diagnostics, the goal of CBM is to halt and schedule maintenance once an
abnormality is detected, so as to prevent the system from failing. If degradation is
discovered, maintenance must be performed immediately to avoid potential failures.

Prognostics, on the other hand, alongside being a relatively new and complex
task gives the opportunity to prepare for the actual maintenance. Because while
preparation is ongoing for the maintenance system is up and running, only downtime
is calculated when the actual maintenance is performed. Thus, decreasing the
overall time compared to the former methodology.

After completing the primary steps, such as health assessment, severity detection,
and degradation detection comes the second phase of prognostics, referred to as
"true prognostics," which focuses on predicting the exact time of failure by projecting
the trend of degradation and calculating the remaining useful life (RUL). This
phase is characterized by techniques such as time series analysis, extrapolation,
propagation, trending, projection, and tracking [1].

In literature, prognostic approaches are divided into 4 main subcategories:

o Physics-based models, also known as PbM approaches, use engineering and
scientific knowledge [27] to evaluate the health of a system through a set of
equations, either for diagnosis or prognosis. The key advantage of PbMs lies in
their ability to predict long-term behaviour through degradation models [28].
Luo et al. [29] proposed a generic process for developing prognostics using
PbMs, which involves creating a model of the system and its degradation,
where fast dynamic variables describe the behaviour of the system and slow
dynamic variables describe its degradation. The appropriate scenario (feature
estimation) and RUL are estimated by simulating various random scenarios
and comparing the results to actual data.

11
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A review conducted by Cubillo et al. [30] identifies the potential PbM for
prognostics in rotating machinery. A very interesting article written by
Aivaliotis et al. [31] proposes to employ the Digital Twin approach to keep
track of a robot’s health status and align the simulated behaviour with the
actual behaviour of the robot. The results of the simulation can provide insight
into the future behaviour of the robot, predict the quality of the products to
be produced, and calculate the robot’s RUL. The proposed method is tested
in a case study from the white goods industry to determine if the robot is
likely to experience a failure in the next 18 months.

Data-driven models (DDMs) use data collected from condition monitoring
or historical events instead of relying on system physics or expert knowledge.
They track the asset’s degradation through techniques such as regression,
exponential smoothing, and neural networks, or by identifying similar patterns
in the data to estimate the RUL[32]. These models rely on past degradation
patterns to predict future degradation and do not consider system inputs or
operational profiles. Since they don’t take into account specific information
about the asset, they are considered a black-box operation [33]. DDMs can be
divided into two categories: statistical models and Al models.

The current leading models in statistical prognostics can change based on the
industry and the specific situation, however, some popular models include:

1. Regression models - These models use past data to create a connection
between an asset’s degradation and one or more input factors, which then
allows them to calculate the asset’s RUL [34, 35, 36].

2. Time series models - These models analyze time-series data, such as data
collected over a certain period from a single asset, to identify patterns
and trends in degradation that can be used to predict the RUL [37, 38].

3. Survival analysis models - These models are commonly utilized in reliability
engineering and consider the time-to-failure of an asset, taking into account
censored data (for example, an asset that has not yet failed but for which
data is available up to a certain point in time).

4. Weibull models - These models are widely used in reliability engineer-
ing and assume that the time-to-failure of an asset follows a Weibull
distribution.

5. Proportional hazard models - These models are often employed in survival
analysis and assume that the hazard (or risk) of failure is proportional to
the asset’s degradation over time.

Most recent advancements in statistical DDMs and their applications are well
reviewed in the following articles ([37, 38, 34, 26, 39, 40])
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AT or machine learning models aim to detect intricate patterns and make
informed decisions based on empirical data. These models are suitable in
situations where solutions to problems are hard to specify, but there is enough
data or observations available. Some of the common machine learning methods
used for supporting detection, diagnostics, and prediction include Artificial
Neural Networks (ANN), Self-Organizing Maps (SOM), and decision trees [41,
42, 43]. A detailed review of Al models that are used in prognostics is done in
the following sections of this chapter.

Knowledge-based models (KbM) use prior expertise and understanding
of a system to predict its future performance. These models are a form
of model-based approach in prognostics and are built using mathematical
equations and physical laws. The models take into account factors such as the
system’s design, operating conditions, and environmental factors to provide a
prediction of the system’s remaining useful life. The goal of these models is
to offer a more accurate and trustworthy prediction compared to data-driven
methods. They are widely used in various industries, including aerospace,
defence, energy, and manufacturing.

The simplest method for performing prognostics is through knowledge or
experience-based approaches, where past failures of systems are analyzed
statistically to forecast the RUL of the system. These models are a type
of automated solution that mimics the decision-making process of a human
expert in a specific field [32].

Hybrid models is a combination of knowledge-based and data-driven ap-
proaches, utilizing the strengths of both methods to achieve a more accurate
and reliable prediction of the RUL of a system. This approach merges human
expertise with the power of data analysis, allowing for improved predictions
compared to either approach alone. Hybrid models are useful in situations
where there is limited knowledge or insufficient historical data and can include
expert systems incorporating data-driven models or data-driven models that
incorporate expert knowledge through prior probabilities or rules.

Eker [1] has conducted thorough research on hybrid prognostics and its appli-
cation to well-controlled engineering systems.

2.4 Deep Learning

As the complexity of the tasks and dimension of raw information increased, simple
ML models started not to meet the requirements. Shallow extraction of features
becomes difficult and more sophisticated — deeper multi-level architectures started
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to arise, where the name of Neural Networks (NN) are at the heart of it. Compli-
cated tasks, such as Natural Language Processing, Computer Vision, or Anomaly
Detection leaned more towards DL as it generates more accurate results while
intelligently analysing the data on a large scale. By tuning the hyper-parameters
in the model information well hidden in different layers can be extracted.

DL history can be traced down to Walter Pitts and Warren McCulloch when
they developed the first model inspired by neural networks in the human brain in
1943 [44]. Since then DL community has been introducing new concepts, such as
back-propagation [45], Convolutional Neural Networks (CNN) [46], long short-term
memory (LSTM) [47], Generative Adversarial Neural Networks (GAN) [48] etc. In
2009 14 million labelled images are introduced by Deng et al. under the name of
ImageNet [49].

2.4.1 Neural Networks

Artificial neural networks (ANNs) are computational ML models based on the
structure and function of biological neural networks in the human brain. An ANN
consists of multiple interconnected processing nodes organized into layers, also
known as artificial neurons. The processed input passes through these layers, with
each neuron processing the input and generating output. It is then passed on to
the next layer. The connections between neurons are weighted, determining the
strength of their influence on each other.

To achieve accurate performance for a specific task, the weights of the network
must be optimized through training. This is accomplished by presenting the network
with a set of input-output pairs from a training dataset and adjusting the weights
to minimize the difference between the network’s predictions and the actual outputs.
The most commonly used method to train ANNs is through backpropagation [45],
using gradient descent [50] to adjust the weights.

However, there are also challenges associated with ANNSs, such as overfitting,
where the network becomes too complex and fits the training data too closely,
leading to poor performance on unseen data. The internal workings of the network
can also be difficult to interpret, and training can be slow. Despite these challenges,
ANNs have been widely adopted and have been successful in many applications,
due to their ability to learn from data and perform well on a wide range of tasks.

