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Summary

In the last decade the number of satellites per year deployed from the International
Space Station (ISS) is rapidly increasing. Despite the many pros of this strategy,
the main cons is the low initial altitude of the ISS orbit which implies a shorter
operational life. Indeed, a satellite deployed in that orbit, without a propulsion
system, is usually meant to re-enter into the Earth atmosphere over a period of time
ranging from few weeks to 3 years. This work is performed in collaboration with
Nanoracks Space Outpost Europe which serves satellite deployment on board the
ISS. The main objective of the study is to develop a software tool to predict the
in-orbit behaviour of satellites deployed from the ISS, visualising the trend of the
orbital elements up to the re-entry into the atmosphere and with a main focus on
the altitude variation. The method, followed to examine the effect of perturbations
on the satellite orbit, is a general perturbation technique, the solution of which is
achieved through numerical integration; hence, the approach is semianalytical. The
simulations show results for 1U, 2U and 3U CubeSats with an average relative error
in the lifetime calculation of 15%. In conclusion, the work carried out could be
continued by implementing some modifications to the code to strive more accurate
results.
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Chapter 1

Introduction

This study consists of developing a code to estimate the time it takes to a LEO
(Low Earth Orbit) satellite to reenter the Earth’s atmosphere and to show how its
orbital elements vary in the meantime. The work was performed within a company,
Nanoracks Space Outpost Europe (NRSOE), which serves satellite deployment
from the International Space Station (ISS). Therefore, among the various satellites
populating the LEO, the main focus was on those released from the ISS.

1.1 About Nanoracks Space Outpost Europe and
its services

Nanoracks Space Outpost Europe, the space company at which this thesis was
conducted, deals with logistics on board the ISS. Particularly, it hosts internal and
external payloads and provides satellite deployments; given the study case, the focus
is on the latter. The company offers three options depending on the properties of
the satellite to be deployed [1] [2] [3].

Nanoracks CubeSat Deployer (NRCSD). Of the three options it is the smallest
deployer and in the single wide configuration it is capable to host a maximum
volume of 6U, i.e. 10 cm x 10 cm x 60 cm, 12U in the double wide configuration.
The NRCSD is suitable for CubeSats, a class of satellites conforming to a
specific criteria that controls factors such as its shape, size, and weight. A
CubeSat is based on a 10 cm cube unit with a mass of approximately 1 to
1.33 kg, called 1U [4]. The satellite is integrated inside NRCSD at the ground,
then, the assembly is launched to the ISS, lastly, the position for deploying is
reached through a robotic arm, the JEMRMS (Japanese Experiment Module
Remote Manipulator System). NRCSD interfaces with the JEMRMS via the
Multi-Purpose Experiment Platform (MPEP), which can also mount another
CubeSat deployer, the J-SSOD (JEM -Small Satellite Orbital Deployer) [5]. As
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Introduction

figure 1.1 shows, eight single wide NRCSDs can be used at once, for a total
volume of 48U.

Figure 1.1: Nanoracks Cubesat Deployer (credit NASA [6])

Nanoracks Kaber Deployment System (NRKDS). It consists of two systems:
the Nanoracks Kaber Deployer and the Nanoracks Separation System. The
NRKDS aims to serve microsatellite with a mass lower than 90 kg and size
lower than 106 x 81 x 63 cm. It utilises as a staging facility the JEM, but unlike
NRCSD, it is positioned through the Canadian robotic arm SPDM (Special
Purpose Dexterous Manipulator).

Nanoracks Airlock (NRAL). It is also called Bishop. Unlike the NRCSD and the
NRKDS, the NRAL not only performs satellite deployments but can accommo-
date payloads too, either internally or externally. It is maneuvered through the
SSRMS (Space Station Remote Manipulator System) and can deploy satellite
with mass up to about 320 kg.
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Introduction

Figure 1.2: Nanoracks Bishop Airlock (credit NASA [7])

1.2 Satellite deployment from the ISS: advantages
and disadvantages

The traditional method to place in orbit a small satellite is through the rideshare.
Whereby, when a rocket can launch extra-weight other than its main payload, it also
hosts smaller payloads. However, the alternative method of deploying from orbiting
platforms has recently been successfully pursued, exploiting the presence of the ISS
in LEO. In fact, in the last decade more than 200 satellites were launched from the
space station [8]. There are three main reasons for these remarkable numbers [9]:

Flexible launch windows. First of all, from six to nine launches to the ISS are
usually programmed each year [10]. Thus, unlike the typical rideshare, missing
the launch window may only result in the mission being rescheduled over the
following three months. This point is crucial for CubeSat developers, such as
small companies, research centers and universities, who could find it difficult to
keep up with deadlines.

Launch Environment. Launching with rideshare solutions means that the satellite
is treated as a secondary payload, and it is directly mounted on the internal
rocket structure. It must withstand the challenging mechanical loads in the
harsh launch environment, mainly vibrations and shocks. Also, it must survive
to the depressurisation load inside the rocket fairing; consequently, several
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expensive test are required. On the other hand, deploying from the ISS implies
that the satellite is launched toward the station inside a cargo resupply ship.
Therefore, a pressurised environment with ambient temperature is maintained.
Moreover, the satellite is bubble wrapped and placed inside Cargo Transfer
Bags. This considerably reduces the magnitude of shock and vibration loads
and avoids expensive test, increasing development speed.

Quality check. Lastly, the crew onboard can check before the deployment whether
the satellite was damaged during the launch.

On the other hand, the satellite could be deployed after some months it reached
the station, depending on the ISS scheduling. Furthermore, the orbit of deployment
usually has an altitude of 400 km. Thus, the atmospheric drag will make it decay,
unless the satellite is equipped with a propulsion system compliant with ISS safety
requirements. Depending on the satellite properties, it could reenter the Earth’s
atmosphere in a range of time of few weeks to years. Certainly this is a good point
concerning the debris mitigation, but this lifetime could not be enough to accomplish
the mission set by the customer.

1.3 Code Development
Relying on the context previously discussed, NRSOE commissioned a study with the
aim of investigating dynamics that cause satellites to reenter the Earth’s atmosphere
after the deployment from ISS. In fact, this is usually a crucial point on which
contracting takes place when the company negotiates with a customer. Within the
company the task was approached in two ways, carried out separately: a parametric
study and a code development. The first concerns how the lifetime of a satellite
could change varying several parameters, e.g. initial altitude and drag coefficient.
That study exploits the existing mission analysis tools (STK, DRAMA etc.) and is
reported in [11]; instead, code development is dealt with in this document.

Thus, the aim of this work is to design an intuitive software tool that quickly
estimates the lifetime of a satellite deployed from the ISS. Also the trend over time of
the satellite orbital elements should be visualised, with a main focus on the altitude
variation. The altitude, indeed, is a parameter allowing to know when the satellite
has reentered the Earth’s atmosphere. A code was developed to achieve this objective,
it was called Orbit Lifetime Estimation Tool (OLET). The approach implemented
to investigate the effects of perturbations is semianalytical, hence, equations are
obtained with general perturbations techniques and then numerically integrated. The
general approach is also applied in well-known orbit propagators, such as the SGP4
model.

The great majority of satellites launched from ISS are CubeSats, indeed, the
OLET was tested on them, mainly 1Us, 2Us and 3Us. However, the code could
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be potentially used also on other types of satellites, if their properties are known.
Also, with small changes on the equations implemented, OLET could be applied to
other kind of low Earth orbits, and not only to that of the ISS (quasi-circular, 51.6°
inclined, 400 km altitude).

5



Chapter 2

Basics of Astrodynamics

This work lays on physical principles which should be briefly introduced before
dealing with the main part of the work. Initially, the laws underlying astrodynamics
are presented; ideal conditions are considered to simplify the concepts as much as
possible. Later, other effects are added to make the physical description adhere to
reality. The theoretical treatment is not exhaustive, as the aim is to provide some
notions to make this thesis easier to read.

2.1 Basic Laws
Kepler and Newton laws, dating back to 17th century, provide the description and
the equations to understand the planetary motion. Thus, a brief overview is reported
with reference to [12].

2.1.1 Kepler’s Laws
Kepler’s laws are an attempt to fit Tycho Brahe’s observations of celestial bodies in
a geometry. They are fundamental to understand orbital mechanics and mark an
epoch in the history of mathematical science.
First Law. The orbit of each planet is an ellipse, with the Sun at a focus.

Second Law. The line joining the planet to the Sun sweeps out equal areas in equal
times.

dA

dt
= cost (2.1)

Third Law. The square of the period of a planet (T ) is directly proportional to the
cube of its mean distance from the Sun. The semi-major axis (a) of the ellipse
is also called the mean distance from the Sun.

T 2 = ka3 (2.2)

6
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2.1.2 Newton’s Laws of Motion and Universal Gravitation
Kepler’s laws are still a description of the planet motion; their mathematical expla-
nation was achieved years later by Newton. He identified the following three laws of
motion, valid in an inertial reference frame.

First Law. Every body continues in its state of rest or of uniform motion in a
straight line unless it is compelled to change that state by forces impressed
upon it.

Second Law. The time-rate change of momentum is proportional to the force
impressed and is in the same direction as that force.

d(mv⃗)
dt

) =
Ø

F⃗ (2.3)

Third Law. To every action there is always opposed an equal reaction.

When the mass of the body remain constant over time, the (2.3) can be expressed as
follows:

m
dv⃗

dt
= ma⃗ =

Ø
F⃗ (2.4)

Moreover, Newton also formulated the law of gravity, mathematically expressed in
(2.5), in which the force applied to the mass m by the mass M is considered.

Law of Universal Gravitation. Any two bodies attract one another with a force
(Fg) proportional to the product of their masses (M, m) and inversely propor-
tional to the square distance (r) between them.

F⃗g = −G
mM

r2
r⃗

r
(2.5)

Where, r⃗ is the position vector of m with respect to M . G is the universal gravitation
constant and has the approximate value of 6.673 × 10−20 km3/kg · s2. The minus
sign in (2.5) indicate that the gravitational force is attractive.

2.2 The Two-Body Problem
Most of the time when a complex orbital study is approached, taking into account
all the effects acting on the system from the very beginning may be difficult. Thus,
the two-body problem is often a starting point. In this section, the purpose is
only to provide the equations, used further on. For a detailed understanding and
mathematical demonstrations, please refer to [12] and [13].

7
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2.2.1 Two-Body Problem Assumptions
The following assumptions are necessary to develop the two-body equation, a useful
tool to comprehend the orbital mechanics but not enough to estimate accurately the
motion of an orbiting body.

1. The two-body system consists of a primary body and one secondary (figure 2.1).
The mass of the latter (m) is negligible compared to that of the former (M).

2. The coordinate system chosen is inertial.

3. The two bodies are spherically symmetrical, with uniform density. This allows
to treat each as a point mass.

4. No other forces act on the system except for gravitational forces that act along
a line joining the centers of the two bodies.

Figure 2.1: Two-body scheme and inertial frame

2.2.2 The Equation of Relative Motion
Basing on assumptions of subsection 2.2.1, the second law of motion (2.4) and the
law of gravitation (2.5) are evaluated for each body and manipulated to get the
two-body equation:

¨⃗r = − µ

r2
r⃗

r
(2.6)

It is a second-order, nonlinear, vector, differential equation. µ is called gravitational
parameter and it is defined as the product between the universal gravitation constant
and the primary mass of the system, µ = GM . r⃗ is the position vector of the
secondary body with respect to the primary; hence, this form of the equation is
relative.

8
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2.2.3 The Trajectory Equation
Despite the introduction of the two-body motion equation, still some useful informa-
tion about the nature of orbital motion are missing. These elements are found in the
last of two-body assumptions (subsection 2.2.1).

No other forces act on the system except for gravitational forces and the fact that
the gravitational field is conservative imply that the (specific) mechanical energy
(E) of each body is constant over time. Thus, an object moving under the influence
of gravity alone does not lose or gain mechanical energy, it only exchanges kinetic
energy for potential energy.

The second part of the assumption, forces that act along a line joining the centers
of the two bodies, means that there is no tangential force acting with respect to
the center of the reference frame considered in the equation of relative motion,
i.e. the primary point mass. In other words, there is no torque acting on the
system, consequently, the (specific) angular momentum (⃗h) of the secondary mass
about the primary mass does not change over time. Since h⃗ is defined as the cross
product between position and velocity vectors, it must be perpendicular to the plane
containing r⃗ and v⃗, called orbital plane. Thus r⃗ and v⃗ must always remain in the
same plane fixed in inertial space because the specific angular momentum is constant.
This imply that the orbital motion is two-dimensional.

In brief, the following relations are valid under 2.2.1 assumptions.
dE

dt
= d

dt
(K + Ug) = d

dt

A
v2

2 − µ

r

B
= 0

dh⃗

dt
= d

dt
(r⃗ × v⃗) = 0⃗

(2.7)

Where E and h⃗ are specific parameters since they are obtained dividing mechanical
energy and angular momentum for the secondary mass.

Basing on (2.7), it is possible to manipulate and integrate the two-body equation,
obtaining the trajectory equation, hence, how the position change over time.

r = h2/µ

1 + (B/µ) cos ν(t) = p

1 + e cos ν(t) (2.8)

Where B is the module of a vector constant of integration and ν is the angle between
B⃗ and r⃗. The constant of integration B⃗ is defined as a vector pointing from the
primary mass to the perigee.

The (2.8) equation is mathematically identical to the general equation of a conic
section written in polar coordinates, where p is the conic semilatus rectum and ν
is the true anomaly. Consequently, under the two-body problem assumptions, the
orbital trajectory is always a conic with a focus located on the center of the primary
body. Therefore, the fist Kepler’s law is extended to circles, parabolas, hyperbolas
and also to degenerate conics, such as one or two straight lines or a single point.
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2.2.4 Classical Orbital Elements
Considering a two-body system, given (2.7) and (2.8), to define the satellite trajectory
the only parameters needed would be the specific angular momentum vector h⃗ and
the mechanical energy, E. These quantities are provided by a position vector, r⃗,
and by a velocity vector, v⃗, both consisting of three components each. Thus, six
parameters completely identify the orbit and they are collected in a six components
vector called state vector, X.

The (2.6) combined with the velocity definition as time derivative of the position
vector may be integrated to obtain the satellite trajectory. These equations define a
first-order differential system which has the six components of X as variables (2.9).
Thus, a state vector, consisting of position and velocity vectors, could be considered
as a set of initial condition. v⃗ = ˙⃗r

˙⃗v = − µ
r3 r⃗

(2.9)

Figure 2.2: Classical Orbital Elements scheme

Defining the orbit through a state vector of position and velocity vectors is not very
intuitive. Therefore, the X vector can be written in many equivalent forms, called
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element sets. The most common is the one represented by classical orbital elements,
also named Keplerian elements or osculating elements. A scheme of an elliptical orbit
is reported in figure 2.2, and some of the orbital elements and parameters needed
to define them are shown. The reference system considered is geocentric and not
rotating (ECI), its fundamental plane corresponds to the Earth equatorial plane.
The reference frame is defined by three unit vectors, Î, Ĵ , K̂. Besides the ellipse, the
Keplerian elements are generally adequate also for other conics (such as hyperbolas
and parabolas). However, some considerations are necessaries after the definitions of
the classical orbital elements below.

