
POLITECNICO DI TORINO
Department of Control and Computer Engineering (DAUIN)

Master’s Degree Thesis

Leveraging Deep Learning Techniques for
Cross-Family Side-Channel Attacks

on 8-bit Microcontrollers

Advisor Candidate
Paolo Ernesto Prinetto Antonio De Luca
Co-Advisor
Samuele Yves Cerini

Academic Year 2022/2023





Acknowledgements

I wish to sincerely thank Professor Prinetto for the opportunity to work on this thesis,
having me face problems that I never thought I could solve by myself, and for the avail-
ability towards me. Special thanks go to his team, that made me feel welcome since the
very first day and who I owe many coffees to, more than I can remember.

I would like to express my deepest gratitude to Samuele “Sem” Cerini, who helped me
throughout the work and shared passion for the topics (and problems) of this thesis.

I am extremely grateful to my three families: all my family in Lucera to whom I dedicate
my whole academic path, my Portuguese family who has adopted me since three years and
my friends, that I consider as a further family. You are too many to thank individually,
but you know how much you all mean to me.

Finally, to my girlfriend, the one person that made all of this possible, cheering me up in
bad times. The only person I feel unutterably close to, even across different countries.

1



Abstract

The decreasing price of consumer electronics and the rise of the Internet of Things (“IoT”)
paradigm are contributing to the massive spread of embedded systems and microcontrollers.
These low cost devices, often characterised by limited performance, internet connectivity
and low power consumption are now permeating our lives with applications in home
appliances, wearable devices and industrial controllers.

Despite being so widely spread, the protection of the data they handle is rarely tackled.
Cryptographic algorithms were developed to provide effective protection mechanisms
against cyber attackers, although their implementation on physical devices plays an
important role in their attack resistance, exposing new vulnerabilities.

The elevated number of embedded devices combined with the importance of sensitive
data led to new attack methodologies, known as Side-Channel Analysis (“SCA”). SCA
consists of a series of techniques that exploit energy leakages (e.g., power, thermal,
electromagnetic) to extract secret information about data handled by a device, and
decrease the time needed to lead a successful attack by orders of magnitude with respect
to brute-force.

In recent years, Deep Learning techniques have been leveraged to achieve improve-
ments in this research field, leading to the rise of Deep Learning Side-Channel Analysis
(“DLSCA”).

Deep Learning promises to solve some of the problems encountered by classic Side-
Channel Analysis techniques, such as the need for human intervention (e.g., features
extraction and leakage model selection), and aims at improving the accuracy and the
efficiency of the attacks.

The relevance of DLSCA is increasing, as demonstrated by the large quantity of
studies carried out since the past mid-decade. Similarly, new challenges for researchers in
the field are arising, such as the need to use the knowledge acquired during attacks to
build effective defensive mechanisms, the portability of attacks across different devices or
“ablation” as a solution to design lighter Deep Learning models.

Among these challenges, the problem of the portability of attacks is tackled only
marginally, needing considerable expertise in both Security for Embedded Systems and
Deep Learning Techniques.

This work aims at studying the behaviour of Deep Learning models in cross-devices
scenarios, exploring their capabilities and limits in new portability contexts, taking
advantage of the novelties introduced by DLSCA.

The knowledge gained from devices in a specific group of microcontrollers (known as
profiling devices, considering Microchip’s PIC18XXXK42 family) is exploited to launch an
attack on devices from a different group of microcontrollers (referred to as attack devices,
from Microchip’s PIC18XXXK20 family), despite the differences between the two groups.

In the case of Power Side-Channel Analysis, the acquisition of traces from the 8-bit
microcontrollers is performed thanks to an open-source toolkit called “ChipWhisperer”,
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by NewAE. The work relies on the open-source framework “AISY”, developed by the Delft
University of Technology, and partly on the framework for DLSCA by eShard.

The results obtained demonstrate that it is possible to perform cross-family attacks with
all the trained models shown in the thesis, although the best performance can only be
achieved leveraging an ad-hoc model tuned for the profiling dataset, correctly configured
for the attack.
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Chapter 1

Introduction

Digitalization is a phenomenon that is becoming more and more relevant globally, as
demonstrated by reports carried out in recent years [31]. Most data that used to be
analog is now being converted to digital, increasing accessibility and concurrently the
concern for security. Making a comprehensive approach to security that incorporates all
relevant dimensions is essential [32].

In the recent past, techniques such as Side-Channel Analysis helped highlight the
weaknesses of electronic devices [12]. Today, in the era of Artificial Intelligence, Deep
Learning can unleash the power of Side-Channel Analysis and provide further hints about
how cyber criminals lead their attacks [33].

Even though studies carried out in this research field demonstrated to be very promis-
ing, many of them lack important details about the experimental setup or used data,
making the experiences irreproducible. This is in contradiction with the scientific method
proposed by Galileo Galilei and causes confusion in the academic community, since results
often claim to outperform the current State of the Art without allowing researchers to
verify them [22].

Continuing along the path outlined by researchers, this thesis work emphasizes the
reproducibility of experiments using frameworks from the State of the Art [34]. The
conducted studies enable the understanding of the level of generalization Deep Learning
models can achieve during cross-family attacks. The knowledge gathered can be leveraged
to eventually build, in the future, increasingly effective protection mechanisms.

The thesis is structured as follows:

• Chapter 2 summarizes all the necessary information regarding the Advanced En-
cryption Standard (AES) and the software implementation chosen for the study;

• Chapter 3 gives an overview of what Side-Channel Analysis consists of, the main
attack approaches and the latest countermeasures developed;

• Chapter 4 describes the main topic of the work, Deep Learning Side-Channel
Analysis. Its main features are highlighted, as well as its pros and cons with respect
to traditional Side-Channel Analysis. Mentions to the most relevant frameworks
and datasets in the research field are present;

• Chapter 5 represents the development flow followed during the work.
In the first part of the chapter, the experimental setup is presented for the sake
of the reproducibility of the experience, as well as the firmware developed for the
purpose. The section also focuses on ChipWhisperer™, the tool used during the
development.
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In the second part of the chapter, the Deep Learning models used to attack the
previously generated datasets are discussed;

• Chapter 6 reports the results obtained in chapter 5;

• Chapter 7 presents significant conclusions about the thesis, as well as possible new
ideas to explore in the future and improvements to the current work.
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Chapter 2

Advanced Encryption Standard
(AES)

2.1 Introduction to AES

As early as in 1977, the National Institute of Standards and Technology (NIST) chose
the Data Encryption Standard (DES) as the cryptographic algorithm to be used for non
confidential data.
DES is a symmetric-key algorithm, it uses the same key both for encryption and decryption.
It is a block cipher 1 based on a Feistel Network 2, considered problematic due to multiple
factors, such as the short size of the key (56 bits only), the complexity of the structure it
is based on and the suspects that involved the National Security Agency (NSA) about
the presumed insertion of a backdoor3.

Since enlarging the key size would make the algorithm safer but at the same time cause
longer duration for encryption and decryption [35], in 1997 a call for a new algorithm that
could replace DES took place. The winners of the contest were two Belgian cryptographers,
Joan Daemen and Vincent Rijmen, that proposed an implementation of what would be
later called Advanced Encryption Standard (AES) [36].

AES, in a similar way to its predecessor, is a symmetric-key block cipher. It addresses
all problems DES is affected by, since:

• The key size is larger than the one DES handles, allowing key sizes of 128, 196 or
256 bits;

• The structure is not based on a Feistel Network, but rather on Shannon’s Confusion
and Diffusion principle. It states that a secure algorithm should create confusion,
obfuscating the relationship between the plaintext and the corresponding ciphertext,
and diffusion, spreading the plaintext over the whole ciphertext in order to make it
harder for attackers to analyze the encrypted data;

• AES was chosen after a public call for a contest took place. This process has a double
advantage, since it makes the choice more transparent (thus, reducing the probability
of inserting a backdoor in the algorithm) and allows for review of researchers, who
can report possible faults in the algorithm.

1A block cipher is a cryptographic algorithm that operates on a sequence of bytes, called block, rather
than on a stream of bits.

2The Feistel network operates on each data block by dividing it into two halves, performing operations
on each half and then recombining them.

3In cybersecurity, a backdoor is a method of bypassing normal authentication and security controls in
a system, allowing unauthorized access to that system.
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In 2000 the NIST formally adopted AES as a standard, and consequently companies have
incorporated software and hardware implementations of the algorithm in their products.

2.2 The Algorithm

The AES algorithm operates on fixed-sized blocks of 16 bytes of data, arranged into a 4x4
matrix and referred to as State. The key size, 128, 192 or 256 bits, determines the number
of rounds in the encryption process: 10 rounds for AES-128, 12 rounds for AES-192 and
14 rounds for AES-256. At each round a round key is created out of the original key
thanks to the key schedule algorithm.

The AddRoundKey, SubBytes, ShiftRows and MixColumns steps constitute the basic
operations used both for encryption and decryption in AES, although their order varies in
the two processes.

As stated in Section 2.1, AES follows Shannon’s principle of Confusion and Diffusion.
Confusion is achieved by the SubBytes and MixColumns steps, which aim to make the
relationship between the plaintext and the ciphertext complex and non-linear4. Diffusion
is achieved by the ShiftRows and MixColumns steps, which aim to distribute the effect
of each change in the plaintext throughout the entire ciphertext [36].

2.2.1 Encryption Process

Encryption protects information from unauthorized access or manipulation, as it trans-
forms data from a readable form (plaintext) to an unreadable one (ciphertext). The block
diagram of encryption in AES-128 is depicted in Figure 2.1.

At first, an AddRoundKey operation is performed. Then, the encryption process iterates
through all the four basic blocks N-1 times, where N is the number of rounds in the AES
version taken into account (e.g., 9 out of the 10 rounds in AES-128). The last round is
slightly different from the previous ones since it skips the MixColumns operation. Skipping
it makes the algorithm faster and does not change the security of the encryption process,
as it consists in a linear transformation that can be reversed easily by an attacker [36].

4In cryptography, a non-linear operation refers to a mathematical function that cannot be expressed
as a linear combination of its input variables.
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Figure 2.1: Diagram of operations performed during encryption in AES-128.
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The AddRoundKey Operation

During this linear operation the State is XORed with the Round Key, as shown in Figure
2.2.

Figure 2.2: The AddRoundKey operation [1].

The SubBytes Operation

This operation performs the substitution of each of the bytes in the State, thanks to a
Look-Up Table (LUT) known as S-Box. The S-Box mixes the plaintext in order to make
attacks harder. It is designed to be highly non-linear and resistant to cryptanalysis [37].
The operation is illustrated in Figure 2.3.

Figure 2.3: The SubBytes operation [2].

The ShiftRows Operation

This linear operation, as the name suggests, shifts the rows of the State by a quantity of
positions to the left equal to the index of the row itself in the matrix (e.g., row 0 will
keep its position in the matrix, row 1 will shift left by one position, and so forth). Figure
2.4 depicts its behavior.
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Figure 2.4: The ShiftRows operation [3].

The MixColumns Operation

During this linear operation each column in the State matrix is multiplied by a constant
polynomial c(x), as illustrated in the Figure 2.5. This step further increases the diffusion
of the plaintext throughout the cipher.

Figure 2.5: The MixColumns operation [4].

2.2.2 Decryption Process

Since AES is a symmetric-key cipher, decryption uses the same key of the encryption. The
same four basic blocks described in the previous Section are employed in a reverse order,
although three of them (SubBytes, ShiftRows, MixColumns) are slightly different with
respect to those employed in the encryption, due to the inverted mathematical operations
that take place in this process. On the other hand, since AddRoundKey consists of a XOR
operation and is intrinsecally invertible, the block is unchanged. Thus, the sequence of
operations in AES decryption is:

1. AddRoundKey;

2. InvMixColumns;

3. InvShiftRows;

4. InvSubBytes.

2.2.3 Key Schedule Algorithm

The algorithm produces each round key and is composed of multiple steps:
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1. Copy of the Key. The original key is copied and used for the first round, so that
the encryption process can start immediately. For AES-128 the first round key is
an exact copy of the original key, while in AES-192 and AES-256 the first round key
is equal to the original key for the first 128 bits;

2. Key Expansion. The copy of the key is expanded thanks to mathematical
operations and a new set of round keys, each of 16 bytes, is derived (10 keys for
AES-128, 12 for AES-196 or 14 for AES-256). They are not yet ready to use, as their
entropy is still too low;

3. Key Schedule Core. This step operates on each word of the copy of the key
(i.e., the one generated at the first step of this algorithm). A series of both
linear operations, such as XOR of each word by a round constant, and non-linear
transformations, such as substitutions through a Look-Up Table, takes place.

2.3 Cryptanalysis of the AES Algorithm

Cryptanalysis is the study of the methods that aim to analyze and eventually break cryp-
tographic ciphers, leveraging their weaknesses in order to obtain decrypted information
without knowing the key. The main cryptanalysis methodologies are listed below.

Brute-force attack, which consists in attempts that explore the whole key space. The
number of possible combinations that a cyber attacker would have to try before breaking
a key in AES-128 is on average 1

22
128 times. If a computer could try 240 attempts per

day, it would take about 425 sextillion years to guess the key. In order to give figures
that show the unfeasibility of a brute-force attack, the sun is expected to run out of
hydrogen in “only” 5 billion years. The number of guesses is further increased in AES-192
and AES-256 (122

192 and 1
22

256, respectively).

Linear cryptanalysis, which aims to find a linear function that approximates the
relationship between the plaintext, ciphertext and key of the encryption algorithm. By
comparing the predicted key with other known plaintext/ciphertext pairs, the crypt-
analyst can refine their approximation and eventually discover the correct key. The
process of parameters tuning in the linear function can be both time-consuming and
resource-intensive. Moreover, AES was designed in order to be resistant against this kind
of attacks [36].

Differential cryptanalysis. It is a statistical analysis which is based on the observation
of differences in the ciphertext when changes are made in the plaintext. It is proved
to be effective with AES, although it requires a large amount of data, as well as high
computational power [38].

Side-Channel Analysis. This class of attacks exploits information leaked by devices
that implement AES. Its main drawback stems from the need for physical access, at least
for the first phase of the attack. It is the main subject of the next Chapter, where it is
extensively examined.

2.4 AES and Hardware Vulnerabilities

Although no serious threat to the mathematical structure of the AES algorithm has been
found out yet, its implementation on physical devices has a huge impact on its security.
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Custom versions of any cryptographic algorithm are never recommended, since the
creator may lack expertise and are likely to be less secure than well-established ones.

The public contest announced by the NIST for the creation of AES demonstrates that
widespread cryptographic algorithms cannot be developed in secret, both for the risk of
insertion of backdoors and because of a continuous peer-review on the robustness of the
algorithm, as new weaknesses can be found out.

In the wide variety of implementations, there exists a clear distinction between software
and hardware ones, due to the advantages they feature.

2.4.1 Hardware and Software Implementations

Hardware implementations are often written in Hardware Description Languages such as
VHDL or Verilog. These solutions guarantee:

• Faster performance, since this type of specialized hardware can perform encryption
and decryption operations significantly faster than conventional, general-purpose
CPUs;

• Reduced power usage, as these special-purpose solutions allow designers to more
closely match available hardware to more stringent power consumption constraints.

Many software implementations are available as well, for different programming languages,
applications and target devices [39]. Their main advantages are:

• Flexibility, as software AES can be easily modified and updated to address security
weaknesses or changes in encryption standards;

• Portability, since it can run without modifications on multiple devices, from micro-
controllers to general purpose computers;

• Lower cost with respect to hardware AES, as they feature a more cost-effective
development (e.g., no need for manufacture and assembly of physical components)
and can be distributed on a massive scale instantaneously.

TinyAES: Software AES for Embedded Systems

TinyAES [40] is a portable software implementation of AES for embedded systems, written
in C language and compliant to AES-128, AES-196 and AES-256. It can work with multiple
modes of operation, such as Electronic Codebook, Cipher Block Chaining and Counter
Mode.

Electronic Codebook (ECB). It is the simplest and least secure operation mode for
AES. It works on data blocks individually, thus identical plaintext blocks will result in
identical ciphertext blocks, which can lead to patterns in the encrypted data that can be
exploited by attackers. ECB is illustrated in Figure 2.6.
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Figure 2.6: Encryption in ECB mode [5].

Cipher Block Chaining (CBC). Each block of data is encrypted with the ciphertext of
the previous block, providing a form of feedback, as depicted in Figure 2.7.

Figure 2.7: Encryption in CBC mode [6].

Counter (CTR). It works on single data blocks, just like ECB mode, but in combination
with a counter value to ensure that each block of data is encrypted with a unique key, as
in Figure 2.8.

Figure 2.8: Encryption in CTR mode [7].

