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Abstract

Deep Learning and Neural Networks have been studied and developed for many
years as of today, but there is still a great need of research on this field, because the
industry needs are rapidly changing. The new challenge in this field is called edge
inference and it is the deployment of Deep Learning on small, simple and cheap
devices, such as low-power microcontrollers. At the same time, also on the field of
hardware design the industry is moving towards the RISC-V micro-architecture,
which is open-source and is developing at such a fast rate that it will soon become
the standard. A batteryless ultra low power microcontroller based on energy
harvesting and RISC-V microarchitecture has been the final target device of this
thesis. The challenge on which this project is based is to make a simple Neural
Network work on this chip, finding out the capabilities and the limits of this chip
for such an application and trying to optimize as much as possible the power and
energy consumption.

To do that TensorFlow Lite Micro has been chosen as the Deep Learning
framework of reference, and a simple existing application was studied and tested
first on the SparkFun Edge board and then successfully ported to the RISC-V
ONiO.zero core, with its restrictive features. The optimizations have been done only
on the convolutional layer of the neural network, both by Software, implementing
the Im2col algorithm, and by Hardware, designing and implementing a new RISC-V
instruction and the corresponding Hardware unit that performs four 8-bit parallel
multiply-and-accumulate operations. This new design drastically reduces both the
inference time (3.7 times reduction) and the number of instructions executed (4.8
times reduction), meaning lower overall power consumption.

This kind of application on this type of chip can open the doors to a whole new
market, giving the possibility to have thousands small, cheap and self-sufficient
chips deploying Deep Learning applications to solve simple everyday life problems,
even without network connection and without any privacy issue.

Keywords
Artificial intelligence, Deep learning, Neural networks, Edge computing, Convolu-
tional neural networks, Low-power electronics, RISC-V, AI accelerators, Parallel
processing
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Chapter 1

Introduction

This chapter describes the specific problem that this thesis addresses, the context
of the problem, the goals of this thesis project, and outlines the structure of the
thesis.

Nowadays the applications of AI and specifically of ML are growing in number at
a very fast rate and touch almost all the fields of technological progress. The focus
of the research on ML is at its peak and the impact of the new results is already
visible in several use-cases, from new medical diagnosis instruments to common
smart devices for the modern domotics. While the large scale applications based
on cloud computing are already quite known and have been heavily developed in
the recent years, on the other hand the trend now is to move towards the small
scale, trying to implement similar simpler solutions in the millions of embedded
devices that truly are the protagonists of the modern technology.

At the same time, in the field of embedded devices and microcontrollers, in the
recent years there has been the tendency of moving everything to the so called open
source development, meaning that it is the community that creates and develops
the product, granting free access to all the details and design ideas to everyone.
In particular, the design of the hardware itself can now be open-source thanks
to RISC-V, which is an open-standard ISA that can replace the expensive ARM
designs for microcontroller cores.

This thesis project originates from this two research trends and tries to unify
them by taking a typical ML embedded application and implementing it on a
custom low power batteryless RISC-V core designed by ONiO, the company where
the project has been carried out, combining the challenges outlined above with the
restrictions coming from such an extreme low power design.
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Introduction

1.1 Background
The background for this project is quite broad and goes from the AI field in general
to the microarchitecture design and RISC-V ISA, considering all the related areas
that allow for better efficiency and lower power consumption.

On one hand, starting from the AI it is possible to narrow down the focus to
the so called edge inference and to TF Lite Micro, the ML framework adopted
in this project for the development and deployment of the application.

On the other hand, again starting from a general overview of the RISC-V ISA,
it is possible to focus only on the instruction types and extensions needed for
the specific case of this project, as well as the HW design methods that allow an
efficient and low power implementation of the operations.

1.2 Problem
Several examples and applications of ML edge inference can be already found in lit-
erature, as well as thousands of RISC-V projects and low power designs. Moreover,
some studies and applications have been also carried out about edge inference on
RISC-V custom cores or accelerators, therefore the challenge that makes this thesis
project different and in some ways original is related to the extreme restrictions
that a microcontroller powered only by energy harvesting imposes, and how to
match these constraints with the requirements coming from edge inference of a NN,
however simple it is.

ONiO.zero is the custom batteryless microcontroller produced by ONiO and
it will be the target device for this thesis project. The final research question is
therefore: is it possible to perform edge inference on the ONiO.zero? Which HW
and SW approaches can be used to make it possible and efficient enough? What are
the limits of ONiO.zero in this specific application and how can they be overcome
though HW/SW optimizations?

1.3 Purpose
The higher level purpose of this thesis project is what truly makes it exciting and
fascinating, because it is profoundly innovative from all points of view: cheap and
small devices that need almost no maintenance being batteryless and therefore
self-sufficient are already a cutting-edge technology that could become the standard
in the next years, but being able to exploit ML algorithms on those chips would
open the doors to new possibilities and applications in any field that could change
how people do things.
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Moreover, the real application of such a project would also guarantee several
other benefits from a sustainable and ethical point of view. As a matter of fact,
having a self-sufficient chip means getting rid of batteries, which are a great cause
of pollution both for their production and for their disposal, while at the same
time being able to perform ML edge inference means to avoid the need of cloud
computing, therefore all the collected data will be stored and processed only on
the device itself, which solves all the privacy and social issues.

1.4 Goals
The goals of the project can be directly derived from the problem statement, even
if the project has been carried out having sequential objectives depending on each
other. The final objectives from a general point of view can be summarized as
follows:

• Choose an existing ML simple application and port it to the constrained
RISC-V core. Here some subgoals can be defined.

– Test the NN as it is on a general purpose board equipped with an ARM
core (SparkFun Edge board).

– Quantize the model and change the application accordingly to meet the
restrictions of the RISC-V core and test it on the SparkFun Edge board.

– Port the application to a constrained RISC-V core by rewriting the
operators and test it on the FPGA model of the core.

• Find out where and if the process can be improved towards a lower power
consumption and a better efficiency. This can be done both by HW and by SW,
by adding some custom instructions, designing a specialized HW accelerator
or adding a AFU in the core pipeline.

• Take measurements to find out the limits and the capabilities of the constrained
RISC-V core when implementing such an application.

1.5 Research Methodology
The methodology adopted in this project tries to move step by step from a very
simple application to the final optimized HW design. Given the initial limited
familiarity with the AI topic, this kind of method is essential in the present case,
because it allows to fully understand the basics first, and then try to apply them
in practice little by little.
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As a consequence, the steps involved in this project are the following:

• Generic and detailed literature research to understand what is a NN, how to
develop and deploy it and how nowadays it is implemented on microcontrollers.

• Generic and detailed literature research to see how a RISC-V core can be
optimized for few specific operations.

• Choice of an AI framework and of a simple application that will constitute
the SW core of the project.

• Develop and test the simple application on a common microcontroller equipped
with an ARM core.

• Optimize the application in size, memory and inference time for the ARM
core to see what is needed, how it works and be prepared for the RISC-V
optimizations.

• Port and test the entire application to the RISC-V custom core.

• Optimize the HW and the SW to achieve an acceptable power consumption and
find the capabilities of the custom RISC-V core in deploying a NN application.

As it can be seen, the actual work on the RISC-V HW represents only the final
step, confirming once more the idea of incremental approach adopted in this project.
Of course more time and focus is put on the two last steps, but it is important to
understand that the previous ones are fundamental to have a concrete idea of how
the whole system works and this cannot be achieved with a different methodology
that, as an example, starts directly from the RISC-V implementation and tries to
optimize it without knowing how different HW implementations work.

1.6 Delimitations
The work done in this thesis project is first of all focused on the low power HW
perspective, even though at a first look it might seem that the central topic is
the design and development of a specific NN model. It is therefore important to
clearly state that the design, training and quantization of the NN model, as well
as its inference on an ARM core are not part of the design goals of this project,
but rather they are essential integration steps that lead to the RISC-V low power
HW implementation, which represents the real purpose. This explains why a
simple ready-made NN model has been chosen as reference starting point, without
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spending too much time modifying it, as well as the integration on the ARM core
has been done following a simple default approach.

One more thing to point out is that, as stated in the previous paragraphs, the
final purpose of the project is to explore and find out about the capabilities and
the limits of a highly constrained RISC-V core, therefore it is not needed to reach
a certain performance level or to make the final application work effectively in a
real case. This is why the results of this project should be seen from a research
perspective, since here a new custom core with very restrictive characteristics is
being used for the first time for such an application.

1.7 Structure of the thesis
Chapter 2 presents relevant background information about AI frameworks, convo-
lutional NNs, RISC-V and the corresponding applications in literature. Chapter 3
presents the methodology and method used during the progress of the project,
describing the main general choices made before starting with the implementation
part, both from the SW and HW point of view. Chapter 4 details the technical
work done during the project, meaning every step from the ready-made example on
the SparkFun Edge board to the final RISC-V optimizations, with all the related
tests and SW/HW changes. Chapters 5 and 6 contain the obtained results and
the following considerations about the measurement outcomes. Finally, chapter 7
wraps everything up, making some conclusions on the work done and suggesting
some possible paths for further development of the project in the future.
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Chapter 2

Background and Related
Work

This chapter tries to highlight the necessary background knowledge that allows
to understands the method and the results of this project. As already stated,
there are mainly two areas on which the concept of the thesis is based: RISC-V
microarchitecture and ML, more specifically NN. As a matter of fact, the two
Sections of this chapter focus on ML (Section 2.1) and RISC-V (Section 2.2), trying
to give a brief general overview and go more and more in detail when it comes to the
actual low level topics of the thesis. As a consequence, Section 2.1 focuses more on
the CNN structure and on the specific framework chosen to develop the application
(TF Lite Micro), while Section 2.2 analyzes the microarchitectural approaches to
develop RISC-V core. Finally, Section 2.3 highlights the most relevant examples
found in literature about projects related to these two fields.

2.1 Machine Learning and Neural Networks
Nowadays AI, ML and NN are used more and more frequently in the literature
and in the research, but it is not that common to know what makes them different
and what is common between them. The more general concept is surely related to
the AI, which allows the computers to achieve some goals in the way humans do,
and this AI field actually encompasses the other two.

ML is a field which allows computers to adapt to certain situations and react
to changes. This is made possible by the training, during which the computer
actually learns how to behave in a specific task with variable parameters and input
data. As a consequence, training means feeding the machine with numerous known
input data all different from each other, with the objective of making the machine’s
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output as close as possible to the ideal known output, so that in case of new,
unknown input data, the output has a high probability to be very close to the ideal
one. The known input data set is applied to the network many times and each
time is called epoch.

Neural Networks can be seen as a sub-field of Machine learning and are sometimes
referenced as DL. They try to mimic in a simple way how the human brain works,
i.e. through neurons and synapses. This explains why it is “deep", because it
is possible to use several layers of neurons to process the data before having an
output. Each layer will have the goal to identify the presence of some features (or
particular patterns) in the data given at its input, so the deeper layers will work
on the features found by precedent ones, trying to find higher level features. The
final goal will be to see if the highest level feature found corresponds to any of the
object classes learned through training.

To understand how everything works, it is just needed to know that in a simplified
way, the information in the human brain is processed by the neurons, connected
through synapses, which are the link between the output of the previous neuron
and the input of the following one. In neural networks field, the output of a neuron
is called activation and the synapses are called weights. At each layer, every neuron
will perform a weighted sum of all its inputs and then apply a non-linear function
to the result (called activation function), with the purpose of finding some sort of
feature in the data. At each layer of neurons higher level features can be identified
and the final output will be a vector of scores that tells how high is the probability
of having found a specific feature between the known ones.

As an example, at each layer of the network, the formula applied by a neuron is
the following (eq. 2.1, from [1]):

yi = f(
nØ

i=1
Wij × xi + b) (2.1)

with Wij being the weights (synapses), xi being the previous layer neurons’
activations, f is the non linear function and b is a bias term. Figure 2.1 (retrieved
from [1]) describes and explains the formula.

As a consequence, designing a neural network model means choosing how many
layers of neuron to have, how many neurons to have in the internal (called “hidden")
layers and what kind of activation function each layer will have. The number of
neurons at the input layer is usually given by the number of inputs (measured
values) and the number of neurons on the output layer are given by the wanted
outputs (features to be found).

There are many different kinds of NNs that could be more or less convenient
depending on the type of data to be processed at the input and depending on how
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Figure 2.1: Neural network functioning example [1]. ©2017 IEEE

this data can be processed in the easiest and fastest way to recognize the wanted
features.

It can be now easier to understand what training means in this context: changing
the weights in order to minimize the loss, which is the difference between the current
and the ideal scores. Again, when designing a neural network model, part of the
design is also the choice of the training algorithm, meaning the function(s) that
control how the weights are updated during the training process, in order to
minimize the loss.

Another important term in this field is inference, which is simply the deployment
of the neural network on a practical case, so implementing it on a machine, feeding
it with an input and getting an output of scores.

2.1.1 Convolutional Neural Networks (CNNs)
One specific type of NN is the CNN, which is one of the most used types in
many recent applications, for its great results and for the possibility to efficiently
accelerate its operations. It fits really well when it is needed to find some sort of
relationship between adjacent values, in order to extract particular features, and
that is why most of its luck comes from the image recognition and classification,
where it is used at pixel level, but it can give great results also in many other
fields, such as speech or gesture recognition, if the input data is pre-processed in
the proper way.

In order to recognize these patterns, this kind of network is organized in sub-
sequent layers, and in each layer the chosen features are recognized by the use of
filters that are applied to the input data through the convolution operation. In
the first layer the filters will only recognize simple features between immediate
neighbors, and pass the result to the successive layer, where other filters can see if
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the features found in the first layer can be composed together to form some more
complex features, and so on, until the final complex features can be recognized in
the last layer.

Each layer has a specific number of filters, where each filter will be able to
recognize a particular feature and is composed by the weights that are tuned during
training. Each filter will be convoluted with the input and it will give as a result
a feature map, which indicates where the feature has been found, so after the
first layer there will be as many output feature maps as the layer’s filter number.
Each of these output feature maps could have the same dimension as the input
data or not, depending on how the filter is applied to the input data, and this is
decided by two convolution parameters: the stride and the padding. The stride
value controls how the window is moved along the input matrix, so stride=1 means
that the window is moved of just one element at a time both in the vertical and
horizontal direction, while with stride=2 the window will move of two elements
in both directions, so in the end less operations will be performed and the output
feature map will have less elements. The padding controls if some 0-padding is
applied to the input feature map so that the window can be always centered on
the input matrix value. It is actually very common that the shape is the same,
provided that stride is 1 and a padding is made in the corner cases for the filter
values that are out of the input data. an example is given in Figure 2.2.

Figure 2.2: CNN filter multiplication: padding in the corners [2].

Another common layer that usually follows the convolutional layer is the Max-
Pool, which has the goal to shrink the size of the output feature maps to make
the computation easier and gradually go to high level features eliminating useless
data. Its functioning is very simple, it splits the feature map into non overlapping
windows and it passes to the new output only the maximum value of that window
(see Figure 2.3).

The following step is the last one before a new convolutional layer is used: it
is the dropout, which perform the so called regularization. It is a way to avoid
overfitting, meaning that the model could fit too well the training data, but will not
be able to withstand unexpected noise or strange behaviors of the input. During
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Figure 2.3: CNN MaxPool layer functioning [2].

dropout, some of the output values are randomly set to 0, losing in this way their
information. In this way the model is also trained for noisy environments. Of course,
this layer is only applied during training, since it would be counterproductive to set
some output values to 0 during inference, losing in this way precious information
about the unknown input.

After that, new layers formed by convolution, MaxPool and dropout can be
attached based on the needs, designing the actual NN.

It is worth it to analyze in detail the convolutional layer to fully understand
how it works. The input data to each conv layer are the input matrix (or matrices)
and the filters. Each input matrix can have more than one so called channel, or
feature map, ant it is important that every single filter has the same number of
channels as the input matrix. An example of channels can be found in the image
processing, where the same image typically has three channels (RGB). In that case
every filter will have three channels as well.

For every single filter, all filter’s channels are convoluted with the corresponding
input channels (feature maps) and the results are summed together to have only one
output feature map per filter. With the term convoluted it is meant that a window
with the same same dimensions of the filter is applied to the input channel’s matrix
(with an eventual padding), and all the input values that are inside the window are
multiplied pointwise with the correspondent value of the filter’s channel and then
summed together to generate a scalar. This is repeated for all the input channels
(convoluted with the correspondent filter channels) and all the produced scalars
related to the same filter (but to different channels of that filter) are finally summed
together to generate the output value stored in the output channel correspondent
to that filter. What desscribed above is related to just one element of the input
matrix (with all its channels) and produces just one element of one channel of the
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output matrix. The other channels of the output are generated with the same
procedure, but with a different filter (with all its channels).

Figure 2.4 shows how the convolution is typically performed, with 2 input
matrices each with 3 channels (or Input Feature maps) and 2 filters (each with 3
channels). The number of outputs is the same as the number of the input, but
each output will have as many channels (or Output Feature maps) as the number
of filters.

Figure 2.4: Schematic view of CNN layer functioning [3]. ©2019 IEEE

The corresponding mathematics is summarized in the following Equation 2.2
(from [3]), where C is the number of input channels, H and W are the height and
width of the channels or of the filters (with _i being input and _f being filter).
Note that this equation does not consider the eventual padding made to have input
and output feature maps of the same dimension.

OFmap [k] [x] [y] =
Ci−1Ø
c=0

Hf −1Ø
r=0

Wf −1Ø
s=0

Fil [k] [c] [r] [s] *IFmap [c] [x + r] [y + s] (2.2)

A simple example can be seen in Figure 2.13. Looking at the second Conv2D
layer, it has one input with 8 channels and it uses 16 filters. Each filter needs to
have the same number of channels as the input, therefore 8 channels in this case,
while the output will have as many channels as the number of filters, so 16 here.
The operations done in this case can be summarized as follows: for each filter every
channel is separately applied to the correspondent input channel, and each result
is then summed pointwise across all the channels, so that one filter will generate
one output feature map. The same procedure is repeated for every filter with its
channels.