Semimajor axis. It describes the size of a conic orbit and is indicated by the a
symbol. The semimajor axis is the semisum of the distances of perigee and
apogee from the orbit focus, the closest point and the furthest respectively.
Moreover, it is mathematically related with mechanical energy under two body
assumptions. Sometimes it could be replaced by the semilatus rectum, p, which
defines the width at the primary focus, and its mathematical relation with h is
a consequence of (2.8).

a = − µ

2E
= rp + ra

2

p = h2

µ

(2.10)

Eccentricity. It defines the shape of a conic orbit and it is indicated by the e symbol.
The eccentricity is the magnitude of the vector e⃗, that is defined through the
mathematical demonstration leading to the integration of the motion equation
(see [12] and [13] for further details):

e⃗ = B⃗

µ
= v⃗ × h⃗

µ
− r⃗

r

e = |e⃗|
(2.11)

Furthermore, the eccentricity vector points always in the same direction of the
periapsis, since it is parallel to B⃗. If mechanical energy and angular momentum
are known, e can also be obtained from the geometry relation between semimajor
axis and semilatus rectum.

e =
ò

1 − p

a
(2.12)

Semimajor axis and eccentricity ere enough to identify the orbit on the orbital plane
(table 2.1). The orientation of the orbit in the orbital plane and of the orbital plane
in three-dimensional space are defined by other orbital elements not yet introduced.

11
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Table 2.1: Semimajor Axis and eccentricity influence on the orbit

Mechanical
Energy

Semimajor Axis Eccentricity Orbit

< 0 > 0 e = 0 Circular
< 0 > 0 0 < e < 1 Elliptical
= 0 ∞ e = 1 Parabolic
> 0 < 0 e > 1 Hyperbolic

Inclination. It is the angle between K̂ and the angular momentum, h⃗; it is indicated
with the i symbol. i refers to the inclination of the orbital plane.

i = arccos
K̂ ·

 h⃗

h

 (2.13)

Table 2.2: Inclination

Inclination Values Orbit Type
i = 0◦ Equatorial Prograde

0◦ < i < 90◦ Inclined Prograde
i = 90◦ Polar

90◦ < i < 180◦ Inclined Retrograde
i = 180◦ Equatorial Retrograde

Longitude of the ascending node. It is the angle, in the equatorial plane, be-
tween Î and the ascending node measured in counterclockwise when viewed from
the north side of the equatorial plane. It is indicated by the Ω symbol and also
named right ascension of the ascending node (RAAN). The ascending node is
the point on the equatorial plane at which the satellite crosses the equator from
south to north, vice versa the descending node from north to south. The line
connecting these two points is called line of nodes, which direction is defined by
the n⃗ vector, pointing to the ascending node.

n⃗ = K̂ × h⃗

Ω = arccos
C
Î · n⃗

n

D (2.14)
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Table 2.3: Longitude of the Ascending Node

n⃗ · Ĵ RAAN Values
ny ≥ 0 0◦ ≤ Ω ≤ 180◦

ny < 0 180◦ < Ω < 360◦

Argument of perigee. It is the angle, in the orbital plane, between the ascending
node and the perigee measured in the direction of the satellite’s motion. It is
indicated by the ω letter.

ω = arccos
C

n⃗

n
· e⃗

e

D
(2.15)

Table 2.4: Argument of Perigee

e⃗ · K̂ Argument of Perigee Values
ez ≥ 0 0◦ ≤ ω ≤ 180◦

ez < 0 180◦ < ω < 360◦

True anomaly. It is the angle, in the orbital plane between the periapsis and the
position vector. It was introduced to write the two-body trajectory equation
(2.8), as ν. This parameter let to identify the satellite position in the orbit.
Given (2.16) and the properties of the arccos function, the true anomaly is
not defined unequivocally. To determine if the satellite is between perigee and
apogee or vice versa, the flight path angle should be introduced (table 2.5), i.e.
the angle between position and velocity vectors.

ν = arccos
C

e⃗

e
· r⃗

r

D
(2.16)

Table 2.5: True anomaly

Flight path angle True anomaly values
r⃗ · v⃗ ≥ 0 0◦ ≤ ν ≤ 180◦

r⃗ · v⃗ < 0 180◦ < ν < 360◦

The equations (2.10), (2.11), (2.13), (2.14), (2.15) and (2.16) show that, starting from
position and velocity vectors, it is possible to obtain a new set of parameters which
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defines equally the satellite trajectory. Moreover, under assumptions of subsection
2.2.1, all the orbital elements remain constant over time, except the true anomaly,
which represents the time dependence of the motion.

Alternative Parameters

For some geometries, Ω, ω and ν could not be defined. For instance, a perfectly
equatorial non-circular orbit has no ascending node, hence, the RAAN angle is
undetermined. For this reason, an alternative parameter is introduced, the true
longitude of periapsis, ω̃true, which is the angle between the Î axis and the eccentricity
vector, e⃗.

ω̃true = arccos Î · e⃗

e
(2.17)

Another interesting case is the perfectly circular non-equatorial orbit that has no
periapsis. Thus, the true anomaly can not be evaluated and the argument of latitude,
u, is defined as the angle between the ascending node and the satellite position vector
measured in the motion direction.

u = arccos n⃗

n
· r⃗

r
(2.18)

Lastly, for a circular and equatorial orbit the true longitude, λtrue, is introduced as
the angle measured eastward from Î axis and the satellite position vector.

λtrue = arccos Î · r⃗

r
(2.19)

A check on the sign of the arccos argument is needed for these parameters, similarly
to what was done with Ω, ω and ν.

Eccentric and Mean Anomalies

The definition of alternative anomalies can be helpful in addressing certain astrody-
namic aspects (such as the Kepler’s equation). The figure 2.3 shows the definition of
eccentric anomaly, E, through an auxiliary circle.

It can be mathematically demonstrated that the eccentric anomaly is related with
the true anomaly through the following expression:

cos ν = cos(E) − e

1 − e cos(E) (2.20)

The uniform angular motion on a circle of radius a is the mean anomaly, M , and
it is defined by the relation below:

M = n(t − T ) (2.21)
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Figure 2.3: Eccentric and True Anomalies

where n =
ñ

µ/a3 is the mean angular rate, (t − T ) is the elapsed time since the
last passage over the perigee. The mean anomaly is also related with the eccentric
anomaly trough the Kepler’s equation.

M =
ò

µ

a3 (t − T ) = E − e sin(E) (2.22)

2.3 Perturbations

The problem addressed in this thesis does not fully respect the assumptions of
the two-body problem, an idealized solution which only approximates the observed
motion. Indeed, perturbations of other bodies (such as Sun, Moon and other planets)
and additional forces not included in Kepler motion influence the trajectory by
deviating from the ideal motion. The deviation may be larger or smaller depending
on the case under consideration, for instance the atmospheric drag during reentry
is comparable to the gravitational force of the two-body problem. Initially, three
main approaches to examine the effects of perturbations on the satellite trajectory
are introduced. Then, each source of perturbation is treated singularly, describing
its physics and the variables behind it. The equations of forces that most influence
the motion of the case study satellites will be discussed in more detail in the next
chapter. The main reference for this section is [13].
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2.3.1 Perturbation Techniques
The perturbation techniques are divided in three main classes: numerical, analytical
and semianalytical. The analytical one is that developed first since the other two
approaches require a computing power that did not yet exist at that time. Below is
a brief description of each category.

Special Perturbation (or Numerical) Techniques integrate, numerically, the
equation of motion including all necessary perturbing accelerations. Several
formulation of the motion equation can be considered, such as Encke’s (2.23)
and Cowell’s (2.24).
The fist method integrates the difference between the two-body acceleration (2.6)
and the perturbed acceleration (¨⃗rP = − µ

r3
P

r⃗P + a⃗P ), after some manipulations
the following equation is obtain:

δ ¨⃗r = a⃗P + µ

r3

CA
1 − r3

r3
P

B
r⃗P − δr⃗

D
(2.23)

δr⃗ is the difference between the two body position r⃗ and the perturbed position
r⃗P , while a⃗P is the sum of all perturbing accelerations. Nowadays Encke’s
formulation is not very popular since computers can integrate numerically
without making any particular changes to the equations.
As computer become faster Cowell’s formulation is usually preferred.

v⃗ = ˙⃗r
˙⃗v = − µ

r3 + a⃗P

(2.24)

r⃗ is the satellite position, v⃗ is the satellite velocity with respect to an inertial
reference frame and a⃗P , as before, is the sum of all perturbing accelerations
considered.
These methods are really accurate but are not without any difficulties. Such
as: selecting the most appropriate integration technique, the long computing
time required or obtaining the necessary data needed to evaluate the perturbing
accelerations. Lastly, numerical techniques degrades over time since truncation
and round-off errors due to fixed computer wordlength.

General Perturbation (or Analytical) Techniques allow to examine the effect
of perturbations on the orbital elements instead of position and velocity vectors
unlike previous techniques. This is achieved replacing the motion equation with
analytical approximations. These formulations enable to integrate analytically
truncating the series expansions of the perturbing accelerations.
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Figure 2.4: Encke’s method [13]

General perturbations theories relay on some analytical formulations, i.e. the
Lagrange (and Gauss) planetary equations of motion and the Hamilton’s formu-
lation. These approaches are more difficult to develop than numerical techniques,
less accurate and the quality of solution degrades over time. Nevertheless, they
let to better understand the perturbation source, they reduce the computing
time and the results are "general", which means that any initial condition is
accepted.

Semianalytical Techniques , as the name suggests, are an attempt to combine
the high accuracy of numerical solutions with the high simulation speed of
analytical formulations.

None of these approaches is the most suitable in every study case; hence, the
choice usually depends on the problem faced.

The perturbations briefly described in the next subsections are: central-body and
third-body gravitational effects, atmospheric drag and solar-radiation pressure. The
first two are due to gravity, a conservative force. The total energy of the system
is constant and the acceleration could be determined as the gradient of a potential
function. Whereas the last two are non-conservative effects. A potential function
is a way to express a conservative force, and, depending on the sign convention,
may or may not coincide with energy potential. In this case, the potential function
(U = µ/r) is the negative of the potential energy (Ug = −µ/r).
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2.3.2 Gravity field of a Central Body
One of the assumptions of the two-body problem is that the bodies are spherically
symmetric and can therefore be treated as point masses. This allows to evaluate
quite easily the potential function of the attracting body :

U2−body = µ

r
(2.25)

The gradient of (2.25) provides the attractive acceleration:

∇U2−body = ¨⃗r2−body (2.26)

If the gradient is explicated, the equation of motion for the two-body problem (2.6)
is obtained.

Figure 2.5: Scheme to derive the Gravitational Potential

In reality, the Earth is not exactly spherical and hence an aspherical-potential
function should be evaluated. To begin with, an infinitesimal element of Earth mass
dm⊕, at point Q, is considered. The change in potential, due to dm⊕, at point P,
which is at a distance ρQ from Q, is:

dU = G
dm⊕

ρQ

(2.27)
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Let r be the geocentric distance at point P , rQ the distance between the centre of
the Earth and dm⊕, and let Λ be the angle between r and rQ. The law of cosines is
used to explicate ρQ as a function of r, rQ and Λ; then, dU is integrated over the
entire body:

U = G
Ú

body

dm⊕

r

ò
1 − 2 rQ

r
cos Λ +

1
rQ

r

22
(2.28)

Through a series of Legendre polynomials, Pl, the denominator is expanded:

U = G

r

Ú
body

∞Ø
l=0

3
rQ

r

4l

Pl[cos Λ] dm⊕ (2.29)

where:

Pl[γ] = 1
2ll!

dl (γ2 − 1)l

dγl
(2.30)

A geometric approach is followed using the cosine law of spherical trigonometry to
relate Λ with longitudes and latitudes of P and Q. The associated Legendre functions
are introduced:

Pl,m[γ] = 1
2ll!

1
1 − γ2

2m/2 dl+m

dγl+m

1
γ2 − 1

2l
(2.31)

where l and m are degree and order, respectively. Then, through the addition theorem
of spherical harmonics and other steps, reported in [13], the aspherical-potential
expression is obtained:

U = µ

r

C
1 −

∞Ø
l=2

Jl

3
R⊕

r

4l

Pl [sin(ϕgcsat)]

+
∞Ø

l=2

lØ
m=1

3
R⊕

r

4l

Pl,m [sin(ϕgcsat)] {Cl,m cos(mλsat) + Sl,m sin(mλsat)}
D

(2.32)

C and S are coefficient empirically determined from observations and are strictly
related to the mathematical modeling for the Earth’s shape using spherical harmonics.
R⊕ is the Earth radius. ϕgcsat and λsat are satellite latitude and longitude, respectively.
Lastly, Jl coefficient is the negative of the C notation for zonal harmonics, namely:

Jl = −Cl,0 (2.33)

The trigonometric argument of the Legendre polynomials in (2.32) constitutes surface
spherical harmonics, since they are periodic on the surface of a unit sphere.

As (2.33) shows, the zonal harmonics are defined by zeroth order (m=0) and
represents bands of latitude. For instance, considering the second degree (l=2):
there are two circles, made by points with same latitudes, along which P2 is zero.
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Thus, these two circles identify three zones on the unit sphere, in which the function
is alternately increasing and decreasing. Among the zonal harmonics, the most
influential coefficient is J2. In fact, it is 1000 times larger than the next largest
coefficient and represents the most of the Earth’s oblateness. Sectorial harmonics
occur when l=m and represents bands of longitude. While tesseral harmonics
represent cases in which l /= m /= 0.

2.3.3 Third-Body Perturbations

In the two-body problem the first assumption (subsection 2.2.1) consists in identify
the two bodies. Typically the Earth-satellite system may be considered, neglecting
the gravitational influence of other bodies on them, such as the Sun or the Moon.
This effect can be significant or negligible depending on the satellite altitude (as in
section 3.2 will be discussed).

Figure 2.6: Third-body influence

The acceleration induced on an object orbiting around the Earth by a third body
is evaluated developing the motion equation for a three-body system (2.34). The
expression is obtained writing the equations of dynamics (2.4) for both the Earth
and the satellite with respect to an inertial frame. Besides considering the two-body
gravitational attraction, the attraction of the third body (figure 2.6) is also taken
into account in both equations. Then, the two equations are subtracted, assuming
the satellite mass negligible compared to that of the Earth and of the third body.

