
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Performance Evaluation of
Kafka Clients Using a Reactive

API

Supervisor
prof. Marco Torchiano

Candidate
Andrea Amato

Internship Tutors
dott. Alessandro Zanon

dott. Andrea Malan

Academic year 2022-2023

Summary

This thesis evaluates the performance of a core-banking application that
consumes messages from a Kafka topic, and after performing validation and
a transformation stores the results in another Kafka topic. Performances
are evaluated on two different versions of the application: traditional and
reactive. The focus is on the way the two applications interact with Kafka.

Both versions are developed using Spring: the traditional version uses
Spring MVC while the reactive one uses Spring WebFlux. Spring WebFlux
internally uses Project Reactor. Both versions consume and produce mes-
sages from/to Apache Kafka, however in the reactive version messages are
consumed and produced using functional APIs provided by Reactor Kafka.
Internal metrics of Kafka clients are collected through the JMX reporter.

The obtained results show that the reactive implementation is able to
achieve higher throughput and use fewer resources with respect to the tradi-
tional implementation.

The implication of this result is that a company that develops software
using a reactive approach is able to accommodate a higher number of requests
with equal resources poured into the system. Alternatively, an organization
could achieve the same throughput but use fewer resources.

2

Acknowledgements

I would like to express my deepest gratitude to my parents and sister for
their immense support during my academic journey.
This endeavor would not have been possible without the guidance and inspi-
ration of my internship tutors, Alessandro Zanon, and Andrea Malan.
Thanks should also go to Iriscube, the company in which this thesis project
has been carried out.
In Iriscube, I had the pleasure of working with exceptional people who made
me feel welcome and part of a family.

3

Contents

List of Tables 7

List of Figures 8

1 Introduction 13
1.1 Context . 13

1.1.1 Company Overview . 13
1.1.2 A Data-Ingestion Application 14
1.1.3 Problem Definition . 14

1.2 Purpose . 15
1.3 State of the Art . 15
1.4 Main Contributions . 16
1.5 Outline . 16

2 Background 17
2.1 Distributed Systems . 17

2.1.1 Middleware . 17
2.1.2 Scalability . 18
2.1.3 Communication . 19
2.1.4 Message-Oriented Middleware (MOM) 19
2.1.5 Message Brokers . 20
2.1.6 Architectural Styles . 20
2.1.7 Publish-subscribe Architectures 21

2.2 Reactive programming . 22
2.2.1 Reactive Streams . 23
2.2.2 Project Reactor . 26
2.2.3 Reactive Streams Life Cycle 28
2.2.4 Thread Scheduling in Project Reactor 29

2.3 Apache Kafka . 33

4

2.3.1 Publish-Subscribe Pattern 33
2.3.2 What is Apache Kafka? 33
2.3.3 Messages and Batches 33
2.3.4 Topics and Partitions 34
2.3.5 Kafka Clients: Producers and Consumers 34
2.3.6 Brokers and Clusters 34
2.3.7 Spring for Apache Kafka 36
2.3.8 Reactor Kafka . 37

2.4 Java Management Extensions (JMX) 40
2.4.1 The Instrumentation Level 40
2.4.2 The Agent Level . 41
2.4.3 The Distributed Level 41
2.4.4 Communicating with JMX agents using the RMI con-

nector . 42

3 Benchmark Design 45
3.1 Benchmark Design . 45

3.1.1 Data . 46
3.1.2 Processing Pipeline . 46

3.2 Kafka Clients . 46
3.2.1 Traditional Pipeline . 47
3.2.2 Concurrent Traditional Pipeline 48
3.2.3 Reactive Pipeline . 49

3.3 Thread Scheduling in the Reactive Pipeline 50
3.3.1 Using the publishOn operator 50
3.3.2 Using subscribeOn and publishOn operators 51
3.3.3 Using the parallel operator 52

3.4 Metrics . 52
3.4.1 Run-time . 53
3.4.2 Records Consumed Rate 53
3.4.3 Max Records Lag . 53
3.4.4 Record Send Rate . 54
3.4.5 Memory Utilization . 54
3.4.6 CPU Utilization . 54

3.5 Workloads . 55
3.5.1 Constant Rate Workload 55
3.5.2 Burst at Start-Up Workload 55

3.6 Infrastructure . 55

5

4 Results 57
4.1 Constant Rate Workload . 58

4.1.1 Run-time . 58
4.1.2 Consumer Metrics . 59
4.1.3 Producer Metrics . 62
4.1.4 JVM Metrics . 65

4.2 Burst At Start-Up Workload 69
4.2.1 Run-time . 69
4.2.2 Consumer Metrics . 69
4.2.3 Producer Metrics . 72
4.2.4 JVM Metrics . 75

5 Conclusion and Future Research Directions 79
5.1 Limitations . 79
5.2 Future Research Directions . 79
5.3 Conclusion . 80

Bibliography 81

6

List of Tables

4.1 Run-time – Constant Rate Workload 58
4.2 Consumer Performance – Constant Rate Workload . . . 62
4.3 Producer Performance – Constant Rate Workload 65
4.4 Process Performance – Constant Rate Workload 68
4.5 Run-time – Burst Workload 69
4.6 Consumer Performance – Burst Workload 72
4.7 Producer Performance – Burst Workload 74
4.8 Process Performance – Burst Workload 78

7

List of Figures

2.1 Middleware layer . 18
2.2 Message broker in a MOM system 20
2.3 Publish-subscribe architecture 21
2.4 Reactive Manifesto . 23
2.5 Hybrid push-pull model . 24
2.6 Backpressure control . 26
2.7 Data flow and demand signal propagation 27
2.8 Transformation of a Flux stream 27
2.9 Example of operators applied to a Flux 28
2.10 Internals of the publishOn() operator 30
2.11 Parallelization with the publishOn() operator 31
2.12 The subscribeOn() operator 32
2.13 Apache Kafka Architecture . 35
2.14 JMX architecture . 42
3.1 Interaction model of data pipeline and monitoring 45
4.1 Records consumed rate with constant rate workload — single-

threaded . 59
4.2 Records consumed rate with constant rate workload — multi-

threaded . 60
4.3 Distribution of records consumed rate with constant rate work-

load — single-threaded . 61
4.4 Distribution of records consumed rate with constant rate work-

load — multi-threaded . 61
4.5 Records lag max with constant rate workload — single-threaded 62
4.6 Record send rate with constant rate workload — single-threaded 63
4.7 Record send rate with constant rate workload — multi-threaded 63
4.8 Distribution of record send rate with constant rate workload

— single-threaded . 64
4.9 Distribution of record send rate with constant rate workload

— multi-threaded . 64

8

4.10 Process CPU load with constant rate workload — single-threaded 66
4.11 Process CPU load with constant rate workload — multi-threaded 66
4.12 Distribution of process CPU load with constant rate workload

— single-threaded . 67
4.13 Distribution of process CPU load with constant rate workload

— multi-threaded . 67
4.14 Heap memory usage with constant rate workload — single-

threaded . 68
4.15 Heap memory usage with constant rate workload — multi-

threaded . 68
4.16 Records consumed rate with burst workload — single-threaded 70
4.17 Records consumed rate with burst workload — multi-threaded 70
4.18 Distribution of records consumed rate with burst workload —

single-threaded . 71
4.19 Distribution of records consumed rate with burst workload —

multi-threaded . 71
4.20 Record send rate with burst workload — single-threaded . . . 72
4.21 Record send rate with burst workload — multi-threaded . . . 73
4.22 Distribution of record send rate with burst workload — single-

threaded . 73
4.23 Distribution of record send rate with burst workload — multi-

threaded . 74
4.24 Process CPU load with burst workload — single-threaded . . 75
4.25 Process CPU load with burst workload — multi-threaded . . . 76
4.26 Distribution of process CPU load with burst workload — single-

threaded . 76
4.27 Distribution of process CPU load with burst workload — multi-

threaded . 77
4.28 Heap memory usage with burst workload — single-threaded . 77
4.29 Heap memory usage with burst workload — multi-threaded . . 78

9

10

Acronyms

API Application Programming Interface

J2SE Java 2 Platform, Standard Edition

JMX Java Management Extensions

JSON JavaScript Object Notation

JVM Java Virtual Machine

MOM Message-Oriented Middleware

MVC Model-view-controller

POJO Plain Old Java Object

RMI Remote Method Invocation

RPC Remote Procedure Call

11

12

Chapter 1

Introduction

1.1 Context
The context of this thesis is the development of event-driven architectures for
core-banking applications. Core-banking applications process daily transac-
tions and post updates to accounts as well as other financial records. These
applications are the core of banking services the banks offer to mobile and
desktop users or headquarters/branch customers. Practical examples of these
services are bank transfers, accounting, and handling money via credit cards.

1.1.1 Company Overview
This thesis project has been carried out with Iriscube Reply. Iriscube Re-
ply is one of the companies belonging to the Reply S.p.A. group. Reply is
a company specializing in Consulting, System Integration, and Digital Ser-
vices, dedicated to the conception, design, and implementation of solutions
based on new communication channels and digital media. Reply supports
the leading industrial groups in defining and developing business models en-
abled by new technological and communication paradigms, such as Artificial
Intelligence, Big Data, Cloud Computing, Digital Communication, and the
Internet of Things, to optimize and integrate processes, applications, and
devices. Reply’s value proposition aims to promote customer success by in-
troducing innovation along the entire value chain, thanks to the knowledge
of specific solutions and the consolidated experience on the main core issues
of the various industrial sectors. Reply provides the following services:

• Strategic, communication, process, and technological consultancy.

13

Introduction

• System integration, making the most of the potential of technology by
combining business consultancy with innovative technological solutions
with high-added value

• Application Management consisting of management, monitoring, and
continuous evolution of application assets.

Iriscube Reply is focused on IT consultancy and the development of in-
novative web and mobile solutions in the world of the Finance Sector with
particular reference to multi/omnichannel. In the context of banking and
insurance, Iriscube Reply develops information portals, internet and mobile
banking, native and hybrid applications to support financial advisors, social
digital wallets, intelligent systems for contact centers, wealth management
platforms, digital bio-metric systems, machine learning, and more. Iriscube
Reply provides services to some of the leading and major Italian and Euro-
pean banks [1].

1.1.2 A Data-Ingestion Application
One of the services provided by Iriscube Reply is a data-ingestion application
for one most important banks in Italy. This application consumes a high
amount of requests coming from an Apache Kafka message broker. The
incoming messages represent inbound or outbound operations performed on
a bank account. For each received request, the data-ingestion application
performs validation and maps the incoming event to an output event in a
format compatible with the destination application i.e. the core-banking
platform.

1.1.3 Problem Definition
During my experience with Iriscube Reply, I was assigned the task of set-
ting up a load scenario to measure the performance of the data-ingestion
application. One of the most important performance metrics is throughput.
However, the data ingestion application is basically a Kafka client. Kafka
clients can be consumers or producers. The data ingestion application acts as
both consuming events from a Kafka topic and producing the corresponding
output event to another topic. In this event-based asynchronous interac-
tion, we should separate the throughput in terms of messages consumed per
second and messages produced per second. Since production depends on con-
sumption, the ingestion phase can become a bottleneck for the production
phase.