TinyAES provides a simple Application Programming Interface (API) that exposes func-
tions as simple as AES_ECB_encrypt() or AES_ECB_decrypt(), if the user intends to
operate in ECB mode.
Flexibility is guaranteed since this implementation allows changes to fundamental struc-
tures of AES, such as the S-Box.
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The size in memory after the code is compiled represents a crucial feature of TinyAES,
since it was developed for embedded systems. When compiled for ARM MCUs, it uses less
than 200 bytes of RAM and 2KBytes of ROM, which is a reasonable amount of memory
for most providers, as listed in the websites of major suppliers [41] [42]. Furthermore,
TinyAES is verified against the example vectors provided by the NIST [43].
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Chapter 3

Side-Channel Analysis (SCA)

3.1 Introduction to SCA

The high level of protection provided by cryptographic algorithms currently built into
everyday products can be compromised by vulnerabilities at different levels of abstraction.
Since protection from attacks is only guaranteed when even the weakest link in the system
is secure, a holistic approach is needed capable of addressing every possible weakness.

In contrast to attacks that exploit logical vulnerabilities in cryptographic algorithms,
such as cryptanalysis, Side-Channel Analysis (SCA) targets the physical implementation on
which the algorithms are developed. It analyzes unwanted (but also inevitable) information
leaked by devices during their normal operations (e.g., heat, power consumption, and so
forth) to gain knowledge about the handled data.

The first attempts to leverage side-channel leakage for information disclosure date back
to 1914, when crosstalk1 between telephone wires was used to reveal secret messages in
the battle of Flanders. Later on, in the 1960s, the Prime Minster of the United Kingdom
ordered surveillance on the French ambassador, leveraging acoustic leakages of telegraphs.
Concomitantly, the spy fever broken out during the Cold War forced NATO to work
on a new standard that could present mandatory countermeasures against side-channel
analysis to be deployed in devices, the TEMPEST program [44].

The 1990s saw increasing concern for the academic research field and consequently
the rise of new hacking strategies able to exploit power and timing information to carry
out attacks against digital systems [45]. In 2015, Goller et al. described how to extract
private keys from smartphones at a distance just observing radiofrequency emissions [46].

In 2018, the “Spectre” and “Meltdown” attacks forced Intel and ARM to redesign
their unreleased CPUs and provide software patches for those already available in the
market, resulting into a significant impact on the cost and performance of the devices
and on the reputation of the two companies [47].

It appears clear that the strength of Side-Channel Analysis is the capability to adapt to
different attack scenarios, exploiting a vast number of leakage sources to hack an even
wider variety of devices.

When applied to hardware security, the generic flow of modern attacks is pretty
standard, illustrated in Figure 3.1, and can be applied to different targets.

1In electronics, crosstalk refers to the phenomenon of unwanted transfer of signals between two or
more channels in a communication system, mainly due to electromagnetic interference.
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Figure 3.1: Generic Setup for SCA [8].

At first, the attacker builds a measurement setup, through which the chosen source of
leakage is made observable. The core instrumentation depends on the chosen leakage
source and can consist of a simple electric resistor for attacks on power consumption or
more complex heat sensors in the case of thermal analysis.

The attack begins with malicious communication of plaintext to the target (1). During
this phase, the target device is forced to perform encryption (or decryption) operations
not authorized by the legit owner.

Once the system starts operating, the measurement setup is triggered and starts
probing (2). The trigger signal is generally present as the attacker aims at keeping
only meaningful temporal cuts of the signal, which often coincide with the start of the
cryptographic operation. Consequently, the leakage signal is recorded (3). Traces2 are
then available for the attacker (4), who will be able to examine them.

2In the context of Side-Channel Analysis, a trace is a collection of samples deriving from the measure-
ments performed by the attacker.
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3.2 Taxonomy of Side-Channel Analysis Attacks

During the years several works have attempted to provide a complete taxonomy of Side-
Channel Analysis, and demonstrated that SCA can be classified along multiple orthogonal
axes, as reported in the graphic below.

Figure 3.2: Taxonomy of Side-Channel Analysis.

3.2.1 Leakage Sources

Leakage sources represent the unintended signals disclosed into the environment by devices
during their normal operations. They often require diverse instruments to be detected
and have different origins, from mechanical stress to sound waves. The most frequent
ones in literature are listed below.

Timing information. The attacker can gain knowledge about data handled by a device
thanks to different execution paths in the code, such as unbalanced conditional branches.
Figure 3.3 illustrates a Python function prone to timing attacks.

It performs a character-wise matching and returns earlier from execution if the two
elements currently extracted from the two strings are not the same. Such code causes
the execution time to be dependent on the nature of the strings themselves, and in the
case where they are not identical, it even provides temporal information about when they
cease being equal.

It is important to notice that on the opposite to what happens with incorrect imple-
mentations due to software bugs (e.g., bugs stemming from wrong assumptions, such as
underestimating the size of variables), the code fragment is functionally correct, as it
performs the operations it is meant to.

Figure 3.3: String comparison that leaks timing information.
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Power consumption. The origin of this leakage source stems from the basic working
principles of digital circuits and it is due to their non-ideality. The typical behavior of a
CMOS inverter is depicted in Figure 4.1. The yellow line is the inverter’s input, the green
one represents its output and the pink line shows the corresponding current consumption.

Figure 3.4: Effect of input switch in CMOS inverter. In yellow, the inverter input, in
green the inverter output and in pink the deriving current peak [48].

When the inverter’s input changes, a simple flip in the value of the output would
be expected to take place. However, due to its non-ideality, during the switch both
transistors are closed for a short time originating a current that flows from the power
supply to the ground, known as short-circuit current. Consequently a peak in its current
consumption is observable [48].

Electromagnetic radiation. They stem from the energy that is propagated through
space by electromagnetic waves, created by the movement of charged particles. They
are powerful attacks, as on some chips the equipped radio transmitter can broadcast
electromagnetic waves carrying information about handled data, revealing it at distance
(e.g., “screaming channels” class of attacks demonstrated that it is possible to infer secret
data at 15 meters from the victim device [49]). On the other hand, the needed laboratory
instrumentation is generally expensive and the accuracy for probes placement should
be high: misplacements that might appear negligible can have a high impact on the
measurements. An example of electromagnetic measurements is in Figure 3.5.
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Figure 3.5: Probe for electromagnetic measurements used in [9].

Temperature. Chips do not dissipate a constant amount of heat, but rather a quantity
that depends on the operation they are performing. Figure 3.6 displays rear-side and
front-side temperature measurement of a microcontroller.

Figure 3.6: Heating plate with two temperature sensors for an ATmega162 [10].

Another remarkable example that demonstrates how this leakage source can be
exploited is represented by mobile lock screens. The user is often asked to provide a
secret pin or draw a sign with their finger to unlock the device. These operations leave a
footprint in the environment, as a heat trace can be used to recover the secret pin or sign,
as illustrated in Figure 3.7.
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Figure 3.7: Thermal trace that allows to recover secret pin and sign on mobiles [11].

Interestingly, not only the attacker can retrieve the position where fingers stepped,
they can also recover the order of the sequence (both for the pin and for the sign), as the
thermal trace faints with time, giving hints about the most and least recent positions in
the sequence.

Environmental factors, such as humidity, can have a high influence on the quality of
measurements [50].

Acoustic noise. Devices emit sound waves when operating, due to the mechanical stress
they are subject to. By analyzing the amplitude and frequency content of the acoustic
signal, an attacker can infer the timing and nature of the device’s internal operations and
disclose information [51].

Optical channels. Due to the working principles of digital circuits, the moving flux of
charges causes a thermal increase and a consequent variation in the infrared spectrum, that
can be leveraged by attackers to infer the current operation in progress [52]. Furthermore,
optical channels can be exploited to “read” the reflection projected by the computer
screen on clothes or face of the user thanks to a telescope, a photomultiplier tube and an
image-processing software [47].

Although the mentioned leakage sources might appear different from each other, they are
often correlated. It is the case of electromagnetic radiations and power consumption, as
stated by the Biot–Savart law3, or heat and acoustic noise, due to power dissipation and
mechanical stress of chips.

The sources mentioned above represent the predominant ones in literature, although
many more exist. For instance, the rocking motion of a mobile when the user is typing is

3In physics, the Biot–Savart law is an equation describing the magnetic field generated by a constant
electric current.
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caught by the system’s accelerometer and can reveal information about the text entered
[47].

Additionally, thanks to social side channels, it was possible to detect a forthcoming
military operation just by noticing an increase in the number of pizzas ordered in a given
period at the Pentagon [47].

3.2.2 Access Level

According to Anderson et al. [53], the access levels are of three kinds.

Invasive. This class of attacks targets the package and the passivation layer4 of chips
with advanced techniques, such as decapsulation, depackaging and rebonding [12].

Decapsulation consists in dissolving the packaging material with chemical reactions,
usually with acid substances (e.g., sulfuric acid). Once the hole is created the intercon-
nections of interest are made observable.

Depackaging is another process that involves chemical reactions, as the chip is com-
pletely immersed into acid until it is free of its package.

Rebonding allows the attacker to restore the functionalities of the device, manually
attaching wires that used to connect the package to the chip.

Invasive attacks are generally expensive and the owner of the targeted device is able
to detect them, as the physical integrity of the chip is violated. On the other hand, the at-
tacker has maximum freedom to place probing needles and observe a large variety of signals.

Semi-Invasive. Here the physical integrity of the chip is intact, since the package and
the passivation layer are not damaged. Laser beams ionize the device, their radiations
alter the content of the onboard memory, whose values are now observable.

Non Invasive. The hacker is limited to observe the behavior of the target device and is
able to lead attacks based on the physical quantities the chip releases spontaneously into
the environment or on the timing of operations. The owner of the targeted device cannot
detect an unauthorized interaction, since the physical integrity of the chip is preserved.

3.2.3 Attack Modalities

The chosen attack modality depends on factors such as the availability of the target device
for the attacker and their ability to collect a sufficient number of traces.

Profiled Attacks, also known as “two-stages attacks”, consist of two phases. In the first
stage, a copy of the target device is used to gain information about the actual target.
The attacker has full control of the copy of the device, can study its behavior with the
different chunks of plaintext and build a template for the attack, which is a statistical
generalization of the behavior of the profiling device for the different inputs. The acquired
knowledge is then used during the second stage to attack the actual target.

This approach is considered as the most powerful, since an effective template only
needs few traces for the attack stage to be successful [54]. On the other hand, it is based
on strong assumption, since the hacker should own a profiling device as similar as possible
to the attack device. For instance, products running banking applications often feature a

4In microelectronics, the passivation layer is a thin layer of insulating material that is applied to the
surface of a semiconductor chip to protect the underlying active components and wiring from damage,
corrosion, or other environmental factors.
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closed implementation, which does not allow replicas easily.

Non-Profiled Attacks, also known as “direct attacks”. They take place in one stage
only. The only assumption is that the attacker can record many traces from the device
under attack. Powerful techniques such as Differential Power Analysis and Correlation
Power Analysis, widely used both in the literature and in real life attacks, fall into the
category.

3.2.4 Common Targets

Since Side-Channel Analysis constitutes attacks on the implementation of security al-
gorithms, many different targets (often referred to as “victims”) have been studied in
literature. The main categories they belong to are:

• Embedded Systems. Due their pervasiveness and simplicity of their structure
with respect to more complex architectures, they were the first taken into account
by this class of cryptanalysis. They represent the benchmark for any new approach
studied in the research field;

• General Purpose Computers. In recent years, successful attacks against mobile
phones or personal computers were performed. They present a high level of com-
plexity, due to the underlying hardware and software. In particular, the plethora of
hardware modules (e.g., multiple cores, each with numerous threads, hazard detec-
tion mechanisms, out-of-order execution blocks, and so forth) that compose modern
systems make it hard to understand what portions of a leaked signal represent
actual useful information, unless more intrusive attacks are performed. Difficulties
also stem from the software, as the executed code often presents aggressive compiler
optimizations, or due to the presence of an operating system, which could complicate
the hacker’s analysis due to features such as context switching, software interrupts
or exceptions, which suddenly interrupt the flow of execution [55] [56];

• Cloud Infrastructures. They represent one of the most relevant novelties in the
investigation field. Researchers found out that virtualization, that is at the bases
of cloud services, can expose further vulnerabilities. The physical co-residency of
virtual machines can facilitate hackers’ interference with other virtual machines
running on the same physical system, thus spreading the attack when an insufficient
logical isolation is provided [57].

3.3 Power Analysis and related Techniques

Great relevance is given to techniques that target power consumption as a source of
leakage, as many advances were achieved over the years. Few instruments are needed: a
digital oscilloscope (or a capture/sampling device), a resistor and a Personal Computer.
The analysis consists in measuring the energy drained by the target device, as it depends
on the operations performed and the data handled.

Although its name refers to power, it is more precisely an analysis on current. Since
oscilloscopes are only able to measure voltage, supposing that the device works with
constant voltage (e.g., most devices work with constant operative voltages of 3.3 or 5V),
a shunt resistor is placed.

Leveraging Ohm’s law5, the value of the current is obtained. The shunt resistor is
5Ohm’s law states that current and voltage in linear circuits are linearly dependent through a factor

R = V/I, called resistance.
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placed in series to the target device, according to Figure 3.8 or 3.9. Measuring the current
across the device is not recommended as the microcontroller behaves as a variable resistor,
thus complicating the analysis.

Figure 3.8: Shunt resistor located upstream of the target device.

Figure 3.9: Shunt resistor located downstream of the target device.

The value of the resistor is usually around 40-100Ω. Higher values will amplify the
amplitude of the power trace, thus facilitating visual inspection. On the other hand,
they might drain a considerable quantity of current, stopping the target device (either
upstream or downstream) from working.
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3.3.1 Simple Power Analysis (SPA)

This technique takes its name from a paper by Kocher et al. [58], who first proposed it in
1998. In Simple Power Analysis, some power traces are recorded (even though one trace
might be sufficient) and visually inspected, looking for significant features, such as peaks
in power consumption.

Devices as small as microcontrollers often provide multiple execution units in order
to perform instructions with least power or delay (e.g., hardware multiplier for MUL
instruction or ALU for ADD instruction), each of which has a characteristic profile in
power consumption. SPA works on the simple assumption that different instructions,
once executed, leave distinguishable traces into the environment and leak information
about the algorithm or even the handled data.

It is often considered as a preliminary step with respect to more advanced techniques,
as it provides hints about the executed algorithm as well as the quality of the signal the
attacker will be able to analyze.

Using SPA to break the RSA algorithm

Perhaps the most impressive application of Simple Power Analysis regards its effectiveness
in breaking the RSA algorithm.

RSA is an asymmetric encryption algorithm6. At its core there is the exponentiation
algorithm, that can be implemented as in Figure 3.10, where the private key is represented
by the variable secret_data.

Figure 3.10: Implementation of the exponentiation algorithm in RSA [12].

The multiplications at line 8 and 11 give the name to the exponentiation algorithm,
also known as square and multiply.

Taking a look to the listing, it is easy to notice that if the i-th bit of the key is set
to ’1’, the function will execute the if statement at line 10, thus revealing information
about the nature of the key itself. Applying the same strategy, also bits set to ’0’ are
recognized since the same if statement will not be executed. In other words, when the
key bit is 1, both square and multiply (SM) will be performed, when ’0’ only the square
operation (S)7.

6In cryptography, an asymmetric algorithm is a type of encryption system in which two different but
mathematically related keys (i.e., public and private keys) are used for encryption and decryption.

7The first iteration of the process is slightly different as the S operation is skipped. However, the
considerations hold for the rest of the bits.
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If the signal of the power consumption is clear enough, Simple Power Analysis could
recover it with just visual inspection on one recorded trace.

Supposing that the trace is the one illustrated in Figure 3.11, interesting features can
be spotted between 5ms and 12ms. Two different kinds of blocks are present: quick ones
(Q) that last approximately 0.9ms and long ones (L), that last approximately 1.1ms.

Figure 3.11: Power consumption trace of the exponentiation algorithm [12].

Visual inspection allows to understand that a QL sequence corresponds to SM opera-
tions, thus revealing that the handled bit is a ’1’, whereas Q blocks that are not followed
by a L are then mapped to a key bit value of ’0’. The whole key recovery is successful,
as an attacker can perceive by intuition that the sequence QL|Q|Q|Q|QL|QL|Q|Q|Q|QL
hides the key 1000110001.

The effectiveness of Simple Power Analysis in the previous example stems from an
implementation of the RSA algorithm that leaks timing information. The temporal length
of the execution flow depends on the nature of the handled data, thus revealing the value
of the key.

Simple Power Analysis of AES

Supposing that the attacker’s goal is to break a key stored in a AVR XMEGA device by
Microchip, Figure 3.12 displays the initial part of the raw trace they will be able to
observe, originated from the encryption operations.

Figure 3.12: Power trace collected during AES encryption on XMEGA target.

A close and zoomed-in inspection may not provide useful information to the attacker.
However, zooming-out the presence of multiple periodic patterns might be revealed, as in
Figure 3.13.
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Figure 3.13: Simple Power Analysis, annotations on power trace.