¨⃗r⊕sat = −µ⊕r⃗⊕sat

r3
⊕sat

+ µ3

A
r⃗sat3

r3
sat3

− r⃗⊕3

r3
⊕3

B
(2.34)
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r⃗⊕sat is the satellite position with respect to the Earth, r⃗sat3 is the the third body
position with respect to satellite, r⃗⊕3 is the third body position with respect to the
Earth, and lastly, µ3 is the third body gravitational parameter.

The first term is that of the motion equation in the two-body problem, hence, the
second term represents the perturbing acceleration due to the third body. Interest-
ingly, besides the third-body attraction to the satellite itself, the perturbation is also
caused by the third-body attraction to the Earth.

2.3.4 Atmospheric Drag
In LEO one of the main perturbations on satellite trajectory is determined by air
particles which are not negligible at 400 km altitude and hinder the motion. This
phenomenon is called atmospheric drag and it induces an acceleration on an orbiting
body. The drag acceleration has a simple mathematical formulation.

a⃗drag = −1
2

CDS

m
ρv2

rel

v⃗rel

v⃗rel

(2.35)

CD is the coefficient of drag, it depends by several factors, such as the body shape
and the way air molecules collide with it; a typical CD value is 2.2.

The cross-sectional area,indicated by S, is the satellite area normal to the relative
velocity vector, v⃗rel. The spacecraft attitude must be known accurately to estimate
S. Therefore, if the satellite randomly tumbles, it may be very difficult to calculate
the cross-section.

m is the satellite mass, if the spacecraft is not equipped with a propulsion system
the mass can usually be assumed constant. The ratio of mass to cross-sectional area
times the drag coefficient is named ballistic coefficient, BC (2.36). The lower is BC,
the greater will be the effect of atmospheric drag on the spacecraft orbit.

BC = m

SCD

(2.36)

The last two parameters of (2.35) are relatively velocity, v⃗rel, and atmospheric density,
ρ. v⃗rel is relative to the atmosphere. In fact, the air particles move due the friction
with the rotating Earth and due to the winds. The latter present a great uncertainty,
hence, they are not usually considered. The following expression can be used to
account the atmosphere motion due to the Earth’s rotation, ω⊕:

v⃗rel = dr⃗

dt
− ω⃗⊕ × r⃗ (2.37)

The minus sign in (2.35) indicates that the force acts along the opposite direction to
that of the relative velocity.

ρ is probably the parameter presenting the greatest uncertainty, the causes are
dealt with forward.
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In conclusion, although the drag acceleration expression is definitely simpler
than that obtained to evaluate the potential of an aspherical body (2.32), all the
parameters within the (2.35) formula are affected by a great uncertainty [13] [14].

Density Evaluation

Besides altitude, the density values in the upper atmosphere are mainly influenced
by three factors which interacts each other:

Molecular composition, i.e. what gases the atmosphere is composed of, their
molecular weight and whether they are electrically charged or not.

Solar flux, its main influence on the upper atmosphere density is due to the
incoming solar radiation, in particular to the Extreme Ultra-Violet, EUV. This
kind of radiation can not reach the Earth’s surface due to the presence of the
atmosphere. Thus, the EUV radiation flux, FEUV can not be detected from the
ground. However, the incoming solar radiation with a 10.7 cm wavelength, which
originates in the same layers of the Sun’s chromosphere and corona as the EUV,
can be measured from the Earth’s surface. Consequently, flux measurements of
the 10.7 cm wavelength radiation, F10.7, allow to deduce those of FEUV without
requiring any instrument outside of the atmosphere. The solar flux is measured
in Solar Flux Unit, SFU, and F10.7 values are usually between 70 SFU and 300
SFU.

1 SFU = 10−22 W

m2Hz
(2.38)

The solar activity has 11-year cycle that follows the Sun-spot cycle and influence
the amount of incoming solar radiation on Earth (figure 2.8).

Geomagnetic activity, indeed, the Earth’s magnetic field presents variations.
These influence density since electrically charged air particles interact with
the geomagnetic field. The geomagnetic activity can be measured trough the
geomagnetic planetary index, kp, a value averaged over twelve stations around
the world and detected every three hours. It is a quasi-logarithmic index ranging
from 0, low activity, to 9, extreme activity. The kp linear equivalent is the
geomagnetic planetary amplitude, ap (2.39), which is measured every three hours,
like kp. The average daily value of ap is Ap and its range is from 0 to 400,
although values usually do not exceed 100.

ap = exp kp + 1.6
1.75 (2.39)

The geomagnetic planetary amplitude is measured in gammas:

1 gamma = 10−9 T = 10−9 kg s

m
(2.40)
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As the solar activity, the geomagnetic activity has a 11-year cycle, but it is not
the only periodic variation. In fact, the Ap values are also influenced by the solar
wind position relative to the Earth’s magnetosphere, which has a semi-annual
cycle.

Generally, these three effects influence upper atmosphere density by increasing or
decreasing the number of particle collisions. Figure 2.7 and figure 2.8 show Ap and
F10.9 past observations and the periodicity of this parameters. Although the several
observations in the recent years, it is really complicate to evaluate accurately ρ. In
fact, there is no atmospheric model which is best for all applications since none of
them is able to remove all errors that may occur.
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Figure 2.7: Geomagnetic Planetary Amplitude variations
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Figure 2.8: Solar flux variations

Model Atmospheres

Many atmospheric models have been developed to achieve accurate density values,
but one of the main obstacles is the difficulty in predicting F10.9 and Ap.

Some of them try to bypass this uncertainty by following a static approach,
achieving great simplicity but at the same time being very imprecise. These models
may also take into account some variations such as latitudinal and longitudinal. The
former correspond to a change in altitudes at different latitudes due to the asphericity
of the Earth for circular inclined orbits. The latter considers changes in density,
temperature and wind due to the region (e.g. ocean, mountains etc.) over which the
satellite is orbiting. Following, some static approach models are briefly described:

Exponential Model . It ranges from 0 to 1000 km, and it is based on two assump-
tions: the density decreases exponentially with increasing altitude and there is
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a spherical distribution of particles.

ρ = ρ0 exp
5

− hellp − h0

H

6
(2.41)

where ρ0 is a reference density, h0 is the reference altitude, H is the scale height
and hellp is the altitude above the ellipsoid, indeed the Earth is not perfectly
spherical. Some values are reported in table 2.6.

Standard Atmosphere . It was released by the U.S. Committee on Extensions to
the Standard Atmosphere (COESA). As the Exponential Model, it ranges from
0 to 1000 km altitude. The Standard Atmosphere is a rough representation of
year-round and midlatitude (45°) conditions. It is assumed that the air obey to
the perfect gas law and the hydrostatic equation. Furthermore, the atmosphere
is considered to rotate with the Earth and its values are an average over the
diurnal cycle, semi-annual variation, cycle of Sun spots and cycle of geomagnetic
activity [15].

Neither of them are suitable for the purpose of this work since they neglect many
real world effects. However, at the beginning of writing the code, their simplicity,
particularly that of the Exponential Model, was helpful in providing an easily derived
input.

Table 2.6: Exponential Atmospheric Model

hellp

(km)
h0

(km)
ρ0

(kg/m3)
H

(km)
hellp

(km)
h0

(km)
ρ0

(kg/m3)
H

(km)
0-25 0 1.225 7.249 150-180 150 2.070x10−9 22.523
25-30 25 3.899×10−2 6.349 180-200 180 5.464×10−10 29.740
30-40 30 1.774×10−2 6.682 200-250 200 2.789×10−10 37.105
40-50 40 3.972×10−3 7.554 250-300 250 7.248×10−11 45.546
50-60 50 1.057×10−3 8.382 300-350 300 2.418×10−11 53.628
60-70 60 3.206×10−4 7.714 350-400 350 9.158×10−12 53.298
70-80 70 8.770×10−5 6.549 400-450 400 3.725×10−12 58.515
80-90 80 1.905×10−5 5.799 450-500 450 1.585×10−12 60.828
90-100 90 3.396×10−6 5.382 500-600 500 6.967×10−13 63.822
100-110 100 5.297×10−7 5.877 600-700 600 1.454×10−13 71.835
110-120 110 9.661×10−8 7.263 700-800 700 3.614×10−14 88.667
120-130 120 2.438×10−8 9.473 800-900 800 1.170×10−14 124.64
130-140 130 8.484×10−9 12.636 900-1000 900 5.245×10−15 181.05
140-150 140 3.845×10−9 16.149 1000- 1000 3.019×10−15 268.00

To achieve better accuracy, time-varying models are required, but at the cost of
greatly increasing the complexity. In fact, they may consider several effects such
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as: density variations due to the local time, namely diurnal variations, semi-annual
variations, related to the distance of the Earth from the Sun, solar activity cycle,
and many others. Some of the best known models are briefly discussed below.

Jacchia-Roberts Atmospheric Model . Jacchia divided the upper atmosphere
in two regions: one from 90 km to 125 km altitude and the other above 125 km.
This choice was due by assuming that mixing is predominant between 90 km and
100 km, and since diffusion equilibrium was assumed between 100 km and 125
km. An empirical profile of temperature, as a function of altitude and exospheric
temperature, is defined for each region. Temperature values are substituted
in the barometric and diffusion equations [16], to obtain the density. These
differential equations are numerically integrated over the altitude range (90 km -
2000 km) for various constant values of exospheric temperature. Fixed boundary
conditions are assumed at the lower altitude limit. In this way the solar activity,
the geomagnetic activity, semiannual variations, seasonal variations and diurnal
variation are considered. The numerical results are tabulated. Although the
densities are accurate, these tables are not easy to compute in mechanizations
since they require big storage, resulting in slow running. For these reasons,
Roberts developed analytical expressions that made possible implementing more
easily the Jacchia model in computing machines. For more details, see [16] [17]
[18].

NRLMSISE-00 . It was developed by the United States Naval Reasearch Labora-
tory, or NRL. MSIS stands for Mass Spectrometer and Incoherent Scatter Radar,
which are the two main data sources. The E indicates that the model extends
from the ground to space, whereas previous versions covered only the upper
atmosphere. 00 is reported in the name since the model was published in the
2000. NRLMSISE-00 is an improvement of the early MSIS versions since, in
addition to mass spectrometer and radar measurements, it assimilates density
values determined from drag on satellites and other orbiting objects. As Jacchia-
Roberts, it accounts time-varying effects such as solar and geomagnetic activity,
but it appears to provide advantages on the Jacchia model for estimating total
mass density [19].

In conclusion, this subsection shows the great complexity in determining the atmo-
spheric drag due to the uncertainty of its parameters. Particularly, the density is
influenced by many variables that are difficult to predict.

2.3.5 Solar-Radiation Pressure
The solar-radiation could be impacting or negligible depending on several variables,
such as the solar activity and the altitude. The incoming radiation from the Sun
has a mean intensity, called solar flux, of 1353 W/m2. When the radiation hits
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an exposed surface of a satellite, it exchanges momentum with it. The change of
momentum is expressed through a solar pressure value:

pSR = 4.51 × 10−6 N

m2 (2.42)

Dimensionally, the intensity the solar-radiation force on the satellite is defined as
the product between the solar pressure and the surface exposed to the Sun (A⊙).
This section is not the same used for aerodynamic drag calculations. Following, it
is reported a vectorial expression of the acceleration due the solar-radiation which
takes into account the reflectivity (cR) of the satellite:

a⃗SR = pSRcRA⊙

msat

r⃗⊙sat

|r⃗⊙sat|
(2.43)

r⃗⊙sat is the satellite position vector with respect to the Sun and it identifies the
direction along which the force acts. cR is a value between 0.0 and 2.0, which
indicates how the satellite reflects the incoming radiation. A value of 0.0 means that
the object is translucent, hence the light pass through it without any absorption and
reflection. 1.0 means that the radiation is all absorbed and 2.0 indicates that the
radiation is totally reflected. For further details see [13].
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Chapter 3

Assumptions and Methods

Once that the theoretical aspect has been explained, the following step is to establish
the method for pursuit the work objective. Also, it is necessary to indicate the
assumptions and justify them, e.g. which are the perturbation considered and why.
Thus, this chapter still includes theory but, at the same time, assessments are carried
out to understand how the code was developed.

3.1 Choice of Approach
As was briefly described in subsection 2.3.1, the main methods to evaluate the effects
of perturbation on satellite motion are: special perturbation (numerical), general
perturbation (analytical) and semianalytical techniques.

The purpose of this study is understanding which perturbation source influences
the satellite trajectory and showing the results in an intuitive way. Therefore,
analytical techniques should be more appropriate. Instead, numerical techniques
are not considered suitable because their output is usually a set of positions and
velocities. Moreover, although special techniques could achieve a great accuracy,
the result would be affected by the uncertainty behind the input data required to
define perturbing accelerations. Lastly, the three-dimensional numerical integration
of motion equation takes a long time to analyse long-duration orbit lifetime cases
[14].

3.1.1 Variation of Parameters
General perturbation techniques usually relay on the variation of parameters (VOP)
form of the equations of motion, developed by Euler and improved by Lagrange. In
fact, unlike the two-body problem, the orbital elements are not constant when the
system is perturbed. Thus, these elements are more properly osculating elements
associated with an osculating orbit at a particular instant of time. VOP equations
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describe their rates of change through a set of first-order differential equations:

dc⃗

dt
= f(c⃗, t) (3.1)

Parameters can change over time in two main ways: secular and periodic. Secular
variations represent a linear change over time, or proportional to a power of time.
Periodic variations, on the other hand, are due to effects that recur over a period of
time, which could be short (order of the satellite period or less) or long (considerably
longer than one period).

The next step is to make explicit the relationship between the rates of change of
the orbital elements and perturbing acceleration. The position vector is a function
of six parameters (state vector), such as orbital elements, and time:

r⃗ = x⃗(c⃗, t) = x⃗(c1, c2, c3, c4, c5, c6, t) = x⃗(a, e, i, Ω, ω, M, t) (3.2)

The velocity, hence the derivative over time of (3.2), is expressed in a perturbed case
as follow:

⃗̇r = ⃗̇x(c⃗, t) = dx⃗(c⃗, t)
dt

= ∂x⃗(c⃗, t)
∂t

+
6Ø

i=1

∂x⃗(c⃗, t)
∂ci

dci

dt
(3.3)

In an unperturbed system the second term of the right member would be zero since
in that case the orbital element rates of change are zero (dci/dt = 0). To guarantee
that each position and velocity vector defines an osculating ellipse, the condition of
osculation is imposed:

6Ø
i=1

∂x⃗(c⃗, t)
∂ci

dci

dt
≡ 0⃗ (3.4)

Substituting this expression in (3.3), the velocity is the same for an unperturbed
system and for one in which the osculation condition is imposed. However, it should
be noted that the latter implies only that the sum of the rates of change is zero, and
not each term.