2.4.2 NN used in Time Series analysis

As was discussed previously, ML algorithms have been a great tool on hand for the
analysis of time series. Before more complicated ML models domain is dominated
by mostly statistical methods, such as moving averages and exponential smoothings.
More complex applications promoted the development of many Al models and
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testing of other preexisting models on time series analysis (e.g. Support Vector
Regressors, ensemble methods like Random Forest or XGBoost, etc [51, 52]).
Sophisticated PHM objectives, such as identifying RUL, ever-increasing "big" data
from IoT devices, and increased computational resources led to the development,
improvement, and applications of NN models on time series data. Examples are
introduced in the following few paragraphs.

« Deep Neural Networks (DNN) consists of many layers of neurons also
known as perceptrons connected which is the main part of the network that
is inspired by brain circuits [53]. Perceptron is shown in figure 2.2. The
activation function is to allow networks to handle complex problems with
fewer nodes using the nonlinearity property. Well-known activations functions
are ReLU, Tanh, Sigmoid etc [54]. DNNs can overcome many problems that
simple perceptrons cannot handle.

DNNs have many capabilities that make them a very good candidate for the
usage of time series forecasting [55]. It is robust to noise, it has nonlinearity
and multivariate input properties, and it can do multi-step forecasting. Liu
et al. [56] built a reinforcement learning NN model for time series prediction.
Another good example is built by Pavlyshenko [57] using Deep Q-Learning
applied to sales time series. Ismail Fawaz et al. [58] proposed a very extensive
study by training 8730 DL models on 97 time series datasets.
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Figure 2.2: Perceptron [59]

Convolutional Neural Network (CNN) can learn from salient features
that are otherwise impossible to extract. Although it is generally used in
Computer Vision, this trait makes it a suitable choice for many univariate,
multivariate, or multi-step time series analyses and forecasting [60]. Wibawa
et al. [61] improved the quality of time series analysis by developing a novel
methodology of Smoothed-CNN. Application of CNN on RUL forecasting
of rolling bearings are studied by Wang et al. [62]. Moreover, Yang et al.
[63] proved that the proposed Double-CNN based NN architecture achieves
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Figure 2.3: DNN [59]

higher prediction accuracy and robustness on RUL prediction compared with
state-of-the-art methods.
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Figure 2.4: Architecture of CNN [64]

« Recurrent Neural Network (RNN), such as the Long Short-Term Memory
(LSTM) network [47], offer a unique capability compared to other types of
neural networks like fully-connected DNNs and CNNs [55]. Unlike these
other types of networks, RNNs are specifically designed to handle input
data that comes in the form of sequences, where the order of observations is
important. This means that RNNs can capture the temporal relationships
between observations, making them well-suited for time series analysis and
other problems that involve sequences. Structure of LSTM architecture is well
depicted in figure 2.5 by [65]

These features of RNNs attracted much attention in the PHM community for
16
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building forecasting models, specifically for RUL estimation. Yan et al. [66]
modelled an LSTM neural network for the prediction of long-term gear life.
Boujamza and Lissane Elhaq [67] built an attention-based LSTM for RUL
forecasting of aircraft engines. A similar attention mechanism is used by Li et
al. [68] for RUL prediction of aircraft engines with an enhanced CNN-LSTM.
A genetic algorithm optimized RNN-LSTM model for RUL estimation of
turbofan engine was developed by Tai Chui et al. [69]. Nie et al. [70] achieved
a highly accurate model using an integration of ARIMA and LSTM models in
the estimation of RUL of water hydraulic high-speed on/off valves. A case
study by Huang et al. [71] proved that LSTM neural network can be used to
estimate the RUL for systems with abrupt failures.
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Figure 2.5: Structure of LSTM [65]

o Implicit Neural Representations (INR) are the internal representations
created within a neural network that is learned through the processing of
training data, rather than being explicitly designed by humans. As input data
is processed through multiple layers of artificial neurons, the network develops
representations that grasp the correlations and connections present in the
data.

Sitzmann et al. [72] proposed a methodology that leverages periodic activation
functions for INR and proved that dubbed sinusoidal representation networks
(SIRENS) can be ideal for representing complex natural signals, such as time
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series. In SIREN sine is used as a periodic activation function.
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Chapter 3

Dataset

3.1 Dataset

3.1.1 Source

In 2020 PHM Society announced a data challenge to create a prognostic model
for filter clogging based on a dataset created by Eker et al. [1]. An experimental
rig was constructed to gather run-to-failure filter clogging data. The simulation
rig consisted of a filter, liquid tanks, a stirrer, a peristaltic pump, a pulsation
dampener, and sensors to measure pressure and flow rate. In order to simulate
filter clogging faster different-sized polyetheretherketone particles are mixed in
water in various concentrations.

The main objective is to predict the RUL of the filter, where the 20psi difference
between upstream and downstream pressure is considered as the threshold. 48
experiments are simulated in 10H z frequency under 3 equal-sized sets of possible
particle sizes:

 small - (45 — 53um)

o medium - (53 — 63um)

o large - (63 — 75um)

Every set has equal numbers of 4 various ratios of particles:
0.4%

0.425%

0.45%
0.475%

19



Dataset

In each experiment information is available as the following set of features:

Time (s) - time passed since the start of the experiment

Flow Rate (ml/m) - flow rate of fluid running through experiment pipe

Upstream Pressure (psi) - the pressure of fluid entering the filter

Downstream Pressure (psi) - the pressure of the fluid leaving the filter

Particle Size (um) - particle size

Solid Ratio (%) - the ratio of solid particles in the fluid

3.1.2 Preprocessing
Primary analysis and Cleaning

This section analyses experimental data after basic preprocessing steps, such as
Differential Pressure (AP) calculation and frequency drop. The pressure drop
between Upstream and Downstream or AP is calculated simply by subtracting
the latter from the former. Frequency is dropped from 10Hz to 1Hz. Averaging
and median techniques are tried where every 10 seconds are aggregated using the
appropriate method and the former is selected because of resulting in smoother
and stable points, 3.1 and 3.2 respectively.
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Figure 3.1: AP/Time graph after using averaging technique.
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Figure 3.2: AP/Time graph after using median technique.

