
POLITECNICO DI TORINO
Master’s Degree in Master Degree in Data Science and

Engineering

Master’s Degree Thesis

Temporal co-location pattern discovery in
spatiotemporal data through parallel

computing

Supervisors

Prof. Paolo GARZA

Dott. Luca COLOMBA

Candidate

Gianvito LITURRI

ACADEMIC YEAR 2022/2023

Abstract

This master thesis investigates co-location patterns: categories of entities that
frequently appear close to each other. In the co-location pattern mining problem,
the categories are called features and each entity that belongs to a specific category
is named instance. In the urban field, an example can be "John’s Restaurant" which
is an instance of the feature "Restaurant". Co-location patterns are important
since they reveal underlying correlations between entities. Several algorithms were
proposed in literature to tackle the spatial co-location mining task. A step forward
in state-of-the-art methods consists in implementing parallel approaches. The
idea behind it is to divide the entire dataset into independent partitions that
will be processed in parallel. Most of the proposed solutions consist in sequential
algorithms. Instead, the few algorithms that use a parallel approach have a common
issue: the partitions that should be processed in parallel are not independent and
thus require information sharing, creating a bottleneck in the computation.

This thesis explores one of the most recent parallel algorithms in the context of
spatial colocation mining, introduced in the paper entitled "Parallel Co-location
Pattern Mining based on Neighbor-Dependency Partition and Column Calculation".
Given that the authors did not disclose their original parallel implementation, the
first step in this thesis consisted in the reimplementation of the aforementioned
algorithm using PySpark and Python. To verify the correctness of the algorithm,
experimental evaluations were performed on a real dataset related to plants of
Gaoligong Mountain and were run on the SmartData@PoliTO cluster. The frame-
work is based on two main concepts: the "neighbor-dependency partition" and
"Column Calculation". The first one divides the dataset into completely independent
partitions. The second one, instead, can finds patterns efficiently. The results
achieved in the experimental evaluations are comparable to the results reported
in the paper. Moreover, this thesis proposes a novel extensions to such algorithm,
adding the time dimension. The first version of the algorithm proposed wants to
find spatial-temporal correlation between people and trajectories. The idea behind
this is that if two people are friends or have any other relationship, they will have
similar positions within the same timeframes. In the implementation we consider
for each person a set of trajectories; when we want to find correlation between two
people, we verify if they were close to each other in similar timestamps. We verify
closeness in terms of both spatial and temporal distance and not exact position
sharing. The first version is tested on a large dataset, named Geolife Trajectories, to
recognize relationships among people in Beijing. Furthermore, in a second version
of the algorithm we extended the analysis by including points of interests (POIs) in
the mining process. Doing so, this second version of the algorithm is able to extract

information about people and the places that they frequently attend together. The
proposed methodology demonstrates that the implemented algorithm is effective
and efficient for discovering spatial-temporal behavioural patterns using parallel
computing techniques.

ii

Summary

In the master thesis, we have investigated co-location patterns which represent
entities of certain types that appear frequently close to each other and so may be
correlated. In the urban field, an example can be the presence of supermarkets
and schools in nearby areas. These kinds of insights are very valuable in a lot of
contexts, from logistics to medicine. Knowing that two or more categories of shops
are frequently close to each other could lead to a better handle on the shipments and
therefore save money. One of the most important advantages of co-location patterns
is that they can show underlying correlations between different types of data that
would be otherwise impossible to identify using typical analysis approaches. This
can result in a better understanding of complex systems and the ability to make
more informed decisions. In the co-location pattern mining problem, the categories
are called features and each entity that belongs to a specific category is named
instance. In the urban field, an example can be "John’s Restaurant" which is an
instance of the feature "Restaurant". In literature, there is a multitude of algorithms
that mine co-location patterns. The best one depends on the metrics chosen. Are
we interested in a spatial correlation? Understanding how the entities occur inside
the patterns could provide useful information and insights to users or system’s
administrators? Are there frequent, strong association that occur much more
frequently than the others? Throughout this thesis, first different state-of-the-art
works are analyzed in order to understand their purposes and field of application
and especially their strengths and weaknesses. These algorithms are divided into
three categories according to the building of the instance table. The instance table
is a large and time-consuming table computed for each pattern, which contains
all the entities, called instances, that form the pattern. The categorization of
spatial colocation mining algorithms is performed by considering the way in which
different algorithms handle the construction of such instance table. A step forward
in state-of-the-art has been made by designing parallel methods run on powerful
hardware such as GPUs and clusters. These technologies speed up the discovery
of patterns and allow the scalability and so usage of large real datasets. However,
the state-of-the-art algorithms that use parallel computing are stuck because of
two problems. The process of finding co-location patterns consists of sequential