The most distinguishable ones are the big fluctuations of power around sample 3000,
the orange portion of trace in the Figure. The eye of an expert attacker will be able to
recognize three nearly identical periodic operations. These constitute the three steps of
the ShiftRows AES operation, during which each of the four rows in the State matrix is
shifted by a quantity of positions equal to its row index in the matrix itself. They are
only three as one row, the first one, must not shift at all.

Now that the first temporal reference in the algorithm is fixed, the attacker can
recognize two groups of 16 periodic patterns each. The first one, in yellow, corresponds
to the AddRoundKey operations. The second one, in green, is due to the SubBytes block.
The last group, in purple, corresponds to the MixColumns step.

By exclusion, the attacker can also infer that the initial part of the trace, in red, is
not strictly related to the algorithm but rather to preliminary procedures executed by
the microcontroller before the actual encryption, thus can be discarded.

3.3.2 Differential Power Analysis (DPA)

Hints related to the instructions executed in a microcontroller gained through Simple Power
Analysis can provide extremely useful information about the overall algorithm performed
by the device, although can rarely provide enough clues to recover the encryption key.

Differential Power Analysis (DPA) was first formulated by Kocher et al. in their
milestone paper [58]. The working principles of DPA might not be straightforward to
follow, thus probably the best way to explain is through an attack example on AES.

As presented in Chapter 2, the AES-128 algorithm arranges the plaintext and key into
a 4x4 matrix. The two blocks are then XORed together (AddRoundKey) and the resulting
byte is eventually substituted into a S-Box (SubBytes). The operations generate the so
called intermediate value, as illustrated in Figure 3.14. This quantity has no value for the
algorithm itself, but great relevance for cryptanalysis.

Figure 3.14: Particular of the AES algorithm: the AddRoundKey and SubBytes steps.
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The underlying assumption for DPA to work is that the attacker manages to measure
the power consumption at the output of the S-Box. Furthermore, the analysis is based
on the hypothesis according to which a bit set to ’0’ or ’1’ contributes differently to
the profile of the total power consumption of an electronic device, as previously stated.

The first phase of the attack consists in traces collection. For each trace, the attacker
sends a byte of plaintext (whose value they can fully control) to the target device and
records the power consumption of the system during the encryption.

The attack illustrated by the Python script in Figure 3.15 attempts to recover a single
key byte, but the assumptions are valid also for the others.

Figure 3.15: Python script of DPA attack on a single bit of the key.

Initially, all possible values the key byte could assume are enumerated, from 0x00 to
0xFF (line 7). The attack is composed of two nested loops. The outer for cycle (line 9)
iterates over the different key byte values described above, whilst the inner one (line 15)
goes over the traces previously collected.

For each trace, its associated plaintext is XORed to the current guess of key byte,
composing the hypothetical input of the S-Box (line 18). The hypothetical intermediate
value (i.e., the output of the S-Box) is then computed (line 20). It is worth to notice that
the hypothetical output of the S-Box is equal to the value the microcontroller generated
only if the guess of the key byte is correct.

The attack continues by looking at the least significant bit (LSB) of the hypothetical
intermediate value. The trace associated to the plaintext taken into account is appended
either to the list where LSBs are thought to be ’0’ or to the one where they are thought
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to be ’1’ (line 24 and 26, respectively).
The two groups are only populated with traces whose LSB is respectively ’0’ or

’1’ if the guess was correct (i.e., if the guessed key byte corresponds to the actual key
byte). If not, then the input of the S-Box is different from the actual byte handled by the
microcontroller, and consequently traces are not separated into the two groups by their
LSB but rather randomly.

A mean for each of the two groups is then computed (lines 29 and 31), and their
subtraction is then performed (line 32). This is a crucial step in DPA, as pointed out by
the name itself (Differential Power Analysis).

If the grouping was done with the wrong key (Figure 3.16), then the difference will
not highlight any effect of the LSB on the power trace (since each group is composed
of random traces, not according to the actual LSB), and the elements in the difference
vector will fluctuate around the zero, with some noise.

Figure 3.16: Wrong grouping of traces. The mean does not reveal the contribution of the
LSB.

On the other hand, if the grouping was done with the right key (Figure 3.17), the
traces are actually split according to the LSB.
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Figure 3.17: Correct grouping of traces. The mean reveals the contribution of the LSB.

The effect of this bit will be visible, as bits set to ’0’ or ’1’ consume a slightly
different amount of power, which is now highlighted by the subtraction. As a consequence,
a spike originates around sample 90.

The example of attack on AES demonstrates the strength of Differential Power Analysis, a
technique that analyzes the value of one bit (mono-bit DPA, like the one just described)
or a set of several bits (multi-bit DPA, not seen here) to recover the secret key of the
encryption [59].

Simple instruments for measuring power consumption allow DPA to attack in few
minutes algorithms that would take an enormous amount of time for other cryptanalysis
techniques, such as brute-force. On the other hand, many traces are needed to highlight
the effect of zeros and ones on the power consumption. However, the higher the number
of traces collected the higher the chances of retrieving the secret key.

3.3.3 Correlation Power Analysis (CPA)

This Section introduces power models and Pearson’s coefficient as propaedeutic concepts
for the most advanced technique in Non-Profiled Side-Channel Analysis, Correlation
Power Analysis (CPA), explained hereafter.

Power Models

Since attackers can rarely infer secret data from the plain observation of the leakage
source, they often rely on power models: representations adopted by the hacker to model
the leakage source. Among them, in “classic” Power Side-Channel Analysis particular
relevance is given to the Hamming Weight (HW) and the Hamming Distance (HD).

The Hamming Weight (HW) The different components inside an electronic device
(e.g., the ALU, a hardware multiplier module, and so forth) are often connected through
bus lines, parallel interconnections that guarantee higher throughput with respect to serial
ones. The data bus is a set of lines, each intended to carry a bit of data throughout the
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system and serve the various modules. The basic working principles that allow to transfer
bits are depicted in Figure 3.18.

Figure 3.18: Working principles of a single data bus line.

Supposing for simplicity that the line is connected both to a power supply source
(VDD) and to the ground terminal, the equivalent model of the line is in Figure 3.18 (A).
The data bus behaves similarly to a capacitor, by applying a charge it is possible to bring
it to a high voltage, as in Figure 3.18 (B). When doing so, a quantity of current is drawn
from VDD (the red arrow in the Figure).

Additionally, the line can be driven to a low voltage level by removing the accumulated
charge, as in Figure 3.18 (C). This process originates a current at the ground terminal
with reverse direction with respect to the one previously described (the blue arrow in the
Figure).

An example of the temporal evolution of successive data transfers on a 2-bit data bus
is depicted in Figure 3.19.
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Figure 3.19: Current peaks due to bit transfers on bus lines.

The interconnections are preventively brought to a pre-charge state8. Since a transition
of a single bus line from low to high means moving some charge towards the line itself,
a current peak originates at VDD (each blue arrow in the Figure), in accordance with
the phenomenon depicted in Figure 3.18 (B). Multiple low to high transitions in the bus
cause multiple peaks.

The attacker can measure the current at the VDD terminal and infer the number of
bits set to ’1’ at a given moment in the bus. This quantity is known as the Hamming
Weight of the data, named after the American mathematician Richard Hamming. It
constitutes an effective and straightforward relationship between the number of bits set
to ’1’ in a bus and the observed power consumption.

Depending on the device, the width of the bus might vary, with 8-bit and 16-bit being
very frequent. If the binary quantity 01000110 were carried on a 8-bit bus, it means that
its Hamming Weight would be equal to HW01000110 = 3.

16-bit architectures will feature 17 possible classes of HW. On the other hand, 8-bit
architectures will provide at most 9 different classes. The distribution of cases across the
Hamming Weight classes is exponential in the number of bits, as depicted in Figure 3.20,
where a 4-bit and 8-bit buses are compared.

8In digital electronics, a pre-charge state refers to the initial condition of the line before it is driven by
a signal. It corresponds to a halfway value between the high and low voltage levels and it is generally
employed to limit the inrush current during the power up procedure of the system.
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Figure 3.20: Values distribution of Hamming Weight for 4-bit and 8-bit data buses.

The Hamming Distance (HD) The Hamming Weight constitutes a valuable model
when the power consumption of bus lines is observable. However, they might be hard to
access, forcing the attacker to observe leakage somewhere else.

Electronic digital devices such as microprocessors and microcontrollers always feature
registers, temporary storage locations that hold data and addresses. Their contents
represent a further intrusion point for the hacker, as they might store parts of the key or
plaintext handled during the cryptographic operations.

The Hamming Distance (HD) model is based on the observation that when the content
of a register changes, the associated power consumption depends solely on the number of
bits that flipped at a certain instant in time (i.e., from ’0’ to ’1’ or from ’1’ to ’0’),
as in Figure 3.21.

Figure 3.21: Hamming Distance of a register at successive time instants.

Given two strings a and b of the same length n whose characters all belong to an
alphabet Σ, the Hamming Distance is formally defined as follows:

HD(a, b) = |{i ∈ [1, n] : ai ̸= bi}| (3.1)

In digital systems, each string from the definition above represents the possible content
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of a register. The characters are represented by bits, that belong to a binary alphabet
and can take the values ’0’ or ’1’.

Furthermore, the relationship between Hamming weight and Hamming distance can
be expressed mathematically as in the following equation:

HD(a, b) = HW (a⊕ b) (3.2)

In real world scenarios, both leakage models can lead to successful attacks. The bus
lines often provide points of observation for exploitable quantities. On the other hand,
fundamental registers such as those storing flags9 often leak precious information about
the status of a system and can be very appealing for an attacker.

As pointed out by O’Flynn and van Woudenberg in their book [12], there is no golden
rule for deciding when to apply one of the two models rather than the other. An attacker
who does not manage to model leakage in a profitable way through the Hamming Weight
model should try to resort to the Hamming Distance.

Pearson’s Correlation Coefficient

The Hamming weight model works on the assumption that the power consumption of
a device and the number of bits set to ’1’ in its data bus are dependent: the higher
number of the latter causes a growth of the former.

In statistics, correlation expresses the dependence between two random variables10.
The underlying mathematics at the bases of this quantity is heavy and out of the scope
of this thesis. However, the visual representation in Figure 3.22 helps understand its
meaning.

Figure 3.22: Visual representation of correlation between two random variables.

The Figure depicts the correlation between two random variables X and Y, which
represents a measure of linear dependence between the two. Three main cases are possible:

• Positive correlation (values close to 1). It shows that the two variables move in
the same direction (e.g., if one increases, the other does as well). It is the case for
height and weight, as tall people generally tend to weight more;

9In processors, flags are bits that specify the state of the system (e.g., the Carry Flag indicates if a
carry or borrow has been generated by the ALU).

10A random variable (also known as stochastic variable) is a mathematical formalization of a quantity
that depends on random events.
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• Negative correlation (values close to -1). An increase of a variable implies a
decrease of the other. For instance, it is the case for speed and duration of a car
journey, as a faster pace implies a shorter trip;

• Zero correlation (values close to 0, both positive and negative). No relationship
exists between the two variables. An example of zero correlation would be the
amount of tea drunk and level of intelligence.

A practical parameter to measure linear correlation is the Pearson Correlation Coeffi-
cient (Often abbreviated as PCC or ρ), whose scatter diagrams are in Figure 3.23.

Figure 3.23: Scatter diagram of Pearson’s Correlation Coefficient [13].

Pearson’s coefficient varies in the range [-1,1]. Given two random variables X and Y,
it is formally expressed as:

ρX,Y =
cov(X,Y )

σXσY
(3.3)

where cov(X,Y ) is the covariance of X and Y, σX and σY are the standard deviations
of X and Y, respectively.

Direct CPA

Correlation Power Analysis is a powerful technique, first formulated by Brier et al. in
2004 [60]. It can be considered as a natural evolution of Differential Power Analysis, as
the underlying assumption is similar, concerning the effect that bits set to ’0’ or ’1’
have on power consumption.

However, the difference between the two techniques is visible when attacking AES.
DPA only exploits partial information, one (or at most some) bits of the intermediate
value, assuming that the power consumption will vary accordingly. CPA, on the other
hand, attempts to predict the entire intermediate value, taking advantage of the whole
information available. For doing so it leverages statistics, and more precisely correlation.

At first, the hacker sends plaintext to the target device and the power consumption
traces are collected, just like in DPA.

For each available trace and for each collected sample the attacker computes, by means
of the Hamming Weight model, the estimated power consumption due to the hypothetical
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intermediate value (i.e., the output of the S-Box due to the combination of plaintext, fully
controlled, and the key candidate, the attempted guess).

At this stage, CPA leverages Pearson’s Correlation Coefficient as it is able to outline
a linear correlation between the Hamming Weight of the hypothetical intermediate value
and the power consumption of the actual intermediate value.

It is important to notice that the selected trace does not necessarily have to feature
the highest positive correlation value, but rather the highest absolute value of PCC (e.g.,
between ρ1 = 0.45 and ρ2 = −0.57, the second key candidate will be selected as main
guess). Negative values are not discarded as CPA does not look for positive correlation,
but rather makes sure the dependence exists.

Interestingly, not only Pearson’s Coefficient can identify the best key byte guess, it
also allows to build a ranking of all the other candidates, i.e. the key bytes that generate
traces with lower PCC with respect to the main guess. In case the first guess is not the
actual key byte, likely it is one of the immediate followers in the ranking, as they show
descending correlation values.

The process for recovering a key on AES-128 with CPA seems time-consuming, as for each
key byte the whole space of 256 candidates is explored, leading to an overall complexity
in the order of:

TCPA = N bytes
key ·N candidates

byte t = 16 · 256t = 24 · 28t = 212t (3.4)

where t is the time needed for a single attempt on one byte candidate.

Although it might seem a high number, it is worth to notice that while the time needed
by brute force varies exponentially with the length of the key, equation 3.4 demonstrates
that the duration of CPA varies linearly with respect to the number of key bytes.

In comparison to DPA, studies demonstrate that Correlation Power Analysis requires
less traces to break the key [61]. Additionally, Differential Power Analysis requires an
accurate grouping of traces to correctly identify the contribution of a single bit to the
power consumption.

On the other hand, CPA leverages a powerful mathematical tool, the Pearson Coeffi-
cient, which makes the technique computationally expensive.

Reverse CPA

In Side-Channel Analysis the attacker often has to deal with devices whose internal
workings are unknown.

Leakage assessment is a crucial preliminary step for most attacks, as the hacker
generally does not know when the exploitable information will be released into the
environment by the device.

Correlation represents a fundamental tool also for this purpose, as it helps finding a
relationship between the collected traces and the plaintext or key that originates them,
thus highlighting the period of time during which they leak secret data.

The plot in Figure 3.24 shows one of the traces collected from a XMEGA device during
an attack on AES-128.
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Figure 3.24: Example of trace collected during attack on AES-128 [14].

At the cost of a propaedeutic visual inspection, the attacker can save computational
resources since a shorter portion of traces has to be examined during each attempt, as
depicted by Figure 3.25.

Figure 3.25: Reverse CPA with respect to plaintext on collected AES-128 trace [14].

The plot demonstrates that the plaintext is mainly handled between samples 0 and
13000, since the portion shows peaks of correlation between the trace and the plaintext
itself. This means that the attacker should focus on the first half of the trace (i.e., time
instants corresponding to samples between 0 and 20000) rather than on the whole available
collection of samples.

3.3.4 Attack Points in AES

The previous Sections highlighted that AES although being mathematically robust is not
invulnerable, as it allows attacks on its implementation on physical devices. However,
another issue that has not been properly discussed so far regards where to find its weak
points. Researchers call them Attack Points (also known as “leakage-sensitive variables”).

The yellow and red dots in Figure 3.26 depict the attack points originated by the first
round of AES as well as the beginning of the second one.
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Figure 3.26: Attack Points in AES [15].

The points correspond to operations where computations forced a memory swap (e.g.,
a change of value in a register) causing a power consumption spike, that is observable.
As AES-128 features ten rounds, the available attack points are many more.

Theoretically, you could attack any of them. However, only the first and last rounds
are used in literature to recover the key directly, as the ones in the middle are more
complex to exploit and need multiple reverse operations for the key recovery [62].

As pointed out by Elie Bursztein, Cybersecurity Director at Google, the most profitable
attack points correspond to the red dots in the picture [15]. They are, respectively:

• Round key retrieval, as a feed of the key from the memory to the registers takes
place. This is the simplest way to recover the key, as it represents a direct attack
on it;

• Output of AddRoundKey, as the XOR operation might cause flips of bits in registers,
whose peaks are visible in the total power consumption. This attack point allows to
recover the key after an inverse XOR operation with respect to the plaintext, that
is fully controlled by the hacker;

• Output of the S-Box, as a new value of the State has to be stored in memory.
Here the recovery of the key needs a double passage, since both the plaintext has to
be XORed out and the S-Box must be inverted.