In most cases the NN needs to end with one or more fully connected layers, to
go from feature maps to being able to see if the sequence of recognized features
forms the wanted object, and give the related scores, or class probabilities. To
do so, all the output feature maps of the last convolutional layers are flattened
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together in just one long 1D vector of data, which gradually shrinks to only N
output values thanks to a series of fully connected (or dense) NN layers, where N
is the number of object classes to be recognized. It is important to highlight that
each convolutional and fully connected layer has its own activation function. The
last fully connected layer should have as outputs some actual probability values
that can be understood by humans, and this is why it has a softmax activation
function.

CNN popular optimization: Im2col
One of the several ways to optimize the computation of a convolutional layer is
called Image to column, or Im2col, which basically consists in transforming the
convolution operation into a common matrix multiplication. This is very useful in
case the hardware is highly optimized for matrix multiplication, such as on GPUs.
In many other cases, the common optimized matrix multiplication is done through
the so called GEMM algorithm. The Im2col algorithm first takes the filter elements
and puts them in a column, then it does the same with all the channels of that
filter stacking all these values in just one long column. This is repeated for every
filter, having one column for each filter (with all its channels). Then the elements
of the input matrix contained in the convolution window are placed in a row and
the same is done for every channel of that input, creating one long row related to
that specific window. Similarly, considering how the window moves (stride and
padding), all the rows related to every possible window are stacked one on top of
each other. In this way a new input matrix is created as it can be seen in Figure
2.5, where looking at the colors is very clear how the elements are placed and how
is it possible that a simple matrix multiplication will give the complete output.

All the symbols in the Figure have the same meaning as in Equation 2.2. It can
be seen how some elements will be duplicated in this new matrix (elements in a
red-dotted box), but this is needed to make the computation easier.

The same procedure can be done by transforming the filters into rows and the
image into columns (that is why the name of the procedure is Image 2 Columns).

2.1.2 Neural Networks in Low Power applications

As it was described in the background Section, having a set of neurons means
performing many weighted sums and applying a non-linear function to them several
times, therefore neural networks require high power consumption. This leads to the
fact that most of the computation can be reduced to matrix multiplications, and
this explains why GPUs are widely used for these kinds of applications, together
with several MAC units in CPUs. In many cases this is not a problem, since it is
possible to perform inference in powerful, well equipped devices, or in devices that
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Figure 2.5: Im2col algorithm schematic [3]. ©2019 IEEE

are always connected to the internet, so cloud computing is the easiest and most
common way to deploy a deep neural network.

The problem arises when it is needed to use these kinds of applications on devices
that are not always connected to the web and that must be small and not consume
much energy, i.e. on microcontrollers. Here the so called edge computing becomes
necessary: the inference is run independently of the cloud and the internet, just
relying on the device itself, which in most cases is not so powerful and it has strong
storage, power and energy limits. This new field, called TinyML, has several ad-
vantages that are extremely useful in many applications and cannot be guaranteed
by cloud inference and cloud computing [4]: reduce the network bandwidth needed
to communicate with high performance devices by performing a first, high level
investigation at the edge, being independent from network connection, which leads
to better reliability; guarantee security and privacy, since the data collected by the
sensors are only processed locally with no cloud transmission; reduce latency and
guarantee real time response with no wait time for communication and processing
on cloud; energy efficiency and low cost, more a must than an option on MCUs.

It is important to state and understand that in most cases the training process
cannot happen on the device, since it requires a large amount of data and a long
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time of execution. The common way in this case is to train the DL model on cloud,
and then to perform inference on the edge device.

There are some ways to try to reduce the power consumption of neural networks
[1], and most of them act on the number, the type and the way the operations are
performed.

• A first way could be trying to reduce the actual connections between consecu-
tive layers, in order to reduce the terms of the weighted sum. As it can be
seen in the Figure 2.1, fully connected layers are the worst case here, since
every single neuron has a weighted sum of all the previous layer neurons’
output. The goal is therefore to limit the number of activations (neurons)
that influence the following layer by making their weight (synapse) go to 0
by applying the proper non linearity or simply by pruning [4]. In this way a
sparsely connected layer is obtained, which allows to use compression and as a
consequence to use less memory and less energy (windowed Neural Network).
However, the number of weights does not always reduce the energy consump-
tion. With pruning, a threshold for the weights is set and all the weights
below that threshold are canceled (set to zero). In this way the accuracy is
reduced, but if the network with the new weights is retrained, most of the loss
is recovered [4].

• Another interesting way could be the so called weight sharing: reducing
the number of weights, to limit the storage requirements and see if there are
some duplicates in the operations, in order to do them just once. This is
because every activation has a different weight for every different destination
of the following layer, so it could be possible to have just one weight for all
the destinations [1].

• Quantization could also be a valid option to reduce the needed memory
and to make the computational cost much lighter by reducing the size of the
variables and use only simple types. An example could be limiting the number
of bits of the results and using only integer numbers or fixed point numbers.
This will of course come at the cost of a reduced precision, which most of the
times can be allowed [4].

• Knowledge Distillation is used to transfer the knowledge learned by a
powerful trained model (called teacher) to a much smaller model (called
student), which can fit on a small MCU. This method increases accuracy if
compared to the case where the small model is trained independently [4].

• Encoding is sometimes used both to achieve high efficiency in memory usage
and to reduce the size of the model, without any accuracy loss. It is often
used on the weights [4].
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• While all the previous methods act mostly on the computational part of the
network, great advantages in terms of energy efficiency can be gained by acting
on the memory side and on the dataflow, trying to reduce the number of
accesses, the size and the type of memory used, as well as sharing as much
data as possible and treating carefully the intermediate results. Of course this
is possible if there is a certain degree of freedom on the device’s hardware.

• Again, if the hardware is customizable, it is possible to move part of the
computation from the processor to the memory or to the sensor itself to reduce
computational effort at the cost of reduced precision.

More strategies are even more effective, but they can be applied only once the
type of used neural network has been decided, knowing in detail what operation
has to be performed.

2.1.3 Neural Network Frameworks and TinyML
As it can be easily understood, creating and deploying a NN is quite complex,
therefore some tools have been developed to make it easier and faster, as well
as to create the possibility to have an open source environment where the whole
community can improve the system. Such tools are called frameworks and they
basically enable anyone who wants to go deeper in this field to start experimenting
with common examples and building blocks to be used to create and train new DL
models.

These frameworks support a wide range of cores and devices and provide libraries
that allow for an easy and fast development of new DL models in many different
programming languages, based on what is needed. There are also some transversal
libraries and APIs that are available in more than one framework, such as Keras.
Some of the most popular frameworks are Google’s TensorFlow, Microsoft’s CNTK,
Facebook/Meta’s PyTorch, Apache MXNet, Caffe and so on (Figure 2.6).

Figure 2.6: Most popular DL frameworks.

Each of them has its own advantages:

• TF has been the first one being developed, therefore it has the largest com-
munity and a quite extended documentation, as well as it ensures a great
flexibility in terms of target implementation.
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• CNTK is growing fast and it is known for being very fast in training and
inference.

• PyTorch is becoming the standard in the research field, thanks to its ease-
of-use, ease-of-debug and its unique approach of using dynamic computation
graphs to represent the models, with a growing community that is already big
enough to support any kind of user.

• Finally, MXNet is also growing fast, due to its great portability, its very intu-
itive and user-friendly interface (Gluon) and its approach of mixing imperative
and symbolic paradigms for mathematical computation.

In the last years, the development of more and more frameworks created a
compatibility issue, in the case it is needed to switch framework along the way
for any reason. This is why a format called ONNX has been adopted by almost
all the companies as standard accepted input format for the model, so that the
design and training of a NN can be done with any framework of choice without
any problem (PyTorch, TF, MxNet, etc.), and the model can later be saved in the
ONNX format and converted into any other format to perform optimizations and
inference.

In the field of MCUs, in particular, all the low power techniques that have been
mentioned in Section 2.1.2 become necessary, since the devices have extremely
limited memory availability and computational capability, and at the same time
they rely on batteries that must last as long as possible.

In this case another problem is also the fragmentation of the MCUs, meaning
their specifications can be very different from one to another, since they maximize
performance with the available hardware, which is limited and always different.
This is a new branch of ML that is growing very fast and is called TinyML. Various
companies are investing in creating custom proprietary frameworks and compilers
that support their MCU boards, such as Google (TF Lite Micro), Microsoft (ELL),
Facebook/Meta (PyTorch Glow), ARM (CMSIS), STMicroelectronics (STM32
Cube.AI), NXP, etc. The fragmentation problem becomes even more important
when the target device is based on a RISC-V core: even though there are several
RISC-V standards to follow, the HW and the ISA can be customized in so many
different ways that it is impossible to design a default NN implementation flow
that works out of the box without asking the user to make important modifications
to adapt it to the specific target.

However, the actual end-to-end frameworks are very few, in the sense that it
is rare that the whole flow from the model design and training to the inference is
managed by the same framework. Some examples of that are TF by Google (with
TF Lite Micro) and CNTK by Microsoft (with ELL). In all the other cases there
are lower level frameworks that take as an input the NN created by one of the main

17



Background and Related Work

frameworks for ML and what they do is optimizing and converting it to deploy it on
some MCU boards. This is because some of the most popular frameworks such as
Caffe do not support inference on MCU, even though they support edge-inference in
more powerful devices like smartphones. Some examples of lower level frameworks
are microTVM, CMSIS-NN and STM32Cube.AI, that accept input models coming
from the above mentioned libraries. As it will be explained in Section 3.2, since
the framework of choice has been TF (and more specifically TF Lite Micro), in the
next Sections the focus will only be on this framework.

Interpreters vs compilers

When it comes to perform inference on MCUs, having a C or Python program is
not enough anymore, but it is needed to go down to the machine code that can be
executed on the available HW, since the device does not have any Operating System.
As a consequence, new kinds of frameworks are needed in this case, and they can
be divided in two main categories: interpreters and compilers. The most popular
TinyML framework uses the interpreter approach (TF Lite Micro), while almost all
the competitors have chosen the compiler approach (microTVM, PyTorch’s Glow,
ONNC, deepSea, etc.), since it reaches te best optimization possible in terms of
HW and memory requirements and inference time. Some of them are built and
targeted just for one brand, since they are developed by the producer of that brand
(see STM32Cube.AI), while others try to be more generic and target multiple cores
and boards, like the ones mentioned above.

The main difference between the two types is the fact that compilers need to
go straight from the model to the machine code, therefore they need to be fully
aware of the target’s HW and perform very specific optimizations a priori, going
through several intermediate steps and representations (see Figure 2.7, relative
to microTVM). This can be done thanks to a frontend (that manages the model
conversion from the ONNX format to the first IR), a middle-end (that handles the
optimizations both on scheduling and on HW usage) and a backend (that takes
care of the code generation by using the compiler backend LLVM in most cases,
implementing the actual fine-grained HW operators).

On the other hand, the interpreter follows a different approach, just working at
run-time selecting the proper operators to use and their optimized implementation,
which still needs to be designed in advance. The inference in this case is simply
reduced to an invoke call to the interpreter, which will handle both the memory
usage and the operation flow on the run, in a transparent way. This makes the code
extremely portable and flexible, with the drawback of a slower inference overall.
More detail on this will be given in Section 2.1.3, since the chosen framework is
TF Lite Micro, which adopts an interpreter approach.
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Figure 2.7: TVM optimization flow [5]. ©2020 IEEE

TensorFlow

TensorFlow is Google’s framework and it is one of the most common ones. It is
written in C++, even though it also has a Python interface. At the heart of Ten-
sorFlow there is the implementation of any algorithm by means of a computational
graph, meaning that each operation in the algorithm will be a graph node, while
the data that flows between operations is an edge connecting those operations.
It is important to know that also constants and variables are seen as operations
in TensorFlow, as they have no inputs but as output they have a constant or
the current value of the variable respectively. In this way the visualization and
computation of the algorithm results is very simple and effective, since to get the
output of the whole algorithm it is only necessary to assign the inputs and go over
(run) the graph backwards from the output to the input.

The data flowing between operations (i.e. the edges of the graph) is called
Tensor(s) and they are symbolic handles to multidimensional group of values with
an immutable type and size (called shape) [6]. As they are symbolic handles, they
are just a pointer to where the values are actually stored, while the true values are
stored through variables through some operations that give the initial values to
them.

To create a neural network on TensorFlow, it is needed to make a model, and
this is typically done by using Protocol Buffers format. “Protocol buffers provide a
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language-neutral, platform-neutral, extensible mechanism for serializing structured
data in a forward-compatible and backward-compatible way." [7]. In other words,
they represent a data format that allows to define the data structures in a universal
text file (.proto extension), being untied from any programming language. It is
up to the protocol buffers tools to generate the actual code in the target language,
which is later compiled and used as classes in the final code. In the case of
TensorFlow, the graph that describes the algorithm is initially an object in the
protocol buffers format, which will be translated into the target code and used as a
class for instantiating in the code the object that represents the model (tf::Model
in C++).

In practice some libraries such as the already mentioned Keras help and autom-
atize the creation of a neural network, just by defining its structure already in the
target language (indicating the number of layers and the number of neurons for
each layer) and then compiling the model, which will be ready to be trained [8].

TensorFlow Lite
What was said above is generally valid for any kind of application that can be
both trained and run on cloud, while in the case of edge computing, the inference
must be run on the device, where all the computation must happen. To face the
challenges of edge computing, Google has created a new version of the framework
specifically thought for being lighter, that is why it is called TensorFlow Lite. This
new framework has the goal of having a small code size (memory constraint) and
of allowing a fast inference (computational constraint). At the base of this new
framework there is a new model format for the neural network description: the
FlatBuffers format. This format is still language-neutral and platform-neutral, but
it is much more lightweight and avoids the necessity to deserialize the whole data
before accessing it (needed with Protocol Buffers), which means faster access.

Also the neural network model in itself is described in a different way here,
always with the operations (or operators) as central components that define the
structure, but this time they are not organized as a graph, but they are in a put
in a topologically sorted list, so that in order to perform an operation, it is just
needed to loop on the list in order. In this way the structure does not require any
preprocessing to satisfy the input dependences, but at the same time it is more
abstract so there is the need for a few more lines to be executed at run time to get
the information related to the actual implementation for the inference [9].

Another important difference with TensorFlow is that here the inference is
interpreter based. This choice, even though is less efficient than the classic code
generation flow in C, it is needed to increase portability and make it easier to
modify the model. The interpreter is instantiated by giving it the model, the
available memory and the operators needed to perform inference, and then it will
handle the allocation and the initialization procedure for inference on the target
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device at run time. In this way there is no need to recompile everything for each
different target machine, since the target’s specifications are not explicitly present
in the binary machine code, but they are derived by the interpreter from a reserved
memory area [9].

TensorFlow Lite Micro
In the case of inference on MCUs, TensorFlow Lite could be used, but in many
applications it is not enough, since the MCUs are often much more limited than
a common edge device such as a smartphone, both in terms of memory and of
computational capabilities. Therefore, some more precautions must be taken and
that is why a new branch of TensorFlow Lite has been developed, called TensorFlow
Lite Micro. For this framework to be as general as possible, only basic operations
can be assumed as available, and the quantity of memory used during inference
(called arena) must be known a priori and reserved since the initialization, with no
chances to increase it at run time.

The framework flow can be summarized in the following steps [9]:

• Create or convert the neural network model by using the FlatBuffers format.
This can be done with the help of some API like Keras. The model can also
be created in any other format and using any other framework, but it has to
be converted into a .tflite file with FlatBuffers format by using the TF Lite
converter.

• Create a suitable arena, which is an area of memory which is free and corre-
sponds to the maximum memory that can be used during inference.

• Create the so called OpResolver, which will manage the implementation, the
optimization and the final use of all the operators during inference. To limit
the memory need and avoid waste, it is possible to generate and OpResolver
that only contains the operators actually needed for the inference.

• Instantiate an interpreter, by giving it as parameters the model, the OpResolver
and the tensor arena. The interpreter has three main jobs:

– Load the model from the FlatBuffers format.
– Manage the memory allocation by only using the arena. This is done very

carefully, so that no memory is wasted, that is why there is a memory
planner, which compacts the data stored in the memory, looks at the
lifetime of every piece of data stored and allows memory reuse in case of
non overlapping lifetimes. In addition it tries to reuse also the memory
used by the interpreter during the initialization phase by deleting the
unneeded data after that phase. Space for more than one model can be
allocated, to have them stored together, but not run at the same time.
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Finally, the user can personalize the usage of memory by adding some
metadata in the FlatBuffers model description file.

– Manage the inference process when it is invoked, with the help of the
OpResolver.

• The final phase is the execution, when the interpreter and the OpResolver
will collaborate through an API to implement the operators, give them input
values and run the model.

Figure 2.8: Typical framework flow in TensorFlow Lite Micro.

An important general consideration could be done here: the training process is
always the same for all these kinds of framework (TF, TF Lite and TF Lite Micro),
and it is done on cloud, since it requires high computational capabilities and a
very high storage availability. What changes in practice between TF Lite and TF
Micro is that in the Lite case the model is just translated into the lighter version
and the program in high level language (C, C++, Python, etc.) can be run on
the device during inference. On the other hand, in the Micro case, it is needed to
have a byte array in machine language that can be understood and executed by
the target MCU.

A final remark can be done about the OpResolver and the operators. Every
operator corresponds to the so called kernel, which is the physical implementation
of the operation, that could be a very simple operation (such as add or multiply,
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also called fine-grained operators) or a complex one (such as a whole NN layer,
having the so called coarse-grained operator). As it can be easily understood,
the implementation is very dependent on how the core is made, so it is hard to
generalize its implementation, and the optimizations must be done at the core level
by the core producer. This is why the OpResolver often uses external libraries to
implement the optimized operators. A classic example is for the ARM cores, since
ARM itself created a library of optimized operators for its own cores called CMSIS.
In this case in the compiling toolchain the CMSIS library is fetched and used when
the operators are listed and assigned to the OpResolver.