After that, the velocity is derived over time, to obtain the acceleration, and the
result is substituted in the motion equation of a perturbed system (such as the second
equation of (2.24)). Lastly, the result is set up with the condition of osculation to
have a system of six equations in the six element rates:

6Ø
i=1

∂x⃗(c⃗, t)
∂ci

dci

dt
6Ø

i=1

∂ ˙⃗x(c⃗, t)
∂ci

dci

dt

 =
C

0⃗
a⃗pert

D
(3.5)

This expression does not have the same form of (3.1) and needs further development
to make computations easier.
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The main VOP forms are the Lagrangian and the Gaussian. The former is only
suited for conservative effects, such as gravity field of an aspherical central-body and
third-body gravitational attraction. The Gaussian VOP, on the other hand, works
for both conservative and non conservative effects. For further information about
VOP equations, see [13].

3.1.2 Lagrangian Variation of Parameters
Lagrange was the first to provide equations in the (3.1) form for all six orbital
elements. The development of these mathematical relations lays on considering the
perturbing acceleration of (3.5) as the gradient of the perturbing potential function, R.
This explains why the Lagrangian form is only appropriate for conservative effects. In
fact, it is not possible to define a potential function, U , for non-conservative effects.

R = U − U2−body (3.6)

After substituting ∇R in (3.5), the equation is further developed (details reported
in [13]) and the relations for the variation of parameters, also named Lagrangian
planetary equations, are obtained:

da

dt
= 2

na

∂R

∂M0

de

dt
= 1 − e2

na2e

∂R

∂M0
−

√
1 − e2

na2e

∂R

∂ω

di

dt
= 1

na2
√

1 − e2 sin (i)

I
cos (i)∂R

∂ω
− ∂R

∂Ω

J
dω

dt
=

√
1 − e2

na2e

∂R

∂e
− cot (i)

na2
√

1 − e2

∂R

∂i

dΩ
dt

= 1
na2

√
1 − e2 sin (i)

∂R

∂i

dM0

dt
= 1 − e2

na2e

∂R

∂e
− 2

na

∂R

∂a

(3.7)

The derivatives of R with respect to the classical orbital elements appear in
the (3.7) equations. Thus, it would be more appropriate to express the perturbing
potential as a function of these parameters .

3.1.3 Gaussian Variation of Parameters
The main feature of Gaussian VOP is that the orbital element rates are explicitly
expressed in terms of specific forces. Therefore this approach is suitable for both
conservative and non-conservative forces.
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To obtain a general expression: the (3.5) is considered and manipulated (see [13]):

dcj

dt
= ∂cj

∂ ˙⃗x
· a⃗pert (3.8)

It should be highlighted that the partial derivative with respect to the velocity and
the perturbing acceleration must be in the same frame, i.e. the RSW system (figure
3.1) which is defined by the following right-hand set of axis:

R̂ : along the radius vector.

Ŝ : orthogonal to R̂, lying on the orbital plane in the motion direction.

Ŵ : perpendicular to orbital plane and its direction coincides with that of the
angular momentum vector.

RSW system is not fixed and its axis rotate because of the satellite motion. As a
starting point, the specific forces, position and velocity should be written in this
coordinate frame.

Figure 3.1: RSW coordinate system

The (3.8) is still too general, whereby each orbital element variation is treated
singularly to obtain a more explicit expression relating the rates of change with
specific perturbing forces.

31



Assumptions and Methods

da

dt
= 2

n
√

1 − e2

;
e sin (ν)FR + p

r
FS

<
de

dt
=

√
1 − e2

na

I
sin (ν)FR +

C
cos (ν) + e + cos (ν)

1 + e cos (ν)FS

DJ
di

dt
= r cos (u)

na2
√

1 − e2
FW

dΩ
dt

= r sin (u)
na2

√
1 − e2 sin i

FW

dω

dt
=

√
1 − e2

nae

I
− cos (ν)FR + sin (ν)

3
1 + r

p

4
FS

J
− r cot (i) sin (u)

h
FW

dM0

dt
= 1

na2e

I
(p cos (ν) − 2er)FR − (p + r) sin (ν)FS

J

(3.9)

It should be underlined that FR, FS and FW are not forces but specific forces, hence
accelerations.

The Gaussian VOP are limited mainly to elliptical orbits due to the
√

1 − e2

term in almost all expressions. This term imposes the condition that the eccentricity
values must be less than 1. Furthermore, the presence of e and sin (i) terms in the
denominator of some equations identifies singularities for circular or equatorial orbits.

The (3.9) are usually further developed to study singularly the effect of each
perturbation. In fact, the perturbing acceleration are substituted and the expression
may be manipulated and expressed as power series. Exploiting power series to
express rates of change is an entirely analytical approach. However, this method
was not followed in this study. Indeed, the solution of (3.9) was obtained through
numerical integration, consequently the approach was semianalytical. The choice
was motivated by the desire not to lose much accuracy through further analytical
development. Also, the code is executed with the possibility of using some computing
power to integrate numerically (3.9).

3.2 LEO Perturbations
After defining the VOP form of motion equation, the order of magnitude for each
perturbation is determined, in order to identify which perturbing force influences
mostly the satellite trajectory, between those listed in section 2.3. As far as the
gravitational effect of a central-body is concerned, all periodic effects (tesseral and
sectorial) are ignored and it is considered only the J2 term (see subsection 2.3.2).

Two cases have been evaluated: one with a satellite mass of 1 kg and one with 10
kg, both with a 0.01 m2 cross-section (drag area and area exposed to the Sun). As
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figures 3.2 and 3.3 show, the atmospheric drag decreases with the altitude because of
the density trend, whereas the order of magnitude of other effects is about constant
over the altitude range represented.

In both cases the force with the higher order of magnitude is the J2 effect for
almost all the altitudes, except for those below about 150 km, where atmospheric
drag becomes predominant. The main difference between the two cases is that, for
the same cross-section area and altitude, the heavier satellite present more intense
perturbing effect than the lighter one, except for drag. Thus, for a 1 kg satellite
the atmospheric drag becomes negligible with respect to the other effects at higher
altitude than the 10 kg satellite.
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Figure 3.2: Perturbing force orders of magnitude in LEO msat = 1kg

As explained in Chapter 1, the study case is on 1U, 2U and 3U CubeSats deployed
from the ISS. Consequently, the starting condition is usually about 400-420 km
altitude with a 51.6 degree orbit inclination. Satellites studied have a weight to
cross-section ratio closer to the first case. Thus, as a matter of simplicity, the two
main effects for a satellite with 1 kg mass and 0.01 m2 cross-section in the 100-400
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Figure 3.3: Perturbing force orders of magnitude in LEO msat = 10kg

km range are the only ones considered in the code, i.e. J2 effect and atmospheric
drag.

3.3 Atmospheric Drag Analysis
The most complex aspect in developing the code was that regarding the atmospheric
drag. The starting point was to identify equations suitable for the study case and
the input parameters for them, the latter is that with major difficulties. Indeed,
since the uncertainty of parameters, it is necessary to assess complex atmospheric
models and evaluate assumptions on satellite attitude.

3.3.1 Drag Equations
An analysis is carried out starting from the Gaussian VOP equations, (3.9), to study
the effects of the atmospheric drag on the motion of a satellite. Gaussian form is
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chosen because drag is a non-conservative force. Initially, the focus is on the rate of
change of the semi-major axis (choice motivated at the end of the subsection).

da

dt
= 2

n
√

1 − e2

;
e sin (ν)FR + p

r
FS

<
(3.10)

Firstly, the drag acceleration (2.35) is decomposed in RSW coordinate system and
substituted in (3.10). It can be noticed that the drag component along R will result in
periodic variations, while the component along S in secular variations. The expression
is manipulated (further details in [13]) and the following relation is obtained:

da

dt
= −ρ

CDS

msat

v2
rel

Añ1 + e2 + 2e cos (ν)
n

√
1 − e2

B
(3.11)

Then, vrel is written in function of orbital parameters and the equation is manip-
ulated again to get a rate of change of a with respect to the true anomaly:

da

dν
= −ρ

CDSa2(1 + e2 + 2e cos (ν))3/2

msat(1 + e cos (ν))2 (3.12)

To proceed analytically, the true anomaly, ν is converted in eccentric anomaly,
E, and the expression is integrated over one period. Lastly, the result is expanded
in power series of e cos (E) basing on an exponential atmospheric model for ρ. The
equations for the other parameters are also given for completeness:

∆arev = −2πδa2ρp

I
J0 + 2eJ1 + 3e2

4 (J0 + J2) + e3

4 (3J1 + J3) + O(e4)
J

exp (−c)

(3.13)

∆erev = −2πδaρp

I
J1+ e

2(J0+J2)−
e2

8 (5J1+J3)−
e3

16(5J0+4J2−J4)+O(e4)
J

exp (−c)

(3.14)
∆irev = −πaω⊕δρp

2n
√

Q
sin (i)

î
J0 − 2eJ1 + (J2 − 2eJ1) cos (2ω) + O(e2)

ï
exp (−c)

(3.15)
∆Ωrev = −πaω⊕δρp

2n
√

Q

î
J2 − 2eJ1 + O(e2)

ï
sin (2ω) exp (−c) (3.16)

∆ωrev = −∆Ωrev cos (i) (3.17)

ω⊕ is the Earth rotation rate, ρp is density at perigee. c = ae/H where H is
the scale height, δ = QSCD/msat where Q is a factor which include the rotation of
atmosphere. Jj are modified Bessel functions with c as argument:

Jj(c) = 1
2π

Ú 2π

0
cos(jθ) exp (c cos θ) dθ (3.18)
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Referring to [20], a formulation for inclination rate of change, derived from Gauss
equations, could be also considered.

di

dt
= −1

4

ó
a3

µ

ρSCD

m
vrelωE sin (i) (3.19)

Summarising, the main variations are on a and e, while i, Ω and ω present
small changes due to the cross-force, perpendicular to the orbital plane, created by
atmospheric rotation (see [21]). Thus, the main driver of the orbital decay for a
satellite is the Earth atmosphere through the aerodynamic drag. This force is the
cause of the gradual decreasing of the semi-major axis in LEO and has the strongest
influence on the satellite’s lifetime. This motivates the choice to initially focus only
on the a variation at the beginning of this subsection.

For the same reason, in the development of OLET, the drag effect is studied only
on the semi-major axis variation. As a matter of simplicity, the approach followed is
semianalytical, and the (3.12) equation, obtained in an analytical way, is integrated
numerically bypassing the computation of modified Bessel functions.

Besides a, e and ν, the (3.12) equation needs as inputs atmospheric density, drag
coefficient, cross-section and satellite mass. The msat is usually well known and it
could be assumed constant since satellites analysed in this study usually do not have a
propulsion system. The only mission phase when this hypothesis is not in accordance
with reality is the last operative moments when the satellite is disintegrating itself
in the atmosphere. The CD calculation is derived by the gas-surface interaction in
orbit and it is not easy to have an accurate value because it is influenced by many
variables, mainly altitude but also sunspot cycle [22]. A good estimation could be a
constant 2.2 value, assuming the flat plate model. Lastly, ρ and S, as CD are both
uncertain parameters. The atmospheric density is evaluated through models while
the cross-section is dependent by the satellite dimensions and attitude.

3.3.2 Atmospheric Model Implementation
As seen in subsections 2.3.4 and 3.3.1, the atmospheric density is strongly influenced
by many variables, consequently, its calculation introduces many difficulties. From
the very beginning of writing the code, to test it, it was necessary a ρ input for
the equations. Initially an exponential model was used for its simplicity. After
that, striving for accuracy it was implemented a more complex atmospheric model,
NRLMSISE-00.

Exponential Atmospheric Model

The Exponential Atmospheric Model was introduced in subsection 2.3.4. The
expression that determines the atmosphere density, (2.41), needs as input only the
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satellite altitude, allowing to identify the other input, i.e. ρ0 and H, from table
2.6. Thus, the implementation consists in just developing a function which reads a
text file, replicating table 2.6. Then, depending on the altitude input, the function
obtains reference density and scale height. These data allow to determine the density
value represented in figure 3.4.

NRLMSISE-00

The NRLMSISE model, as explained in 2.3.4, takes into account many variables,
consequently, it is greatly complex. It is implemented in the code through an existing
library written in C language by Brodowski [23].

Table 3.1: NRLMSISE-00 library: input and output

Structure Variable Description

flags
switch Array with 24 elements (switches) to turn on or

off particular variations. Standard values are 0 for
switch 0 and 1 for switches 1 to 23, however they
could be set by the user

sw 24 element array set internally
swc 24 element array set internally

input

year Current year
doy Current day of year
sec Current seconds in day (Universal Time)
alt Altitude in kilometers

g lat Geodetic latitude, angle between the equatorial
plane and the normal to the surface of the ellipsoid

g long Geodetic longitude
lst Local apparent solar time (hours). It should be con-

sistent with sec and g long through the following
relation: lst = sec/3600 + glong/15

f107A 81 day average of F10.7 flux (centered on doy)
f107 Daily F10.7 flux for previous day
ap Daily magnetic index (amplitude)

ap array Array containing ap values for the current time and
for 3, 6 and 9 hours earlier, in addition also averaged
values until two days before are considered

output d Densities of each main element composing the atmo-
sphere and the overall density

t Exospheric temperature
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The two main subroutine are GTD7 and GTD7D, both require as input two
variable structures, flag and input, as shown in table 3.1, and both give the same
output structure. They differ only because GTD7D considers the influence of the
anomalous oxygen in the ρ calculation. The anomalous oxygen component accounts
for the presence of appreciable hot atomic oxygen (Oh) or atomic oxygen ions
(O+) near the exobase under some conditions but does not explicitly distinguish
contributions by the two species [24]. Oh and O+ increase the thermospheric total
mass density, indeed, observational evidence shows an additional component to drag
at altitudes above 500 km with high latitudes in the summer hemisphere. In the
code GTD7 subroutine is usually recall since the study case altitude is below 420
km and the anomalous oxygen is negligible.

As far as input and flags are concerned, the switch array is set with standard values,
see table 3.1. To get the input time variables year, doy and sec, a function, capable
of updating the date starting from an initial date and a ∆t, was implemented. Then,
satellite geodetic latitude is obtained, resolving the following non-linear equation [13]
through the Newton method:

tan (ϕgd) = rk + C⊕e2
⊕ sin (ϕgd)

rij

(3.20)

Where e⊕ is the eccentricity of the Earth, rij is the projection of the satellite position
on the equatorial plane, rk is the component orthogonal to the equatorial plane and
C⊕ is defined as follow:

C⊕ = R⊕ñ
1 − e2

⊕ sin2(ϕgd)
(3.21)

Consequently, the altitude (on the ellipsoid) is calculated:

hellp = rij

cos (ϕgd) − C⊕ (3.22)

Given the satellite position vector with respect to the geocentric frame, the geodetic
longitude is easily obtained as:

λ = α − αG (3.23)

where α = arccos (ri/rij) and αG is the α angle for Greenwich meridian.
Solar flux values and magnetic amplitudes are taken from Space Weather file,

released by celestrack website [25], which contains several data organized as in table
3.2. From the fourth column to the eleventh, there are ap measured every three hours,
the twelfth column is the ap daily average, the thirteenth column is the 10.7-cm
Solar Radio Flux observed and in the last column the Centered 81-day arithmetic
average of F10.7 value. Measurements are collected since 1957 until the present day
and predictions are from tomorrow until 2040. However the predictions are greatly
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uncertain, hence, estimating accurately when the reenter of a satellite will happen is
indeed difficult.