14

1.2 – Purpose

1.2 Purpose
This thesis work aims to evaluate and compare the performance of different
implementations of the same data-ingestion application. We will define two
base implementations: traditional and reactive. In turn, the reactive imple-
mentation is declined into other implementations which try to exploit the
thread scheduling model provided by Project Reactor. Therefore, another
purpose of this thesis project is to optimize the reactive implementation to
achieve higher throughput. Moreover, we will try to understand the trade-
offs and overhead introduced by each solution by analyzing the resource con-
sumption of the process on which the application is run.

1.3 State of the Art
In the literature, there is a lack of research on the reactive implementation
of Kafka clients.

Le Noac’h et al. studied how the ingestion phase can become a bottleneck
of the processing pipeline. The ingestion phase in Kafka relies on producers
and consumers. They highlighted how a variation of batch-size can bring
better performance while increasing the number of nodes in the Kafka cluster
causes a drop in the throughput due to Kafka internal synchronization [2].

Hesse et al. analyzed how the configuration of a data sender influences
the ingestion rate of Apache Kafka. They mainly tuned two parameters:
batch-size and acks. The batch-size is used to lower the number of requests
and increase the throughput at the expense of latency. The acks producer
property is used to select the level of acknowledgments of sent messages.
Surprisingly they discovered that when the producer does not wait for ac-
knowledgments of messages, the Kafka Broker ingests fewer messages [3].

Van Dongen and Van den Poel benchmarked the scalability of four pop-
ular stream processing frameworks under different types of workloads. The
scalability metrics taken under consideration were latency, throughput, and
CPU and memory utilization. The considered workloads scenarios were con-
stant rate, periodic burst, and burst at startup [4]. In a later work, they
extended the benchmark of scalability of the stream processing frameworks
by analyzing the influencing factors in the scalability. This work analyzed
how the latency, throughput, and resource bottlenecks are influenced by the
framework design, pipeline design, Kafka cluster layout, scaling direction,
resource allocation, and the characteristics of data [5].

15

Introduction

Vyas et al. evaluated the impact of polling interval and the number of
partitions on the performance of Kafka producer and consumer API. They
concluded that increasing the number of partitions improved the throughput.
In addition, reducing the poll interval can improve the performance of the
consumer. However, an overly small polling interval value can cause data
loss during ingestion [6].

1.4 Main Contributions
The first contribution of this thesis is the empirical observation of higher per-
formance attained by implementing a Kafka client using a reactive API. This
is achieved by defining a clear bench-marking plan and selecting meaning-
ful metrics to monitor performance. Another contribution is the exploration
of possible optimizations and trade-offs introduced by exploiting the thread
scheduling model provided by Project Reactor.

1.5 Outline
Chapter 2 aims to present the background upon which this thesis work is
based. We give an essential picture of distributed systems. Then we introduce
the concepts behind reactive systems. We proceed to present Apache Kafka,
which is the message broker used in the event-driven architecture under study.
Finally, since the application developed is written in Java, we briefly describe
the technology used to monitor and control Java applications.

Chapter 3 dives into the design adopted to benchmark the different flavors
of the data-ingestion application. We define the metrics, the different versions
of the pipeline, and the workloads used to evaluate performances.

Chapter 4 presents the results obtained during benchmarking. By analyz-
ing the resulting graphs, we try to evaluate how the different versions of the
pipeline scale under different workloads and what are the trade-offs of the
solutions.

Chapter 5 draws conclusions about the thesis work, highlighting limita-
tions and future research directions.

16

Chapter 2

Background

2.1 Distributed Systems

We can define a distributed system as "a collection of autonomous comput-
ing elements that appears to its users as a single coherent system" [7]. From
this definition, we can extract two key features of a distributed system. The
first one is that computing elements are autonomous i.e. they can act in-
dependently from each other. The second one is that users interact with a
distributed system as if it were a single system i.e. the distribution is trans-
parent to its users (people or processes). Being autonomous, the elements
need to collaborate to achieve a common goal. How this collaboration is
established is the core of distributed systems development. The collection of
nodes is typically organized as an overlay network in which nodes communi-
cate by exchanging messages. Often there is no global clock, and this implies
the need for synchronization between nodes.

2.1.1 Middleware

A middleware is a software layer placed on top of the operating system that
provides facilities to the distributed system. The services provided by a mid-
dleware include communication between applications, security, accounting,
and recovery from failures. These services are offered in a networked envi-
ronment.

17

Background

Local OS 2 Local OS 3

Application C

Computer 1 Computer 2 Computer 3

middleware

Application BApplication A

Local OS 1

Network

Same interface

Figure 2.1. Middleware layer

2.1.2 Scalability
One of the design goals that should be met when developing a distributed
system is scalability. Scalability has different dimensions, but the one we
will focus on is size scalability. Size scalability is defined as the ability of
the distributed system to accommodate an increasing number of requests
without a significant loss of performance. The major causes of bottlenecks
in size scalability are the computational capacity, the storage capacity, and
the network between the user and the distributed system. Two possible
approaches can be followed to improve scalability. The first one is known
as scaling up or vertical scaling and consists of improving the capacity of
the server or network. The second one is known as scaling out or horizontal
scalability and is achieved by deploying more machines.

Hiding communication latencies

When a node of a distributed system receives a request, this typically triggers
one or more sub-requests to other nodes. In order to produce a response, the
node must wait for the results of the sub-requests. This implies a waste
of resources since the element in charge of the response is idle as long as

18

2.1 – Distributed Systems

the sub-requests are completed and cannot accommodate other incoming
requests. A possible solution consists in creating a new thread that will
handle the request. This thread may block receiving the responses of sub-
requests, but as a new request arrive, the server can create another thread
to handle the new request. Alternatively, we can hide these communication
latencies by avoiding waiting for the response from the sub-requests. This,
in turn, implies an asynchronous approach. When receiving a request, we do
not wait for the response, but we register a handler to be invoked once the
response is received.

2.1.3 Communication
When studying a distributed system, one of the most important aspects is
how processes on different machines communicate with each other. We have
two main communication middleware: Remote Procedure Call (RPC) and
Message-Oriented Middleware (MOM).

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is ideal for client-server interaction and is
used by an application to send a request to another application as if it were
a local procedure call. RPC requires that the caller and callee are both up and
running during the communication and implies also a referential coupling.

Remote Method Invocation (RMI)

Java provides an RPC mechanism through Remote Method Invocation. RMI
operates on objects instead of functions. A Java client can invoke a method
of an object owned by another Java Virtual Machine.

2.1.4 Message-Oriented Middleware (MOM)
There are cases in which we cannot make any assumption about the execu-
tion state of the receiving application during communication. In addition,
the synchronous nature of RPC implies that the client remains blocked until
a response is received. To overcome these limitations, a different approach is
needed: Message-Oriented Middleware (MOM). Communication happens by
sending a message to a logical point. Messages are appended in queues: this
enables communication to be asynchronous. An application can manifest
its interest in a specific queue. The middleware takes care of delivering the

19

Background

messages to the interested subscribers. A MOM can be used to overcome the
drawbacks of the RPC mechanism since it does not require the communicat-
ing parties to be simultaneously active, and they do not need to know each
other.

2.1.5 Message Brokers
In MOM systems, the conversion of messages is handled by special network
nodes called message brokers. A message broker is basically another applica-
tion that acts as an application-level gateway converting incoming messages
so that they can be understood by the destination applications. An appli-
cation can publish a message on a certain topic. The message is then sent
to the message broker. Applications can manifest their interest in messages
published on a specific topic by subscribing to that topic. The message bro-
ker will deliver the messages published on a topic to the applications that
have subscribed to that topic.

Interface

Source
Application

Local OS

Interface

Destination
Application

Local OS

Message
Broker

Local OS

Queue

Figure 2.2. Message broker in a MOM system

2.1.6 Architectural Styles
To manage the complexity of a distributed system is necessary to organize the
system according to an architectural style. An architectural style is defined
based on how components interact with each other. A component is a module
that exposes an interface. The component can be replaced while the system
is operating as long as its interface remains stable. In a distributed system,

20

2.1 – Distributed Systems

some components may be temporarily down. Another important concept
in an architectural style is that of the connector. A connect provides ser-
vices to allow communication between components through procedure calls
or message passing. By combining components and connectors according to
different configurations, we can get different architectural styles: layered ar-
chitectures, object-based architectures, resource-centered architectures, and
event-based architectures. In real-world scenarios, these architectures are of-
ten combined. In this thesis, we focus on event-based architectures — also
known as publish-subscribe architectures — which use the MOM for com-
munication.

2.1.7 Publish-subscribe Architectures
A publish-subscribe architecture is characterized by loose dependencies be-
tween processes. In such an architecture, processing and coordination are
strongly separated. Different types of coordination models are possible de-
pending on the referential and temporal coupling of processes. Referential
coupling happens when a process has to explicitly reference the other pro-
cess in order to communicate. Temporal coupling means that processes have
to be up and running during communication. Using Apache Kafka as a
message broker, a publish-subscribe architecture can achieve referentially
decoupled and temporally decoupled coordination. In this way, processes
do not need to know each other, and communication can take place even if
processes are not executing at the same time. In order to achieve temporal
decoupling, Apache Kafka provides a retention mechanism for published mes-
sages. The interface of components in an event-based architecture is message-
centric. A message-centric interface is fixed and has a single-operation e.g.
send(message, topic). Its design is about messages and topics.

Component

Component

Component

Message Broker

Publish

Subscribe Notification Delivery

Figure 2.3. Publish-subscribe architecture

21

Background

2.2 Reactive programming

Today’s distributed system should be able to react to changes in demand and
in the availability of both internal and external components of the system. In
order to achieve this goal, the system should evolve to be reactive. According
to the Reactive Manifesto, reactive systems are: responsive, elastic, resilient,
and message-driven [8].

Elastic

Elasticity is defined as the ability to stay responsive in spite of a varying
workload. As more users use the system, its throughput should increase
to keep up with the demand, while as the need goes down, the throughput
should automatically shrink. One way of achieving elasticity is by employing
horizontal or vertical scalability. However, scalability is limited by synchro-
nization and resource bottlenecks. Moreover, the additional resources or
instances poured into the system should be able to adjust to the demand: if
the demand is low, the consumption of the resource should decrease in order
to reduce business expenses. In the Java world, thread pools are used to
increase parallel processing. Under high loads, this technique is inefficient
since when using a request-response model, threads spend most of the time
blocked, waiting, and wasting CPU resources.

Responsive

Elasticity is fundamental for the system to be responsive. Responsiveness is
defined as the ability of the system to respond timely (i.e. with an acceptable
latency) to user requests.