2.2 RISC-V
During the last years, the RISC-V community has grown at a very high rate and
an increasing number of companies has started investing on the development of
RISC-V cores, which represent the open-source present and future of the MCUs.
To understand what RISC-V is, it is useful to start from what an ISA is. A nice
definition comes from the ARM website [10]: “The ISA acts as an interface between
the hardware and the software, specifying both what the processor is capable
of doing as well as how it gets done", and more in detail “The ISA defines the
supported data types, the registers, how the hardware manages main memory,
which instructions a microprocessor can execute, and the input/output model of
multiple ISA implementations". Knowing that, there are two main kinds of ISA,
being CISC and RISC. In simple words, in the case of CISC many more instructions
are defined, even the most complex ones, that are rarely called, leading to the need
of a large encoding space for all the instructions and a much more specialized HW
that will take a lot of space on the chip. On the other hand, the RISC follows the
opposite approach, having only the most simple and frequently used instructions
implemented, while the complex ones will be executed as a sequence of simple ones,
so that the HW is very simple, fast and optimized, allowing for smaller chips and
faster clocks.

What differentiates RISC-V and ARM (that follows the RISC standard as well)
is that RISC-V is open-source and it does not require to buy any license to be used
and it can also be customized by adding new instructions or features, getting all
the advantages of a growing community that develops it. In the following, some of
the main RISC-V features will be detailed:

• There are 32 registers to be used (in the 32-bit version of the ISA), many more
than the other ISAs (ARM has 16, x86 has 8).

• It has a modular design, composed by the so-called extensions. Each extension
is a formed by a group of instructions related to one another for a particular
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type of processing or computation, such as integer (I extension), multiply/di-
vide (M), compressed (C), etc. Every extension is developed as a single batch
by the community and when it has been tested enough it is released as stable,
with the corresponding compiler support.

• The addresses of the input/output registers are always encoded in the same
portion of the instruction, making the decoding very easy to implement and
compliant with any possible addition or modification. Figure 2.9 shows the
kinds of instruction of the RISC-V base integer 32-bit ISA.

Figure 2.9: RISC-V Base Integer 32-bit ISA instruction types [11].

TinyML on RISC-V cores
Given the current trends in the research field, it is natural to think that the growing
application field of TinyML can meet the growing HW design field of RISC-V to
have a full open source edge ML application, on both SW and HW. The research
is only starting going deeper in this aspect, but the interest is increasing and new
research projects are being developed.

The fundamental point here is the opportunity to easily modify the RISC-V
ISA with new instructions or new extensions that make the ML deployment faster
and more efficient. In addition, RISC-V allows also to have complete control on
the HW, therefore it is possible to create efficient instructions in parallel with the
HW microarchitecture (i.e. accelerators) where these instructions can be executed
in the best way in terms of power, speed, memory, etc. As it can be understood,
the possibilities are quite promising, so the only thing left is for the research to
create a proper infrastructure to make this whole process smooth and linear.
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2.3 DL Applications in Literature

2.3.1 TensorFlow Lite Micro
TF Lite is quite known worldwide and TF Lite Micro can be considered as a mature
framework, as it is growing very fast and more and more devices are supported.
Here some basic examples are detailed, found in literature and made available in
the TF repository, mainly to understand the common workflow that brings to the
practical use of some neural networks with TF Lite on a MCU. The final choice
of the application to be developed in this project will therefore be between the
following examples.

Micro-speech

This is one of the most known examples with TF Lite Micro and the code for it is
available in Github, ready to be compiled and flashed on several types of MCU
boards. The goal is to recognize some particular keywords in a speech and it can be
easily trained by using some available data sets for around 10 different words (such
as “yes", “no", “right", “left", etc.). It has been optimized to work mainly with
the ARM Cortex M- series cores and the neural network is composed by one 2D
convolutional layer, followed by a fully connected layer with the Softmax activation
function, that extracts the probabilities out of the fullly connected layer output.
The convolutional layer accepts one input matrix (49x40, one channel) and has 8
filters (1x10, one channel each), therefore it outputs one matrix (25x20) with 8
channels (feature maps), which, after being flattened in a vector of 4000 elements,
are given as an input to the fully connected layer. This layer will have 4 outputs,
from which the softmax activation function will derive the output score of the
whole NN (related to “yes", “no", silence and noise). Figures 2.10 and 2.11 visually
describe the above mentioned network.

As stated in [12], this NN is not particularly accurate, but it has a very small
footprint (20kB model using 10kB of RAM) and it could be used in an always-
running low power device which, if necessary, will wake up a much more accurate
system that performs a true speech recognition.

The particularity of this application is its input processing: in fact it does
not work directly with the audio data from the microphone, but it works with
spectrograms in the frequency domain as input. These spectrograms are 2D arrays
where every row contains the FFT frequency results of a 30ms window from the
audio sample data, after being averaged from 256 to 43 values. Every row is related
to a 30ms-wide window, and every 20 ms a new window starts (so there are always
10ms of overlap). This is done for 49 times, and that is why in Figure 2.10 the
input has 49 rows. Figure 2.12 provides a good summary of the input processing.
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Figure 2.10: View of the NN model used for the micro-speech example.

Figure 2.11: Micro-speech example: model graphic visualization.

The outcome is very satisfying (accuracy between 80% and 90%), provided that
the input audio signal is “clean" enough, i.e. with a digital microphone the results
are much more accurate than with an analog microphone.
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Figure 2.12: Input processing in the micro-speech example in TF Lite Micro [2].

Magic wand

This is another common example provided by TF Lite Micro, together with all
the training data sets and code for several supported boards. The application uses
the IMU to capture motion data and then it processes it to recognize a set of
gestures (three in the basic example: wing, ring and slope). The model used here
is a classic CNN model and the input processing is much easier if compared to the
micro-speech example, since the model will accept the raw accelerometer output
[2]. The model will take a total of 128 acceleration samples on each of the 3D axes,
which, depending on the sensor’s sampling rate, will correspond on a specific time
interval analyzed at once. This data passes through 2 consecutive convolutional
layers, each followed by a Max-pool layer to reduce the dimension. As a final stage,
the data is flattened to enter a sequence of two fully connected layers (with ReLu
activation function) followed by the usual SoftMax activation function to produce
the output scores (probabilities) for each of the four learned gestures. Figure 2.13
gives a visual description of the NN model.

The inference will be performed many times per second, so each movement will be
recognized multiple times by successive inferences. This allows for a better accuracy,
if the true output is triggered only after the gesture has been recognized multiple
times. Figure 2.14 shows the inference flow of this application, which corresponds
to the structure of the C program to be compiled for the microcontroller.
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Figure 2.13: Magic wand example: NN model.

Figure 2.14: Magic wand example: inference flow [2].

It is important to say that in the example provided by Google, the model is
not fully quantized to 8-bit integers, but instead it works with 32-bit floats both
at the input, at the output and also for the network’s biases and weights. The
acceleration data has to be provided in the unit of milli-g (with 1g = 9.8m/s2,
gravity acceleration), as 32-bit float numbers, therefore the pre-processing of the
data is reduced to just a simple conversion operation from raw data given by
the accelerometer’s ADC to 32-bit float numbers representing the acceleration in
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mg. Again the accuracy is fair considering the size of the model (20kB) and the
computational capabilities of the MCUs. In [13], this application has been tested
on the Arduino Nano 33 BLE Sense and the memory footprint has been measured,
having a final result of around 80kB of flash needed for the application code and
about 20kB of SRAM needed for the data, obtaining a final accuracy of 0.93 with
an inference time of 55µs. With several optimizations, in [13] they are able to reach
much better performance, but the optimizations are however purely focused on the
model design, on the dataset and on the training, so they are out of the field of
this project.

2.3.2 ML on RISC-V cores
In this Section some ML applications on RISC-V cores from the literature will be
analyzed, focusing on the optimization possibilities that have been studied and
tested both by SW and HW.

HW perspective

When creating a RISC-V ISA extension, the HW must support that, so the most
common approach is to use an existing RISC-V core supporting just some of the
basic ISA extensions (such as integer I and compressed C) and make it work with
some custom developed accelerators (called AFUs). These AFUs map the new ISA
extension or instructions, so that the main processor pipeline will only execute
pre/post processing and control, while each AFU will implement (and accelerate) a
specific part of the NN, according to the new instructions. However, it is important
to understand that also from a SW point of view the toolchain has to be updated
to support the new instructions (compiler, linker, assembler, etc.), as it can be seen
from Figure 2.15.

Figure 2.15: High level description of a RISC-V platform with custom AFUs [14].
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As explained in [14], there are several ways to physically implement an HW
accelerator, and they differ mostly on where exactly the accelerator is placed and
how it communicates with the CPU (Figure 2.16).

• The most common way to do that is by having a standalone accelerator (in this
case called APU, or coprocessor, top-left of Figure 2.16) that shares memory
and resources with the CPU and communicates with it through a bus. This is
not the most efficient way, since the overhead introduced by the continuous
communication for exchanging data and control could drastically reduce the
benefit coming from the execution on the accelerator [15]. A way to make this
method worth it is to carefully design a way to efficiently reduce the memory
accesses and the communication with the core. In [16] there is a very detailed
example of coprocessor design for CNNs, with the whole microarchitecture
steps and block schemes explained, with particular care to the data access.

• A different way could be to exploit the progress made on the memory ar-
chitecture design to have a 3D RAM memory with the APU stacked on it
(bottom-feft of Figure 2.16). In this case the data access is much faster and
not a problem anymore for the APU, but the communication with the CPU
still happens through a shared bus, so the control overhead remains. This
kind of optimization is very effective if frequent and large exchanges of data
are needed (typical for coarse-grained operations), which is not the case of
interest here.

• Another approach could be to integrate the APU directly in the memory, as
already anticipated in Section 2.1.2 (bottom-right of Figure 2.16). This kind
of accelerator uses the analog properties of the memory to perform some of the
typical NN operations through the simple access of the data in the memory.
The most typical operation that can be performed in this way is the MAC.
The problem here is that only a subset of operations can be accelerated with
this method, so this approach is not suitable for all cases.

• The last method is to have the so called in-pipeline accelerator, meaning that
it is integrated in the CPU and it will work exactly as the other functional
units such as the ALU and the FPU (top-right of Figure 2.16). This is also
why it is called functional unit (AFU) and not processing unit (APU). In this
way the great advantage is that there is no communication overhead since
the accelerator is already inside the CPU and is integrated in its pipeline,
but at the same time this method will only allow to accelerate fine-grained
operations and not entire NN layers. Another advantage is that several AFUs
can be designed and integrated (see Figure 2.15), in order to accelerate more
than one operation, of course depending on the available HW.
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Figure 2.16: Different ways of physically implementing an accelerator [14].

As it can be easily understood, the most suitable approach for the implementation
and acceleration of TinyML on a simple RISC-V core is the last one, because the
NN are very simple and the data batches are never too large, given the strong
memory constraints. A very clear and detailed scheme of how the in-pipeline AFU
can be implemented is given in [17] (showed in Figure 2.17), where a simple 5-stage
pipeline RISC-V processor is designed with 4 custom ISA instructions to perform
vector operations (essential in CNN).

The researchers explicitly explain how they defined the microarchitecture to
handle both general and custom instructions in the different pipeline stages. In
particular the CNN accelerator has optimized performance thanks to a technique
called ping-pong operation [17]. This is done to avoid long waiting time for the vector
operands to be fetched and ready for the computation. The operands are not stored
into special vector registers, but the VLOAD and VSTORE operations will act on
a special buffer that is then connected to the external flash memory. The technique
consists of having two different buffers and exploiting the data independence
between feature graphs in CNNs to perform two operations in parallel (related to
two different feature graphs), by alternating the used buffer to hide the latency of
the memory access and keep the CNN AFU always busy. Figure 2.18 shows the
instruction flow diagram of this technique.

A different example is described in [18], where there is no need for special
buffers and they try to use only the RISC-V RV32IM base ISA with few custom
instructions to manage the accelerated MAC operations. In this case the optimized
operations are related to special kernels that perform three 8-bit MACs in parallel.
This works only for a quantized CNN, where the general purpose registers (32 bits)
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Figure 2.17: CPU structure with in-pipeline AFU [17]. ©2019 IEEE

Figure 2.18: Instruction flow diagram for the ping-pong operation [17]. ©2019
IEEE

can be used as 4-element 8-bit vector registers with no HW changes. Since they
want to optimize the specific case of 3x3 filter shape, to exploit the symmetry it
is better to have each 32-bit register as 3 element vector register, with the final 8
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bits padded, while the MAC HW block (called SIMD MAC) will have three 8-bit
multipliers and 3 adders, like in Figure 2.19.

Figure 2.19: Block diagram for the 3x3 MAC accelerator [18]. ©2019 IEEE

SW perspective

From a SW point of view the idea is to create new RISC-V instructions that
correspond to some basic and frequent operations that happen during NN inference,
which should directly map to the designed AFUs. In most cases the operations
will be very similar to vector and matrix operations, as well as MACs, therefore a
good idea would be to start from the V (vector, SIMD) extension of the RISC-V
ISA and take few instructions from there or modify some of them to fit better the
application. It is not convenient to include the whole V extension, since it is quite
bulky and it could not be supported by the basic RISC-V CPU that is available.

Another option could be exploiting the P extension, which supports the subword
SIMD instructions, or better the Packed SIMD instructions. This extension is not
as advanced as the V in terms of development and integration, but in the past few
years the interest in it is growing, since it enables efficient and low power data
processing, with 16-bit and 8-bit instructions intended for fixed-point or integer
numbers. This descriptions seems to match exactly what are the needs of TinyML,
with low precision and limited vector length. In [5] they have used the P extension
instructions to implement the convolution computation during NN edge inference.
They used the TVM framework and mapped (through tensorization) some TVM
IR nodes to HW primitives that correspond to RISC-V P instructions in the LLVM
backend. This process is well described in Figure 2.20, where it is also highlighted
that before tensorization it is needed to actually change the data layout so that it
matches the dot product in the TVM IR, which will be automatically replaced by
the LLVM intrinsic function that maps to P instructions.

As a final remark, to perform edge inference on RISC-V by using TVM, it is
still needed to have the so called DLR, which is a TVM runtime that is essential
in bare-metal embedded devices (same as the backend described in Section 2.1.3).

33



Background and Related Work

Figure 2.20: Mapping convolution computation to RISC-V P extension instruc-
tions [5]. ©2020 IEEE

This runtime will parse the model graph to get the operators, then it will load the
weights and finally it will implement the operators. This is the final step to have
an executable file that can run for example on a RISC-V simulator (Spike). Figure
2.21 shows the steps that bring to the final simulation.

From a general perspective, if there is the need of designing new custom RISC-V
instructions, or include part of some already existent extensions, the process is
different. The first thing to do is actually defining the instruction from an ISA per-
spective (opcode, number and type of registers, explicit operations that it describes,
etc.). Once the instructions have been defined, it is needed to actually implement
them and insert them in the flow that goes from the NN model design to the gener-
ation of the machine code ready to be flashed. In particular, this means to modify
the compiler and the assembler so that they will be able to recognize and map
the high level programming code (Python or C++) related to the accelerated op-
erations to the new instructions. Two different ways to do that will be analyzed here.

One way is to act at a very low level, both modifying the C++ code and the
RISC-V toolchain. This method has been adopted and explained in [15]. The
starting point is always the design of the NN model by using a framework of choice
and the following generation of the C++ code with all the general optimizations, by
means of TF Lite, TVM or similar. At this point the C++ code must be modified
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Figure 2.21: Overview from NN model to executable file through TVM compiler
[5]. ©2020 IEEE

to add the high level macros that describe the new kernel operations and therefore
correspond to the low level ISA instructions. This can be done through the so
called inline assembly, where the new assembly instruction is directly specified in
the C++ code. The next step consists of modifying the RISC-V toolchain (mostly
the assembler) and building the proper runtime to realize the mapping to the
kernels. The typical toolchain is the RISC-V GNU, and in particular the GCC and
its assembler back end, the GAS. The inline assembly instructions are parsed and
translated into machine code by the GAS, therefore the latter has to be modified
to correctly understand and analyze the new instructions and produce the proper
machine code for them. As a final step, the Spike ISA Simulator must be modified
to support the new instructions and verify their correct functioning. The whole
process is simplified on a scheme in Figure 2.22.

It is also possible to change the TF source code so that it supports a RISC-
V target, by modifying the optimized operators that are target-specific and not
portable.

Once all those steps are done, it is possible to cross-compile the C++ code for
the RISC-V target, simulate and test it on the CPU.

The second way is proposed in [14] and it is called EXTREME-EDGE, that uses
the so called HW/SW co-design methodology, which is explained in the following
Section.
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Figure 2.22: SW infrastructure using C inline assembly.

HW/SW co-design

This approach has the goal to make the entire design process of such accelerators
very straightforward, fast and most importantly flexible and easy to update. In
this way the progress made in the development of new instructions is immediately
reflected on the microarchitecture design and vice-versa, and this is fundamental
to stay updated with the continuous research evolution in terms of NN algorithms.
This methodology also allows to avoid going deeper to the low level RISC-V
toolchain, since modifying it could be inconvenient, because it requires a detailed
knowledge of the whole architecture and it is prone to bug and errors.

The initial step is again the design of the NN model in any of the most known
frameworks, and after that it is optimized and converted into C code by TVM
compiler. TVM also has a compiler and assembler back end based on LLVM
that can produce optimized machine code for some specific targets, but here this
framework is just used for the model-to-C code conversion. So far there is no need
to change any source code, so this part is as easy as in the deployment of any MCU.
At this point another software is used, which will actually apply the co-design:
Synopsys ASIP designer, which starting from the C code and from the processor
model (meaning the ISA and microarchitecture) will allow to develop and debug in
parallel both HW and SW, as well as providing a personalized full toolchain (or
better SDK) to finally produce the machine code.

