POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

’ .)
v 0¥ Politecnico
it e di Torino

Master’s Degree Thesis

Acceleration of an OFDM modulator on a
Xilinx FPGA

Supervisor Candidates

Prof. Luciano LAVAGNO Giovanni Luca AMATO
Prof. Mihai Teodor LAZARESCU

April 2023

Abstract

Today’s technology rush and the rise of the IoT leads us to find new solutions to
achieves significant speedup and resource savings over the traditional implementa-
tion. In fact, this can result computationally intensive when we talk about digital
signal processing, Simulation and modeling or machine learning. Hardware acceler-
ation is dedicate hardware designed to perform specific functions more efficiently
when compared to software running on a general-purpose CPU. Central Processing
Unit are projected to be used in different tasks, but to archive that the trade-off
is a loss of performance in terms of in terms of latency, throughput, and resource
utilization respect to dedicate hardware limited to a single task.

Using High Level Synthesis (HLS) to generate hardware designs enables the use
of a high-level programming language instead of traditional hardware description
languages. HLS tool analyzes the design specification and automatically generates
hardware implementation based on the performance requirements.

The objective of our research group is 3GPP 5G Channel Model Acceleration.
This task was mainly focused on the acceleration of the channel model using HLS
tools for Xilinx and Intel FPGA platforms. Given the complexity of this project
each member of the team focusing on a particular component of the channel.

My role was to implement orthogonal frequency-division multiplexing (OFDM)
modulator and demodulator designs to be inserted as accelerated channel model
modules. The module is characterized by Direct or Inverse Fast Fourier Transform
(FFT/IFFT) calculation on a large asset of data, implemented using a dedicated
IP. Using Vitis HLS, starts from a Matlab algorithm, was implemented a C++
implementation of the OFDM algorithm, optimized for the HLS (High Level
Synthesis). The generated Register Transfer Level (RTL) design was tested with
simulation and on board before to be nested in the channel chain.

All modules developed are described in a dedicated chapter and each one with
all the test performed, followed by a comparison between different implementation.

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction

1.1 5G Protocol Stack
1.1.1 5G Physical Layer
1.1.2 Channel simulation
1.1.3 OFDM Modulation
1.2 Board description
1.2.1 FPGA
1.3 Vitis Unified Software Platform
1.3.1 Vitis HLS
1.4 Thesis structure
Modulator Block
2.1 Matlab reference
2.2 Kernel description L
2.2.1 IP description
2.2.2 C++ code and C-Simulation
2.2.3 C-Synthesis results
2.2.4 Co-Simulation results and waveform
2.2.5 Implementation results
Demodulator Block
3.1 Matlab reference
3.2 Kernel descriptiono
3.2.1 C++ code and C-Simulation
3.2.2 C-Synthesisresults

v

VI

VII

21
21
24
24
27
30
36
37

3.2.3 Cosimulation results and waveform
3.2.4 Implementation results
4 1D SSR FFT IP
4.1 IP description
4.2 Code adjusstmento
4.3 Reports Analysis
5 On Device Deployment
51 Hostcode
5.2 Modulator
5.2.1 SW Emulation
5.2.2 HW Emulation
5.2.3 Hardware implementation
5.3 Demodulator
54 SSRModulator
5.5 SSRDemodulator

6 Next steps

6.1 Conclusion

6.2 Further Optimizations

Bibliography

II1

49
49
52
53

57
57
60
60
61
63
65
66
67

68
68
69

71

List of Tables

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

6.1

Alveo U280 Data Center Accelerator Card Specifications 11
Synthesis Report of Timing (modulator) 33
Synthesis Report of Performances (modulator) 33
Synthesis Report of Resources (modulator) 35
The Resource Usage and the Final Timing (modulator) 37
Fail Fast Report (modulator) 38
Synthesis Report of Performances (demodulator) 43
Synthesis Report of Resources (demodulator) 44
Cosimulation II Estimates (demodulator) 45
Cosimulation Latency Estimates (demodulator) 46
The Resource Usage and the Final Timing (demodulator) 47
Input arrays order 50
Output arrays order 50
Synthesis Report of Timing (SSRmodulator) 53
Synthesis Report of top-level Resources (SSRmodulator) 54
Synthesis Report of top-level Resources (SSRdemodulator) 54
The Resource Usage and the Final Timing (SSRmodulator) 55
Calculated throughput for different modules 68

v

Listings

2.1
2.2
2.3
3.1
4.1
4.2

OFDM parameters 22
OFDM implementation 22
FFT IP paramenters structure 26
Demodulator implementation L. 40
SSR IP FFT paramenters structure 50
Simplified structure for float data, 51

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3

3.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
0.6
5.7

NR radio interface protocol 3
Link Level Simulator for 5G NR 6
Typical OFDM transmission workflow 7
AMD Alveo U280 Data Center accelerator card 10
UltraScale FPGA with Columnar Resources 12
Vitis Development Flow, 16
Vitis HLS Development Flow 18
ifftshpe function explanation 28
CP function explanation 28
Place & Route Timing Paths Report (modulator) 39
Place & Route Timing Paths Report (demodulator) 48
Modules/Loops for FFT block in SSRmodulator 53
Place & Route Timing Paths Report (SSRmodulator) 56
Place & Route Timing Paths Report (SSRmodulator) 56
Host/Device interface L 58
Vitis unified software development flow 59
System Diagram (modulator) 61
Vivado utilization report (modulator) 63
Vivado utilization report (demodulator) 65
Vivado utilization report (SSRmodulator) 66
Vivado utilization report (SSRdemodulator) 67

VI

Acronyms

3GPP The 3rd Generation Partnership Project
HLS High-level synthesis

OFDM Orthogonal Frequency-Division Multiplexing
FPGA Field Programmable Gate Array

GPU graphics processing unit

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

IP Intellectual Property

HDL Hardware description language

LUT Lookup table

DSP Digital Signal Processor

CP Cyeclic prefix

RTL Register-transfer level

CUDA Compute Unified Device Architecture

TTI Transmission Time Interval

VII

CSI-RS Channel State Information Reference Signal
XRT Xilinx Runtime

LTE Long Term Evolution

FF Flip-Flop

MMCM Mixed-Mode Clock Manager

PLL Phase-locked loop

VIII

Chapter 1

Introduction

1.1 5G Protocol Stack

Nowadays, there is a need of new network infrastructure that can ensure services to
all devices. The infrastructure will provide stable connections, increased bandwidth
and minimal lag. All this requirements set a base for fifth generation of wireless
network called 5G. The usage of higher frequencies enable us to communicate at
higher data rates but at lesser distance. This means that they need to implement
multiple antennas to boost its capacity and signal quality. 5G will also enable
operators to divide a physical network into multiple virtual networks depending on
its usage.

The Third Generation Partnership Project (3GPP) has specified a new radio
interface for 5G which is referred as New Radio (NR). This new model reuses some of
features and structures from LTE but this new technology is not required to maintain
backward compatibility being able to exploit much higher-frequencies, which gives
us more spectra for wide bandwidth and higher data-rates. However, communication
at higher frequencies is also affected by higher radio-channel attenuation which
results in limiting network coverage. This problem is tackled by using multiple
antennas for communication which also favors the beam-centric design of NR.

First specifications for 5G NR have been published in Dec. 2017, which supports
NSA (Non Standalone) where in 5G compliant UE relies on existing LTE for initial
access and mobility. In June 2018, SA versions of 5G NR specifications have been
finalized which works independent of LTE.

Introduction

I would not describe much details on each element of the protocol stack in this
page. The purpose of this chapter is to provide some big picture to been able to
understand the radio protocol stack. Most of the fundamental idea in this page
comes from 3GPP 38.300 [1].

There are two main components in 5G NR network:
UE (mobile subscriber) and gNB (base station).

gNBs are connected with 5G Core in the backend. The connection from gNB to
UE is known as downlink which uses PBCH, PDSCH and PDCCH channels for
carrying different data/control informations. The connection from UE to gNB is
known as uplink which uses PRACH, PUSCH and PUCCH channels.

In 5G NR there are various physical channels in the downlink (from gNB to
UE) and uplink (from UE to gNB):

Downlink channels: PDSCH, PDCCH, PBCH.
Uplink channels: PRACH, PUSCH, PUCCH.

There are specific physical signals present in both downlink and uplink for
various purposes. Front loaded DMRS (Demodulation Reference signal) is used for
both PDSCH and PUSCH channels. Orthogonal Frequency Division Multiplexing
(OFDM) with CP is used for both downlink and uplink chain. Uplink also uses DF'T
Spread OFDM with CP for improved coverage. Accordingly CP length is choosen.
5G NR Supports two frequency ranges FR1 (Sub 6GHz) and FR2 (millimeter wave
range, 24.25 to 52.6 GHz). NR uses flexible subcarrier spacing derived from basic
15 KHz subcarrier spacing used in LTE.

NR Radio Protocol Stack Architecture is almost same as LTE Radio Protocol
Stack Architecture. As in LTE/WCDMA, NR radio protocol stack has two different
stack depending on the type of data that is processed by the stack. If the data
is signaling message, it goes through the C-plane stack and if it is user data, it
goes through U-Plane stack. Both U-Plane and C-Plane is made up of a common

structure as represented in Figure 1.1, but the components sitting on top of
PHY/MAC/RLC/PDCP gets different between C-Plane and U-Plane.

Introduction

The 5G Protocol Stack can be divided in layer 1, layer 2 and layer 3:

o The 5G layer-1 is PHYSICAL layer.
o The 5G layer-2 include MAC, RLC and PDCP.
e The 5G layer-3 is RRC layer.

Layer 3 — Radio Resource Control (RRC)

2

o

=]

2

5 %—%—% Logical channels
Layer 2 é-’

< Medium Access Control

°

% —é;“':::#? Transport channels

@]

Layer 1 4()7 Physical layer

Figure 1.1: NR radio interface protocol

Figure 1.1 shows the NR radio interface protocol architecture around the physical
layer (Layer 1). The physical layer interfaces the Medium Access Control (MAC)
sub-layer of Layer 2 and the Radio Resource Control (RRC) Layer of Layer 3.The
circles between different layer/sub-layers indicate Service Access Points (SAPs).

The physical layer offers a transport channel to MAC. The transport channel is
characterized by how the information is transferred over the radio interface. MAC
offers different logical channels to the Radio Link Control (RLC) sub-layer of Layer
2. A logical channel is characterized by the type of information transferred.

In case of U-Plane, a layer called SDAP is sitting at the top of the radio stack
and the SDP is connected to UPF (User Plane Function). In case of C-Plane,
the two layers RRC and NAS are sitting at the top of the stack. NAS layer gets
connected to AMF (Access and Mobility Management Function).

Introduction

1.1.1 5G Physical Layer

The 5G PHY layer is specified in 3GPP TS 38.200 series of documents [2].

The physical layer offers data transport services to higher layers. The access to
these services is through the use of transport channels via the MAC sub-layer.

A transport block is defined as the data delivered by MAC layer to the physical
layer and vice versa. The Layer 1 is defined in a bandwidth agnostic way based on
resource blocks, allowing the NR Layer 1 to adapt to various spectrum allocations.

Following are the functions of 5G layer 1 i.e. PHYSICAL (PHY) Layer [3].

o Error detection on the transport channel and indication to higher layers
« FEC encoding/decoding of the transport channel

o Hybrid ARQ soft-combining

« Rate matching of the coded transport channel to physical channels
o Mapping of the coded transport channel onto physical channels

o Power weighting of physical channels

o Modulation and demodulation of physical channels

e Frequency and time synchronisation

» Radio characteristics measurements and indication to higher layers
o Multiple Input Multiple Output (MIMO) antenna processing

o Transmit Diversity (TX diversity)

« Digital and Analog Beamforming

e RF processing

The multiple access scheme for the NR physical layer is based on Orthogonal
Frequency Division Multiplexing (OFDM) with a cyclic prefix (CP).

The downlink transmission waveform is conventional OFDM using a cyclic prefix.
The uplink transmission waveform is conventional OFDM using a cyclic prefix with
a transform precoding function performing DFT spreading that can be disabled or
enabled. For uplink, Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM)
with a CP is also supported.

Introduction

1.1.2 Channel simulation

Channel simulation is used for functional and performance verification of such
models in the network planning phase. By channel model is meant the model
of the medium interposed between typical transmission and receiving stations
consists of two groups antennas, one transmitting and one receiving each alongside
a propagation channel. The propagation channel is the environment in which radio
waves propagate from the transmitting antenna to the receiving antenna.

Channel simulation is important for evaluating performance of communication
systems. What a model aims to do is to reflect physical reality with a level of
detail appropriate to the purpose, balancing accuracy and complexity. Channel
simulators are used to model the routing protocol performance, traffic flows and
evaluate the efficiency of the communication system using real-life parameters in a
virtual environment the impact of a physical channel in real environment is very
important.

The design of a channel model starts with the requirements of the target system
to describe. For wireless systems it is even more crucial because of high variations
in propagation medium with respect to space, time and frequency.