ii

steps run one after the other and so, designing a parallel approach in which each
partition is completely independent of the others is a tricky task. The second
problem is related to the construction of the instance table. The process of building
the table, as already mentioned, is an expensive task that could lead to checking
and storing all possible combinations of instances that take part in the pattern. If
the number of instance categories in the pattern increase, this task will become
extremely time-consuming. In the context of this thesis, the paper entitled "Parallel
Co-location Pattern Mining based on Neighbor-Dependency Partition and Column
Calculation" is presented. Such paper tackles the aforementioned problems and
demonstrates the effectiveness of the proposed approach in terms of execution time
and computational complexity. Based on this work, this thesis proposes a Python
re-implementation of the proposed methodology (which was not disclosed by the
original authors). All the experimental results were evaluated by running the code
on the SmartData@PoliTO cluster of the Politecnico of Torino. The proposed
architecture is based on two main parts. The first one is related to how instances
are partitioned in order to achieve parallelization. The solution proposed is called
“neighbor-dependency partition” and allows parallelization by dividing the spatial
dataset into subsets of instances through the prefix strategy. The strategy assigns
to each instance a prefix through which completely independent partitions are built.
In other words, each defined partition can compute a set of co-location patterns
without further information. This solution solves the first problem. The problem of
building the instance table, instead, is addressed through a novel algorithm called
“Column Calculation”. This method allows finding all the instances that take part
in the pattern without computing the entire instance table. This algorithm will
be used for each pattern that each partition computes. Furthermore, the paper
introduces two novel pruning techniques that allow the reduction of the search
space before applying the Column Calculation method and therefore furtherly
reduce the execution time. Using the two methods introduced in combination
with the pruning techniques, competitive results are obtained. The experiments
are conducted on a real dataset about plants in Gaoligong Mountain, located in
the Szechwan Highlands in the southern part of China. The dataset consists of
11062 spatial instances divided into 10 features. The results obtained through
the re-implementation have been compared with the results reported in the paper,
demonstrating similar performances. Using the cluster, we are able to mine 160
different patterns in around 15 seconds. Most of these patterns have 2, 3 and 4
sizes. Few co-location patterns have sizes equal to 5 or 6. The second part of this
thesis extends the analyzed spatial colocation mining algorithm to the temporal
domain. The idea behind this was to adapt the algorithm studied so that it can
identify a new kind of correlation: a spatial-temporal one. The new algorithm
defines a new neighborhood not just geographically, but also considering the time
distance among points. In a nutshell, two entities are close if and only if they

iii

are in the same place in the same time frame. Therefore, the algorithm proposed
wants to map the entire dataset into instance pairs in which the instances respect
the temporal and spatial constraints. To do this, a parallel approach is developed
based on the time dimension. So, the entire dataset is divided into time windows
according to the day of the timestamp, and each partition is processed at the same
time. The problem with such approach is the presence of pairwise relationships
between boundary points (i.e., a point at the end of a time window is a neighbor
of a second point at the beginning of the following time window): points where
one-day ends and the next begins. To solve this problem, a new partition is defined
to process boundary points. Each partition produces a list of pairs of points that
respect the temporal and spatial constraint. In conclusion, all these pairs are used
as an input of the algorithm re-implemented for the paper to obtain spatiotemporal
prevalence patterns. To test our implementation, the Geolife Trajectories dataset
is used. This dataset contains 17,621 trajectories with a total distance of about
1.2 million kilometers. Most of the points are located in Beijing (China). The
total number of time-stamped points is around 20 million. Due to computational
issues and limited resources, one-sixth of the original dataset was considered in
this work, with a total number of 3.3M points. The first version of the algorithm
aims to recognize relationships among people in Beijing. Furthermore, in a second
version of the algorithm, we extended the analysis by including points of interest
(POIs), obtained by OpenStreetMap, in the mining process. Doing so, this second
version of the algorithm is able to extract information about people and specific
places that they frequently attend together. A third version of the algorithm has
been implemented that is able to mine patterns related to people and categories of
places that they frequently attend together. In conclusion, we are able to process
3.3M points and achieve 1620 spatiotemporal patterns in 2 minutes around. Most
of these patterns have 2,3 entities involved. Few patterns have their sizes equal
to 4. Overall, the experiments conducted have obtained good results in terms
of parallelization degree, execution time and quality of the extracted patterns,
considering the size of the input dataset.