Message Driven

To achieve better resource utilization, message-driven communication should
be adopted. The message-driven communication model enables communica-
tion to be asynchronous and non-blocking. Non-blocking means that a thread
will get access to a resource only if it is immediately available. Otherwise,
the thread, instead of waiting, will do other useful work. When the resource
returns to be available, the thread will be notified.

22

2.2 – Reactive programming

Resilient

Employing message-driven communication will also enable the system to be
resilient. A resilient system stays responsive even in case of failure.

Elastic

Responsive

Resilient

Message Driven

VALUE

MEANS

FORM

Figure 2.4. Reactive Manifesto

2.2.1 Reactive Streams
Reactive Streams represent the specification for reactive programming pat-
terns. Reactive Streams were introduced to solve the problems of inconsis-
tencies between APIs and flow control [9].

Regarding the API’s inconsistency problem, several choices are available
when it comes to reactive libraries. These libraries, such as RxJava, can
provide asynchronous, non-blocking communication but have different APIs.
In order to make these independent libraries compatible, we need to provide a
custom adaptation that may contain defects and require extra maintenance.

To understand the flow control problem, we need to distinguish between
pull and push models. In the pull model, the consumer requests data from
the publisher one at a time. The pull model is inefficient when working with
the network boundaries since large communication latencies sum up, and
the consumer remains idle until the response is received. The batching of
the requests can improve performance in a limited way. In the push model,
we improve performance by allowing the publisher to push data as they are
available. In this way, the idle time due to the communication latency is
limited to the first request. However, the push model introduces the prob-
lem of flow control since we should avoid the publisher from overwhelming
the subscriber. According to the Reactive Manifesto [8], a reactive system

23

Background

should be elastic; this means that the consumer needs a mechanism to prop-
erly respond to the load. The needed mechanism is known as backpressure
control. The flow control problem is solved with the introduction of the four
interfaces defined by the Reactive Streams specification [10]. These inter-
faces allow backpressure control by adopting a hybrid push-pull model. In
the following, we give a description of the Reactive Stream interfaces.

Sink
Network

Processing

Connected

Ti
m
e

Source

Completion

subsc
ripti

on

request(10)

getStreamOfItems

request(10)

Figure 2.5. Hybrid push-pull model

24

2.2 – Reactive programming

Publisher

The Publisher interface represents the entry point for a connection between
the publisher and the subscriber. The publisher interface provides one single
method used to register a Subscriber.

public interface Publisher <T> {
public void subscribe(Subscriber <? super T> s);

}

Subscriber

The Subscriber interface introduces the onSubscribe method to notify the
Subscriber about a successful subscription. The onSubscribe method re-
ceives a parameter of type Subscription that represents a contract between
publisher and subscriber.

public interface Subscriber <T> {
public void onSubscribe(Subscription s);
public void onNext(T t);
public void onError(Throwable t);
public void onComplete ();

}

Subscription

The Subscription interface provides methods to control the production of
elements. The cancel() method is used to request the publisher to stop
sending data. The request method is used by the Subscriber to signal the
amount of data that should be pushed by the Publisher. In this way, the
Subscriber has control over the number of elements it will receive. Unlike the
pure push model, the request method allows a hybrid push-pull mechanism
that, in turn, enables control over the backpressure.

public interface Subscription {
public void request(long n);
public void cancel ();

}

Processor

The Processor is a combination of Publisher and Subscriber. The Processor
allows the addition of intermediate processing stages between the Publisher

25

Background

and the Subscriber, which respectively represent the start and end points
of the pipeline.

public interface Processor <T, R> extends Subscriber <T>,
Publisher <R> {

}

subscriber

1 2 43 5

1 2 43 5

o
n
S
u
b
s
c
r
i
b
e
(
)

r
e
q
u
e
s
t
(
2
)

r
e
q
u
e
s
t
(
2
)

r
e
q
u
e
s
t
(
1
)

Figure 2.6. Backpressure control

2.2.2 Project Reactor
The Reactive Streams specification only defines APIs and rules for asyn-
chronous stream processing with non-blocking back pressure. Project Reac-
tor has become the most state-of-the-art implementation of the Reactive
Streams specification. The Reactor library allows building asynchronous
pipelines devoid of callback hell and deeply nested code. In fact, the Re-
actor library improves code readability and enables the composability of the
workflows. Complex workflows can be built by chaining the operators pro-
vided by the Reactor API. These operators are the biggest added value over
the basic Reactive Streams specification. Since Reactor implements the Re-
active Streams specification, it also provides all common mechanisms for
backpressure propagation: push only, pull only, and push-pull [9].

Project Reactor provides two implementations of the Publisher<T> inter-
face: Flux<T> and Mono<T>. Flux is a reactive stream that can produce zero,
one, or many elements. Potentially an infinite amount of them. While Mono
represents a reactive stream that can produce at most one element i.e. zero
or one. The purpose of Mono is to enable more efficient use of resources in
the case of an application API that returns at most one element.

26

2.2 – Reactive programming

Subscriber

Demand

Data flow

Publisher

Operator

Operator

Figure 2.7. Data flow and demand signal propagation

The actual data flow from the publisher to the subscriber is triggered
only when the subscriber creates a subscription. Flux and Mono provide
overloads of the Publisher<T> subscribe method. Such overrides return an
instance of the Disposable interface. A reactive stream may be finished
by the producer emitting onError or onComplete signals, by the subscriber
through the cancel() method of the Subscription instance, or by using the
dispose() method of the Disposable instance.

Operator

1 2 43 5

1 2 3

Figure 2.8. Transformation of a Flux stream

Operators

Project Reactor provides operators to manipulate and transform reactive
streams [11]. For example, if we want to transform an existing reactive
sequence, we may use the map operator. The map(Function<? super T,?

27

Background

extends V> mapper) method processes elements one by one. After the trans-
formation, the whole sequence changes its type from Flux<T> to Flux<V>.

If we need to filter a reactive sequence, one of the most useful operators is
the filter operator, which returns a Flux whose elements satisfy the given
predicate.

Other operators provide a way of peeking elements into a sequence without
modifying the final sequence. In order to add additional behavior (side-effect)
when the Flux emits an element, we use the doOnNext(Consumer<? super
T> onNext) method.

map()

1 43

filter()

1 3

2 5

4

Figure 2.9. Example of operators applied to a Flux

2.2.3 Reactive Streams Life Cycle
In Project Reactor, the life cycle of reactive types is composed of three steps:
assembly-time, subscription-time, and run-time.

Assembly-time

Reactor provides a fluent API to process elements and build complex flow.
The process of building complex flow is named assembling. The assembling
is characterized by immutability i.e. each operator of the flow produces
a new object. Assembly-time composes Fluxes into each other, chaining

28

2.2 – Reactive programming

the Publishers; each Publisher wraps the previous one. Under the hood,
Reactor tries to improve the overall performance of the stream by possibly
replacing one operator with another according to the stream type.

Subscription-time

The subscription-time phase is triggered once we subscribe to a Publisher.
The subscription process starts by subscribing to the top wrapper of the chain
of Publishers. This subscription triggers the execution of the subscribe
method for each inner Publisher. After subscription-time, we will get a
sequence of Subscribers wrapped inside each other. Optimizations are also
possible, as in the case of assembly-time.

Run-time

During run-time Publisher and Subscriber exchange signals. The first two
are the onSubscribe signal and the request signal. When the onSubscribe
method is called by the top Publisher wrapper, a chain of Subscriptions is
passed to the Subscriber. In order to receive elements, the Subscriber calls
the request method of the received Subscription. One of the optimizations
that are applied during run-time, is the reduction of the number of signals
exchanged.

2.2.4 Thread Scheduling in Project Reactor
In this section, we describe the main abstractions for multi-threading execu-
tion provided by Project Reactor.

The publishOn operator

The Flux<T> publishOn(Scheduler scheduler) operator moves part of the
run-time phase to a specified worker from the provided Scheduler instance.
The publishOn operator introduces an asynchronous boundary within the
flow of operators. This means that the flow can be split into parts that will
be processed independently from each other. The split parts are linked by a
queue from which the dedicated worker can consume and process messages
one by one.

Note that the elements of a Reactive Stream are not processed concur-
rently i.e. events in the queue are processed in strict order by only one
worker. Nonetheless, with the publishOn operator, we can potentially speed

29

Background

Thread
Main

Queue

Thread A

Flux

.operator(...)

.operator(...)

.subscribe(...)

.publishOn

Figure 2.10. Internals of the publishOn() operator

up the processing by using parallel processing. Parallel processing is achieved
by allowing the left-hand side of the asynchronous boundary to work inde-
pendently from the right-hand side. So the left-hand side does not have to
wait for the completion of the right-hand side.

30

2.2 – Reactive programming

3

1

2

2

2

2

2

1

1

1

1

3

3

3

3

Tim
e

Figure 2.11. Parallelization with the publishOn() operator

The subscribeOn operator

The Flux<T> subscribeOn(Scheduler scheduler) provides us a way to
specify the worker on which the subscription chain will take place. In other
words, it changes the worker on which the subscribe method is executed
and starts generating data. While the publishOn operator affects only the
downstream execution, the subscribeOn operator specifies the behavior of
the upstream execution.

The parallel operator

The parallel() operator is part of the Flux API. The Flux on which the
parallel operator is invoked is transformed into a ParallelFlux. ParallelFlux
represents a group of Fluxes over which the elements of the source Flux are
partitioned. The ParallelFlux<T> runOn(Scheduler scheduler) operator
allows applying publishOn to the internal Fluxes in order to distribute the
processing of elements between different workers. Each element of the Flux
is processed one by one, while Fluxes belonging to the ParallelFlux are
processed concurrently.

31

Background

.filter(...)

.publishOn(...)

.map(...)

Flux.just(...)

.subscribeOn(..)

Thread A

Thread A

Thread A

Thread B

Thread A

Thread Main

Thread Main

Thread Main

Figure 2.12. The subscribeOn() operator

Scheduler

In Reactor, the Scheduler interface represents a worker or a poll of workers.
Conceptually, a Worker is a thread, but it is not necessarily backed by a
Thread. The different flavors of Scheduler are provided by the Schedulers
factory methods [12]. For example, Schedulers.parallel() can be used
for short-lived CPU-intensive tasks. Schedulers.boundedElastic() is more
suitable for long-lived tasks i.e. blocking tasks.

32

2.3 – Apache Kafka

2.3 Apache Kafka
Every enterprise works with data. Data is constantly received, analyzed,
and manipulated in order to create other data. Data need to be moved from
where it is created to destinations where it can be analyzed. This pipeline
is a crucial process in a data-driven enterprise, and its efficiency has become
important as the data itself since it enables an organization to be responsive
to users.

2.3.1 Publish-Subscribe Pattern
Apache Kafka is based on a publish-subscribe pattern. In the publish-
subscribe pattern, the sender publishes a message not directed to any specific
receiver. However, the publisher categorizes the message according to a cer-
tain class. The receiver can subscribe to a specific class of messages, and
a message broker will take care of delivering the messages to all interested
subscribers.