The results of the simulations are used as input by planning tool (every network
operator use these tools) in order determine the network infrastructure (network
nodes) and its configuration Channel simulation allows to create a theoretical model
which can be used to assess the performance of real devices.

Many network operators develop these models by running simulations and the
test commercial devices in lab and in the field in order to verify that nominal
performances are achieved 3GPP and other standardization bodies use channel
simulator in order to develop theoretical model of communication system. Accurate
5G channel model simulations require very high computational effort and take a
very long time to execute on general purpose processors.

Hardware acceleration of such functions is an option to speed up the execution,
hence to reduce the simulation time. It was required to have it working in a
homogeneous environment to take benefits of High-Level-Synthesis optimizations
and use them in order to derive technological requirements or event to choose
among multiple solutions, architectures, and systems to optimize the design.

In order to accelerate the channel functions using an FPGA which supports
complex simulations with higher numbers o antenna elements and more UE speeds,
the design is split into two major parts: host and kernel code.

Introduction

In our case, the link between trasmitter and receiver is modelled as follows:

% OFDM signal generation

[th10 | = ofdm_modulation_ul(env,tb9);

% tb10 = OFDM signal in time domain including CP

VT TTTTTTTTTTSTTTSTTTTTSSSS SIS SISTSISTSSTSTTIIIIIITITTTTTTTTTTTT o
% Transmitter Front—End (Oversampling and filtering)

[tbll | = oversample filter ul(env,tb10);

% tb1l = OFDM signal oversampled and filtered
WISSTTSTTTTTTISSSSTSTTS ST SIS SIS STT ST TSI SIS SIS S IISSSSISTS ST TS o
% Phase Noise (PN) insertion

[tb12, Jmf] = nr_phase_noise_insertion_ul(env,tb1ll);

% tb12 = OFDM signal affected by phase noise

% Jmf = phase noise spectrum

WISSTISTTT ST TISSSSTSTTS ST IS SIS SIT ST TSI SIS TSI IISSSSSTSS TS IS o
% Rayleigh fading channel

[tb13, sinr_pre, Hid] = fading_ channel(env,ch,tb12);

% tb13 = OFDM signal at radio channel output

% sinr__pre = pre—detection SINR per antenna in dB
WISSTISTTTTTTISSSSTSTTS SIS SIS ST ISSSSSIS TSI IISSSSSTSTSTS TS o
VTSI TSI SIS SIS STSTTIIIIIITTTTTTTT SIS
% Receiver Front—End (Filtering and downsampling)

[th14 | = downsample_filter(env,tb13);

% tbl14 = received sig mnal at RX Front—end output
WISSTSSTTTTTTISSSSTSTTS ST ITS SIS ST ISSSS SIS TSI IISSSSSTSTSSS TS
% Analog Beamforming (Grid of Beams)

[tb15, beam_id] = nr_analog_beamforming ul(env,tb14);
beam_stat (: ,SINR_ITER, counter+1) = beam_ id;

% tb15 = OFDM signal after Analog Beamforming
WISSTSSTTTTTIISSSSTSTTS ST SIS STT ST TSI SSSTSI TSI TSI STSTTTS TS o
% OFDM signal demodulation

[th16 | = ofdm_demodulation_ul(env,tb15);

% tb16 = received signal after FFT and CP cut

G TTTTTTTTTTTTTTTTTTTTSSSSSSSSSISSISITIIIIIITTTTTTTTTTTTTT o

Figure 1.2: Link Level Simulator for 5G NR

The host code performs tasks related to control and data movement such as
allocating space on the device memory, receiving data via the socket from a client,
launching the kernel and copying results back to the client via another socket. The
kernel code is the part which is highly data parallel and computationally intensive,
optimized to be executed on the target FPGA.

Introduction

1.1.3 OFDM Modulation

Orthogonal Frequency Division Multiplexing (OFDM) is a specialized frequency-
division multiplexing (FDM) method, with the additional constraint that all
subcarrier signals within a communication channel are orthogonal to one another,
meaning that crosstalk between the sub-channels is eliminated and inter-carrier
guard bands are not required [4].

The block supports scalar and vector inputs. You can use a vector input to
increase the data throughput and achieve an high throughput (GSPS). The block
supports windowing for scalar and vector inputs to reduce the spectral regrowth,
or adjacent channel leakage ratio (ACLR), of an OFDM signal. Almost the whole
available frequency band can be used. OFDM generally has quasi-white spectrum,
giving it favourable electromagnetic interference properties with respect to other
co-channel users.

The orthogonality allows high spectral efficiency, with a total symbol rate near
the Nyquist rate for the equivalent baseband signal. This simplifies the design of
both the transmitter and the receiver because it does not need a separate filter for
each sub-channel, where each subcarrier is modulated with a classic modulation
at a low symbol rate. This maintains total data rates similar to conventional
single-carrier modulation schemes considering same bandwidth.

The orthogonality also allows for efficient modulator and demodulator imple-
mentation using the FFT algorithm on the receiver side, and inverse FFT on the
sender side.The time to compute the inverse-FFT or FFT transform has to take
less than the time for each symbol.

CODING AND SERIAL TO : PARALLEL TO -
DATA IN mep {0 DLATION PARALEL P L =P SeeaL =P CYCUCPREFIX mmp TO RX

ADD PILOT 5YMBOLS

Figure 1.3: Typical OFDM transmission workflow

Introduction

The most of the computational effort in the OFDM algorithm is the FFT
calculation. A fast Fourier transform (FFT) is an algorithm that computes the
discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT).

The DFT is obtained by decomposing a sequence of values into components of
different frequencies, converting from its original domain (often time or space) to a
representation in the frequency domain and vice versa. This operation is useful in
many fields, but computing it directly from the definition is often too slow to be
practical. An FFT rapidly computes such transformations by factorizing the DFT
matrix into a product of mostly zero factors. As a result, it manages to reduce the
complexity of computing the DFT from 20 (N?), which arises if one simply applies
the definition of DFT, to logO(N log N), where N is the data size.

The difference in speed can be enormous, especially for long data sets where N
may be in the thousands or millions. In the presence of round-off error, many FFT
algorithms are much more accurate than evaluating the DF'T definition directly or
indirectly. Let xx_1 be complex numbers.

The DFT is defined by the formula

Xy, = SN wpem /N =0, N —1;

27 /N

where e is a primitive N, root of 1.

Evaluating this definition directly requires O(N?) operations: there are N
outputs Xj, and each output requires a sum of N terms. An FFT is any method
to compute the same results in O(N log N') operations.

To illustrate the savings of an FFT, consider the count of complex multiplications
and additions for N = 4096 data points. Evaluating the DFT’s sums directly
involves N2 complex multiplications and N(N—1) complex additions, of which O(N)
operations can be saved by eliminating trivial operations such as multiplications
by 1, leaving about 30 million operations. In contrast, the radix-2 Cooley—Tukey
algorithm, for N a power of 2, can compute the same result with only (N/2) log,(N)
complex multiplications and log2N log,(NN) complex additions, a thousand times
less than with direct evaluation.

In practice, actual performance on modern computers is usually dominated
by factors other than the speed of arithmetic operations and the analysis is a
complicated subject, but the overall improvement from O (N?) to O(N log N)
remains.

Introduction

OFDM was improved with the introduction of a guard interval to achieve a
better orthogonality in transmission channels affected by multipath propagation.
The low symbol rate makes the use of a guard interval between symbols beneficial,
making it possible to eliminate intersymbol interference (ISI) and to obtain a
signal-to-noise ratio improvement.

The main advantage of OFDM over single-carrier schemes is its ability to work
in harsh channel conditions without the need for complex equalization filters.

The cyclic prefix, which is transmitted during the guard interval, consists of the
end of the OFDM symbol copied into the guard interval, and the guard interval is
transmitted followed by the OFDM symbol. The reason that the guard interval
consists of a copy of the end of the OFDM symbol is so that the receiver will
integrate over an integer number of sinusoid cycles for each of the multipaths when
it performs OFDM demodulation with the FFT.

Introduction

1.2 Board description

The board using as target platform for the project exposed in these thesis is the
Alveo U280. AMD Alveo U280 Data Center accelerator cards are designed to meet
the constantly changing needs of the modern Data Center. [5].

Figure 1.4: AMD Alveo U280 Data Center accelerator card

Built on the AMD 16nm UltraScale+ architecture, Alveo U280 offers 8 GB of
HBM2 460 GB/s bandwidth to provide high-performance, adaptable acceleration
for memory-bound, compute intensive applications including database, analytics,
and machine learning inference.

This boards consist of an Virtex UltraScale+ FPGA and two HBM2 stacks (8
HBM2 dies). The FPGA and the HBM2 dies are connected through 32 independent
PCs. Each PC has 256MB of capacity (8 GB in total). The U280 acceleration
card includes PCI Express 4.0 support to leverage the latest server interconnect
infrastructure for high-bandwidth host processors.

Modern memory interfaces provide access through multiple banks with dedicated
access channels like high bandwidth memory (HBM) lanes or double data rate
(DDR) channels. Hence, access bandwidth of an array can be increased by striping
it across the different memory interfaces (banks) available on the board.

The same considerations also apply to on-chip BRAM banks, in order to increase
the on-chip memory bandwidth to match the requirements of the data computations.

10

Introduction

Card Specifications U280
DRAM Memory

HBM2 Total Capacity 8GB

HBM2 Total Bandwidth 460GB/s

DDR Format 2x16GB 72b DIMM DDRA4
DDR Memory Capacity 32GB

DDR Total Bandwidth 38GB/s
SRAM Memory

Internal SRAM Capacity 41MB
Internal SRAM Total Bandwidth 30TB/s
Interfaces

PCI Expresss Gendx8 with CCIX
Network Interfaces 2xQSFP28 (100GbE)
Logic Resources

Look-up Tables (LUTs) 1,079,000
Power

Maximum Total Power 225W

Table 1.1: Alveo U280 Data Center Accelerator Card Specifications

On the Xilinx device, the platform consists of two physical FPGA partitions:
Shell and User. The Shell partition is a static region and provides basic infrastruc-
ture for the platform like PCle connectivity, board management, sensors, clocking,
and reset. The User partition is a dynamic region that contains user compiled
binary called .xclbin which is loaded by XRT during execution.

RTL kernels are the custom logic created by the developer and programmed
into the dynamic region. In this document, kernels refer to the functions that the
designer is implementing into the dynamic region of the Alveo accelerator card.

11

Introduction

1.2.1 FPGA

Xilinx has developed the Alveo family of PCle Data Center accelerator cards using
FPGAs at its core [6].

An FPGA (field-programmable gate array) is an integrated circuit (IC) equipped
with configurable logic blocks (CLBs) and other features that can be programmed
by a user through a bitstream generated by a synthesis tool to implement any type
of digital function as a physical circuit. The term “field-programmable” indicates
that the FPGA’s abilities are adjustable and not hardwired by the manufacturer
like other ICs.

By creating multiple copies of these functions, FPGAs are particularly well
suited at implementing functions in parallel, making them extraordinarily good
at serving as hardware accelerators for applications that contain high levels of
parallelism. Arrays of hardware blocks, each configurable, can be connected as
needed, allowing highly efficient, domain-specific architectures to be built for any
application.

FPGAs come in different sizes with different quantities of programmable logic
resources. Larger devices contain more resources, allowing designers to implement
more parallel circuits, leading to higher levels of acceleration. The variety of devices
provides designers with multiple cost/performance trade-offs [7].

CLB, DSF, Block RAM
CLB, DSP, Block RAM
Transceivers

Transceivers
CLB, DSP, Block RAM
/0, Clocking, Memary Interface Logic

1/, Clocking, Memory Interface Logic

Figure 1.5: UltraScale FPGA with Columnar Resources

The process is similar to programing software in that you write code that is
turned into a binary file and loaded onto the FPGA, but the outcome is that the
HDL makes physical changes to the hardware, rather than strictly optimizing the
device to run software. It’s also possible to adjust basic functions such as memory
or power usage depending on the task.

12

Introduction

FPGAs give programmers and designers the ability to adapt and update the
compute architecture with greater flexibility, resulting in domain-specific archi-
tectures that are more specific to their requirements. FPGAs are not new, but
are becoming more necessary due to the speed of innovation in areas like artificial
intelligence. Because the elements and the routing resources that connect them are
configured after power-up, the FPGA can be repeatedly programmed to implement
any set of functions required.

FPGA programming uses an HDL to manipulate circuits depending on what
capabilities you want the device to have. The process is different from programming
a GPU or CPU, since you aren’t writing a program that will run sequentially.
Rather, you're using an HDL to create circuits and physically change the hardware
depending on what you want it to do. CPUs are highly flexible, but their underlying
hardware is fixed. Once a CPU is manufactured the hardware cannot be changed.
It relies on software to tell it which specific operation (arithmetic function) to
perform, on which data in memory. The hardware must be capable of performing all
possible operations, which are called using software instructions and can generally
only execute one instruction at a time. FPGAs in contrast can process massive
amounts of data in parallel. The benefit of adaptive hardware over CPUs varies
by application largely depending on the nature of the computation and its ability
to be parallelized, but it’s not uncommon to see a 20X performance improvement
respects a CPU implementation of functions that can be highly parallelized.