iv

Table of Contents

1 Introduction 1
1.1 The importance of the data . 1
1.2 Co-location pattern . 2
1.3 Spatial-temporal correlation . 3
1.4 Thesis structure . 5

2 Spatial co-location pattern mining 6
2.1 Problem definition . 7
2.2 Related works . 10

2.2.1 Buffer-Based Approach . 11
2.2.2 Maximal dynamic co-locations 12
2.2.3 Kernel-density based model 13
2.2.4 Weighted participation index 14
2.2.5 Fraction-score measure . 14
2.2.6 Intra-feature connection . 14
2.2.7 Knowledge-based approach 15
2.2.8 Join-less approach . 16
2.2.9 iCPI-tree approach . 16
2.2.10 Density strategy . 17
2.2.11 GPU-based algorithms . 17
2.2.12 MapReduce-based model . 18

3 Parallel Co-location Pattern Mining based on Neighbor-Dependency
Partition and Column Calculation 21
3.1 Neighbor-Dependency Partition . 22
3.2 Column Calculation . 25
3.3 Pruning strategies . 28
3.4 MapReduce ALGORITHM . 30

3.4.1 Requirements . 30
3.4.2 Implementation . 31

3.5 Experimental Evaluation . 35

v

3.5.1 Setup . 35
3.5.2 Execution time performance 36

4 Spatial-temporal Pattern Mining based on Neighbor-Dependency
Partition and Column Calculation 41
4.1 Use Cases . 43

4.1.1 People only . 43
4.1.2 People-POI . 44
4.1.3 People-vehicle . 45

4.2 Implementation . 45
4.2.1 Reasoning . 46
4.2.2 Design choices . 47
4.2.3 People-only algorithm . 49
4.2.4 People-POI algorithm . 50

4.3 Experimental Evaluation . 52
4.3.1 Setup . 52
4.3.2 Pattern visualization . 54
4.3.3 Performance . 59

5 Conclusion 68

Bibliography 70

vi

Chapter 1

Introduction

1.1 The importance of the data

In the modern world, data are essential to our ability to comprehend and navigate
our surroundings. We now assess and make decisions based on data in a very
different way as a result of the growing accessibility of massive datasets and the
development of cutting-edge technologies like Artificial Intelligence (AI) and Big
Data. For organizations, governments, and people to gain a competitive edge
and make wise decisions, the capacity to analyse and extract insights from huge
amounts of data has become crucial.

One of the primary benefits of using AI and Big Data is the capacity to identify
patterns and insights that would otherwise be impossible to discern. This can
lead to more accurate predictions, increased efficiency, and the capacity to make
real-time decisions. The usage of these technologies also allows firms to obtain a
more in-depth understanding of their clients, allowing them to better adapt their
products and services.

Aside from these advantages, the usage of AI and Big Data can have a good
impact on society as a whole. Large dataset analysis, for example, can be used to
enhance public health outcomes, anticipate and prevent natural disasters, and even
aid in the mitigation of climate change consequences.

In general, the value of data in today’s world cannot be emphasized. Organiza-
tions that want to stay competitive and make educated decisions must be capable of
leveraging the potential of AI and Big Data. The advantages of these technologies
go beyond the commercial sphere and have the potential to help society as a whole.