2.3.2 What is Apache Kafka?
Apache Kafka was originally developed by people at LinkedIn to address
data pipeline issues. Kafka has been defined as an "event streaming plat-
form" [13]. Messages sent to Kafka are retained in a database commit log so
past messages can be replayed by subscribers. Data can be also distributed
throughout the system in order to support scalability and protection against
failures.

2.3.3 Messages and Batches
A message is a unit of data in Kafka. A message has not any specific format
or meaning to Kafka and consists of an array of bytes. A message can have
a key, represented also as a byte array. The key is used to write messages to
partitions in a controlled manner: messages with the same key will end up
in the same partition.

To achieve higher throughput, messages are collected into batches. The
messages composing a batch are published into the same topic and partition.
When it comes to batching messages, we have a trade-off between latency
and throughput: by increasing the batch size, we can process more messages
per unit of time, but it takes longer for a single message to be transmitted.

33

Background

2.3.4 Topics and Partitions
Kafka messages are organized into topics. A topic can comprise several
logs called partitions where messages are appended. The message ordering is
guaranteed only within a single partition and not across partitions. Partitions
can be hosted on different servers so that the topic can scale horizontally.
Moreover, partitions can be replicated to provide redundancy.

2.3.5 Kafka Clients: Producers and Consumers
There are two types of Kafka clients: producers and consumers. Producers
publish messages addressing a specific topic. If a message has no key, the
producer will evenly distribute messages into the partitions of a topic.

Consumers subscribe to one or more topics and consume messages in the
same order they were produced in each partition. The consumer keeps track
of the read messages by checking the offset of each message. In fact, Kafka
adds to each produced message an offset represented by an increasing integer
value. The offset is unique within a partition, and later messages will have
a greater offset. By saving the next possible offset for each partition, a
consumer can stop and restart without losing its position in the log.

Consumers are organized in a consumer group. A consumer group is com-
posed of one or more consumers that received data from the same topic. The
group guarantees that each partition is consumed only by one member. The
association between a consumer with a partition is known as the ownership
of the partition. In case of a consumer failure, the corresponding partition(s)
will be reassigned to the remaining members.

2.3.6 Brokers and Clusters
A broker is a single Kafka server. After receiving messages from producers,
the broker assigns an offset to them and stores them on disk. The broker
is responsible for delivering the messages to consumers that fetch messages
from partitions.

Kafka brokers can be organized into a cluster. One of the brokers will be
elected controller of the cluster. The controller serves administrative func-
tions like monitoring brokers’ failure and assigning partitions to brokers. A
partition has a single owner in the cluster. The owner is called the leader
of the partition. To provide redundancy, a partition can be replicated; in
this case, the replicated partitions are assigned to other brokers which be-
come followers of the partition. In order to publish a message, a publisher

34

2.3 – Apache Kafka

must connect to the leader of the partition, while a consumer can fetch even
from the followers. One important aspect of Apache Kafka is that messages
are retained for some time before being deleted. This enables a temporal
decoupling between producers and consumers. The retention policy can be
configured with custom rules according to the application’s needs. If a con-
sumer fails or must be stopped for maintenance, no data are lost [14].

Producer 1

Producer 2

Producer n

Consumer 1

Consumer 2

Consumer n

Topic A
Partition 1

Topic A
Partition 0

Broker 1

Topic A
Partition 1

Topic A
Partition 0

Broker 2

Topic A
Partition n

Topic A
Partition 0

Broker n

. . .

. . .

. . .

push message pull message

Figure 2.13. Apache Kafka Architecture

35

Background

2.3.7 Spring for Apache Kafka
Spring for Apache Kafka [15] is a project that utilizes Spring core concepts
for the development of Kafka-based applications. It is possible to create and
configure a topic using the TopicBuilder class. We can utilize such a class
to create a NewTopic Bean:

@Bean
public NewTopic topic() {

return TopicBuilder.name("my-topic -name")
.partitions (8)
.replicas (2)
.build();

}

KafkaTemplate class wraps a producer and provides several methods to
send messages to topics. Example of a method to send messages:

public ListenableFuture <SendResult <K, V>> send(String topic ,
@Nullable V data)

A producer factory should be configured and provided to the template’s
constructor:

@Bean
public ProducerFactory <String , outDTO > producerFactory () {

return new DefaultKafkaProducerFactory <>(producerConfigs ());
}

@Bean
public Map <String , Object > producerConfigs () {

Map <String , Object > props = new HashMap <>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG , "

localhost :9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG ,

StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG ,

JsonSerializer.class);

return props;
}

@Bean
public KafkaTemplate <String , outDTO > kafkaTemplate () {

return new KafkaTemplate <>(producerFactory ());
}

36

2.3 – Apache Kafka

The send method of KafkaTemplate returns a ListenableFuture. This
means that the sending operation is asynchronous (non-blocking) and we can
attach success/error callbacks to the ListenableFuture:

public void sendToKafka(OutDTO data) {
kafkaProducerTemplate.send(outTopic , data)
.addCallback(
// success callback ,
// error callback
);

}

A bean method can be annotated as @KafkaListener in order to receive
messages. By default, it will receive messages from topics on a single thread.

public class Listener {

@KafkaListener(id = "my-consumer -id", topics = "my-topic")
public void listen(InDTO data) {

...
}

}

Example of consumer configuration:
@Bean
public ConsumerFactory <String , InDTO > consumerFactory () {

return new DefaultKafkaConsumerFactory <>(consumerConfigs ());
}

@Bean
public Map <String , Object > consumerConfigs () {

Map <String , Object > props = new HashMap <>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG , "

localhost :9092");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG ,

StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG ,

JsonDeserializer.class);

return props;
}

2.3.8 Reactor Kafka
Reactor Kafka provides a reactive API for consuming and producing mes-
sages from/to Kafka using a functional API. Reactor Kafka is based on

37

Background

Project Reactor and the Kafka Producer/Consumer API.

"The value proposition for Reactor Kafka is the efficient utiliza-
tion of resources in applications with multiple external interactions
where Kafka is one of the external systems. End-to-end reactive
pipelines benefit from non-blocking back-pressure and efficient use
of threads, enabling a large number of concurrent requests to be
processed efficiently. The optimizations provided by Project Reac-
tor enable the development of reactive applications with very low
overheads and predictable capacity planning to deliver low-latency,
high-throughput pipelines." [16]

Reactor Kafka exposes two main interfaces for producing and consuming
messages: KafkaSender and KafkaReceiver.

Reactive Kafka Sender

KafkaSender is used to send messages. KafkaSender is thread-safe, so it is
possible to start multiple senders improving the throughput. Each KafkaSender
is associated with one KafkaProducer. In order to configure the KafkaSender,
an instance of SenderOptions is passed to its builder.

SenderOptions <String , OutDTO > senderOptions = SenderOptions.
create(producerProps);

KafkaSender <String , OutDTO > sender = KafkaSender.create(
senderOptions);

After creating a KafkaSender instance, we can create a flux of messages to
be sent to Kafka. These messages are represented as SenderRecords, which
are Kafka ProducerRecords with extra metadata for matching send results
to records. A ProducerRecord includes a key/value pair and the name of
the Kafka topic where the message will be sent. When the send operation
completes or fails, it generates a SendResult for the record. To send the
outbound Flux to Kafka, we use the subscribe() method to request the
upstream to send the records to Kafka.

sender.send(outboundFlux)
.doOnError(e-> logger.error("Send failed", e))
.doOnNext(r -> logger.info("Message #%d send response: %s\n",
r.correlationMetadata (), r.recordMetadata ()))

.subscribe ();

38

2.3 – Apache Kafka

Reactive Kafka Receiver

Messages stored in Kafka topics are consumed using the reactive receiver
KafkaReceiver. A KafkaReceiver instance is associated with an instance
of KafkaConsumer. Since the underlying KafkaConsumer cannot be accessed
simultaneously by multiple threads, KafkaReceiver is not thread-safe. An
instance of ReceiverOptions is used to create a receiver.

ReceiverOptions <String , InDTO > receiverOptions =
ReceiverOptions.<String , InDTO >create(consumerProps)
.subscription(Collections.singleton(topic));

After configuring the necessary receiver options, a new KafkaReceiver in-
stance can be generated using those options to consume inbound Flux of
messages. When the inbound Flux has been subscribed to, an instance of
the KafkaConsumer will be created.

Flux <ReceiverRecord <String , InDTO >> inboundFlux =
KafkaReceiver.create(receiverOptions)
.receive ();

The Flux delivers each incoming message as a ReceiverRecord. A ReceiverRecord
is composed of the ConsumerRecord obtained from KafkaConsumer and a com-
mittable ReceiverOffset. Once the message has been processed, the offset
must be acknowledged since unacknowledged offsets will not be committed.

inboundFlux.subscribe(r -> {
logger.info("Received message: %s\n", r);
r.receiverOffset ().acknowledge ();

});

39

Background

2.4 Java Management Extensions (JMX)
The complexity brought by distributed systems reflects in the management
of these. We have to choose the most suitable management solution, what
standards our solution should conform and the amount of effort required to
enable the management of the application [17]. Java Management Extensions
(JMX) was designed to address these issues in the context of applications
written for the Java platform. Since version 5.0 JMX has been part of J2SE
and a trademark of Oracle Corporation. To manage a system, we need
to monitor and control its resources. The JMX architecture allows us to
make the resources of a system manageable and, as consequence, to make
the system manageable. The JMX architecture is composed of three levels:
instrumentation level, agent level, and distributed level.

2.4.1 The Instrumentation Level
The instrumentation level is the closest to the application. This level in-
struments the resources to become manageable according to four different
strategies: standard, dynamic, model, and open. A resource to be managed
by JMX must provide a management interface. The management interface
comprehends five metadata:

• Attributes

• Constructors

• Operations

• Parameters

• Notifications

The JMX agent will interact with a resource through this interface.

MBean

A resource instrumented to be manageable through JMX is called MBean
(the "M" stands for manageable). To be managed, a resource must be com-
pliant with four requirements:

• the resource state must be described through getters and setters

40

2.4 – Java Management Extensions (JMX)

• the resource must be instrumented by one of the possible JMX MBean
types (i.e. standard, dynamic, model, or open). This will make a re-
source an MBean

• the MBean must provide a public constructor

• the MBean must not be abstract

For this thesis, the details of the JMX MBean types along with the JMX no-
tification are not described, and we refer the reader to the existing literature.

2.4.2 The Agent Level
The Agent Level comprises the MBean server and the JMX agent services
(the M-Let service, monitoring services, the timer service, and the relation
service).

The MBean server

The MBean server is the registry for MBeans. This registry is accessed by
the JMX agent through the MBeanServer interface. To register an MBean
in the registry, the MBean must be associated with an object name. The
object name uniquely identifies the MBean within the registry and is im-
plemented by the ObjectName JMX class. The object name assigned to
the MBean is used for the communication between the JMX agent and the
MBean. The MBean server receives requests through its implementation
of the MBeanServer interface. If the agent wants to retrieve values of an
MBean’s attributes, it passes the corresponding object name to the appro-
priate method of the MBeanServer interface. The object name is then used
by the MBean server as a lookup into the registry, and the corresponding
values are returned to the agent.