Attackers’ dream would be to always exploit the first kind of attack points. However,
researchers proved that it features a low Signal to Noise Ratio (SNR) [62]. This physical
quantity is a measure that compares the strength of a desired signal to the level of
background noise, as in the following equation:
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SNR =
Psignal

Pnoise
(3.5)

often measured in decibels (dB).
The low SNR makes the first attack point less appealing with respect to the other two

listed above, as its contribution to the power consumption is too blurred and consequently
the key recovery more complex.

3.4 Countermeasures

As presented in the previous Sections, many of the vulnerabilities exploited by Side-
Channel Analysis stem from the basic working principles of digital circuits, apparently
making devices doomed against this kind of attacks. However, big companies or even the
diverse state defense departments dedicate considerable resources to preserve their crucial
assets (e.g., data and devices), as they constitute strategical components for the various
activities. For this reason, several countermeasures were developed over the years.

From a theoretical point of view, leveraging equation 3.5, it is straightforward to
understand that the ratio should be decreased as much as possible by cyber defenders,
either maximizing the noise power or minimizing the power of the exploitable signal for
the attacker.

The main solutions for this purpose can be implemented at different levels.

Hardware Design

This series of countermeasures implies changes at the transistor level of digital circuits.
Many of them aim at maximizing the noise, as in the case of insertion of additional

logic. This countermeasure uses complementary signals (e.g., Ā with respect to A) in
order to equalize the power consumption of different transitions. It can be applied by
doubling the width of the data bus lines, having half of them transport useful data and
the rest compensate the transitions of the first ones. This countermeasure is effective
as an external observer cannot infer useful information, unless a more intrusive attack
is performed with the consequent depackaging of the chip, allowing the hacker observe
signals freely. On the other hand, the redundancy implies both a larger die area for the
chip and higher power consumption [63].

Hardware countermeasures that decrease the power of exploitable information are also
available, as researchers tried to employ Domino Logic rather than well-known CMOS,
attempting to reduce the peaks in power consumption [63]. However, the complex design
structure constitutes a major disadvantage.

Software Obfuscation

More flexible solutions are provided by software countermeasures, which mainly attempt
to puzzle the relationship between the timing of operations and the handled secret data.

Jitter is a natural phenomenon in electronic devices, that deviates periodic events
from their clock reference. Artificial jitter can be inserted at multiple stages of the
cryptographic algorithm to randomly increase or decrease the duration of operations. It
is usually created with instructions that do nothing (e.g., NOP in machine language), and
complicates the analysis for the attacker [64].

Another commonly used technique consists in masking sensitive data, using random
masks to split cryptographic variables into multiple shares harder to handle with respect
to the original one [65].
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Changes in the Algorithm and Good Practices

Additional countermeasures for AES were developed and imply changes to its basic blocks.
In particular, values in the S-Box of the SubBytes operation can be edited in order to
provide a lower power in the leakage signal, thus reducing the numerator in equation 3.5
[37].

In addition to the indicated countermeasures, researchers proposed guidelines that
enhance protection of the systems without changes to the hardware or software. Among
these, the introduction of a maximum number of encryptions with the same key, after
which it should be considered expired and replaced by a new one.
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Chapter 4

Deep Learning Side-Channel
Analysis (DLSCA): State of the Art

4.1 Introduction to Deep Learning Side-Channel Analysis

Side-channel Analysis has been a major concern in the security of embedded systems,
especially in smart cards and Internet of Things (IoT) devices [66] [9].

Classic SCA, presented in the previous Chapter, relies on statistical analysis of
physical characteristics, such as power consumption, heat or electromagnetic radiation,
to extract secret information from a cryptographic device. It is effective in many cases,
but demonstrates limited capabilities in capturing complex patterns, which can lead to
difficulties in recovering encryption keys.

Inferring what operations the target device is performing can be very hard, and
expertise in Simple Power Analysis is needed, as the visual inspection might be complex
due to the presence of countermeasures or to the noisy nature of the exploitable signal.

A further difficulty for the attacker stems from the adaptability of traditional Side-
Channel Analysis techniques, as any device might operate the same cryptographic algo-
rithm with variations with respect to others (e.g., device A might leak a considerable
amount of information during the SubBytes operation whereas device B might not leak
any during that same AES operation).

Furthermore, statistical power models built by the attacker can only capture linear
dependence between the consumed power and the data, as pointed out in Section 3.3.3.

Artificial Intelligence (AI) has become an ubiquitous technology in modern society,
permeating almost every aspect of life, from agriculture to healthcare.

In recent years, Deep Learning (DL), the branch of AI that enables machines to
imitate human behavior, has emerged as a powerful tool for a wide range of applications
in various fields, including speech recognition, natural language processing and computer
vision.

As the elevated number of studies suggests, Deep Learning also constitutes a promising
approach to Side-Channel Analysis, since it promises to address the problems traditional
SCA is affected by [22].

The first attempts to leverage Artificial Intelligence as an enhancement to classic Side-
Channel Analysis techniques date back to the late 2000s, when researchers successfully
deployed basic Machine Learning (ML) algorithms, of which Deep Learning techniques
represent a subset, for the pre-processing of raw power traces [22]. Such operations were
performed in order to highlight the portions of traces that could leak significant amounts
of exploitable information, decreasing the need for human intervention.
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Although being both approaches of the broader branch of Artificial Intelligence,
Machine Learning and Deep Learning are substantially different from each other.

Machine Learning is a technique through which a machine learns by examples from a
large amount of data and uses that knowledge to make predictions, identifying patterns
and relationships in the data.

Deep Learning, on the other hand, is a more complex type of Machine Learning
that uses Neural Networks, structures inspired by the human brain, to learn from large
amounts of data at the cost of a high computational power.

Figure 4.1: AI, ML and DL.

It is hard to outline the end of the Machine Learning era in SCA and the beginning of
the Deep Learning one, as the distinction between the two is often blurred. As a temporal
reference, researchers date back the usage of the first Deep Learning in Side-Channel
Analysis to the past mid-decade.

Nowadays, the number of papers regarding Deep Learning Side-Channel Analysis
(DLSCA, in short) suggest that Deep Learning outclassed Machine Learning [22]. This
overtake is essentially due to two factors that facilitate the attacker during their campaign
against the target device, listed below.

Lack of pre-processing for power traces. Deep Learning algorithms autonomously
decide what parts of the input data (e.g., the raw power trace collected from the target
device) are relevant. Machine Learning algorithms, on the other hand, would require a
preliminary stage, called Features Extraction Phase, during which the attacker manually
selects characteristics of interest out of the raw data. In ML, the choice of features impacts
highly on the algorithm’s performance, as the hacker can explicitly indicate what portions
to neglect and which ones to spend computational resources on. Feature extraction is an
operation that is heavily based on experience, as specifying features demands knowledge
deriving from different attack scenarios.

Performance benefits from Deep Learning algorithms, as numerous studies demonstrate
that results outclass methods based on Machine Learning [22]. This is mainly due to
algorithms that are more powerful with respect to the ones adopted in ML.
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4.2 Basic Principles of Deep Learning

This Section introduces the basic principles of Artificial Intelligence, providing background
notions for the correct understanding of Deep Learning Side-Channel Analysis.

4.2.1 Artificial Neurons

Deep Learning attempts to simulate the behavior of the human brain, teaching machines
to think as humans do. For doing so it mimics the brain down to its basic units, the
neurons, depicted in Figure 4.2.

Figure 4.2: Neuron in the human brain [16].

The typical human neuron consists of a cell body, dendrites, and an axon. Dendrites
receive signals from other neurons, the nucleus inside the cell body elaborates a reaction
to the input stimuli and a consequent electric impulse originates and propagates to the
other neurons through the axon.

Similarly, Artificial Intelligence employs its own neurons, called perceptrons. Just like
their biological counterpart, they accept inputs from the other neurons, can generate a
reaction to the stimuli and propagate it to the other perceptrons in the structure. Although
the working principles of the human brain are not all figured out yet, mathematical tools
are leveraged to mimic their behavior.

The first model of perceptron was formulated by Rosenblatt in 1957 [67], and is
illustrated in Figure 4.3.
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Figure 4.3: Artificial neuron.

The neuron receives the different input signals, each multiplied by a certain factor
ωi. These numerical values, known as weights, determine the strength of the connection
between the input signal and the neuron. The body is composed of two main parts, the
network function and the activation function.

Network Function

The network function computes a weighted sum of the input signals to which a special
value, known as bias, is then added up. The neural bias allows to make a decision that is
not solely determined by the inputs, but rather takes into account the contribution of the
specific neuron.

Given n input signals X, each with their own weight ωi and given a neural bias b, the
net function can be formally defined as:

F (X,ω, b) =
nX

i=0

Xi · ωi + b (4.1)

Activation Function

The sum is then processed by the activation function, a non-linear operation. This
function determines if, with the data currently processed, the neuron will be activated or
not, with a consequent propagation of the carried information to the neurons downstream.
Furthermore, it allows the perceptron to learn complex data patterns, not caught by the
network function, which is linear.

Many activation functions are present in literature. Some of the most popular ones
are:

• The sigmoid function, depicted in Figure 4.4.
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Figure 4.4: The sigmoid activation function [17].

Given a weighted sum x, it is formally defined as:

S(x) =
1

1 + e−x
(4.2)

The sigmoid activation function can be interpreted as the probability with which a
weighted sum, normalized between 0 and 1, is classified as 1.

• The ReLU (Rectified Linear Unit) function, illustrated in Figure 4.5.

Figure 4.5: The ReLU activation function [18].

Given a weighted sum x, it is expressed as:

R(x) = max(0, x) (4.3)
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• The ELU (Exponential Linear Unit) function, as in Figure 4.6.

Figure 4.6: The ELU activation function [18].

Similar to the previous one, it is smoother than the ReLU function and allows
negative values as output. Given a weighted sum x :

E(x) =

(
x, if x ≥ 0

α(ex − 1) otherwise
(4.4)

where α is a constant defined by the user. The main drawback of ELU with respect
to ReLU stems from the usage of the exponentiation, as it is slower than computing
the maximum value between two numbers.

• The Softmax function. It is a mathematical operation that converts a vector
of numbers into a vector of probabilities (i.e., the probability density function).
The likelihood of each element is normalized with respect to the values in the
starting vector. The Softmax provides an output vector that can be mathematically
expressed as:

D(z)i =
eziPN
j=0 zj

(4.5)

where z is the starting vector of elements and zi its i-th element.

4.2.2 Artificial Neural Networks

A single perceptron by itself can only solve problems that admit a linear function as a
solution, due to the neuron’s internal operations (network and activation functions) [19].
However, not all problems admit one. Figure 4.7(A) illustrates the truth table of the AND
operator. Here, the true and false outputs can be split thanks to a linear function, thus
a single perceptron could be used to separate combinations of the inputs that generate
respectively ’0’ and ’1’. Figure 4.7(B) depicts the truth table for the XOR operator.
Here it is impossible to separate with a straight line the combinations that lead to the
two different outputs.
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Figure 4.7: AND (A) and XOR (B) truth tables [19].

Although one single neuron fails, multiple perceptrons could solve this problem.
Researchers in the Artificial Intelligence field have proposed various architectures that
employ numerous perceptrons, known as Artificial Neural Networks (ANNs). The most
frequent networks in the literature are presented here.

Multilayer Perceptron (MLP)

Perceptrons can be arranged into multiple layers, as in Figure 4.8. The architecture is
known as Multilayer Perceptron.

Figure 4.8: Example of the MLP architecture.

Each circle in the figure corresponds to a perceptron and includes both the network
and activation functions.

Three different stages can be distinguished:

1. The Input Layer, the first group of neurons in vertical in the mesh. The number
of perceptrons often coincides with the cardinality of the vector that is fed to the
network itself (i.e., with the input data the network has to gain knowledge from
and/or classify);

2. The Hidden Layer(s). It performs most of the computation required by the
network. If there is more than one, the network is considered a Deep Neural
Network (DNN) [22];
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3. The Output Layer, the last group of neurons in the mesh. The size of the layer
depends on the task that the model is designed to perform (e.g., if the model is
meant to classify drawings into “dog”, “bird” and “cat”, then there will be three
neurons in this layer).

The structure is fully connected (i.e., each neuron from layer i is connected to each
neuron from layer i+1 ). Additionally, the neural parameters ω and b are trainable, as
their refining enables the model to learn patterns and relationships in the input data so
that it can make accurate predictions or classifications on new, unseen data.

Currently, MLPs are used in a wide range of applications, such as:

• Classification of the input data into different categories, called classes;

• Regression (e.g., prediction of the price of a house depending on its features such as
the presence of a garden or the number of rooms). In contrast to classification, the
output is a continuous value rather than a class.

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a powerful class of Deep Learning models
inspired by the organization of the visual cortex in the human brain. They feature
multiple layers, each composed of independent perceptrons. Figure 4.9 depicts a CNN
that aims at classifying input images (e.g., a ’X’ in the Figure) into three different classes:
circle, X mark and triangle. The predicted class is highlighted in green.

Figure 4.9: Example of CNN architecture.

The input data is arranged as a squared matrix of pixels. The brightness level of the
pixel is associated to a numerical value (e.g. from -1 to +1 in the Figure). The CNN
correctly classifies the input data, arranged as a matrix of pixels, thanks to different
layers:

1. The Convolutional Layer. Here a series of filtering matrices (known as kernels)
is employed. Each filter slides over the input image and, at each position, the dot
product between the filter weights and the corresponding pixels of the input image
are computed, generating the Activation Map. This process highlights possible
similarities between the input image and the filter taken into account, as depicted
in Figure 4.10.

53



Figure 4.10: Convolution operation in CNNs.

2. The ReLU layer. It leverages the ReLU activation function defined in the previous
Section to rectify the elements in the map, as in Figure 4.11.

Figure 4.11: Rectification in CNNs.

3. The Pooling Layer. This layer computes a summary of the activation map by
taking the maximum (max pooling) or average (avg pooling) value of partial regions
in the map, as illustrated in Figure 4.12.

Figure 4.12: Max and Avg pooling in CNNs.

Average pooling smooths out the input data, which can be a drawback when sharp
features must be identified. On the other hand, max pooling shows its limits in
particular scenarios when the majority of the input image consists in light-colored
pixels [68];

54



4. The Fully Connected Layer. It takes the high-level features learned by the
convolutional and pooling layers and uses them to classify the input image into one
of the possible output classes. Perceptrons belonging to the last layer commonly
feature the Softmax activation function, as it intrinsically provides a probability
density function among the different output classes.

Multiple rounds of subsequent convolution and pooling layers can be present in a
CNN. At each round the kernel shows higher abstraction (e.g., a network that classifies
houses will have a first round of kernels that aim at spotting vertical and horizontal edges,
while a second round could identify windows or the roof).

Convolutional Neural Networks demonstrate a notable aptitude for detecting and
extracting features from images. Some common applications include:

• Classification of input images into different categories (e.g., classification of vehicles
into “car” or “motorbike”);

• Object detection, as CNNs can detect and locate objects within an image. This is
useful in applications such as self-driving cars and robotics.

Autoencoder Network

Autoencoder Networks are models that can be conceptually divided into three parts, as
illustrated in Figure 4.13.

Figure 4.13: Example of Autoencoder network.

The leftmost part, in blue, is called encoder. It consists of a fully connected structure
that compresses the input data into the code, in red. The decoder is the rightmost part
in the figure, in yellow, and consists of another fully connected structure that tries to
reconstruct the original input data out of the compressed information in the code.

The network might seem irrelevant as, when properly built, its output should be as
close as possible to the input data. However, it has great relevance since it can detect

55



which features of the data are relevant, separating the useful signal from the noise. Figure
4.14 depicts the effect of an autoencoder network on a handwritten digit.

Figure 4.14: Effect of Autoencoder on handwritten digit.

The encoder extracts the meaningful features of the starting image. The partial
result is the code portion of the network, that displays the peculiar characteristics of the
digit (e.g., dots in the edges and vertices that make number 3 distinguishable from the
other figures). The decoder reconstructs the input thanks to the compressed information,
building a slightly different version of the handwritten digit that was fed to the network
[69].

Autoencoders are commonly used for tasks such as:

• Image denoising. On the opposite to traditional denoising tools, rather than deleting
noise from the picture they extrapolate features regarding the signal of interest;

• Generative Models. Once the meaningful features of some specific input signal
are extracted, they can be used to build new data that is similar to the starting
one, but totally new. Digital manipulations of audio, video, and images known as
“Deepfakes” make large use of autoencoders [70].

Recurrent Neural Network (RNN)

MLPs, CNNs and Autoencoders all belong to the category of feed-forward Neural Networks,
in which the data flows in one direction from the input to the output. Although these
models are widely used for classification and regression, they cannot solve problems that
require the handling of sequential data.