1

Introduction

1.2 Co-location pattern
One of the thesis’s key topics is co-location patterns, which refer to the spatial
interaction between different sorts of data points, such as the clustering of specific
types of enterprises in a single area or the proximity of certain types of medical
facilities to one another. These patterns can be extremely useful in a multitude of
sectors, including medical, logistics, and urban planning. In the area of medicine,
for example, co-location patterns can be used to identify locations with a high
density of specific types of illnesses, which can help public health officials target
their resources more effectively. Co-location patterns can be used in logistics to
determine ideal distribution hubs for a particular collection of products. Co-location
patterns, furthermore, can be utilized in urban planning to identify regions with a
high demand for specific types of housing or commercial development. In the 1.1 is
shown an example of pattern in the urban context.

Figure 1.1: Urban co-location pattern example.

One of the most important advantages of co-location patterns is that they
can show underlying correlations between different types of data that would be
impossible to identify using typical analysis approaches. This can result in a better
understanding of complicated systems and the ability to make more informed
decisions.

Co-location patterns have been discovered using a variety of existing technologies,
such as grid-based algorithms, density-based algorithms. These techniques, however,

2

Introduction

have some drawbacks and might not be appropriate for all types of data or
circumstances.

Parallel computing is a method that can be helpful in locating co-location
patterns. This method enables the simultaneous processing of large amounts of
data, which is advantageous when the volume of data is too great for a single
machine to handle. The capacity to process data in parallel has become more
crucial as a result of the daily increase in data generation.

"Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition
and Column Calculation" is one study that has been reimplemented. This work
describes a parallel computing solution to co-location pattern mining that takes
advantage of neighbor-dependency partitioning and column calculation. This
technique has various advantages, one of which is its capacity to manage massive
amounts of data. Furthermore, in terms of discovering co-location patterns, this
study has been shown to be more efficient and successful than standard techniques.

Overall, the capacity to identify co-location trends can provide valuable insights
and lead to more informed decision-making in a range of disciplines. Because it
allows for the simultaneous analysis of massive volumes of data, parallel computing
can be an excellent method for discovering co-location patterns.

1.3 Spatial-temporal correlation

The detection of spatial and temporal relationships between objects in space is
the second essential theme of this thesis. This refers to the capacity to recognize
patterns and relationships among various forms of data depending on their location
as well as the time at which they were captured. This is significant because it
provides for a more thorough knowledge of the dynamics of complex systems, which
can lead to better decisions.

3

Introduction

Figure 1.2: Common patterns in crime data.

This form of analysis has a wide range of potential applications in everyday
life. It can, for example, be used to find patterns in crime data as we can see in
figure 1.2, allowing law enforcement organizations to better target their resources.
It can also be used to detect patterns in traffic data, assisting municipal planners
in optimizing traffic flow and reducing congestion. It can also be used to detect
trends in meteorological data, which can aid meteorologists in forecasting severe
weather events and assisting emergency management in planning for them.

Finding geographical and temporal patterns can help us understand people’s
routines and actions in connection to points of interest and other people. It is
possible to get insights about an individual’s daily routines, mobility habits, and
preferences by studying data on their location and movement over time. For
example, by examining data on an individual’s position in relation to coffee shops
and cafes, it is feasible to deduce their morning routine and coffee preference.

Furthermore, by evaluating data about an individual’s location in relation to
other individuals, insights regarding their social network and patterns of interaction
can be gained. This type of analysis can be used to identify group behavior patterns,
such as where people tend to congregate or when certain groups are most active.

It is crucial to stress, however, that this type of study creates serious ethical
and privacy problems. The acquisition and analysis of data on an individual’s
position and movement can be extremely sensitive, and any data collection and

4

Introduction

analysis must be done in a way that respects an individual’s privacy and rights.To
guarantee that data is collected and utilized ethically, it is critical to have clear
and transparent policies in place.

In this thesis, the state-of-the-art algorithm for colocation mining [1] was
extended to the temporal dimension. in the analysis to find spatial and temporal
association. This technique will consider the time relationship between different
types of data as well as the spatial relationship. This will enable for a more
full understanding of the dynamics of complex systems, which can lead to better
decision-making.

1.4 Thesis structure
The structure of the thesis is as follows:

1. In Chapter 2, we will formally discuss the problem of co-location patterns
and offer a summary of the previous technologies that have been utilized to
identify these patterns. This chapter will give an overview of the available
methodologies and strategies for detecting co-location patterns, as well as
their strengths and weaknesses.

