POLITECNICO DI TORINO

Master Degree in Mechatronic Engineering

Master Thesis

POLITECNICO
DI TORINO

@rain
echnologies

Convolutional Neural Network for cloud
segmentation of satellite imagery

Candidate: Supervisors:
Marta Trapero Bernabé Tatiana Tommasi
Jacopo Federici

April 2023

Abstract

Satellites provide enormous amounts of information, some in the form of images.
These high-altitude shots are extremely valuable for a wide variety of sectors such
as forestry, railway industry, urban planning or agriculture, among others. Nowa-
days, spacecraft capture images and transmit them to ground without prior fil-
tering. However, most of these images are filled with clouds, being useless for
most applications. An on-board tool capable of discarding such images would save
resources and free up bandwidth during transmission. To achieve this goal, this
thesis studies the use of Artificial Intelligence to carry out the task.

This work presents a Deep Learning algorithm that segments clouds in Natural
False Color satellite images. In order to decide which images are to be discarded,
cloud coverage is calculated by classifying each pixel as cloud or background. Thus,
the system receives the image formed from the combination of the spectral bands
and outputs its cloud coverage index. This implementation is thought to be de-
ployed in a COTS such as Intel Movidius Myriad 2 to be installed on board satel-
lites.

To this end, the solution developed used a Convolutional Neural Network (CNN)
based on the U-Net architecture. Some modifications have been made to the orig-
inal architecture to better fit the model. The network has been trained and tested
using labelled dataset containing Landsat images. In addition, the performance of
the model has been studied through quantitative and qualitative analysis.

Acknowledgements

I want to thank my family and friends, specially my mother Susana and Dani.
would like to extend my sincere thanks to Sasan for sharing his knowledge with me.
I had the pleasure of collaborating with Jacopo Federici and Tatiana Tommasi.

Contents

[1__Introductionl 10
(LT Motivationl. 10
(1.2 Objectives| 11
(L3 Thesisoutlinel 11

2__State of art] 13
[2.1 Satellite imagery| 13
[2.2 Computer vision| 14
2.3 Deep Neural Networks 17

[2.3.1 Artificial Intelligence, Machine Learning and Deep Learningl 17
2.3.2 Artificial Neural Networks| 18
2.3.3 Convolutional Neural Networks| 20
[2.4 Pipeline of Neural Network models| 23

3 Development| 25
BI Datasetl 25
[3.2 Arquitecture]. 29
[3.3 Environment Setup| 34

B.3.1 Software Environment] 35
3.3.2 Hardware Environment|. 35
[3.3.3 Final Training and test dataset| 36
[3.3.4 Training teatures| L. 36
[3.4 Cloud coverage assessment| 40

4_Results| 43

(4.1 Quantitative results|. oL 44
[4.1.1 Accuracy| 45
41.2 Precisionl. 45
ET3 Recalllo 46
M.1.4 TIntersection over Unionl. 46
4.1.5 Dice Coefficient] 47
4.1.6 Confusion matrixlo 47

Chapter 0 — CONTENTS

K417 ROCcurvel 48

[4.2 Qualitative results] 49
[4.2.1 Example FPcase 50

[4.2.2 Example FNcasel 51

4.2.3 Missclasified datasetl00 53

b Conclusions and future work] 56
b1 _Conclusions 56
b2 Future workl 57

[A Appendix| 59

List of Figures

I Classificationl 15
2.2 Detectionl 16
[2.3 Segmentation| 16
2.4 Venn Diagram, Deep Learning/ 18
[2.5 Representation of Biological neuron versus Artificial Neuron| 19
[2.6 Structure of a Deep Neural Networkl. 19
[2.7 Representation of convolution to create an activation map| 20
[2.8 Creation of a layer from several activation maps| 21
[2.9 Activation function type Sigmoid| 21
[2.10 Activation function type Tanh| 22
[2.11 Activation function type ReLul 22
[2.12 Representation of Max Pooling operation| 23
[3.1 Illustration of an image and its corresponding maskl 26
(3.2 [llustration of the different bandsl 27
[3.3 Natural false color image from combining Red, Green, Blue and |

NIR bandl 28
[3.4 Ground truth imagel L 28
3.5 Unet architecturel o 30
(3.6 Final model architecturelo o000 oL 30
[3.7 Evolution of Accuracy and Loss during training the first version of |

the modell 37
BBTTosd . . o o 38
[3.9 Accuracy|. 38
[3.10 Precision during training| 39
[3.11 Recall during training] 39
[3.12 Example image 2271.tif: Discardl 41
3.13 Example image 1774.tif: Do not discard| 41
3.14 Cloud coverage: 15% example image: 1829.tiff 42
3.15 Cloud coverage: 55% example image: 1829.tiff 42
3.16 Cloud coverage: 80% example image: 1829.tiff 42

Chapter 0 — LIST OF FIGURES

4.1 Cloud coverage distribution in test dataset| 43
[4.2 Graphical representation of TP, TN, FP and FN|. 44
M3 Confusion matrixl oo 48
44 ROCCurvel e 49
4.5 Confusion matrix of image 1910.t1f 50
[4.6 Comparison of image 1910.tif 51
[4.7 Confusion matrix of image 1836.t1ff 52
4.8 Comparison of image 1836.tiff 52
[4.9 Mislabels compilation|.o 55

List of Tables

2.1 Landsat 8-9 spectral bands| 14
[3.1 Description of 38-Cloud: Cloud Segmentation in Satellite Images |

from Kaggle dataset| 27
[3.2 Unet based architecture utilized for cloud segmentation| 32
[3.3 Technical specifications of the environment employed| 36
[3.4 Description of dataset finally used| 36
4.1 Recopilation average measurements| 49
AT Resultsd. 59

Acronyms

AT - Artificial Intelligence

ANN - Artificial Neural Networks
AUC - Area Under the Curve

CNN - Convolutional Neural Network
COTS - Commercial Off-The-Shelf
CPU - Central Processing Unit

FN - False Negative prediction

FP - False Positive prediction

GPU - Graphics Processing Unit

IoU - Intersection over Union

NIR - Near Infrared Band

ROC - Receiver operating characteristic

TN - True Negative prediction

Chapter 0 — LIST OF TABLES

TP - True Positive prediction

USGS - United States Geological Survey

Chapter 1

Introduction

This thesis proposes the implementation of a deep learning algorithm to evaluate
the cloud cover on the satellite to transmit only useful images. And so, the aim of
this report is to describe and synthesise the work undertaken to accomplish that
task.

This chapter is divided into several sections. The first section details the main
motivations behind this research. The following one details the scope of the work
by listing the objectives set. And lastly, the structure of the project is described,
indicating what will be covered in each chapter.

1.1 Motivation

Being able to observe the earth’s surface from above, has innumerable advantages
in a wide variety of sectors. With applications in agriculture, fire and flood control,
maritime and land traffic control, or land use classification, among others.

Advances in technology have enabled the development of more affordable and
compact satellites. Spreading its use and opening the doors of space to new agents.
Among the limitations of this new technology are processing capacity and band-
width. One approach to mitigate this problem is to reduce the amount of images
to be transmitted.

Study [I] revealed that almost 70% of the Earth’s surface is filled with clouds
at any given time. Clouds are a hurdle for most applications and diminish the
usefulness of satellite data. Therefore a tool able to identify and discard images
full of clouds is needed.

Machine Learning stands out as a solution for managing large volumes of data.

10

Chapter 1 — Introduction

In particular, Convolutional Neural Networks outstand as an approach for image
processing. This has motivated the study of the applicability of this technology
for the detection of clouds in satellite images.

1.2 Objectives

The aim of this thesis is to develop a Deep Learning algorithm that is able to
detect and evaluate the cloud cover of satellite images. In addition, it has also
been studied some uncertainties of the model and the error rates related to it.
For this general aim the following specific objectives have been established:

e Introduction to the field of satellite imagery.
e Understand computer vision applied to deep learning.
e Develop a Convolutional Neural Network for semantic segmentation.

e Study of the metrics evaluating a semantic segmentation algorithm.

1.3 Thesis outline

This study consists of five main blocks that cover the topics mentioned above. A
detailed explanation of what is included in each chapter can be found below.

Chapter [1] is the current section and presents an overview of the thesis and its
content. It introduces the reasons behind the development of this thesis, the set
objectives and describes the steps followed.

Chapter [2| of this project introduces the state of the art in the field of Convo-
lutional Neural Networks, deepening in the study of object recognition. It also
contains a section introducing the handling of satellite images.

Chapter [3] details the environment used for the deployment of the model. Includ-
ing the gathering of the dataset, and the development and set up of the algorithm.

Chapter ¢ reports and discusses the results obtained from the analysis of the
model. The outcomes are assesed in a quantitative and qualitative way. The ana-
lytical approach outlines the performance of the model by measuring the main met-
rics for evaluating semantic segmentation models. The visual inspection presents
a deeper insight to the main errors encountered.

11

Chapter 1 — Introduction

Chapter [5|describes the conclusions resulting from this project and proposes open
lines of research for future work.

12

Chapter 2

State of art

2.1 Satellite imagery

Satellites like Sentinel or Landsat, orbit the earth to explore it from another point
of view. They are equipped with sensors on board that collect large amounts of
data. The importance of being able to observe the Earth’s surface has led to
the development of new techniques and infrastructures to obtain more accurate
and higher quality data. Information to be used in countless applications such as
meteorology, conservation, geology, agriculture, cartography, education, military
purposes and applications that provide solutions to commercial activities among
others.

Satellite imagery are photographs obtained by sensors on board artificial satel-
lites, which capture the electromagnetic radiation emitted by bodies on Earth.
These images are downlinked to ground as a set of arrays, one for each sensor
channel, containing values from 0 to 255. Zero indicates that no radiation arrives
from that point, and 255 indicates that the highest radiation value is received.

Devices capture data in several spectral bands that vary in wavelength. Each
wavelength range constitutes a bands and gathers information about an specific
characteristic. The combinations of various bands emphasise different features,
provinding information that otherwise would be undetectable to human eye. This
combination of bands is known as ”Natural false color.”