Table 3.2: Simplified Space Weather file structure

y m d ap ap ap ap ap ap ap ap Ap F10.7 Ctr81
2018 01 01 18 22 9 9 12 4 4 5 10 66.8 69.3
2018 01 02 6 3 2 3 6 4 7 4 4 67.2 69.3
2018 01 03 0 3 4 3 2 4 2 0 2 68.3 69.4
2018 01 04 3 0 4 0 3 2 5 4 3 67.2 69.4
2018 01 05 6 5 3 3 5 4 7 4 11 67.0 69.5
2018 01 06 5 0 3 0 2 0 2 2 2 67.1 69.4
2018 01 07 4 0 0 0 2 3 3 2 2 67.6 69.4
2018 01 08 2 3 9 6 22 15 7 6 9 68.0 69.4

Lastly, the output structure provided by the NRLMSISE library is made by the
main atmospheric species densities, overall ρ included (see Table 3.3), and by two
values of temperatures, the first one is a global average value for altitudes below 120
km and the latter is the corresponding temperature at the input altitude. However,
of all these outputs, the developed code only collects the total mass density, which
serves as an input for the (3.12) equation.

Table 3.3: NRLMSISE-00 library output densities

Output
Variable

Species Description

d[0] ρHe Helium number density (cm−3)
d[1] ρO Oxygen number density (cm−3)
d[2] ρN2 Molecular Nitrogen number density (cm−3)
d[3] ρO2 Molecular Oxygen number density (cm−3)
d[4] ρAr Argon number density (cm−3)
d[5] ρ Total mass density (g/cm3)
d[6] ρH Hydrogen number density (cm−3)
d[7] ρN Nitrogen number density (cm−3)
d[8] ρOh,O+ Anomalous Oxygen number density (cm−3)
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Figure 3.4: Comparison between NRLMSISE-00 and Exponential models, fixed
longitude, latitude and time of the day

3.3.3 Cross-Sectional Area Estimation
The cross-section in (2.35) and (3.12) equations is defined as the satellite area
perpendicular to the velocity relative to the Earth’s atmosphere. This surface is
determined by the satellite dimensions and its attitude. Since the satellite objects of
this study are Cubesats, they usually do not present an attitude control system or
passive stabilization, whereby they randomly tumble.

For a tumbling spacecraft the averaged cross-section could be used to evaluate
the ballistic coefficient (2.36). The easiest way to calculate it is considering a
straightforward two-point average of the minimum and maximum cross-sectional
areas. However, this method could be improved considering the sections for all the
anticipated tumbling attitudes, integrating them and dividing the result for the
number of the tumbling attitudes. [14]

This approach is more accurate than the first one, but, at the same time, more
complex. Nevertheless, there are some opens source code, which, provide this kind of
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Figure 3.5: Attitude influence on cross-section determination

calculation. To get some valid cross-section values needed for testing the OLET code,
the ESA’s software, DRAMA (Debris Risk Assessment and Mitigation Analysis),
was used, particularly its CROC (Cross-section Of Complex bodies) tool.

Table 3.4 shows some cross-sectional area calculation and it is evident the difference
between the value obtained with a straightforward two-point average and the one
calculated by the CROC tool. The values shown in table 3.4 are for Cubesats with a
regular shape and without any kind of extension, such as solar panels and antennas.
In that cases the cross-section should be adjust accordingly.

Lastly, as was introduced before, some satellites are designed to achieve a certain
type of passive stabilization. When it is so the section estimation is certainly
easier. For example, a spacecraft with a large length to diameter ratio could be
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Table 3.4: Average cross-sectional area

Category Smin (m2) Smax (m2) (Smin +
Smax)/2 (m2)

Savg (m2)

1U 0.010 0.0173 0.0137 0.0149
2U 0.010 0.0298 0.0199 0.0248
3U 0.010 0.0435 0.0268 0.0347

stabilized for gravity gradient. In this case it would be quite correct assuming the
cross section coincides with the maximum value, although some uncertainties still
remain. Similarly with drag-induced passive attitude stabilization, it is not a wrong
assumption considering the cross section coincides with the minimum cross section
value (figure 3.5).

3.4 Central-Body Analysis
The central-body has the largest perturbing effect on satellites orbiting in LEO
(figure 3.2). Concepts discussed in this section were yet introduced in subsection
2.3.2. Alone secular effects (zonal harmonics) are accounted, hence tesseral and
sectorial harmonics, which represent periodic effect, are ignored. Moreover, since
J2 is three order of magnitude bigger than the other coefficients, only the Legendre
polynomial (2.30) of second degree is considered.

Basing on these assumptions, the (2.32) equation is evaluated subtracting the
two-body potential to obtain the perturbing potential function.

R = −µJ2

r

3
R⊕

r

42 3
2

3
sin2(ϕgc) − 1

3

4
(3.24)

This equation is developed, substituting the latitude with i, ω and ν, and with
further steps [13] an averaged form of R over one revolution is provided. This form
depends on the classical orbital elements and it can be substituted in (3.7) equation.

Ravg = −µJ2

a

3
R⊕

a

42 33
4 sin2(i) − 1

2

4A 1
(1 − e2)3/2

B
(3.25)

As (3.25) shows, of all six parameters only three influence the potential function:
semimajor axis, eccentricity and inclination. Therefore, referring to the Lagrangian
VOP (3.7), a, e and i are not affected by the Earth’s oblateness since:

∂R

∂M0
= ∂R

∂ω
= ∂R

∂Ω = 0 (3.26)
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Thus, substituting (3.25) in the Lagrangian planetary equations (3.7) the three
parameters influenced by J2 are Ω, ω and M0.

dΩ
dt

= −
3nR2

⊕J2

2p2 cos(i)

dω

dt
= 3nR2

⊕J2

4p2

è
4 − 5 sin2(i)

é
dM0

dt
= −

3nR2
⊕J2

√
1 − e2

4p2

è
3 sin2(i) − 2

é
(3.27)

Integrating on one round and assuming that p, i and e remain constant over one
orbit period:

∆2πΩ = −3π
nR2

⊕J2

p2 cos(i) (3.28)

∆2πω = 3π
nR2

⊕J2

2p2

è
4 − 5 sin2(i)

é
(3.29)

∆2πM0 = −3π
nR2

⊕J2
√

1 − e2

2p2

è
3 sin2(i) − 2

é
(3.30)

These relations indicate that, all other equation parameters being equal, Ω, ω and
M0 variations are bigger for smaller orbit because of the p at the denominator.

As far as Ω is concerned, the cos(i) term in (3.28) shows that low inclinations
imply great variations of the longitude of the ascending node. This phenomenon is
called regression of the node line, and it is absent for polar orbits. For a LEO orbit
nearly equatorial, but still with i other than 0 deg or 180 deg, the longitude of the
ascending node changes of about 9 degree per day.

The (3.29) provides the apsidal precession. This phenomenon does not occur at
63.4 deg and 116.6 deg, that are the inclination values chosen for Molnyia. This kind
of orbit, indeed, requires that the apogee remains fixed at high-latitudes.

3.5 OLET Code
Basing on what has been previously discussed, in this section the code features are
described. The code has been called Orbit Lifetime Estimation Tool, OLET, since
its aim of predicting the time taken by a satellite to decay and reenter the Earth’s
atmosphere. Initially, the main equations implemented are briefly summarised; then,
the way to impose initial conditions is explained. After this, the choice of the
numerical integration method is justified and, lastly, a recap of the several OLET
version is reported. A part of the last version of the OLET code is reported in
Appendix B.
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3.5.1 Equations

As assessed in section 3.2 the two main perturbations to be taken into account
are atmospheric drag and J2 effect. As far as atmospheric drag is concerned, in
subsection 3.3.1 some equations have been identified and the main secular variation
is on the semi-major axis, (3.12). For central body gravitational perturbations only
the J2 effect and its influence on Ω and ω are considered, section 3.4. Variations on
M are neglected since they do not significantly impact the lifetime calculation.

da

dν
= −ρ

CDSa2(1 + e2 + 2e cos (ν))3/2

msat(1 + e cos (ν))2

de

dt
= 0

di

dt
= 0

∆2πΩ = −3π
nR2

⊕J2

p2 cos(i)

∆2πω = 3π
nR2

⊕J2

2p2

è
4 − 5 sin2(i)

é

(3.31)

The drag effect on eccentricity is to make circular the orbit, but the initial orbit
of the study case is yet almost circular, indeed, it usually has e values from 0.0001
to 0.001. Thus, the eccentricity variation is neglected. Similarly, basing on equation
(3.19), the variation on orbit inclination are ignored since they are very small and do
not influence intensively the satellite lifetime.

Initially, in the first OLET versions, the semimajor axis equation was considered
integrated over one round, assuming the semimajor axis constant. This form was
used to test numerical methods of composite quadrature, discussed in subsection
3.5.4.

∆2πa = −CDSa2

msat

Ú 2π

0

ρ(1 + e2 + 2e cos (ν))3/2

(1 + e cos (ν))2 dν

de

dt
= 0

di

dt
= 0

∆2πΩ = −3π
nR2

⊕J2

p2 cos(i)

∆2πω = 3π
nR2

⊕J2

2p2

è
4 − 5 sin2(i)

é

(3.32)
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3.5.2 Initial Conditions

To begin the simulation, some starting values of the orbital elements are needed.
Basically, given the study case of CubeSats deployed from the ISS, the initial
conditions may be the typical orbital elements of space station (table 3.5). However,
when testing the simulator on satellites yet reentered, these fixed initial conditions
may not be enough to validate OLET. In fact, the ISS altitude ranges between 390
km and 420 km (figure 3.6) and this strongly influences the satellite lifetime.

Table 3.5: Example of ISS typical orbital elements

a(km) e i(◦) Ω(◦) ω(◦) ν(◦)
400 0.002 51.64 243.10 230.44 200.69
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Figure 3.6: ISS altitude
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Table 3.6: Two-Line Element set: First Line

Column Description
01 Line Number of Element Data

03-07 Satellite Number
08 Classification (U=Unclassified)

10-11 International Designator (Last two digits of launch year)
12-14 International Designator (Launch number of the year)
15-17 International Designator (Piece of the launch)
19-20 Epoch Year (Last two digits of year)
21-32 Epoch (Day of the year and fractional portion of the day)
34-43 First Time Derivative of the Mean Motion
45-52 Second Time Derivative of Mean Motion (Leading decimal

point assumed)
54-61 BSTAR drag term (Leading decimal point assumed)

63 Ephemeris type
65-68 Element number

69 Checksum (Modulo 10) (Letters, blanks, periods, plus
signs = 0; minus signs = 1)

Table 3.7: Two-Line Element set: Second Line

Column Description
01 Line Number of Element Data

03-07 Satellite Number
08 Classification (U=Unclassified)

09-16 Inclination (◦)
18-25 Right Ascension of the Ascending Node (◦)
27-33 Eccentricity (Leading decimal point assumed)
35-42 Argument of Perigee (◦)
44-51 Mean Anomaly (◦)
53-63 Mean Motion (Revs per day)
64-68 Revolution number at epoch (Revs)

69 Checksum (Modulo 10)

Thus, the initial conditions are made to coincide with those of the ISS, basing
on its TLE on the current day of deployment. TLE set, i.e. Two-Line Element,
was developed by the NORAD for SGP4/SDP4 orbital model. It consists of two
69-character lines of data to identify a satellite and determine its state (position and
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velocity) at a given time. In tables 3.6 and 3.7, the fields for line 1 and 2 are defined
[26].

Table 3.7 shows that e, i, Ω, ω and M are directly defined by the TLE. On the
other hand the semimajor axis must be derived from the number of revolutions in
one day, i.e. 64-68 column of the second line.

Table 3.8: Example of ISS Two-Line Element set

1 25544U 98067A 12001.23210845 .00014903 00000 + 0 19296 − 3 0 7342
2 25544 51.6432 244.6790 0024050 229.4243 226.7947 15.58805023751829

The ISS TLEs are obtained from celestrack website [27] and inserted in a text file
containing TLEs from 2012 to 2022. Then, this file is read by OLET to impose the
inital conditions at the beginning of the simulation.

3.5.3 Input Data
The input data required by OLET changed during the development of the code.
Initially, when the atmospheric model implemented was the exponential one, in
addition to satellite mass and cross-section (drag coefficient set at 2.2 internally),
the only input was the orbital elements set to identify initial conditions. Then,
implementing the NRLMSISE-00 atmospheric model the initial date variable was
introduced (see table 3.9).

Table 3.9: Input data (imposing manually initial conditions)

Variable Description
day Day of start date
mo Month of start date
yr Year of start date
x⃗ Set of initial orbital elements (six variables)
m Satellite mass in kg
S Satellite cross-sectional area in m2

To test the code on satellites deployed from ISS, further modifications were made.
In fact, basing on what was discussed in subsection 3.5.2, the initial conditions are
imposed by ISS TLE. Consequently, giving only the deployment date of the satellite
as an input, a dedicated function in OLET provides the initial orbital element
set. This allows to remove the x⃗(a, e, i, Ω, ω, ν) from the input data (table 3.10).
Furthermore, the real lifetime of the satellite is required as an additional input to
compare it with the lifetime value calculated by OLET.
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Table 3.10: Input data for code testing

Variable Description
day Day of satellite deployment
mo Month of satellite deployment
yr Year of satellite deployment

satlife Actual value of satellite lifetime in years
m Satellite mass in kg
S Satellite cross-sectional area in m2

Since the number of the testing satellites (Appendix A) is more than thirty, it
was preferred to avoid to enter manually input data for each satellite and for each
simulation. Thus, the process was automated developing OLET in such a way that
it can receive as input a text file containing data for more than one satellite (table
3.11). Consequently, more satellites can be evaluated in one simulation .