2.4.3 The Distributed Level
The distributed level is the outmost level in the JMX architecture. The
JMX agents are made available to the external environment through this
level. There are two ways of enabling distributed interaction:

• using adapters that permit access to MBeans through various protocols,
such as HTTP

41

Background

• using JMX agents connectors which expose the agent API to distributed
technologies like Java RMI

To access the MBean server, we can use protocol adapters and connectors.
Connectors are more suitable for the development of a management applica-
tion. Connectors provide a client from which to make an RPC to the MBean
server of the JMX agent.

Web
browser

Protocol adapters

Distributed
services

Agent

Instrumentation

Connectors

Agent services

MBeanServer

MBean type

Application resources

Other
JMX-compliant
management
applications

Proprietary
management
applications

JMX manager

Figure 2.14. JMX architecture

The MBeanServer interface

The MBean server provides methods for creating, registering, manipulating,
and finding MBeans through its MBeanServer interface. In this thesis, we
focus on methods used to get values of attributes of an MBean. The method
Object getAttribute(ObjectName name, String attribute) returns the
value of the attribute of the MBean represented by the object name.

2.4.4 Communicating with JMX agents using the RMI
connector

A connector includes two components: one residing in the JMX agents, and
the other is made available to client-side applications. The monitoring ap-
plication communicates with the JMX agent using the client-side component

42

2.4 – Java Management Extensions (JMX)

to contact the server-side component. The RMI connector is an MBean that
provides an RMI client. Through the RMI client is possible to connect to the
RMI server and invoke the methods declared in the MBeanServer interface.

43

44

Chapter 3

Benchmark Design

3.1 Benchmark Design

The system under test is a core-banking application that performs data in-
gestion. The data-ingestion application consumes events from a Kafka topic,
maps the input event into an output event, and publishes the result of the
mapping into another topic for consumption by an external bank platform.
In order to simulate the source of the input events, an event generator ap-
plication has been created.

Bank platformData ingestion
application

Event generator

JMX collector

Apache Kafka

output topicinput topic

Figure 3.1. Interaction model of data pipeline and monitoring

45

Benchmark Design

3.1.1 Data
The data used in the benchmark comes from the core-banking domain. The
input event is called a regulation request i.e. a transaction representing an
inbound or outbound operation performed on a bank account. The event
generator publishes events that follow the real structure of a regulation re-
quest. For the sake of simplicity, the published regulation requests are all
valid. This means that the result of the validation performed by the data-
ingestion application will be always successful. The rate of published data
can be set in the parameter of the event generator. After validation, the
regulation request is mapped into an output event that represents the formal
request to the bank platform.

3.1.2 Processing Pipeline
In the processing pipeline, each input event is mapped to an output event.
The processing pipeline of the system under test is composed of the following
operations:

1. Ingest: messages are consumed from a Kafka input topic.

2. Parse: the JSON corresponding to the message is parsed into a POJO.

3. Validate: the POJO is validated against the business rules.

4. Mapping: the validated POJO is mapped into an output event.

5. Publishing: the output event is published onto the output topic.

In the actual implementation, the output event is built by querying external
services. In our implementations of the pipeline, we mock the response of
these services.

3.2 Kafka Clients
The data-ingestion application is basically a Kafka client. Kafka clients can
consume messages from Kafka topics or can publish messages addressing a
Kafka topic. The data-ingestion application performs both operations. In
fact, after the consumption of a regulation request event, the latter is vali-
dated and mapped into an output event to be published into another Kafka
topic. Kafka consumer and producer configuration is kept as default for both

46

3.2 – Kafka Clients

traditional and reactive implementations. Exceptions are the message dese-
rializers and serializers that are JSON for both versions. Moreover, the acks
setting of the producers is set to "all". This provides the strongest available
guarantee for record acknowledgment. This means that the messages sent by
the producer will not be lost.

3.2.1 Traditional Pipeline
The traditional version of the data-ingestion application is a Kafka client
implemented using the Spring for Apache Kafka API [15]. The annotation
@KafkaListener provides a mechanism for converting the incoming message,
that is in a JSON format, into the POJO whose type is specified in the listener
parameter. The input parameter of the listener represents an input event re-
ceived from the Kafka topic specified in the parameters of the annotation.
If the regulation request event received does not contain any validation er-
rors, the message is mapped into a CreatePostingInstructionBatchRequest
representing the output event. The bean kafkaProducerTemplate of type
KafkaTemplate<String, CreatePostingInstructionBatchRequest> is used
to send the output message to a topic from which the bank platform is listen-
ing. We attach success and failure callbacks to the send operation in order
to log its result.

1 @KafkaListener(id = "default", topics = "${CONSUMER_TOPIC}")
2 private void consumeRegulationRequestEvent(

RegulationRequestEvent regulationRequestEvent) {
3 logger.info("[REGULATION -REQUEST] Event received: " +

regulationRequestEvent);
4 List <String > validationErrors = validateRegulationRequest(

regulationRequestEvent);
5
6 if (CollectionUtils.isEmpty(validationErrors)) {
7 PerforabilityResponse perforabilityResponse =

mockPerforabilityResponse ();
8 CreatePostingInstructionBatchRequest request =

createPostingInstructionBatchRequest(regulationRequestEvent ,
perforabilityResponse);

9
10 kafkaProducerTemplate.send(outTopic , request)
11 .addCallback(
12 result -> logger.info("[REGULATION -REQUEST] Posting

request :\n{}", new Gson().toJson(request)),
13 (e) -> logger.error("something bad happened while

consuming : {}", e.getMessage ())

47

Benchmark Design

14);
15 }
16 }

3.2.2 Concurrent Traditional Pipeline
Spring for Apache Kafka provides two implementations of MessageListenerContainer:

• KafkaMessageListenerContainer

• ConcurrentMessageListenerContainer

In the previous pipeline, we used the KafkaMessageListenerContainer, which
is the default. The KafkaMessageListenerContainer receives all messages
on a single thread.
Now we will introduce the ConcurrentMessageListenerContainer, which
enables multi-threaded consumption by delegating one or more
KafkaMessageListenerContainer.

1 @Bean
2 KafkaListenerContainerFactory <ConcurrentMessageListenerContainer

<String , RegulationRequestEvent >>
3 kafkaListenerContainerFactory () {
4 ConcurrentKafkaListenerContainerFactory <String ,

RegulationRequestEvent > factory =
5 new ConcurrentKafkaListenerContainerFactory <>();
6 factory.setConsumerFactory(consumerFactory ());
7 factory.setConcurrency (8);
8 return factory;
9 }

10
11 @Bean
12 public ConsumerFactory <String , RegulationRequestEvent >

consumerFactory () {
13 return new DefaultKafkaConsumerFactory <>(consumerConfigs (),
14 new StringDeserializer (),
15 new JsonDeserializer <>(RegulationRequestEvent.class , false));
16 }
17
18 @Bean
19 public NewTopic topicIn1 () {
20 return TopicBuilder.name("classic_in_topic")
21 .partitions (8)
22 .build();
23 }

48

3.2 – Kafka Clients

We provide an instance of ConcurrentMessageListenerContainer using a
ConcurrentKafkaListenerContainerFactory. We set the concurrency level
i.e. the number of consumers in the consumer group, to 8. The choice of
this number is because the reactive pipeline using the parallel() operator
(which we introduce in section 3.3.3), uses a pool of workers sized to the
number of CPU cores (in our case, 8). We also define eight partitions during
the topic creation so that partitions are evenly assigned to the consumer
group members.

3.2.3 Reactive Pipeline
Since the data-ingestion application consumes messages to be transformed
and sent to Kafka, we build the reactive pipeline according to a source and
sink model. The source is represented by the sender.send() operation,
the sink is implemented by the receiver.receive() operation that is given
in input to the sender. The receiver is of type KafkaReceiver<String,
RegulationRequestEvent> while the sender is a KafkaSender<String,
CreatePostingInstructionBatchRequest>. The receive() method starts
a Kafka consumer that consumes records from a Kafka topic. Consumed
records are returned in a Flux<ReceiverRecord<K, V>. Then we apply the
validation in the filter() operator. Consumed records are transformed into
the corresponding CreatePostingInstructionBatchRequest and mapped into
a SenderRecord required by the send() operation. The actual data flow from
Publisher to Subscriber is triggered only once the subscribe() method is
invoked.

1 private Flux <SenderResult <ReceiverOffset >> pipeline () {
2
3 return sender
4 .send(receiver
5 .receive ()
6 .doOnNext(m -> logger.info("[REGULATION -REQUEST] Event

received: " + m.value()))
7 .filter(m -> isValidRequest(m.value()))
8 .map(m -> SenderRecord.create(transform(m.value()), m.

receiverOffset ())))
9 .doOnNext(m -> m.correlationMetadata ().acknowledge ());

10 }
11
12 public ProducerRecord <String ,

CreatePostingInstructionBatchRequest > transform(
RegulationRequestEvent r) {

49

Benchmark Design

13 PerforabilityResponse perforabilityResponse =
mockPerforabilityResponse ();

14 CreatePostingInstructionBatchRequest c =
createPostingInstructionBatchRequest(r, perforabilityResponse
);

15 return new ProducerRecord <>(outTopic , c.getId().toString (), c)
;

16 }
17
18 @Override
19 public void run(String ... args) {
20 pipeline ().subscribe ();
21 }

3.3 Thread Scheduling in the Reactive Pipeline
Starting from the base implementation of the reactive pipeline, we investigate
how to further improve its performance by exploiting the features provided by
Reactor for multi-threading execution. We will explore three modifications
of the reactive stream processing: using the publishOn operator, combining
the subscribeOn and publishOn operators, and using the parallel opera-
tor. The Schedulers employed in the different versions are the ones pro-
vided by the Schedulers.parallel() and Schedulers.boundedElastic()
factory methods. The parallel() scheduler is optimized for short-lived
CPU-intensive tasks. This is the case of the filter and map operations in our
reactive pipeline. In the real scenario, where an external service is queried in
order to build the mapped event, Schedulers.boundedElastic() would be
more appropriate. However, in our pipeline, the query to the external service
is mocked.

3.3.1 Using the publishOn operator
A first optimization consists of introducing an asynchronous boundary within
the flux of the consumed events. We decouple the logging of the received
event from the validation and transformation. The filter (validation) and
map (transformation) operations are executed by a different poll of workers,
optimized for non-blocking CPU-intensive tasks.