2. The work [1] will be presented in Chapter 3. This chapter will give a full
overview of how this article works, including its methodology and strategies,
as well as the outcomes of its reimplementation.

3. In chapter 4, we will explain how the technology given in chapter 3 has
been modified to detect spatial and temporal correlations. This chapter will
provide the findings of experimental experiments conducted using the proposed
strategy, as well as its performance.

4. In the conclusion section, we will summarize the data acquired throughout
the thesis and analyze potential future advances of the suggested technology.
This will include a discussion of the possible benefits of the suggested method,
as well as any limitations or obstacles that remain.

5

Chapter 2

Spatial co-location pattern
mining

Spatial data is undergoing a rapid increase as a result of the development of
location-based services. A great deal of important knowledge is hidden in spatial
data, therefore it is critical to automatically identify intriguing and previously
unknown, but possibly beneficial knowledge from spatial data.

Spatial co-location pattern mining (SCPM), one of the spatial knowledge dis-
covery tasks, seeks to uncover correlations between spatial variables. A co-location
pattern (or co-location) is a collection of spatial features whose elements are
frequently found in spatial neighborhoods together. Because they are typically
positioned near each other, the feature set {Casino, Hotel, ATM} may be a real-
world example of co-locations. As it was said, Co-locations can provide crucial
insights into a variety of applications. Botanists, for example, might use extracted
co-locations to uncover symbiotic interactions between different species, which is
beneficial to the conservation of species variety. Other sectors of application include
public health, transportation, urban building, and other location-based services,
among others.

SCPM is based on Shekhar et al. research [2], which created a distance-based
interest metric called the participation index to estimate the prevalence of co-
locations. Following that, some extended studies of SCPM are offered to handle
various types of data or achieve various mining objectives. The finding of co-
locations is a difficult operation since a co-participation location’s index depends
on all of its row instances (also known as table instances), and recognizing row
instances from spatial data is inherently time-consuming.

This chapter is divided into two subsections in which the following concepts are
described:

1. the spatial co-location pattern problem, its formulation and an example of

6

Spatial co-location pattern mining

how to find a pattern in a small set of elements

2. the state of the art of technologies used to find spatial co-location patterns
with their advantages and drawbacks

2.1 Problem definition

A spatial feature, in a spatial dataset, describes the geographic object type with
a Name. In an urban context, geographic object types can be a church, bank,
restaurant, etc. A spatial instance of a specific feature, instead, describes a physical
object with an identification number and coordinates.

Let:

• F = {f1, f2, ..fm} be the set of features

• O = {o1, o2, ..on} be the set of instances belonging to F

An instance is represented by a tuple of three elements:

< feature type, id, location > (2.1)

As it is seen in figure 2.1, it is a small dataset of spatial points in which there are
4 feature types described by an uppercase letter {A,B,C,D}. Each point describes
an instance and it is characterized by its feature type, an identification number,
and its position within the representation. A.1 point is an example of an instance
belonging to the A feature type.

Given a distance threshold min_d; if the distance among two instances is
less than the distance threshold, it is said that those instances have a neighbor
relationship denoted as:

R(oi, oj) ⇐⇒ distance(oi, oj) ≤ min_d (2.2)

7

Spatial co-location pattern mining

Figure 2.1: Instances example.

As it is possible to see in Figure 2.1, the neighbor relationship is represented
by a black line that links two points. A co-location pattern C = {f1, f2, . . . , fk} is
a non-empty subset of the feature set F, C ⊆ F , whose instances frequently form
cliques under the constraint of the neighbor relationship R. For convenience, we
arrange C features in ascending lexicographic order and apply this constraint to all
future co-locations. The size of C refers to the number of features in co-location
C. It is called row instance (RI) or co-location instance, a subset of instances that
follow these constraints:

1. RI covers all features of C and there is at most one instance for each feature

2. for each pair of instances in the RI, the neighbor relationship must be satisfied

if these constraints are followed, we call such instances involved in the row
instance clique.