The architecture of FPGAs makes them an efficient solution for hardware
acceleration. Devices such as ASICs and GPUs use an antiquated method of jumping
between programming and memory. They also don’t accommodate applications
where real-time information is needed, since the high amount of power required for
storage and retrieval tasks causes performance lags. As FPGAs are re-configurable
according to required functionality, they are considered more flexible than ASICs
(Application Specific Integrated Circuits) but at the cost of power and area. Also
they are more efficient than general-purpose processors but the cost to pay is more
complex programming and lower flexibility.

Unlike ASICs and GPUs, FPGAs don’t need to jump between memory and
programming, which makes the process of storing and retrieving data more efficient.
And since FPGA architecture is more flexible, you can customize how much power
you'd like an FPGA to utilize for a specific task. Unlike GPUs, which contain
processing cores that must fetch and execute instructions, FPGAs have a flexible
architecture that maps code to physical logic circuitry. Like GPUs, however, it
will be necessary for you to understand some of the basics of how this is done to
architect your code for best results.

13

Introduction

That flexibility can help offload energy-consuming tasks to one or several FPGAs
from a conventional CPU or another device. And since many FPGAs can be
reprogrammed, you can easily implement upgrades and adjustments to a hardware
acceleration system. Though FPGAs had exclusively existed in the domain of
hardware engineers, Al scientists and software programmers can now access new
platforms that make the process feel the same as writing software. With the right
tools, you will find a solution for programming FPGAs that meets you at your
current knowledge level of software and hardware.

The FPGAs considered in this study, despite being both aimed at data center
applications, do not have optimized support for double-precision floating-point
adders or multipliers, so as already discussed for both the IP used it was preferred
to use float data instead of double. To create the design, Xilinx provides a suite of
tools that can aid software developers in every step of the FPGA programming
process.

14

Introduction

1.3 Vitis Unified Software Platform

The Vitis unified software platform is a development environment for heterogeneous
applications supporting Xilinx devices such as Alveo Data Center Accelerator cards.
The Vitis unified software platform combines all aspects of Xilinx hardware and
software development into one unified environment using standard C/C-++ for
both software and hardware components.

The Vitis tools provide compilation, linking, profiling and debug capabilities
for heterogeneous systems in a number of different design flows including Data
Center application acceleration, RTL kernel design, Embedded System design, and
traditional embedded hardware and software design.

In the Vitis environment, heterogeneous systems include software applications
running on x86 host processors or Arm embedded processors, compute kernels
running in programmable-logic (PL) regions or Versal Al Engine arrays and exten-
sible platform designs that provide the foundation for building and running the
heterogeneous systems.

The software development tool stack, such as compilers and cross-compilers
to build your software application. Debuggers to help you locate and fix any
problems in your system design. Program analyzers to let you profile and analyze
the performance of your application. Xilinx Runtime (XRT) provides an API and
drivers for your software program to connect with the target platform, and handles
transactions and data transfers between the software application and the hardware
design.

The development flow works in parallel on two ways:

o Application Compilation using G++ to generate the host.exe file.

« Kernel Compilation to obtain the .xclbin file needed.

The host program written in C/C++, and using XRT native API, is compiled

using a g-++ compiler to create a host executable file to run on the x86 processor.
The host program interacts with kernels in the PL region on the FPGA device.

Vitis HLS is a compiler that takes C/C++ source code as an input and synthe-
sizes it into an RTL design that is optimized for Xilinx FPGA products. Each C++
kernel must be synthesized using Vitis HLS to produce a Xilinx object (.xo) file.

15

Introduction

x86 Application Compilation PL Kernel Compilation

=l oo]|
[orcomin |—u] o5 | [eom|

Vitis HLS RTL/
CoSim

Analyze

Data Center
Platform kernel xo

PL Kernel Linking

.| v++ Link I design.cfg

hcst.e:-cﬂ xclbin |

‘ =hostexe /kernel xclbin |

Running the Application

ZOOLDTA

Figure 1.6: Vitis Development Flow

One or more .xo files can be paired for linking using Vitis linker to produce the
xclbin file. Xilinx object (.xo) files are linked with the target hardware platform by
the Vitis linker to create a device binary file (.xclbin) that is loaded for execution
on the Alveo accelerator card.

PL kernel (.xo0) is a hardware function that can be added to the PL region of an
extensible platform to define custom hardware. PL kernels can be defined using
C++ code in Vitis HLS, or using RTL code and the IP packager feature of Vivado.
Device Binary (.xclbin) file contains the programmable device image (PDI) for
Versal ACAP or the bitstream for Zynq MPSoC, and metadata needed to control
the hardware design.

Vitis accelerated libraries provide performance-optimized hardware functions
with minimal code changes, and without the need to re-implement your algorithms
to harness the benefits of Xilinx adaptive computing. Vitis accelerated libraries are
available for common functions of math, statistics, linear algebra and DSP, as well
as for domain specific applications, like vision and image processing, quantitative
finance, database, data analytics, and data compression.

16

Introduction

To help define the architecture of the device binary, a configuration file can be
created specifying option like how many instances of a kernel (or Compute Unit)
should be built in the device binary, how are the kernels connected to the global
memory, or to other kernels, etc. This configuration file is passed to the Vitis linker
to generate the .xclbin.

There are three different build targets of the Vitis Compiler that defines the
nature and contents of the generated .xclbin file. Two emulation targets used for
validation and debugging purposes: software emulation for C-based simulation, and
hardware emulation for RTL cosimulation; and one hardware target for building
the final project output to run on the Alveo card. The same host program can
be used to run any of the .xclbin targets. Finally, when you run the application
the host program loads the .xclbin file generated by Vitis Compiler. The host
application always runs on the CPU and can be run in emulation mode on x86, or
run on the actual physical accelerator platform.

An RTL language design, synthesis, and implementation tool that enables
hardware designers to create and export hardware designs as Xilinx Support Archive
(.xsa). It is a hardware container exported for multiple uses, including in a fixed or
extensible platform (.xpfm). Fixed Platform includes a completed hardware design
(.xsa) and supporting software files defining the operating system, libraries, and boot
files. In this context, "fixed" simply means that the hardware design is complete.
Extensible Platform is the target platform of the Vitis heterogeneous system design
flow. In this context, the "extensible" design can be further customized by adding
programmable content such as PL kernels and Al Engine graph applications to the
platform to build the embedded system. Extensible Platform can also be used to
develop software like the fixed platform.

17

Introduction

1.3.1 Vitis HLS

Xilinx HLS tools provided an interface from software design to hardware design,
with the objective as in our case to deploy accelerated application [8].

In the Vitis application acceleration flow, the Vitis_ HLS tool automates much
of the code modifications required to implement and optimize the C/C++ code in
programmable logic and to achieve low latency and high throughput.

While FPGAs can be programmed using lower-level Hardware Description
Languages (HDLs) such as Verilog or VHDL, there are now several High-Level
Synthesis (HLS) tools that can take an algorithmic description written in a higher-
level language like C/C++ and convert it into lower-level hardware description
languages such as Verilog or VHDL (RTL) for implementation in the programmable
logic (PL) region of a Xilinx FPGA device.

Moreover, FPGA architectures permit finer-grained control over the implemen-
tation parallelism, e.g. between tasks within a kernel or iterations of an inner
loop.

II Constraints/

C Simulation C Synthesis

Rl » VHDL
LGEREE Vitis HLS Tool Verilog
RTL Simulation Packed IP

Vitis
Acceleration V"’F‘Ig';‘"’
Flow

Figure 1.7: Vitis HLS Development Flow

It essentially increases the effectiveness and flexibility of Hardware design by
accepting software languages that facilitate the logic design and description of
complex computation as a starting point The main benefit of this type of flow is
the advantages of the programming language like C/C++ to write efficient code
that can then be translated into hardware.

18

Introduction

However, achieving acceptable performance will require additional work such as
rewriting the software to help the HLS tool achieve the desired performance goals.

The steps for kernel development in Vitis HLS are as follows:

1. Write the C/C++ code for the function

2. Verity the C/C++ code using C-simulation.

3. Build the kernel using C-synthesis.

4. Verify the kernel generated with C++ outputs (Co-Simulation)

5. Review the HLS synthesis reports and co-simulation reports to analyze perfor-
mance

6. Repeat previous steps until performance goals are met.

Vitis HLS generates Vivado IP or Vitis Kernel based on the target flow, design
constraints, and any optimization pragmas or directives you specify. You can use
optimization directives to modify and control the implementation of the internal
logic and /O ports, overriding the default behaviors of the tool.

Several pragmas are supported to optimize the RTL design and explore the
design space to find an optimal solution according to specific space and throughput
requirements.The inference of required pragmas to produce the right interface for

your function arguments and to pipeline loops and functions within your code is
the foundation of Vitis HLS.

Vitis HLS is tightly integrated with both the Vivado Design Suite for synthesis,
place, and route, and the Vitis core development kit for heterogeneous system-level
design and application acceleration. In the Vivado IP flow, Vitis HLS also supports
customization of your code to implement broader interface standards to achieve
your design objectives. The RTL generated can be used as an IP directly within
the Vivado tool or Model composer. The Vitis Kernel flow, which is the bottom-
up design flow for the Vitis Application Acceleration Development flow instead,
supports a specific set of interfaces and is more restrictive.

This more structured flow allows correct-by-construction integration of HLS
blocks with Vitis extensible platforms and enables seamless integration with the
Xilinx Run Time (XRT) software stack, greatly simplifying the hardware/software
integration process.

19

Introduction

1.4 Thesis structure

After seeing these key points, it’s possible to understand the main objective archieve
during this thesis:

Chapter 2 describe the OFDM modulator implementation, starting from the
reference algorithm provided by TIM to an overview of the FF'T IP provided by
Xilinx; next it’s discussed the C++ code in its structure but also in the usage of
the pragmas to modify how the code is synthesized.

At the end of the chapter are shown the results in different reports in terms of
performance (Cosimulation step) and resources allocated on board (Implementa-
tion/place and route step).

Chapter 3 describe in the same way the OFDM demodulator, underlining the
main difference in the algorithm and in the code, but also in terms of performance
and resources.

In Chapter 4 it is possible to see the two design previously discussed imple-
mented using a different IP that, using Super Sample Rate, calculate the same
outputs faster but using more resources.

After a quickly presentation of the IP, it’s discussed how the code is being
modified in both the .h and .cpp files. At the end of the chapter it’s possible to
analyze the advantage and disadvantage of this implementation into respect the
previous one.

In Chapter 5 is explained the host code, followed by the three target option
to run the design and the differences between the results in the previous step and
the results from the on board tests for the different implementation analyzed.

Chapter 6 is the last chapter, where are discussed further implementation
of the algorithm (GPU) and possible optimization related to the channel model
implementation.

20

Chapter 2

Modulator Block

2.1 Matlab reference

Since the primary task of this research is the acceleration of the channel model,
the main focus is the reduction of overall latency of the kernel execution. The
accelerated function can be either defined in OpenCL or in C/C++.

These kernel modeling styles differ mainly in the way of defining the kernel
input parameters and optimization pragmas. The same kernel can be executed by
all the PEs inside a CU. For this thesis, the kernel was developed following the
Vitis HLS flow.

The starting point of thesis was a model developed in C environment and
co-simulated with matlab. As seen before, the modulator is the first block in the
chain, followed by the FIR filter module. This function takes two arguments, the
env structure (with all the parameters calculated for the model) and the input
matrix, to write the result in an output matrix of different dimensions.

The parameters taken from the env structure are:

% Parameters

NFFT = env .NFFT; % FFT size

POL = env.POL; % Number of polarizations

FS = env.FSAMPLE; % Sampling Frequency [MHz]

TTI LENGTH = env.TTI LENGTH; % TTI duration [ms]

LOUT = FS+TTI LENGTHx*1E3; % Output vector size

NSYMB TTI = env.NSYMB_ TTI,; % Number of OFDM symbols per TTI

21

Modulator Block

N1 = env.NI1;
% Number of CSI-RS positions in azimuth
N2 = env.N2;

% Number of CSI-RS positions in elevation

CP_LUT = env.ICP_LUT;

% Load look—up table for fast CP insertion

CHANNEL,_FREQ = env .CHANNEL_FREQ;

% Application of the propagation channel in frequency domain
P_CSI_RS = POL%N1%N2;

%Total number of CSI-RS antenna ports

Listing 2.1: OFDM parameters

The OFDM modulation function starts from a matrix NxM, where N is the
number of the transmitting antennas in the physical array, M is the number of
symbols transmitted. For each antenna elements, it’s performed the same operations
as shown below:

for ml =1 : P _CSI RS % for each antenna port

sigl = tb_in(ml,:); % extract port signal in freq domain

sig2 = reshape(sigl ,NFFT,NSYMB TTI).'; % shape it to a matrix
to exploit matrix

capability of Matlab fft

sig3 = ifftshift (sig2,2); % each column is a symbol
sigd = ifft (sig3 ,NFFT,2)x*sqrt (NFFT);
sigh = reshape(sigd.',1 ,NFFT«NSYMB TTI); % from matrix to array
tb_in(ml,:) = sigh;
tb_out(ml,:) = tb_in(ml,CP_LUT); % adds CP using CP LUT
end

Listing 2.2: OFDM implementation

This cycle takes for each iteration a single row of the input matrix, dividing
it in 14 block (Number of OFDM symbols per TTI) of 4096 elements, the FFT
size. The output of this reshape it’s a transposed matrix of dimension 4096x14.
At this point, this matrix pass through a function called ifftshitf, just before the
calculation of the Inverse Fast Fourier Transform.