As an example, the combination of Red Green and Blue bands results in a pancro-
matic image. It achieves a high spatial resolution as it covers the range 400 to 700
nanometers. Merging this image with another spectral band, such as NIR, would
result in a clearer image that highlights water masses. Other bands can measure
the radiant heat emitted by the earth or detect fine particles on the atmosphere [2].

13

Chapter 2 — State of art

Depending on the sensors installed on board satellites, different wavelenghts can
be detected and therefore different bands will be obtained. Table 2.1l below shows
a sample of the bands analysed by Landsat 8 satellite [3].

Table 2.1: Landsat 8-9 spectral bands

Band Name Wavelength (um) Resolution (m)
Band 1 Coastal aerosol 0.43-0.45 30
Band 2 Blue 0.45-0.51 30
Band 3 Green 0.53-0.59 30
Band 4 Red 0.64-0.67 30
Band 5 Near Infrared (NIR) 0.85-0.88 30
Band 6 Short Wave Infrared (SWIR) 1 1.57-1.65 30
Band 7 Short Wave Infrared (SWIR) 2 2.11-2.29 30
Band 8 Panchromatic 0.50-0.68 15
Band 9 Cirrus 1.36-1.38 30
Band 10 Thermal Infrared (TIRS) 1 10.6-11.19 100
Band 11 Thermal Infrared (TIRS) 2 11.50-12.51 100

There are available free data sources provided by either government or private
agencies, from which a rich dataset can be generated. Some of this resources are
USGS Earth Explorer or Copernicus Open Access Hub. They offer a large amount
of satellite images from their different satellites. Providing for each geographical
area studied, the different bands obtained. This is raw data which, for most ap-
plications, must be pre-processed before being used.

2.2 Computer vision

This thesis deals with the analysis of images, so it has been intended to know the
state of the art in image processing. In this sub-section, the main concepts to be
taken into account for this purpose are included.

Computer vision is the discipline that studies the development of techniques for
obtaining, processing and analysing images of the real world. Its aim is to auto-
mate the analysis of images or videos and from this to be able to make decisions
or understand the environment [4]. In other words, to replicate the way humans
perform visual tasks. The use of computer vision generates great benefits in a
wide variety of fields such as autonomous driving in the transport sector, faster
and more accurate diagnoses in healthcare or better surveillance in the field of
security, among others. The most common operations in object recognition are:

Classification: Categorises what is in the image. The output of the code is a
prediction of the possible classes of the identified object. An example of this can

14

Chapter 2 — State of art

be seen in Figure [2.1]

e o

River, Building, Road

Figure 2.1: Classification

Detection: Identifies where objects are located in the image. Detected bodies
are framed in boxes in the image. They can also be further evaluated by a classifier
to categorise them. An example of this can be seen in

15

Chapter 2 — State of art

-mni'_ﬁ

= \

Figure 2.2: Detection

Segmentation: Analyses each pixel of the image and assigns it to a class. Either
by grouping different objects under the same class (Semantic segmentation) or by
identifying different objects of the same category. Fig. shows an example of
segmentation.

Figure 2.3: Segmentation

Although it is trivial for humans to recognise objects, for a computer vision al-

16

Chapter 2 — State of art

gorithm it is necessary to take into account the following challenges [5]:

Change of point of view: identifying the same element from different perspec-
tives.

Intra-class variation: the same element can have different aspects.

Disorder of the background: the element is camouflaged with the background.

Lighting: changes in lighting such as backlighting.

Deformation: the object may not be rigid and alter its shape.

e Occlusion: the object to be recognised is partially hidden.

A good object recognition algorithm must be robust enough to be invariant to all
these challenges, as well as fast. To achieve such a result, developers are leaning
towards mimicking the human brain through techniques such as deep learning.

2.3 Deep Neural Networks

The exploitation of the vast amount of data that satellite imagery can provide,
leads to a considerable increase in the effort required to analyse and interpret it.
In order to develop a tool that overcomes these drawbacks, we wanted to investi-
gate the effectiveness of the use of neural networks. In order to do so, first, the
basic concepts of deep learning will be explored in depth. This section begins by
discussing where deep learning fits into the field of artificial intelligence. It then
introduces artificial neural networks and delves into convolutional networks. Fi-
nally, it shows the procedure followed for the development and end-use of this tool.

2.3.1 Artificial Intelligence, Machine Learning and Deep Learning

Artificial Intelligence (AI) is the intelligence performed by machines. In com-
puter science, the field of Al research is defined as the study of "intelligent agents”:
Any device that analyses its environment and performs actions that maximise its
performance given the evidence and knowledge provided [6]. The term ”artificial
intelligence” is generally associated with the ability of machines to mimic ”cogni-
tive” functions that humans relate to other human abilities, such as ”learning” and
"problem solving”. Capabilities currently classified as Al include successful un-
derstanding of human speech, high-level competence in strategic gaming systems
(such as chess), autonomous car driving, military simulations and interpretation
of complex data [7].

17

Chapter 2 — State of art

The branch of Artificial Intelligence that tries to learn by itself from input data is
Machine Learning. According to Arthur Samuel in 1959, "It is the field of study
that gives computers the ability to learn without being explicitly programmed”.
Nowadays, machine learning is a combination of several disciplines such as statis-
tics, probability, or functional analysis [§], in order to build algorithms that can
learn and make predictions about data [9].

Deep Learning is one of the techniques of machine learning, and is based on
the structure of neural networks. It mimics the architecture and functioning of
the human brain by creating networks with connections between modules. These
models consist of layers of non-linear information processing, both labelled (super-
vised learning) and unlabelled (unsupervised learning) data for pattern analysis
and classification [9] Tts main applications are computer vision, automatic speech
recognition, automatic audio recognition, natural language audio recognition, nat-
ural language processing or bioinformatics [10].

Machine Learning

Deep Learing

Figure 2.4: Venn Diagram, Deep Learning

2.3.2 Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical models inspired by the struc-
ture and functioning of the human brain, to be used in computers to mimic human
learning behaviour [11]. The basic unit of computation is the artificial neuron.

This processing unit consists of a series of inputs "xi” (which are equivalent to
dendrites), where the data to be analysed is received. The inputs are balanced
by weights "wi”, which control the strength of the impulse at that synapse. The
signals are then linearly combined together with the bias parameter b, and are
evaluated by an activation function. This results in the output of the processing

18

Chapter 2 — State of art

unit [12]. Figure shows a comparative illustration between a biological and an
artificial neuron.

impulses carried
toward cell body
branches
dendrites]fl/ \‘/s} of axon

AR
3, P Inputs - f—
. |2 axon nputs
Nucleus ———_gp . 8xon — ='b._éz?rerrﬂinals Output
.

—
Activation
Function

— N ——

;;?ff I\ “\ impulses carried
away from cell body

cell body

Figure 2.5: Representation of Biological neuron versus Artificial Neuron

In general, Neural Networks are organised in layers of neurons, but the way in
which the nodes are connected determines how the network will perform its com-
putations. Therefore it is a highly important decision that the developer has to

take [13].

The Fully Connected Network is the most general structure, any other one is

a special type of this kind of network. In this type of network, each neuron is
linked to all upstream and downstream units of the previous and subsequent lay-
ers. These levels can be divided into three areas, the "Input layer”, which feeds
the input values into the network, the ”Output layer”, which acts as an interface,
and the "Hidden layers”, which contain the neurons in between. The number of
hidden layers is considered as a measure of the ”depth” of an ANN [I4].
The connections between the different neurons are balanced by the weights, and it
is in the training stage that these parameters are adjusted to achieve the desired
result. One of the most commonly used methods to achieve this is the backprop-
agation method [10].

hidden layers

output layer

input layer 4

Figure 2.6: Structure of a Deep Neural Network

19

Chapter 2 — State of art

2.3.3 Convolutional Neural Networks

These networks use a special architecture that is particularly suitable for dealing
with images. Moreover, the use of this architecture makes convolutional networks
fast to train. Like any other neural network, each neuron receives inputs, performs
a series of calculations with weights and biases, and finally returns a score for each
proposed class. However, the difference with this type of network is that it assumes
that the input data are images. This implies that these networks are designed to
evaluate each pixel as input data to the network. Convolutional neural networks
include the following layers in their structure:

Convolutional Layer: Its purpose is to extract the most important character-
istics of the image in order to identify its features. This is achieved by applying
a filter or Kernel to a small portion of the input image and the scalar product
is calculated, obtaining a value for that region. The filter is then moved along
the image by performing the same operation until finally a ”feature map” or also
called ”activation map” is obtained. Seen in Figure

32x32x3 image
32
5x5x3 filter 28
32 I
28
32 32 1
3

Activation map

Figure 2.7: Representation of convolution to create an activation map
The filters applied are called activation functions and depending on which one is

applied, a different feature is activated. The set of several activation maps forms
a layer. This is illustrated in Figure [2.8

20

Chapter 2 — State of art

Figure 2.8: Creation of a layer from several activation maps

Some of the most commonly used activation functions are:

Sigmoid function: Output values between 0 and 1, therefore it is used for
probability applications.

1
o(z) = Ty (2.1)
(‘T") Sigmoild .
10} o
05 L.t frnded
0.0 frasesr’) '
-o.sﬁ - 1
Y] X T, R~ - 1

Figure 2.9: Activation function type Sigmoid

Tanh function: Output values between -1 and 1. As it is zero-centered it can
strongly assign the output values as hard -1, 0 or +1.

et — e ¢ 1— 6721
tanh(z) = el BT

(2.2)

21

Chapter 2 — State of art

(b) Tanh

y 1] SRR RN SR R

(| U9 N - 1 - .

0.0 |——
05k -

: Ry ‘ ;
21,0 prrsisrrssnnitio s Ss s sEEs ey

Figure 2.10: Activation function type Tanh

ReLu function: Ranges from 0 to infinity. It is highly used in convolutional
neural networks.

Relu(z) = max(0, z) (2.3)
‘(c) ReLU 1
a4l i
2| |
0]
2l |
a4l -

-4 -2 0 2 4

Figure 2.11: Activation function type ReLu

Pooling layer: Its main function is to decrease the number of parameters in the
input layer to make it more manageable and thus reduce the amount of computa-
tion in the network. This layer is usually placed behind the convolutional layer and
operates on each activation map individually. The most commonly used method
is "Max Pooling”. This approach divides each activation map into quadrants and
selects the largest value from each quadrant [15].