Table 3.11: Example of a structure for automatic data entry

Sat.
Number

day mo yr sat-life
(yr)

m (kg) S (m2)

1 11 02 2014 0.323 5.00 0.069
2 04 03 2015 0.411 4.25 0.051
3 17 09 2015 1.186 3.99 0.030
4 16 05 2016 0.973 3.50 0.039
5 16 05 2016 0.636 4.00 0.069
6 16 05 2017 1.384 4.00 0.069
7 11 05 2018 2.088 4.00 0.038
8 31 01 2019 2.723 3.56 0.029
9 17 06 2019 2.334 2.60 0.038
10 04 07 2019 2.104 3.00 0.038
11 14 06 2021 0.748 3.36 0.120

3.5.4 Numerical Analysis

Several numerical approaches are implemented in the OLET code, hence in this
subsection some of them are briefly described. For a better understanding of the
topic, refer to [12] [13] [28].
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Numerical Integration

The easiest way to handle equations in the (3.33) form introduced in subsection 3.5.1
is through Runge-Kutta (RK) methods. These are a family of integration methods of
varying orders derived from Taylor series. The order is defined by the highest power
of the step size, h, in the equivalent Taylor series expansion.

dx

dt
= f(x, t) (3.33)

The RK method of first-order (Euler method) is the simplest one but usually the
most inaccurate. It was used to solve (3.32) with a 2π step size.

xk+1 = xk + hf(tk, xk) (3.34)

The fourth-order Runge Kutta method, instead, was implemented to solve the
semimajor axis equation of (3.31). The standard formulation is the following:

xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4) (3.35)

where:

k1 = f(tn, xn)

k2 = f(tn + h

2 , xn + k1

2 )

k3 = f(tn + h

2 , xn + k2

2 )

k1 = f(tn + h, xn + k3)

(3.36)

In this approach, the derivative is evaluated at four points along the estimated
trend of the parameter, two of them are intermediate points. Also higher order RK
methods may be used, with an improved accuracy but an increased complexity in
implementation. In those cases it would be better referring to existing libraries.

Summarising, the standard fourth-order RK is easy to implement, stable, does
not require a starting procedure, presents a small truncation error and, being a single
step method, the step size could be easily changed. But, for the same reasons it is
difficult to identify the truncation error and, consequently, the proper step size.

These disadvantages may be overcome with variable-step methods, which exploit
the history of the function being integrated to predict and eventually correct the
function value of the next step, or with higher-order Runge-Kutta methods. However,
as discussed in section 3.3, many uncertainties are present within the problem. Thus,
it was retained unnecessary to go too deep into the implementation of complex
numerical integration methods.
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Figure 3.7: 4th order Runge-Kutta [13]

Figure 3.8: Composite Trapezoidal Rule

Numerical Quadrature

In semimajor axis equation of (3.32), there is an integral, the basic method to
approximate a definite integral is called numerical quadrature. Without going too
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far in the numerical analysis a simple method was chosen and implemented, i.e. the
composite trapezoidal rule. A formulation is reported below for n subintervals. The
size of subintervals is h = (a − b)/n.

Ú b

a
f(x) dx = h

2

f(a) +
n−1Ø
j=1

f(xj) + f(b)
 (3.37)

Figure 3.8 shows graphically the composite trapezoidal rule. In OLET code, the
minimum size of subintervals, h, is of 10◦. In fact, for lower amplitude there is
few improvement of the simulator accuracy and the simulation time considerably
increases. However, increasing h, the error increases slightly but the simulation time
decreases considerably, see Chapter 4.

Table 3.12: OLET main versions

Version Description
OLET 0.2 Equations (3.13) and (3.14). 1st order RK method. Ex-

ponential atmospheric model. Manual input data entry.
Initial conditions set from ISS TLE.

OLET 0.4 Equations from [20]. 1st order RK method. Jacchia at-
mospheric model [13]. Manual input data entry. Initial
conditions imposed: circular, 400 km altitude, 51◦ inclined
orbit.

OLET 0.6 Equations from [20]. 1st order RK method. NRLMSISE-
00 atmospheric model. Manual input data entry. Initial
conditions set from ISS TLE.

OLET 0.8 Equations (3.32). 1st order RK method. NRLMSISE-00
atmospheric model. Automatic input data entry. Initial
conditions set from ISS TLE.

OLET 1.1 Equations (3.31). 4th order RK method. NRLMSISE-00
atmospheric model. Automatic input data entry. Initial
conditions set from ISS TLE.

3.5.5 Versions
Several OLET versions were developed, changing the effects involved, the equations,
atmospheric models, the way to enter input data and initial conditions. The main
versions of the code are reported in table 3.12. However, the equations and the
results of the majority of them are not discussed in this document to keep the focus
on the latest versions. Nevertheless, each OLET update was essential to achieve the
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two final versions: OLET 0.8 and OLET 1.1. Particularly, results of OLET 1.1 are
discussed in Chapter 4.

3.5.6 Output Data
The OLET code provides the lifetime, expressed in years for each satellite analysed,
as on-screen output. Moreover, two text files are given; the first shows, for each
satellite, the orbital elements for each orbit elapsed (table 3.13) until the altitude is
below 100 km. Whereas the second reports the lifetime values (actual and estimated)
with the relative error (table 3.14). These two files are then reprocessed through a
Matlab script allowing to show a graphical perspective of results (see Chapter 4).

Table 3.13: First output data file structure

a (km) e i (◦) Ω (◦) ω (◦) ν (◦) Elapsed
time

(days)

Elapsed
orbits

6793.47 0.00183 51.648 304.50 126.00 0.000 0.0644 1
6793.46 0.00183 51.648 304.18 126.16 0.000 0.1289 2
6793.45 0.00183 51.648 303.86 126.32 0.000 0.1934 3
6793.44 0.00183 51.648 303.54 126.48 0.000 0.2579 4
6793.43 0.00183 51.648 303.22 126.64 0.000 0.3224 5
6793.42 0.00183 51.648 302.90 126.79 0.000 0.3869 6
6793.41 0.00183 51.648 302.58 126.95 0.000 0.4514 7
6793.40 0.00183 51.648 302.26 127.11 0.000 0.5159 8
6793.39 0.00183 51.648 301.94 127.27 0.000 0.5804 9

Table 3.14: Second output data file structure

Sat. Number OLET lifetime
value (yr)

Actual lifetime
value (yr)

Normalised OLET
lifetime on the

actual
1 1.552881 1.792000 0.866563
2 2.106056 1.789000 1.177225
3 1.634980 1.732000 0.943984
4 2.083202 1.921000 1.084436
5 1.300764 1.699000 0.765606
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Results

Some data of satellites deployed by ISS have been collected (Appendix A), to test
the accuracy of the Orbit Lifetime Estimation Tool (code in Appendix B) . The
following information were searched for each satellite.

Deployment Date is needed to impose the initial conditions of the satellite basing
on the ISS TLEs. Also, it is helpful to extract space weather data.

Decay Date allows to know the real lifetime, which then will be compared with
the one calculated by the simulator.

Mass is one of the inputs for the equations used in the simulator.

Dimensions to categorize the satellite (e.g. 1U CubeSat); at the same time they
are a starting point to evaluate the cross-section.

Attitude combined with other data allows to estimate the cross-section; however,
most of the time it is unknown so in that case the satellite is considered tumbling
randomly.

Panels and Extensions influence the estimated cross-section value.

The satellites were divided into groups to better understand the behaviour of the
OLET when tested on similar satellites.

• 1U CubeSats;

• 2U CubeSats;

• 3U CubeSats;

• Satellites with sails or that do not fall into the previous categories (Other).
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m (kg) S (m2 ) S/m (m2/kg) lifetime (y)
1U 1.15 0.012 0.0104 1.66
2U 2.07 0.020 0.0096 1.79
3U 3.75 0.054 0.0144 1.36
Other 11.9 0.390 0.0328 1.44

Table 4.1: Satellite categories and average data from Appendix A
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Figure 4.1: Ardusat orbital element variation

Their features are shown in the table 4.1, where the average satellite data collected
in Appendix A are taken into account. These data indicate that the higher the
cross-section to mass ratio of the category, the lower the lifetime. The trend is not
fully respected by the Other class, probably because of different sizes and forms
which may influence the drag coefficient.

In the next sections, a representative case is considered for each category. Then,
the error between lifetime values calculated by OLET for all satellites of each category,
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and the actual values is shown on a diagram and commented on. Some deductions
about the simulations are carried out and results of OLET are compared with
those of SGP4 [29]. In fact, as discussed in Chapter 1, the OLET code approaches
the perturbation influence with a similar method to that of SGP4. SGP4 is a
mathematical model for prediction of satellite position and velocity, it was developed
by Ken Cranford in 1970 and is used for near-Earth satellites [30]. SGP stands for
Simplified General Perturbations.

4.1 1U CubeSats
1U Cubesats are a class of satellites fitting in a box of about 10 cm x 10 cm x 10 cm,
called 1U form factor. Given their small size they usually present a simple design,
without deployable solar panels or accurate AODCS. For this analysis a group of
twelve 1U satellites (table A.2) were chosen. The Ardusat (table 4.2) could be taken
as an example, his real lifetime is 148 days, while OLET underestimates by about
one week (figure 4.1). For completeness, trends of the other orbital elements are
reported in the same figure. Inclination and eccentricity are constant because of
the previous assumptions, while longitude of the ascending node and argument of
perigee are influenced by the J2 effect.

Deployment
date

Lifetime
(years)

Mass (kg) Estimated
Cross-section

(m2)

S/m (m2/kg)

19/11/2013 0.405 1.00 0.014 0.014

Table 4.2: Ardusat

Considering all the 1U satellite class, some simulations were performed to investi-
gate the size of the integrating step (figure 4.2 and 4.3). Consequently, a comparison
is carried out between OLET 0.8 and 1.1 versions, both mentioned in subsection
3.5.5. First, below a step size of about 180◦ the relative error between the OLET
lifetime and the actual one settles at about 10 %, whereas the average simulation
time for each satellites increases rapidly. It should be highlighted that for OLET
0.8 is not fully correct to speak about an integration step but more properly of a
size of the subintervals used for the composite trapezoidal method. Summarising,
figures 4.2 and 4.3 show that the relative error values and trend and simulation time
are about the same for the two OLET versions 0.8 and 1.1. Thus, from this point
onwards, only results of the 1.1 version are discussed.

Basing on the outcome of figure 4.2, the integration step size, chosen to conduct
analysis on 1U CubeSats, is 180◦. This value ensures an enough accurate and quick
estimation of when the CubeSat studied will reenter the Earth’s atmosphere.
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Figure 4.2: 1U simulation analysis, OLET v.1.1

The 1U category has the lowest average error in the lifetime calculation by OLET
(figure 4.2) compared to the other categories. In fact, the percentage relative error is
about 9.5 % with a step size of half orbit (180◦). This outcome may be explained
since 1U CubeSats do not usually have deployable solar panels which introduce a
major uncertainty on the cross-sectional surface estimation. However, they could
have other kind of extensions, such as antennas, which influence lightly the estimated
cross-sectional area.

As mentioned above, to have a yardstick for the quality of OLET results, the
orbit of satellites is also propagated with SGP4. Figure 4.4 shows for each satellite
the lifetime calculations, by OLET and SGP4, normalised on its real lifetime value.
Thus, ideally, all the columns should tend to 1. Obviously, this is not the case
since the uncertainties on the input data (satellite mass and cross-section), in the
density calculation and in neglecting certain effects. Nevertheless, OLET results are
promising.

The input data for OLET simulations were taken by table A.2. Whereas simula-
tions with SGP4 were conducted imposing a 1.00 kg mass and a 0.010 m2 cross-section
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Figure 4.3: 1U simulation analysis, OLET v.0.8

for all 1U CubeSats not considering the table in appendix. In SGP propagations,
the initial conditions for each satellite were imposed basing on the ISS TLE of the
current day of deployment, as for OLET.

As far as the comparison between OLET and SGP4 is concerned (figure 4.4),
interestingly, the lifetime evaluated by the two models for FITSAT, F-1, TechEdSat
and Ardusat are pretty similar. Probably, this could be explained because the SGP4
model is based on an exponential atmospheric model [30][31]. In fact, the solar
maxima occurring in 2012-2014 (figure 2.8), the years when those four satellites were
deployed, is reproduced similarly by the exponential model (SGP4) and NRLMSISE
(OLET), see figure 3.4. The remaining 1Us are deployed during a solar minima
instead, and as figure 3.4 shows, the two atmospheric models envisage density values
considerably different.

Thus, since NRLMSISE is a more accurate atmospheric model than the exponential
one, OLET provides results closer to reality. However, it should be noted that the
NRLMSISE accuracy strongly depends on the quality of F10.9 and ap predictions.
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Figure 4.4: 1U CubeSat results

Deployment
date

Lifetime
(years)

Mass (kg) Estimated
Cross-section

(m2)

S/m (m2/kg)

26/05/2017 1.921 2.26 0.020 0.0089

Table 4.3: BeEagleSat

4.2 2U CubeSats
Since 2Us have bigger dimensions than 1U CubeSats, usually 20 cm x 10 cm x 10 cm,
they are somewhat more elaborated. Some of them may present deployable solar
panels and an active attitude control. A set of 5 satellites was evaluated (table A.1).
The BeEagleSat (table 4.3) is considered as a representative case and the trend of
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its orbital elements is shown in figure 4.5. The error between the actual lifetime and
the one of calculated by the simulator is about 20 days. The considerably long time
between deployment and re-entry, of about 700 days, hence almost 2 years, may be
motivated because of the low cross-section to mass ratio of the satellite. Also, the
deployment date from ISS corresponds to a period of solar minimum activity. The
RAAN angle and ω variations are about the same as that of the satellite evaluated
in the previous section. Eccentricity and inclination also maintain same values,
particularly the 51.6° value for inclination which is obviously the same as that of the
ISS, because of the assumptions of the previous chapter.
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Figure 4.5: BeEagleSat orbital element variation

The 2U CubeSat relative error on the lifetime calculation, is about the same as
1Us. Furthermore, figure 4.6 shows, unlike 1Us, that the relative error decrease with
increasing step size, and consequently decreasing the duration of the simulation.
However, this result should be taken with a grain of salt since the satellite population
on which OLET was tested is considerably smaller than the other categories. To
maintain the same set up of the simulator as that for the 1U class, the integration
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step chosen is 180◦, hence, the relative error is about 12 %.
The SGP4 was performed on the satellites of table A.1 imposing a mass of 2.00 kg

and a cross-section of 0.02 m2. As above, the initial conditions were the same of that
in OLET simulations, hence, the ISS TLE on the date of deployment.

The outcome of SGP4 simulation is that the lifetime calculated is quite underesti-
mated for all satellites of the 2U category, figure 4.7. In fact, referring to deployment
date of table A.1, these CubeSats are all deployed during a solar minima (years
2017-2019). Therefore, the exponential model implemented in SGP4 provides density
values almost one order of magnitude higher than that of a more accurate model,
such as NRLMSISE, during a period of minimum solar activity, see figure 3.4.

Again, having as input for the NRLMSISE model some well-known measurements
of F10.9 and AP , the OLET provides rather accurate results with respect to that of
SGP4. However, as already mentioned, given the low number of satellites considered
in this category, this results is less reliable than that for 1Us.