22

Modulator Block

X =ifftshift(Y,dim) operates along the dimension dim of Y: if Y is a matrix
whose rows represent multiple 1-D transforms, then ifftshift(Y, 2) swaps the halves
of each row of Y. The effort of the function under analysis can be found in the FF'T
calculation or IFFT in case of the modulator. Matlab function X = if ft(Y, n,dim)
returns the inverse Fourier transform along the dimension dim, if Y is a matrix,
then ifft(Y, n, 2) returns the n-point inverse transform of each row.

For OFDM processing, the necessary padding for the circular convolution is
provided by adding a Cyclic Prefix rather than zero-padding the signals. In the
Matlab implementation, a LUT was used to add to each block resulted from the
FFT function a copy of the last N elements at the beginning of the block.

As result we have in the final matrix output of the modulator block each row of
16 block instead of the initial 14. The number of values N that the LUT copy at
the beginning of each one changes block by block, thus requiring a check of the
block index to select the correct value of N from the LUT.

23

Modulator Block

2.2 Kernel description

2.2.1 1IP description

The Xilinx LogiCORE IP Fast Fourier Transform (FFT) core implements the
Cooley-Tukey FFT algorithm, a computationally efficient method for calculating
the Discrete Fourier Transform (DFT) [9].

It allows Forward and inverse complex FFT (runtime configurable), fixed-point
or floating-point interface, rounding or truncation after the butterfly, Block RAM or
Distributed RAM for data, Bit/digit reversed or natural output order, Bit accurate
C model and MEX function for system modeling. Four architecture options are
available: Pipelined Streaming I/0, Radix-4 Burst I/O, Radix-2 Burst 1/O, and
Radix-2 Lite Burst I/O. In this thesis is considered the first one.

The FFT core computes an N-point forward DFT or inverse DFT (IDFT) where
N can be 2m, where m = 3 — 16. For single-precision floating-point inputs, the
input data is a vector of N complex values represented as dual 32-bit floating-point
numbers with the phase factors represented as 24 or 25-bit fixed-point numbers.
The N element output vector is represented using the same number of bits for each

of the real and imaginary components of the output data. All memory is on-chip
using either block RAM or distributed RAM.

Input data is presented in natural order and the output data can be in either
natural or bit/digit reversed order. The complex nature of data input and output is
intrinsic to the FFT algorithm, not the implementation. The inverse FET (IFFT)
is computed by conjugating the phase factors of the corresponding forward FFT.
The FFT core does not implement the 1/N scaling for inverse FFT. The scaling
is therefore applied in the forward FFT, simply with conjugated phase factors
(twiddle factors) [10].

Xilinx recommends always using the IFF'T function in a region using dataflow
optimization, because this ensures the arrays are implemented as streaming arrays.
To be sure of that, the input and output arrays of the ifft are setted as stream
using the HLS STREAM pragma.

24

Modulator Block

To use the FFT in a C++ code :

Include the hls_fft.h library in the code.

Set the default parameters using the struct hls::ip_fft::params_t
Define the runtime configuration

Call the FFT function

Optionally, check the runtime status

CU W=

The Xilinx FFT IP block can be called within a C++ design simply using the
library hls fft.h. Following that flow, the next step was to set the parameters
structure. In our case, was preferred to create a different structure with all the
static parameters settable, to be able to tune them to obtain the best performance
for our goal.

struct paraml : hls::ip_fft::params_t {
static const unsigned input_width = FFT INPUT WIDTH;
//Data input port width
static const unsigned output_width = FFT OUTPUT WIDTH;
//Data output port width
static const unsigned status_width = FFT_STATUS WIDTH;
//Output status port width
static const unsigned config width = FFT CONFIG WIDTH;
//Input configuration port width
static const unsigned max_ nfft = FFT NFFT MAX;
//The size of the FFT data set is specified as 1 and max nfft
static const bool has_ nfft = FFT HAS NFFT;
//Determines if the size of the FFT can be runtime configurable
static const unsigned channels = FFT CHANNELS;
//Number of channels
static const unsigned arch_opt = hls::ip_ fft::
pipelined__streaming_io;
//The implementation architecture

static const unsigned phase_factor_width = 24;
//Configure the internal phase factor precision

static const unsigned ordering_ opt = hls::ip_fft::natural order;
//The output ordering mode

static const bool ovflo = true;
//Enable overflow mode

static const unsigned scaling opt = hls::ip_fft::unscaled;

//Define the scaling options. The Scaling option integrated in the
IP is only available when the data format is of fixed—point type,
so the multiplication of each element by the square root of the
number of points is implemented outside the FFT IP

25

Modulator Block

static const unsigned rounding_ opt = hls::ip_fft::truncation;
//Define the rounding modes
static const unsigned mem_ data = hls::ip_ fft::block ram;
//Specify using block or distributed RAM for data memory
static const unsigned mem_phase factors = hls::ip_ fft::block_ ram;
//Specify using block or distributed RAM for phase factors memory
static const unsigned mem_reorder = hls::ip_ fft ::block_ ram;

//Specify using block or distributed RAM for output reorder memory

static const unsigned stages_block ram =
(max_nfft < 10) ? 0 : (max_nfft — 9);

//Defines the number of block RAM stages used in the implementation
static const bool mem_hybrid = false;

//When block RAMs are specified for data, phase factor, or reorder
buffer , mem hybrid specifies where or not to use a hybrid of
block and distributed RAMs to reduce block RAM count in certain
configurations
static const unsigned complex_mult_type =

hls::ip_ fft ::use__mults_performance;

//Defines the types of multiplier to use for complex multiplications
static const unsigned butterfly_ type = hls::ip_fft::use_luts;

//Defines the implementation used for the FFT butterfly

}i

Listing 2.3: FF'T IP paramenters structure

It’s important to highlight that from the Matlab function which support matrix
as input, the IP used arrays 4096x1 as input of the fft function.

In fact, both the input and output data are supplied to the function as arrays
to the fft call, to be implemented on the FFT RTL block as AXI4-Stream ports.
The conversion to AXI4-Stream interfaces brings standardization and enhances
interoperability of Xilinx IP LogiCORE solutions. Other than general control
signals such as aclk , aclken and aresetn, and event signals, all inputs and outputs
to the core are conveyed on AXI4-Stream channels.

Due to the limitation of the IP, complex<float> datatype was used for inputs
and outputs. In the case of floating point data, the data widths will always be 32-bit
and any other specified size will be considered invalid. The internal architecture of
the IP works with pseudo-floating point values, using a 24 bit mantissa and a fixed
exponent to best match the available DSP unit support on the FPGA, thus losing
precision in the calculation of the outputs with respect to using true floating point
arithmetic.

26

Modulator Block

2.2.2 C++ code and C-Simulation

The project is mainly composed by 2 source files:
modulator.hpp and modulator.cpp.

In the modulator.hpp file we can find the parameters structure used by the FFT
IP, the typedef used in the modulator function and the definition of that function.

In the modulator.cpp file we can find different functions as shown below:

« modulator: This is the top level function of the project. It takes the input
matrix, the number of blocks and antennas used in the simulation, optional
Cyclic Prefix parameter and a destination matrix where the outputs will be
write.

void modulator (
int antennas,
int blocks,
int cpl,
int cp2,
Cpx inputs [ANTENNAS] [MAX OUT],
Cpx total__fft [ANTENNAS] [MAX OUT]) ;

o IP_ config: This function set the set the runtime configuration with desired
parameters to be applied in the fft calculation. In particular the NFFT
parameter set the FF'T length and the direction parameter set if the operation
requested is fft or ifft. A possible parameter settable is the scaling factor, but
in our case can’t be used because of the float datatype.

void IP_config(config_t &fft_config) {
//set up the parameters struct

config_t *xconfig;
config = &fft__config;

config—>setNfft (12);

// Set FFT length to 512 => log2(512) =>9
config—>setDir (false);

// set FFT/IFFT
config—>setSch (0x77F) ;

//scaling factor , valid only in scaled mode fixed point

}

27

Modulator Block

o ifftshape: This function replicate the same Matlab function, taking the
inputs from the matrix block by block (4096 elements per block, FFT length),
saving them starting from the second half of the block in the first half of the
destination array and the first part in the rest of the array elements.

Figure 2.1: ifftshpe function explanation

e Cyclic Prefix: This function implement the LUT used in matlab to copy the
end section of the resultant block to the beginning of the same block in the
result matrix. The number of elements copied per block is decided using the
value in the LUT. In this case the values are the same for almost all the block
except 2 of them, so it’s used 3 fixed values in a switch/case statement. In
the same switch we set an offset value to write the block starting from the
correct index of the matrix.

FFT_LENGTH

' CP

CP + FFT_LENGTH

Figure 2.2: CP function explanation

Since the Xilinx FFT IP does not work with a matrix as input, we had to use 2
nested loops to emulate the matrix reshape in the Matlab code.

28

Modulator Block

Inside the nested loop we call in order the ifftreshape function to order correctly
the inputs in a single block variable; at this point the fft function was called from
the IP library with the parameters structure as argument; the resulting outputs
are stored in the output matrix in the Cyclic Prefix function, adding the needed
samples to have each row made by 16 block of 4096 samples.

To test the coherence between the fft function used by matlab and the function
provided by Xilinx IP was created a specific testbench that works with the same
inputs and calculate how many match/mismatch are obtained comparing the
outputs with the reference matrix from matlab (absolute error less than 1075.

It also calculate the average err for real and imaginary part and the maximum
error when mismatch happens.

The testbench is made of different files:

e bin file.h: This file contain a function used to read the input matrix from a
binary file generated on Matlab from a set provided by TIM. The complex
numbers are red column by column and saved in a vector; this vector is used
to generate the input matrix such as the other matrix, using a nested loop.

o main.cpp: This is the testbench file, where the files with the real and
imaginary part of the inputs are red and stored in a complex matrix, the
top level function is called and then the outputs are compared with a golden
reference sequence taken from matlab. In this last part we calculate the
matching percentage (using as error value 0.000001, same value used in the
Channel implementation) the maximum error and the average error for both
real and imaginary part.

o binary files with reference values generated on Matlab.

29

Modulator Block

2.2.3 C-Synthesis results

Design synthesis is the phase where the code is translated into actual circuit with
lower level implementation such as gates, flip flops, adders. The input design
is converted into net-list which describes components used and interconnections
among them.

The process of design synthesis starts with syntax check once it is provided
with HDL based design as input. The logic is then optimized by using different
optimization techniques such as redundant logic elimination, logic reduction, size
reduction and simultaneously making its implementation faster.

This leads to the integration of pragmas for design optimization such as reduction
of latency and maximization of throughput, control of the resources of the final
RTL code. These pragmas are direct to be inserted in the source code and directly
interpreted by the synthesis tool. The optimization directives are embedded into
the C source code. If the optimization directives are embedded in the code, they
are automatically applied to every solution when re-synthesized.

Pragmas used in the modulator project are:

« #pragma HLS INTERFACE:

Used to define the top level interface of the kernel. Kernels in the Vitis
development flow, support four types of interfaces. In our case, we prefer to
use the AXI4 Memory Mapped (M__AXI) for access from the kernel to global
memory or host memory. Data is accessed by the kernel through memory, in
this case DDR.

o #pragma HLS STREAM:

On Vitis HLS 2022, is possible to use a type of variable called stream, that
can improve the management of the data and speed up the calculation of the
FFT, but in the used version (2021.2) the IP is not compatible with inputs as
hls:stream datatype. A possible solution is to use the pragma HLS STREAM
to implement the interface of the FFT block as stream.

A stream is an important abstraction: it represents an unbounded, continuously
updating data set, where unbounded means “of unknown or of unlimited size”.
A stream can be a sequence of data (scalars or buffers) flowing unidirectionally
between a source (producer) process and a destination (consumer) process.

30

Modulator Block

The streaming paradigm forces you to think in terms of data access patterns
(or sequences). It lets define the algorithm in a sequential manner and the
parallelism is extracted through other means (such as by the compiler).

Complexities like synchronization between the tasks are abstracted away. It
allows the producer and the consumer tasks to process data simultaneously,
which is key for achieving higher throughput. Another benefit is cleaner and
simpler code.

#pragma HLS DATAFLOW:

The dataflow pragma enables task-level pipelining, allowing functions and
loops to overlap in their operation, increasing the concurrency of the RTL
implementation and increasing the overall throughput of the design.