It is Synopsys that provides all the characteristics initially detailed, since it will
generate compiler, assembler linker, debugger, instruction simulator and profiler, as
well as a synthesizable RTL for the entire HW microarchitecture. All of these can be
easily modified and are all automatically updated whenever the microarchitecture or
the ISA changes, to have an easy and fast development flow. The full EXTREME-
EDGE overview is detailed in Figure 2.23.

The Figure clearly explains the advantages of such a system, that requires no
deep knowledge of the source codes and the back end, and makes it possible to
personalize, design, test and debug in such an easy way that an iterative process
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Figure 2.23: EXTREME-EDGE overview [14].

can be used to develop a project, without renouncing to the possibility to have a
highly efficient implementation for the specific target.

2.4 Summary
The main consideration that can be made by reading this background Section
is that the edge AI is a thriving research field in this moment, with many new
opportunities coming up every month and new ideas being implemented to expand
or optimize the possible applications. Much has been said, and yet much more still
could be said about NNs, frameworks and possible HW implementation.

If a baseline is needed, it is reasonable to say that in this moment the standard
for TinyML is still represented by TF Lite Micro applied to ARM cores, because
this combination has been deeply tested, verified and optimized both by Google
and ARM, introducing new features and support. At the same time, the research
and market trends clearly show that in the near future things might change,
going towards compiler approaches (Glow, microTVM, etc.) and towards RISC-V
architectures, together with the always present need of being low-power.
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Chapter 3

Methods

In this chapter it will be detailed the engineering process, the technical choices and
the methodology that have been adopted to produce the final results, in such a
way that any reader with a basic knowledge of the generic topics of this project
will be able to obtain the same results and make his/her own optimizations and
conclusions. The following Sections will go over the details of each step: Section
3.1 details the research process in general, Section 3.2 explains the options and the
final choice of the most suitable AI framework adopted in this project, in Section
3.3 the choice of the reference application is analyzed, in Section 3.4 it can be
found the name and model of the development board with ARM core used to have
an easy start with the selected framework, as well as the exact framework version
used in this project and the relative issues. Finally, in Section 3.5 the HW used
in the project is analyzed in detail, including the measurement setup and related
considerations.

3.1 Research Process
As already described in the first chapter (Section 1.5), an incremental approach
has been followed during the project development, and in particular regarding the
methods and the initial preparation few major steps can be listed. These steps are
described in the following:

• General and detailed literature research to understand what is a NN, how to
develop and deploy it and how nowadays it is implemented on microcontrollers.

• Choice of a test target microcontroller board commonly supported, needed to
have a guided starting point.

• Choice of an AI framework that supports the selected target and eventual
different implementations (i.e. RISC-V).
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• Select a simple application among the popular ready-to-use ones that will
constitute the SW core of the project.

• Prepare the HW setup both for testing and measuring.

As previously stated, this approach guarantees that the basics are well understood
and applied little by little, so that it is much easier in the final stages to know
where major and minor improvements can be made. The first step has already
been deeply analyzed in the previous chapter, while the following Sections will try
to explain better the other steps of the process.

3.2 Framework choice

As already stated in Section 1.6, the design and training of the network are not
part of the thesis project, therefore the choice of the framework does not consider
the most common characteristics of a framework (scalability, flexibility, speed,
etc.), but it focuses more on what is specifically needed in this case, meaning the
possibility to implement and deploy a NN on a microcontroller and the support
that can be found on the internet for this particular application. As an example,
even though PyTorch has become the research standard framework for its great
usability, flexibility and community, its compiler for edge applications (Glow) is not
developed enough and it does not guarantee the needed support for what is needed
in this project. Knowing that, the options can be reduced to just two, since most
of the other TinyML frameworks and compilers (such as DeepSea, ONNC, ELL
etc.) are quite recent and raw, therefore they have too restrictive and limited use
cases and almost no support on the web. The two options are TF Lite Micro and
MicroTVM, which represent two opposite ways of looking at the TinyML world: on
one side the interpreter-based approach of TF Lite Micro and on the other side the
compiler approach of microTVM (more information about that in the background
chapter, Section 2.1.3).

In this case the choice has been quite easy, since it is clear that TF Lite Micro
has a much bigger community coming from more than 4 years of open source
development. This means that TF is more or less well documented, it supports
many different targets and it has several ready made working example to start
experimenting from the beginning. On the other hand, even though it is growing
fast, microTVM requires an additional effort only to get started with it, also for
its compiler-based approach. As a result, to avoid losing time with too many
framework-related issues, TF Lite Micro has been chosen as reference framework
for this thesis project.
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3.3 Application choice

Once the framework has been chosen, it is needed to understand what kind of
practical application can be suitable for such a project. As said in Section 1.6,
the focus is not on the NN itself, therefore as a starting point it can be chosen a
ready-made example provided by the reference framework, in this case TF Lite
Micro. Luckily, this framework has several examples for microcontroller application,
so it is possible to choose the best fit for the present case, which is very particular:
the RISC-V core has only I, M and C extensions, so the whole application must be
implemented in a fully integer arithmetic from input processing to output handling;
furthermore, the available memory is very limited and the power consumption
should be as low as possible, but all these elements are part of the HW optimizations
that this thesis is focusing on. At the same time, the application has to implement
a meaningful NN, meaning that it needs to have at least 3 layers and it does not
have to be too simple.

All these conditions lead to the choice of having an application that consists
mostly, if not completely, on the NN alone, because there is not much memory,
computational power or energy to be used other purposes, such as heavy input
processing or energy-hungry sensors to gather data. Knowing that, the application
choice can be done more easily.

Between the examples provided by TF Lite Micro, apart from the classic Hello
world, there are a few interesting and very practical applications that can have
several use-cases in everyday life, such as micro speech, magic wand and person
detection (the first two are better explained and analyzed in Section 2.3.1). Based
on what said above, the selection between them easily leads to the choice of magic
wand, simply because in the case of micro speech most of the computational effort
comes from the input processing, which consists on a fixed point FFT (not suitable
for the RISC-V core used here), while the NN itself is just too simple; in the case
of the person detection the camera will most probably consume too much energy,
therefore its is not suitable for the purpose of this project. On the other hand, the
magic wand seems perfect for this case, since it has almost no input processing, it
uses a simple accelerometer to gather input data and the NN is simple but complete,
with both convolutional and fully connected layers (see Section 2.3.1). The only
potential problem in this application is that it is built based on floating point
arithmetic by default, but this can be addressed as part of the thesis optimization
work, as it will be explained in later Sections.
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3.4 Board selection and framework version
As previously stated, the starting point of the experimental phase of this project
consists on trying the chosen NN application on a commercial board equipped with
an ARM core. In particular, the SparkFun Edge board was selected, since it is
supported by TF and it has already a 3-axis accelerometer embedded.

The board has a low power working mode and it seems perfect for the purpose
of this thesis, but unfortunately the last TF versions do not support the board
anymore, therefore the newest stable TF version that still supports this board was
selected, and this corresponds to TF 2.6.0, released in August 2021. This version
is surely not the newest, but it has everything needed for this project (including
RISC-V target support), and everything is included in the main TF repository,
while in the newer versions TF Lite Micro has its own separate repository. It is also
not possible to go too back in the past with the versions, both because the support
for RISC-V becomes insufficient and because in the past the quantization was done
by adding quantization and dequantization operators in the NN model, leaving
the inputs and outputs to floating point and requiring floating point operations to
quantize/dequantize, which is not possible with the RISC-V core in use here.

As a final remark, it is very important that the whole process is done within the
same TF version, including eventual training and quantization, because if those
steps are done with another version, several incompatibility issues will arise, even
though some kind of backward compatibility is ensured by TF.

TensorFlow 2.6.0 - characteristics
The structure of this framework has changed a lot through the years, and it is
important to know that the latest versions have two separate repositories for TF
and TF Lite Micro, while in the version chosen for this project everything is in
just one big repository, i.e. all the files that make TF work, such as python and
C++ libraries, all the operators implementations, all the makefiles that simplify
the implementation process and all the examples and support for the possible
target devices. The organization in folders is very complex and it is not easy to
understand it starting from the final make command that generates the binary
ready to be flashed, this is because there is a hierarchical structure of makefiles
calling and including each other and/or other files and libraries.

In order to have a general understanding of the process that leads to the genera-
tion of the binary, it is extremely useful to analyze and be aware of the makefile
system by carefully reading some files, with the essential condition that all that
follows is only valid for the version adopted in this project (2.6.0). The main
makefile (lite/micro/tools/make/Makefile) contains the most important informa-
tion and dependencies and it calls the general libraries that include everything
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needed, for example the integer operators are included here from the internal TF
implementation. This makefile receives the target device name from command line
and it therefore includes a new makefile that is specifically related to the target
itself.

The target-related makefiles are contained in lite/micro/tools/make/targets and
they include other libraries and specific dependencies for the target. In the case
of the SparkFun Edge the new makefile is apollo3evb_makefile.inc because the
microcontroller of the board is the Apollo 3 from Ambiq, while in the case of a
RISC-V core the new makefile is mcu_riscv_makefile.inc. This allows to add and
compile also all the libraries with the peripheral drivers and microcontroller drivers,
as well as indicating exactly what core architecture it is used and therefore what
compiler toolchain is needed with all the specific option flags. As an example in
the apollo3evb_makefile.inc file the compiler options are updated in order to have
the best fit for the microcontroller and also some specific libraries are included (the
so called BSP).

Important notice: the mcu_riscv_makefile.inc file that comes with the official
stable repository of TF 2.6.0 contains a bug that makes impossible to use the
riscv gcc toolchain. As a consequence, this file must be modified following what is
written in [19].

A different makefile can be used to include some optimized implementations for
the operators, just like it happens in the case of the CMSIS library. This particular
case will be analyzed later in this Section.

One more important makefile is included and this is the one specifically related
to the application and it can be found in the application folder, together with
the code. It includes all the .cc, .c and .h files related to the application being
implemented. An example is the makefile.inc file related to the magic wand example
that can be found in lite/micro/examples/magic_wand.

To sum up, the main makefile will include at least 3 more files with the .inc ex-
tension: the target makefile, the application makefile and the optimizations makefile.

Another fundamental step needed to understand this framework is to become
familiar with the operators system. The basics have already been explained in the
background chapter (Section 2.1.3), while here it is explained how the operators are
actually implemented and inserted in the repository. The operators implementation
is called kernel and it is done in C, with some in-line assembly. There is both the
builtin (TF Lite internal) implementation and the ARM optimized implementation
from the CMSIS library. The first step when an operator is needed is creating its
description in a C++ file. These files are located in the lite/micro/kernels folder
and here there is also the CMSIS folder with the C++ files for ARM operators.

In this folder there is one .cc file for each operator, where the inputs and outputs
types are checked and there is an eval function, which calls the real implementation
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of the kernel. As a consequence, these C++ files are just a bridge between the
program application and the kernel implementation.
The real implementations for the floating point operators can be found in lite/k-
ernels/internal/reference in the case of the internal operators and each is defined
in a .h file. There is a separate folder (integer_ops) for signed integer opera-
tors. All these files are included in the project by the main MakeFile (the one in
micro/tools/make).

The CMSIS operators also have a .cc file as a bridge as above said, but their
implementation is in micro/tools/make/downloads/cmsis/CMSIS/NN/Source, with
one folder per each operator, which contains a different .c file for each possible
implementation of that operator (the quantized ones are identified with the _s8 or
_u8 suffix in the file name, meaning signed or unsigned 8 bit int). These files are
included in the project only if the variable OPTIMIZED_KERNEL_DIR is set to
cmsis_nn and passed to the main makefile through command line. In this way the
cmsis.inc file mentioned above is included from micro/tools/make/ext_libs, and it
will add all the optimized operator implementation source files. All the functions
defined in these .c files are actually declared in just one .h file (lite/micro/tools/-
make/downloads/cmsis/CMSIS/NN/Include/arm_nnfunctions.h).

3.5 Experimental design and
Planned Measurements

In order to get some quantitative results it is needed to perform some measurements
on the system to show the progress made. In this particular case the performance
and the efficiency of NN inference have to be measured, therefore the quantities to
be measured are mainly four: the number of instructions executed during inference
and in general of the application (which gives an idea of what is power consumption),
the inference time, the model accuracy, and finally the size of the binary to be
flashed on the target device, which includes the size of the NN model. Some of
them (such as model accuracy and binary size) can be measured by software in
advance, without any hardware test, while the others must be measured during the
functioning of the system with the appropriate tools.

3.5.1 Test environment
As already explained in the previous Sections, the project has a preliminary phase
based on the use of the SparkFun Edge board and a later experimental phase
where the constrained RISC-V microcontroller is used in its FPGA implementation
model. It is useful to get some measurement results for both the cases, so that a
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comparison can be made in the end. Some quantities like the software-calculated
model accuracy are independent from the hardware implementation, therefore they
will be calculated just once, while the other values are expected to change based
on the underlying hardware, so they will be calculated in both the contexts.

3.5.2 Utilized Hardware/Software
In this Section it can be found a detailed overview of the hardware and software
used throughout the thesis development, with a separate Section related to the
measurements setup.

There are two separate setups to be built, one concerning the SparkFun Edge
board and the other one for the RISC-V FPGA model. In both cases it is needed
to have the board itself, a programmer that downloads the application binary file
into the flash (or RAM) memory, and finally the sensor to gather data, in this case
a 3-axis accelerometer.

Regarding the SparkFun setup, the selected board, as already said, is the
SparkFun Edge Development Board, in particular the first version (different from the
Edge 2). It is equipped with the Ambiq Micro’s latest Apollo3 Blue microcontroller,
based on a 32-bit ARM Cortex-M4F processor that has a working frequency of
up to 48 MHz, which can be increased (and in this application will be increased)
to 96 MHz thanks to the TurboSPOT technology. The microcontroller has 1
MB of flash memory and 384 KB of SRAM memory, which are much more than
sufficient for this application. This development board has also two embedded
analog microphones and one 3-axis MEMS accelerometer ready to be used. However,
the quality of the microphones is quite low, and this is one of the reasons why
the micro speech example application was not implemented, since testing it would
have become too complex. The accelerometer, on the other side, is the LIS2DH12
by STMicroelectronics, with 12-bit digital output and up to 1 mg/digit in high
resolution mode at 2 g full scale. The output data rate can be between 1 Hz and
5.3 KHz and there is a FIFO buffer that can store up to 32 acceleration values for
each axis. The interface can be both I2C or SPI, but it is connected to use the
I2C protocol. This accelerometer works well, but cannot be used on the RISC-V
setup, therefore the application on the SparkFun has also been implemented using
a different accelerometer, compatible with the FPGA carrying the RISC-V core.
It is the Pmod ACL by Digilent, which uses the Analog Devices 3-axis digital
accelerometer called ADXL345. It is very similar to the LIS2DH12, with the same
possible interfaces, same FIFO buffer and same full scale options. The difference
is that this one has a 10-bit output with a maximum resolution of 4 mg/digit at
2 g full scale and also the output data rate can go from 0.1 Hz to 3.2 kHz. As a
final remark, there is a small detail that could make the difference when testing:
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the outputs of the two accelerometers can be collected in a 16-bit integer variable,
but the LIS2DH12 provides left-aligned data, while the ADXL345 provides it right
aligned. Table 3.1 summarizes all the details just described.

Accelerometer ST LIS2HD12 ADXL345
Full Scale ±2 g/±4 g/±8 g/±16 g ±2 g/±4 g/±8 g/±16 g

Output interface I2C/SPI I2C/SPI
Output data rate 1 Hz to 5.3 kHz 0.1 Hz to 3.2 kHz

High-resolution mode 12-bit @ ±2 g full scale
(1 mg/digit)

10-bit @ ±2 g full scale
(4 mg/digit)

Output data alignment Left aligned Selectable
(right alignment selected)

Table 3.1: Accelerometer specifications - comparison.

The Edge board can be programmed with a signed binary file by using the
SparkFun Serial Basic Breakout and a simple USB cable, thanks to the SparkFun
Variable Bootloader, but in this project a different programmer has been used
by accessing the JTAG connector on the back of the board. In this way the raw
un-signed binary is used and it can be downloaded directly to the board. The
chosen programmer is the SEGGER J-Link EDU Mini V1, which allows to program
the board through the J-Link Software and Documentation pack (in particular
JLinkExe to program and JLinkSWOViewer to show the print messges from the
application code). The EDU Mini specifically supports the Apollo3 Blue micro-
controller under the code name AMA3B1KK-KBR and the interface supported by
the microcontroller is the SWD, with a communication speed of 2000 KHz. Before
using this programmer it is important to notice two details: first of all, to program
the microcontroller by downloading a binary, the starting address of the memory
where the binary will be stored has to be given by the user, and the correct location
is 0xC000, which is the address where the first bootloader (the Ambiq Secure Boot
Loader (ASB) by Ambiq) ends and the second bootloader (SparkFun Variable
Bootloader (SVL) by SparkFun) begins. In any case the addresses before 0xC000
are protected and cannot be overwritten. The second important note regards the
fact that to be able to see the printed text on the SWOViewer the option printing
over ITM must be enabled by using the HAL function am_bsp_itm_printf_enable
at the very beginning of the application C code.

The RISC-V core test setup consists of the Digilent Arty S7 board, equipped
with a Xilinx Spartan-7 FPGA, which implements the core itself. The synthesis
and programming are performed by the software Xilinx Vivado, in particular the
version 2019.1, by using a specific script, while the simulations are run using Icarus
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Verilog (updated to 2021-03-09) and the waveforms produced are visualized and
analyzed by the software GTKWave, version 3.3.101).

The RISC-V gcc toolchain used to program the microcontroller is automatically
downloaded and used by the TF makefile and its characteristics are given by the
PLATFORM_FLAGS listed in the RISC-V makefile.inc (mcu_riscv_makefile.inc
in micro/tools/make/targets).

The Arty S7 board supports the so called Pmod interface and has several Pmod
connectors, which is why the above mentioned Pmod ACL has been chosen as
accelerometer to be used in the final implementation.