8

Spatial co-location pattern mining

A B C
A.1 B.1 C.1
A.1 B.1 C.2
A.1 B.2 C.2
A.2 B.2 C.2

PR 2/2 2/5 2/5

Table 2.1: Table instance of pattern A,B,C

It is called the table instance of C: T (C), the collection of all row instances of
C. The table represents the table instance of the co-location pattern {A,B,C}, An
example of row instance is {A.1,B.1,C.1}

To compute the prevalence of a co-location pattern, the interest measure is the
Participation Index, defined by Shehkar and Huang [2]. Let fi be a feature in C,
fi ∈ C, The participation ratio (PR) of fi in C, denoted as PR(fi, C), is defined
as:

PR(fi, C) = number of distinct instances of fi in C

number of instances of fi

(2.3)

Written as PI(C), the participation index, instead, is the minimum of the
participation ratio of all the features in C:

PI = mink
i=1{PR(fi, C)} (2.4)

Considering pattern {A, B, C} in the table 2.1, it is seen that PR(A, {A, B, C}) =
2/2 since all instances of feature A are presented, PR(B, {A, B, C}) = 2/5, since
only two (B.1, B.2) out of five instances of B are included in the table instance of
{A, B, C}. Similarly, PR(C, {A, B, C}) can be computed.

Set a prevalance threshold called min_prev, A co-location pattern C is prevalent
if it follows the rules:

PI(C) ≤ min_prev (2.5)

An useful feature of the partecipation index is that it satisfies the anti-monotone
property, in other words, the partecipation index of a certain pattern C is no bigger
than the partecipation indexes of all its subset patterns. It is an useful property
since thanks to this one, it is possible to cut the search space and speed up the
searching of the spatial co-location pattern.

9

Spatial co-location pattern mining

2.2 Related works
As it is said at the beginning of the chapter, Spatial co-location pattern mining
(SCPM) derives from the work of Shekhar et al. [2], who defined the interest
measure based, known as the participation index (PI). Based on that work, to
analyze different kinds of data or obtain other mining objectives, researchers
produced extended studies. The current approaches to find co-location patterns
can be categorized as follows:

• The partitioning-based technique, which partitions the space into multiple
cells using a grid, then a transaction involving all the objects within the cell
is created. Then, it specifies supports based on the created transactions as if
they were standard transaction data. Only instances within individual cells
are evaluated in this approach, whereas those across cells are ignored since
two objects within distance d but across cells boundaries are ignored.

• The construction-based technique, which heuristically builds instances of a
given label set and counts the number of produced instances as support.
Because of the heuristic nature of this approach, certain instances of a label
set may be missed.

• The enumeration-based approach, which counts all row occurrences for a given
label set. No instances are lost with this approach, however, the support
definition is not anti-monotonic and illogical.

• The participation-based strategy, which captures all potential instances and
has a support definition that satisfies the anti-monotonicity characteristic, is
the one that is most frequently utilized. The participation-based technique,
like the enumeration-based approach, takes into account all potential row
instances, but rather than counting each row instance individually, it organizes
the row instances into various groups and then counts the groups.

Another challenging problem is the calculation of the table instance, being it a
time-consuming task. Three methods to compute such table are:

• full-join approach: relies mainly on computing the join operation between
table instances to identify collocation instances. This strategy can produce
accurate collocation sets and is comparable to the Apriori method. Due to the
growing number of collocations and instances of their tables, the algorithm’s
scalability on dense and substantial geographical datasets presents challenges.

• The partial-join approach: involves constructing a set of disjoint cliques in
spatial instances to identify instances of co-location belonging to a common
clique, called intraX instances, and all instances that have at least one cut

10

Spatial co-location pattern mining

neighbor relation called interX instances. Then, intraX and interX instances
are merged to compute the PI. This method drastically decreases the number
of costly join operations required to discover table instances. However, the
performance is determined by the spatial dataset’s distribution, specifically
the number of cut neighbor relations.

• The join-less method: it compresses the spatial neighbor relationships between
instances into a star neighborhood. By scanning the star neighborhood and
performing a 3-time filtering process, all feasible table instances for each
co-location pattern were generated. The join-less co-location mining approach
is efficient because it uses an instance-lookup scheme to discover co-location
table instances rather than an expensive spatial or instance join operation.