Figure 3.3 shows flow rates of 48 experiments against time clustered by specific
colour from the palette based on Sample (considering that particles in the first
16 experiments are small, the next 16 are medium, and the rest are large sized).
Figure 3.4 depicts the AP-Time graph grouped by their Size. This way we can see
also the difference between different Ratios. These two analyses proved that the
larger the Size and the bigger the Ratio make filter clogging faster. Moreover, the
scatter plots depicted the relationship between Flow and AP in figure 3.5. The
last graph hinted us that samples with large particles are a little different than the
rest which might affect the model’s sensitivity towards that samples. This theory
is tested in next sections of my thesis.
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Figure 3.3: Flow Rate/Time graph
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Drop
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We can see from the first inspections that data has outliers at the beginning
and at the end of each experiment. The former is because simulation data is
collected from a physical experimental rig and it takes some time after starting the
experiment to reach certain values. On the other hand, we can remove outliers at
the end by clipping the data samples after AP reaches a certain threshold, which
is set as 20psi. Records after flow reach 550ml/m are dropped as well. After the
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Figure 3.4: AP/Time graph grouped by Size
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Figure 3.5: AP/Flow graph
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cleaning phase dataset became as follows (figure 3.6, 3.7, 3.8):
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Figure 3.6: Flow Rate/Time graph after cleaning
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Figure 3.7: AP/Time graph after cleaning
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Figure 3.8: AP/Flow graph grouped by Size after cleaning

Furthermore, RUL feature was generated by taking the reference point as the
last sample to have 0 RUL, then subtracting the current timestamp from the
last timestamp iteratively (7" of the last sample - T' of the current sample). The
following figures (3.9, 3.10, 3.11) show the relationship between RUL and other
features. These graphs also show a slight difference between the processes of large-
particle-sized samples and the others. Moreover, Size is converted to a numerical
value by representing its mean value (e.g. 45-53 to 49). The downstream pressure
feature is removed since it is represented by Drop.
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Figure 3.9: RUL/Flow graph
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Chapter 4

Methodology

4.1 Preliminaries

Normalization

Normalization is a common practice in preprocessing step for datasets. It is the
process of scaling the values between the fixed range so that the data can be
compared on a common scale. For some scale-sensitive algorithms, like neural
networks, it can cause problems. For example, features that can reach very high
values can have more weight compared to others that have significantly smaller
values while in reality weights of these features should be similar (e.g. Flow Rate
is fluctuating in a couple of hundreds while Ratio can only be a floating point
between 0 and 1). Another benefit is to help to prevent overfitting. Overfitting is
when the model is adapted too much to the training sample set so that when a
new unknown sample is given it is not able to infer correctly. This is because the
model is paying too much attention to noise and not to the underlying pattern.

For this dataset, the Min-Max scaler (eq. 4.1) is utilized since the dataset has
known minimum and maximum values and it is not normally distributed. Data
is normalized between 0 and 1 not only for the continuous features, such as Flow,
Upstream Pressure, and AP but also so-called discrete features which are Size and
Ratio. This is because the goal is to make the model more generalized and robust
so that when it comes across something that was not in training or tests it can
infer. This is particularly possible because the minimum and maximum values
these features can achieve are somewhat known. For instance, Ratio cannot be
more than 100% and less than 0%.

X — Tmyj
Lscaled = n (41)

Tmaz — Tmin

Minimum maximum values for each set are fixed by considering the training
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dataset only and then applying a transformation to the test dataset without
changing fixed values.

4.1.1 Sliding windows

The sliding window technique examines and handles data by shifting a fixed-sized
window across the input data. This approach breaks down a larger input sequence
into smaller, more manageable sections that can be analyzed independently.

To apply the sliding window technique, a window with a fixed size (window size)
is moved across the input sequence, one position (stride) at a time (figure 4.1).
Each shift is one batch of data to feed the model as input. Time series analysis is
a common application for the sliding window technique.

Initial Window
1 2 3 4 5 6 7 8 9 10
Window Slide
1 2 3 4 5 6 7 8 9 10

Figure 4.1: Process of sliding window with stride=1 and window size=5 [73]

Input data is considered as all samples of all window features except RUL. On
the other hand, the target value is the last value of RUL. This way model can be
trained to predict one value of RUL by taking a sequence of data with a length of
window size. Figure 4.2 shows an example from preprocessed data.

Input (X)

F uP Drop Size Ratio

0.8662619495 0.05400540054 0.0307294914 0.45 0.5

0.8660052253 0.05362794344 0.03230307889 0.45 0'5;

0.8631812624 0.0496501263 0.03643003474 0.45 0.5 Target (y)
0.8568235706 0.04866293081 0.02986847184 0.45 0.5

0.8548905905 0.05081153277 0.03185772394 0.45 0.5 RUL
0.8597683446 0.05249557214 0.02906683293 0.45 0.5 o7
0.8667602957 0.04244940623 0.03064042042 0.45 0'5;

0.8687536814 0.05046311083 0.03346100175 0.45 0.5

0.8663676588 0.04906942307 0.0333125501 0.45 0.5

0.865053837 0.04593362562 0.03120453668 0.45 0.5

Figure 4.2: Sample Input and Output shown as window
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4.2 Architectures

As was discussed in section 2 LSTM models are capable of easily extracting the
underlying information from the sequential data. Recent research has proven that
this type of model can achieve high accuracy in the applications of time series
analysis, specifically prognostic health management systems like RUL forecasting.
That is why this architecture was chosen first to experiment.

Secondly, SIREN architecture has promising results from research that show the
applicability of the model to time series prediction [72]. According to the research,
RUL estimation analysis has not been conducted with mentioned architecture.
Thus, as a second model SIREN is chosen.

Both models require the input to have sequential data to extract the latent
features hidden inside continuance. After preprocessing the utilized dataset has 3
features that are continuous: Flow rate, Upstream pressure, AP. The remaining
two features do not change during the experimentation time period: Size, Ratio.
Taking into account this information following two architectures are built.

4.2.1 LSTM

LSTM by itself always requires data to be in some certain length. In the case of
this experimentation window length is predefined. A general model with LSTM
architecture can be visualized as a network consisting of multiple LSTM layers
followed by fully connected layers which then generate a single value, prediction
of RUL. However, discrete values cannot be fed to the LSTM layer so they are
concatenated to the result of the last LSTM layer and then fed to the first fully
connected layers (figure 4.3).

LSTM networks are mostly consisting of redundant neurons, meaning that
training on these types of networks can end up “overfit". Common practice is to use
dropout for these networks. Dropout is used to prevent this. It is a regularization
technique that makes some random neurons be ignored during training so that
their weights are not updated. The most common activation function, ReLU is

used in this LSTM model [74].

4.2.2 SIREN

A very similar network is built with the only difference in the continuous feature
extractor where LSTM layers are exchanged with SIREN. Both models are tested
on separate sets of settings meaning that they do not share any hyperparameters
in common. A Sine activation function is used as the original paper suggested [72].
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Figure 4.3: General model of LSTM built for experiments
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Figure 4.4: General model of SIREN built for experiments

4.2.3 Model fitness

Measuring the difference between actual and predicted values not only by error but
also by accuracy equations is quite common in the field. Accuracy is the measure
that shows, as the name itself suggests, how accurate the trained model is.

Even though it is not "accuracy" by itself, R2 or coefficient of determination is a
good tool to measure how well the regression line fits the data points [75]. What
makes it an especially good metric for evaluation is its range. The R2 value ranges
from 0 to 1, with 1 indicating a perfect fit of the model to the data. An R2 value of
0 indicates that the model does not explain any of the variances in the dependent
variable. R2 values between 0 and 1 indicate the proportion of the variance that is
explained by the model. R2 is calculated using the formula 4.2:

RSS
R2=1- e, (4.2)
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where the sum of squares of residuals is RSS = X(y — §)?, the total sum of squares
is TSS = X(y — y)% v, 9, and g are the actual, predicted, and mean values of
features respectively. Residuals refer to the disparity between the observed values
and the predicted values.

4.3 Training

4.3.1 Settings

Each ML model has hyperparameters which by tweaking them requirements like
memory, time, or accuracy are met. Hyperparameter tuning is an important phase
of building a neural network. The most common parameters of the model are
optimizers, the number of hidden layers, the number of nodes in each layer, loss
function etc.