The Spartan-7 FPGA is programmed with a basic test version of the constrained
microcontroller, which includes the RISC-V core and few essential peripheral IPs
(see Figure 3.1), such as the JTAG interface, the UART interface, the SPI and I2C
interfaces, one 64-bit timer and a few GPIO pins. It has 64 kB of data SRAM and
64 kB (or 12 kB) of code SRAM, no flash memory and the clock frequency is 12
MHz. The core itself implements a 32-bit RISC-V ISA including the Interger (I),
Multiply (M) and Compressed (C) instruction expansions, so there is no floating
point unit, as already said in the previous chapters.

Figure 3.1: Simple scheme of the test implementation for the RISC-V microcon-
troller.
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The microcontroller is programmed through the JTAG interface and the pro-
grammed used in this case is the Adafruit FT232H Breakout board accessed by a
python script that takes the binary and downloads it into the microcontroller.

Measurement Hardware/Software

In this Section the setup needed for each of the quantities to be measured will be
detailed.

The accuracy measurement, as above said, is done by software once the NN
model is designed and trained, therefore it is closer to an ideal accuracy. It is ideal
also because it is related to the model on its own, separated from the application
or from the hardware and software that make the final application work. To better
understand what comes next, it is convenient to first go through the steps that
characterize the training of a network. In particular, at the base of training there
is a large amount of data samples, called dataset, which must be as much diverse
as possible, coming from different conditions and different users. In the case of
this project the training that has been adopted in the TF magic wand example is
called supervised training, meaning that the information contained in the dataset
is labelled, so it contains in itself the information about what it is. To have a
more practical example, the magic wand training data consists on accelerometer
output data in the three axes, grouped batches of 128 acceleration values on each
of the three axes, so that each batch represents a gesture that is analyzed during
a single inference run. The final dataset is therefore composed by around 1000
different gestures, collected by 10 different people and conveniently augmented to
mimic heavier noise of typical real cases. Having this data labelled means that
each gesture batch has a label saying what kind of gesture it is, making it much
easier to test and verify.

What is commonly called training is actually process split in three phases,
namely training itself, validation and test, executed in this order and with three
different datasets (see Figure 3.2). In a few words, during training the weights
of the network are tuned so that the it learns eventual patterns or structures in
the data, while validation is performed to understand in real time the effect of
the weight change on the result and compare between several network structures.
Finally, the test phase is done on the final trained network to see its performance.
As it can be easily understood, to have meaningful results it is essential that these
three phases are done with different datasets that are unbiased and independent
from each other, therefore in the magic wand case the three datasets are derived
from the main one by splitting it in 3 non-overlapping subgroups, each of which
contains data from all the 10 people. A common ratio in this case would be having
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60% of the total data in the training dataset, 20% in the validation and 20% in the
test. In this way three unbiased, unique and independent datasets are created.

Figure 3.2: Training process: phases.

At this point it is clear that the model accuracy can only be calculated during
the test phase and using the test dataset, and once the model has been trained and
fixed, it remains the same independently from any application implementation. In
the case of this project, it is interesting to understand and measure the loss in the
ideal accuracy going through the optimization steps, being very careful to use the
exact same test dataset for all the different network models so that the comparison
is meaningful. Since the training, validation and test are performed only on the
initial non-optimized network model, to get the accuracy for the .tflite and the
quantized model it is necessary to perform inference by giving one by one the test
gesture data as input, record the results and compare them with the labels that
state the correct outcomes.

The inference time has to be measured on the target device during the
application test, and it is important to know that this time interval does not
include the input processing and the output exposure on screen or through LEDs,
but it is the time needed by the model itself to get an output starting from the
input given in the correct format. As a result, when running the entire application
it is not easy from the outside to understand when this interval really starts,
therefore the only way of measuring it properly is to use some tools internal to
the device and perform the measurement inside the application code. This is
why this measurement can be easily done by using the timer embedded in the
microcontroller, which can be enabled right before the inference starts (after input
processing) and disabled right after it ends (before the output processing).

In the case of the SparkFun Edge, the timer used is the so called CTimer
(32-bit), which runs at 12 MHz and is enabled as a benchmark by default with
some default functions to be easily used pre- and post-inference. In the case of
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the RISC-V FPGA model, the only available timer is used as a benchmark: it is a
64-bit timer that runs at 12 MHz and the calculation of time elapsed is done by
accessing the count register value before and after inference.

There is not much to say about the size of the binary file, since it is measured
by software whenever the binary is produced, while the model itself has a size that
shows the goodness of the optimizations when performing quantization, and this is
given by the TF Lite converter. This reduced size allows to limit the quantity of
data RAM needed by reducing the tensor arena size.

The number of instructions executed during inference can be measured by
the microcontroller just like it in the case of the inference time, meaning that the
measurement is run by the C program and uses the HW embedded in the core.
In this particular case, it is done by using the so called CSRs, which are special
registers included in the RISC-V Integer standard implementation. The CSRs
are different from the general purpose registers and they have their own 12-bit
address space (even though they are not that many), so that the user can add some
more. Each of them has some specific functionalities, connected to a particular
RISC-V instruction. In this case two of them will be used: the mcycle and the
minstret, which are two 64-bit registers related to two corresponding 64-bit counters.
mcycle contains the number of clock cycles executed by the core, while minstret
contains the number of instructions executed (retired) by the core. These counters
are automatically managed by the core and the registers can be reset by SW to
the 0 value in order to have a starting point for the measurement. As a result,
the exact same procedure used for measuring the inference time can be applied
here, just resetting the counters right before the inference starts and then reading
the counters’ values right after the inference ends. The result is the number of
instructions and the number of cycles required by one single inference run, from
which also the CPI can be calculated, as well as the inference time itself, useful to
check what has been obtained with the other method.

In the ARM core the number of instructions is calculated almost in the same
way, but the registers in use are part of the so called DWT unit of the Cortex M4
core, which contains several counter to have the number of cycles spent by the
CPU doing any of the main actions (multi-cycle instructions, exception, sleeping,
loading/storing, etc.). Following what is written in [20], it is possible to calculate
the number of cycles and the number of instructions in the exact same way as with
the CSRs in RISC-V.

As a final remark, any other generic measurement mainly regarding output
signals and communication between the microcontroller and the external peripherals
is done by using a Digilent Digital Discovery, which is a device that can work
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both as a logic analyzer, protocol analyzer and as a pattern generator. In the
case of this project it has been used mostly to test the communication between
the microcontroller and the accelerometer, i.e. SPI communication, as well as to
perform function profiling and to measure inference time externally through GPIO
pins toggle, in order to double check the timer measurement. To get the most out
of the Digital Discovery it is best to use the Digilent software Waveforms, which
makes the test setup and visualization very simple.

3.6 Assessing reliability and validity of the data
and the methods

In the following Section all the measurements above detailed will be briefly analyzed
from the reliability point of view, highlighting the precautions taken to make sure
that the results are valid.

The accuracy measurement, as already broadly explained, can be seen as reliable,
always taking into account that it is more like an ideal accuracy, since the model is
run by software with some inputs that are ready to be used. The measurement
is valid because the test dataset is not used during training, therefore the data
given to the model is completely new for the model itself, and it is also unbiased,
since it comes from gestures performed by different people. The main thing that
makes the comparison meaningful is the fact that the test dataset used for all the
measurements is always the same and the data needed as an input by the model is
always the raw data from the accelerometer, eventually casted to 8-bit integer, so
there is almost no input processing to be done on the test dataset. It is also worth
it to mention that the used dataset has been obtained using the SparkFun Edge
board, so the accuracy measurement for that board are perfectly realistic, while in
the case of the FPGA model, the accelerometer in use is different, but it has been
verified that the output data are very close to the ones from the SparkFun Edge
embedded accelerometer (same full scale value, similar resolution).

Regarding the inference time measurement, it makes sense to say that the
measurement itself will be very accurate, given the fact that both timers run at
a frequency of 12MHz, so the uncertainty will be of the order of µs or tenths of
µs, while the unit of interest here is the ms. This method allows also to repeat
the measurement for each inference, so the results coming from several runs can
be easily averaged out. Repeating this kind of measurement on a different device
will of course require to change the code and use the specific timer available on
the new device, but the whole procedure remains the same. Moreover, the fact
that both the timers on the two boards run at the same frequency makes eventual
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comparisons valid, since the uncertanties will be the same in both cases. One more
thing that confirms the validity of the time measurements is that here they will
performed in three different ways: using the timers, using the Digital Discovery
with GPIO toggling and calculating the number of cycles through DWT or CSR. If
all the three methods give the same result, then the measurement can be considered
valid and accurate.

Another detail to be highlighted is that the inference time will strongly depend
on the target’s clock frequency, therefore it is hard to make comparisons between
different target devices that have different clock frequencies. As a result, compar-
isons are meaningful only when changing or optimizing the software or hardware
within the same target device, while in general given the inference time on a device
it is possible to state if it is enough to allow a practical use-case to be successful
addressed by the application.
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Implementation

In this chapter the implementation itself will be analyzed, going over all the details
that brought to the final results. As already said multiple times in the previous
Sections and chapters, the implementation has been split in separate gradual steps,
first quite guided to get familiar with the framework and the application, and later
more and more independent from the initial ready-made example to match the
needs of the project and obtain some results. The macro steps can be summarized
as follows:

• Implement the basic magic wand example from the TF Lite Micro (version
2.6.0) on the SparkFun Edge board with no modifications, i.e. with 32-bit
floating point arithmetic.

• Modify (quantize) the NN model to have only 8-bit integer arithmetic, change
the application code to match the quantized model, implement it and test it
on the SparkFun Edge board.

• Change the accelerometer used by the modified (quantized) application from
the LIS2DH12 embedded in the SparkFun Edge to the Pmod ACL (ADXL345),
modify the connections and the application code, implement it and test it on
the SparkFun Edge board.

• Convert the application to match a constrained RISC-V with the Pmod ACL
accelerometer, i.e. switch compiler toolchain, modify makefile and application
code, implement it and test it on the FPGA model of the microcontroller.

• Perform measurement on the previous implementation and find optimization
spots where a better efficiency can be obtained, optimize the application,
implement it and test it on the FPGA model of the RISC-V core.
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4.1 Basic implementation on SparkFun Edge
The first step is fairly simple, but it may require some time to make the simple
ready-made example work on the SparkFun Edge, because to really understand
the mechanisms behind it it is needed to go through all the complexity of the TF
repository, including its versions and the makefile system to target many different
devices, all things already explained in Section 3.4. Moreover, it is needed to
get some preliminary practice with the SparkFun Edge board, including how to
program it and also how to read the code and its BSP library that is used to access
the peripherals through HAL functions, as already highlighted in Sections 3.5.2
and 3.4.

Apart from what just mentioned, this first step is quite easy to complete with
no issues. The flow that describes the application code can be seen as a scheme in
Figure 4.1, where the average is done on 8 consecutive inferences in the default
case.

Figure 4.1: Magic wand, application code flow scheme.

A much more detailed dataflow for the application will be described in the next
Section, since the quantized dataflow is actually the main focus of the project.
However, it is already possible to have a general understanding of how the applica-
tion works and how the code is organized. This has been explained quite well in [2],
therefore here just a general overview is given. The code tries to mimic the Arduino
structure, so the general main function calls a setup function at the very beginning
and then it calls a loop function inside an infinite loop. These two functions are
defined in the file main_functions.cc, together with some global variables and
buffers needed by TF, such as the tensor arena, where all the variables handled by
the interpreter will be stored. The setup manages all the initialization operations
required by the system and by the application, importing and checking the NN,
instantiating only the needed operators, setting up the accelerometer and retrieving
some of the essential model parameters.

On the other hand, the loop function handles everything that needs to be
done continuously, such as collecting and processing input data, running inference,
processing the output scores and eventually showing the results through visual
messages or LEDs. In this loop function some important measurements can be
done with few more lines of code.
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The management of the various functionalities and actions is spread between
several .cc and .h files, together of course with all the BSP files and functions,
as well as everything that comes from TF that controls the overall system. The
specific application file were already briefly introduced by Figure 2.14, and are
highlighted more in detail in the following:

• accelerometer_handler.cc (or pmod_acc_handler.cc in the version with the
ADXL345 accelerometer): in this file everything related to the accelerometer
is managed, i.e. the communication protocol and IP, the initialization, the
reading and processing of the acceleration values, as well as the management
of the big input buffer where the model input data is fetched from. The two
main functions here are SetupAccelerometer and ReadAccelerometer. This file
changes almost completely when the hardware is changed (meaning either the
accelerometer and/or the whole target/microcontroller are changed).

• gesture_predictor.cc: this files controls the output processing, taking the
output scores from the model inference and analyzing them to see if a gesture
has been recognized. This is not trivial, since in the original application an
average between several successive inferences is made. In this file there is only
one function, PredictGesture, and this is generic for any implementation.

• output_handler : here what is handled is not the output of the model, but
the output of the entire application, meaning how the result of the ges-
ture_predictor is shown to the world. In particular based on the prediction
result, in the function HandleOutput a LED is turned on and/or a text message
is printed on screen to notify the user about the outcome. Again, this file
changes depending on the HW where the application is implemented.

• constants.h : this header file is very important when it comes to optimize how
the application works in the final implementation. This is because here all the
important parameters are declared and initialized. In particular the average
length and the threshold values for the output scores to recognize a gesture
are defined and can be tuned by changing their value.

4.2 Model quantization and new implementation
on SparkFun Edge

This step is crucial for having a true portable application that can be used by
almost any target device. In particular, focusing on the ultra low power devices
like the RISC-V core used in this project, it is very likely that the microcontrollers
will not have any FPU, so floating point arithmetic is not an option. The original
magic wand application proposed by TF uses floating point data and operations
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from the very beginning to the output processing, as well as the model itself is
made of floating point operators. Another problem could be represented by the
number of bits needed by each variable: the default case uses 32-bit data, which
is quite heavy for a constrained core with very little data memory. This is why
in this project the first optimization choice has been made considering these two
aspects and following the most common approach, already described in Section
2.1.2: quantization, meaning passing from 32-bit floating point to 8-bit signed
integer arithmetic and data.

To make a full system quantization it is needed to act on two sides: the model
and the application code. The model quantization is handled by the TF library in
Python, while the application code must be converted manually changing all the
variables and operations involved in the input and output processing.

4.2.1 Model quantization

To quantize the model it is needed to change the python script that trains it,
without actually changing any parts of the training itself. This is because the kind
of quantization method adopted in this project is called post-training quantization,
which is usually opposed to the quantization-aware training. The latter is more
complex to perform, but gives better results in term of model accuracy after
quantization, because it simulates the behavior of the quantized model already
during training, adjusting and tuning the weights accordingly to reduce the loss and
increase accuracy. On the other hand, in post-training quantization the training
process remains exactly the same and the TF Lite converter acts on the trained
model changing all the weights and the operators from 32-bit float to 8-bit signed
integer (fully integer quantization). As a result, the quantization step in this case
is performed while converting the NN model from keras to TF Lite, and it is only
needed to give some instructions to the converter by setting some parameters. In
order to do that, it is of course necessary to have a fully integer implementation of
the needed operators, and also the converter needs some preliminary information
to perform a good quantization minimizing the accuracy loss. In particular, a
representative dataset must be given to the converter, which is a quite large random
sample of the typical input data that the model will receive, and this means creating
a python function that yields input values fetched from the training dataset in a
random way. Other parameters to be set before running the TF Lite conversion
(and quantization in this case) are the input and output types (signed 8-bit integer
in this case) and the supported operators (TFLITE_BUILTINS_INT8 ). In this
way a new .tflite file is created, containing the quantized model (the app Netron
can be used to verify the result and obtain the quantization parameters: slope and
offset).
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It is important here to pay attention to which version of TF is installed as a
python library. This is because downloading the TF2.6.0 repo on the computer
does not mean that the installed python TF library is the version 2.6.0, but python
will use the version installed through the command pip install, so also when running
pip install it is needed to specify the version number 2.6.0.

4.2.2 Application quantization and Dataflow

Regarding the application code, major changes have to be done on the data
processing, both on the input and the output, because now the model will only
accept 8-bit integer values already quantized, and it will output 8-bit integer output
scores. This means that the parameters and thresholds used to compare the model
output have to be converted as well, and exactly the same quantization parameters
(slope and offset) used to quantize the model operators have to be used to quantize
the input data. Dequantization is not necessary here, since it is not possible to go
back to floating point arithmetic and also the integer output score can be easily
interpreted as it is.

As a result, a new application code flow scheme is needed, adding the quantization
steps, as it can be seen in Figure 4.2.

Figure 4.2: Magic wand, quantized application code flow scheme.

The quantization parameters are given as an output by the TF Lite converter
(and can be also seen in Netron app, or accesses through the C code after importing
the model). All the C++ files listed in the previous Section needs to be modified,
because all the variable types needs to be int8_t and the data processing (mostly
the input quantization and the output average) must be done by using exclusively
integer operations. In particular, to transform any floating point division into
integer, it is needed to multiply both the dividend and the divisor by the appropriate
power of ten that makes the operands become integer numbers, and then perform
the usual integer division.

57



Implementation

Regarding the output processing, the quantized model will return as output four
8-bit signed integer numbers, corresponding to the probabilities of having found
each gesture in the input data. In the floating point version these outputs were
not modified, but averaged and compared to a single threshold (corresponding
to 0.8), while now to make integer average and comparison easier, it has been
chosen to convert the output to unsigned 8-bit values by just adding 128, so that
a 0 output corresponds to 0 probability, while an output of 255 corresponds to
a probability of 1. Finally, the integer average is made just like the normal aver-
age, accepting the fact that in C or C++ the integer division will truncate the
result, so to partially compensate for this truncation, an offset of N/2 is added to
the total sum before dividing by N (N is the number of output scores to be averaged).

A consequence of what above said is that in general the accuracy will decrease
both for the input and the output processing, which, together with the noise, is
why it has been said that the accuracy of the quantized model given by the TF
Lite converter is actually just an ideal accuracy.

The data structure of the algorithm changes a little, and it is summarized in
the following Figure 4.3.

The dataflow is described in the table shown in Appendix Figure A.1 (Appendix
A), where the application execution is divided in macro-steps and for each step the
data involved is described in detail, from the input collected by the accelerometer
to the output that triggers the LED lighting up.