When the dataflow pragma is specified, the HLS tool analyzes the dataflow
between sequential functions or loops and creates channels (based on ping pong
RAMs or FIFOs) that allow consumer functions or loops to start operation
before the producer functions or loops have completed. This allows functions
or loops to operate in parallel, which decreases latency and improves the
throughput of the RTL.

If no initiation interval (number of cycles between the start of one function
or loop and the next) is specified, the HLS tool attempts to minimize the
initiation interval and start operation as soon as data is available. The dataflow
optimization has no hierarchical implementation.

For the dataflow optimization to work, the data must flow through the design
from one task to the next to prevent the HLS tool from performing the dataflow
optimization. Other code styles to avoid with the dataflow are:

— Single producer-consumer violations
— Feedback between tasks
— Conditional execution of tasks

— Loops with multiple exit conditions

If a sub-function or loop contains additional tasks that might benefit from
the dataflow optimization, you must apply the optimization to the loop, the
sub-function, or inline the sub-function.

31

Modulator Block

. #pragma HLS TRIPCOUNT:

When manually applied to a loop, specifies the total number of iterations
performed by a loop. The Vitis HLS tool reports the total latency of each
loop, which is the number of clock cycles to execute all iterations of the loop.
Therefore, the loop latency is a function of the number of loop iterations, or
tripcount.

The tripcount can be a constant value or a range setting a minimum and
maximum value. It can depend on the value of variables used in the loop
expression or depend on control statements used inside the loop. In some cases,
the HLS tool cannot determine the tripcount, and the latency is unknown.

This includes cases in which the variables used to determine the tripcount
are input arguments or variables calculated by dynamic operation. The
LOOP_TRIPCOUNT pragma or directive is for analysis only, and does not
impact the results of synthesis.

« #pragma HLS PIPELINE:

This pragma is not used directly in this code, but during the synthesis process
there are default optimization applied where possible. Pipeline is one of
the most used optimization implemented by default, trying to reduce at the
minimum value the Initiation Interval (II).

A pipelined function or loop can process new inputs every N clock cycles,
where N is the II of the loop or function. An II of "1" processes a new input
every clock cycle. You can specify the initiation interval through the use of
the II option for the pragma.

As a default behavior, with the PIPELINE pragma or directive Vitis HLS will
generate the minimum II for the design according to the specified clock period
constraint. If the Vitis HLS tool cannot create a design with the specified 11,
it issues a warning and creates a design with the lowest possible II.

At the end of the synthesis, can be found a full report with the resulting RTL
and how is composed. In particular, the estimated values for Timing, Performance
and Resources are reported and analyzed.

32

Modulator Block

The first part gives us an overview of the timing considering the target platform.
The uncertainty is because Vitis HLS uses internal models to estimate the delay of
each operation. That cannot take into account in advance all the possible increases
or decreases of these delays in the real RTL synthesis, with subsequent place and
route, unless there is a margin of error.

] Target \ Estimated \ Uncertainly ‘
[10.00ns [7.300ns | 2700 ns |

Table 2.1: Synthesis Report of Timing (modulator)

In following table are reported the values relatives to the estimated performance.

Modules/Loops Latency 11 Trip Count | Pipelined
modulator 5572929 | 5572930 - no

VITIS LOOP 84 1 5572928 - 32 dataflow
dataflow parent_loop 174153 | 174153 - no

VITIS LOOP_86 2 174152 - 14 dataflow

dataflow in_loop 12574 12429 - dataflow
ifftshape 4246 4246 - no
iffttshape_ Pipeline 1 2051 2051 - no
VITIS LOOP_43 1 2049 1 2048 yes
ifftshape Pipeline 2 2051 2051 - no
VITIS LOOP 46 2 2049 1 2048 yes

fft paraml_ s 12428 12429 - dataflow
fft__paraml_proch 0 0 - no
fft__syn_paraml_ 32 12428 12428 - no
fft paraml proc6 0 0 - no
entry_proc 0 0 - no
Cyclic_ Pre 4577 4577 - no
Cyclic_ Pre Pipeline 1 4105 4105 - no
VITIS _LOOP_29 1 4103 1 4096 yes
Cyclic_ Pre_Pipeline 2 329 329 - no
VITIS LOOP_ 33 2 327 1 320 yes

Table 2.2: Synthesis Report of Performances (modulator)

33

Modulator Block

To have a better comprehension of the report, are explained the meaning of
each parameter shown in the table:

« Latency (Max)

This is the maximum latency relative to the loop in terms of clock cycles.
The minimum latency is not reported because not considered as significant.
This can be found in the full synthesis report generated by Vitis HLS. For
each estimate, the worst case (so the max latency value) will always be the
reference one. The number incorporates the latency of the innermost loop.

+ Initiation Interval (II)

This is a fundamental parameter in the concept of pipelining. Usually abbre-
viated with II, it represents the number of cycles necessary for the pipeline to
be able to take a new input and process it. The default target is 1: an II =1
means that the pipeline can be fed by a new input at each clock cycle. That
represents perfection in terms of execution.

Every resource within the pipeline will always and continuously be used
without any waste of clock cycles. For waste, it is meant the failure to use
a resource for one or more cycles. If there is no number, but the character -
means that the loop is not pipelined but executed regularly.

o Trip Count

The number of iterations a loop completes

e Pipelined
Indicates that the function or loop are pipelined in the RTL design.

The second part of the report shows the estimated resources to implement the
design on the target FPGA.

34

Modulator Block

Modules/Loops BRAM | DSP | FF | LUT | URAM
modulator 86 28 | 28596 | 25240 0
VITIS _LOOP_84 1 - - - - -
dataflow parent_loop_proc 52 28 | 25620 | 22168 0
VITIS LOOP 86 2 - - - - -
dataflow in_loop 52 28 | 24963 | 22001 0
ifftshape 0 0 2227 | 1599 0
ifftshape_Pipeline 1 0 0 981 124 0
VITIS_LOOP_43 1 - - - - -
iffttshape_ Pipeline_ 2 0 0 981 124 0
VITIS _LOOP_46 2 - - - - -
fft_ paraml_ s 48 0 19967 | 16308 0
ftt_ paraml_proch 0 0 3 29 0
fft__syn_paraml_ 32 48 0 19874 | 16196 0
fftt_ paraml_ proc6 0 0 2 20 0
entry_ proc 0 0 3 47 0
Cyclic_ Pre 0 28 2421 | 3655 0
Cyclic_Pre_Pipeline_ 1 0 0 351 126 0
VITIS LOOP 29 1 - - - - -
Cyclic_ Pre Pipeline 2 0 0 369 151 0
VITIS_LOOP_33 2 - - - -

Table 2.3: Synthesis Report of Resources (modulator)

As done before, follows a brief explanation of the type of resource reported:

Block RAMs (BRAM) are used for storing large amounts of data inside FPGA.

The Digital Signal Processors (DSP) are usually distributed blocks of very
wide hardware accumulators and multipliers which are able to perform MAC
and SIMD operations very quickly on wide data inputs.

Flip-flops (FF) are used to create registers, which store data

The LUT in an FPGA holds a custom truth table, which is loaded when the
chip is powered up

URAM is a special kind of memory that is wider and deeper than the BRAM
and can be used to store large data structures

35

Modulator Block

2.2.4 Co-Simulation results and waveform

The Cosimulation step check that the generated RTL has the same output of the
C++ code when stimulated with the same inputs. When we run the cosimulation,
there are some option to set the desired dump trace (none, port or all) and extra
option for Dataflow. Using the waveform viewer it’s possible also to check the flow
of the signal in case of failed test.

Cosimulation to verify the correctness of the generated code comparing the
result of source C++ code with the generate HDL. If you added a C testbench to
the project for simulation purposes, you can also use it for C/RTL cosimulation to
verify that the RTL is functionally identical to the C source code.

The C/RTL verification process consists of three phases:

The C simulation is executed and the inputs to the top-level function, or the
Design-Under-Test (DUT), are saved as “input vectors”. The “input vectors” are
used in an RTL simulation using the RTL created by Vitis HLS in Vivado simulator,
or a supported third-party HDL simulator.

The outputs from the RTL, or results of simulation, are saved as “output vectors.
The “output vectors” from the RTL simulation are returned to the main() function
of the C test bench to verify the results are correct.

)

The C test bench performs verification of the results, in some cases by comparing
to known good results. Additionally, C/RTL co-simulation automatically verifies
aspects of the DATAFLOW and DEPENDENCE pragmas or directives. If those
outputs are the same and the other checks are ok, the Test is passed and it’s
possible to go on with the Implementation step.

These results differs from values reported after HLS synthesis, which are based
on the absolute shortest and longest paths through the design. The results provided
after C/RTL co-simulation show the actual values of latency and II for the given
simulation data set (and may change if different input stimuli is used).

The next step is to map this circuit description to the actual locations on
the target device to reduce the length of the critical paths. The final stage is
encoding the circuit description into a binary format (bitstream), which is then
used to configure the FPGA on-chip resources and define the initial on-chip static
random-access memory (SRAM) contents.

36

Modulator Block

2.2.5 Implementation results

The last step in Vitis HLS is the Implementation and Place and Route.

The Vitis HLS tool is limited in terms of the estimations it can provide about
the RTL design that it generates. It can project resource utilization and timing of
the end result, but these are just projections. The Implementation Report contains
the results of Synthesis and Place and Route.

Resources Verilog
SLICE 0
LUT 13072
FF 19790
DSP 70
BRAM 65
URAM 2
LATCH 0
SRL 3039
CLB 3003
Timing

CP required 10.000
CP achieved post-synthesis 6.567
CP achieved post-implementation 7.416

Table 2.4: The Resource Usage and the Final Timing (modulator)

The Resource Usage and the Final Timing sections show a quick summary of
the resources and timing achieved by either the RTL Synthesis run or the Place &
Route run. These sections give a very high-level overview of the resource utilization
and status on whether timing goals were met or not.

The information in the succeeding sections provide details useful in debugging
timing issues. A detailed per-module split up of resources is provided to in-deep
optimization.

37

Modulator Block

The fail fast reports that Vivado provides can guide your investigation into
specific issues encountered by the tool. In the fail fast report, you should look into
anything with the Status of REVIEW to improve the implementation and timing
closure. Different sections of the fail fast report are shown in the follow table:

Criteria Guideline | Actual | Status
LUT 70% 1.00% | OK
FD 50% 0.76% | OK
LUTRAM-+SRL 25% 0.55% | OK
CARRYS 25% 0.36% | OK
MUXF7 15% 0.05% | OK
DSP 80% 0.78% | OK
RAMB/FIFO 80% 1.61% | OK
URAM 80% 0.21% | OK
DSP+RAMB+URAM (Avg) 70% 0.87% | OK
BUFGCE + BUFGCTRL 24 0 OK
DONT_TOUCH (cells/nets) 0 0 OK
MARK_DEBUG (nets) 0 0 OK
Control Sets 24444 196 OK
Average Fanout for modules > 100k cells 4 0 OK
Non-FD high fanout nets > 10k loads 0 0 OK
TIMING-6 (No comm primary clock) 0 0 OK
TIMING-7 (No comm node) 0 0 OK
TIMING-8 (No comm period) 0 0 OK
TIMING-14 (LUT on the clock tree) 0 0 OK
TIMING-35 (No comm node in the paths) 0 0 OK
Number of paths above max LUT bud 0 0 OK
(0.300ns)

Number of paths above max Net bud 0 0 OK
(0.208ns)

Table 2.5: Fail Fast Report (modulator)

38

Modulator Block

This table can be divided in 3 parts:

e Design Characteristics: The default utilization guidelines are based on SSI
technology devices and can be relaxed for non-SSI technology devices. Designs
with one or more REVIEW checks are feasible but are difficult to implement.

o Clocking Checks: These checks are critical and must be addressed.

o LUT and Net Budgeting: Use a conservative method to better predict which
logic paths are unlikely to meet timing after placement with high device
utilization.

The Timing Paths reports show the timing critical paths that result in the worst
slack for the design. By default, the tool will show the top 10 worst negative slack
paths. Each path in the table has detailed information that shows the combination
path between one flip-flop to another.

Breaking these long combinational paths will be required to address the timing
issues. So you need to analyze these paths and reason where they are coming from
and map these paths back to the user’s C code. Using both these paths and the
resources table presented earlier can help in determining and correlating the path
back to your source code.

In the next figure it’s possible to see the timing report for different path of the
modulator:

Timing Paths

Worst Negative Slack: 2.584ns(met)
Total Negative Slack: 0.000ns(met)

Max levels: 21
Max fanout: 58
Full Timing Report: verilog/report/modulator_timing._routed

Path 1 slack=2.584ns(met) levels=21 fanout=58
Path 2 slack=2.604ns(met) levels=20 fanout=58
Path 3 slack=2.614ns(met) levels=21 fanout=58
Path 4 slack=2.636ns(met) levels=20 fanout=58
Path 5 slack=2.706ns(met) levels=20 fanout=58

v v w w w

Figure 2.3: Place & Route Timing Paths Report (modulator)

39

Chapter 3

Demodulator Block

3.1 Matlab reference

Move to the other end of the channel link, it’s needed a demodulation step to
obtain the original data sent. In the Matlab implementation, the demodulator is
the last block in the chain.