Moreover, besides the architecture of the model, also the shape of the input
data enables window size to be used for tuning and discovering the optimal size of
the window in the model.

Furthermore, grid search is utilized that seeks to identify the optimal hyper-
parameters for a model through the assessment of its performance on a grid of
potential values. In grid search, a specific set of hyperparameters is established and
the model is trained and assessed for each possible combination of the hyperparam-
eter values on a grid. The performance of the model is assessed using a preferred
evaluation metric and the combination of hyperparameters that yields the best
performance is selected as the optimal set of hyperparameters.

Although grid search can be time-consuming due to the extensive number of
hyperparameters and their potential values. In order to alleviate the load, as well
as considering the redundancy of the models only the following few parameters are
tested for each hyperparameter:

e For LSTM model; number of layers in LSTM layer 2, 3, number of neurons in
each LSTM layer 64, 128, number of neurons in first fully connected layer 128,
256.

o For SIREN model; number of layers in SIREN layer 3, 4, number of neurons
in each SIREN layer 64, 128, number of neurons in first fully connected layer
16, 32, 64.

4.3.2 Hardware Setup

Python programming language is used for analysis and model building. The machine
used to train the neural network has 11th Gen Intel(R) Core(TM) i7-11800H @
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2.30GHz as CPU and NVIDIA GeForce RTX 3070 with 8GB memory as GPU,
16GB RAM and is running on 64bits. Training is done in GPU.

4.4 Metrics

4.4.1 Loss functions

In machine learning, a loss function is a function used to assess the difference
between the predicted output of a model and the actual output. The purpose of a
loss function is to reduce this difference or "loss" as much as possible during model
training. The choice of a loss function depends on the nature of the problem and
the type of output being predicted. For instance, binary cross-entropy [76] is a
commonly used loss function for binary classification problems, while mean squared
error (MSE, eq. 4.3) is often used for regression problems. The loss function
determines the effectiveness of a model, and minimizing the loss function is an
important goal in machine learning model training.
The most famous loss functions for regression models are calculated as:

Yy —9)?
MSE = Zy—9)° (4.3)
n
MAE = Zly -4l (4.4)
n
MapE = Lxlr =9l (4.5)
nooy

where y and ¢ are the actual and predicted values respectively while n is the
number of samples.

MSE (eq. 4.3) is the mean of the squared differences between the actual
and predicted values. Large errors are penalized more heavily which makes the
optimization process smoother. MAE (eq. 4.4) is the mean of the absolute
differences between the actual and predicted values. All errors are treated as
equally important. MAPE (eq. 4.5) calculates the absolute percentage difference
between the actual and predicted values. The most important distinction of MAPE
from others is that it can be used with any scale since it represents the values
as percentages. The limitation of MAPE is that it is sensitive to extreme values
and zero for having it in the denominator. All of these functions are evaluated in
experimentation and while MAE and MSE are taken as loss functions for training.
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Chapter 5

Results

In this chapter, results from different experiments are explained. The baseline is
defined first which is accompanied by the results coming from various experiments
done for robustness and sensibility checks. The striking differences and similarities
between the experiment results are drawn to attention. Rich visuals and tables are
provided for the readers.

5.1 Baseline

To test different scenarios, the baseline is defined and the models are trained and
tested based on this baseline setting. In our case baseline is defined by considering
experiments with particles that are sized small and large as training and experiments
with medium size particles as the test dataset. Moreover, in the training phase,
all of the experiments are utilized (100%). It is important to mention that both
models with 5 different window sizes 10, 15, 20, 30, 50 and 2 different loss functions
MAE, MSE are trained to define the baseline making up a total of 20 best-result
for each metric MAE, MAPE, MSE, R2. Table 5.1 shows the best metrics obtained
using grid search for each model, window size and loss function. Although the
best values are near and quite low for both models SIREN performed slightly
better by 3 out of 4 metrics. From the table 5.1, it seems that there is no strong
relationship between window sizes and performance. Overall, for building the table
400 models were created. Each cell represents the optimal result from a specific
configuration of hyperparameters given model, window size, loss function, and one
of the 4 metrics. It can be noticed also that using MSE as the loss function gives a
moderate advantage, which is more clear from training progress too. For the LSTM
model, figures 5.1 and 5.2 shows the decrease in loss over the epoch in training and
validation respectively. The same type of graphs is plotted for the SIREN model
as well. From the graphs, it is evident that training takes fewer epochs and loss
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dropped more rapidly by using MSE.

Table 5.1: Best metrics for baseline.

METRIC
MODEL WINDOW LOSS ----- NAE T NAPE MSET T T Ry~
10 MAE 1 0.04697 0.16750 0.00388 0.90054
MSE | 0.04754 0.18098 0.00395 0.89879
15 MAE | 0.04338 0.17709 0.00319 0.91370
MSE | 0.04410 0.16038 0.00323 0.91244
LSTM 2 MAE 0.04692 0.18723 0.00361 0.89762
MSE | 0.04414 0.17402 0.00327 0.90706
20 MAE | 0.04071 +1.35% 0.18411 0.00272 +8.99% 0.91393 -1.5%
MSE | 0.04330 0.18967 0.00315 0.90172
50 MAE ' 0.05180 0.22871 0.00408 0.83799
MSE | 0.04953 0.21180 0.00405 0.83876
10 MAE | 0.04957 0.26725 0.00371 0.90582
MSE | 0.04499 0.25282 0.00310 0.92077
15 MAE | 0.05088 0.28078 0.00377 0.90063
MSE | 0.04307 0.23581 0.00275 0.92768
MAE 1 0.05376 0.24404 0.00426 0.88070
SIREN 20 MSE 0.04532 0.22036 0.00289 0.91988
20 MAE | 0.05389 0.22434 0.00428 0.86839
MSE 0.04016 0.20413 0.00249 0.92267
50 MAE ' 0.05115 0.16932 +5.58% 0.00416 0.83698
MSE 0.05220 0.26536 0.00360 0.85889
LSTM, Loss over epoch
window
0.4 —— 10 sec
15 sec
20 sec
0.3 —— 30 sec
—— 50 sec
: i
8 o2 - N MSE
0.1
0.0 S i
0 50 100 150 200 250 300

Epoch

Figure 5.1: Training loss progress over epoch.
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Figure 5.2: Validation loss progress over epoch.
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Figure 5.3: Training loss progress over epoch.
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SIREN, Loss over epoch
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Figure 5.4: Validation loss progress over epoch.

To prove if the suggested methodology performs well in other settings model is
trained and tested each time continuously with specific parameters and comparisons
are made between the results and the baseline. On this matter first, sensitivity
analysis is done by changing the experiments containing training and test datasets.
From 3 particle sizes, it is possible to have 3 permutations of the train-test split,
each time keeping one size only as the test and using the rest for training. This
way one can measure the effect of particle size on the development of the model. A
similar analysis is also performed for the ratio feature where samples with one type
of ratio are completely removed from the training and are present in the testing
dataset.

Yet another good method for sensitivity analysis is done by changing the
number of experiments inside the training dataset, every time removing 25% of the
experiments from the training dataset and then performing the training.