50 100 150 200 250 300 350

integrating step (deg)

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

a
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r 

(%
)

0

2

4

6

8

10

12

14

16

18

a
v
e
ra

g
e
 s

im
u
la

to
n
 t
im

e
 (

s
)

Figure 4.6: 2U simulation analysis, OLET v1.1
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Figure 4.7: 2U CubeSat results

Deployment
date

Lifetime
(years)

Mass (kg) Estimated
Cross-section

(m2)

S/m (m2/kg)

31/01/2019 2.723 3.56 0.029 0.0081

Table 4.4: UNITE

4.3 3U CubeSats

Eleven 3U CubeSats were considered (table A.3). Since their higher cross-sectional
area to mass ratio, they usually tend to stay in orbit less than 1Us (table 4.1). On
the other hand, because of the many variables involved, such as when the satellite is
deployed, this is not always the case. Taking the orbital element variations of the
UNITE CubeSat (table 4.4), it can be seen, in figure 4.8, that the altitude drops below
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300 km after about 800 days. While in the case of ArduSat, the satellite re-enters
the Earth’s atmosphere in less than 150 days (figure 4.1). In fact, ArduSat mission
was executed during a solar maxima whereas UNITE during a solar minima (figure
2.8). In contrast, the rate of change of Ω and ω, not influenced by the atmospheric
density, is about the same as that of the Ardusat. In this case the UNITE lifetime is
underestimated by OLET, since the real value is about 994 days (table 4.4) while
the one calculated is almost 900 days (figure 4.8).
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Figure 4.8: UNITE orbital element variation

For 3U CubeSats the average percentage relative error in the lifetime calculation by
the OLET 1.1 (figure 4.9) is slightly greater than that for 1Us and 2Us. This is due to
the higher uncertainty in the estimation of the cross-sectional area. Indeed, 3Us may
present extension not negligible, furthermore the difference between the maximum
and the minimum cross-sectional surfaces is considerable. It is no coincidence that
the highest error is that of Icecube (figure 4.10), which has big solar panels (table
A.3). In figure 4.9, a similar trend to that of figure 4.2 is shown, so the larger the
step size, the larger the error and the shorter the simulation time. Choosing an
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integration step of 180◦ the OLET average relative error in calculating the lifetime
of a 3U satellite is about 12.5 %.

SGP4 propagations are executed considering for each CubeSat a 4 kg mass and
0.03 m2 cross-section, while initial conditions are imposed as for the categories
above. Concerning Flock 1-1 and MicroMAS-1 (figure 4.10), the relative error is
quite high because the cross-section entered as input departs considerably from the
real values. Both satellites present indeed big solar panels. Instead, the simulation
for SOAR CubeSat is quite accurate because of two factors canceling each other out.
The period of solar minima leads SGP4 to underestimate the lifetime, whereas the
cross-section underestimated value (indeed solar panels are neglected), leads SGP4
to overestimate the lifetime. Similar comments could be carried out for S-CUBE,
MinXSS-1, CADRE and Icecube. In conclusion, considering UBAKUSAT, UNITE,
Spooky-1 and EntrySat, all deployed during a period of solar minimum activity and
without any kind of extension strongly influencing the cross-section. They actually
remain in orbit longer than predicted by SGP4 due to the density overestimated by
the exponential model.
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Figure 4.9: 3U simulation analysis, OLET v1.1
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Figure 4.10: 3U CubeSats results

4.4 Other Satellites
Several satellites, which don’t fall within previous categories, are reported in this
last section (table A.4). These are many different in shape and size and some of
them may have a drag sail or big antennas. These features contribute to make more
complicate the cross-section estimation since it is also difficult to simulate when,
during the mission, the extensions are fully deployed. The Tancredo-1 satellite (table
4.5) is taken as an example, unlike CubeSats it has a cylindrical shape. OLET
underestimates the lifetime value of about 25 days (figure 4.11).

As far as this class of satellites is concerned, OLET is not reliable, as figure 4.12
shows, the average relative error is almost 40 %. This may be explained not only for
the difficulties on the surface estimation but also for the drag coefficient selected.
In fact, for CubeSats a CD of 2.2 is considered quite successfully and for simplicity
this assumption is extended also to satellites of this last category. However, until
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Deployment
date

Lifetime
(years)

Mass (kg) Estimated
Cross-section

(m2)

S/m (m2/kg)

16/01/2017 0.753 0.570 0.013 0.023

Table 4.5: Tancredo-1
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Figure 4.11: Tancredo-1 orbital element variation

the satellites had about the same shape (CubeSats) imposing a 2.2 value for CD was
a good assumption, this condition is less suitable for the category dealt with in this
section.
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Figure 4.12: Others results
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Chapter 5

Conclusions

Relying on what has been discussed in chapters above, conclusions are drawn. Initially,
the work is summarised and commented to compare what has been achieved with the
intended purpose (section 5.1). Following, some future developments to improve the
quality of the work are identified and some final judgements are expressed (section
5.2).

5.1 Final work evaluations
To recap briefly, the work consisted in an initial bibliographic research to identify
critical aspects, equations and approaches suitable to the study case, such as analytical
and semianalytical techniques to investigate secular effects. Subsequently, the research
explored the topic regarding the atmospheric drag, hence atmospheric models and
methods to estimate the satellite cross-sectional area. Based on what was understood,
the writing of the code followed, starting, initially, with simple and inaccurate models
in the first versions. Then, the approach is made more complex and accurate by
updating the new versions. To test OLET, a database of satellites, deployed from
ISS and yet reentered the Earth’s atmosphere, was realized through several searches,
therefore obtaining some realistic input data to enter in the simulator. Lastly, the
OLET simulations were performed, and a comparison with an other existing model,
SGP4, was carried out too. Bibliographic research, development of the code, testing
and comparison were steps following each other in a loop. A scheme of the work
method is shown in figure 5.1.

OLET proved to be a tool performing simulations quickly, i.e. about 1 second to
simulate the orbital decay of a satellite (tables 4.2, 4.6, 4.9). Whereas the duration
of STK simulations in [11] is approximately 30 seconds. Also, OLET provides as an
output a trend over time of satellite orbital elements. Their plotted variations are
influenced by the main secular effects acting in the low Earth orbit. Consequently,
the code can easily estimate the lifetime of a satellite. At the same time, the code is
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Figure 5.1: Method

quite intuitive to use, requiring as input few data, namely deployment date, satellite
mass and cross-sectional area. Moreover, OLET allows to analyse multiple satellites,
one after another, in one simulation. In fact, the user can write the input data of
the satellites in an input file all at once (table 3.11). Thus, the aim introduced at
the beginning of this document is achieved, although some improvements could still
be made (section 5.2).

The results of the OLET test are rather positive. In fact, the average relative
percentage error, regarding the lifetime calculation of CubeSats already reentered
and reported in Appendix A, is generally below 15 %. Particularly, for 1Us the
error is about 9.5 %; for 2Us is 12 %; and for 3Us 12.5 % (table 5.1). Although
these errors could appear pretty high, it should be noted that the problem is full
of uncertainties. Therefore, an achievable goal is only an approximate estimation
of the time for which the CubeSat will be able to operate. The relative error for
predictions would be higher than those obtained when testing OLET on satellites
already decayed because the uncertainty is greater. In fact, one can no longer rely
on solar flux and geomagnetic index measurements but only on forecasts. In table
5.1 a comparison between OLET and STK results is reported for completeness; STK
is set according to [11]. Even though the main target of this study were regular
CubeSats, also satellites with sails or different form were considered and grouped
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in the other satellites category. As far as this category is concerned, the relative
percentage error is much more higher than 1Us, 2Us and 3Us. Probably, this could
be explained since satellites of this class present different size and form, consequently,
the uncertainty on the cross-section is higher. Moreover, drag coefficient should be
evaluate differently than for CubeSats categories, in which was assessed a constant
value of 2.2.

Analysing these results and comparing them with other simulators, the strength
of OLET is the accuracy of the atmospheric model implemented, i.e. NRLMSISE-00,
and the low simulation time. Other tools, such as SGP4, present similar simulation
time as OLET, and this is dictated by the general techniques approach used. However,
these models usually implement an exponential atmospheric model, which is certainly
simpler but less accurate. Thus, although NRLMSISE is complex and require much
more input than the exponential model, using it may be worth it to have more
accurate results.

Table 5.1: OLET and STK comparison

Category Number of
satellites

OLET Relative
percentage error

STK Relative
percentage error

1U 12 9.50 % 42.7 %
2U 5 12.0 % 13.4 %
3U 11 12.5 % 52.8 %
Other 7 37.4 % -

5.2 Future Developments
Despite the purpose of the work was achieved, as discussed above, still some improve-
ments may be made to OLET. First of all, using a larger number of satellites to test
the simulator may be helpful to detect any bugs in the code. Ideally the data of
these satellites, such as mass, dimensions, attitude, should be well known.

Another interesting aspect to take into account could be the ∆V of deployment
impressed by the deployer onboard ISS on the satellite. The assumption, that at the
first instant of the simulation the orbital elements of satellite and ISS are exactly
the same, would be no longer valid. However, it should be assessed whether this
consideration would influence the satellite lifetime even slightly, or whether this
aspect is entirely negligible.

A future development of OLET may be implementing an integration method
other than Runge-Kutta, also using existing libraries. Thus, an assessment could be
carried out to study the increase or decrease of accuracy and simulation time.
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Figure 5.2: Number of satellites deployed with J-SSOD

The assumptions made in Chapter 3 neglect variations on the orbit eccentricity
and inclination. Also, the trend of the mean anomaly due to J2 is not considered
in OLET. Lastly, only the main secular effects are taken into account neglecting
all other periodic effects. These hypothesis were derived from the initial conditions,
namely the ISS orbit, and the main objective to determine satellite lifetime. Thus,
the equations implemented in the code may be changed to study deeper the variations
on the orbital elements. This changes may allow to evaluate not only quasi-circular
orbit, dictated from the deployment onboard ISS, but also other orbit with higher
eccentricity and still with an altitude in the LEO range (below 2000 km). Therefore,
in this case, also the gravitational effects due to the Moon and the Sun should be
taken into account.

In conclusion, it might be interesting to make some improvements to OLET.
Indeed, it could be a very useful tool in the years to come, since the increasing
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number of deployed satellites. As an example of this trend, figure 5.2 shows the
number of deployments occurred over the past decade through the J-SSOD onboard
ISS [32].
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Appendix A

Satellite data

Tables reported in this appendix are the result of a bibliographic research. The aim is
to provide an input to test OLET. When some data regarding mass and dimensions
were missing, a standard value for that category was imposed. For example, 1 kg
mass and 10cmx10cmx10cm size for 1Us.

Table A.1: 2U CubeSats

Name Depl. date lt
(yrs)

m
(kg)

Dim.
(cm)

Attitude Exten. Ref.

CXBN-2 16/05/2017 1.792 2.00 10x10x20 Sun-
Pointing

Solar
Panels

[33]
[34]

HAVEL-
SAT

16/05/2017 1.789 2.30 10x10x20 Unknown Small
antenna

[34]
[35]

QBITO 25/05/2017 1.732 1.80 10x10x20 Aligned to
V-

direction

Small
antenna

[33]

BeEagle
Sat

26/05/2017 1.921 2.26 10x10x20 Unknown Small
antenna

[34]
[36]

Swia-
towid

03/07/2019 1.699 2.00 10x10x20 Active
Control

Solar
Panels

[34]
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Table A.2: 1U CubeSats

Name Depl. date lt
(yrs)

m
(kg)

Dim.
(cm)

Attitude Exten. Ref.

FITSAT-1 04/10/2012 0.748 1.33 10x10x10 Permanent
magnet

Small
antenna

[33]

F-1 04/10/2012 0.595 1.00 10x10x10 Unknown Small
antenna

[37]

TechEd-
Sat

04/10/2012 0.584 1.20 10x10x11 Unknown Small
antenna

[33]

Ardusat 19/11/2013 0.405 1.00 10x10x10 Unknown Small
antenna

[38]

ITF-2 16/01/2017 1.964 1.20 10x10x10 Unknown No [34]
Nigeria

EduSat-1
07/07/2017 1.849 1.00 10x10x10 Unknown No [34]

1KUNS
-PF

11/05/2018 2.633 1.00 10x10x11 Magnetic
stab.

Small
Antenna

[39]
[40]

IRAZU 11/05/2018 1.816 1.00 10x10x10 Unknown Small
Antenna

[33]

EQUi-
Sat

13/07/2018 2.463 1.00 10x10x10 Unknown Small
Antenna

[38]

Maya-1 10/08/2018 2.290 1.00 10x10x11 Permanent
magnet

Small
Antenna

[41]
[42]

Sirius-
Sat-1

15/08/2018 2.321 1.45 10x10x10 Unknown Instru-
ments

[40]
[43]

Raavana-1 17/06/2019 2.299 1.10 10x10x11 Unknown Small
Antenna

[44]
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Table A.3: 3U CubeSats

Name Depl. date lt
(yrs)

m
(kg)

Dim.
(cm)

Attitude Exten. Ref.

Flock 1-1 11/02/2014 0.323 5.00 10x10x34 Magnetic
stab.

Solar
panels

[33]
[45]

Micro-
MAS-1

04/03/2015 0.411 4.25 10x10x34 Aligned to
V-

direction

Solar
panels

[33]
[34]

S-CUBE 23/11/2016 1.186 3.99 10x10x30 G.G. stab. Solar
panels

[33]
[46]

MinXSS-1 16/05/2016 0.973 3.50 10x10x34 Sun-
pointing

Solar
panels

[33]

CADRE 16/05/2016 0.636 4.00 10x10x34 Unknown Solar
panels

[34]
[33]

Icecube 16/05/2017 1.384 4.00 10x10x34 USun-
pointing

Solar
panels

[33]

UBAKU-
SAT

11/05/2018 2.088 4.00 10x10x30 Unknown Small
Antenna

[34]

UNITE 31/01/2019 2.723 3.56 10x10x34 Unknown
above
300km

Small
fins

[47]

Spooky-1 17/06/2019 2.334 2.60 10x10x34 Passive
control

Small
Antenna

[34]
[48]

EntrySat 04/07/2019 2.104 3.00 10x10x34 Magnetic
stab.

No [34]
[49]

SOAR 14/06/2021 0.748 3.36 10x10x30 Aligned to
V-

direction

Solar
panels

[34]
[50]
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Table A.4: Other satellites

Name Depl. date lt
(yrs)

m
(kg)

Dim.
(cm)

Attitude Exten. Ref.