This function proceeds inversely with respect to the modulator seen before,
using the same env structure for the parameters needed and matrices of variable
dimension based to the number of receiving antennas.

% Vector lengths
LIN = FS«TTI LENGTH*1E3; % Input vector size
LOUT = NFFT*NSYMB TTI; % Output size after CP removal
% CP removal and FFT operation
tb_out = zeros (P_CSL _RS,LOUT) ;
for ml =1 : P_CSI RS
temp = tb_in(ml,1:LIN);
sigl = temp(CP_LUT);
sig2 = reshape(sigl ,NFFT,NSYMB_TTI) . ';
sigd3 = fft (sig2 ,NFFT,2)x(1/sqrt (NFFT));
sigd = ifftshift (sig3,2);
sigh = reshape(sigd.',1 NFFT«NSYMB TTI) ;
tb_out(ml,:) = sigh;
end

Listing 3.1: Demodulator implementation

40

Demodulator Block

The demodulation function starts removing the cyclic prefix from the input
matrix, simply creating a smaller matrix to be processed by the FFT function. As
before, a reshape is needed before the fft function.

Matlab FFT function, as the Inverse one, performs the Fourier transform of a
matrix along the dimension dim in this case. In this case, the result is divided by
the scaling factor.At this point, this matrix pass through a function called ifftshitf
as last step, to order correctly each block. The output of this it’s reshaped and
transposed to obtain a matrix of correct dimension.

41

Demodulator Block

3.2 Kernel description

3.2.1 C++ code and C-Simulation

The C++ code is quite simpler respects to the modulator one.

The IP used for this project is the same used for the modulator, setting the
parameters accordingly to the different task to be performed (direction = true
to perform FFT instead of IFFT). Inverting the cyclic prefix function with the
fftshape function reduce the complexity of the first function, because this time we
simply ignore the cyclic prefix values when the inputs are red, to store the values
from the CPst element of each block.

In this case, the scaling factor is moved to the fftshpe function, a symmetrical
function respect to the ifftshape discussed previously, where each element of the
block is divided by the scaling factor /FFT LENGTH and the result directly
stored in the correct index of the array, considering the swap as in figure 2.1.

The main difference is in the top-level interface: in the modulator the length
of each row in the input matrix is smaller than the output one due to the CP
operation; in this case is the exactly opposite, with the input matrix bigger respect
the result.

3.2.2 C-Synthesis results

There are no differences regards the pragmas usage in the demodulator code.
The top-level function works in a dataflow region, where the top level inter-
face is set as seen before using #pragma HLS INTERFACE mode=m__axi
port=input/output bundle=gmemX, where the bundle divide the input and
the output into two different memory bank (DDRO and DDRI).

Using the same IP to perform the FFT, it’s also used the same stream mode for
the input/output arrays of the FFT function. To have a correct estimation in the
report, #pragma HLS loop__tripcount is used in the nested loop at top-level
to have a max and min value for the number of iteration in each loop.

42

Demodulator Block

Moving to the synthesis reports, we start with the same timing report of the
modulator (default settings are used to set the clock). Due to the different in the
algorithm we obtain a top-level latency of 5570689 cycles, same order of magnitude
of the modulator result but 2000 cycles less in the estimated maximum latency
(cycles).

Modules/Loops Latency 11 Trip Count | Pipelined
demodulator 5570689 | 5570690 - no
VITIS LOOP_ 69 1 5570688 - 32 dataflow
dataflow parent_loop 174083 | 174083 - no
VITIS LOOP 71 2 174082 - 14 dataflow
dataflow in_loop 12504 12429 - dataflow
Cyclic_ Pre 4173 4173 - no
Cyclic_Pre_Pipeline_ 1 4169 4169 - no
VITIS LOOP 29 1 4167 1 4096 yes
fft paraml s 12428 12429 - dataflow
fft_ paraml_proc4 0 0 - no
fft__syn_paraml 32 12428 12428 - no
fft paraml proch 0 0 - no
entry_proc 0 0 - no
fftshape 4255 4255 - no
fftshape Pipeline 1 2057 2057 - no
VITIS LOOP_38 1 2055 1 2048 yes
fftshape Pipeline 2 2057 2057 - no
VITIS LOOP 40 2 2055 1 2048 yes

Table 3.1: Synthesis Report of Performances (demodulator)

43

Demodulator Block

Similar result are obtained in the resources report, where the FF and LUT usage
decrease of 2500 each, as shown in the next figure.

Modules/Loops BRAM | DSP | FF | LUT | URAM
demodulator 82 29 | 26882 | 25992 0
VITIS _LOOP_69 1 - - - - -
dataflow parent loop proc 52 29 | 25058 | 23874 0
VITIS_LOOP_71_2 - - - - -
dataflow in_loop 52 29 | 24401 | 23707 -
Cyclic_ Pre 0 7 987 | 3292 0
Cyclic_Pre_ Pipeline_ 1 0 0 795 2430 0
VITIS_LOOP_29 1 - - - - -
ftt_ paraml_s 48 0 19967 | 16308 0
fft_ paraml_proch 0 0 3 29 0
fft__syn_paraml_ 4096 48 0 29381 | 28472 0
fft_ paraml_ proc6 0 0 2 20 0
entry_ proc 0 0 3 29 0
fftshape 0 22 3109 | 3745 0
fftshape Pipeline 1 0 0 863 564 0
VITIS_LOOP_43 1 - - - - -
fftshape_ Pipeline_ 2 0 0 863 564 0

VITIS_LOOP_46 2 - - - -

Table 3.2: Synthesis Report of Resources (demodulator)

44

Demodulator Block

3.2.3 Cosimulation results and waveform

Cosimulation report shows how the synthesis estimation set the order of magnitude,
but are not enough precise to be used. Calling more than one time the top-level
function in the testbench we can have a range of II for the different modules, as
shown in the following table.

Modules/Loops Avg IT | Max II | Min II
demodulator 7938815 | 7938815 | 7938815
VITIS _LOOP_84 1 7938815 | 7938815 | 7938815
dataflow parent loop proc || 247891 | 260487 | 247688
VITIS_LOOP_84 1 247891 | 260487 | 247688
dataflow in_loop 17706 30491 17692
Cyclic_ Pre 17706 30491 17692
Cyclic_ Pre_Pipeline_ 1 17706 30491 17692
VITIS_LOOP_29 1 17706 30491 17692
fft_ paraml s 17725 35043 13140
fftt_ paraml_proch 17725 35043 13140
fftt__syn_paraml 4096 17735 70425 4177
fftt__paraml_ proc6 17735 70426 4177
entry_proc 17706 30491 17692
ifftshape 17735 70502 4252
ifftshape Pipeline_ 1 17735 70502 4252
VITIS_LOOP_43 1 17735 70502 4252
iffttshape_ Pipeline 2 17669 63837 4252
VITIS_LOOP_46_2 17669 63837 4252

Table 3.3: Cosimulation II Estimates (demodulator)

The main difference is related to the fft module, because the synthesis estimate
the latency of a black-box module instead of cosimulation that use the actual RTL
netlist to calculated a more accurate value.

45

Demodulator Block

The latency is much higher respect the previous value. It’s depends from the
different estimation of the latency for each module.

Modules/Loops Avg Latency | Max Latency | Min Latency
demodulator 7938788 7938788 7938788
VITIS_LOOP_84 1 7938789 7938789 7938789
dataflow parent loop proc 299247 300498 260460
VITIS _LOOP_84 1 17706 300499 260461
dataflow in_loop 70323 70502 30464
Cyclic_ Pre 17691 17691 17691
Cyclic_ Pre_ Pipeline_ 1 17688 17688 17688
VITIS LOOP_29 1 17689 17689 17689
fft_ paraml s 53011 70426 12795
fft_ paraml_proch 17621 35042 0
fft__syn_paraml_ 4096 17719 70425 4177
fftt_ paraml_ proc6 17718 70425 4176
entry proc 17310 17427 0
ifftshape 17719 70501 4251
ifftshape_Pipeline_ 1 8861 61598 2055
VITIS_LOOP_43 1 17735 61599 2056
ifftshape_ Pipeline_ 2 8717 8762 2055
VITIS _LOOP_ 46 2 8718 8763 2056

Table 3.4: Cosimulation Latency Estimates (demodulator)

46

Demodulator Block

3.2.4 Implementation results

The reports from this step gives us coherent results with the modulator one, where
demodulator use less LUT but a bit more FF and BRAM of the modulator due

the different dimension of the input matrix.

Resources Verilog
SLICE 0
LUT 12493
FF 20143
DSP 70
BRAM 79
URAM 2
LATCH 0
SRL 2844
CLB 2842
Timing

CP required 10.000
CP archieved post-synthesis 6.567
CP archieved post-imolementation 7.905

Table 3.5: The Resource Usage and the Final Timing (demodulator)

Talking about the timing, as seen in the cosimulation step the value post-
implementation is higher repsect the modulator one (starting from the same value
post-synthesis).

47

Demodulator Block

In the timing Paths report we can see that the worst negative slack is lower
considering the same levels and fanout. The values for the paths are reported in

the following figure.

Timing Paths

Worst Negative Slack: 2.095ns(met)
Total Negative Slack: 0.000ns(met)

Max levels: 20

Max fanout: 58

Full Timing Report: verilog/report/demodulator_timing_routed.rpt
» Path 1 slack=2.095ns(met) levels=20 fanout=58

Path 2
Path 3
Path 4
Path 5

slack=2.116ns(met) levels=20 fanout=58
slack=2.267ns(met) levels=20 fanout=58
slack=2.332ns(met) levels=20 fanout=58
slack=2.382ns(met) levels=19 fanout=58

Figure 3.1: Place & Route Timing Paths Report (demodulator)

48

Chapter 4

1D SSR FFT IP

4.1 IP description

To overcome possible problems due to the limitation of the FFT provided by Xilinx
(pseudo-floating point unit, single precision data, ect...), we explored some different
options in terms of IPs, where the SSR FFT IP enter in the project [11].

Unlike the traditional FFT where the input/output vectors are given in 1-
dimensional, we introduce the super sample rate (SSR) in our HLS FFT design for
boosting the FPGA acceleration, so the input/output are transformed into arrays
for FPGA that can easily consume the input samples within a single column in 1
cycle [12].

Let’s take a 16 points (the shortest length allowed for HLS FFT) FFT for
example:

If we describe the 1-D input vector as:

[a[blc|d]e[f[g[h[i]j[k[l[m[nfo]p]

And the attended result as:

(A[B|C[D[E|F[G[H|I[J[K[L|M[N[O[P]

49

1D SSR FFT IP

If the SSR is set to 2, inData[SSR|[FFT _LEN/SSR] should be like:

Table 4.1: Input arrays order

The output array from HLS FFT should be:

Table 4.2: Output arrays order

The parameters structure of this IP is quite different respects the previous one
as show below:

struct fftParams : ssr_fft_default_params {
static const int N = SSR_FFT L;
static const int R = SSR FFT R;
static const fft_output_order_enum output_data_ order =
SSR, FFT NATURAL;
static const transform direction enum transform direction =
REVERSE TRANSFORM;
static const butterfly _rnd_ mode_enum butterfly. rnd_ mode =
CONVERGENT RND;
static const int twiddle_table_word_length=18;
static const int twiddle_table_intger_ part_length=2;

}s

Listing 4.1: SSR IP FFT paramenters structure

50

1D SSR FFT IP

Also while synthesizing floating point 1-D SSR FFT the parameters in the
structure which carry information such as scaling mode, twiddle factor storage
bits, butterfly rounding mode etc. which are only related to fixed point data, carry
no meaning. Instead SSR FFT parameter structure can simply define relevant
parameters as shown below.

struct fft_parameters{

static const int N = 4096;

static const int R = 16;

static const fft_output_order_enum output_data_ order =
SSR._FFT NATURAL;

static const transform direction enum transform direction =
REVERSETRANSFORM;

}

Listing 4.2: Simplified structure for float data

1-D SSR FFT also supports synthesis for single or double precision floating
point type. For synthesizing a complex floating point type, it is required that
std::complex type not to be used as a complex wrapper.

Since this wrapper has some issues, it is required that a wrapper class provided
with the Vitis DSP library called complex wrapper<...> is used for wrapping
complex float numbers.

51

1D SSR FFT IP

4.2 Code adjusstment

To use this IP were required different changes in the modulator code:

o add an fft_ top function, that order and manage the stream of inputs/outputs
from the fft function.

» change of the type, using a custom output datatype for the result of the fft,
converted to complex float in the Cyclic Prefix function.

» complex wrapper datatype replace the complex type to have synthetizable
code

« scaling loop due limitation of the complex wrapper datatype.

Those step are applied for both the SSRmodulator and SSRdemodulator kernels.

The SSRdemodulator have the same Cyclic prefix of the other demodulator
simply with the different complex type required by the IP.

The fftshift function instead need a temp variable to scale separately the real
and imaginary part of each element in the resultant array and then store in the
correct order the complex data from this variable to the output matrix.