Progress of training and table of the best metrics present for each experiment
accordingly. Test tables are constructed using the same strategy as was for the
baseline.

5.2 Changing Compositions of Datasets based on
Sample Size

The first sensibility analysis is done by tweaking the training dataset based on the
sizes of the particles. In the baseline, the training dataset contains small and large
particles. Thus, by changing the content of the training set two times we can have
other 2 combinations of the train-test split. By doing this I measure the sensibility
of my method against the different sample sizes. In other words, answering the
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questions; Does my method performs well with different compositions? Is there any
particle size that hugely affects the models’ stability? From now on permutations
of different test datasets are called permutations and baseline permutation is called
permutation 1.

5.2.1 Permutation 2 (small particles for testing)

The first set of experiments is done by training the models with medium-sized
and large-sized particles and testing it on the dataset with small particles only.
Progress over the epoch does not show any abnormalities and loss quickly drops
very close to 0 (5.5, 5.6, 5.7, 5.8).

LSTM, Loss over epoch

0.4 window
—— 10 sec
15 sec
20 sec
0.3 —— 30 sec
—— 50 sec
g loss
=0.2 — MAE
g ------ MSE
0.1
0.0
0 100 200 300 400 500

Epoch

Figure 5.5: Training loss progress over epoch in permutation 2.
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LSTM, Loss over epoch
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Figure 5.6: Validation loss progress over epoch permutation 2.
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Figure 5.7: Training loss progress over epoch permutation 2.
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Figure 5.8: Validation loss progress over epoch permutation 2.

The best results table (5.2) shows that LSTM performed much better in this
particular case, winning four out of four metrics. Specifically, it is once again
shown that in most cases having an MSE loss function makes models more robust.
In general, both models have less than 0.2 MAPE and more than 0.9 R2 score
which makes them good enough. After this, it becomes clear that not including
the samples with small particles in training does not affect the results so much.

38



Results

Table 5.2: Best metrics for the second permutation of the training dataset (medium
and large particles for training).

METRIC
MODEL WINDOW LOSS ----- MAE T MAPE NSET T R3
10 MAE | 0.05725 0.15301 0.00519 0.93938
MSE | 0.05862 0.17455 0.00504 0.94210
15 MAE | 0.05189 0.15727 0.00444 0.94685
MSE | 0.05651 0.17355 0.00484 0.94212
LSTM 20 MAE 1 0.05439 0.16193 0.00458 0.94212
MSE 0.04762 0.15017 0.00343 0.95720
30 MAE 0.06333 0.19227 0.00625 0.91384
MSE | 0.04670 0.14548 0.00346 0.95332
50 MAE ! 0.08435 0.22342 0.01047 0.82820
MSE 0.05704 0.18023 0.00477 0.92371
10 MAE | 0.08523 0.21961 0.01044 0.88152
MSE | 0.10660 0.33739 0.01407 0.83650
15 MAE | 0.08869 0.25877 0.01149 0.86391
MSE | 0.08485 0.25600 0.01052 0.87510
MAE 0.06549 0.21189 0.00705 0.91324
SIREN 20 MSE | 0.07109 0.19921 0.00711 0.91166
20 MAE 0.05751 0.15079 +3.65% 0.00604 0.91882
MSE | 0.08785 0.25754 0.01051 0.85732
50 MAE ! 0.06445 0.26501 0.00685 0.88973
MSE 1 0.05465 +17.03% 0.15790 0.00489 +42.75% 0.92061 -3.97%

5.2.2 Permutation 3 (large particles for testing)

In one of the previous chapters while analyzing the dataset we noticed that samples
with large-sized particles were acting in a slightly different way in the rig. In this
particular permutation where the aforementioned samples are kept for the test
dataset, this hypothesis is analyzed whether they are making a huge difference in
the results of the model or not.

Upon first inspections of training processes (5.9, 5.10, 5.11, 5.12), it becomes
evident that the necessary epochs are less than the previous permutations to finish
the training, especially for LSTM model. This can be explained by the difference
between the similarity between small and medium and the similarity between large
and other particles. Having more similar datasets makes the training loss reach
low stable values faster, whereas even a slight difference prolongs the time because
now the model has seen more diverse data and needs to adapt to that too.
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Figure 5.9: Training loss progress over epoch in permutation 3.
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Figure 5.10: Validation loss progress over epoch permutation 3.
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SIREN, Loss over epoch
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Figure 5.11: Training loss progress over epoch permutation 3.
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Figure 5.12: Validation loss progress over epoch permutation 3.

From the test results (table 5.3), we can prove true our hypothesis of "having
the different particle-sized dataset for test affects the model fitness". Moreover,
unexpected heavy underfitting can be seen. It can be immediately noticed that
MAPE and R2 scores performed quite badly for LSTM model, having more than
0.4 and less than 0.36 respectively. In the field, these results are unacceptable for
considering a model a fit. Results for SIREN are even much worse: having a lot of
negative R2 and near 1 MAPE scores. These results also prove that relying only
on one metric can be deceiving to see the fitness of the model.
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Table 5.3: Best metrics for the third permutation of the training dataset (small
and medium particles for training).

METRIC
MODEL WINDOW LOSS ----- NMAE NAPE NIGET T Ro ~
10 MAE | 0.12302 0.40404 0.02176 0.35864
MSE 0.13638 0.42992 0.02661 0.23393
15 MAE , 0.13271 0.45339 0.02758 0.13056
MSE ! 0.13725 0.44996 0.02692 0.14811
MAE 0.13658 0.48341 0.02636 0.11080
LSTM 20 MSE | 0.13404 0.46874 0.02676 0.11053
30 MAE 0.12998 0.48078 0.02418 0.08226
MSE | 0.12980 0.45816 0.02536 0.03100
50 MAE ! 0.13516 0.50895 0.02538 -0.25955
MSE | 0.12864 0.48256 0.02388 -0.17783
10 MAE | 0.15667 0.57089 0.03349 0.01810
MSE | 0.16229 0.68034 0.03281 0.03286
15 MAE , 0.17682 0.93135 0.03762 -0.17379
MSE ! 0.148384-20.62% 0.56270+39.27% 0.03107 +42.78% 0.03416-949.95%
MAE 0.17969 0.90445 0.04055 -0.33529
SIREN 20 MSE | 0.16465 0.68289 0.03601 -0.19189
30 MAE 0.20600 1.24866 0.04707 -0.78287
MSE 0.16098 0.71439 0.03453 -0.32448
50 MAE ! 0.16983 0.76668 0.03663 -0.81685
MSE 1 0.17484 0.79778 0.03753 -0.89143

5.3 Reducing Size of Training Dataset

To analyze the importance of dataset size used in training to achieve better
performance number of training samples decreased 3 times, every time randomly
eliminating 25% more than the previous time, i.e, 25%, 50%, and finally 75%. The
remaining samples contain accordingly 75%, 50%, and 25% of the training dataset
of baseline. After the analysis, it becomes obvious whether similar fitness can be
achieved by using a smaller dataset. It is particularly useful to test the robustness
of the methodology, proving that the model can perform well even in a lack of data.