A different description of the dataflow can be seen in Figure 4.4, where the same
color-code and style of Figure 4.3 is used.

Some considerations can be done now that the dataflow has been clearly ex-
plained. First of all, the size of the circular buffer save_data could be brought
down to 128x3 without changing in any way the dataflow, since only the most
recent 128x3 elements are extracted from this buffer at every inference.

Another interesting consideration could be that the number of consecutive out-
puts to be averaged can be changed to obtain better results terms of both accuracy
and application responsiveness, in order to have an output almost immediately after
the gesture have been performed. This is particularly useful when the inference
is slow and waiting for many consecutive inferences could become unpleasant.
As a final remark, the threshold value should be changed with a trial & error
technique, in order to have the best result with the available HW. It is also possible
to differentiate the threshold value based on the gesture, and this has been done in
this case, having a high threshold for the slope gesture (easily recognized) and a
lower one for the ring gesture (hard to recognize).
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Figure 4.3: Magic wand, Data structure.
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Figure 4.4: Magic wand, Dataflow scheme.

4.3 SparkFun implementation with ADXL345

This part of the project is not really required for the porting to RISC-V, but it
is very useful as it allows to get familiar with a different accelerometer, so that
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when actually using the RISC-V core, the part related to the accelerometer will
already be tested. In this case no changes are made on the model, but only the
application code that regards the accelerometer is changed, and in particular the
file accelerometer_handler.cc is replaced by pmod_acc_handler.cc, which is very
similar, but without using the BSP from the SparkFun. The same happens for the
corresponding header files.

The SparkFun Edge board has an I2C port exposed with the QWIIC connector
to allow expanding the functionalities by connecting multiple I2C sensors and
peripherals. The ADXL345 can be therefore connected to this port and communicate
with the Ambiq microcontroller through I2C, just like the embedded accelerometer
(Figure 4.5 shows the connection).

Figure 4.5: SparkFun Edge board - custom connection ADXL345 through QWIIC
port.

Since the protocol is the same, the basic functions for reading and writing
registers on the sensor can be used as they are from the BSP, while what changes is
basically the address and the structure of the internal registers. As a consequence,
new small support functions are created to perform the basic initialization operations
(such as setting the output data rate, reading the ID register, start the measuring
mode, etc.), as well as new address constants and register struct types are declared
in the header file. It is also needed to configure, initialize and enable the output
pins of the QWIIC connector with the correct settings, which can be found in one
of many examples available on the web.

The function related to reading the acceleration values can be left almost the
same as in the previous step, with a small change on the data processing due to
the different alignment of the output data.

A final remark about this step is that it is expected a slightly lower accuracy
when using this new accelerometer, and this is for two main reasons: first of all in
high resolution mode the ADXL345 has less data bits than the LIS2HD12 (10 bits
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vs 12 bits), but also it is important to consider that the data used to train and test
the model has been collected using the LIS2HD12 accelerometer, therefore a slight
change in how the data is collected could mean a slight bias on the model output.

4.4 RISC-V implementation
Porting the magic wand application to the RISC-V core already means having a
first fundamental result for this project: as said at the beginning, the goal is experi-
menting and understanding the capabilities of the microcontroller, therefore having
a NN application running on such a target device already means understanding
that it is capable of handling a quite complex algorithm without any issue.

In order to achieve that, some intermediate steps are needed to get familiar
with the core, understand how to program it, how the few needed IPs can be
properly used, and how to move from an ARM implementation to a RISC-V
one. As a consequence, two preliminary tests are run: one to access and use the
ADXL345 acccelerometer, while the other one to exploit the internal timer to
perform time measurements or make delay functionalities. After that, some work
on the application makefile is needed, to have the proper setup and options for the
RISC-V compiler toolchain.

4.4.1 ADXL345 test
This test is made much easier by the previous step, when this accelerometer has
been connected and used with the SparkFun Edge board. In this case, while the
general structure of the test program is the same as in the previous step, most
of the support functions to access the sensor need to be written again, taking
inspiration from the ones already used from the SparkFun BSP.

What completely changes is the communication with the core, since here SPI
is the communication protocol of choice, mainly because some good examples
are already available about how to set up the SPI IP on the RISC-V core in
use. As a consequence, three new functions are written: SetupSPI, ReadRegSPI
and WriteRegSPI. The first function allows to configure and properly use the IP
according to the design of the RISC-V microcontroller, accessing the right registers
to configure the SPI pins and enable the IP with the right clock frequency, while
the other two functions implement the SPI protocol for reading and writing from a
master to a slave, knowing the address of the register and, if needed, the value to
be written or the number of bytes to be read.

Once these three functions are written, a simple test can be run on the RISC-V
FPGA model, to verify that the access and the values read from the accelerometer
are correct. After that, the file pmod_acc_handler.cc can be modified accordingly,
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together with its header file, just adding these new functions and leaving the
structure as it is.

4.4.2 RVTimer test
One more test needed is the timer test, used for two main reasons in the application:
measuring the inference time and having a simple delay function to introduce a
small delay after a positive output is given and the big circular buffer is cleared.
Some preliminary information can be useful: only one timer is available and it has
a 64-bit counter, it works at 12 MHz (CPU frequency), with the possibility to set a
clock prescaler. It can work in output-compare mode and interrupts can be used if
needed. In this case interrupts are not used, since to measure the inference time it
is just necessary to retrieve the counter value in two different moments, while when
a delay is needed, in the specific case of this application the CPU has nothing else
to do and therefore it can just wait (polling implementation).

The procedure is similar to the accelerometer test, but in this case some support
functions are already provided with the IP. These functions allow to access the
counter value, enable the timer and change the value in the output-compare register
to implement the delay functionality. As a consequence, to measure inference time
it is only needed to call these functions, while a separate test can be made for the
delay functionality, which means just calling those support functions (to update
the output-compare register and enable the counter) and finally polling on the
COMP bit that is automatically set when the compare value is reached.

Once again, after the test is completed, the new functionalities can be added to
the application code, by creating a delay function in pmod_acc_handler.cc and
adding few lines right before and right after the inference to enable the timer in
free running mode and later fetch the counter value.

4.4.3 RISC-V Makefile
The application code at this point is ready to be compiled for a RISC-V target, so
now it is needed to compile and link for a 32-bit RISC-V (rv32IMC) architecture
by using the gcc toolchain. As mentioned in 3.4, the TF makefile structure requires
a .inc file related to the target, so in the folder micro/tools/make/targets there is
one makefile for any general RISC-V target, called mcu_riscv_makefile.inc. This
.inc file takes care of downloading the proper compiler toolchain, setup all the
compiler and linker flags that are specifically required by the target and update
the dependencies with the new eventual files that need to be included (such as all
BSP source files and headers).

A few considerations should be made before going into the details on how
this file needs to be modified. First of all, as already mentioned in 3.4, the
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mcu_riscv_makefile.inc that comes with the TF 2.6.0 stable repository contains a
bug, which has been fixed in [19], so the fixed file should be used here. Moreover,
the default RISC-V implementation on the TF repository is done for the SiFive
targets, which means that what has been done for SiFive can be taken as an
example or a as a hint to understand and fix eventual problems with the RISC-V
target used in this project. Finally, in the latest years and months there has been
an increasing interest on development and support of RISC-V cores, therefore the
latest TF versions are likely to be much more complete regarding the support for
RISC-V cores. As a result, some more hints to follow for this purpose can be found
in the more recent versions of TF, still specifically made for SiFive targets.
Having said that, it can be now understood why the file mcu_riscv_makefile.inc
from one of the latest TF versions (2.10.0) is essential as a main reference to follow
for having a successful porting.

The changes to be made to this makefile are several, listed in the following:

• First of all the source and header files that constistute the BSP for the RISC-V
core need to be added to the dependency list, used to know which files need
to be compiled for the application to work. In particular, these files allow to
implement the right functionalities by using the available IPs, such as SPI
(sspim.c, sspim_funcs.h and sspim.h), I2C(twim.c and twim.h), UART (uart.c
and uart.h), GPIO pins (gpio.c and gpio.h), timer and counter (rvtimer.c and
rvtimer.h) and print functionalities (printf-stdarg.c). Other important files
that could be needed are irq_table.h (in case interrupts are used), riscv_csr.h
and tb.h. It is essential that the file chip.h is included here and also in all
the application .c files that use in any way those BSP functions, because it
declares and defines and all the necessary variables and functions.
These files are copied in a new application folder and added in the makefile un-
der the THIRD_PARTY_CC_SRCS and the THIRD_PARTY_CC_ HDRS
lists, so that they will be properly treated and compiled.

• One more very important step regards the startup file. Normally, when
compiling for ARM targets, the gcc compiler by default selects and uses an
internal startup file that usually works well with those kinds of targets. In
this case, the custom RISC-V core needs its own startup file, therefore the
flag -nostartfiles needs to be added among the LDFLAGS, to tell the linker
to use the custom startup, which has to be compiled and linked just like any
other source file. The available startup files are two: one .c file (startup.c)
and one assembly file (startup_as.S) which need to be both included in the
THIRD_PARTY_CC_SRCS list. These two files are both needed, since they
do not do the same thing (the assembly actually calls and jumps to the .c
file), and it is important that they have different names, because if not the

64



Implementation

compiler will generate two times a .o file with the same name, overwriting the
one that was generated the first.

• As already said several times, an edge application like this always faces
limitations in hardware capabilities and storage space. This is why it is normal
in cases like this to avoid using and including the C standard library, because
it would make the code size too large for the target available code memory
(only 128kB here). This is why the flag -nostdlib has to be added among the
linker flags (LDFLAGS), so that the linker will not link against the standard
library. Of course some reduced version of the standard library is still needed,
which is called Newlib and it is the standard for embedded application with
these kinds of restrictions. Newlib has again two possible versions and one
of them (called nano) is even lighter, made by ARM for extremely limited
microcontrollers. While the normal Newlib version is automatically enabled
by the -nostdlib flag, to specifically use the nano version two more flags need
to be added, i.e. -lc_nano and --specs=nano.specs.

• Explicitly linking against Newlib nano is not enough, because when linking a
few errors will pop up about several “undefined symbols", meaning that some
functions needed by the library are not defined anywhere. These are called
system calls and are basic functions that the library needs to handle several
things, such as file access, threads handling, etc. Some examples are fstat,
sbrk, close, lseek, kill, getpid, isatty, read, write, etc. Even though some of
them will not be used, the library still needs a definition, which can even be
completely empty. What is mentioned above is explained very well in [21].
Here the last TF version comes in handy, because the SiFive folder auto-
matically downloaded by the latest RISC-V makefile.inc contains all these
function definitions for SiFive targets and also includes them in the makefile.
Most of them are just stub functions and all the files can be left as they are,
just removing the include to the platform.h file. The only one that needs
to be taken care of is the sbrk.c, which increases the size of the heap (used
by malloc, for example). In this file two external variables are used, _end
and _heap_end, which are the beginning and the end of the heap section
respectively (with the beginning of the heap corresponding to the end of the
stack), declared in the linker script. At this point it is just sufficient to change
the names of these variables looking at the linker script of the target in use,
or to declare and define them in the right place of the linker script in case
they are not. Again, the linker scripts from SiFive can be a good reference.
The.c files related to the system calls are collected in a folder called “libwrap"
and to be properly compiled, they need to be added under the THIRD_
PARTY_CC_SRCS and THIRD_PARTY_CC_HDRS. This is actually not
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enough, because they still will not be recognized by the linker, unless some
new linker flags are added, like it is done in the latest RISC-V makefile.inc,
where for each of those new .c files, two new flags are added, i.e. -Wl,--
wrap=syscall_name and -Wl,--wrap=_syscall_name, where syscall_name is
the name of the system call, that in the SiFive files corresponds with the name
of every .c file.

• As a final remark, it is needed to add all the compiler flags that are required
by the specific target in use (some of them will declare and define variables
needed by the #ifdef in some .c or .h files), or remove some flags that are
not compatible with it. Moreover, a map file can be generated to check the
changes made.

4.4.4 Last fixes
In this Section the last fixes to have a working implementation on the RISC-V core
are detailed. One fundamental thing when testing and debugging is the possibility
to print information on screen. In the TF 2.6.0 the application code does not use
the classic printf, but is has a separate error handler (the class ErrorReporter) that
takes care of printing information through the UART interface. Going through the
code it can be seen that this error reporter processes the string to be printed and
finally calls a function named DebugLog that takes the processed string and prints it.
This function has a different implementation for every target, and it can be found
in the main TF Lite Micro folder (tensorflow/lite/micro, where there is a separate
folder for every single target type, each of them containing the debug_log.cc file).
The RISC-V implementation (in tensorflow/lite/micro/riscv32_mcu/debug_log.cc)
is empty by default and it needs to be implemented for the target in use in order
to have a working print functionality. It is sufficient to include a print function
from the target’s BSP, and in this case there is a function called putchar_uart in
the uart.c file, that simply takes one character and prints it, therefore it is enough
to call this function until the character becomes a string termination character.
Also, to enable the print functionality through the UART, some new compiler flags
are needed, i.e. -DDEFAULT_UART_FOR_PUTCHAR=IP_UART0_PTR_UT
and -DUSE_REAL_UART_FOR_PRINTF=1, which can be added in the PLAT-
FORM_FLAGS in the mcu_riscv_makefile.inc.

In the case of this project, a separate bash script (link.sh) has been created to
take care of the linking part. This is because using the TF makefile process, the
compile and link phase do not return any errors, but the produced binary is empty,
therefore there is some problem with the creation of the .a library file out of all
the compiled object files, which makes the linking step produce a useless binary.
In this new bash script, all the options and flags are the same as in the makefile,
but the .a file is not used, while instead all the needed object files are listed one
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by one. Here it is also possible to add the command to generate the map file and
the command to convert the binary into ihex (needed by the programmer and the
respective python script).

One last important consideration must be done regarding the code and data
memory needed on the microcontroller, since one of the greatest limitations in
low-power targets is the available memory. Regarding the data memory, the TF
structure uses the so called tensor arena, where all the variables used during
inference will be allocated. In the default code in the TF repository this arena is
as large as 60 kBytes, therefore, considering that the quantization steps brings the
standard data length from 32-bits to 8-bits, it is possible to safely say that any
target with 64 kBytes of data memory can execute the application. Regarding the
code memory, here more than 64 kBytes are needed, since the binary that will be
flashed on the microcontroller has a size of around 114 kBytes in the case of the
32-bit floating point application, and around 90 kBytes in the quantized version.
As a result, at least 128 kBytes of code memory are needed.

4.5 Optimized RISC-V implementation
This is the last step of the thesis project, where the focus is on the possibility
to improve the performance obtained in the previous step through both HW and
SW changes, also with the help of the current research papers on the topic and
considering the eventual optimizations already made in other target types, i.e. the
ARM CMSIS library, which is open-source.

4.5.1 Layer choice
The first thing to do in this case is finding out where exactly it is most profitable
to optimize, because given the limited amount of time, only one aspect of the
application can be studied and eventually optimized, while for the other aspects it
will be easier to follow what has been done here to get similar results. Since the
implemented NN is a sequence of layers, only one of those layers will be studied,
and the most reasonable thing is to try to optimize the layer where application
spends the most time during inference.

As it can be seen in Figure 4.6, the magic wand application consists of 4 types
of layers: convolutional, maxpool, fully connected and softmax. To understand
where the most time is spent, the GPIO pins can be used, just changing their value
when the function that implements that layer is called.

The application code changes are very few, to be done in each of the .cc files
located in lite/micro/kernels that represent the TF bridge to the actual operators
implementations.
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Figure 4.6: Netron app view of the magic wand NN.

The result of this function profiling through GPIO is very clear: the convolutional
layer is where almost 90% of the inference time is spent. The measurements have
been done both on the SparkFun Edge board (with CMSIS optimizations) and
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on the RISC-V FPGA model (non-optimized), and Figures 4.7 and 4.8 show the
measurement outcomes obtained using the Digilent Digital Discovery.

Figure 4.7: GPIO function profiling measurement on SparkFun Edge. DIN0
indicates the inference time. Bus values for each NN layer: Bus=5=> Convolutional,
Bus=2=>Fully Connected, Bus=1=>Softmax.

Figure 4.8: GPIO function profiling measurement on the RISC-V FPGA model.
DIN0 indicates the inference time, DIN1 is set when executing a Convolutional
layer.

It is now clear that the focus needs to be on the convolutional layer, which was
also predictable, since this is where the convolution multiplications and additions
are performed.

4.5.2 HW/SW optimization choice
At this point the next choice to be done is how to optimize this layer on a HW
point of view, and here what said in Section 2.3.2 becomes essential, mostly in a
very power-constrained device. The most reasonable option here is to create an
in-pipeline AFU, meaning that the ALU will be internally modified by adding in
the pipeline an HW block. The idea is not to have the whole layer handled by
HW (such as the one described in [17]), but rather to add a small HW block that
will perform an optimized MAC operation, which is the time-(and power-)hungry
operation continuously used by the convolutional layer. The reference for this idea
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is given in [18], where they implemented a parallel MAC for three 8-bit couples of
inputs.

In a few words, the goal is to exploit the fact that the quantized application
uses only 8-bit integer data in a 32-bit architecture to perform SIMD instructions
and therefore obtain performance and time gain through parallel processing. In
practice this means to design a new HW block, create and add a new RISC-V
instructions that uses that bock and also change the algorithm so that the new
block is properly used whenever it is possible.