1 private Flux <SenderResult <ReceiverOffset >> pipeline () {
2 return sender

50

3.3 – Thread Scheduling in the Reactive Pipeline

3 .send(receiver
4 .receive ()
5 .doOnNext(m -> logger.info("Event received:" + m.value()))
6 .publishOn(Schedulers.parallel ())
7 .filter(m -> isValidRequest(m.value()))
8 .map(m -> SenderRecord.create(transform(m.value()), m.

receiverOffset ())))
9 .doOnNext(m -> m.correlationMetadata ().acknowledge ());

10 }

We want to highlight that in the previous code, the event n will be validated
and mapped before the event n+1 i.e. a strict ordering exists for all events.
This is a property of Reactive Streams named serializability. However, the
logging of received events is independent of the processing that follows the
publishOn operator. Summarizing, the main optimization in the previous
code consists of changing the worker on which the CPU-intensive operations
will be executed.

3.3.2 Using subscribeOn and publishOn operators

Further optimization of the previous pipeline consists in changing the worker
on which the subscription happens. This means we change the worker that
invokes the subscribe() method. We remember that when using reactive
programming, the actual data flow from Publisher to Subscriber is trig-
gered only by subscribing. We introduce the subscribeOn() operator to se-
lect a more convenient worker on which the subscription will happen. In this
version of the pipeline, we use the Schedulers.boundedElastic() scheduler
that is optimized for blocking tasks and longer execution.

1 private Flux <SenderResult <ReceiverOffset >> pipeline () {
2 return sender
3 .send(receiver
4 .receive ()
5 .subscribeOn(Schedulers.boundedElastic ())
6 .doOnNext(m -> logger.info("Event received:" + m.value()))
7 .publishOn(Schedulers.parallel ())
8 .filter(m -> isValidRequest(m.value()))
9 .map(m -> SenderRecord.create(transform(m.value()), m.

receiverOffset ())))
10 .doOnNext(m -> m.correlationMetadata ().acknowledge ());
11 }

51

Benchmark Design

3.3.3 Using the parallel operator
Since Reactor Fluxes are characterized by serializability, elements of the Flux
are processed one by one. If we want to process Fluxes in parallel, we can
use the parallel() operator provided by the Flux API.

1 private Flux <SenderResult <ReceiverOffset >> pipeline () {
2 return sender
3 .send(receiver
4 .receive ()
5 .parallel ()
6 .runOn(Schedulers.parallel ())
7 .doOnNext(m -> logger.info("Event received:" + m.value()))
8 .filter(m -> isValidRequest(m.value()))
9 .map(m -> SenderRecord.create(transform(m.value()), m.

receiverOffset ())))
10 .doOnNext(m -> m.correlationMetadata ().acknowledge ());
11 }

After applying the parallel() operator on line 6, the Flux of incoming
events is split into parallel sub-streams represented by the ParallelFlux
abstraction. The elements of the source Flux are balanced over the group of
Fluxes. The runOn operator allows the application of the publishOn operator
on each Flux belonging to the ParallelFlux. In the above code, we use
the Schedulers.parallel() scheduler, which provides a pool of workers for
CPU-bound tasks. The size of the pool depends on the number of CPU cores.
We want to emphasize that while processing the incoming Flux happens in
parallel, we still have a single Kafka consumer.

3.4 Metrics
For each run, we compute several metrics: run-time, record consumed rate,
records lag, record send rate, and memory/CPU utilization of the process.
Consumer and producer metrics are supported by Apache Kafka. More pre-
cisely, the Java clients use Kafka Metrics, which is a metrics registry exposing
metrics via JMX. The easiest way to browse the available metrics with JMX
is to launch jconsole and select the kafka client [18]. However, we will build a
custom Java monitor that will collect the metrics of interest directly querying
JMX. By default Apache Kafka disables remote JMX [19]. We can enable
remote JMX programmatically by selecting the JMX port and specifying se-
curity properties:

52

3.4 – Metrics

-Dcom.sun.management.jmxremote=true -Dcom.sun.management.
jmxremote.port =9091 -Dcom.sun.management.jmxremote.
authenticate=false -Dcom.sun.management.jmxremote.ssl=false

JMXServiceURL url = new JMXServiceURL("service:jmx:rmi :/// jndi/
rmi:// localhost:" + port + "/jmxrmi");

JMXConnectorFactory.connect(url , null);
JMXConnector jmxc = JMXConnectorFactory.connect(url , null);
jmxc.connect ();
MBeanServerConnection mBeanServerConnection = jmxc.

getMBeanServerConnection ();

3.4.1 Run-time
We define run-time as the difference between the first observation timestamp
of consumption and the last observation timestamp of production. This run-
time metric indicates how much time the data-ingestion application takes to
consume, process, and publish the entire amount of messages published by
the event generator in each run.

3.4.2 Records Consumed Rate
The records consumed rate metric represents the average number of records
consumed per second. In order to get this metric, we use the records-
consumed-rate attribute of the kafka.consumer:type=consumer-fetch-manager-
metrics,client-id="client-id" MBean exposed by the Consumer Fetch Metrics
of Apache Kafka [20]. The client-id is the id assigned during the configura-
tion of the Kafka consumer.
Object recordsConsumedRate;
ObjectName consumerMBean = new ObjectName("kafka.consumer:type=

consumer -fetch -manager -metrics ,client -id=consumer -default -1")
;

recordsConsumedRate = mBeanServerConnection.getAttribute(
consumerMBean , "records -consumed -rate");

3.4.3 Max Records Lag
The records-lag-max attribute of the kafka.consumer:type=consumer-fetch-
manager-metrics,client-id="client-id" MBean represents the maximum lag

53

Benchmark Design

in terms of records. It is a good indicator of the capability of the consumer
to keep up with the producer.
recordsLagMax = mBeanServerConnection

.getAttribute(consumerMBean , "records -lag -max");

3.4.4 Record Send Rate
The record send rate metric represents the average number of records sent
per second. We get this metric by fetching the record-send-rate attribute
of the kafka.producer:type=producer-metrics,client-id="client-id" MBean ex-
posed by the Producer Sender Metrics of Apache Kafka [21]. The client-id
is the id assigned during the configuration of the Kafka producer.
Object recordSendRate;
ObjectName producerMBean = new ObjectName("kafka.producer:type=

producer -metrics ,client -id=producer -1");
recordSendRate = mBeanServerConnection.getAttribute(

producerMBean , "record -send -rate");

3.4.5 Memory Utilization
We collect the heap memory usage of the data-ingestion application by scrap-
ing the JMX metrics exposed by the process. The memory MBean is iden-
tified by the java.lang:type=Memory ObjectName [22]. The attribute repre-
senting the heap memory usage is HeapMemoryUsage. In particular, we are
interested in the amount of memory used (in bytes) during the execution, so
we will fetch the used field [23].
CompositeData cd;
Object heapMemoryUsage;
ObjectName memoryMBean = new ObjectName("java.lang:type=Memory")

;
heapMemoryUsage = mBeanServerConnection.getAttribute(memoryMBean

, "HeapMemoryUsage");
cd = (CompositeData) heapMemoryUsage;
Object heapMemoryUsed = cd.get("used")

3.4.6 CPU Utilization
The CPU usage of the JVM is retrieved from the ProcessCpuLoad attribute
of the java.lang:type=OperatingSystem MBean [24].

54

3.5 – Workloads

Object processCpuLoad;
ObjectName operatingSystemMBean = new ObjectName("java.lang:type

=OperatingSystem");
processCpuLoad = mBeanServerConnection.getAttribute(

operatingSystemMBean , "ProcessCpuLoad");

3.5 Workloads
Following the approach used by [4], we evaluate the performance of the dif-
ferent implementations of Kafka clients under two processing scenarios: con-
stant rate and burst at startup.

3.5.1 Constant Rate Workload
We use this workload to stress Kafka clients. The event generator publishes
events at a high rate so that the Kafka clients will not be able to keep up with
the demand, and events will be queued on Kafka for several seconds before
being processed by the Kafka clients. The event generator will publish events
with a constant rate of 1 000 records per second for 80 seconds.

3.5.2 Burst at Start-Up Workload
With this workload, we simulate the scenario in which the Kafka client re-
sumes consuming events after a downtime. We publish a burst of events,
and after the event generator completes its production, we start the Kafka
client that will consume events from the earliest offset. In the case of single-
threaded consumption, the burst dimension is 100 000 events, while in multi-
threaded consumption, 200 000 events.

3.6 Infrastructure
The data ingestion application, the event generator, the JMX collector, and
the Apache Kafka cluster are hosted on the same machine. The Apache
Kafka cluster is deployed on a docker container.

55

56

Chapter 4

Results

In this section, we visualize and analyze data obtained from the run of dif-
ferent versions of the data-ingestion application according to two workloads:
constant rate and burst at startup. The flavors of the data-ingestion appli-
cation are of two main types: traditional and reactive. In turn, we evolve
the reactive flavor into three other flavors that exploit the thread schedul-
ing model provided by Project Reactor. For each version, we present some
metrics related to the performance of consumer, producer and the JVM on
which the data-ingestion application is run. In the following, we give a brief
description of the data-ingestion flavors used:

• Traditional: using the abstractions provided by the Spring for Apache
Kafka API.

• Reactive: consumes and produces events using the Reactor Kafka API.

• Concurrent Traditional: same as Traditional but implementing multi-
threading consumption

• publishOn: same as Reactive, but changing the worker on which part
of the pipeline is processed.

• subscribeOn + publishOn: same as publishOn, but changing also the
worker on which the subscription happens.

• parallel: same as Reactive, but transforming the consumption Flux into
ParallelFlux in order to process them in parallel.

We distinguish in our comparison between traditional and reactive imple-
mentations, single-threaded consumption, and multi-threaded consumption.

57

Results

Concurrent Traditional and parallel are multi-threaded implementations.
However, in the case of the parallel version, the Kafka consumer is one,
but the reactive stream of consumption is processed in parallel.

4.1 Constant Rate Workload
During constant rate workload, the event generator publishes events to a
Kafka topic at a high constant rate. In our benchmark, the event generator
publishes 1 000 events per second for 80 seconds. A total of 80 000 events are
produced for each run.

4.1.1 Run-time
We remember that in our data pipeline, incoming events are consumed, val-
idated, transformed, and finally published to an output topic. We consider
our pipeline completely processed when all the events are published to the
output topic for the consumption of the external bank platform. The tra-
ditional implementation is able to consume, process, and publish all events
within about 130 seconds from the start of the workload. The base reactive
implementation achieves better performance because the entire pipeline is
handled in less than 118 seconds. The single-threaded flavors evolved from
the reactive implementation present an even lower run-time.
The multi-threaded implementations show a similar run-time value, although
the parallel flavor is almost 3 seconds slower with respect to Concurrent
Traditional . It is worth noticing that under a constant rate workload, the
multi-threaded implementations perform worse with respect to the optimized
single-threaded reactive implementations.

Table 4.1. Run-time – Constant Rate Workload
version Run-time
Traditional 130.74 s
Reactive 117.48 s
publishOn 112.49 s
subscribeOn + publishOn 108.47 s
Concurrent Traditional 116.01 s
parallel 118.53 s

58

4.1 – Constant Rate Workload

4.1.2 Consumer Metrics
Figure 4.1 shows the consumption rate of single-threaded consumers over
time. In all versions, the throughput presents a slow start during the first
seconds of consumption, and then it grows steeply. All reactive flavors per-
form better with respect to the traditional one.