75%

From the graphs (5.13, 5.14, 5.15, 5.16) of the progress of training, we can see that
there is no evident change for LSTM model, while for SIREN number of epochs to
complete the training is slightly increased. It is also noticed that using MAE as a
loss function of SIREN results in unstable optimization and higher validation loss
at the end (figure 5.16).
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Figure 5.13: Training loss progress over epoch by using 75% of data.
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Figure 5.14: Validation loss progress over epoch by using 75% of data.
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SIREN, Loss over epoch

window
—— 10 sec
15 sec
0.3 20 sec
—— 30 sec
—— 50 sec
Q loss
r_:ﬁ 0.2 — MAE
> | e MSE
) g
0.0 L —
0 100 200 300 400 500 600 700

Epoch

Figure 5.15: Training loss progress over epoch by using 75% of data.
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Figure 5.16: Validation loss progress over epoch by using 75% of data.

Table 5.4 shows the performance of the model stays stable (very good) with 25%
fewer samples in training. There is no noticeable difference between the metrics
of the two models, where SIREN negligibly performed better specifically for the
mid-window sizes (15, 20, 30).
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Table 5.4: Best metrics after using 75% of original data in training dataset.

METRIC
MODEL WINDOW LOSS ---- 3755~~~ MAPE - - TrIREEEEEEETCEEE
0 MAE T 0.04366 0.16177 0.00309 0.92270
MSE | 0.04430 0.16973 0.00354 0.90966
5 MAE 170.0405241.10% 0.15920 +2.13% 0.002714+8.6%  0.92667-0.83%
MSE ' 0.04633 0.17874 0.00352 0.90434
LSTM 20 MAE 004218 0.17374 0.00297 0.91448
MSE T 0.04635 0.18483 0.00366 0.89425
20 MAE | 0.04596 0.18794 0.00338 0.89226
MSE T 0.04451 0.20135 0.00329 0.89560
0 MAE ' 0.04206 0.19491 0.00289 0.88556
MSE " 0.05233 0.22614 0.00429 0.83010
0 MAE | 0.05510 0.15386 0.00438 0.88749
MSE | 0.05183 0.22666 0.00387 0.90278
5 MAE T0.05013 0.22075 0.00349 0.90704
MSE ™ 0.04009 0.21262 0.00249 0.93434
MAE T 0.05340 0.20546 0.00376 0.89525
SIREN 20 MSE T 0.04190 0.23073 0.00261 0.92778
20 MAE | 0.04005 0.15588 0.00276 0.91558
MSE T 0.04834 0.23117 0.00332 0.89769
50 MAE ' 0.05637 0.23370 0.00434 0.82044
MSE " 0.06184 0.20354 0.00464 0.81704

50%

First glance at the training progresses (5.17, 5.18, 5.19, 5.20) reveals that the
decreasing the training size results in prolonged processes. Having fewer data to
reach the low and stable validation loss lasts longer. Similar to the previous case,
using MAE as a loss function results in less stable optimization.
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Figure 5.17: Training loss progress over epoch by using 50% of data.
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Figure 5.18: Validation loss progress over epoch by using 50% of data.
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SIREN, Loss over epoch
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Figure 5.19: Training loss progress over epoch by using 50% of data.
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Figure 5.20: Validation loss progress over epoch by using 50% of data.

Results presented in table 5.5 show even better results in each metric, reaching
as high as 0.954 R2 score and dropping below 0.14 MAPE score. The outcome of
the test in this phase suggests that it is enough to use only half of the training
data to reach optimal results.
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Table 5.5: Best metrics after using 50% of original data in training dataset.

METRIC
MODEL WINDOW LOSSf———}igE———————RDQﬂE ———————— NSE T TRy T
10 MAE | 0.03919 0.13927 0.00286 0.92731
MSE | 0.03717+8.97% 0.15578 0.00231 0.94089-1.36%
15 MAE | 0.04468 0.17326 0.00330 0.91103
MSE | 0.03743 0.15502 0.00231+31.07% 0.93873
LSTM 2 MAE 0.04120 0.17110 0.00261 0.92748
MSE | 0.04161 0.17414 0.00287 0.91941
20 MAE | 0.04212 0.18547 0.00288 0.90847
MSE 0.04646 0.19240 0.00336 0.89454
50 MAE ' 0.04819 0.20138 0.00351 0.86229
MSE | 0.04538 0.21238 0.00315 0.87402
10 MAE | 0.05337 0.21222 0.00381 0.90509
MSE | 0.04232 0.16925 0.00264 0.93470
15 MAE | 0.04458 0.21892 0.00284 0.92674
MSE | 0.03411 0.16091 0.00176 0.95369
MAE 0.05772 0.19623 0.00430 0.88125
SIREN 20 MSE | 0.04137 0.18083 0.00269 0.92714
20 MAE | 0.06170 0.19196 0.00601 0.81315
MSE , 0.04585 0.22145 0.00322 0.90205
50 MAE ' 0.04967 0.18354 0.00419 0.83723
MSE 0.04635 0.15085 +8.32% 0.00374 0.85066

25%

Graphs below (5.21, 5.22, 5.23, 5.24) proves that time to complete the training
increases when the size of the training data decreases. However, the same pattern
can be seen in training progress where, particularly in the STREN model, MSE
leads to better training.

LSTM, Loss over epoch
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Figure 5.21: Training loss progress over epoch by using 25% of data.
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LSTM, Loss over epoch

window
0.25 —— 10 sec
—— 15 sec
| —— 20 sec
0.20 —— 30 sec
—— 50 sec
[ loss
% 0.15 \ e
8 \
0.10
0.05
0.00
0 20 40 60 80 100
Epoch

Figure 5.22: Validation loss progress over epoch by using 25% of data.
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Figure 5.23: Training loss progress over epoch by using 25% of data.
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SIREN, Loss over epoch

0.14 window
—— 10 sec
0.12 15 sec
20 sec
0.10 —— 30 sec
| —— 50 sec
5 0.08 Do/ ni EZSE
So006 VWAL 00— MSE
0.04
0.02
0.00
0 20 40 60 80
Epoch

Figure 5.24: Validation loss progress over epoch by using 25% of data.

Even though metrics show a little drawback in the fitness of the model, the test
results are still very good, over 0.9 R2 less than 0.15 MAPE scores along with close
MAE and MSE (table 5.6). It is good to mention that in the case of using 25% of
the training data, LSTM performs slightly better than the SIREN model.

Table 5.6: Best metrics after using 25% of original data in training dataset.

METRIC
MODEL WINDOW LOSS ---- - NAB" """ APE " MR- Ro
0 MAE | 0.04341 0.16859 0.00322 0.91840
MSE |0.04347 0.16446 0.00324 0.91752
5 MAE " 0.04315 0.18178 0.00302 0.91897
MSE T 0.04797 0.18938 0.00366 0.90069
ST 20 MAE " 0.04364 0.15949110.97% 0.00323 0.90921
MSE T 0.04452 0.17536 0.00327 0.90747
20 MAE | 0.04499 0.18559 0.00317 0.90146
MSE T 0.04688 0.18682 0.00362 0.88786
50 MAE T 0.04879 0.20811 0.00360 0.86049
MSE 005081 0.19810 0.00392 0.84744
0 MAE | 0.07159 0.21874 0.00734 0.81629
MSE | 0.05822 0.23120 0.00502 0.87792
5 MAE " 0.06306 0.19462 0.00632 0.83585
MSE T 0.05834 0.20849 0.00487 0.87192
SIREN 20 MAE 004992 0.17458 0.00401 0.89061 -3.19%
MSE 7 0.06005 0.21264 0.00503 0.85983
20 MAE | 0.06307 0.22171 0.00550 0.83104
MSE T T0.05621 0.23602 0.00432 0.86859
50 MAE 006111 0.19073 0.00586 0.77424
MSE 1 0:04807 1+ 11:4% 0.14373 0.00336+10.97% 0.87027
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5.4 Reducing the Size of Datasets based on Par-
ticle Ratio

To analyze the sensitivity of the model towards the particle ratios, they are removed
from the training dataset 4 times, each time dropping all the samples containing
one of the {0.4, 0.425, 0.45, 0.475} ratios. Best metrics are then calculated for
each set of training processes using the same testing methodology used before and
tables are drawn for the comparison.