The testbench used for the previous designs is the same used for with this IP
without any changes. With those accommodations in the code, we obtain the same
result from C sim respects to the Xilinx IP.

52

1D SSR FFT IP

4.3 Reports Analysis

In the synthesis step we can see the main differences between the 2 IPs:

The latency is quite lower because the resources used for the internal FFT are
some order of magnitude higher than the other IP as shown in the following tables.

‘ Target ‘ Estimated ‘ Unvertainly ‘
‘ 15.00 ns ‘ 10.950 ns ‘ 4.05 ns ‘

Table 4.3: Synthesis Report of Timing (SSRmodulator)

In particular, those reports shows that this IP is implemented in 3 nested
fftStages as show in figure 4.1.

v H fft_top
* o fft_top_Loop_VITIS_LOOP_66_1_proc180
@& VITIS_LOOP_66_1_VITIS_LOOP_67_2
w B innerFFT_4096_16_999999_0_1_1_0_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_s
* o castArrayS2Streaming_4096_16_complex_wrapper _float_complex_wrapper_float_s
(B CONVERT_ARRAY_TO_STREAM_LOOP
« ¥ swap_complex_wrapper_float_s
» @ streamingDataCommutor_complex.wrapper_float_1
» & streamingDataCommutor_complex_wrapper_float_3
~ [fftStage
~ o fftStageKernel525_4096._16_0_1.1_3_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_s
» @ L-BFLYs_LOOP
* @ streamingDataCommutor_complex_wrapper_float_s
» © VITIS_LOOP_231.1
~ §2 fftStage_1
» o fftStageKernelS25_4096_16_0_1_1_2_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_s
» o streamingDataCommutor..complex.wrapper_float.2
~ £ fftStage_2
v o fftStageKemellastStageS25_-4096-16_0_1_1_1_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_s
v € L.FFTs.LOOP
o calcButterFly_4096_false0_1.1_complex_wrapper_float_complex_wrapper_float_complex_wrapper_float_s
» o convertSuperStreamToArrayNScale.1.1.50000.4096.16_complex_wrapper_float.complex.wrapper_float.s
» o digitReversedDataReOrder_4096_16_float_float_s
~ o ffi_top.Loop.VITIS.LOOP_83_4_procl81
@ VITIS_LOOP_83_4_VITIS_LOOP_84_5

Figure 4.1: Modules/Loops for FFT block in SSRmodulator

Considering the Performance report of the synthesis, respects the modulator
shown before we have no result for the innerFF'T block, because in this step the
tool can’t estimate the latency of an external library.

53

1D SSR FFT IP

An important difference into respect the synthesis with the other IP is the
application of the auto-rewind in the pipelined loops inside the IFFT block.

The rewind feature means a continuous loop pipelining with no pause between
one loop iteration ending and the next iteration starting. Rewinding is effective
only if there is one single loop (or a perfect loop nest) inside the top-level function.

In terms of Resources instead, the results indicates for the top-level function
are:

Modules/Loops BRAM | DSP FF LUT | URAM
| SSRmodulator | 246 | 3774410771 [401736 [2 |

Table 4.4: Synthesis Report of top-level Resources (SSRmodulator)

The usage of resources respects the modulator is huge due to the fact that the
IP is a DSP based implementation. From the SSRdemodulator top-level, we obtain
similar results shown in the next table.

Modules/Loops BRAM | DSP FF LUT | URAM
| SSRdemodulator | 246 | 3678405243 [396823 [2 |

Table 4.5: Synthesis Report of top-level Resources (SSRdemodulator)

In the SSRdemodulator reports, we have similar results as seen expected after
the description of the main difference between modulator and demodulator with
the first IP.

o4

1D SSR FFT IP

The Implementation step with the place and route reports gives as an overview
of the main differences in the IPs implementation:

This is a better estimation respects the synthesis one, because LUT, FF, DSP
and BRAM usage is reduced significantly. This is not sufficient to have an ammount
of resources usage comparable with the other IP as shown in the following table.

Verilog
SLICE 0
LUT 347802
FF 200553
DSP 3184
BRAM 187
URAM 2
LATCH 0
SRL 22048
CLB 67483
CP required 15.000
CP archieved post-synthesis 7.569
CP archieved post-imolementation 11.734

Table 4.6: The Resource Usage and the Final Timing (SSRmodulator)

The same consideration can be extended to the Final timing part. In the next
figure it’s possible to see the timing report for different path of the SSRmodulator,
where is possible to see that, considering the different target clock period used
to avoid timing violation, the Worst Negative Slack (WNS) is higher than the
modulator but still met.

Similar results are obtained for the SSRdemodulator in therm of resources,
where all the values are very close to those in the SSRmodulator report.

59

1D SSR FFT IP

As commented in the demodulator chapter, the final timing shows that the
post-implementation value is higher than the corresponding SSRmodulator value,
starting even in this case from the same post-synthesis value.

Timing Paths

Worst Negative Slack: 3.266ns(met)
Total Negative Slack: 0.000ns(met)

Max levels: 21
Max fanout: 58
Full Timing Report verilog/report/modulator_timing_routed.rpt

» Path 1 slack=3.266ns(met) levels=21 fanout=58
» Path 2 slack=3.291ns(met) levels=21 fanout=58
» Path 3 slack=3.342ns(met) levels=21 fanout=58
» Path 4 slack=3.462ns(met) levels=21 fanout=58
» Path 5 slack=3.521ns(met) levels=21 fanout=58

Figure 4.2: Place & Route Timing Paths Report (SSRmodulator)

Very different WNS (but met in both cases) are shown in the last part of
the report: we have WNS = 3.266ns for the SSRmodulator but 1.895ns for the
SSRdemodulator. The explaination for this divergence is in the maximum levels
analized. In the first case we have a similar situation of the previous projects, with
the values shown in the figure above; in the second report we have only 7 levels
considered with a max fanout = 1024.

Timing Paths

Worst Negative Slack: 1.895ns(met)

Total Negative Slack: 0.000ns(met)

Max levels: 7

Max fanout: 1024

Full Timing Report: verilog/report/demodulator_timing._routed.rpt

Name falue
» Path 1 slack=1.895ns(met) levels=7 fanout=1024
» Path 2 slack=1.895ns(met) levels=7 fanout=1024
» Path 3 slack=1.895ns(met) levels=7 fanout=1024
» Path 4 slack=1.895ns(met) levels=7 fanout=1024
» Path 5 slack=1.895ns(met) levels=7 fanout=1024

Figure 4.3: Place & Route Timing Paths Report (SSRmodulator)

56

Chapter 5

On Device Deployment

5.1 Host code

In the Vitis environment, the software application can be written in native C+-+
using the Xilinx runtime (XRT) native API for optimized interfacing with Xilinx
Devices. The Host code is the part which sets up the environment and controls
data movement to and from the accelerator device and is executed on a general
purpose CPU.

In general, the structure of the host application can be divided into the following
steps:

o Loading the .xclbin generated into the program. The device.load xclbin
(binaryFile) command is used to load the kernel binary.

o Create xrt::kernel objects from the loaded device binary, and associate buffer
objects (xrt::bo) with the memory banks assigned to kernel arguments.

o Create the input test data and map the buffers to the host memory
e Setting up the kernel and kernel arguments.

o Transfer data back and forth from the host application to the kernel using
xrt::bo::sync commands and buffer reads and write commands.

o Execute the kernel using an xrt::run object to start the kernel and wait for
kernel execution.

o Verification step comparing the returned outputs in the host with a reference.

57

On Device Deployment

Following this list, the host.cpp was written dividing the file in 2 functions:
In the main function there are the device load command and other preliminary
operations. After that, the function run_krnl is called. In this function can be
found the core operation of the host code, starting from buffers allocation into
the device memory, synchronization of the buffer content with the device and the
kernel execution.

At the end, two verification steps are used to validate the operation, the first
one to check the correctness of the results that comes back to the host as done in
the testbench on Vitis HLLS and the second report the throughput achieved.

The first step of optimization is burst reading from off-chip memory and writing
to on-chip one since the input data read from the interface undergoes iterative
operations. On-chip memory (BRAM or URAM) can be partitioned in a way that
computation or copying can be performed in parallel. Thus the latency is reduced.

CPU FPGA
[e :___________________:
: : 1 . 1 User
1 Host Application ! ! C Functions H Application
: 1 1 ! Code
| e e e 1 e e e
A
XRT API AXl Interfaces
Acceleration
XRT Global Memory Platform
Drivers DMA Engine
! PCle 4 v

X27432-112922

Figure 5.1: Host/Device interface

The host code compilation results into a host executable application. The FPGA
specific code called kernel is compiled using Xilinx "xocc" compiler. The compiler
generated object files are then combines with FPGA platform files producing .xclbin
binary file. With source code in C/C++, supported by the same compiler as already
stated, the Vitis environment fully supports HLS optimization techniques.

58

On Device Deployment

The used software provide three different types of build targets: Software
Emulation, Hardware Emulation and Hardware Implementation.

The code functionality verification and source-level debugging can be performed
in a much faster way using Software Emulation. Hardware Emulation gives more
accurate view of RTL implementation behaviour. The Hardware Implementation
simulate the board using the platform files and generate the bitstream file needed
to execute the kernel on board [13].

Kernels

vitis HW || PL " PL Al Engine
Platform (RTL) (Vitis HLS) (AIE Compiler)

Vitis v++ Linker

device.xclbin

! !
Run r.fn Device . HW Emulation

£ i,
] Debug @ L2n) m

Figure 5.2: Vitis unified software development flow

In the following paragraph are reported the results for the 3 different targets for
each project.

59

On Device Deployment

5.2 Modulator

5.2.1 SW Emulation

The main goal of software emulation (sw_emu) is to ensure functional correctness
of the host program and kernels. Software emulation provides a purely functional
execution, without any modeling of timing delays, or latency; it does not give any
indication of the accelerator performance. The kernel code is always compiled and
running natively.

The application code is either:

- Compiled and running natively on an x86 processor (Data Center platforms)

- Cross-compiler to the Arm processor and running in an emulator (Embedded
platforms)

Thus, software emulation is typically used for algorithm refinement, debugging
functional issues, letting developers iterate quickly through the code to make
improvements or bugfix.

The v++ compiler does the minimum transformation of the kernel code to create
the FPGA binary to run the host program and kernel code together. Software
emulation takes the C-based kernel code and compiles it with GCC. It runs each
kernel as a separate C-thread. If there are multiple compute units of a single kernel,
each CU is run as a separate thread.

Therefore, it mimics the parallel execution model of the hardware. However,
within each kernel the execution is modeled sequentially although there might be
parallelism within a kernel when running on hardware.

The software emulation driver implements the XRT API and acts as a bridge
between the user application running XRT and the device process modeling the
hardware components.

60

On Device Deployment

5.2.2 HW Emulation

Hardware emulation runs an RTL simulation of the programmable logic design,
where the PL kernels are integrated with a cycle-approximate model of the hardware
platform.

Hardware emulation is especially useful for the following tasks:

o Checking the functional correctness of the RTL code synthesized from the C,
C++ kernel code

» Testing the interactions between different kernels or multiple CUs

« Using hardware waveforms to gain detailed visibility into internal activity of
the kernels

o Getting initial performance estimates for the application

During hardware emulation, kernels are run in the Vivado logic simulator, with
a waveform viewer to examine the kernel design. Some third-party simulators are
also supported as described in Simulator Support. In addition, hardware emulation
provides performance and resource estimates for the hardware implementation.

modulator_1
anm _r—. Resources
- o i i _block LUT: 13,940 (1.07 %)
- x86 PCIE TITITIT ocks BRAM: 32 (1.59 %)
TTT —cpl URAM: 2 (0.45 %)
DDRI[0] —ep2 Register: 21,313 (0.86 %)
. DSP: 76 (0.84 %)
inputs |
il 111]H total_ﬂt
DDR[1] modulator

Figure 5.3: System Diagram (modulator)

61

On Device Deployment

This is comparable to the synthesis and cosimulation steps seen on Vitis HLS.
Also the reports gives us similar results in terms of performances and resources.
The main difference is in the timing report, where the software modify the target
clock period to the value related to the main clock frequencies of the board

(300M Hz— > 3.33ns). In this case the estimated period is 2.433ns with an
uncertainly of 0.90ns.

SystemC models are provided for the key IP used in the hardware platform
(.xpfm files) to improve simulation performance and results.

In hardware emulation, compile and execution times are longer than software
emulation, but it provides a detailed, cycle-accurate, view of kernel activity. Xilinx
recommends using small data sets for validation during hardware emulation to
keep runtimes manageable.

62

On Device Deployment

5.2.3 Hardware implementation

When the build target is the hardware, v-++ builds the FPGA binary for the Xilinx
device by running Vivado synthesis and implementation on the design. It is normal
for this build target to take a longer period of time than generating either the
software or hardware emulation targets in the Vitis IDE.