Let us consider a simple example, the incomplete sentence “I live in Italy, so I can
fluently speak ...”. Any human, acquiring knowledge from the words in the sentence, can
infer that the missing word is “Italian”. This guess, natural for people, is impossible
for feed-forward Neural Networks as they would require a feature to extract and make
predictions on (e.g., the particular length of the sentence to then predict the next word)
[71]. A sort of memory mechanism of the input string would be needed to achieve the
successful prediction of the following word. This mechanism is at the bases of Recurrent
Neural Networks (RNNs), models that can operate on a sequence of data rather than on
static input.

In RNNs the classic perceptron is employed, with information gathered from upstream
neurons, summed up and then fed to the activation function. However, in contrast with
feed-forward networks, the output of the perceptron is fed back to the input, creating a
loop, as in Figure 4.15 on the left.
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Figure 4.15: Effect of feedback in RNNs.

The time evolution is represented in the rightmost part of the picture. The output of
the perceptron at a time t1 is fed to the input of the very same neuron at time t2, and so
forth. Thanks to this mechanism, the RNN can gain knowledge out of the string from
the example and make a prediction based on the whole available information [72].

RNNs have applications in many fields, among which:

• Natural Language Processing (NLP), a field of computer science that focuses on
the interaction between computers and human language (e.g., chatGPT by OpenAI
[73]).

• Financial Forecasting, in order to predict future stock prices based on historical
data.

4.2.3 The Learning Process

The goals of the different neural networks were extensively discussed in this Chapter,
from data classification to image recognition. Nevertheless, the fundamental mechanism
at the bases of their capability of thinking was not tackled yet. Machines equipped with
artificial intelligence tools learn like humans do, by examples, thanks to the so called
learning process.

According to the paradigm of Supervised Learning, a training set of data is fed to
the network. It consists of labelled data, i.e. input data along with their output labels.
For instance, for image classification in CNNs, the training set might contain thousands
of pictures of animals, each with its own class provided (e.g., a photo of a dog along with
metadata specifying it is a dog).

From a mathematical point of view, “learning” consists in optimizing the neural
network’s parameters (i.e., the weights and biases) by minimizing a cost function defined
by the user.

Common Cost Functions

Cost functions represent a method for evaluating how well the specific model fits the
given data. If the prediction deviates too much from the expected result, then the cost
function will catch the misbehavior.

Many cost functions exist in the literature, and their choice highly depends on the
task that the model has to perform, e.g. classification or regression. As pointed out in the
previous Section, the two tasks are different, as the former aims at predicting the output
from set of finite categorical values (e.g., distinguish handwritten numbers into the ten
figures from ’0’ to ’9’) while the second deals with predicting a continuous value out of
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specific features presented by the input data.

As to regression, the most common cost functions are:

• Mean Square Error, also known as L2 loss. Given n training examples, each
with their specified output class ŷi, it is mathematically formulated as:

MSE =

Pn
i=1(yi − ŷi)

2

n
(4.6)

where yi is the output computed by the neural network taking into account the
i-th training example. Due to the nature of this function, mispredictions that are
far from the actual values are heavily penalized in comparison to less deviated
predictions.

• Mean Absolute Error, also known as L1 loss. Given n training examples, each
with their specified output class ŷi, it is expressed as:

MAE =

Pn
i=1 |yi − ŷi|

n
(4.7)

The absolute value in MAE works as the exponentiation function in MSE, since the
magnitude of the misprediction is taken into account rather than its sign.

As to classification tasks, the most common cost functions in the literature are:

• Hinge Loss. This cost function returns a low value if, among all the possible
output classes in a classification problem, the correct one has achieved the highest
score. Its mathematical formulation is the following:

HingeLoss =
X
j ̸=yi

max(0, sj − syi + 1) (4.8)

where syi represents the score achieved by a specific class on the training data i and
sj the score of any other possible output class. A clarifying example of classification
with Hinge as cost function is in Figure 4.16, where for each row in the table the
score of the class is reported.

Figure 4.16: Scores in classification problem [20].

For each triplet, the Hinge Loss function is computed as follows:

Image 1: max(0,(1.49)-(-0.39)+1) + max(0,(4.21)-(-0.39)+1)= 8.48
Image 2: max(0,(-4.61)-(3.28)+1) + max(0,(1.46)-(3.28)+1)= 0
Image 3: max(0,(1.03)-(-2.27)+1) + max(0,(-2.37)-(-2.27)+1)= 5.2
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As aforementioned, the cost function returns a low value when the score of the
correct class is the highest among all possible classes. This is not the case for images
1 and 3, as the model respectively individuates the horse and the dog as most likely
animal (instead of dog and horse), thus the function returns a quantity larger than
zero. On the other hand, the model is able to correctly recognize a cat in image 2,
and consequently the function returns 0.

• Cross Entropy, also known as Negative Log Likelihood. Given n possible output
classes, it is mathematically expressed as:

CrossEntropy = −
nX

i=1

yi · log(ŷi) (4.9)

where yi and ŷi are the expected and predicted classes, respectively. By construction,
it heavily penalizes the predictions that are confident but wrong [74].

Gradient Descent

Once the most adequate cost function for the task is chosen, the gradient descent is the
algorithm used to minimize it [75]. In other words, the gradient descent tries to find the
optimal values for the weights ω and biases b in the neural network that make the errors
between the predictions and the expected classes as small as possible.

Neglecting the biases and supposing for simplicity that the cost function J is only
dependent on the weights ω, a possible graphical representation is in Figure 4.17 (A).

Figure 4.17: The Gradient Descent.

The gradient descent can be visualized as a ball rolling down the hill outlined by the
cost function. The algorithm accepts a parameter set by the user, the so called learning
rate α. This quantity specifies how fast the gradient descent has to move down the slope
of J.
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A high learning rate, as in Figure 4.17 (B) lets the algorithm move too fast along the
slope, possibly never converging to the value of the minimum. A low α, on the other
hand, might let the gradient descent move too slowly and converge to the minimum after
a long time, wasting computational power 4.17 (C). Finally, Figure 4.17 (D) shows the
optimal setting of the learning rate.

The process of optimization of the parameters was introduced by Hinton et al. in
their paper Learning representations by back-propagating errors [76]. It starts operating
from the last layer and continues until the first one, reason for which it is referred to as
Back-propagation Algorithm.

The update of optimization parameters ω and b by means of the gradient descent is
mathematically expressed as:

ωnew = ωold − α · d

dω
J(ω, b) (4.10)

bnew = bold − α · d

db
J(ω, b) (4.11)

where the subscript old refers to the parameters before the update and new to their
value right after. The notations dJ/db and dJ/dω refer to the partial derivatives of the
cost function J with bs and ω, and the learning rate is represented by α.

The intuitive meaning of the formula is the following: the partial derivative finds the
direction towards which the fastest increase of the parameter taken into account (e.g., the
weight or the bias) takes place. The sign is then reversed, now heading towards the di-
rection with the highest decrease, and following it with pace defined by the learning rate α.

In reality, the bowl model for the cost function from Figure 4.17 (A) only holds in some
specific cases, when a linear regression1 is taken into account. Finding curves like the one
in Figure 4.18 is more likely for neural networks.

Figure 4.18: Non-convex cost function.

The cost function here is not convex, as it features multiple local minima and a global
minimum. The gradient descent might not always converge to the lowest point in the
curve, but rather to a local minimum, hence to a sub optimal solution.

1By “linear” researchers refer to a method that attempts to find a line (i.e., a curve with polynomial
degree of one) that fits the data with minimum error as a solution for the regression problem.
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Common Optimizers

Most optimizers used in Deep Learning are based on gradient descent algorithm and its
variants. Here some of the most adopted are reported, although researchers often propose
new ones.

The Stochastic Gradient Descent (SGD) represents the most basic optimizer in Deep
Learning. It computes the gradient of the cost function with respect to the parameters ω
and b using a small portion (i.e., a batch) of training data and then updates the parameters
accordingly. Due to its simplicity it is able to converge faster than other optimizers, hence
it is often used on large training datasets [77].

The RMSprop optimizer adapts the learning rate α using a moving average of the
squared gradient instead of the gradient itself. This helps to prevent the learning rate
from becoming too small, with a consequent high computational time [78]. It is par-
ticularly effective for tasks that require a learning rate that changes over time, such as
Natural Language Processing [79].

The Adam optimizer calculates the mean and the variance of the gradient, and then
updates the parameters according to a combination of the two computed quantities. It is
particularly effective for training neural networks with complex architectures [77].

Overfit and Underfit

As previously stated, the goal of the training is to optimize weights and biases in the
neural network, in order to minimize the chosen cost function. Once the training is over,
the network should be able to perform its task (e.g., regression, classification and so forth)
on yet-unseen data as accurately as on the training data. In other words, a successful
model is able to generalize to new data.

Once the neural network is free to work on new data, two main problems might arise,
known as overfit and underfit. They are both related to the complexity of the network,
i.e. the number of perceptrons it is made of.

The neural network is affected by overfit when it performs very well during training, but
fails when seeing new data from the same domain. Figure 4.19 depicts an example of
overfit.
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Figure 4.19: Overfit [21].

The neural network on the left has low complexity (e.g., less layers) and fits data
well, with a low distance between the dots (i.e., the actual data) and the curve (i.e., the
predicted data). If a new dot is added, the distance between the former and the curve
will be low. The network on the right features a higher complexity and manages to have
an even smaller distance between the dots and the curve.

Between the two models, the second one seems to fit data better than the first one.
However, it tries to fit the dots one by one, not recognizing the underlying function that
describes the data distribution. This means that when adding a new dot according to the
data distribution, this model will show a high error (i.e., a large distance between the
new dot and the curve).

Models affected by overfit are characterized by a high variance, depicted as large
swings in the Figure, and cannot generalize to the new unseen data. The problem is
empirically encountered with a high accuracy in the training phase followed by poor
performance when new data is fed to the network.

The main solutions to address the problem are the gradual lightening of the model,
attempting to reduce its complexity (e.g., dropping perceptrons in the different layers)
or with regularization techniques. Among such techniques, the early stopping method is
often employed as it consists in halting the training process as soon as performance does
not improve, thus preventing a high and undesired complexity of the model.

The opposite problem is called underfit, depicted in Figure 4.20.
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Figure 4.20: Underfit [21].

Here, the model on the left is too simple with respect to the complexity needed to
fit the data. Networks affected by this problem feature poor performance already in the
training phase, making underfit more easily detectable with respect to overfit. A solution
to the problem of underfit might be the gradual increase of the number of perceptrons in
the neural network, with a consequent higher complexity provided by the model.

4.2.4 Adjusting the Networks: Hyperparameters Tuning

Weights and biases are not the only parameters to set for building a model that successfully
fits the data. When finding the solution to a regression or classification problem, multiple
neural networks, each with characteristic settings, can be taken into account.

Hyperparameters are additional knobs to handle when looking for the best model.
They consist in configurations of the neural network that are set a priori, before the
training begins. The main hyperparameters in Deep Learning include:

• Learning Rate, as the convergence of the cost function depends on its value;

• Number of Layers, since models that feature higher complexity can incur into
the overfit problem, while a low complexity might imply the underfit of the data;

• Perceptrons per Layer, as a wider neural network might capture complex patterns
at the cost of a high computational time;

• Activation Functions, as different functions introduce different levels of non-
linearity in the model;

• Batch Size. It sets the dimension of the portion of the training set to evaluate
before updating the parameters ω and b. High values imply that the model is
updated few times during the training, and make the training itself faster but might
not catch the complexity needed by the data;

• Number of Epochs. It defines how many times the model should perform an
entire iteration over the training data;

• Optimizer, as models can achieve benefits from the different methods that minimize
the cost function.
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Once ranges for the hyperparameters of interest are individuated, the so called search
space is defined, and different search strategies can be adopted.

The Grid Search consists of an exhaustive exploration of the search space. Taking into
account all possible combinations of hyperparameters, it suffers high dimensional spaces
(i.e., spaces defined by the combination of multiple hyperparameters). It benefits from the
usage of Graphics Processing Units (GPUs) as the exhaustive search can be parallelized
[80].

The Random Search does not scan the entire search space, but rather picks points from
it. Each point corresponds to a combination of the hyperparameters to be taken into
account. With constrained computational resources it can outperform the grid search in
large spaces [80].

Genetic Algorithms leverage the principles that regulate the process of natural selection
in order to explore the search space of the hyperparameters. At each step, a series of
individuals, each resembling a point in the search space, is evaluated with a score.
Successive recombinations of the successful parameters generate new individuals to
evaluate at the next steps [80].

4.3 Deep Learning applied to Side-Channel Analysis

Deep Learning can follow two different approaches, Supervised and Unsupervised Learning.
Supervised Learning, as mentioned in Section 4.2.3, is composed of two stages,

the training and attack phases. During the first one, a set of labelled data is used to
train the network. Here, the weights and biases are optimized in order to minimize a cost
function. During the second phase, the trained neural network performs the required task
on unseen data.

Unsupervised Learning, on the other hand, only features a single phase. Here the
neural network has to extrapolate the features of interest from the data and perform the
task, as the labelled data is not employed during the training.

The two approaches present similarities with respect to the attack modalities adopted
in Side-Channel Analysis described in Section 3.2.3. Profiled attacks, just like Supervised
Learning, feature a preliminary phase during which knowledge about the target device
is acquired, and a second stage when the attack is accomplished. Non-profiled attacks,
instead, are intrinsically similar to Unsupervised Learning, as the task is performed
directly, without a preliminary phase for modelling the target device.

Researchers observed the similarities between the Deep Learning approaches and the
attack modalities in classic Side-Channel Analysis and elaborated two main scenarios
followed in the literature. The first, displayed in Figure 4.21, represents an attack
performed following the Supervised Learning approach.
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Figure 4.21: Supervised Learning for DLSCA [22].

The analysis involves the actual target of the attack (i.e., device A’) and a replica,
under full control of the hacker (i.e., device A). Power traces are collected from device
A, labelled with the key they refer to, and fed to the designed neural network. This
process represents the training phase of the network. Few traces are then collected from
the actual target device, which is not controlled by the hacker. The knowledge gained
through the training phase on device A is then leveraged for inferring the key used by
device A’. For a successful classification the training should be performed with a replica
device as similar as possible to the actual target.

Side-Channel Analysis according to the Unsupervised Learning paradigm only involves
one device, the actual target of the attack, as depicted in Figure 4.22.

Figure 4.22: Unsupervised Learning for DLSCA [22].

The traces collected by the hacker are used both for training the neural network and
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for leading the attack. In contrast with the first approach, the hacker does not need
labelled data for the training. The only needed assumption for the analysis is that the
attacker can collect a large quantity of power traces from the target. On the other hand,
this approach is generally considered more complex and few studies in this directions
exist [54].

4.3.1 Power Models

Most works in the literature refer to three main power models adopted in Deep Learning
Side-Channel Analysis when attacking AES:

• The Hamming Weight. The Intermediate Value (IV) on 8 bits can generate up
to 9 different Hamming Weight groups, from HW=0 to HW=8. Inferring the byte value
of the IV in classic SCA corresponds to a classification task in DLSCA. Here, the
nine groups are considered as possible output classes among which the network
has to discriminate. Since the Hamming Weight generates few output classes, the
underlying classification problem is considered simple and consequently the power
model is widely spread in the literature;

• The Hamming Distance. Rather than a guess on the Intermediate Value it
evaluates a pair of subsequent IVs. In a similar way to the Hamming Weight,
it generates 9 output classes, from HD=0 (when the pair of bytes implies no bit
flips) to HD=8 (when all bits flip in the byte when passing from IV1 to IV2). The
classification problem is similar to the one originated by the HW model. However,
it is less common in the literature since it works on pairs of Intermediate Values.

• The Identity Model. It directly considers the byte value of the IV, thus leading
to 256 possible output classes, from 0x00 to 0xFF. The underlying classification
problem is retained harder due to the elevated number of outcomes.

4.3.2 Metrics

Evaluating the performance of a model during a classification problem is a crucial aspect
of the overall process, and it is achieved through metrics. In Deep Learning, two main
metrics are employed, the loss and the accuracy.

The loss, also known as cost function, was exhaustively analysed in Section 4.2.3. It
corresponds to the uncertainty of a prediction and is based on how much the model’s
output differs from the expected value.

The accuracy is a metric that expresses how often, out of the total guesses, the pre-
diction was correct. In a classification problem with more than two output classes it is
mathematically formulated as:

Acc =
CP

CP +WP
(4.12)

where CP and WP are the number of correct and wrong predictions, respectively.
An example of results deriving from a multi-class classification problem is in Figure 4.23,
which depicts the table known as Confusion Matrix.
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Figure 4.23: Confusion Matrix for multi-class classification problem.