5.4.1 Training without particle ratio of 0.4

Training progress after dropping the samples with a particle ratio of 0.4 does
not show striking differences (5.25, 5.26, 5.27, 5.28). Quite the contrary it shows
similarity in terms of reaching the minima, both for the training and validation
steps. Meanwhile, the results coming from the test table 5.7 suggest that removing
the specified particles from the training set does not make the model worse. The
SIREN model outperformed the counterpart by having greater R2 and lower MSE
and MAE. However, its lowest MAPE score is over 22% which is an indication of
poor fitness.

LSTM, Loss over epoch

window
—— 10 sec
15 sec
0.3 20 sec
—— 30 sec
—— 50 sec
o loss
S50.2
< —— MAE
- & MSE
0.1
0.0
0 100 200 300 400 500

Epoch

Figure 5.25: Training loss progress over epoch with the absence of 0.4 particle
ratio.
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Figure 5.26: Validation loss progress over epoch with the absence of 0.4 particle

ratio.

0.05

0.00

Figure 5.27: Training loss progress over epoch with the absence of 0.4 particle

ratio.
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SIREN, Loss over epoch

0.10 window
—— 10 sec

15 sec
—— 20 sec
—— 30 sec
—— 50 sec

loss
—— MAE
------ MSE

0 20 40 60 80 100 120

Figure 5.28: Validation loss progress over epoch with the absence of 0.4 particle
ratio.

Table 5.7: Best metrics after removing samples with particle ratio of 0.4 of original
data in the training dataset.

METRIC

MODEL WINDOW LOSS ----- NAR T NMAPE T NSETTT T RO
10 MAE | 0.04936 0.17637 0.00389 0.90666 -4.05%

MSE | 0.05058 0.18820 0.00430 0.89894

15 MAE | 0.05008 0.17817 0.00430 0.89425

MSE | 0.05349 0.19829 0.00456 0.88503

LSTM 20 MAE 1 0.04805 0.18684 0.00360+47.75% 0.90549

MSE 1 0.04800+-24.02% 0.17954 0.00379 0.89893

20 MAE | 0.05316 0.21425 0.00428 0.87589

MSE 0.04875 0.19992 0.00366 0.89372

50 MAE ! 0.05499 0.21901 0.00471 0.82501

MSE 0.05388 0.21772 0.00437 0.84093

10 MAE | 0.03870 0.25762 0.00244 0.94340

MSE | 0.05493 0.35410 0.00471 0.89051

15 MAE , 0.04662 0.30073 0.00337 0.91900

MSE | 0.04224 0.24521 0.00269 0.93419

SIREN 20 MAE 1 0.04777 0.23781 \ 0.00354 0.90879

MSE | 0.04296 0.22557+27.9% 0.00282 0.92818

30 MAE | 0.05964 0.32032 0.00459 0.86671

MSE , 0.05772 0.29051 0.00451 0.87042

50 MAE ! 0.06300 0.35560 0.00467 0.82993

MSE 0.06083 0.30060 0.00481 0.82368
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5.4.2 Training without particle ratio of 0.425

Regarding the training process, this version of the training takes fewer epochs
than the previous case. However, in terms of reaching the minima they both acted
similarly (5.29, 5.30, 5.31, 5.32). In terms of test results presented in table 5.8, we
can see that it is a slightly better version of 0.4 in terms of error metrics, where R2
is quite close.

04 LSTM, Loss over epoch

window
—— 10 sec
15 sec
0.3 20 sec
—— 30 sec
50 sec
loss

------ MSE

0.0

0 50 100 150 200 250 300 350 400
Epoch

Figure 5.29: Training loss progress over epoch with the absence of 0.425 particle
ratio.
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>
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Epoch

Figure 5.30: Validation loss progress over epoch with the absence of 0.425 particle
ratio.
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SIREN, Loss over epoch
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Figure 5.31: Training loss progress over epoch with the absence of 0.425 particle
ratio.
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Figure 5.32: Validation loss progress over epoch with the absence of 0.425 particle
ratio.
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Table 5.8: Best metrics after removing samples with particle ratio of 0.425 of
original data in the training dataset.

METRIC

MODEL WINDOW LOSS ----- NMAE T MAPE NSRS R3
10 MAE | 0.04357 0.15760 0.00300+67.66% 0.92271 -2.27%

MSE | 0.04725 0.18494 0.00358 0.90593

15 MAE | 0.04512 0.18406 0.00337 0.90900

MSE ! 0.04985 0.19287 0.00405 0.88982

LSTM 2 MAE 0.04833 0.18591 0.00374 0.89133

MSE 0.04624 0.18609 0.00351 0.89938

20 MAE | 0.04287+19.42% 0.18368 0.00302 0.90428

MSE 0.05236 0.20126 0.00401 0.87318

50 MAE ! 0.05738 0.24692 0.00502 0.79943

MSE 0.05036 0.22617 0.00381 0.84711

10 MAE 1 0.04600 0.26057 0.00331 0.91680

MSE | 0.05453 0.32464 0.00443 0.88499

15 MAE | 0.04032 0.19365+22.88% 0.00244 0.93555

MSE ! 0.03745 0.24204 0.00211 0.94365

MAE 0.05066 0.30210 0.00375 0.89664

SIREN 20 MSE | 0.03947 0.24514 0.00229 0.93702

20 MAE | 0.04677 0.21073 0.00311 0.90342

MSE 0.05040 0.27721 0.00347 0.89283

50 MAE ! 0.03590 0.21317 0.00179 0.92944

MSE 0.04219 0.22798 0.00256 0.90012

5.4.3 Training without particle ratio of 0.45

For this particular case too striking differences are not visible in the training process
(5.33, 5.34, 5.35, 5.36). Although we can see a marginal drop in R2 score in test
results, other metrics are very close to the previous cases (5.9). This variation of
the training process as well as SIREN with a window size of 30 seconds and MSE
as a loss function outperformed LSTM slightly.
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Figure 5.33: Training loss progress over epoch with the absence of 0.45 particle

ratio.
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Figure 5.34: Validation loss progress over epoch with the absence of 0.45 particle
ratio.
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SIREN, Loss over epoch
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Figure 5.35: Training loss progress over epoch with the absence of 0.45 particle
ratio.
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Figure 5.36: Validation loss progress over epoch with the absence of 0.45 particle
ratio.
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Table 5.9: Best metrics after removing samples with particle ratio of 0.45 of
original data in the training dataset.