Sfera 23/08/2012 0.271 13.0 53 Unknown No [37]
TechEd
Sat-4

03/03/2015 0.085 2.68 65.5 Aligned to
V-

direction

Sail [33]

Diwata-1 27/04/2016 4.044 50.0 55x35x55 Active
control

No [33]

FREE-
DOM

16/01/2017 0.055 1.30 500 Unknown Sail [34]
[36]

Tancredo-
1

16/01/2017 0.753 0.57 9,25x12,7 Unknown Small
antenna

[34]

ASTERIA 20/11/2017 2.427 10.2 24x12x37 Active
control

Solar
panels

[33]
[38]

RaInCube 13/07/2018 2.452 5.50 25x22x10 Nadir-
Pointing

Antenna
and
solar

panels

[33]
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Appendix B

Code

Figure B.1: OLET scheme

1

2 /∗ OLET ( 1 . 1 )
3 This code was developed to study the long term behavior o f s a t e l l i t e s

in the LEO environment ; the f o cus was on s a t e l l i t e s deployed from
ISS . Given the nature o f the problem , a study was c a r r i e d out on
the s e c u l a r v a r i a t i o n o f o r b i t a l e lements . Two body problem ,
pe r tu rba t i on s are cons ide r ed ( drag and J2 e f f e c t ) . Atmospheric
model : NRLMSISE−2000 ( Dominik Brodowski ’ s l i b r a r y ) . According to
deployment date and time , ISS TLE i s i d e n t i f i e d . NORAD data base i s

used . ISS o r b i t a l e lements are obta ined from TLE and are s e t as
the i n i t i a l c ond i t i on o f the s a t e l l i t e s tud i ed . Gauss ’ form o f
Lagrange p lanetary equat ions i s used [ 2 ] . Resu l t s are pr in ted in a
. dat f i l e . Furthermore , a Matlab s c r i p t " output .m" can be run to
p l o t the a l t i t u d e decay and othe r s o r b i t a l e lements .

4
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5 Refe rences
6 [1]−−−−−−−−−−−> Approximate optimal LEO t r a n s f e r s with J2 per turbat i on

and d r a g s a i l . Authors : Casal ino , F o r e s t i e r i
7 [2]−−−−−−−−−−−> Vallado ; Fundamentals o f Astrodynamics and App l i ca t i on s
8 [3]−−−−−−−−−−−> Bate , Muller ; Fundamentals o f Astrodynamics
9 [4]−−−−−−−−−−−> C o r n e l i s s e ; Rocket Propuls ion and S p a c e f l i g h t Dynamics

10 ∗/
11

12 #inc lude " orb i t_s imulator_funct ions . c "
13

14 /∗CONSTANTS∗/
15 #d e f i n e k_lim 20000 /∗ Max number o f e l apsed o r b i t s
16 #d e f i n e num_var 6 /∗ Number o f o r b i t a l e lements
17

18

19 /∗MAIN∗/
20 i n t main ( )
21 {
22

23 /∗
24 fp −−−−−−−−−−−−−−−−−−−−−−−−−−−−> . dat output f i l e to show the

trend o f o r b i t a l e lements
25 fp2 −−−−−−−−−−−−−−−−−−−−−−−−−−−> . dat output f i l e to show the

e r r o r between the ac tua l l i f e t i m e and the one c a l c u l a t e d by Orbit
Simulator

26 x [ num_var ] −−−−−−−−−−−−−−−−−−−−> [ a (km) , e , i ( deg ) ,RAAN( deg ) , omega (
deg ) , n i ( deg ) ]

27 X[ num_var ] [ 2 ] −−−−−−−−−−−−−−−−−> [ a [ k ] , e [ k ] , i [ k ] , RAAN[ k ] , omega
[ k ] , n i [ k ] ; a [ k+1] , e [ k+1] , i [ k+1] , RAAN[ k+1] , omega [ k+1] , n i [ k +1] ]

28 delta2piX [ num_var]−−−−−−−−−−−−−> X v a r i a t i o n in one o r b i t
29 i n t e g r a l −−−−−−−−−−−−−−−−−−−−−−> v a r i a b l e which conta in s the

i n t e g r a l va lue o f the semi−ax i s formula from [ 2 ]
30 t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−> time counter ( days )
31 sat_dat [ROW4] [ COL4] −−−−−−−−−−−> matrix which conta in s s a t e l l i t e

data : deployment date , a c tua l l i f e t i m e , mass , c r o s s s e c t i o n
32 yr ,mo, day , hr , min , s e c −−−−−−−−−−> date counter s
33 dyr −−−−−−−−−−−−−−−−−−−−−−−−−−−> day o f the year
34 T −−−−−−−−−−−−−−−−−−−−−−−−−−−−−> o r b i t per iod
35 weather [ROW3] [ COL3] −−−−−−−−−−−> space weather matrix
36 rho −−−−−−−−−−−−−−−−−−−−−−−−−−−> dens i ty [ kg/m3]
37 m, S ,CD −−−−−−−−−−−−−−−−−−−−−−−−> s a t e l l i t e mass ( kg ) , s a t e l l i t e

c ros s −s e c t i o n a l area (m2) , drag c o e f f i c i e n t
38 k , i , s a t −−−−−−−−−−−−−−−−−−−−−−−> counter s
39 l i f e t i m e [ROW4] −−−−−−−−−−−−−−−−> l i f e t i m e c a l c u l a t e d by the Orbit

Simulator f o r each s a t e l l i t e eva luated
40 e r r o r [ROW4] −−−−−−−−−−−−−−−−−−−> e r r o r between the ac tua l l i f e t i m e

and the one c a l c u l a t e d by the Orbit Simulator f o r each s a t e l l i t e
eva luated
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41 output [ 2 ] −−−−−−−−−−−−−−−−−−−−−> delta_semi_axis_RK4 func t i on
output , the f i r s t element i s the semi−major ax i s in one orb i t , the
second i s

42 that o r b i t per iod
43 ∗/
44

45 FILE∗ fp ;
46 FILE∗ fp2 ;
47 double x [ num_var ] ,X[ num_var ] [ 2 ] , de l ta2piX [ num_var ] , rho=1, t =0,

weather [ROW3] [ COL3] , sat_dat [ROW4] [ COL4] , e r r o r [ROW4] ,CD, S ,m, dyr=0,
sec ,T, l i f e t i m e [ROW4] , output [ 2 ] ;

48 i n t k , i , yr ,mo, day , hr , min , sa t ;
49 CD = 2 . 2 ;
50

51

52 /∗ " output . dat " f i l e i s open∗/
53 fp = fopen ( " output . dat " , "w" ) ;
54 /∗
55 " output . dat " s t r u c t u r e :
56 a (km) e i ( deg ) RAAN( deg ) omega ( deg ) n i ( deg ) t ( day ) k ( o r b i t

number )
57 ∗/
58 i f ( fp == NULL)
59 {
60 p r i n t f ( "FILE OPENING ERROR" ) ;
61 }
62 e l s e
63 {
64 /∗ s a t e l l i t e s data are read from an input f i l e ∗/
65 r ead_sat e l l i t e_data ( sat_dat ) ;
66 f o r ( sa t =0; sat<ROW4; sa t++)
67 {
68 day = ( i n t ) sat_dat [ sa t ] [ 1 ] ;
69 mo = ( i n t ) sat_dat [ sa t ] [ 2 ] ;
70 yr = ( i n t ) sat_dat [ sa t ] [ 3 ] ;
71 m = sat_dat [ sa t ] [ 5 ] ;
72 S = sat_dat [ sa t ] [ 6 ] ;
73 hr = 0 ; // by d e f a u l t
74 min = 0 ; // by d e f a u l t
75 s ec = 0 ; // by d e f a u l t
76 f p r i n t f ( fp , "SATELLITE %d \n" , ( i n t ) sat_dat [ sa t ] [ 0 ] ) ;
77

78

79

80 /∗ Space weather and ISS TLE f i l e s are read ∗/
81 read_Space_Weather ( weather , yr ) ;
82 read_ISS_tle (x , yr , mo, day ) ; // I n i t i a l o r b i t a l e lements

are s e t accord ing to ISS TLE
83

78



Code

84

85 /∗ I n i t i a l o r b i t a l e lements are passed to matrix X∗/
86 f o r ( i =0; i <6; i++)
87 {
88 X[ i ] [ 0 ] = x [ i ] ;
89 }
90

91 /∗ Propagation ∗/
92 k = 0 ;
93 t = 0 ;
94 T = 0 ;
95 dyr = 0 ;
96 time_update (T,&t ,&yr ,&mo,&day ,&dyr ,&hr ,&min,& sec ) ; //

i n i t i a l day o f year ( dyr ) i s c a l c u l a t e d
97 rho = dens i ty (x , weather , dyr , yr ,mo, day , hr , min , s ec ) ; //

dens i ty c a l c u l a t i o n through NRLMSISE−00 model ( i n i t i a l va lue )
98 delta2piX [ 0 ] = 0 ;
99 whi le (k<k_lim )

100 {
101 f o r ( i =0;k>0&&i <6; i++)
102 {
103 x [ i ] = X[ i ] [ 0 ] ; // matrix e lements are passed to the

x vec to r which w i l l be used in the f o l l o w i n g f u n c t i o n s
104 }
105 k = k+1; // counter update
106

107

108 i f ( rho <0) // i f rho<0 i t means that the s a t e l l i t e
a l t i t u d e i s below 100 km, the propagat ion ends

109 {
110 k = k_lim ;
111 l i f e t i m e [ sa t ] = t /360 ;
112 e r r o r [ sa t ] = l i f e t i m e [ sa t ] / sat_dat [ sa t ] [ 4 ] ;
113 p r i n t f ( " \ nLi f e t ime S a t e l l i t e %d : %f years " , ( i n t )

sat_dat [ sa t ] [ 0 ] , l i f e t i m e [ sa t ] ) ;
114 }
115

116 f o r ( i =0; i<6&&k<k_lim ; i++)
117 {
118 switch ( i ) //Gauss ’ p lanetary equat ions accord ing

to [ 2 ]
119 {
120 case 0 : // semi−major ax i s equat ion
121 delta_semi_axis_RK4 ( output , x , weather , dyr , yr

,mo, day , hr , min , sec ,CD, S ,m) ; //RungeKutta4 on semi−major ax i s
equat ion

122 delta2piX [ i ] = output [ 0 ] ; // semi−major ax i s
v a r i a t i o n in one o r b i t

123 T = output [ 1 ] ; // time e lapsed in one o r b i t

79



Code

124 time_update (T,&t ,&yr ,&mo,&day ,&dyr ,&hr ,&min
,& sec ) ; // time i s updated c o n s i d e r i n g the o r b i t per iod T

125 i f ( de l ta2piX [ i ]==−1e5 ) // i f de l ta2piX [ i ]=−1
e5 i t means that the s a t e l l i t e a l t i t u d e i s below 100 km

126 {
127 i = 6 ;
128 rho = −1;
129 delta2piX [ i ] = 0 ;
130 }
131 e l s e
132 {
133 X[ i ] [ 1 ] = X[ i ] [ 0 ] + delta2piX [ i ] ; //

o r b i t a l element i s updated
134 i f (X[0 ] [1 ] >=6428)
135 {
136 f p r i n t f ( fp , "%f " ,X[ i ] [ 1 ] ) ;
137 }
138 e l s e // the s a t e l l i t e a l t i t u d e i s below

50 km
139 {
140 i = 6 ;
141 rho = −1;
142 }
143 }
144 break ;
145 case 1 : // e c c e n t r i c i t y
146 delta2piX [ i ] = 0 ;
147 X[ i ] [ 1 ] = X[ i ] [ 0 ] + delta2piX [ i ] ; // o r b i t a l

element i s updated
148 f p r i n t f ( fp , "%f " ,X[ i ] [ 1 ] ) ;
149 break ;
150 case 2 : // i n c l i n a t i o n
151 delta2piX [ i ] = 0 ;
152 X[ i ] [ 1 ] = X[ i ] [ 0 ] + delta2piX [ i ] ; // o r b i t a l

element i s updated
153 X[ i ] [ 1 ] = X[ i ] [ 1 ] − ( f l o o r (X[ i ] [ 1 ] / 3 6 0 )

∗360) ; // Angles are imposed between 0 and 360 degree s
154 f p r i n t f ( fp , "%f " ,X[ i ] [ 1 ] ) ;
155 break ;
156 case 3 : //RAAN
157 delta2piX [ i ] = −3∗pi ∗J2∗pow ( (R/X[ 0 ] [ 0 ] ) , 2 ) ∗

cos (X[ 2 ] [ 0 ] ∗ ( p i /180) ) ∗(180/ p i ) ;
158 X[ i ] [ 1 ] = X[ i ] [ 0 ] + delta2piX [ i ] ; // o r b i t a l

element i s updated
159 X[ i ] [ 1 ] = X[ i ] [ 1 ] − ( f l o o r (X[ i ] [ 1 ] / 3 6 0 )

∗360) ; // Angles are imposed between 0 and 360 degree s
160 f p r i n t f ( fp , "%f " ,X[ i ] [ 1 ] ) ;
161 break ;
162 case 4 : //argument o f p e r i a p s i s
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163 delta2piX [ i ] = (3/2) ∗ p i ∗J2∗pow ( (R/X[ 0 ] [ 0 ] )
, 2 ) ∗((5∗pow( cos (X[ 2 ] [ 0 ] ∗ ( p i /180) ) , 2 ) ) −1)∗(180/ p i ) ;

164 X[ i ] [ 1 ] = X[ i ] [ 0 ] + delta2piX [ i ] ; // o r b i t a l
element i s updated

165 X[ i ] [ 1 ] = X[ i ] [ 1 ] − ( f l o o r (X[ i ] [ 1 ] / 3 6 0 )
∗360) ; // Angles are imposed between 0 and 360 degree s

166 f p r i n t f ( fp , "%f " ,X[ i ] [ 1 ] ) ;
167 break ;
168 case 5 : // t rue anomaly
169 delta2piX [ i ] = 0 ;
170 X[ i ] [ 1 ] = X[ i ] [ 0 ] + delta2piX [ i ] ; // o r b i t a l

element i s updated
171 X[ i ] [ 1 ] = X[ i ] [ 1 ] − ( f l o o r (X[ i ] [ 1 ] / 3 6 0 )

∗360) ; // Angles are imposed between 0 and 360 degree s
172 f p r i n t f ( fp , "%f %f %d\n" ,X[ i ] [ 1 ] , t , k ) ;
173 break ;
174 d e f a u l t :
175 p r i n t f ( " main switch e r r o r " ) ;
176 }
177

178 X[ i ] [ 0 ] = X[ i ] [ 1 ] ; // Matrix update
179

180 }
181 }
182 }
183 f c l o s e ( fp ) ;
184 }
185 /∗ l i f e t i m e e r r o r s are pr in ted in the second output f i l e ∗/
186 fp2 = fopen ( " output2 . dat " , "w" ) ;
187 f o r ( sa t =0; sat<ROW4; sa t++)
188 {
189 f p r i n t f ( fp2 , "%f %f %f \n " , l i f e t i m e [ sa t ] , sat_dat [ sa t ] [ 4 ] , e r r o r [

sa t ] ) ;
190 }
191 f c l o s e ( fp2 ) ;
192 p r i n t f ( " \n Now you can run ’ output .m’ " ) ;
193

194 re turn 0 ;
195 }
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