Here the correct predictions correspond to the elements of the matrix where the
predicted class coincides with the actual class, and they are located on the diagonal, thus
leading to CP = 6 + 9 + 10 + 12 = 37. The total number of mispredictions, in red, is
equal to WP = 15. The accuracy is therefore:

Acc =
CP

CP +WP
=

37

37 + 15
= 71.15% (4.13)

Deep Learning Side-Channel Analysis Metrics

The Hamming Weight model is the most common in the literature [81]. However, as
pointed out in Section 3.3.3, it generates uneven groups (e.g., one byte has HW=0,
whereas 70 bytes feature HW=4). This phenomenon was studied by Picek et al. in their
paper The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for
Side-channel Evaluations, in which they state that classic ML and DL metrics do not
represent reliable performance evaluators [81]. A neural network can have a high accuracy
simply because it might tend to classify many Intermediate Values into HW class 4,
which is far more likely than other classes in the distribution. However, this classification
does not bring advantages to the attacker, as there is no real dependence between the
Intermediate Value and the HW class predicted by the model. For this reason, researchers
developed new metrics that can evaluate performance of models in DLSCA, the Success
Rate and the Guessing Entropy.

The Success Rate (SR) is a metric that evaluates the percentage of successful attacks
on the key for a particular number of traces. The metric, often expressed as a percentage,
ranges between [0,1] and intuitively tends to 1 with a larger number of traces. The plot
in Figure 4.24 depicts its behavior.
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Figure 4.24: Success Rate [12].

In that specific example, with 40 traces, the key is correctly recovered nearly 80% of
the time. With 60, the rate is about 95%.

When the metric is used for evaluating the effectiveness of the model on a single key
byte, it is referred to as Partial Success Rate (PSR).

As stated in Section 3.3.3, a Side-Channel Attack often provides more complete information
than simply “key was ABC” or “key was not found”. Each key guess is associated with a
confidence figure, into a ranked list. The Guessing Entropy (GE) evaluates the number
of incorrect guesses in the ranked list, for a particular number of traces. The metric,
depicted in Figure 4.25, is mainly used for evaluating the effectiveness of the model on a
single byte. When used for this purpose, it is called Partial Guessing Entropy (PGE).
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Figure 4.25: Partial Guessing Entropy [12].

PGE ranges between [0,255], where 0 means that the correct key byte was ranked as
first in the list2.

4.3.3 Datasets

The main drawbacks of Deep Learning stem from the resources required by the training
of neural networks, the computational power and the high volume of data.

The former can be solved by employing GPUs rather than general purpose processors,
as many tasks during the training can be parallelized. For instance, as stated in the
previous Section, Grid Search can be split into multiple threads, each computing the
effect of a combination of hyperparameters from the search space.

As to the latter, in recent years researchers have proposed labelled datasets, large
collection of traces along with their expected class, for training neural networks. Providing
traces features a double advantage, as they can be used by people that do not own the
instrumentation to perform the collection (tools such as oscilloscopes might be too
expensive for hobbyists that approach SCA out of academical contexts) and they serve
as benchmark for new experiments. As a matter of facts, datasets constitute a common
criterion to evaluate the efficiency of models, since different researchers can assess how
hard it is to crack the same key leveraging training on the very same traces.

ASCAD

ASCAD [82], contraction for “ANSSI SCA Database”, is a project developed by the French
National Cybersecurity Agency. It attempts to provide collections of data inspired to
the MNIST database, well known dataset for Artificial Intelligence classification problems.

2Often in the literature the insertion of the correct key byte as first in the ranking is referred to as
“unitary guessing entropy”, thus making PGE range between [1,256].
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The first release is composed of the two databases ATM_AES_v1_fixed_key and ATM_AES_v1
_variable_key, also known as ASCAD-F and ASCAD-R. They consist of traces col-
lected from the execution of AES on an ATMega8515, which does not feature any SCA
countermeasure.

ASCAD-F provides 50,000 traces for the training of the neural network and 10,000
for evaluating its performance. The key is kept fixed to the value in Table 4.1.

Byte Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Byte Value 0x4D 0xFB 0xE0 0xF2 0x72 0x21 0xFE 0x10 0xA7 0x8D 0x4A 0xDC 0x8E 0x49 0x04 0x69

Table 4.1: Key used in ASCAD-F.

ASCAD-R consists of 300,000 power traces, divided into 200,000 for the training phase
and 100,000 for the attack phase. The key is kept fixed for one third of the collection
and randomized for the rest. The higher cardinality of this collection with respect to
ASCAD-F is due to the difficulty for the model to learn features that derive from traces
with different keys, as they introduce a more complex pattern.

The second release provides two databases obtained thanks to power measurements during
the execution of AES on STM32F303RCT7. The device is a 32-bit microcontroller lightly
protected against Side-Channel Analysis as software masking and jittering countermea-
sures are present. ASCADv2 provides the measurement of 800,000 encryptions, as the
neural network needs hundred thousands of traces to model features originated by a
microcontroller with high data bus width and equipped with countermeasures.

Each of the datasets in the two versions shows the same structure, inspired by the MNIST
database and depicted in Figure 4.26 [23].

Figure 4.26: ASCAD structure [23].

In the file two groups are present, Profiling_traces and Attack_traces. Each
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group is composed of three fields: traces, labels and metadata.
Each trace is the collection of 700 samples measured at the output of the first round

of AES. This cut is performed to provide light traces which can be processed easily even
with general purpose computers.

Labels represent the expected output class of the classification problem. In ASCADv1
the Hamming Weight is employed and therefore the label consists in the HW of the output
of the S-Box at the first round of AES.

The Metadata field aggregates the plaintext, key and corresponding ciphertext. Possi-
ble countermeasures are also taken into account, as the mask and the desyncronization
by a constant amount are explicitated.

The database is stored in .h5 format, which is a standard for Machine Learning
datasets.

DPA Contests

The four DPA contests are competitions called by the Telecom ParisTech and AIST. The
organizers provide traces that allow participants to recover the key, thus comparing in an
objective manner their attack algorithms. DPAv1 and DPAv3 are now closed and do not
let researchers submit models. DPAv2 and DPAv4 are still open and regard hardware
and software implementations of AES-128, respectively. The second edition of the contest
provides 1,000,000 unprotected traces on a SASEBO-GII board. The latest contest features
32,000 profiling traces with masking countermeasures on a SAKURA-G board.

Further details about the four contests can be found at https://www.dpacontest.
org/home/.

4.3.4 Frameworks

As soon as studies demonstrating the effectiveness of Deep Learning in Side-Channel
Analysis were carried out, many researchers started exploring new solutions that could
help recover keys with less traces and fewer assumptions. As a result, DLSCA is a research
field in rapid growth, set in between the domains of Artificial Intelligence and Embedded
Cybersecurity. In many cases researchers expertise one domain but lack competencies in
the other, due to the rare interactions between the two.

Starting from 2019, researchers have attempted to propose frameworks that could
ease up the training and deployment of neural networks for Side-Channel Analysis.

The AISY Framework by Delft TU

Developed by the AisyLab group of the Delft University of Technology, it represents one
of the most complete frameworks in the DLSCA panorama. The AISY Framework [24]
was released in 2021, it is regularly updated and provides a plethora of features.

It is possible to create Python attack scripts, as illustrated by the listing in Figure
4.27.
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Figure 4.27: Example script using the AISY framework [24].

In the image, the script performs an attack on the third byte of the key, selecting
the Hamming Weight as power model. By default the attack point corresponds to the
output of the S-Box at the first round of AES, although it can be easily changed by
the user thanks to the aisy.set_aes_leakage_model() function. The chosen neural
network (mlp), defined by the user, is trained with traces from the ASCAD-R dataset.
The training features 20 iterations of the whole training dataset (epochs = 20). During
each of them, the weights and biases of the network are updated after every 400 new
traces (batch_size = 400).

The researchers from Delft TU promise to update metrics and leakage models regularly,
as DLSCA is an emerging research field and new disruptive discoveries could affect
significantly its State of the Art. Furthermore, a high level of customization is provided,
as the user can define their own metrics, leakage models and cost functions.

The overall framework is complete, as the user can explicitate every parameter (e.g.,
attack point, evaluation metric, and so forth) before performing the attack. Its only
impactful drawback stems from its maturity, as multiple bugs were found out during the
development of this work. Nevertheless, the researchers from Delft TU often made quick
fixes on demand following our bug notices.

The full documentation is available at https://aisylab.github.io/AISY_docs/.

SCAred by eShard

It is a Python library developed by the French company eShard, which allows to easily
launch Side-Channel Analysis attacks. An example is depicted in Figure 4.28.

Figure 4.28: Example script using the SCAred framework [25].

The code specifies that the attack point is the Intermediate Value of the first round
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of AES and that the Hamming Weight model is deployed for the analysis. Profiling traces
are obtained thanks to the collections provided by DPAv2 contest, cut between samples
2340 and 2395.

SCAred is a very flexible solution as it allows users to define customized power
models and attack points. Examples of attacks running in the Jupyter Environment are
available at https://mybinder.org/v2/gl/eshard%2Fscared-notebooks/master. The
full documentation is available at https://eshard.gitlab.io/scared/index.html.

SCALD by Google

SCALD, acronym for “Side Channel Attacks Leak Detector”, is a framework developed in
Python by Google.

Differently from the other frameworks presented in this Section, it does not help the
user to ease up the deployment of attacks. On the opposite, it is particularly useful for
defenders as it highlights the code fragments in software implementations of AES that
leak exploitable information, as in Figure 4.29.

Figure 4.29: Leakage detection on TinyAES with SCALD [26].

The framework successfully identifies the line of code performing the AddRoundKey
operation as main source of leakage, by assigning it a high leak score and highlighting it
in red.

Information about SCALD is fragmentary, although the authors provide further details
at https://elie.net/scald.
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Chapter 5

Development

5.1 Motivation and Objectives

Deep Learning Side-Channel Analysis has gained significant relevance in recent years,
drawing the attention of researchers from the domains of Embedded Systems Security
and Artificial Intelligence. As a consequence, numerous research groups often propose
new techniques that achieve attacks with fewer assumptions or improved performance.
Nevertheless, the increasing attention in the research field was not accompanied by the
standardization of experiments: many papers claim to outclass the State of the Art
but lack fundamental details about the used traces, as well as the training employed
for the different neural networks. Additionally, as Stjepan Picek points out during the
seminar Deep Learning for Side-Channel Analysis [22], researchers often adopt shortcuts
in academical contexts, which could lead to overestimating the obtained results. One of
these misconceptions is represented by the usual setting deployed during the Supervised
Learning experiments, depicted in Figure 5.1, which appears to be different from the ideal
one illustrated in Figure 4.21.

Figure 5.1: Shortcut Setting for Supervised Learning [22].
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While in the ideal setting the profiling and attack traces are collected from two
different devices, here the collection campaign is unique. Out of the single collection two
groups of traces are created, for training and attack evaluation.

This shortcut, although seeming harmless, highly impacts the quality of the experi-
ments: the model learns the features deriving from the key and the handled data but does
not deal with the higher complexity that stems from the variations in the manufacturing
process of the different devices. Conversely, when both devices are distinct, like in the
case depicted in Figure 4.21, the data collected includes variations due to production
inaccuracies which inevitably worsen the results of the experiment.

Very few researchers tackle this problem, known as portability of the attacks [22].
Perhaps the most impressive work in this direction is the experiment by Bhasin et al.
described in their paper Mind the Portability: A Warriors Guide through Realistic Profiled
Side-channel Analysis [83]. Here, attacks on the single device (i.e., as in the shortcut
setting) and on different copies of the same device (i.e., as in the ideal one) are performed,
demonstrating the higher complexity of the latter.

This thesis proposes a further step in this direction, evaluating the effects of attacks
targeting devices that do not belong to the same family of those used for the training of
the neural network. Cross-family devices show a higher level of dissimilarity with respect
to the microcontrollers used by Bhasin et al., not sufficiently studied in the literature.
Three different models of microcontrollers from family PIC18FXXK42 by Microchip are
used to train three neural networks in order to attack a device from family PIC18FXXK20.

The work impersonates three attackers with different degrees of commitment:

• Low effort. A simple MLP composed of two hidden layers is used to crack the key
without prior knowledge of the power traces;

• Medium effort. The hacker analyzes the power traces and knowing the degree of
complexity needed by the problem decides to employ a neural network deployed in
a similar attack scenario;

• High effort. A neural network, product of a fine tuning on the available traces, is
chosen to lead the attack.

5.2 Experimental Equipment

16-bits and 32-bits microcontrollers are becoming more and more popular in the market, as
companies managed to provide them with capabilities to run resource-hungry applications,
such as Digital Signal Processing (DSP) [84]. However, not all applications need cutting-
edge technologies. In fact, most do not. 8-bit microcontrollers are still relevant in the
market due to their low cost and satisfactory computational power, and projections show
they will keep pace in the microcontroller industry in the upcoming years, as shown in
Figure 5.2.
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Figure 5.2: Relevance of 8-bit microcontrollers in the North American market [27].

5.2.1 8-bit MCUs by Microchip

Choosing the target microcontrollers was the preliminary step of the experience. At first,
several companies were taken into account, such as ARM, ST, Nordic and Microchip. All
of them offer a plethora of 8-bit and 16-bit devices, although, as pointed out in Section
3.3.3, the ultimate decision came down to 8-bit devices because of the lower complexity
of their power traces.

A necessary feature is the memory size, as all microcontrollers should at least contain
the Tiny-AES software implementation. Devices with at least 2KB of RAM and 256B of
ROM were chosen, as some margin is provided with respect to the minimum requirements.

A further important criterion for the choice of the adopted microcontrollers stems from
the possibility to have a single device to program all of them, rather different programming
tools. Microchip sells a Development Board that allows chips from their 8-bit PIC line to
be plugged in and programmed, a versatile solution to handle multiple microcontrollers.

The board, whose top side is illustrated in Figure 5.3, is called “Curiosity High Pin
Count Development Board”. It includes an integrated programmer and debugger and
requires no additional hardware to get started.

Figure 5.3: Top view of the HPC Development Board by Microchip [28].

It features a slot for the allocation of the microcontroller (socket), highlighted in blue
in the aforementioned image. Only DIP and PDIP chip packages, with 28 and 40 pins
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respectively, can be plugged in. Four LEDs are provided for easy debugging, shown in
light blue in Figure 5.3. Furthermore, a serial interface, shown in green, allows data
exchange between the microcontroller and the host computer connected to the HPC
board, both in reception and transmission.

As to microcontrollers, the final selection taking into account the constraints mentioned
above is the following:

• PIC18F27K42, PIC18F47K42, PIC18LF45K42, PIC18LF46K42, PIC18F26K42 and PIC18
F45K42 from the PIC18 K42 family;

• PIC18F46K40 and PIC18F27K40 from the PIC18 K40 family;

• PIC18F46K20 from the PIC18 K20 family.

5.2.2 The ChipWhisperer™ Toolchain

The collection of power traces requires few tools, an oscilloscope and a resistor. The former,
although present in most laboratories of electronics due to its numerous applications, is
very expensive (a quick research shows prices starting from 1000$) and out of reach for
hobbyists or people that approach Embedded Cybersecurity out of academic contexts.

NewAE proposes cheap starter kits known as ChipWhisperer™ that allow to replace
the aforementioned tools, as well as a software framework that helps the attacker perform
the analysis.

The ChipWhisperer™ Hardware

Multiple starter kits are available in their website [29]. ChipWhisperer-Nano is the
lowest-cost option (around 50$) although shows limitations on the types of attacks that
can be performed, as the target microcontroller is fixed and cannot be replaced.

A more flexible solution is represented by ChipWhisperer-Lite (around 250$), a single
device that integrates high speed power measurement, as well as programming capabilities
for most chips designed by leading companies in the market.

This product, depicted in Figure 5.4, can be conceptually divided into two parts.

Figure 5.4: ChipWhisperer-Lite by NewAE.
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A smaller PCB embeds the target device, object of the power analysis (the available in-
tegrated targets on the website are ATXmega128D4-AU, STM32F303RCT6 and STM32F030F4P6).
On the other hand, the largest PCB embeds the capture logic, which is able to program
the target device (via the flat cable in grey) and measure its power consumption during
the execution of encryption operations (through the coaxial cable). Although the two
PCBs are sold connected together, they can be detached from each other. This allows the
Side-channel analyst to connect and attack different off-the-shelf target microcontrollers.

A closer look to the capture board of ChipWhisperer-Lite is in Figure 5.5.

Figure 5.5: The Capture Board.

The capture board features a clock generation system that is able to drive, through
the pin highlighted in light blue color, a clock signal to the target with frequency between
5MHz and 200MHz.

The pin highlighted in red is the input to the measurement module. It can sample
power traces coming from the target device up to 105MS/s1.

Finally, the 20-pin connector highlighted in green handles most of the communication
from and to the target device. It allows the UART communication to send the plaintext
and receive the ciphertext. It also embeds the trigger signal used as a temporal reference
for the start of the measurements.

The ChipWhisperer™ Software

NewAE also provides an open-source Python library for controlling the capture hardware
and the communications with the target, accessible through a Jupyter Notebook environ-
ment. The Python API exposes the functions that are used to regulate the behavior of
the clock generator, the trigger system and the measurement module. Moreover, it allows
to set the plaintext and the key, as well as obtain the corresponding ciphertext along with
the acquired power traces.