Fully connected convolutional layer: It is situated in the last level of Con-

volutional Neural Networks, in order to connect each resulting activation with the
neurons of the output layer [16].

22

Chapter 2 — State of art

(TR 2" 4
5|6 |7)|8 6 8
3| 2 [l 3|4
112 (3|4

Figure 2.12: Representation of Max Pooling operation

The above mentioned are the most basic layers found in any basic network. How-
ever, as the complexity of the architecture increases, other layers can be found.
Described below are other layers used in the proposed model.

Dropout: This layer is added to the network to avoid overfitting, explained
in detail on [3.3.4] . It forces the network to forget features, to prevent it from
learning too much from the training data and be able to generalize. As a result we
are able to obtain a model that is able to predict accurately also from unseen data.

Concatenate: It is added to the model with the purpose of adding several layers
to obtain just one combined tensor.

2.4 Pipeline of Neural Network models

The development process of supervised deep learning algorithms consists mainly
of five phases:

(1) Preparation of the dataset:
Neural networks require a large volume of input data to be trained. Some of the

commonly used databases for image processing are ImageNet, Coco, Mnist, Cifar-
10.

(2) Model design:
In this phase the topology of the network is defined. The way in which the nodes
are connected determines its efficiency. Some of the parameters that need to be
defined are, the number of layers of the network, its structure, the order of opera-
tions or the number of nodes.

(3) Model training;:
The importance of training the networks lies in obtaining features that determine

23

Chapter 2 — State of art

a prediction. The learning of the neural networks consists in calculating the error
and adjusting the weights that weight the input data. This training is made up
of forward and backward runs in the neural network layers. In principle, the more
data they are trained on, the higher their accuracy will be.

(4) Deployment of the model:
The preparation of the network in the execution environment constitutes the de-
ployment. This requires the implementation of applications that are capable of
reading the information provided by the network and adapt it to the format of the
desired execution device.

(5) Execution of inference:
Inference is the prediction stage in a trained network. Unlike training, it involves
only the forward step. This is usually the last phase of the network pipeline, where
real-world data is predicted.

24

Chapter 3

Development

The scope of this project is to develop a deep learning algorithm that can detect
the amount of clouds on images. To this end, it has been chosen to develop a Con-
volutional Neural Network for semantic segmentation. Since this is a supervised
algorithm, the use of labelled data is necessary. Therefore, the development is not
only about creating a network and training it, but also about collecting labelled
images. Further details on the procedure will be explained below.

3.1 Dataset

Training a supervised deep learning algorithm requires to have a dataset from
where the algorithm can extract the most important features and learn from them.
The bigger the dataset, the most accurate the algorithm will be. (Up to a point,
where uncertainties of deep learning models take into account).

In this case, the input data are images, therefore a search of the available satel-
lite image databases has been made. The repository requires to include a broad
sample of satellite pictures of the earth, exhibiting different types of clouds and
clear skies. Under this criterion the following sources have been found: Copernicus
Open Access Hub [17], USGS Earth Explorer [3] or Google Earth [18]. They are
all free source repositories offered by governmental bodies or private agencies, and
provide raw free data for non commercial purposes.

However, not just raw images are required, labels must be also available for the
images. As dealing with a segmentation model, this tags must be in the form of
masks, also called ground truths. Masks are images constituted by pixels of value
zero for background and non-zero value for object detected. As the goal of this
study is to achieve a semantic segmentation model for cloud recognition, binary
ground truths are used. Pixels representing background will have value zero and
pixels where a cloud is observed will have value one. An example of an image and

25

Chapter 3 — Development

a mask can be found in Figure 3.1

(a) Image (b) Mask

Figure 3.1: Nlustration of an image and its corresponding mask

The free repositories discussed above provide just images, but not their ground
truths. Therefore, in order to use them as a dataset, it would be necessary to
label every image. In fact, here lies one of the biggest problems of using super-
vised learning, that the data has to be labelled, and as these algorithms need to
be trained on huge amounts of data, it is a time-consuming and resource-intensive
task.

The shortcut is to use a repository of already tagged images. That is, a database
that includes the images and their ground truth masks. The drawback of this
option is that a database of labelled images may not be available for the purpose
under study, in this case cloud segmentation. Or there may be, but it may be
mislabelled. In order to speed up the image collection process, for this study it
has been decided to make use of an already tagged repository.

There has been found a labelled dataset for image segmentation available online:
38-Cloud: Cloud Segmentation in Satellite Images from Kaggle [19]. The dataset
includes scenes from Landsat 8 satellite, sampling different types of climate states.
It contains 18 images for training, with their corresponding ground truth masks,
and 20 images for testing.

Satellite images are extremely large, as an example the size of the image in Figure

3.1]is 1204 x 1231. Direct processing of such images is computationally expensive,
therefore it is recommended to crop them into patches and treat them individually.

26

Chapter 3 — Development

Kaggle dataset already provides the scenes cropped into patches of size 384x384.
Therefore, a total of 8400 images and masks are available for training and 9201
images for testing. Compilation of details of the dataset are described in Table

Table 3.1: Description of 38-Cloud: Cloud Segmentation in Satellite Images from Kaggle dataset

Subset Bands Scenes Patches Size
trainBlue 8400 384 x 384 x 1
trainRed 8400 384 x 384 x 1
Training trainGreen 18 8400 384 x 384 x1
trainNir 8400 384 x 384 x1
trainGt 8400 384 x 384 x1
testBlue 9201 384 x 384 x 1
Testing testRed 20 9201 384 x 384 x 1
testGreen 9201 384 x384x1
testNir 9201 384 x 384 x 1

Among the proposed images, many empty patches have been found. This is
because the entire images had black borders that should be removed from the
dataset. For this purpose, a pre-selection of non-empty patches has been made.

Moreover, as described in [2.1] satellite images are formed by the combination of
multiple spectral bands. The dataset offers the images decomposed in channels,
separating the collection in various directories according to the type of band. The
bands available in this collection of data are: Band 2 (Blue), Band 3 (Green),
Band 4 (Red), Band 5 (NIR). A sample of this can be seen in the figure below (3.2

(a) Red patch (b) Green patch (c) Blue patch (d) NIR patch

Figure 3.2: Hlustration of the different bands

To prepare the data for training, first the bands have to be merged. The four
bands of each patch have been combined to create an array of size 384x384x4 for
each of the 8400 training patches and for the 9201 test patches. A sample of a
Natural false color resulted from combining the different patches can be observed

in Figure [3.3]

27

Chapter 3 — Development

Figure 3.3: Natural false color image from combining Red, Green, Blue and NIR band

Regarding the masks, it is necessary to enlarge the dimensions of the binary
images for further processing in the neural network. The aim is to obtain an
image of shape 384x384x1. The remodelling has been carried out for each of the
8400 ground truth patches available for training. Figure [3.4] shows the ground
truth label of the sample patch presented before.

-

4

Figure 3.4: Ground truth image

Note that the neural network only works with float data, meaning the values of
the variables have to be within the range [0-1]. However, the values of the input
images are of type uint8 (unsigned integer 8 bit), which corresponds to 28, mean-
ing that they must take values in the range [0-255]. Therefore a format conversion
from uint8 to float64 is required. This transformation has been done just before
feeding the network with the data set.

Although 8400 patches are available for training, due to limitations of the envi-
ronment, only 800 images were used to train the network and 200 for validation.

28

Chapter 3 — Development

Further details on the training phase are given in section |3.3

This concludes the processing carried out on the dataset in order to prepare it
as input to the neural network.

3.2 Arquitecture

As the main goal is to analyse images to determine their cloud coverage, it has
been decided to perform semantic segmentation. In semantic segmentation, Con-
volutional Neural Networks assign a semantic class to each pixel. In this case
classes correspond to cloud or background, therefore the output sought is a binary
image. There are a wide variety of CNN architectures that have been successful
in image segmentation, including Unet, ResNet, SegNet, among others.

Based on available literature and similar application experiments, the chosen
architecture has been Unet. Unet [20] was designed for semantic segmentation
of biomedical images, and consists of several Max Pooling, Convolutional and
Concatenated layers, arranged in an specific configuration. The structure of the
network can be seen in [3.5] However, to better suit it to the project specifications,
some modifications on the structure had been performed. These tunnings include
the pruning of some levels of the architecture, resulting in a simpler structure of
6 levels instead of 9. In addition, to avoid overfitting, some dropout layers have
been introduced. The final architecture for the model is depicted in Figure |3.6]
This final model structure is the result of a process of training, analysis of results
and re-adjustment of the design.

29

Chapter 3 — Development

64 64
128 64 64 2
input
) output
image |»|» .
g *1* 1™ segmentation
tile o o o
& & & map
ol of w A A
i E EEREE
I I
el
n| g w
'128 128
256 128
o Wl N s
=B B S B E
I Il t
¥ooss 2 512 256
M kot bt g =» conv 3x3, ReLU
i Sl & ES S8 d
ol =» copy and cro
' 512 512 1024 512 - - py p
5 — max pool 2x2
i-l-l — : - # maxp
6 S om L I 4 up-conv 2x2
- I -
- " = conv 1x1
© o~
Figure 3.5: Unet architecture
4 32 32
. output
_input segmentation
Image map
tile %
-
<l of = =
| 2
&lala 5
:_ =<l < g
o F &
o o & 4
\ 64 64
32 32 32
32
ol [l
Al Sl 2Ll 282
B B

Figure 3.6: Final model architecture

30

=»conv 3x3, RelLU

= copy and crop

¥ max pool 2x2
4 up-conv 2x2
= conv 1x1

Chapter 3 — Development

The network consists on a contraction path followed by an expansive path. First,
the contraction path acts as a regular CNN. It takes the 384 x 384 x 4 image and
performs two 3x3 convolutions with zero padding and a Rectified Linear Unit as an
activation function. Next a 2x2 max pooling layer is introduced for downsampling.
This combination of layers is repeated several times. At each downsampling the
feature parameters are doubled while the size of the image is reduced. In between
some of this operations a dropout layer is introduced to prune some data and gen-
eralize the model.