Summary
Resource Utilization Available Utilization %
LT 190573 1302720 14,63
LUTRAM 28177 600480 4.69
FF 20936554 2607360 11.26
BRAM 359 2016 17.81
URAM 2 960 0.21
DSP B6 9024 0.95
10 297 297 100.00
GT 16 24 66.67
BUFG 43 1008 4,27
MMCM 5 12 41.67
PLL 10 24 41.67
LUT A 15%
LUTRAM 1 5%
FF A 11¢°
BRAM 18%
URAMA 1%
DSFq 1%
101 100%
GTH 67%
BUFG 1%
MMCM 42%
PLLA a2
0 25 'so 75 100

Utilization (%)

Figure 5.4: Vivado utilization report (modulator)

63

On Device Deployment

To get a better view of the RTL design, it is possible to run Vivado synthesis
and place and route on the generated RTL design, and review actual results of
timing and resource utilization.

In the report above, there is a realistic estimation of the resources usage. Vitis
HLS report is out-of-context. It implement only the generated RTL without any
I/O considerations.

Using Vivado instead, were considered the 1/0, the AXI bus used to connect
to the memory controller and all the logic required by the host (interfaces, PCI
express, etc...).

Comparing the values, it is easy to see the differences in the BRAM usage
due to the needed logic by the AXI interface but also new elements such as I/0,
Transceivers (GT), MMCM and PLL that are now estimated in this more accurate
implementation. However, the final FPGA binary can be loaded into the hardware
of the accelerator card, or embedded processor platform, and the application can
be run in its actual operating environment.

64

On Device Deployment

5.3 Demodulator

Referring to the following report, there is no differences between this and the
graph seen for the modulator. The percentage are exactly the same except for the
BRAM (1% difference) and the LUT utilization is quite less as estimated during
the previous steps on Vitis HLS.

Summary
Resource Utilization Available Utilization %
LuT 189060 1302720 14,51
LUTRAM 28250 600480 4,70
FF 2081408 2607360 11.18
BRAM 352,50 2016 17.49
URAM 2 960 0.21
DsP 86 9024 0.95
10 297 297 100.00
GT 16 24 66.67
BUFG 43 1008 4,27
MMCM > 12 41.67
PLL 10 24 41.67
LUT A 15
LUTRAM A 5%
FF - 11%
BRAM 17%
URAMA 1%
DSPq4 1%
10 A 100%
GT 67%
BUFG 4%
MMCM A 42%
PLL 42%
0 25 "so 75 100

Utilization (%)

Figure 5.5: Vivado utilization report (demodulator)

65

On Device Deployment

5.4 SSRModulator

The results for the SSRmodulator confirm the huge amount of resources usage
respects to the same component with a different IP. In particular, as discussed with
Vitis HLS reports, this IP use 25% more LUT, 20% more FF and the 40% more
DSP than in modulator, where the I/O, GT, MMCM and PLL usage is the same
because they share the same interface at top-level.

Summary
Resource Utilization Available Utilization %
LUT 525771 1302720 40,36
LUTRAM 57752 600480 9.62
FF 798108 2607360 30.61
BRAM 407.50 2016 20,21
URAM 2 960 0.21
DsSP 3790 9024 42,00
10 297 297 100.00
GT 16 24 66,67
BUFG 49 1008 4,86
MMCM =] 12 41.67
PLL 10 24 41.67
LUT - 40%
LUTRAM - 10%
FF 31%
BRAM A 20%
URAM A 1%
DSP 42°
10 A 100%
GT 67%
BUFG A
MMCM A 42%
PLLA a2:
0 25 s 75 100
Utilization (%)

Figure 5.6: Vivado utilization report (SSRmodulator)

66

On Device Deployment

5.5 SSRDemodulator

In the same way, the two SSR implementation use the same amount of resources,
where the SSRdemodulator usage is 1% less than the SSRmodulator in the FF,
LUTRAM and DSP, as shown in the next figure.

Summary
Resource Utilization Available Utilization %
LUT 521281 1302720 40,01
LUTRAM 56965 600480 9.49
FF 789840 2607360 30.29
BRAM 404,50 2016 20,06
URAM 2 960 0.21
DsSP 3688 9024 40.87
10 297 297 100.00
GT 16 24 66,67
BUFG 49 1008 4,86
MMCM =] 12 41.67
PLL 10 24 41.67
LUT A 40%
LUTRAM - 9%
FF 30%
BRAM A 20%
URAM A 1%
DSP 41%
10 A 100%
GT 1 67%
BUFG A 5%
MMCM A 42%
PLL - 42%
o 25 © so 75 100 '
Utilization (%)

Figure 5.7: Vivado utilization report (SSRdemodulator)

67

Chapter 6

Next steps

6.1 Conclusion

The channel model is by far the most computing intensive part of the link level
simulations of Multiple-Input and Multiple-Output 5G New Radio communication
systems, the bottleneck of the whole acceleration project.

The achieved throughput is consistent with the result obtained for the link
implementation, so further optimization in terms of performance wasn’t explored
during this thesis even if possible.

Module #Inputs | #O0utputs | Latency(cycles) | Throughput(%)
modulator 1835008 1966080 5572993 2.835
demodulator 1966080 | 1835008 5570785 3.036
SSRmodulator 1835008 1966080 5569559 2.833
SSRdemodulator || 1966080 1835008 5570689 3.036

Table 6.1: Calculated throughput for different modules

In terms of resources, the difference between the IPs implementations bring us
to use the first one and the kernels developed using it. To confirm that data is
possible to run the applications on the target accelerator card. When running the
design you can specify a number of trace options to capture design data during
runtime to take real values to be compared with the estimated one and confirm
performance results.

68

Next steps

During this step, the host program, written in C/C++ and using the XRT
API, is compiled into an executable that runs on an x86 based host processor
while hardware-accelerated kernels are compiled into an executable device binary
(.xclbin) that runs within the programmable logic (PL) region of an Xilinx device
on the Alveo accelerator card.

6.2 Further Optimizations

Talking about the possible optimization and future steps related to this thesis,
there are several ways that can be taken.

It was taken into account the possibility to have a unique component to perform
modulation/demodulation based of an host parameter. In this work was preferred
to work with two different kernels to be able as needed to optimize the two in
different way if the performance obtained had been very different. A different
implementation is the one provided by Intel, where in the same design it’s possible
to see OFDM modulator and demodulator [14].

It is possible to evaluate the boost in performance also using a different type of
hardware to accelerate the algorithm, as Graphic Compute Unit (GPU). It allows
a very high level of parallelism that can be exploited to significantly speed up the
computation as in FPGA.

GPUs address a major drawback of CPUs — the ability to process a large amount
of data in parallel and can operate on very wide data sets. Fundamentally, GPUs are
CPU-like because they have fixed hardware and operate using software instructions.
A single instruction could process a thousand pieces of data or more, making
them suitable for specific domains such as graphics acceleration, high performance
computing, video processing, certain forms of machine learning, and more.

If you're used to programming FPGAs, the process of writing GPU code will
feel very similar, even if the outcome is a little different. Programming an FPGA
consists of writing code, translating that program into a lower-level language as
needed, and converting that program into a binary file. Then, the program is feed
to the FPGA just like for a GPU reading a piece of software written in C++-.

It was studied a CUDA implementation of the channel model that can be
extended to all the link, so implementing also the discussed blocks in CUDA with
all the other blocks to compare the boost in performance respects to the FPGA
implementation would be interesting.

69

Bibliography

5G; NR; NR and NG-RAN Owerall description(3GPP TS 38.300 version
17.0.0 Release 17). URL: https://wuw .etsi.org/deliver/etsi_ts/
138300_138399/138300/17.00.00_60/ts_138300v170000p . pdf (cit. on
p. 2).

5G; NR; Physical layer; General description (3GPP TS 38.201 version 17.0.0
Release 17). URL: https://www.etsi.org/deliver/etsi_ts/138200 _
138299/138201/17.00.00_60/ts_138201v170000p.pdf (cit. on p. 4).

5G; NR; Services provided by the physical layer (3GPP TS 38.202 version

17.83.0 Release 17). URL: https://www.etsi.org/deliver/etsi_ts/
138200_138299/138202/17.03.00_60/ts_138202v170300p . pdf (cit. on

p. 4).

What is OFDM? URL: https://www.mathworks . com/discovery/ofdm.
html (cit. on p. 7).

Alveo U280 Data Center Accelerator Card. URL: https://www.xilinx.com/
products/boards-and-kits/alveo/u280.html (cit. on p. 10).

Programming an FPGA: An Introduction to How It Works. URL: https://
www.xilinx.com/products/silicon-devices/resources/programming-
an-fpga-an-introduction-to-how-it-works.html (cit. on p. 12).
UltraScale Architecture and Product Data Sheet: Overview. URL: https :
//www.xilinx . com/content/dam/xilinx/support/documents/data _
sheets/ds890-ultrascale-overview.pdf (cit. on p. 12).

Vitis High-Level Synthesis User Guide. URL: https://docs.xilinx.com/r/
en-US/ugl1399-vitis-hls (cit. on p. 18).

Fast Fourier Transform v9.1 LogiCORE IP Product Guide. URL: https :
//docs.xilinx.com/r/en-US/pgl09-xfft/Fast-Fourier-Transform-
v9.1-LogiCORE-IP-Product-Guide (cit. on p. 24).

Vitis High-Level Synthesis User Guide. URL: https://docs.xilinx.com/
r/2021.2-English/ug1399-vitis-hls/Using-the-FFT-Function (cit. on
p. 24).

71

https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/17.00.00_60/ts_138300v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138300/17.00.00_60/ts_138300v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138201/17.00.00_60/ts_138201v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138201/17.00.00_60/ts_138201v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138202/17.03.00_60/ts_138202v170300p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138202/17.03.00_60/ts_138202v170300p.pdf
https://www.mathworks.com/discovery/ofdm.html
https://www.mathworks.com/discovery/ofdm.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/pg109-xfft/Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg109-xfft/Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg109-xfft/Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Using-the-FFT-Function
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Using-the-FFT-Function

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

1-Dimensional(Line) SSR FF'T L1 FPGA Module. URL: https://xilinx.
github.io/Vitis_Libraries/dsp/2021.2/user_guide/L1.html (cit. on
p. 49).

Vitis__Libraries 1D FFT Tests. URL: https://github.com/Xilinx/Vitis_
Libraries/tree/main/dsp/L1/tests/hw/1dfft (cit. on p. 49).

Vitis-Getting-Started. URL: https://xilinx.github.io/Vitis-Tutorials/
2021-2/build/html/docs/Getting_Started/Vitis-Getting-Started.
html (cit. on p. 59).

Implementing OFDM Modulation and Demodulation. URL: https://www.
intel.com/content/www/us/en/support/programmable/support-reso
urces/design-examples/horizontal/vhd-cyclic-prefix-insertion-
ofdm.html (cit. on p. 69).

N. A. Shah. «Optimization and Acceleration of 5G Link Layer Simulatory.
MS Thesis. Torino, Italy: Politecnico di Torino, 2019.

Nasir Ali Shah, Mihai T. Lazarescu, Roberto Quasso, Salvatore Scarpina, and
Luciano Lavagno. «FPGA Acceleration of 3GPP Channel Model Emulator
for 5G New Radio». In: IEEE Access 10 (2022), pp. 119386-119401. por:
10.1109/ACCESS.2022.3221124.

72

https://xilinx.github.io/Vitis_Libraries/dsp/2021.2/user_guide/L1.html
https://xilinx.github.io/Vitis_Libraries/dsp/2021.2/user_guide/L1.html
https://github.com/Xilinx/Vitis_Libraries/tree/main/dsp/L1/tests/hw/1dfft
https://github.com/Xilinx/Vitis_Libraries/tree/main/dsp/L1/tests/hw/1dfft
https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/docs/Getting_Started/Vitis-Getting-Started.html
https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/docs/Getting_Started/Vitis-Getting-Started.html
https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/docs/Getting_Started/Vitis-Getting-Started.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/vhd-cyclic-prefix-insertion-ofdm.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/vhd-cyclic-prefix-insertion-ofdm.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/vhd-cyclic-prefix-insertion-ofdm.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/horizontal/vhd-cyclic-prefix-insertion-ofdm.html
https://doi.org/10.1109/ACCESS.2022.3221124

	List of Tables
	List of Figures
	Acronyms
	Introduction
	5G Protocol Stack
	5G Physical Layer
	Channel simulation
	OFDM Modulation

	Board description
	FPGA

	Vitis Unified Software Platform
	Vitis HLS

	Thesis structure

	Modulator Block
	Matlab reference
	Kernel description
	IP description
	C++ code and C-Simulation
	C-Synthesis results
	Co-Simulation results and waveform
	Implementation results

	Demodulator Block
	Matlab reference
	Kernel description
	C++ code and C-Simulation
	C-Synthesis results
	Cosimulation results and waveform
	Implementation results

	1D SSR FFT IP
	IP description
	Code adjusstment
	Reports Analysis

	On Device Deployment
	Host code
	Modulator
	SW Emulation
	HW Emulation
	Hardware implementation

	Demodulator
	SSRModulator
	SSRDemodulator

	Next steps
	Conclusion
	Further Optimizations

	Bibliography