Additional Python libraries such as numpy and matplotlib constitute useful tools for
the analysis of traces, as the former handles large numerical vectors and the latter is able
to draw plots to outline traces and results.

1By construction, the maximum frequency that can be measured by the capture board corresponds to
one fourth of its maximum sample rate.
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Further details can be found at https://chipwhisperer.readthedocs.io/en/latest/
index.html#api,

The SimpleSerial Protocol

Designed by NewAE, it regulates the interactions between the capture board and the
target device, which are always initiated by the former. It is delivered in two versions,
v1.1 and v2.1. In both cases the communication is established through packets.

SimpleSerialv1.1 is the simplest of the two. Each packet is composed as follows:

[cmd, data_0, ..., data_n, terminator]

• The cmd field states the operation the packet refers to. The capture board can
indicate ’p’ to send a block of plaintext or ’k’ to send the key. The target board
sends the command ’r’ to indicate that the current packet contains a response to
an operation previously requested;

• The data field resembles the sequence of ASCII byte values of the payload. The
number of allowed data bytes is defined by the user via firmware;

• The terminator of the packet consists in the ’\n’ character.

SimpleSerialv2.1 is more complex, as the package is consituted by the following fields:

[cmd, scmd, dlen, data_0, ..., data_n, CRC]

The novelties with respect to the first version consist in:

• The scmd field, which specifies additional options with respect to the command that
change the performed operation accordingly (e.g., the user can specify that scmd =
0x00 corresponds to AES while scmd = 0x01 performs DES);

• The dlen field, that explicitates the length of the data sequence;

• The CRC field, a checksum on the packet that assures its correctness.

With both versions the user must define the callback function that is associated to each
command, as in Figure 5.6.

Figure 5.6: Example of code including SimpleSerial functions.
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The example shows the callback function that encrypts the plaintext, from line 3
to 7 (which in this work will be filled with the encryption function provided by the C
library Tiny-AES). The callback is tied to a command (’p’ in the example) thanks to
the simpleserial_addcmd function, provided by the protocol. The maximum length of
data the callback can handle is specified as second parameter. Furthermore, the protocol
provides the function simpleserial_get() (at line 16), that performs a continuous check
on new packets.

These functions are part of the firmware that will be flashed to the target device. The
attacker can initiate the communication thanks to Python functions defined in the Chip-
Whisperer™ API, which act at a higher layer of abstraction, e.g. send_key(key_bytes).

During the development of the thesis the SimpleSerialv1.1 protocol was used as it
is more lightweight and easier to handle due to the absence of the CRC field.

5.3 Configuration of the Hardware Setup

With integrated targets the user can flash example code by NewAE directly from the
ChipWhisperer™. The firmware specifies what operations the microcontroller has to
execute, i.e. what algorithms have to be analyzed, from encryption schemes to password
checks [85].

5.3.1 Setting up the Target Board

When the capture board is used to analyze other microcontrollers, the firmware flashing
process is customized to the selected chip. In the case of PIC18 devices, the programming
phase must take part through the Curiosity HPC Development Board previously described.

Peripherals and Files

Designed by Microchip, MPLAB X represents the Integrated Development Environment
for PIC and AVR firmware programming. It allows to specify the modules of interest thanks
to a graphical interface and generates C code that constitutes a starting point for the
developer. During the development of the thesis, the following resources were employed:

• the System module. PIC microcontrollers feature multiple sources to generate the
clock signal for the various components. The default is the clock signal deriving from
its internal quartz oscillator. Nevertheless, the capture board by ChipWhisperer™
needs to drive the target’s clock signal in order to synchronously2 sample the power
traces. For this reason, the “external clock source” mode was enabled. Furthermore,
the frequency value of the external clock source is specified, equal to 16MHz;

• the UART module. It is needed to handle the serial communication between
the capture and target boards. The former starts the data flow by sending the
plaintext3, the latter replies at the end of the AES algorithm with the ciphertext.
The module is used in “asynchronous full duplex” mode, as two channels are present
(Tx and Rx) and can be used simultaneously. The baud rate on each channel is
9600bps;

2ChipWhisperer™ performs synchronous sampling with respect to the clock of the target device, as its
probe module is able to tie the measurements to the rising edge of the victim’s clock signal.

3The key is stored inside the device, no key transfer ever takes place, as it could expose unexpected
vulnerabilities and jeopardize the experiment.

80



• the GPIO module. The rising edge of one pin in the peripheral serves as trigger
to the capture board for the start of the power measurements. The trigger is set at
the beginning of the AES encryption phase.

Additionally, the C project includes files from the two libraries TinyAES and SimpleSerial.
The former represents the software implementation of the AES algorithm, configured as
AES-128 in ECB mode, the latter describes the interaction between the capture and target
boards.

5.3.2 Setting up the Capture Board

The capture board, due to its versatile nature, can be configured according to the different
target devices that the user intends to analyze. The main operations to be performed
regard the GPIO Peripheral and the External Clock Generation Module. According to
the API, the functionalities of the pins highlighted in Figure 5.5 can be modified by the
user in Python.

The GPIO pins belong to the part of the capture board highlighted in green in Figure
5.5, whose schematic is in Figure 5.7, on the right.

Figure 5.7: 20-pin connector and ChipWhisperer™ schematic of the GPIO pins [29].

In order to allow the UART communication between the target and the capture
boards, the pins TARG1 and TARG2 must be configured as "serial_rx" and "serial_tx",
respectively.

From the perspective of the capture board, the pin TARG4 will be used as trigger input
to start the power measurements. The user must set its initial value to high impedance
by writing "high_z" and specify that the selected trigger mode is "rising_edge".

The schematic of the External Clock Generation Module is depicted in Figure 5.8.
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Figure 5.8: Schematic of the External Clock Generation Module [30].

The correct configuration should select "system" as clock source, set a frequency
equal to 16000000 (i.e., 16MHz) and finally configure "clkgen_x4" as ADC source in
order to have a sampling rate four times higher than the target’s clock frequency, as
pointed out in Section 5.2.2. Once the module is correctly set, the pin HS2 from Figure
5.7 can be selected as Clock Output by assigning to it the value "clkgen".

5.3.3 Board-to-Board Interconnections

After the individual setup of both boards is complete and their functionalities are correctly
defined, the physical connections can be established. The ideal measurement setup can
be built in two ways, illustrated in Chapter 3.3 in Figures 3.8 and 3.9.

In contrast to the hardware setup deployed with native target devices (i.e., the flat
connector and the coaxial cable), jumper wires are used to connect the capture board to
the PIC18 microcontroller, as depicted in Figure 5.9 and outlined in Figure 5.10.
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Figure 5.9: Interconnections between the ChipWhisperer™ and PIC18F27K42.
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Figure 5.10: Sketch showing the important interconnections.

The following interconnections can be found:

• The green line, connected to the HS2 pin of the ChipWhisperer™, carries the square
wave of the clock signal, which is fed to the microcontroller;

• The brown line connects the TARG4 pin of the ChipWhisperer™ to the GPIO pin of
the microcontroller selected as trigger for the start of the measurements;

• The yellow line connects the UART_Tx pin of the microcontroller to the TARG1 pin
(i.e., the UART_Rx) of the ChipWhisperer™;

• The orange line connects the TARG2 pin (i.e., the UART_Tx) of the ChipWhisperer™
to the UART_Rx pin of the microcontroller;

• The black lines connect the pin at constant low voltage (0V ) of the ChipWhisperer™
to both the ground pins of the microcontroller, on the left and on the right;

• The red line connects the pin at constant high voltage (3, 3V ) of the ChipWhisperer™
to the voltage supply pin of PIC18 through a resistor of 47Ω. The resistor provides a
way to measure the voltage drop across the microcontroller rather than the absorbed
current, as pointed out in Section 3.3;

• The blue line (red in the previous photo) connects the voltage supply pin of the
microcontroller to the measurement pin of the ChipWhisperer™, which corresponds
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to the input of its internal ADC4.

5.4 Analysis on Traces

Once the connections are set, the trace collection phase can start thanks to the Python
functions defined in the ChipWhisperer™ Capture API [30].

Most of the forthcoming evaluations in this Chapter derive from the analysis of traces
collected on PIC18F27K42, although relevant mentions to the other devices are pointed
out as well.

5.4.1 Simple Power Analysis

As pointed out in Section 3.3.1, the preliminary analysis often consists of a visual inspection.
The collection of a power trace from PIC18F27K42 by means of the ChipWhisperer™
provided the wave depicted in Figure 5.11.

Figure 5.11: AES-128 execution on PIC18F27K42.

Unfortunately the visual inspection proved to be harder than expected. The trace
does not clearly show the peculiarities of AES that are evident on other devices (e.g.,
power spikes in Figure 3.13 that allow to identify the different operations in AES-128).
The Simple Power Analysis run on the trace distinguishes the portions in Figure 5.12.

Figure 5.12: Annotations on PIC18F27K42 power trace.
4In electronics, an Analog to Digital Converter (ADC) is a component that performs the transformation

of a continuous signal into a discrete one.
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In the orange part of the picture (from sample 0 to 18,000) it is possible to distinguish
16 negative spikes that likely refer to an operation of the encryption algorithm (being 16
the number of bytes of both the secret key and the plaintext). Two more zones can be
distinguished from sample 18,000, the green and yellow ones, although it is hard to tell
which operations they refer to.

5.4.2 Where is AES?

The observable leakage does not allow the attacker to easily detect the peculiar current
spikes originated from the execution of the AES-128 algorithm. In order to improve the
observable signal and understand if there is a problem with the setup, two operations are
performed: the computation of a custom metric, called Signal Quality Index (SQI) and
the Reverse Correlation Power Analysis.

SQI computation

The Signal Quality Index is a custom-developed metric used to evaluate the strength of a
desired signal when different hardware setups are employed. The final goal is to obtain a
quantitative result indicating the setup able to provide power traces with higher quality,
allowing to maximize the exploitable leakage.

Since the series of targeted microcontrollers features two ground pins, there are three
possible scenarios to explore: only the left ground connected, only the right ground
connected or both. As connecting different ground pins may activate (or not) unwanted
sections of the internal microcontroller circuitry, testing which combination leads to less
noisy power traces can greatly facilitate the subsequent power analysis steps performed
by the neural networks. The deployed SQI function is displayed in Figure 5.13. For each
scenario four signals, a correct and three wrong ones, were employed to study the behavior
of the custom metric5.

Figure 5.13: Custom SQI function.

For each scenario, a summary trace stemming from three wrong signals is subtracted
from the correct trace. The SQI is equal to the sum of the absolute values of the difference.
The higher the value, the more clearly the correct trace distinguishes itself from the others.
In other words, the best experimental setup tested will be the one returning the highest
value of the SQI metric. The three scenarios are depicted in Figure 5.14.

5The four signals derive from the Basic_Password_Check program by NewAE, which provides a signal
reputed correct - the one related to the correct character in the password to be checked - and an arbitrary
number of traces considered incorrect, all produced by sending incorrect password characters
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Figure 5.14: The three scenarios for SQI computation.

A visual observation of the waves used to compute the SQI confirms the values
obtained. In the first plot it is hard to distinguish the correct trace, in blue, from the
three incorrect ones (in red, orange and green). The situation is improved in the second
plot, where some blue zones are clearly more visible. However, the visual inspection
on the third plot demonstrates that the configuration with both ground pins connected
achieves the highest SQI, slightly better with respect to the second one.

The result of the analysis does not represent a surprise, as connecting both pins is
suggested by the datasheet of the microcontroller since the left one is mainly used by the
peripherals and the right one by the core [86]. This means that the initial chosen setting,
in Figure 5.10, is the one characterized with the highest SQI. The outcome of this analysis
confirms that the traces previously inspected with Simple Power Analysis are meaningful,
even though visually inferring the operations taking place in the AES algorithm proved to
be harder than expected.

Reverse CPA

An additional check that can assure the meaningfulness of the traces is the Reverse
Correlation Power Analysis introduced in Section 3.3.3. By means of this technique,
the portions of the power trace that show high correlation with the key or plaintext are
highlighted. Thanks to the framework developed by eShard it is possible to lead Reverse
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CPA with respect to both the plaintext and the key. The Reverse CPA with respect to
the plaintext bytes 0, 1, 2, 3, 4 is displayed in Figure 5.15.

Figure 5.15: Reverse CPA with plaintext bytes 0,1,2,3,4 on PIC18F27K42.

The plot shows that there exists correlation between the power trace and the plaintext
bytes, thus providing a proof that the waves are meaningful. Nevertheless, a peculiar
behavior is observable: the correlation spikes do not follow the order of the bytes (i.e., 0,
1, 2, 3, 4), but rather 0, 4, 1, 2, 3.

The Reverse CPA with respect to the key bytes 0, 1, 2, 3, 4 is displayed in Figure
5.16.

Figure 5.16: Reverse CPA with key bytes 0,1,2,3,4 on PIC18F27K42.

Here, just like in Figure 5.15, the ascending byte order is not respected. However, the
drawing of the State matrix in which the key and plaintext bytes are arranged, in Figure
5.17, makes a possible order pattern appear.
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Figure 5.17: Expected and actual order in the handling of bytes.

The hypothesis is that the matrix is not handled by rows, but rather by columns. A
new analysis is then run on the collected traces. Now instead of tackling bytes in the
row-major order, the column-major sequence is taken into account (i.e., 0, 4, 8, 12 and
so forth). Figure 5.18 illustrates that the spikes between samples 0 and 6,000 follow the
new expected order.

Figure 5.18: Reverse CPA with key bytes 0,4,8,12 on PIC18F27K42.

The behavior is now finally captured. The last visual inspection performed on
PIC18F27K42 is in Figure 5.19.
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Figure 5.19: Reverse CPA with key bytes 0 and 15 on PIC18F27K42.

The plot shows that two distinct operations take place: the first one, from sample 0
to 18,000, and the second one right after. The second operation is not fully caught, as the
ChipWhisperer™ has a limitation on the number of collectable samples in a single trace6.

The handling of all sixteen bytes during the first portion of the trace suggests that
the wave between samples 0 and 18,000 corresponds to the the SubBytes operation. It
is fully collected, since even the spikes regarding the last byte in the matrix scanned by
columns (i.e., byte 15) are present.

Similar analysis were performed for other devices by Microchip, on PIC18F47K42,
PIC18LF45K42, PIC18F26K42 and PIC18F46K20. Figure 5.20 depicts the correlation spikes
for PIC18LF45K42 and PIC18F46K20.

6The ChipWhisperer™ also features decimation options, which allow to discard some samples and
enlarge the collectable trace. However, the decimation might cause an undersampling of the trace, with
consequent loss of spikes in the current consumption.
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Figure 5.20: Reverse CPA with key bytes 0 and 15 on PIC18LF45K42 and PIC18F46K20.

The results of Reverse CPA on these two microcontrollers highlight similarities with
the first device taken into account, as their first and last correlation peaks are located at
the same instants in time with respect to PIC18F27K42, around samples 0 and 18,000.

5.4.3 Correlation Power Analysis

Once the SQI computation confirmed that the setting is optimal and the Reverse CPA
demonstrated that the traces are sufficiently clean, the first real attack can be performed
in order to retrieve the key of the encryption. For doing so, multiple rounds of Correlation
Power Analysis are launched, with different number of traces. The results are in Table
5.1.
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Number of Traces
20 30 40 50

Round 1 10/16 15/16 16/16 16/16
Round 2 11/16 14/16 16/16 16/16
Round 3 12/16 15/16 16/16 16/16
Round 4 13/16 14/16 16/16 16/16
Round 5 12/16 14/16 16/16 16/16

Success Rate
on 5 Rounds 72.5% 90% 100% 100%

Table 5.1: Key bytes recovered with CPA on PIC18F27K42 in dependence to number of
traces.

CPA manages to recover all key bytes on PIC18F27K42 100% of the times during the
5 rounds when at least 40 traces are taken into account. Below 40, at least one byte is
not recovered. This analysis is useful to set a threshold of minimum number of traces for
a successful attack and compare it with Deep Learning Side-Channel Analysis techniques,
in the next Chapter.

5.5 Custom Datasets

Although Deep Learning promises to eliminate the manual feature extraction needed by
Machine Learning algorithms, some preliminary operations on traces are necessary.

The first one consists in performing a coarse grain cut of power traces in order to
provide lighter waves as input data to the neural networks, since the physical resources
employed during the thesis would require a high time for processing the raw data. The
resulting traces contain samples between 0 and 18,000, as pointed out by the Reverse
CPA in the previous Section.

The second operation is the normalization between 0 and 1 of the power traces’
amplitude (i.e., the values in the vertical axis), as suggested by Elie Bursztein during the
demonstration of a Deep Learning Side-Channel Attack at DefCon27 [62].

The key employed during the collection of traces is in Table 5.2. The same key is used for
both datasets since the work only focuses on the neural networks’ capability of attacking
devices from different families with respect to the microcontrollers used in the profilation
phase. Multiple keys would introduce complex patterns whose effects are out of the scope
of this thesis.