Afterwards, in the expansive path the image is upsampled. A 2x2”Conv2DTranspose”
layer reduces the depth of the activation map while expanding its size. Likewise,
layers from the expansive path are concatenated with their corresponding feature
map of the contraction path. Followed as well by two convolutional 3x3 layers.
Some dropout layers are also added in the expansion path.

Finally, the output layer is assembled by a 1x1 convolutional layer with Sigmoid
as an activation function. As a result, the model outputs an array with the differ-
ent probability values for each pixel of each processed image. As the last layer is a
sigmoid function, the obtained values range from 0 to 1; meaning 0 been classified
as background and 1 been classified as cloud. This array of probabilities is then
thresholded to obtain a final binarised image. The threshold chosen has been 0.5,
whereby any value higher than the threshold will be automatically identified as a
cloud and lower values will correspond to background.

Table B.2] below shows the backbone structure of the Unet based architecture
designed for cloud segmentation of satellite imagery.

31

Chapter 3 — Development

Table 3.2: Unet based architecture utilized for cloud segmentation

Layer Output Shape Number of parameters
InputLayer (None, 384, 384, 4) 0
conv2d (None, 384, 384, 32) 1184
conv2d 1 (None, 384, 384, 32) 9248
max pooling2d (None, 192, 192, 32) 0
conv2d 2 (None, 192, 192, 64) 18496
conv2d 3 (None, 192, 192, 64) 36928
max pooling2d 1 (None, 96, 96, 64) 0
conv2d 4 (None, 96, 96, 128) 73856
dropout (None, 96, 96, 128) 0
conv2d 5 (None, 96, 96, 128) 147584
max pooling2d 2 (None, 48, 48, 128) 0
conv2d 6 (None, 48, 48, 128) 147584
dropout 1 (None, 48, 48, 128) 0
conv2d 7 (None, 48, 48, 128) 147584
conv2d transpose (None, 96, 96, 64) 32832
concatenate (None, 96, 96, 128) 0
conv2d 8 (None, 96, 96, 64) 73792
dropout 2 (None, 96, 96, 64) 0
conv2d 9 (None, 96, 96, 64) 36928
conv2d transpose 1 (None, 192, 192, 32) 8224
concatenate 1 (None, 192, 192, 64) 0
conv2d 10 (None, 192, 192, 32) 18464
dropout 3 (None, 192, 192, 32) 0
convad 11 (None, 192, 192, 32) 9248
conv2d transpose 2 (None, 384, 384, 32) 4128
conv2d 12 (None, 384, 384, 1) 33

Total trainable weights: 766,113

It is during training where the weights of the network are updated. To improve
the model and ensure that the final predicted outcome corresponds to the best
guess, the model is updated each time to find the smallest possible error between
the prediction and the truth. Therefore a function is needed to quantifies how
good or bad the approximation is. This is known as Loss function.

As dealing with binary classification application, the loss function chosen has

7,7

been ”Binary cross entropy”. It is defined as seen in Equation [3.1] where ”y” are
the labels, ”s” the score for each class and ”C” indicates the number of classes.

Cc=2
CE ==} yilog(s:) = —(yilog(s1) + (1 = y1) log(1 — s1)) (3.1)

Once the performance of the model is quantified, a procedure to steer the weights
in the correct direction is needed. This is done in according to the values obtained

32

Chapter 3 — Development

from the loss function. To this end, " Adam optimizer [21]” has been chosen. It
combines the advantages of two classical stochastic gradient descent algorithms:
AdaGrad and RMSProp. Achieving a model that performs well on problems with
sparse gradients and on non-stationary problems by maintaining the learning rate.

Below it is shown the code for programming the model. As it will be explained
in more detail later, it has been used Python and Tensorflow to develop this task.

Algorithm 1: Build the model
def unet_vl_model_standard_v3 (width, height, channels):

inputs = tf.keras.layers.Input ((width, height, channels))

s = tf.keras.layers.Lambda(lambda x: x/ 255)(inputs)

Contraction path
cl = tf.keras.layers.Conv2D (32, (3,3), activation=’relu

’

kernel_initializer="he_normal’, padding=’same’)(s)
cl = tf.keras.layers.Conv2D (32, (3,3), activation="relu’
kernel_initializer="he_normal’, padding='same’)(cl)
pl = tf.keras.layers.MaxPooling2D ((2,2))(cl)
c2 = tf.keras.layers.Conv2D (64, (3,3), activation="relu’
kernel_initializer="he_normal’, padding='same’)(pl)
c2 = tf.keras.layers.Conv2D (64, (3,3), activation="relu’
kernel _initializer="he_normal’, padding="same’)(c2)

p2 = tf.keras.layers.MaxPooling2D ((2,2))(c2)

c3 = tf.keras.layers.Conv2D (128, (
kernel_initializer="he_normal’,

c3 = tf.keras.layers.Dropout(0.1)(c3)

c3 = tf.keras.layers.Conv2D (128, (3,3), activation="relu
kernel_initializer="he_normal’, padding='same’)(c3)

p3 = tf.keras.layers.MaxPooling2D ((2,2))(c3)

3,3), activation=’relu
paddlng— same) (p2)

c4d = tf.keras.layers.Conv2D (128, (
kernel_initializer="he_normal ",

c4d = tf.keras.layers.Dropout (0.1)(c4

c4d = tf. keras.layers.Conv2D (128, (3,3), activation="relu
kernel_initializer="he_normal’, padding="same’)(c4)

3,3), activation=’relu
padding="same’) (p3)
)

Fzrpansive path

ub = tf.keras.layers.Conv2DTranspose (64, (2, 2),

33

Y

Y

Y

I

Chapter 3 — Development

strides=(2, 2), padding="same’)(c4)

ub = tf.keras.layers.concatenate ([ub, p2])

ch = tf.keras.layers.Conv2D (64, (3,), activation="relu’,
kernel_initializer="he_normal’, padding='same’)(ub)

cb = tf.keras.layers.Dropout(0.1)(ch)

c5 = tf.keras.layers.Conv2D (64, (3, 3), activation=’relu’,
kernel_initializer="he_normal’, padding='same’)(c5h)

u6 = tf.keras.layers.Conv2DTranspose(32, (2, 2),
strides=(2, 2), padding=’same’)(c)H)

ub= tf.keras.layers.concatenate ([u6, pl])

c6 = tf.keras.layers.Conv2D (32, (3, 3), activation="relu’,
kernel_initializer="he_normal’, padding='same’)(u6)

c6 = tf.keras.layers.Dropout(0.1)(c6)

c6 = tf.keras.layers.Conv2D (32, (3, 3), activation=’relu’,
kernel_initializer="he_normal’, padding='same’)(c6)

u7 = tf.keras.layers.Conv2DTranspose (32, (2, 2),
strides=(2, 2), padding=’same’)(c6)

outputs = tf.keras.layers.Conv2D(1, (1, 1),
activation="sigmoid ") (u7)

model = tf.keras.Model(inputs=[inputs], outputs=[outputs])

model . compile(optimizer="adam’,
loss="binary_crossentropy’
metrics=[’accuracy ’,
tf.keras.metrics. Recall (name="recall”),
tf.keras.metrics.Precision (name="precision”)])
model . summary ()
return model

3.3 Environment Setup

This section describes the resources used for the development of the model and
its training. This processes consisted of, first designing the structure and then
compiling it, following a supervised process through which the network adapts its
parameters according to the corresponding right label.

34

Chapter 3 — Development

3.3.1 Software Environment

A wide range of development software platforms for machine learning models are
available, such as Tensorflow, Microsoft CNTK, Theano, Caffe, Pytorch, among
others. These open source libraries facilitate the process of acquiring data, train-
ing networks, making predictions and refining future results.

Among all the frameworks, Tensorflow stands out as the leading tool in the Ma-
chine Learning sector. It offers an end-to-end platform available in different pro-
gramming languages that can process your data, build and train Machine Learning
models and serve the trained models across different devices. Therefore, Tensor-
flow 2.3.1 has been the tool chosen for developing the model. The programming
language used for this regard has been Python 3.8.

3.3.2 Hardware Environment

The technical specifications of the hardware environment are provided below. The
environment used has been Intel”™ Core™ i7-6500U. Further details can be found

in Table B.3]

Deep learning training requires a large amount of computational power to run.
This is because it is a process in which multiple matrix multiplications have to be
performed. These operations can be performed either through the CPU (Central
Processing Unit) by executing one operation after the other, or by making use of
a GPU (Graphics Processing Unit), which executes the operations at the same
time. The processor that gives the best results when training neural networks is
the GPU, as it reduces the training time considerably.

Although the environment is GPU-enabled, the Tensorflow library only supports
the use of GPUs for NVIDIA devices. Therefore this network has been trained on
CPU @ 2.50 GH. Due to this inconvenient, the training procedure lasted several
hours.

Overall, the study has been carried out in Python 3.8 through Spyder making use
of Tensorflow in a device with a processor Intel Core i7-6500U CPU @ 2.50GHz.
Table gathers all the technical specifications of the environment used in this
study.

35

Chapter 3 — Development

Table 3.3: Technical specifications of the environment employed

CPU Intel”™ Core™ i7-6500U CPU @ 2.50 GHz, 8GB of RAM
Framework | Tensorflow 2.3.1
Language Python 3.8

3.3.3 Final Training and test dataset

The structure of the network used is described in section 8.2l As mentioned in
previous paragraphs, the network had to be trained on a CPU processor. This
is not only detrimental to the training time, but also limits the workload that
can be supported by this process. For this reason, it has not been possible to
train the network with all the available images, making use of only 1000 images.
These images have been randomly selected from the 8400 patches available. As
the patches will be the input data to the network, they will be referred to as images.

Moreover, 800 of these images are used for training and 200 for validating the
model. This partitioning has been done through the ”train test split” attribute
which randomly splits the dataset into two subsets, one consisting of 80% of the
dataset and the other of the remaining 20%. Table summarises the dataset
finally used.