Before designing, it is important to understand if it is worth it to follow the
exact same idea as in [18] or maybe see if a different option can be better. The
improvement given by this kind of parallel computation strongly depends on how
much it can actually be used, therefore the code that uses this new HW is as
important as the HW itself and most likely it also needs to be changed accordingly.
In this case, it is very helpful to see what ARM has done in this regards, and
how the convolutional layer algorithm is optimized by the CMSIS library, and
this can be done by reading the CMSIS algorithm for the convolutional layer (file
arm_convolve_s8.c in micro/tools/make/downloads/cmsis/CMSIS/NN/Source).
First of all, the ARM optimization does exactly what has been described so far:
it uses SIMD instructions to speed up the convolution operation, and to do that
changes the convolution algorithm with respect to the TF internal reference imple-
mentation. To allow parallel computation, they implement the Im2col algorithm to
perform convolution (explained in Section 2.1.1) and then they perform two 16-bit
MACs in parallel, using the 32-bit registers as 2-element 16-bit vector registers
and calling a special inline assembly instruction that performs the actual operation
(called SMLAD). Other inline assembly instructions are introduced here to help
with the data manipulation, mainly to go from 8-bit to 16-bit and create these
pseudo-vector registers.

The ARM implementation processes two columns of the Im2col algorithm at a
time (producing 2 output values) and within each column it performs four MACs at
a time, which means calling their SIMD instruction twice (each SMLAD calculates
two MACs). What just said generates two main considerations: the SW strategy
needed to make this algorithm work is quite heavy, not only for the Im2col in itself,
but also because this processing in couples for the columns and in groups of 4 for
the elements requires extra-care for the cases in which the number of columns and
elements within a column are not multiple of 2 or 4 respectively. Moreover, the
sign-extension to 16-bit is not really necessary, as well as it is strange to always
call this SMLAD function twice, instead of having a new instruction that performs
four 8-bit MACs instead of two 16-bit ones.

What above said brings to the final decision for the optimizations in this project:
the choice is a mix between what done by ARM in the CMSIS library and what
done in [18], trying to get the maximum improvement with the available time and
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resources. The same Im2col algorithm as ARM CMSIS will be used (also with
the columns processed in couples, etc.), while a new HW block will be designed
(together with the corresponding new RISC-V instruction) so that it performs four
8-bit MACs in parallel, which can be inserted in ARM’s algorithm without any
change, since their instruction was always called twice in a row. In this way the
maximum parallelization is obtained with the available 32-bit architecture and at
the same time the CMSIS algorithm can be used as it is without the burden of
sign-extending to 16 bits.

4.5.3 HW design

The new HW unit needs to be introduced in the core structure, as part of the
ALU, which will use it just like the simple multiply or add unit when the current
instruction requires it. The choice is to have this block fully combinational, therefore
the result will be given in one clock cycle, with the risk of being in the critical path
since the total time needed to get the result equals one 8-bit multiply plus two
32-bit add. In any case, it is still worth it to use this block since the advantages of
parallel computation are expected to be very high. Figure 4.9 shows the general
scheme of this new HW unit.

Figure 4.9: New SIMD HW unit with four 8-bit MACs.

The result of each of the first 8-bit multiplications will be a 16-bit signed number,
that will be internally sign-extended to 32-bit, so that both the following additions
can be performed with a 32-bit parallelism. Overflow is not possible in this case,
since in the end the inputs of the adders are always numbers that can be represented
in 16 bits. The output of the unit will still be 32-bit, because the accumulation
of the result will go on in the algorithm and also in this way the HW unit can be
used also for other purposes without the restriction to go back to 8-bit, which in
this case will be done via software in the application code.
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It would be useful to have a third 32-bit input going into the unit and contain-
ing the value accumulated so far, in order to avoid doing one more addition to
accumulate with the previous parallel instruction result. Unfortunately, this is not
possible with the available HW, since the register file only has 2 read and 1 write
ports working at the same time, so instructions with three inputs are not available.
This will decrease the gain given by this new SIMD instruction.

As a final remark, the design has been done in verilog and in a behavioral style,
while to integrate this unit a new operation selector value needs to be defined in
the verilog code for the ALU, and few more lines of code need to be added to
indicate that when the operation selector variable holds this new value, then the
result of the ALU has to be connected to the output of this new unit. What just
said will be better explained in the following section.

4.5.4 RISC-V instruction design
Even if the HW unit design is ready, the block cannot be used until there is
an instruction that targets it. In this case, a new RISC-V instruction needs to
be designed and included in the core’s ISA, together with the mapping of this
instruction to the new operation selector value described in the previous Section
4.5.3. Other than that, the compiler also needs to understand the inline assembly
instruction that will be in the code and properly map it to this new RISC-V
instruction. As a results, both the gcc toolchain and the core code need to be
properly changed by adding the support for this new instruction.

First of all, the new instruction has to be designed, choosing its opcode and
instruction-type. Having two inputs and one output, it is the classical R-type
instruction (see Section 2.2), but before going farther, it is better to see if some
similar instructions are already present in some stable or proposed RISC-V ex-
tensions, so that it could even be recognized by the compiler toolchain without
any modification. As a matter of fact, among the “open" (non stable or ratified)
extensions there is the P (Packed) extension, that contains all the most important
SIMD instructions. Looking at the instructions, there is one that perfectly matches
the needs of this project, the smaqa instruction. The smaqa performs four signed
8-bit MACs and also accepts a third 32-bit input to accumulate with the previous
result. Figure 4.10 shows the characteristic of this instruction as they are in the P
extension proposal in [22].

The instruction encoding is shown in Figure 4.11.
The idea is now to use exactly this instruction with the same opcode to map

the new HW unit in the RISC-V core used here, therefore add only this instruction
(and not the whole P extension) to the set of instructions understood by the core.
The introduced instruction will have the same name and the same encoding, but it
will not do exactly the same thing, since it will only accept two inputs instead of
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Figure 4.10: Description of the smaqa RISC-V P instruction [22].

Figure 4.11: Encoding of the smaqa RISC-V P instruction [23].

three, as already mentioned in the previous Section 4.5.3. The final accumulate
with the previous result must be done just with a common 32-bit add instruction
following the smaqa.

To do that, it is needed to modify several files on the core’s side:

• First of all, the new instruction encoding must be added in the instructions
set list (it is a python dictionary in nanorv32.py), indicating the instruction
type (R), the name and the value of the three fields that map the instruction
in the ISA (opcode, func3 and func7).

• The instruction is now in the ISA, but there is nothing that indicates what
to do while executing it. This is why also the file nanorv32_impl.py has to
be modified by adding the new instruction and write what the HW needs to
do, such as how the program counter will move, how to connect the ALU’s
inputs and what operation to perform, as well as if and how the memory
and/or the register file are accessed to retrieve the inputs and outputs. In
the case of the smaqa, the program counter will move to the next instruction
(standard increase by 4 bytes), the ALU will perform the smaqa operation
(now recognized through the new operation selector value), the memory is not
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accessed, while the register file is accessed both in read and write mode and
connected to the ALU inputs and output.

• If not done already, a new parameter with the name and the value of the new
operation selector option needs to be added as a parameter in the parameters
verilog file of the core. In the same file, a new parameter with the mask of the
new instruction encoding has to be created, specifying the opcode, func3 and
func7 fields while leaving the other bits to don’t care value.

• A tool can be used to automatically update and modify the core verilog file
with what written in nanorv32_impl.py, but if the automatic tool is not used,
it is needed to manually add the verilog code that tells what to do and how
to connect the HW blocks when executing this new instruction.

The last step to have a working implementation is to modify the gcc compiler
so that it recognizes and correctly maps the new instruction. This procedure has
already been mentioned in the background chapter (Section 2.3.2). To do that, the
latest version of the gcc compiler has been fully cloned from the GitHub repository
and the guide found in [24] has been followed. The guide explains everything very
clearly, but the only thing to keep in mind is that it has been made for a 64-bit ISA,
so at the moment of linking it will not work. This is why in the configuration step
along the process, the line ./configure --prefix=/opt/riscv_custom has to be replaced
by ./configure --prefix=/opt/riscv_custom --with-arch=rv32gc --with-abi=ilp32d
--enable-multilib. In this way the 32-bit version will be used.

As explained in [24], the files riscv_opc.c and riscv_opc.h in riscv-gnu-toolchain/
binutils/opcodes and riscv-gnu-toolchain/binutils/include/opcode need to be up-
dated by adding the mask and match macro for the new instruction opcode and
func3/func7 fields, to allow the compiler toolchain to recognize the instruction
without giving any errors.

The final step for a working implementation (after having properly modified
the algorithm) is to update the mcu_riscv_makefile.inc in order to use this new
version of the toolchain, changing the TARGET_TOOLCHAIN_PREFIX variable
to riscv32-unknown-elf- and also adding the path to the bin folder of the new
toolchain in the environment variable PATH.

4.6 Tests and simulations
In this Section the tests and simulations done during the implementation process
will be briefly detailed, to show how the changes made to the SW or to the HW
have been verified.
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4.6.1 Basic implementation on SparkFun Edge

In the first implementation step, the application has been tested as it is, by run-
ning make -f tensorflow/lite/micro/tools/make/Makefile TARGET=sparkfun_edge
magic_wand_bin from the main tensorflow folder. The only test that was made was
just switching from the TF internal operator implementation to the ARM optimized
one, through the CMSIS NN library targeted for the Cortex M4 core. This is a
very important step, since it is here that the structure of ARM’s optimizations has
been studied and understood. One fundamental consideration here is that when
going from the TF internal implementation to the CMSIS implementation, it is
needed to perform a make clean (make -f tensorflow/lite/micro/tools/make/Makefile
TARGET=sparkfun_edge clean, from the main tensorflow folder).

4.6.2 Model quantization on SparkFun Edge

During the quantization step, the main problem was represented by the TF ver-
sioning issue, that has been already described in Section 3.4. Apart from that,
the quantization has been done in Python with the TF 2.6.0 library, by modifying
the script train.py in micro/examples/magic_wand/train. The test done in this
case was also useful to measure the accuracy of the quantized model, as described
in Section 3.5.2. A new python script (eval_tflite.py) has been written and data
from the test dataset were given as input to the model and the result was checked
with the gesture label to calculate the final ideal accuracy, considering the same
thresholds used in the application C code to know if the output score is high enough
to identify a gesture. To test the application on the SparkFun Edge, after changing
the code, the thresholds have been adapted to the new output characteristics
(differentiating them between the three possible gestures), and again the internal
TF implementation has been compared with the ARM CMSIS one, now with a
closer look at the benefits gained in inference time.

4.6.3 SparkFun implementation with ADXL345

Changing the accelerometer does not really modify the application structure,
therefore in this case the test has been mostly focused on making the ADXL345
accelerometer work properly, printing on screen the register values and the accelera-
tion measured. Finally, the pmod_acc_handler.cc file has been created to integrate
the new accelerometer in the application and verify that nothing really changes.

Figure 4.12 shows the test setup for the SparkFun Edge board, with the SEGGER
programmer on the left and the ADXL345 accelerometer on the right.
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Figure 4.12: Measurement setup - SparkFun Edge board with SEGGER J-Link
Edu-mini and Digilent Pmod ACL.

4.6.4 RISC-V implementaton
Testing the application on the RISC-V core was done step-by-step, trying to fix
small bugs at each iteration. As said in Section 4.4, first of all the accelerometer
and the timer were tested on their own and out of the TF structure. After having a
meaningful binary, the application was tested by running make -f tensorflow/lite/mi-
cro/tools/make/Makefile TARGET=mcu_riscv TARGET_ARCH=riscv32_mcu
magic_wand_bin from the main tensorflow folder, but it crashed every time a print
function was called. After modifying the debug_log.cc file as described in Section
4.4.4, the application was tested by injecting fake input and feeding them to the
model, in order to isolate the inference process and neglect every eventual bug
coming from the input retrieving and processing. The fake input was taken from
a real inference that gave a positive result for the wing gesture on the SparkFun
Edge with the quantized model. In this way the data is already processed as the
model wants it, so it can be understood if the model inference does its job or any
operator gets stuck or gives the wrong result.

After that, the application was tested with live acceleration data, to confirm that
the input processing works properly, as well as to add inference time measurements.
In this case the inference was extremely slow, therefore to get some results the output
score average has been discarded and the thresholds values were properly tuned.
Moreover, the output suppression count after a positive output was drastically
reduced (to 1 or 2 inferences) to avoid having too long waiting time.

Figure 4.13 shows the test setup for the RISC-V core (actually its FPGA
model), with the Digilent Arty S7 FPGA board on the left, the Adafruit FT232H
programmer at the bottom, the ADXL345 accelerometer in the center on top and
the Digilent Digital Discovery on the right.

In Figure 4.13 it can be also seen that the Digital Discovery is connected to
the pins of the accelerometers, and this was done as a preliminary test for the SPI
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Figure 4.13: Measurement setup - RISC-V FPGA model with Adafruit FT232H,
Digilent Pmod ACL, and Digilent Digital Discovery.

communication. The waveforms corresponding to this measurement are shown in
Figure 4.14, where it can be seen the SPI transaction for reading the acceleration
values from the internal FIFO of the accelerometer. In particular, the first byte
sent on the MOSI line is 0xF2 (binary 11110010), with the MSB set to 1 for “read"
transaction, the second MSB set to 1 for “multiple byte read", and then the address
to be read, which is 0x32 (binary 110010), corresponding to the datax0 register
of the accelerometer. After that, a dummy byte (0x22) is sent for 6 times just to
give the clock to the slave (the accelerometer) and read 6 consecutive bytes on the
MISO line, corresponding to the three 16-bit values of the x, y and z accelerations
(in this order). As it can be seen, the board was in a static horizontal position,
because the acceleration values are 0 along the x and y axes, while 0xF2 (decimal
242) along the z axis. From table 3.1 it can be read that at ±2g full scale (like
in this case) the sensitivity of the ADXL345 is 4mg/digit, so to convert the read
value in mg it is only needed to multiply by 4, obtaining an acceleration of 968mg,
which is around 1g (gravity acceleration on the z axis).

Figure 4.14: SPI read transaction monitored with Digital Discovery to get the
acceleration values from the ADXL345.
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4.6.5 Optimized RISC-V implementation

In this last step, separate preliminary tests need to be done on the HW and on the
SW, since there are important modifications on both sides.

On the HW side, the typical digital design approach is followed: first of all the
new HW unit is designed and tested on its own by writing a verilog testbench and
running a simulation. Figure 4.15 shows the RTL schematic view obtained from
the verilog code using Vivado. Here the structure of the four MACs can be seen,
with first four 8-bit parallel multiplier and then three 32-bit adders to accumulate
the results. The sign extension block between the multipliers and the adders is
not shown here, but its presence can be seen looking at the number of bits in the
multipliers outputs and in the adders inputs.

Figure 4.15: RTL schematic view of the HW block in Figure 4.9.

After that, the unit is included in the core’s ALU and a small and simple C
firmware is written to see if the unit is actually used, as well as to test if both the
compiler toolchain and the ALU recognize the new RISC-V instruction both in
simulation and on a real FPGA test. In this case a simple 4x4 row by column
MAC was performed, to see if the parallel computation gave the right result.

Figure 4.16 shows a snippet of the objdmp performed on the .elf produced by
the compiler/linker for this simple C program, and in particular the initial part of
the main function, to show how the compiler recognized the newsmaqa instruction
and treated it as any other instruction, giving it the right name recognized by the
core.

Figure 4.17 shows the waveforms of the most important signals in the simulation:
the two 32-bit inputs (smaqa_ina and smaqa_inb), the 8-bit inputs to the four
multipliers (a0 to a3 and b0 to b3 ), the 32-bit result of the four MACs (smaqa_out)
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Figure 4.16: Snippet of the objdmp of the .elf file of the test program with the
new smaqa instruction at address 36C.

and finally the value of the ALU operation selector, that corresponds to the value
assigned to the new smaqa instruction (50 in this case).

Figure 4.17: Waveforms from the simulation of the new smaqa HW block.

Once the HW has been simulated and tested, the SW test can be run, and
in this case the algorithm in itself was entirely taken from the CMSIS Im2col
implementation, but it was using ARM custom types for the variables, as well
as several custom RISC instructions concerning 16-bit parallel computation. The
first step is to create a C program that emulates this convolution algorithm in
an environment that is independent from TF, so that the HW unit and the new
algorithm can be tested together in complex convolution operation, without the
heavy background structure and system flow coming from TF. This has been done
by discarding all the unused variables and types and leaving only the input data, the
convolution filters and few essential convolution parameters (stride, padding, offset
and shift). To automatically check the result, the simple convolution algorithm
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coming from TF internal reference implementation was modified in the same way
and included in this test program. In this way full simulation and test were
performed to verify the correct functioning of both the algorithm and the HW.
Figure 4.18 shows the input values, the filter values and the output from the two
algorithms.

Figure 4.18: Convolution test out of the TF environment - input, filters and
output values.

Finally the test on the TF application was performed. The ARM custom types
have been replaced by standard types and some basic TF functions and types were
used to match code structure and function call present in the TF internal operator
implementation. In a few words, the function call and some support functions
such as quantization, saturation and cast to 8-bit need to be in TF-style, while the
algorithm is in CMSIS-style.
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Results

In this chapter, the results obtained along the thesis project are shown in detail.
Since the research questions stated in Section 1.2 and the related purpose and
goals (Sections 1.3 and 1.4) are actually not expressed in a quantitative way, the
tests described in the previous sections already demonstrate qualitatively that the
constrained RISC-V microcontroller is capable of running a simple, but complete
NN and that it can even be fast enough for practical applications if the rights HW
and SW changes are applied. On the other hand, it is also important to state
quantitatively how well the application would perform in a practical case where the
studied application is needed, both in terms of accuracy and power consumption,
and this is why some measurements have been performed.

As already said in Section 3.5, the measurements have been performed on four
areas: the number of instructions executed during inference (strongly related to
the power consumption), the inference time, the model accuracy and the size of
the binary.

Table 5.1 shows the results obtained by measuring the inference time in all the
possible cases with the internal timers embedded in the boards. The measurements
have been verified by using the Digilent Digital Discovery connected to some GPIO
pins, as well as by using the mcycle CSR on the RISC-V core (as described in 3.5.2
and shown in table 5.3) and the DWT unit on the ARM core (table 5.4). Repeated
measurements on consecutive inferences always show the same result, meaning that
the variation in the inference time is negligible with respect to the ms scale that is
used here to compare the results.