METRIC
MODEL WINDOW LOSS ----- NMAE T MAPE NSRS R3
10 MAE 1 0.04714 0.17092 0.00374 0.90391
MSE | 0.04692 0.16806 0.00359 0.90766
15 MAE | 0.04475 0.18772 0.00352 0.90596
MSE ! 0.04936 0.19429 0.00412 0.88826
LSTM 2 MAE 0.04681 ] 0.19349 0.00360 . 0.89777 i}
MSE 1 0.04284+14.38% 0.16152 0.00303+29.78% 0.91322 -1.66%
20 MAE 0.04597 0.20028 0.00353 0.88722
MSE 0.04957 0.20217 0.00405 0.87255
50 MAE ! 0.05080 0.22188 0.00392 0.84369
MSE 0.05154 0.21920 0.00402 0.83991
10 MAE 0.05447 0.29046 0.00434 0.89222
MSE | 0.05326 0.37416 0.00413 0.89600
15 MAE | 0.04955 0.31507 0.00369 0.90340
MSE ! 0.04534 0.30577 0.00311 0.91891
MAE 0.04625 0.23656 0.00340 0.90501
SIREN 20 MSE | 0.05324 0.30526 0.00385 0.89197
20 MAE | 0.06693 0.33043 0.00566 0.82409
MSE 0.03745 0.19687+21.89% 0.00234 0.92837
50 MAE ! 0.04214 0.21891 0.00237 0.90668
MSE 0.04689 0.26119 0.00318 0.87614

5.4.4 Training without particle ratio of 0.475

Finally, the last ratio available in the training dataset is removed and models are
trained using the rest of the samples. It can be observed from the progress that it
took for these experiments, especially for the LSTM model to finish the training
epochs (5.37, 5.38, 5.39, 5.40). There is no big variance from previous results in test
results in table 5.10 while having 15 seconds window showed the top performance
for both NN architectures.
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LSTM, Loss over epoch
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Figure 5.37: Training loss progress over epoch with the absence of 0.475 particle
ratio.
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Figure 5.38: Validation loss progress over epoch with the absence of 0.475 particle
ratio.

60



Results

SIREN, Loss over epoch
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Figure 5.39: Training loss progress over epoch with the absence of 0.475 particle
ratio.
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Figure 5.40: Validation loss progress over epoch with the absence of 0.475 particle
ratio.
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Table 5.10: Best metrics after removing samples with particle ratio of 0.475 of
original data in the training dataset.

METRIC
MODEL WINDOW LOSS CUUMAE T NAPE T MSE T Ry "
10 MAE | 0.04443 0.17390 0.00331 0.91413
MSE | 0.04678 0.18445 0.00352 0.90877
15 MAE | 0.04655 0.18096 0.00372 0.89899
MSE ! 0.04203 0.16752 0.00287 0.92272-1.3%
LSTM 20 MAE 1 0.04090+3.85% 0.17643 0.00274+4-10.06% 0.92083
MSE 0.04340 0.17970 0.00320 0.90952
30 MAE | 0.04345 0.18885 0.00331 0.89539
MSE 0.04240 0.17950 0.00307 0.90264
50 MAE ! 0.05806 0.24108 0.00498 0.80223
MSE 0.04766 0.21272 0.00344 0.86325
10 MAE 0.04406 0.31780 0.00326 0.91761
MSE | 0.04891 0.29287 0.00370 0.90639
15 MAE | 0.04289 0.25666 0.00269 0.92935
MSE ! 0.03938 0.20344 0.00249 0.93474
MAE 0.04540 0.27486 0.00309 0.91497
SIREN 20 MSE 0.04129 0.23606 0.00255 0.92947
30 MAE | 0.05910 0.28322 0.00474 0.85418
MSE , 0.04985 0.27116 0.00337 0.89535
50 MAE ! 0.05173 0.20100 +19.99% 0.00389 0.84671
MSE 0.07441 0.40886 0.00667 0.73964

5.5 Summary

Best models have the following hyperparameters (table 5.11) using the R2 as a
main metric. It is evident from the table that every experiment has a very good
performance except permutation 3 where samples with large-sized particles are
left for testing. Both architectures have an equal share, meaning 6 SIREN and 6
LSTM acted as the best models. In terms of window sizes, 15-seconds is the most
frequent while 50-seconds is not represented at all. The table proves once more
that using MSE as a loss function is the most well-performed way. Another very
evident finding is that LSTM models has always the same internal hyperparameters
for the number of nodes in the first layers, the number of layers, and the number of
nodes in the first fully connected layer, 64-3-256 respectively. Meanwhile, STIREN
has 64-4-64 for the same parameters mentioned.

Figure 5.41 shows an example where the test sample (sample #1) is fed into the
model. The model chosen is the best configuration from the table 5.11, an LSTM
model with a window size of 20, loss function as MSE where the R2 score is 0.9572,
the highest of all.
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Figure 5.41: Sample prediction using the best model.
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Chapter 6

Conclusion and Future
Improvements

Predictive maintenance has gained a lot of attention from the industry due to the
capability of saving a lot of time, and thus money for businesses. Predicting the
remaining useful life of a component might be the main point to avoid unintentional
interrupts in the industrial process due to low tolerance for unnecessary breaks. The
recent developments in the field of computer science and, specifically, exponential
developments in Artificial Intelligence, make it easier to build efficient models that
are capable of forecasting the remaining useful life of an asset precisely.

In this research thesis, I provide an elaborate background and state-of-the-art
related to the predictive maintenance and usage of Al in the field. Publicly available
case study data is used to test the arguments of the thesis. State-of-the-art artificial
neural network architectures are tested and results are provided.

Overall, the results are promising for the models used. Especially, the recently
developed architecture called STIREN is tested for the usage of predicting RUL in
the filters and showed good performance. Different setups of training datasets are
tested to see the robustness concerning the specific configuration of parameters of
the dataset, such as particle sizes. The outcome of the experiments shows that the
absence of samples with one type of particle size (large) in the training process
affects the model, which in turn results in a very high overfit. By this a hypothesis
asked during the analysis of the data is addressed.

Moreover, the response to whether changing the size of the training dataset
affects or not, and how is provided by the results of the models after the dropping
of random samples from the training dataset. With this regard, the overall fitness
of the model is not changed which means that using as few as 25% of the original
training samples does not take a toll on the model at all. Apart from random
elimination, samples with specific ratios are dropped every time to create four
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models and tested on the test dataset. Results show that the performance of the
methodology stayed high no matter which particle ratio is absent from the training.
This has a particular meaning that the models are not sensitive towards the particle
ratio, where it can still be robust if there is any missing from training.

The results of the thesis prove that the specific AI models can be utilized in the
scenario of predicting the RUL of a filter. However the dataset is coming from a
physically built rig and the simulation is more likely to be very similar to the real
examples, one cannot be sure how much it can be useful for real plants and filters.
Future improvements can be done on this matter by testing the methodology on
data collected by real processes and application of it to real-world examples.

Moreover, in terms of models’ performance, however how good the performance
of the models tested, different parameters can be tried, provided enough time and
computational power. Trying on more combinations of dataset configurations can
be a good start.
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