In addition, as it will be described in more depth in chapter 4] another set of 200
different images has been gathered to be used for performance measuring purposes.
A summary of the final dataset used has been

Table 3.4: Description of dataset finally used

Subset Type of image Images Size

Natural false color 800 384 x 384 x 4
Training

Ground truth 800 384 x384 x1

Natural false color 200 384 x 384 x 4
Validation
Ground truth 200 384 x384 x 1

Natural false color 200 384 x 384 x 4
Metrics evaluation
Ground truth 200 384 x 384 x 1

3.3.4 Training features

When training the model it is necessary to choose training features such as batch
size and number of epochs. Epochs are the number of times the data will be

36

Chapter 3 — Development

processed through the network to learn from its main characteristics. That is,
the algorithm will perform the forward and backward loop as many times as the
number of epochs defined. Likewise, batch size is the number of examples that are
introduced into the network each time it is executed.

At first, the algorithm was trained for 10 epochs and 16 batch sizes. The accuracy
and loss results during the training procedure of the preliminary model can be seen
in Figure [3.71 Analysing the graphs it was observed that the model was still very
unstable and did not converge. This suggested that the model had to be trained
for more epochs. Moreover, it was noted a significant difference between validation
and training results. It was observed that the training was throwing better results
than the validation, this is called overfitting. It means that the model is learning
too specific features from the training dataset and it is not able to generalize when
processing unseen data.

Training and Validation Standard Training and validation loss

Taining loss
—— Validation loss

070
065
.. 070
050
H
3
£ 065
055

Training standard 050
— Validation standard

Loss

2 4 B B 10 2 4 & B 10
Epochs Epochs

(a) Accuracy (b) Loss
Figure 3.7: Evolution of Accuracy and Loss during training the first version of the model
To overcome this issues, it was decided to add some dropout layers to the network

structure and to train it for more epochs. Thus the model finally used has been
trained for 50 epochs with a batch size of 32 units.

The performance metrics have been tracked throughout the training phase using

Tensorflow’s build in visualizer: ”Tensorboard”. The results of the latest version
of the model are shown below.

37

Chapter 3 — Development

epoch_loss

o0 Training

045 Validation

04
0.35
0.3
0.25
0.2
015
01
0.05

0

0 5 10 15 20 25 30 35 40 45 50

Figure 3.8: Loss

Figure |3.8 shows the decreasing loss over time. This indicates that the model is
on the right track being able to minimize its loss as epochs are been executed.
Moreover, it can be observed that towards the execution of the last epochs, train-
ing and validation losses are quite similar. This implies that the model has learned
the features and evaluates in the same way already seen images and new ones.

epoch_accuracy

0.96
0.94
0.92

09
0.88
0.86
0.84

0.82

08 Training

® Validation

0 5 10 15 20 25 30 35 40 45 50

Figure 3.9: Accuracy

In Figure [3.9 it can be observed that at the end of the set number of epochs,
the validation and training data shows similar results reaching 93,7% of accuracy.
This indicates that the model was trained enough and that there is no overfitting
or underfitting.

Other metrics were measured during the training phase such as precision and

38

Chapter 3 — Development

recall. The evolution of this metrics is represented in Figures and

epoch_precision

¢ Training
- Validation

Figure 3.10: Precision during training

epoch_recall

* Training
- Validation

0 5 10 15 20 25 30 35 40 45 50

Figure 3.11: Recall during training

In the above images, it can be seen that towards the last trained epochs, precision
and recall metrics reaches values up to 95% and 93% respectively. This reveals
promising results showing that the model is capable of correctly identifying positive
predictions, and has the ability to identify all the relevant cases within the dataset.

The process of training, analysing the results and adjusting the network has been
carried out several times in order to arrive at the optimal model. Once satisfied
with the results obtained, the calculated weights are saved. This concludes in a
model ready to be deployed on any device compatible with machine learning ap-
plications.

Below is shown the code that executes the network training function and sets the
parameters finally used.

39

Chapter 3 — Development

Algorithm 2: Train the model

checkpointer = tf.keras.callbacks.ModelCheckpoint (
"Unet_for_clouds_standard_v3.h5",
verbose=1,
save_best_only=True)

file_.name = ’standard_model_v3’

callbacks = [tf.keras.callbacks.TensorBoard (
log_dir="logs_standard_v3\\{}’.format(file_name))]

results_standard = model_standard. fit (
X _train, Y _train,
batch_size = 32,
verbose=1,
epochs=50,
validation_data=(X_val, Y_val),
callbacks = callbacks)
model _standard.save(’Unet_cloud_standard_v3.hdf5")

3.4 Cloud coverage assessment

In addition, as the ultimate goal was to determine which images should be dis-
carded and which were useful, a final function has been added after the neural
network. A cloud cover detector for the prediction images. To this end, the pro-
gram will output a binary decision array that detects images with cloud cover
above a set threshold. This decision selection works by analysing each pixel in the
image and calculating an overall percentage of clouds in that patch. If the total
number of positive pixels is greater than the threshold, the image is discarded.
Otherwise, the image is considered useful and therefore should not be rejected.

To this end the cloud coverage metric was computed evaluating for each image,
the total number of pixels classified as clouds, divided between the total number
of pixels found in a 384 x 384 image. This equation was implemented as follows

Eq. B2

Numberofpixelsclassi fiedascloud

Cloudcoverage = (3.2)

Totalnumbero fpixel sinanimage

As a sample of the above, some images ranging from no clouds to full cloud cover
are processed through the developed algorithm. The natural false colours and
ground truths of the selected images can be seen in Figure and Figure [3.13}
as well as the result of the binary prediction and the final discard decision.

40

Chapter 3 — Development

Testing image Testing label Prediction

. -l - s
100 +* @ a g ,o'

& LR

100 . W o I

—
a

200 300

- Discard image with id:

Figure 3.12: Example image 2271.tif: Discard

Prediction

Testing label

100
150
200
250
300

350

Cloud coverage 0.208 % - Do NOT discard image with id: 1774.tif

Figure 3.13: Example image 1774.tif: Do not discard

For the images seen above, the decision threshold was set to cloud coverage of
70%. However it can be modified to follow a more or less conservative decision.
On one hand, the final goal is to discard useless images, so a low threshold should
be selected. Nevertheless, the lower the threshold, the more possible useful images
are discarded. This threshold should then be determined taking into account the
final application of the image.

For a reference of what the different ranges of cloud cover would depict, Figure
displays some examples.

41

Chapter 3 — Development

Prediction

Testing image Testing label

50 50
100 100
150 150
200 200 ;
250 250

300

350

Figure 3.14: Cloud coverage: 15% example image: 1829.tif

Testing image Testing label Prediction

o

100
150 150
200 200
250 250

300 300

350

Figure 3.15: Cloud coverage: 55% example image:

0 Testing label Prediction

50

100

150

200

250

300

350

Figure 3.16: Cloud coverage: 80% example image: 1829.tif

42

Chapter 4

Results

Although some metrics are calculated during the training phase, a more in-depth
analysis has been carried out to evaluate the performance of the model. For this
purpose, 200 images not seen by the model have been processed through the net-
work. These unseen scenes have been collected from the original dataset, as the
images and their respective masks are available. Hence, some metrics have been
calculated by comparing the obtained predictions with their ground truths. Quan-
titative and qualitative results are presented in this section.

The dataset used to test the model follows the cloud coverage distribution repre-
sented in Figure As a sample, images with various types of possible situations
have been used, from the near absence of clouds to situations of total cloud cover.

Cloud coverage distribution in test dataset
80

70
60
50
40

30

Number of images

20

10
d T I MM I I e

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90, 100]

Cloud coverage

Figure 4.1: Cloud coverage distribution in test dataset

43

Chapter 4 — Results

4.1 Quantitative results

To determine the amount of pixels correctly classified and the ones miss-classified,
the model has been tested on 200 images that it has never seen before. A predic-
tion was obtained for each image of the test dataset and it is then compared to
their respective ground truth. This assessment is calculated pixel by pixel for each
image. Based on the results obtained, some metrics can be computed to bench-
mark the model. It has been decided to study the Accuracy, Recall, Precision,
Intersection over Union and Dice coefficient

For the sake of understanding, classified as ”Positive or 1”7 stands for cloud, and
”Negative or 0”7 stands for background. To identify the number of predictions
correctly classified as either True or False, it is used TP and TN respectively.
On the other hand, for the miss-classified predictions, F'P stands for erroneously
classified as positive and FN stands for erroneously classified as negative. Figure
grahically represents this concepts in a more understandable way. This table
is known as confusion matrix.

Negative (0) TN FN

Positive (1) FP TP

Predicted Values

Megative (0) Positive (1)

Actual Values

Figure 4.2: Graphical representation of TP, TN, FP and FN

As dealing with just a random sample of data, there will always be an instrinsical
error of the mean. This is due to the fact that a sample represent a small portion
of the entire population and therefore contains variability, lack of information and
might not represent accurately the population as they might be biased. Moreover
the final goal is to minimize test error, however the algorithm has been developed
by reducing the training error loss. Therefore it is inevitable to encounter a train-
ing and test error.

An approach to analyze the error of the model through the acquisition of several

data samples could have been: K-Means method. It randomly divides the dataset
in K clusters and performs training including all of the clusters except one. Once

44

Chapter 4 — Results

the performance metrics are computed, the model is trained from scratch once
again excluding one of the other clusters. In summary, it would be necessary to
train the model K times. It has been decided to not use this procedure as it is
highly computationally expensive and it would take several days to perform.

Hence, to estimate the error of the different performance metrics of a model,
a bootstrapping[22] operation has been performed. Bootstrapping is a technique
used to obtain a broader approximation of the error of a sample of data, by us-
ing random sampling with replacement. Once the performance metrics of each
image of the trained model have been measured for each image in the validation
dataset, the bootstraping procedure is applied. It takes the resulting values from
the metrics and generates new sample measures. This will give more results with-
out needing to execute the model several times. Therefore the values presented on
the following subsection correspond to a result of applying bootstraping method.

4.1.1 Accuracy

Accuracy: Represents the amount of correctly identified pixels over the total
amount of pixels of an image.

TP+ TN _ Correct predictions
TP+TN+FP+FN Total predictions

Computing the mean among all the 200 evaluated images, the accuracy reaches
a mean value of 93,70% with standard deviation of 10,93%.