Figure 4.1. Records consumed rate with constant rate workload —
single-threaded

Figure 4.2 illustrates the records consumed rate in case of multi-threaded
consumption. The parallel implementation achieves lower values of maximum
consumed rate with respect to Concurrent Traditional . However, the parallel
flavor reaches the maximum throughput faster than Concurrent Traditional.
This makes the parallel version achieve a higher average consumption rate,
as shown in table 4.2.

Figures 4.3 and 4.4 visualize how the consumption rate observations are
distributed among the different flavors. The initial part of observations is in-
cluded, except for the Concurrent Traditional flavor, below 400 records per
second. The cross mark represents the median value for the specific imple-
mentation. We can see that in the case of single-threaded consumption, we
can increase the record consumption rate by almost 22% with respect to the
traditional implementation.

59

Results

Regarding multi-threaded consumption, the parallel flavor seems slower than
Concurrent Traditional . The median of records consumed rate of parallel
is 3.8% smaller than Concurrent Traditional . Moreover, Concurrent Tradi-
tional can reach higher maximum consumption values.

Figure 4.2. Records consumed rate with constant rate workload
— multi-threaded

The Kafka metric records-lag-max is illustrated in figure 4.5. After some
time, all single-threaded implementations, except for subscribeOn + publis-
hOn , present a linear behavior in the growth of record lag. An increasing
value of this metric is an indication that the consumer is not able to keep up
with the producer i.e. the event generator. The traditional implementation
presents the worst performance. The reactive base implementation achieved
a substantial improvement. The publishOn version register even lower values
of record lag. The subscribeOn + publishOn implementation presents zero
lag. The figure of record lag in the case of multi-threaded consumption is
not shown. In fact, the parallel and Concurrent Traditional versions present
zero lag, meaning that the consumers are fully capable of keeping up with
the production.

60

4.1 – Constant Rate Workload

Figure 4.3. Distribution of records consumed rate with constant rate
workload — single-threaded

Figure 4.4. Distribution of records consumed rate with constant rate
workload — multi-threaded

61

Results

Figure 4.5. Records lag max with constant rate workload — single-threaded

Table 4.2. Consumer Performance – Constant Rate Workload
version Mean Records

Consumed Rate
Median Records
Consumed Rate

Max Records
Consumed Rate

Traditional 495.15 598.19 716.22
Reactive 552.07 680.23 714.09
publishOn 571.44 702.13 742.65
subscribeOn +
publishOn

592.39 728.98 763.94

Concurrent
Traditional

550.28 692.23 713.02

parallel 554.27 665.79 689.75

4.1.3 Producer Metrics
Among JMX metrics exposed by the Kafka producer, we consider the record-
send-rate metric. The evolution of the record send rate over time is similar

62

4.1 – Constant Rate Workload

to that of the records consumed rate in the previous section. However, in
the case of single-threaded consumption, the reactive flavors achieve an even
greater speed-up. The reactive subscribeOn + publishOn implementation can
reach a median value of record send rate 25% higher than traditional .

Figure 4.6. Record send rate with constant rate workload — single-threaded

Figure 4.7. Record send rate with constant rate workload — multi-threaded

63

Results

The gap between multi-threaded implementation diminishes. The median
production value of parallel is 2.87% smaller than Concurrent Traditional .
However, as in the consumption case, parallel achieves a greater mean record
send rate with respect to Concurrent Traditional .

Figure 4.8. Distribution of record send rate with constant rate work-
load — single-threaded

Figure 4.9. Distribution of record send rate with constant rate work-
load — multi-threaded

64

4.1 – Constant Rate Workload

Table 4.3. Producer Performance – Constant Rate Workload
version Mean Record

Send Rate
Median Record

Send Rate
Max Record

Send Rate
Traditional 488.01 580.50 664.68
Reactive 559.69 679.51 696.38
publishOn 579.48 702.90 731.61
subscribeOn +
publishOn

591.02 726.12 757.81

Concurrent
Traditional

547.16 689.35 714.76

parallel 554.00 669.57 689.87

4.1.4 JVM Metrics

CPU usage over time is shown in figures 4.10 and 4.11. Figures 4.12 and
4.13 shows its distribution. Traditional implementations reach the highest
CPU loads in both single-threaded and multi-threaded cases. The reactive
base version achieves the lowest CPU load. The subscribeOn + publishOn
implementation can use 10% of CPU less than traditional . At the same
time, the parallel implementation achieves median values of CPU usage 12%
smaller with respect to Concurrent Traditional .

Figures 4.14 and 4.15 illustrate mean values of heap memory usage and
their dispersion in relation to the mean (µ ± σ).
In the case of single-threaded consumption, the highest mean memory usage
value is reached by the traditional implementation. The publishOn version
presents the highest maximum value and the widest dispersion in recorded
values. This is likely due to the queue introduced by the publishOn() op-
erator in the reactive pipeline. Finally, the subscribeOn + publishOn flavor
presents the lowest mean and max memory utilization values. The sub-
scribeOn + publishOn implementation can use on average 27% less memory
with respect to traditional .
Regarding multi-threaded consumption, the parallel implementation use, on
average, 50% less memory than Concurrent Traditional .

65

Results

Figure 4.10. Process CPU load with constant rate workload — single-threaded

Figure 4.11. Process CPU load with constant rate workload — multi-threaded

66

4.1 – Constant Rate Workload

Figure 4.12. Distribution of process CPU load with constant rate
workload — single-threaded

Figure 4.13. Distribution of process CPU load with constant rate
workload — multi-threaded

67

Results

Figure 4.14. Heap memory usage with constant rate workload — single-threaded

Figure 4.15. Heap memory usage with constant rate workload — multi-threaded

68

Table 4.4. Process Performance – Constant Rate Workload
version Mean

Memory
Usage

Mean
CPU
Load

Max
Memory

Usage

Max
CPU
Load

Reactive 321.7MB 15.15% 670.1MB 20.28%
publishOn 306.3MB 15.53% 1.1GB 18.16%
subscribeOn +
publishOn

240.9MB 15.98% 532.6MB 21.46%

Traditional 331.3MB 17.83% 1GB 19.79%
parallel 182.9MB 19.73% 405.3MB 21.66%
Concurrent
Traditional

367.5MB 22.74% 1.3GB 28.36%

4.2 – Burst At Start-Up Workload

4.2 Burst At Start-Up Workload
During burst at start-up workload, 100 000 events — 200 000 in the multi-
threaded case — are sent by the event generator while the data-ingestion
application is down. Once the event generator has finished the publication,
the data-ingestion application is launched. With burst at start-up workload,
we simulate a failure of the data-ingestion application. After the failure, the
application is restarted, but in the meantime, a great number of events have
been published and not yet handled.

4.2.1 Run-time
The traditional version presents the longest run-time; this flavor consume,
process, and publish the entire burst of events in about 120 seconds. The re-
active implementations achieve a more significant speed-up. The subscribeOn
+ publishOn implementation processes the entire burst in about 104 seconds.
Under burst workload, the multi-threaded implementations present a signif-
icant advantage with respect to the single-threaded implementations. The
Concurrent Traditional flavor achieves a run-time of 90 seconds. The parallel
flavor reaches an even lower run-time, 72 seconds.

Table 4.5. Run-time – Burst Workload
version Run-time
Traditional 120.29 s
Reactive 111.27 s
publishOn 107.26 s
subscribeOn + publishOn 104.25 s
Concurrent Traditional 90.05 s
parallel 72.32 s

4.2.2 Consumer Metrics
Among the single-threaded flavors, the subscribeOn + publishOn version pro-
vides the best performance. As we can see from figure 4.18, the reactive sub-
scribeOn + publishOn implementation reaches a median consumption rate

69

Results

12% higher than traditional .
The records lag performance graphs are not presented because they are less
meaningful in the case of the burst workload.
In the case of multi-threaded consumption, the parallel implementation records
a median consumption rate almost 19% higher than Concurrent Traditional,
as illustrated in figure 4.17.

Figure 4.16. Records consumed rate with burst workload — single-threaded

Figure 4.17. Records consumed rate with burst workload — multi-threaded

70

4.2 – Burst At Start-Up Workload

Figure 4.18. Distribution of records consumed rate with burst work-
load — single-threaded

Figure 4.19. Distribution of records consumed rate with burst work-
load — multi-threaded

71

Results

Table 4.6. Consumer Performance – Burst Workload
version Mean Records

Consumed Rate
Median Records
Consumed Rate

Max Records
Consumed Rate

Traditional 677.88 814.88 865.24
Reactive 728.61 856.48 907.42
publishOn 747.30 892.52 931.32
subscribeOn +
publishOn

762.77 915.45 951.56

Concurrent
Traditional

1.80 × 103 2.22 × 103 2.37 × 103

parallel 2.00 × 103 2.63 × 103 2.71 × 103

4.2.3 Producer Metrics
Concerning single-threaded implementations, as in the case of consumption,
the subscribeOn + publishOn flavor attains higher throughput with respect
to the other versions.
Regarding multi-threaded implementations, the parallel flavor achieves a
much higher record send rate with respect to Concurrent Traditional . The
gap in production is more evident than the gap in previous consumption.
The median record send rate of parallel is 41.5% higher than Concurrent
Traditional .

Figure 4.20. Record send rate with burst workload — single-threaded

72

4.2 – Burst At Start-Up Workload

Figure 4.21. Record send rate with burst workload — multi-threaded

Figure 4.22. Distribution of record send rate with burst workload
— single-threaded

73

Results

Figure 4.23. Distribution of record send rate with burst workload
— multi-threaded

Table 4.7. Producer Performance – Burst Workload
version Mean Record

Send Rate
Median Record

Send Rate
Max Record

Send Rate
Traditional 670.29 806.95 847.55
Reactive 726.88 860.17 894.08
publishOn 745.31 888.16 912.42
subscribeOn +
publishOn

762.84 913.94 936.63

Concurrent
Traditional

1.57 × 103 1.86 × 103 2.48 × 103

parallel 1.99 × 103 2.63 × 103 2.69 × 103

74

4.2 – Burst At Start-Up Workload

4.2.4 JVM Metrics

As shown in figure 4.24, the traditional implementation consumes a higher
percentage of CPU with respect to the single-threaded reactive flavors. The
reactive implementations can attain a CPU usage median value 15–17% lower
than traditional .
On average, the parallel implementation uses slightly more CPU resources
with respect to Concurrent Traditional . However, the Concurrent Tradi-
tional flavor reaches higher peaks in CPU utilization.
From the memory usage perspective, both single-threaded and multi-threaded
traditional implementations consume more memory resources with respect to
all reactive flavors. Under burst workload, the publishOn and subscribeOn
+ publishOn implementations can save up to 16% memory on average with
respect to traditional . In the multi-threaded case, the advantage is even
greater — the parallel version uses, on average, 22.5% less memory than
Concurrent Traditional .
The addition of the publishOn() or subscribeOn() operators in the reactive
pipeline seems to introduce a slight overhead in CPU usage with respect to
the base reactive implementation. At the same time, these operators bring
off a more significant saving in memory usage.