The ideal model accuracy calculated by SW during the training process and
related to the TF 32-bit floating point model (still not converted to .tflite) is equal
to 0.89.

After converting to the flatbuffer format and to the .tflite extension, the 32-bit
floating point model has an accuracy of 0.84, calculated by the TF Lite converter.
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Table 5.1: Inference times measurements in all the studied cases, with ratios
between some relevant ones.

SparkFun Edge RISC-V core Clock
Ratio

Clock Frequency 96 MHz 12 MHz 8:1

Model/computation type 32-bit Float Quantized
8-bit Int

Quantized
8-bit Int

8-bit
Ratios

TF internal
implementation 31 ms 66 ms 520 ms 1:7.9

Optimized
(CMSIS or custom RISC-V) 31 ms 9 ms 140 ms 1:15.6

Ratios 1:1 7.3:1 3.7:1

Finally, the quantization step to a fully 8-bit integer model brings the ideal
accuracy down to 0.79, calculated by the custom python script as described in
Section 3.5.2. Table 5.2 shows these results one close to the other.

Table 5.2: Ideal accuracy values in the three optimization steps.

TF 32-bit
model

.tfile 32-bit
model

.tflite 8-bit
model

Ideal
accuracy 0.89 0.84 0.79

The binary size is related to the .tflite models before and after quantization
and it is calculated by the TF Lite converter. The model before quantization
(32-bit floating point) has a binary size of 19616 Bytes, while the quantized model
(8-bit integer) has a binary size of 8656 Bytes. One more thing that needs to be
considered is the size of the whole application binary code, which is the size of the
binary file that will be actually flashed on the target device, strongly related to the
minimum code memory required on the target to have the application running. In
the case of 32-bit floating point model, the final binary size is around 114 kBytes,
while for the quantized application it is around 90 kBytes.

Table 5.3 shows the results of the number of instructions executed, the
number of cycles and the CPI during every single convolutional layer and for
the whole inference, related only to the RISC-V implementations (optimized and
non-optimized) and calculated using the CSRs (see Section 3.5.2). The values
concerning the number of cycles have been checked and confirmed by measuring
them with the Digital Discovery through the GPIO function profiling described in
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4.5.1. Several measurements on consecutive inferences show a negligible variance,
always around 0, since the values are less than 100 cycles or instructions far from
to the averages listed on table 5.3.

Table 5.3: Number of instructions and cycles measurements for every single
convolutional layer and for the whole inference in the RISC-V core, with ratios
between non-optimized and optimized implementation.

Optimized Non-optimized Ratios
(non-opt/opt)

1st conv layer

n. of
instructions 609300 3274100 5.37

n. of cycles 847000 (70 ms) 3765000 (314 ms) 4.45
CPI 1.39 1.15 0.83

2nd conv layer

n. of
instructions 194470 1822980 9.37

n. of cycles 246770 (20 ms) 2077400 (173 ms) 8.42
CPI 1.27 1.14 0.9

whole inference

n. of
instructions 1116934 5408900 4.84

n. of cycles 1691400 (140 ms) 6262200 (520 ms) 3.7
CPI 1.52 1.16 0.81

The same can be done with the ARM core in the SparkFun Edge board, by
using the DWT unit as explained in 3.5.2. The obtained results are shown in table
5.4.

To have a better understanding on the optimization advantages and comparison
between ARM core and RISC-V core, Figures 5.1 and 5.2 give a visual representation
of the data in tables 5.3 and 5.4 through histograms.
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Table 5.4: Number of instructions and cycles measurements for every single
convolutional layer and for the whole inference in the SparkFun Edge, with ratios
between non-optimized and optimized implementation.

Optimized Non-optimized Ratios
(non-opt/opt)

1st conv layer

n. of
instructions 693409 4265641 6.15

n. of cycles 693408 (7.2 ms) 4265640 (44 ms) 6.15
CPI 1 1 1

2nd conv layer

n. of
instructions 135048 1927671 14.27

n. of cycles 135047 (1.4 ms) 1927670 (20 ms) 14.27
CPI 1 1 1

whole inference

n. of
instructions 911595 6423100 7.05

n. of cycles 911579 (9 ms) 6423100 (66 ms) 7.05
CPI 1 1 1

Figure 5.1: Histogram showing the number of CPU cycles as in tables 5.3 and
5.4.
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Figure 5.2: Histogram showing the number of instructions executed as in tables
5.3 and 5.4.
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Discussion

In this chapter the results previously shown will be discussed, explaining why those
numbers have been obtained and what is their meaning in the point of view of this
thesis project.

The inference time measurements seen in table 5.1 are a very important to
understand quantitatively how good the optimization is. As said in Section 3.5.2,
both the timers used to measure the inference time on the SparkFun Edge and on
the RISC-V core run at the same frequency, 12MHz, therefore they have the same
accuracy and the comparison can be made without considering problems deriving
from different accuracies.

It is important to take into account the several ratios listed in the table: in
particular the clock frequency ratio needs to be the starting point, because if that
difference is not considered, then the RISC-V core performance would seem too
poor without a real explanation. As a matter of fact, the SparkFun Edge board
has a microcontroller that runs at a frequency that is 8 times higher than the one
of the RISC-V core, and it is expected to find the same ratio in inference time
between the two boards when they run the exact same algorithm with the same TF
internal reference operator implementations. This is exactly what happens, since
the inference time ratio for the quantized 8-bit integer model with TF internal
implementation is 7.9.

On the other hand, it is interesting to see the improvements brought to the
inference time by the different optimizations studied in this project, i.e. the ARM
CMSIS library and the custom optimization on the RISC-V core. ARM was
capable of obtaining an inference time 7.3 times faster with respect to the TF
implementation, while the optimized version of the RISC-V core was “only" 3.7
times faster. The reason behind that is that the CMSIS library optimizes every
single layer of the neural network, while in this project only the convolutional
layer was optimized (see Section 4.5.1). Moreover, in the ARM implementation
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the memory access is well optimized by using their custom memcpy function to
access the memory and put the 8-bit values into a 32-bit variable, while in the
current RISC-V implementation memcpy was not used, but a C union struct was
deployed, accessing and copying the 8-bit values one by one. Finally, the new
Im2col algorithm on one hand allows SIMD operations, but on the other requires a
heavy data movement, with many duplicated values and with data transferred to
temporary intermediate buffers, therefore an improvement of 3.7 times is quite a
good result, considering that the memory access is much less optimized if compared
to the CMSIS implementation.

Regarding the model accuracy, the obtained values are in line with the ex-
pectations, because it can be seen that at every conversion/size optimization step
around 5% of accuracy is lost. Considering that the initial accuracy was very high
(almost 90%), a 10% loss is acceptable, also because the advantages in terms of
model size and computational load are essential for the practical application in
this specific case. Once again, it is important to state that this is only the ideal
accuracy (see Section 3.6), therefore when the application algorithm is introduced
(with noise, average and data processing/quantization) it is expected to have a
further drop in the accuracy. In the case of this project the goal is not exactly to
have a fully functional application ready to be used in a practical case, therefore
the loss in accuracy is considered secondary, as long as the application can be
properly tested.

The binary size of the model has been reduced to less than a half by the
quantization process, which is not as much as expected, since ideally going from
32-bit to 8-bit variables the size should become 1/4, but of course this is not true,
since most of the computation and the intermediate reults in the operators is kept
at 32 bits, while the inputs, the outputs and the weights of the convolutional layers
are quantized to 8-bits.

Considering the whole application, there is a significant difference of around 34
kBytes between the non-quantized and the quantized version, which makes sense
considering that also most of the variables used to collect and store the data are
now quantized.

Several important considerations can be done about the results contained in
table 5.3. First of all, it is significant that the inference times and their related
ratio is coherent with what measured by using the timers (table 5.1). Moreover,
here it can be noticed how good the improvement is in the optimized layer only, by
looking at the number of instructions executed that is drastically reduced thanks
to the new SIMD instruction and also to the new algorithm, that optimizes the
data handling of the whole layer. On the other hand, the number of cycles in each
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layer is still reduced, but with a lower ratio, resulting in a higher CPI value for
the optimized implementation. This is because while the data processing has been
optimized, the data access remained practically the same, and the the processing
instructions usually take 1 clock cycle to execute, while the data access instructions
most of the times require more than 1 clock cycle. As a result, by reducing the
number of 1-cycle instruction through the optimizations, the longer instructions
start showing more clearly and becoming more relevant on the final CPI value,
which is therefore increased by the optimizations applied in this case.

One more interesting thing that can be seen in this table is the difference in
the optimization gain on the two convolutional layers of the application, which
demonstrates how the effect of new SW and HW design actually strongly depends
on the structure of the convolution itself in each practical case. Here there is a
reduction in the number of instructions of 9.37 times in the second convolutional
layer, while the first one had “only" 5.37 times less instructions. This is mainly due
to the fact that in the second convolutional layer the input data is not actually
a matrix, but a column vector, therefore the data to be retrieved will always be
adjacent to the previous ones (see Figure 2.13). Moreover, the filters in the second
layer have exactly the shape that allows the use of the new instruction, 4x1, and
also the fact that the number of channels is always a multiple of 4 makes the usage
of the new RISC-V instruction particularly convenient, but this is true also for the
first convolutional layer.

Comparing table 5.3 with table 5.4, the considerations made earlier in this
Section about the inference time are confirmed, since the ratios between RISC-V
and ARM are preserved and it can be noticed how the ARM improvement is always
a bit better with respect to the RISC-V case, reaching a final improvement of
around 7 times in the inference time. What makes this data interesting is the fact
that the ARM implementation always manages to have a CPI around 1, meaning
that the memory access is very optimized and there are almost no instructions
that need more than one cycle to be executed. It is also worth it to mention the
fact that bot the number of cycles and of instructions executed by the ARM core
is almost always higher than in the RISC-V case, but the difference in the clock
frequency is so large that the inference time is much lower in the the SparkFun
Edge board.

A final consideration can be done about the mesurements and how the algorithm
and the data structure can or cannot influence them, trying to formulate a general
guideline on how to tune the application parameters.

The measurements done and the results obtained strongly depend on how the
initial default algorithm and its data flow has been changed, so it is worth it to
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try to make some general considerations about what correlates the duration of the
inference, the data acquisition, the inference speed and the eventual average on
several model outputs.

The starting point is the fact that the model has been trained with data being
collected at 25 Hz by the accelerometer, therefore it is capable to work properly
only with this spacing between input data. As a result, to change this value and
have a faster input data stream, the model needs to be trained again with new
data, and to do that a whole new dataset must be collected with almost the same
conditions and considerations done about the currently used dataset (see Section
3.5.2). However, as already stated several times, the final goal of this project is
not to go deep in the NN model and training themselves, therefore this input
frequency of 25 Hz will be seen as a constant value that cannot be changed. A
similar preliminary consideration can be done about the number of model input
data (128x3 axes), since the model “cannot" be changed.

Going to the numbers, looking at the Figure 6.1 it can be seen that one inference
will always consider 128 values on each axis, so knowing that each of these values is
collected every 0.04 s (25 Hz), it is possible to say that a single inference analyzes
a total of 5.12 s of movement.

Figure 6.1: General dataflow of consecutive inferences.

Considering that the gestures recognized by the model are about 1s long, it can
be seen that one inference covers much more than a single gesture, therefore a
gesture must be recognized at any point of that 5.12 s span, as well as multiple
gestures could be included in the same inference. What just said is not actually a
problem, considering that the inference time is very fast and consecutive inferences
operate on almost the same data (see again Figure 6.1), just deleting the oldest
values and adding the new ones collected since the last inference. As a result,
one single gesture (about 1 s) will gradually move away in the 5.12 s span as the
circular input buffer moves and it will be analyzed many times in consecutive
inferences. Knowing that, there is no point in having an inference much faster than
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0.04 s, because in that case several consecutive inferences will have exactly the
same input and therefore the same output: it is just a waste of power and energy.
On the other hand, having inferences that last 1 s or 2 s would affect too much the
responsiveness of the system and also will not allow to have one gesture in more
than 2-5 consecutive inferences. The ideal would be to have one inference every
few (for example 1 to 5) new input values, meaning between 0.04 s and 0.2 s, so
that even averaging several output scores, the final expected output is given within
1s. In any case, depending on how responsive the application needs to be, also 1 s
could be too much, so in that case the number of averaged output can be changed,
or some optimizations can be made to have a faster inference and remain with the
same number of averaged values.

As an example, the application on the SparkFun Edge with floating point
arithmetic has a 32 ms inference, meaning that at every inference there is roughly
only 1 new input value per axis in the circular buffer, and this makes every inference
having a slightly different output and it allows to average 8 consecutive output
scores with almost no delay seen by the user, since 8*32 ms=0.256 s are waited at
most to have an answer after a gesture has been performed.

In general, having a fast inference helps because it allows to average many out-
puts containing the same gesture but in slightly different positions, which reduces
a lot the false positive and false negative cases, increasing the final accuracy. What
said in this paragraph should help in tuning the average and optimization constants
in order to meet the application specific goals.
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Chapter 7

Conclusions and Future
work

In this chapter some final considerations are done about the work done, going over
the goals and objectives listed at the very beginning and trying also to say what
could be done better and what are the next steps for a more optimized and final
implementation.

7.1 Conclusions
This thesis project tried to combine the research fields of RISC-V microarchitecture
and DL, focusing on the low-power edge inference of a NN in order to lead the way
to a cutting edge technology that exploits self-sufficient microcontrollers with DL
capabilities.

The methodology that guided the project was a simple but effective incremental
approach, going from ready made and fully supported examples to tailor-made
optimizations on a custom target device, passing by several intermediate steps that
helped to gradually get more familiar with the field, the HW and the SW.

In the end, it was demonstrated how a simple but complete NN application
can be ported on an extremely constrained RISC-V core and properly work, even
though without optimizations it would not be suitable for a practical use, since
the inference would be too slow. Moreover, it was seen how both the SW and
the RISC-V HW can be modified in order to heavily optimize the NN inference,
making it more suitable for a a real practical application and to meet the low-power
requirements of a batteryless microcontroller.

The collected data confirmed what above said and clearly showed the improve-
ments given by the optimizations on the constrained RISC-V core, with a 3.7 times
reduction on the inference time and a 4.84 reduction on the number of instructions

93



Conclusions and Future work

executed during inference, all with an acceptable drop of 10% in the ideal accuracy.
Even though no power measurements was performed, the reduction in the number
of CPU cycles and instructions executed definitely implies a strong reduction in
the power and energy needed for each inference.

The key that allowed to get the results was focusing all the final efforts only on
the most demanding NN layer, therefore the function profiling has been essential
to find out where most of the time was spent. On this aspect, it was also of
fundamental importance having carefully studied and tested the ARM CMSIS
implementation on the SparkFun Edge board, which represented the reference to
get inspiration from and to compare the results with.

A final lesson learned can be seen in the method applied during the project
and in the true effectiveness of the incremental approach, trying to move step by
step from something known and tested to something more experimental, always
avoiding the trial&error technique and testing every adjustment before going to
the next one.

7.2 Future work
Even though the main goals of the project have been met, there is still a lot to
do to make this particular application or any similar one work in the best way
possible. As a matter of fact, due to lack of time, not all the aspects have been
analyzed and optimized. In particular, as a natural continuation of the work done
in this project, three main areas can be studied and further optimized:

• First of all the optimization work done on the convolutional layer can be
improved by working on the HW of the core. As an example, the register file
of the core can be modified to allow three read accesses at the same time, so
that the real smaqa instruction from the RISC-V P extension can be used
and the four parallel MACs done with just one instruction will include the
accumulate operation with the previous result. Even less instructions will be
needed in this way.
Other instructions from the P extension can be analyzed to see if they could
be useful in this project, or in any similar application, in order to expand the
8-bit SIMD capabilities of the core.

• Since only one layer has been optimized here, some new HW units or maybe
new algorithms can be designed for the other layers, such as MaxPool, Fully-
connected and Softmax. In this case, the same procedure and methodology
can be easily applied for the convolutional layer, taking inspiration from the
CMSIS operator implementations. The advantages are expected to be much
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less influential if compared to the convolutional layer, since the time spent on
those layers is around 10% of the total inference time.

• Finally, a great improvement can be obtained on the number of CPU cycles
by optimizing the memory access and avoid misaligned access to the memory.
This issue can be solved by designing some optimized implementation of the
memcpy and memset C functions, just like it has been done in the ARM code.
In this way the CPI will probably decrease and the overall inference time and
power consumption will benefit from that.

• One more long term goal could be to expand the capabilities of the core by
adding SW and HW implementations targeted to quantized DSP, in order
to perform NN inference also in those applications that need a heavier input
processing, such as the keyword recognition.

7.3 Reflections
As already stated in chapters 1 and 2, the this project aims at exploiting all the
advantages that come from being ultra-low power and from performing NN edge
inference. This advantages concern not only merely the technical field, but expands
to social, ethical and economical aspects. As a matter of fact, being able to perform
NN inference on such a simple and constrained device opens the doors to practical
applications on low power microcontrollers that are batteryless and based on energy
harvesting, with all the economical and environmental benefits regarding the cost
of the microcontroller itself (now very simple and cheap), the waste of resources to
produce and replace batteries, the pollution coming from disposable batteries, the
maintenance costs needed for checking the battery status and eventually replacing
it. On the other hand, considering the fact of performing inference on the edge,
several ethical considerations can be made, since here cloud computing is not
needed and the large amount of eventually private and personal data needed for
the inference will only be stored locally and most importantly temporarily, without
sharing it with any other device. In this way privacy is guaranteed.

As a result, this thesis contributes to the UN SDGs numbers 9 (industry,
innovation and infrastructure), 7 (affordable and clean energy) and 11 (sustainable
cities and communities).

The final hope is that this thesis project will be just the start of a process that
will integrate together the most advanced and promising research fields in HW and
SW (RISC-V and ML), generating a truly embedded system that will be able to do
new, exciting things in a clean, smart and secure way.
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Appendix A

Magic Wand dataflow
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Magic Wand dataflow

Figure A.1: Magic wand, Table describing the dataflow.
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