Accuracy = (4.1)

Although this metric is widely used in machine learning applications, it is not the
best metric for highly imbalanced applications. Such as semantic segmentation,
where a large part of the image in which the number of pixels showing the back-
ground may outnumber those containing clouds, and vice versa. In such cases, the
model can achieve high accuracy just by classifying correctly the dominant class.
Intersection over Union and Dice coefficient describes better the performance of
such models, these metrics will be further explained below.

4.1.2 Precision

Precision: Shows the probability of being True Positive, given classified as Pos-
itive. In other words, gives a measure of over all the clouds detected, which ones
were truly clouds.

45

Chapter 4 — Results

TP
Precision = ———— 4.2
recision = o5 s (4.2)

The metric has been calculated for all predictions that contain some TP or FN
pixel value. Due to the fact that, if the precision is calculated for images where the
ground truth just contains background, this metric would yield value 0. Therefore,
if the precision result of these images is part of the overall average, these results
would lower the average result of the metric, showing a worse performance than it
actually has.

Averaging all the pixels examined, it has been concluded to reach a mean of
88,46%, with a mean standard deviation of 23,15%.

4.1.3 Recall

Recall: Also known as Sensitivity, shows the probability of being classified Pos-
itive, given it is True Positive.

TP
Recall = 25 FN (4:3)

As is the case for precision, recall is just calculated for the images that contains
at least one cloud pixel. Once again this is done to show the actual performance
of the model.

After averaging all the measures obtained for each prediction, the mean value
obtain is 83,35% with a standard deviation of 24,88%.

As briefly introduced above, for semantic segmentation applications, the follow-
ing metrics help to more accurately identify the performance of the model. This
is because they target pixels of the positive class.

4.1.4 Intersection over Union

Intersection over Union: Also known as Jaccard Coefficient, it is the metric
that measures the area of overlap over the area of union between ground truth
and prediction divided by the area of union. The output is a value between 0
and 1. The higher the score, the better, as it implies a higher match between the
actual truth and the prediction within the total area covered. It is therefore a
more precise measure than accuracy for semantic segmentation.

46

Chapter 4 — Results

lunv| TP
[UuV| TP+ FP+FN

The mean value obtained from averaging the results thrown by the 200 images,
is a 63,50% score with a 41,64% standard deviation.

Jaccard(U, V) (4.4)

4.1.5 Dice Coefficient

Dice coefficient: Being mathematically the same as F1 score, is the harmonic
mean of precision and recall. It corresponds to twice the area of overlap divided by
the total number of pixels. It is similar to IoU, however as it gives more relevance
to FP errors than FN errors, it better estimates the influence of FP within the
network. Moreover, unlike IoU, it is easily differentiable.

Dice Coe f ficient 2 x Precision * Recall 2% TP 2x|UNV|
ice Coef ficient = = —
Precision + Recall 2«TP+FP+FN |[UUV|+|UNV|
(4.5)

The mean value obtained averaging all the F1 scores of the different predictions
is 66,99% with standard deviation of 42,43%.

4.1.6 Confusion matrix

To evaluate the pixel classification performance of the model on the background
and cloud segmentation, a confusion matrix has been determined. This tool is
commonly used to assess classification accuracy by compering predictions with la-
bels. Figure below shows the obtained results.

It has been calculated by comparing each pixel of the predictions with the ground
truths. An average of all TP, TN, FP and FN predictions has been obtained for
every pixel in each image. The following equation shows the calculation used.

Value
200 * 384 * 384 (4.6)

Overall Con fusion Matriz =

where Value = TP, TN, FP or FN

47

Chapter 4 — Results

Confusion matrix

04

03

Predicted

-0.2

—

-01

Actual

Figure 4.3: Confusion matrix

Depicted in the image, overall the model classifies each pixel as cloud and back-
ground with a high enough accuracy. Being able to classify TP and TN with
almost equal ease. Regarding the miss classifications, the model shows a higher
FN rate with a value of 3.50%, meaning that it tends to not identify clouds.

4.1.7 ROC curve

ROC curve Receiver operating characteristic; Represents a graphic comparison
between Sensitivity(or false positive rate) and Specifity (or true positive rate).
The area under this curve is known as AUC and ranges between 0.5 to 1, where
1 would represent a perfect model. The result corresponds to the probability of a

model to distinguish correctly between the classes. As depicted in Figure [£.4] the
model has obtained an AUC value of 0.94.

48

Chapter 4 — Results

Receiver operating characteristic example

= o -
=2} =] =]

True Positive Rate
o
.

=]
[

-~ —— ROC curve (area = 0.94)

00 02 04 06 08 10
False Positive Rate

Figure 4.4: ROC Curve

To gather the measured results a summary of the average values is shown below.

Table 4.1: Recopilation average measurements

Metric Mean(%) Standard deviation(%)
Pixel Accuracy 93,70 10,93
Precision 88,46 23,15
Recall 83,35 24,88
Tou 63,50 41,61
Dice coefficient 66,99 42,43

4.2 Qualitative results

From the confusion matrix in Figure 4.3 it has been observed that taking into
account both FP and FN results, around a 5% of the pixels are miss-classified. In
order to asses the reason of the error, the erroneous predictions have been identi-

fied.

To this end, a confusion matrix for each image has been computed, spotting the
images with the highest error rates. It must be highlighted that the confusion
matrix has been computed by comparing each pixel of the predicted image with
each pixel of the label.

For each scene analyzed it is given:

-Testing image: It is the natural false color image fed into the network.

-Testing label: It is the ground truth provided by the dataset. Yellow repre-

sents actual cloud and purple stands for actual background. During training, it is
provided to the network and acts as the solution used to recalculate the weights.

49

Chapter 4 — Results

Whereas, in the evaluation phase it doesn’t interfere with the network. It is just
used to evaluate the prediction’s similarity with reality.

-Prediction: It is the result of the model displayed as an image. Yellow represents
predicted as cloud and purple stands for predicted background.

4.2.1 Example FP case

Several False Positive samples have been found in between the results obtained.
Meaning that the model predicted as positive truly negative pixels. An example
with a high false positive rate is depicted below.

Image [4.6 stands out with a FP rate of 37.93%. Meaning that 55931 out of the
147456 pixels of an image where classified as positive when they are actually neg-
ative. The confusion matrix provided for this image can be seen in Figure [4.5

Confusion matrix

o 32.08%

Predicted

— 37.93%

Actual

Figure 4.5: Confusion matrix of image 1910.tif

Note that this confusion matrix has been calculated for every pixel of just one
image. By comparing the prediction with its corresponding ground truth. An
average of all TP, TN, FP and FN predictions has been computed for each image.
The following equation shows the calculation used.

Value

Individual Confusion Matrix = 334 % 384 (4.7)

where Value = TP, TN, FP or FN

50

Chapter 4 — Results

A comparison of the false-colour image, its labelled mask and the prediction
obtained can be seen in Figure It can be seen that the model failed to classify
the image predicting clouds when it is actual background.

Testing label 0 Prediction on test image

Testing image:

0 100 200 300

Figure 4.6: Comparison of image 1910.tif

4.2.2 Example FN case

Another flaw that can occur in binary classification models is to label data as
negative when it is actually positive. This is known as False Negative. Some cases
of FN have been detected among the assessments.

An image that stands out due to its high percentage of erroneously classified
pixels is Figure 4.8, As observed, the algorithm has erroneously miss predicted
background, not identifying all the clouds present. It is clearly depicted in its con-
fusion matrix represented in Figure Reaching a percentage of 32,40% of FN
pixels. Once again this individual confusion matrix has been computed following

equation [A.7]

51

Chapter 4 — Results

Confusion matrix

Predicted

- 0.32% 10.94%

Actual

Figure 4.7: Confusion matrix of image 1836.tif

Testing image: Testing label Prediction on test image

100

150

200

250

300

350

200 300

Figure 4.8: Comparison of image 1836.tif

Other False Positive or False negative errors have been identified and are displayed
in the figures below. Analysing the results, it can be seen that most of these im-
ages contain snow or light clouds. Cases in which it is difficult to distinguish and
can cause controversy even when analysed under human eye.

In order to optimise the model and successfully detect such cases, it is proposed

to extend the number of classes to be analysed by the network. Broadening the
segmentation to light clouds, thick clouds, snow and background.

52

Chapter 4 — Results

Testing image:

Testing label Prediction on test image

0
N ¢
100

150

200 200
50 50§ 50 *
300 300 300
350 350 . 350
- T
0 100 200 300
Testing image: 0 Testing label Prediction on test image
50 50
100 ,‘-" 100
150 ﬂ : 150
200 3 200
250 250
300 300
350 350
0 100 w0 300

4.2.3 Missclasified dataset

Analyzing the images that returned errors, it was found that many ground truths
were mislabelled. An example of this is shown in the figures below. It can be ob-
served how the ”Testing labels” mark background pixels as clouds and vice versa.

If erroneous labels have appeared in the testing dataset, it can be assumed that
the training dataset will also contain errors, as they come from the same source.
As a consequence, the model obtained will not be optimal. Furthermore, the met-
rics analysed have also been calculated with respect to the ground truths, so the
results obtained will not be accurate.

Some of the mislabels found are displayed bellow in Figure It can be seen
the comparison between the studied image, the erroneous label and the prediction
obtained from the model. Highlight that in most of these cases the model predicts
better results than the provided labels.

53

Chapter 4 — Results

Testing image: Testing label Prediction on test image

-

150
200
50 o

300

350

0 100 200 0o

Prediction on test image

Testing label Prediction on test image

100

150

200

250

300

350

0 100 200 300

Testing label Prediction

100

150

200

250

300

350

54

Chapter 4 — Results

100

150

200

250

300

350

Testing image:

100

150

200

250

300

350

Figure 4.9: Mislabels compilation

Testing label

]

100

200

55

300

Prediction on test image

Chapter 5

Conclusions and future work

5.1 Conclusions

The main objective has been to develop system that evaluates and determines
the percentage of cloud cover in satellite images. The output of the solution was
determined to be a divider between useful images that include few clouds, and
images that should be discarded for having a high percentage of clouds. This goal
has been successfully achieved by developing a deep learning algorithm capable of
segmenting clouds in satellite imagery.