Figure 4.24. Process CPU load with burst workload — single-threaded

75

Results

Figure 4.25. Process CPU load with burst workload — multi-threaded

Figure 4.26. Distribution of process CPU load with burst workload
— single-threaded

76

4.2 – Burst At Start-Up Workload

Figure 4.27. Distribution of process CPU load with burst workload
— multi-threaded

Figure 4.28. Heap memory usage with burst workload — single-threaded

77

Results

Figure 4.29. Heap memory usage with burst workload — multi-threaded

Table 4.8. Process Performance – Burst Workload
version Mean

Memory
Usage

Mean
CPU
Load

Max
Memory

Usage

Max
CPU
Load

Reactive 423.4MB 15.31% 1GB 18.26%
publishOn 382MB 15.31% 968MB 17.76%
subscribeOn +
publishOn

381.3MB 15.74% 970.7MB 17.98%

Traditional 455.6MB 18.45% 1.2GB 20.58%
Concurrent
Traditional

924.8MB 52.83% 1.8GB 73.68%

parallel 716.3MB 55.35% 1.4GB 62.81%

78

Chapter 5

Conclusion and Future
Research Directions

5.1 Limitations
We identify two main limitations of this thesis work. The first one is relative
to the infrastructure adopted. The Apache Kafka message broker is deployed
to the same machine on which the data-ingestion application is run. In a
real scenario, usually, the message broker is deployed on the cloud, so the
communication is limited by network latencies. This is not the case in this
thesis.

The second one concerns the data-ingestion application itself. The tradi-
tional flavor of the data-ingestion application reproduces the real one. This
work of reproduction has some limits. The queries of the external services in
order to build a response are mocked. Moreover, the actual data-ingestion
application is based on the bank’s proprietary code built upon the Spring
framework. In our case, the traditional flavor is constructed directly in
Spring.

5.2 Future Research Directions
Future research could focus on the results obtained from a more realistic
scenario in which a full-fledged Kafka cluster is deployed on the cloud and
has multiple brokers. Moreover, it would be interesting to study the main-
tainability of the reactive approach with respect to the traditional one.

79

Conclusion and Future Research Directions

5.3 Conclusion
The first objective of this thesis is to evaluate and compare the performance
of traditional implementations of Kafka clients with implementations that
use a reactive approach.

Under constant rate workload, the single-threaded reactive implementa-
tions attain higher consumption and production rate and lower record lag
with respect to the traditional implementation while presenting a lower foot-
print in terms of CPU and memory usage. Regarding multi-threaded imple-
mentations, the Concurrent Traditional version attains slightly higher con-
sumption and production rate with respect to the reactive parallel . However,
the multi-threaded reactive implementation can save a significant amount of
CPU and memory resources than the traditional one.

Under burst at start-up workload, the advantage of using a multi-threaded
implementation of the data-ingestion application is more evident. The same
considerations done for single-threaded implementations in the case of con-
stant rate workload are applicable in the case of burst workload. While
something changes in multi-threaded consumption. In this case, the reactive
parallel implementation achieves a much higher consumption and production
rate at the cost of a slightly higher CPU load with respect to Concurrent Tra-
ditional . Memory usage is still lower in the multi-threaded reactive version.

The increase in performance of the reactive pipeline with respect to the
traditional one is more significant during the production phase than the con-
sumption one.

The second objective is to explore the thread scheduling model of the reac-
tive version in order to improve performance further and discover trade-offs.
Benchmarks show that we can obtain better performance by controlling the
worker on which the subscription and part of the processing happen. In par-
ticular, the introduction of the subscribeOn() and publishOn() operators
allow to attain an increase in consumer/producer throughput while decreas-
ing heap memory consumption with respect to the plain reactive implemen-
tation. The speed-up achieved by changing the worker causes overheads in
CPU usage.

80

Bibliography

[1] [Online]. Available: https://www.reply.com/iriscube-reply/it/
[2] P. Le Noac’h, A. Costan, and L. Bouge, “A performance evaluation of

apache kafka in support of big data streaming applications,” in 2017
IEEE International Conference on Big Data (Big Data). IEEE, Dec.
2017.

[3] G. Hesse, C. Matthies, and M. Uflacker, “How fast can we insert? an em-
pirical performance evaluation of apache kafka,” in 2020 IEEE 26th In-
ternational Conference on Parallel and Distributed Systems (ICPADS).
IEEE, Dec. 2020.

[4] G. van Dongen and D. Van Den Poel, “Evaluation of stream processing
frameworks,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 8, pp.
1845–1858, Aug. 2020.

[5] G. Van Dongen and D. Van Den Poel, “Influencing factors in the scal-
ability of distributed stream processing jobs,” IEEE Access, vol. 9, pp.
109 413–109 431, 2021.

[6] S. Vyas, R. K. Tyagi, C. Jain, and S. Sahu, “Performance evaluation of
apache kafka – a modern platform for real time data streaming,” in 2022
2nd International Conference on Innovative Practices in Technology and
Management (ICIPTM). IEEE, Feb. 2022.

[7] A. S. Tanenbaum and M. Van Steen, Distributed Systems. Maarten
Van Steen, Jan. 2023.

[8] https://www.reactivemanifesto.org/.
[9] O. Dokuka and I. Lozynskyi, Hands-on reactive programming in Spring

5: build cloud-ready, reactive systems with Spring 5 and Project Reactor.
Birmingham, UK: Packt Publishing, 2018.

[10] Reactive-Streams, “Reactive-streams/reactive-streams-jvm: Reactive
streams specification for the jvm.” [Online]. Available: https:
//github.com/reactive-streams/reactive-streams-jvm/

[11] “Core 3.5.3.” [Online]. Available: https://projectreactor.io/docs/core/

81

https://www.reply.com/iriscube-reply/it/
https://www.reactivemanifesto.org/.
https://github.com/reactive-streams/reactive-streams-jvm/
https://github.com/reactive-streams/reactive-streams-jvm/
https://projectreactor.io/docs/core/release/api/
https://projectreactor.io/docs/core/release/api/

Bibliography

release/api/
[12] [Online]. Available: https://projectreactor.io/docs/core/release/api/

reactor/core/scheduler/Schedulers.html
[13] N. Garg, Apache Kafka. Birmingham, England: Packt Publishing, Oct.

2013.
[14] R. S. Gwen Shapira, Todd Palino and K. Petty, Kafka: The Definitive

Guide. O’Reilly Media, Nov. 2021.
[15] G. Russell, A. Bilan, B. Kunjummen, J. Bryant, S. Chacko, and T. Fer-

nandes, “Spring for apache kafka,” https://docs.spring.io/spring-kafka/
reference/html/.

[16] R. Sivaram, M. Pollack, and O. Dokuka, “Reactor kafka reference guide,”
https://projectreactor.io/docs/kafka/release/reference/.

[17] J. S. Perry, Java Management extensions. O’Reilly Media, 2002.
[18] [Online]. Available: https://kafka.apache.org/documentation/

#monitoring
[19] [Online]. Available: https://kafka.apache.org/documentation/

#remote_jmx
[20] [Online]. Available: https://kafka.apache.org/documentation/

#consumer_fetch_monitoring
[21] [Online]. Available: https://kafka.apache.org/documentation/

#producer_sender_monitoring
[22] [Online]. Available: https://docs.oracle.com/cd/E17802_01/j2se/j2se/

1.5.0/jcp/beta1/apidiffs/java/lang/management/MemoryMBean.html
[23] [Online]. Available: https://docs.oracle.com/javase/7/docs/api/java/

lang/management/MemoryUsage.html
[24] [Online]. Available: https://docs.oracle.com/javase/7/docs/api/java/

lang/management/OperatingSystemMXBean.html

82

https://projectreactor.io/docs/core/release/api/
https://projectreactor.io/docs/core/release/api/
https://projectreactor.io/docs/core/release/api/
https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html
https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html
https://docs.spring.io/spring-kafka/reference/html/.
https://docs.spring.io/spring-kafka/reference/html/.
https://projectreactor.io/docs/kafka/release/reference/.
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#remote_jmx
https://kafka.apache.org/documentation/#remote_jmx
https://kafka.apache.org/documentation/#consumer_fetch_monitoring
https://kafka.apache.org/documentation/#consumer_fetch_monitoring
https://kafka.apache.org/documentation/#producer_sender_monitoring
https://kafka.apache.org/documentation/#producer_sender_monitoring
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/management/MemoryMBean.html
https://docs.oracle.com/cd/E17802_01/j2se/j2se/1.5.0/jcp/beta1/apidiffs/java/lang/management/MemoryMBean.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryUsage.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/MemoryUsage.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/OperatingSystemMXBean.html
https://docs.oracle.com/javase/7/docs/api/java/lang/management/OperatingSystemMXBean.html

	List of Tables
	List of Figures
	Introduction
	Context
	Company Overview
	A Data-Ingestion Application
	Problem Definition

	Purpose
	State of the Art
	Main Contributions
	Outline

	Background
	Distributed Systems
	Middleware
	Scalability
	Communication
	Message-Oriented Middleware (MOM)
	Message Brokers
	Architectural Styles
	Publish-subscribe Architectures

	Reactive programming
	Reactive Streams
	Project Reactor
	Reactive Streams Life Cycle
	Thread Scheduling in Project Reactor

	Apache Kafka
	Publish-Subscribe Pattern
	What is Apache Kafka?
	Messages and Batches
	Topics and Partitions
	Kafka Clients: Producers and Consumers
	Brokers and Clusters
	Spring for Apache Kafka
	Reactor Kafka

	Java Management Extensions (JMX)
	The Instrumentation Level
	The Agent Level
	The Distributed Level
	Communicating with JMX agents using the RMI connector

	Benchmark Design
	Benchmark Design
	Data
	Processing Pipeline

	Kafka Clients
	Traditional Pipeline
	Concurrent Traditional Pipeline
	Reactive Pipeline

	Thread Scheduling in the Reactive Pipeline
	Using the publishOn operator
	Using subscribeOn and publishOn operators
	Using the parallel operator

	Metrics
	Run-time
	Records Consumed Rate
	Max Records Lag
	Record Send Rate
	Memory Utilization
	CPU Utilization

	Workloads
	Constant Rate Workload
	Burst at Start-Up Workload

	Infrastructure

	Results
	Constant Rate Workload
	Run-time
	Consumer Metrics
	Producer Metrics
	JVM Metrics

	Burst At Start-Up Workload
	Run-time
	Consumer Metrics
	Producer Metrics
	JVM Metrics

	Conclusion and Future Research Directions
	Limitations
	Future Research Directions
	Conclusion

	Bibliography