Byte Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Byte Value 0x2B 0x7E 0x15 0x16 0x28 0xAE 0xD2 0xA6 0xAB 0xF7 0x15 0x88 0x09 0xCF 0x4F 0x3C

Table 5.2: Key used in both datasets.

The acquisition campaign produced two datasets called K42_K20 and K42_K42. Their
structure is inspired by ASCAD-F, as they both feature 50,000 traces for profilation and
10,000 for attack evaluation. In both, the profiling traces are constituted by waves from
PIC18F27K42, PIC18F47K42 and PIC18LF45K42 (each contributing for one third of the
50,000 traces), devices all belonging to the PIC18 K42 family. The difference in the two
datasets stems from the attack traces, as in K42_K20 they are collected from PIC18F46K20
and in K42_K42 from PIC18F26K42.
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The two datasets are used as different benchmarks for the neural networks. K42_K42
represents the easiest setup, as profilation and evaluation take place on similar devices,
and it constitutes the baseline for the various analysis: if an attack fails in K42_K42 it
should fail in K42_K20 as well, due to the presence of heterogeneous attack and profile
traces, which constitute a harder problem for the neural network to generalize.

5.6 Deep Learning Models

In recent years, several solutions were developed to easily build the most popular neural
networks described in Section 4.2.2. Keras [87] is an open-source Python library built on
top of Google’s TensorFlow [88]. It allows users to define the structure of Deep Learning
models through few lines of code, thanks to a straightforward API. The definitions of an
MLP and a CNN are respectively in Figures 5.21 and 5.22.

Figure 5.21: Definition of a simple MLP in Keras.

The MLP consists of an input layer of 10 nodes, a single hidden layer with 64
perceptrons and an output layer with 3 classes. The activation functions in the hidden
and output layers are ReLU and SoftMax, respectively. The Cross Entropy cost function
is employed in combination with RMSprop to optimize the accuracy metric.

Figure 5.22: Definition of a simple CNN in Keras.
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The model works on input data arranged as a matrix of 28x28 pixels. It features two
convolutional layers, each with max pooling, and a fully connected layer. Both these
stages use ReLU as the activation function. The output layer consists of 10 nodes and uses
SoftMax to provide the probability density function among the different output classes.
The Cross Entropy cost function is employed in combination with Adam to optimize the
accuracy metric.

5.6.1 Neural Networks under Assessment

As pointed out in Section 5.1, three levels of complexity are employed for building the
models used in the work, stemming from the different degrees of commitment by the
hacker. Unfortunately, the computing capabilities of the available hardware do not allow
to study the behavior of Convolutional Neural Networks, as their training is much heavier
than the one required by Multilayer Perceptrons.

Basic MLP

The neural network in Figure 5.23 is the product of the hypothetical attack with low
degree of commitment. It represents the simplest Deep-MLP as it features only two
hidden layers, minimum for a Deep Neural Network according to DLSCA researchers [22].

Figure 5.23: Definition of the first MLP.

The main knob is represented by the number of perceptrons per layer, that is set
thanks to heuristics. It cannot be too low because the model would not have a fair degree
of complexity needed by the problem. On the other hand, it cannot be too high because
the attacker might not have the means (i.e., the hardware or even the time) to train a
large model.

Another important choice regards the learning rate, as a low α would require much
time for the convergence of the cost function whereas a high value would not let it converge
at all. Also in this case heuristics is leveraged, as a quick research can provide the hacker
with a reasonable magnitude for the parameter.

Obviously many more parameters could be set, such as the type of activation functions
or the employed optimizer, which might cause different results. In this scenario their
careful selection is not taken into account as the underlying hypothesis is that the attacker
does not intend to spend time tuning the neural network.
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ASCAD MLP

The second model investigated during the work, in Figure 5.24, corresponds to the neural
network tuned by the researchers of the ANSSI on the ASCAD-F dataset presented in
Section 4.3.3.

Figure 5.24: MLP tuned for ASCAD-F dataset.

Here, in contrast with the first scenario, no hyperparameter is selected by the attacker.
The underlying assumption is that the hacker builds a dataset with a similar structure to
the one proposed in ASCAD. As it was developed by the ANSSI, the tuning process is
more accurate than the one any individual attacker could perform, due to the high amount
of resources the French Cybersecurity Agency could dedicate (e.g., expensive GPUs for
hyperparameters search that hobbyists cannot afford to buy). In other words, this scenario
requires partial knowledge of the handled data but could theoretically outperform any
self-tuned model.

GridSearch MLP

The last neural network tackled in the work is the one originated by the Grid Search on
the K42_K20 dataset, which takes advantage of the information provided by the whole
dataset. The intervals within the hyperparameters are searched are listed in Table 5.3.
The operation took place thanks to KerasTuner, an additional library built on top of
Keras [87].

Interval
Number of Layers [2,6] (step: +1)
Neurons per Layer [50,800] (step: +50)

Learning Rate [0.00001, 0.1] (step: x10)
Activation Function [ReLU, SeLU, Sigmoid]

Optimizer [SGD, RMSprop, Adam]

Table 5.3: Intervals used for the Grid Search.

These intervals result into 3,600 possible combinations of hyperparameters, each
corresponding to a new neural network to evaluate. The best model was selected after a
long search (around 48 hours), using the Guessing Entropy as metric.
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Chapter 6

Results

6.1 Classic SCA and DLSCA on PIC18F27K42

The first relevant result is not strictly correlated to the objective of the thesis but highlights
the strength of DLSCA techniques. It regards the number of traces needed to recover
the whole key with Deep Learning algorithms, displayed in Figure 6.1. Two copies of
PIC18F27K42 were used for the collection of two groups of traces, a profiling and an attack
set, with 10,000 and 1,000 traces respectively. The Basic_MLP defined in the previous
Chapter was employed.

Figure 6.1: SCA and DLSCA on PIC18F27K42.

Each dot in the Figure is computed as an average of the results from 10 attack
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rounds, all obtaining a Partial Success Rate of 100%1. The red line stands for the average
number of traces needed to recover the whole key with CPA and a Success Rate of 100%,
as pointed out in Table 5.1. This plot demonstrates that DLSCA outperforms classic
Correlation Power Analysis as the recovery of any byte needs on average a minimum
number of traces of 26, while with traditional SCA it is around 40.

6.2 Cross-Family Attacks

This Section demonstrates the effect of the different MLPs presented in the previous
Chapter on the K42_K20 and K42_K42 datasets. For each neural network, the recovery of
all key bytes is taken into account under the conditions specified by Table 6.1.

Min Max Step
Number

of Epochs 5 25 x5

Batch Size 5 5000 x10

Table 6.1: Number of Epochs and Batch Size investigated in the work.

If a model is underfitting the data, then a low number of epochs could exacerbate
the problem as not enough training is given. On the other hand, an overfitting neural
network with many epochs could further worsen the performance.

Similar considerations hold for the batch size, as a low value could lead to both an
overfit of the data and high time for the cost function to converge. On the other hand,
high values could result into poor generalization.

Both parameters highly impact the performances each model can achieve. For this
reason, a large number of in-between cases are considered, although only the most relevant
results are displayed. In the following plots, each dot represents the Partial Guessing
Entropy (PGE) averaged over 5 attack rounds.

6.2.1 Basic MLP

The configuration of the basic_MLP that achieves the lowest PGE for each byte is depicted
in Figure 6.2. It features a batch size equal to 500 and 5 epochs.

1A high number of rounds was employed as the minimum number of traces to crack the key is a metric
subject to high variance, since an attack can be particularly lucky and recover the key byte with very few
traces.
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Figure 6.2: basic_MLP with BS=500 and EP=5 on K42_K42 and K42_K20.

The dashed line in red stands for the threshold below which the PGE is better than
random guessing, since the possible byte values are 256 and without prior knowledge the
attacker could predict any value between 0x00 and 0xFF.

The blue dots represent the results obtained with training and attack on the K42_K42
dataset. The plot demonstrates the similarities between the devices used for profilation
and the microcontroller under attack, as the campaign is nearly always successful with
unitary PGE, although it is slightly higher for bytes ’5’ and ’11’.

The cyan dots are obtained on the K42_K20 dataset. Their values demonstrate that
the cross-family inference is more complex than the one on devices belonging to the same
family. The average of the sixteen PGEs, represented by the dashed cyan line, is a equal
to 84.72. This means that although recovering different key bytes could be simpler or
harder, on average it is more convenient than random guessing.

The outcomes of the other combinations of parameters are listed in Table 6.2.

Batch Size
5 50 500 5000

5 133.8 149.6 84.7 124.5Epochs 25 140.2 126.7 135.0 123.2

Table 6.2: Average PGE on 16 bytes for basic_MLP on K42_K20.

In red there are the configurations that result into an average of PGEs higher than
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128 and in yellow the ones very close to random guessing. As expected, a neural
network without prior knowledge of the problem needs a fine tuning of the available
hyperparameters as only one combination, in green, achieves significant benefits.

The plot in Figure 6.3 displays the minimum number of power traces needed to reach
the unitary PGE on each byte. This metric is only valid when the Guessing Entropy
is equal to 1, thus it is only computed for the K42_K42 dataset. Also here, each dot
represents the average on 5 different attack rounds.

Figure 6.3: Minimum number of traces to reach PGE = 1 with basic_MLP(500,5) on
K42_K42.

The dots show a high variance, and the computation of the metric is skipped for bytes
’5’ and ’11’ since their PGE equals 2. On average, the minimum number of traces to
achieve PGE = 1 across the remaining 14 bytes is around 380.

6.2.2 Ascad MLP

Also in the case of the second MLP the plot illustrated in Figure 6.4 demonstrates the
higher complexity of the cross-family inference.
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Figure 6.4: ascad_MLP with BS=500 and EP=25 on K42_K42 and K42_K20.

Surprisingly ascad_MLP does not perform better than basic_MLP, as on average bytes
achieve a higher PGE for the cross-family inference (around 97, as the dashed cyan line
suggests). Nevertheless, on average it is still more advantageous than random guessing.
Furthermore, the attack results on the K42_K42 dataset are slightly improved, as the
correct key byte is always classified as first in the ranking of predicted keys.

The outcomes of the neural network with all combinations of batch size and epochs
on K42_K20 are in Table 6.3.

Batch Size
5 50 500 5000

5 136.8 102.8 127.4 124.9Epochs 25 146.2 147.0 97.3 127.9

Table 6.3: Average PGE on 16 bytes for ascad_MLP on K42_K20.

Here, although achieving a worse average PGE, there are two configurations that gain
considerable advantage, highlighted in green. Just like with the first model, a high batch
size originates results close to random guessing. Additionally, a very low batch size leads
to very high Guessing Entropy, with peaks of 198 when 25 epochs are taken into account,
probably stemming from the overfit of the training data.

For the K42_K42 dataset the minimum number of traces for unitary Guessing Entropy,
depicted in Figure 6.5, shows less variance although achieving a similar average value to
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the first MLP.

Figure 6.5: Minimum number of traces to reach PGE = 1 with ascad_MLP(500,25) on
K42_K42.

6.2.3 GridSearch MLP

The last model, whose PGE plot is in Figure 6.6, shows the best result. This confirms
the expectations, as the model was finely tuned to address the problem.
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Figure 6.6: gridsearch_MLP with BS=500 and EP=25 on K42_K42 and K42_K20.

Nearly all dots are below or close to the threshold of random guessing. The model
seems to be particularly adequate for catching the behavior of the first and last bytes.
Interestingly, bytes ’13’ and ’14’ even achieve a PGE of 1.

As in the previous cases, also this model is able to generalize well on the K42_K42
dataset, as attacks always result into the unitary Guessing Entropy.

The average Partial Guessing Entropies achieved with all the tested combinations of
hyperparameters are listed in Table 6.4.

Batch Size
5 50 500 5000

5 122.6 101.1 124.4 126.9Epochs 25 145.8 131.4 75.3 129.7

Table 6.4: Average PGE on 16 bytes for gridsearch_MLP on K42_K20.

Just like in the case of ascad_MLP, two settings carry considerable benefits, highlighted
in green. Although three results are above the threshold of random guessing, only the
training with a batch size of 5 and 25 epochs achieves a very high PGE.

Finally, the minimum number of traces to reach the unitary PGE is illustrated in
Figure 6.7. This plot shows less variance with respect to the ones obtained by the other
models, although its average value is around 400, slightly higher than basic_MLP and
ascad_MLP.
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Figure 6.7: Minimum number of traces to reach PGE = 1 with gridsearch_MLP(500,25)
on K42_K42.
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Chapter 7

Conclusions

7.1 Results Digest and Comments

The minimum average number of traces obtained with basic_MLP (26 rather than 40)
demonstrates that DLSCA outperforms traditional SCA methods, although requiring time
for the training of the neural networks and expertise of the adjustable hyperparameters.
Deep Learning constitutes a series of highly versatile tools that can be applied to numerous
research fields, and the time spent to perform Side-Channel Analysis can be an acceptable
trade off as models are able to extract features automatically when multiple attack
scenarios are taken into account.

A summary plot displaying the best results achieved by the different Multilayer
Perceptrons in the previous Chapter is in Figure 7.1.

Figure 7.1: PGE achieved by all the best configurations of MLPs.

The graph demonstrates that all models reach a low PGE when guessing the first 4
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bytes. Both basic_MLP and ascad_MLP achieve similar results between bytes ’4’ and
’11’, although the former is always below the latter in the interval. A significant difference
can be noticed for bytes between ’12’ and ’15’, where gridsearch_MLP clearly achieves
the best results.

As expected, a finely tuned neural network manages to highly reduce the search
space of the single key bytes, although all models achieve improvements with respect to
random guessing, as pointed out in the previous Chapter. This consideration highlights
the strength of Deep Learning Side-Channel Analysis techniques, which can be leveraged
even without prior knowledge of the device under attack.

The Table 7.1 recapitulates the average PGEs obtained in dependence to the investi-
gated Batch Sizes and Epochs.

Batch Size
5 50 500 5000

5 133.8 149.6 84.7 124.5
25 140.2 126.7 134.0 123.2 Basic_MLP

5 136.8 102.8 127.4 124.9
25 146.2 147.0 97.3 127.9 Ascad_MLP

5 122.6 101.1 124.4 126.9

Epochs

25 145.8 131.4 75.3 129.7 GridSearch_MLP

Table 7.1: Average PGE on 16 bytes for basic_MLP, ascad_MLP and gs_MLP on K42_K20.

Very low batch sizes nearly always worsen random guessing. This is a probable
consequence of overfit, as all results with batch size equal to 5 and 25 epochs suggest.
As previously mentioned, small batches update the tuneable hyperparameters very often,
with consequent risk of adapting too closely to the training data and not being able to
generalize to new attack data. The phenomenon is exacerbated by the high number of
epochs, as multiple iterations on the same training data are performed.

On the opposite, models with high batch sizes do not manage to extract interesting
features out of the training traces, as the resulting PGEs fluctuate around the threshold
of random guessing.

Further considerations regard the models configured with batch sizes of 50 and 500.
While ascad_MLP and gridsearch_MLP feature two configurations that allow to highly
reduce the search space of the key by a significant quantities, the first model only improves
random guessing with one setting. This means that the simplest neural network, although
not assuming prior knowledge of the device under attack, needs a higher effort during the
model tuning process.

The selection of the neural network is not straightforward, as it is subject to a trade
off. The least advantageous model is probably the ascad_MLP, as it requires a time-costly
training and does not achieve the performance obtained by the gridsearch_MLP. On the
other hand, the first and third networks achieve significant benefits, as the former requires
a fast training although needing a more accurate hyperparameter search and the latter
highly decreases the key search space.

7.2 Future Works

Deep Learning Side-Channel Analysis is a research field whose relevance is rapidly
increasing, as the number of studies carried out in recent years suggest. This thesis
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proposes a study that faces one of the many challenges arising: the portability of the
attacks. Multiple future works in this direction are possible, such as the definition of a
larger dataset for the training of neural networks. As a matter of facts, a look at the
whole picture in Figure 7.1 outlines a trend followed by all models, with low bytes being
simpler to attack than higher bytes for most neural networks. This phenomenon might
be due to a biased dataset that does not allow models to extract features from traces to
infer all key bytes equally, but rather is very representative for attacking some bytes and
less for the others.

Furthermore, the work employed a Virtual Machine running 10 Xeon™ E5-2650 cores
by Intel for a total of 20 threads, 32GB of RAM and a 300GB disk [89]. An improvement
to the thesis regards the usage of GPUs, as some computationally expensive operations -
such as the Grid Search - would benefit from parallelism. Employing GPUs would also
allow to study the complexity of cross-family attacks when countermeasures are adopted
since CNNs are widely used in the literature when jittering is employed, as they are
invariant to traces translation.

Finally, new studies with more devices from different families can be carried out, as
well as the elaboration of a metric that could establish the degree of dissimilarity among
the microcontrollers, in order to provide a wider look to the advantages and drawbacks of
cross-family inference.
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