The choice to use machine learning to address the challenge, was due to its
outstanding performance when classifing images. In order to understand all the
components involved in this approach, a general overview of the field of machine
learning and in particular the subfield of deep learning has been carried out. Thus
the use of Convolutional Neural Networks and their application for object recog-
nition purposes has been studied. These partial objectives have been achieved
thanks to focused research in this field, with published conference papers, or arti-
cles in popular scientific journals.

Likewise, the singularities of satellite images have made it necessary to carry out
a previous study of their processing. For this reason, this work compiles the basic
details of multispectral images, detailing how the satellites capture the data ac-
cording to the reflected frequency, obtaining different bands. This partial objective
has been achieved by using the information provided by governmental agencies re-
garding satellites.

Once all the necessary background knowledge had been studied, the Convolu-
tional Neural Network was developed. The model obtained is based on the UNet
architecture. Although some modifications have been made to adapt it better to
the final application. The network has been trained and tested using a labelled

56

Chapter 5 — Conclusions and future work

dataset containing Landsat images. The training was carried out using 1000 of
these images.

Once the model was trained, a series of tests have been executed to evaluate its
performance. This validation has been carried out on another 200 reserved images
from the dataset. To obtain a more accurate result of the performance, the boot-
strapping method has been employed. As a result, the model has shown a mean
accuracy of 93,70%, showing lower average results in precision and recall, reaching
88,46% and 83,35% respectively. The evaluation of Intersection over Union met-
ric reached a total mean value of 63,50% and a 66,99% of Dice coefficient. The
confusion matrix and the ROC curve have also been plotted. This successfully
completes the partial objective of evaluating the performance of a semantic seg-
mentation algorithm.

In addition, a visual check has been carried out, comparing the images, their
ground truths and the predicted results. It has revealed that miscassifications do
not just correspond to model mistakes, but to wrongly labelled patches. Neverthe-
less, in most of the cases, the model outworks segmenting those images, predicting
better results than the ground truths themselves.

Overall a model to segment clouds on satellite images has successfully been de-
veloped and its performance has been evaluated.

5.2 Future work

This study has generated interest in new approaches to work. Some of the lines of
research that have been opened up are presented below:

e Improve the dataset, either by self-labelling the images or finding more reliable
labelled data.

e Analyze how each band of a hyperspectral image influences the cloud detec-
tion to determine the bands where a higher amount of important features
are identified. With this improvement, a more effective dataset for training
would be arranged.

e Evaluate the model by performing K-Fold Cross Validation. This method
proposes dividing the data in K different sets to then train the model several
times. The accuracy could then be computed for every fold obtaining a more
accurate evaluation of the model. This was too computational expensive for
the available environment to be performed in this Thesis.

57

Chapter 5 — Conclusions and future work

e Develop a more complex algorithm capable of differentiating between snow
and clouds. For this purpose ground truths labelling the snow and clouds are
needed.

e Self-label unseen images from a different source, such as Sentinel’s images,
and evaluate the performance of the model on them. This evaluation will
allow to test how the model performs with completely new data.

58

Appendix A

Appendix

Table shows the compilation of the results obtained after evaluating the net-
work. Accuracy, Intersection over Union, Precision, Recall and Dice coefficient
have been measured. This evaluation has been carried out on 200 images previ-
ously unseen by the model. As a result, the metrics computed for each pixel of
each image have been evaluated.

Note that precision and recall have just been computed for the images with at
least one TP pixel. This is because the way this metric is computed assumes that
all images contain TP pixels, however there are entire background images that do
not include clouds. In those cases, precision and recall would throw values of 0,
which would worsen the mean values of this metrics. For this reason, it has been
chosen to evaluate this metrics on images with at least one cloud pixel.

Table A.1: Results

Accuracy IoU Dice coefficient Precision Recall

0,99883355 0 0 0,924494755 0,861727986
0,949293349 0 0 0,963308806 0,965858165
1 1 1 0,962785934 0,817154448
0,974385579 0,805068126 0,892008578 0,745801778 0,839644124
1 0 0 0,121791782 0,668264463
0,961466471 0,931586679 0,964581801 0,970767324 0,897879339

0,994981554

0,792134831

0,884012539

0,9662858

0,999616086

0,828450521 0,65281838 0,789945693 0,997466875 0,930434479
1 1 1 0,899140068 0,999965537
1 1 1 0,883813713 0,898076923
1 0 0 0,95620644 0,96781637

0,999871148 0 0 0,871229698 0,938202715

0,788682726

0,114848166

0,206033736

59

0,781848027

0,932061081

Chapter A — Appendix

0,964850532
0,967610677
0,930223253
0,911682129
1

1
0,995985243
1
0,942593045
1
0,952779134
0,967352973
0,867004395
0,999898275
1
0,993231879
0,997890896
0,884494358
0,953009711
0,994466146
0,983357747
0,979593913
0,994045681
1

1

1
0,95042589
0,990926107
0,953708225
0,956732856
0,909478082
1

1
0,993706597
0,967556424
0,713168674
0,972025553
0,999369303
0,86380344
0,949571398
0,997938368
1

0,874241763
0,965927332
0,928241144
0,899112206
1

0

0

1
0,803244776
0
0,926738424
0,823946752
0,739693116
0,999898275
1

0

0
0,007863925
0,835813469
0,994448526
0,983347358
0,979593913
0

1

0

1
0,841870728
0,771905898
0,916914163
0,911624557
0,886065469
1

1

0

0
0,353890103
0,90593574
0,999368408
0,855223224
0,949567293
0

1

0,932901806
0,982668399
0,962785331
0,946876338
1
0
0
1
0,890888233
0
0,961976377
0,903476761
0,850371953
0,999949135
1
0
0
0,015605132
0,910564698
0,997216537
0,991603769
0,989691781
0
1
0
1
0,914147464
0,871271888
0,956656465
0,953769456
0,939591423
1
1
0
0
0,522775227
0,950646678
0,999684104
0,921962611
0,974131333
0
1

60

0,008841443
0,954304421
0,994617693
0,986937096
0,892921877
0,949067281
0,943547478
0,950710736
0,907094609
0,419559902
0,947122491
0,999368408
0,991450563
0,940844302
0,922878992
0,885663148
0,926410976
0,956009743
0,836224005
0,252398316
0,87229911
0,988685879
0,998400436
1
0,920911381
0,780753531
0,969892877
0,966180371
0,870099067
0,467412065
0,832758621
0,991723085
1
0,559703868
0,989723288
0,05418738
0,951343446
0,722209247
0,972824105
0,934494662
0,932965152
0,804854706

0,066404329
0,870658801
0,999828998
0,996314783
0,936406727
0,805264094
0,970134838
0,956847921
0,974503159
0,693343709
0,95419719
1
0,86157712
0,999692969
0,948704638
0,914623539
0,899057583
0,951736353
0,982776704
0,971683335
0,971378022
0,999882395
0,604076794
0,999674479
0,947203569
0,988750256
0,946762062
0,952569231
0,997744573
0,885473838
0,984827586
0,999667104
0,910705566
1

1
0,685618283
0,954727494
0,996472125
0,9761385
0,915604845
0,984911381
0,937349191

Chapter A — Appendix

1

1
0,964179145
0,949239095
0,972961426
0,970391168
0,896952311
1

1
0,877407498
0,993489583
0,672844781
0,970533583
0,988667806
0,641235352
0,968811035
0,999369303
1

1
0,999674479
0,959628635
0,894632975
0,969455295
0,964809842
0,938164605
1

1
0,942030165
0,984910753
0,812594944
0,97591824
0,991516113
0,910705566
0,568440755
0,971672906
0,989807129
1
0,699991862
0,974344889
0,845336914
0,972520616
0,961568197

0

1
0,879016927
0,818033743
0,839130084
0,911805107
0,824146192
1

1

0

0
0,250555392
0,850440589
0,98857092
0,60349273
0,968811035
0

1

0
0,999674479
0,875948154
0,773879
0,919731965
0,921832397
0,868391045
1

1

0

0
0,440765775
0,822209983
0,991395675
0,910705566
0,559703868
0
0,989723288
0
0,663768336
0,910278911
0,72036735
0,950227245
0,860384331

0
1
0,935613633
0,899910407
0,912529343
0,953868261
0,903596648
1
1
0
0
0,400710585
0,919176324
0,994252617
0,752722751
0,984158477
0
1
0
0,999837213
0,933872455
0,872527382
0,958187895
0,959326524
0,929560273
1
1
0
0
0,611849313
0,902431653
0,995679249
0,953266251
0,717705302
0
0,994835105
0
0,797909567
0,953032466
0,837457593
0,974478484
0,924953319

61

0,982972508
1
0,054019505
0,810681629
0,823498695
0,940342077
0,994800707
0,967652271
0,974546587
0,77093925
0,913787627
0,9507703
0,984205804
0,883283821
0,801721736
0,521854808
0,995720148
0,866365076
1
0,84930213
0,860539552
0,241091493
0

1
0,950349064
0,998199755
0,999304439
0,825075416
0,867312066
0,430485628
0,996757674
0,550632234
0,976393558
0,949221909
0,800746506
0,241876577
0,008661417
1
0,98230841
0,934417747
0,936705343
0,894899653

0,999421292
0,721339899
1
0,990153879
0,989956058
0,0938814
0,905235892
0,999913831
0,996348169
0,09742354
0,98107265
0,748113311
0,99994433
0,99894409
0,989810564
0,147721771
1
0,406443329
0,999782986
0,997073952
0,090417212
0,081870708
0
0,998440213
0,973924827
0,999992728
0,999985032
0,991360477
0,985571541
0,170556289
1
0,999641084
0,980065135
0,952333809
0,973920603
0,92087156
0,000215648
0,995313856
0,99969992
0,972660102
0,996995776
0,992350628

Chapter A — Appendix

0,950066461
1

1
0,994818793
0,999966092
0,839477539
0,999613444
0,982598199
0,727511936
0,282335069
0,981614855
1

1
0,99810791
1
0,845411513
0,990397135
0,946024577
0,903876411
0,988098145
0,752855089
0,968349881
1
0,98550076
0,972866482
0,971564399
0,933119032
0,924621582
0,783759223
0,983093262
0,714775933
0,984307183
0,988254123
0,914883084
0,998074002
1
0,915398492
0,85422092
0,875495063
0,999891493
0,342115614
0,995720757

0,919818358
1

1

0

0
0,76376774
0
0,982413335
0,721339899
0,054019505
0

1

1

0

0
0,804198627
0,816675298
0,934929771
0,900973221
0

0
0,967571586
1

0

0
0,971077972
0,769407033
0,89795731
0,720214801
0

0
0,984151879
0,988254123
0

0

1
0,882459909
0,795159139
0,130111348
0

0
0,995720148

0,958234777
1

1

0

0
0,86606385
0
0,991128659
0,838114424
0,102501908
0

1

1

0

0
0,891474603
0,899087799
0,966370754
0,947907325
0

0
0,98351856
1

0

0
0,985326796
0,869677829
0,946235519
0,837354498
0

0
0,092012647
0,994092366
0

0

1
0,937560375
0,885892645
0,230262882
0

0
0,097855485

62

0,919542854
0,970189377
0,970178744
0,85258274
0,845880575
0

1
0,901611198
0,944984457
0,878111941
0,935867726
0,586371078
0,977870488
0,968567725
0,863070539

0,750024825
0,890698498
0,874430548
0,981973637
0,98292477
0
0,99742296
0,994962857
0,999835926
0,990894839
0,897965727
1
0,842738784
0,968431284
0,952708119

Chapter A — Appendix

0,957227919
0,580600315
0,999938965
0,999782986
0,960401747
0,905748155
0,926852756
1
0,961690267
1
0,988186306
0,998440213
0,984714084
0,928365072
0,998311361
0,99935574
0,970113118
0,918931749
0,903252496
1
0,997823079
0,629889594
0,964748806
0,958794488
0,9434611
0,859707303
0,645609538
0,995313856
0,998345269
0,982211643
0,998114692
0,914530436
1

1
0,948371039
0,920531521
0,827568902
1

1
0,629075792
0,924140082
0,975036621

0,957227919
0,382465425
0
0,999782986
0,8471906
0,85343373
0,065094912
0

0

1
0,988186306
0,998440213
0
0,926768395
0,998192509
0,999289491
0,819185164
0,856437724
0,140084388
0
0,996757674
0,550523394
0,957379818
0,906169408
0,783937179
0,236951791
0,000210454
0,995313856
0,998345269
0,982018852
0
0,910503405
1

1
0,934068884
0,88876876
0,703835715
0

1
0,629075792
0,866971113
0,85154265

0,978146602
0,553309209
0
0,999801481
0,017274698
0,920921764
0,122233073
0

0

1
0,994058055
0,099219498
0
0,961992523
0,999095437
0,999644619
0,900606689
0,922667874
0,245743893
0
0,998376205
0,71011298
0,978225901
0,950775313
0,878884289
0,383122111
0,000420819
0,997651425
0,999171949
0,990927862
0
0,95315549
1

1
0,965910668
0,941109127
0,82617791
0

1
0,772310036
0,028746146
0,019819643

63

Chapter A — Appendix

0,964246962
0,900743273
0,793287489
0,99742296
0,99983724
0,933308919
0,993259006
1

1

1
0,946919759
0,920701769
0,892740885
1

1
0,607625326
0,923502604
0,969672309
0,976494683

0,839444512
0,833630773
0
0,99742296
0,99983724
0,89751446
0

1

1

1
0,944837939
0,871083328
0,845912532
0

1
0,586371078
0,826967326
0,938922957
0,827613648

0,912715232
0,909267869
0
0,998709818
0,999918613
0,945989587
0

1

1

1
0,97163668
0,931100518
0,916525044
0

1
0,739260928
0,905289673
0,9684995
0,905676808

64

Bibliography

[1] M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks,
“Spatial and temporal distribution of clouds observed by modis onboard the
terra and aqua satellites,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 51, no. 7, pp. 3826-3852, 2013. Accessed: 2023-04-01.

[2] E. D. Alanytics, “Satellite imagery and spectral band combinations.” https:
//eos.com/es/make-an-analysis/. Accessed: 2022-10-18.

[3] U. E. Explorer. https://earthexplorer.usgs.gov/. Accessed: 2022-08-10.

[4] SAS, “The rise of computer vision.” https://www.
sas.com/sas/offers/19/computerBvision.html?utm_
source=bing&utm_medium=cpc&utm_campaign=ana-genbemea_
507454msclkid=fe0278131e23189d463526e2ac6ef536&
utm_source=bing&utm_medium=cpc&utm_campaign=
EMEA-AT-PATHFINDER-BINGBSPAIN-2020-Combined-ENBBing+0Only&utm_
term=computer+vision&utm_content=SPECIFIC+-+50745-+Computer+
Vision. Accessed: 2022-10-21.

] S. U. S. of Engineering, “Lecture 2 - image classifica-
tion.” https://www.youtube.com/watch?v=00UX-n0EjGO&list=
PLC1qU-LWwrF64f4Q0KQT-VgbWr4qEE1Zxk&index=2. Accessed: 2022-10-
21.

[6] A. Sabharwal and B. Selman, “S. russell, p. norvig, artificial intelligence: A
modern approach, third edition.,” Artif. Intell., vol. 175, pp. 935-937, 04 2011.

[7] P. Ongsulee, “Artificial intelligence, machine learning and deep learning,”
in 2017 15th International Conference on ICT and Knowledge Engineer-
ing(ICTEKE), pp. 1-6, 2017.

[8] A. Munoz, “Machine learning and optimization,” 2012.

[9] R. Kohavi and F. Provost, “Glossary of terms. special issue of applications of
machine learning and the knowledge discovery process,” Mach. Learn., vol. 30,
01 1998.

65

https://eos.com/es/make-an-analysis/
https://eos.com/es/make-an-analysis/
https://earthexplorer.usgs.gov/
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.sas.com/sas/offers/19/computer�vision.html?utm_source=bing&utm_medium=cpc&utm_campaign=ana-gen�emea_50745&msclkid=fe0278131e23189d463526e2ac6ef536&utm_source=bin g&utm_medium=cpc&utm_campaign=EMEA-AI-PATHFINDER-BING�SPAIN-2020-Combined-EN�Bing+Only&utm_term=computer+vision&utm_content=SPECIFIC+-+50745- +Computer+Vision
https://www.youtube.com/watch?v=OoUX-nOEjG0&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=2
https://www.youtube.com/watch?v=OoUX-nOEjG0&list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk&index=2

Chapter A — BIBLIOGRAPHY

[10] J. Heaton, “Ian goodfellow, yoshua bengio, and aaron courville: Deep learn-
ing,” Genetic Programming and FEvolvable Machines, vol. 19, p. 305-307, 04
2018.

[11] Stanford, “Image classification: Data-driven approach, k-nearest neighbor,
train/val/test splits.” https://cs231n.github.io/classification/. Ac-
cessed: 2022-10-21.

[12] Stanford, “Neural networks part 1: Setting up the architecture.” https://
cs231n.github.io/neural-networks-1/. Accessed: 2022-10-21.

[13] C. M. y. S. R. K.Mehrotra, “Elements of artificial neural networks,” pp. 1-6,
Boston: MIT Press, 1997.

[14] F. Burghardt and R. Garbe, “Introduction of artificial neural networks in

emc,” in 2018 IEEE Symposium on Electromagnetic Compatibility, Signal In-
tegrity and Power Integrity (EMC, SI & PI), pp. 165-169, 2018.

[15] Stanford, ““convolutional neural networks: Architectures, convolution / pool-
ing layers.” https://cs231n.github.io/convolutional®networks/. Ac-
cessed: 2022-10-21.

[16] Y. Xu, Y. Chi, and Y. Tian, “Deep convolutional neural networks for feature
extraction of images generated from complex networks topologies,” Wireless
Personal Communications, vol. 103, 11 2018.

[17) C. O. A. Hub. https://scihub.copernicus.eu/dhus/#/home. Accessed:
2022-08-10.

(18] G. Earth. https://earth.google.com/web/data=
CiQSIhIgO0GQ2YmFjY]jU2ZDIzMTF10ThiNTM2Y jMzNGRiYmRhYTA Accessed:
2022-08-10.

[19] Kaggle, “Satellite imagery and spectral band com-
binations.” https://www.kaggle.com/datasets/sorour/

38cloud-cloud-segmentation-in-satellite-images. Accessed: 2022-08-
10.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation.” urlhttps://arxiv.org/abs/1505.04597, 2015.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
https://arxiv.org/abs/1412.6980, 2014.

[22] A. Rodriguez, “Introduction to bootstrapping in data
science — part 1.7 https://towardsdatascience.com/
introduction-to-bootstrapping-in-data-science-part-1-6e3483636f67.
Accessed: 2022-10-21.

66

https://cs231n.github.io/classification/
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/convolutional�networks/
https://scihub.copernicus.eu/dhus/#/home
https://earth.google.com/web/data=CiQSIhIgOGQ2YmFjYjU2ZDIzMTFlOThiNTM2YjMzNGRiYmRhYTA
https://earth.google.com/web/data=CiQSIhIgOGQ2YmFjYjU2ZDIzMTFlOThiNTM2YjMzNGRiYmRhYTA
https://www.kaggle.com/datasets/sorour/38cloud-cloud-segmentation-in-satellite-images
https://www.kaggle.com/datasets/sorour/38cloud-cloud-segmentation-in-satellite-images
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/introduction-to-bootstrapping-in-data-science-part-1-6e3483636f67
https://towardsdatascience.com/introduction-to-bootstrapping-in-data-science-part-1-6e3483636f67

	Introduction
	Motivation
	Objectives
	Thesis outline

	State of art
	Satellite imagery
	Computer vision
	Deep Neural Networks
	Artificial Intelligence, Machine Learning and Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks

	Pipeline of Neural Network models

	Development
	Dataset
	Arquitecture
	Environment Setup
	Software Environment
	Hardware Environment
	Final Training and test dataset
	Training features

	Cloud coverage assessment

	Results
	Quantitative results
	Accuracy
	Precision
	Recall
	Intersection over Union
	Dice Coefficient
	Confusion matrix
	ROC curve

	Qualitative results
	Example FP case
	Example FN case
	Missclasified dataset

	Conclusions and future work
	Conclusions
	Future work

	Appendix