Researchers have found several methods to speed up the identification of row
instances such as Join-based approach [3], Joinless approach [4], iCPI-tree approach
[5]. However, because they rely on serial processing and are restricted by the
computational capacity of a single computer, most systems are underpowered
and inefficient for huge spatial data analysis. Furthermore, some parallel SCPM
methods based on MapReduce [6, 7, 8] or GPU [9, 10] have been developed to handle
enormous geographical data, but they are still stuck with co-location participation
index calculation. In the next subsections, we will present different works related
to co-location pattern mining.

2.2.1 Buffer-Based Approach

Ge et al. [11] use a buffer-based model for measuring the spatial relationship of
extended objects and mining co-location patterns. The usage of a buffer-based
model has the advantage of taking into account complex spatial features like lines,
polygons, etc. On the other side, this kind of approach leads an high computational
complexity because of the expensive buffer-level overlay operation.

11

Spatial co-location pattern mining

Figure 2.2: minimum object bounding box used in buffer-based approach.

To address this issue, that work [11] presents a coarse-level co-location mining
approach based on the filter-and-refine paradigm. Within the framework, a set
of rigorous upper bounds based on geometric properties is created. Such upper
bounds are used to gradually prune the search space. Furthermore, a join-less
schema is adopted to decrease the calculation cost of size-k (k > 2) co-location
patterns. Overall, this approach is still not scalable for massive data and cannot
be used for mining size-k (k>2) co-location patterns.

2.2.2 Maximal dynamic co-locations

Although there are numerous ways for mining spatial co-location patterns, none of
them can detect dynamic correlations between spatial elements. The term dynamic
refers to the change over time of the objects in space.

A possible use case, in which dynamic correlations could be useful, is the
identification of a polluted area; pollution is a phenomenon that you will observe
only if you monitor the same area at different time points. An example is shown in
Figure 2.3 in which the same space of a polluted area at two different point in time
is represented. The instances in black are destroyed by pollution. Using present
approaches, the decrease in the number of instances is not revealed since patterns
are computed as a percentage of the common instance over the total ones and so
the pattern remains the same.

12

Spatial co-location pattern mining

Figure 2.3: Different instances of a polluted area in two different timestamps.

To address these kinds of problems, Yao et al. [12] produced a work in which
in which objects in space at different time points are taken into account to find
dynamic correlations between spatial elements.

2.2.3 Kernel-density based model

A possible approach used to compute co-location patterns is the density-weighted
distance model (DWD). It is a statistical method that uses the distance between
objects in a data set to identify areas where these objects are most densely con-
centrated. When calculating the distance, the density of data in a given area is
taken into account, as more densely populated areas tend to have lower average
distance values than sparser areas. Once the densest areas of concentration have
been identified, more detailed information on the location of the data can be
provided. Using this model, you can find the most frequently occurring instances
in a space and then define a co-location pattern. Based on this approach, Yao et
al. [12] provided a co-location pattern mining approach with a density-weighted
distance thresholding consideration. This new technique is known as SGCT-K
which focused on efficiency and storage improvements. To begin, a size-2 instance
database is built, which contains not only instance pairs that satisfy a distance
threshold but also their distance weights, which are determined from the KDE
model. The predominant patterns are then determined using a novel verification
approach combined with the density-weighted distance thresholding consideration.

13

Spatial co-location pattern mining

2.2.4 Weighted participation index

Based on a previous work, in which the degree of dispersion metric is proposed to
quantify the difference in the number of the number of instances for characteristics
in a spatial dataset; [13] extends such work, proposing the rare intensity to quantify
the rare strength of features in a pattern. The rare intensity takes into account the
degree of dispersion in the number of instances for features in the entire spatial
dataset as well as that in a co-location at the same time. This work presents a
novel interest measure termed the weighted participation index (WPI), which may
locate co-locations with or without unusual features; additionally, WPI satisfies a
conditional anti-monotone property that can be used to efficiently tune the search
space.

2.2.5 Fraction-score measure

Chan et al. [14] proposed a new support measure called Fraction-Score that takes
into account all possible row instances while avoiding the over-counting problem
that occurs when multiple row instances within a group share the same object (as
the participation-based approach does) as well as when multiple row instances across
groups share objects. The main idea is to count each group as a fractional unit of
prevalence rather than a full one, with the fraction value derived by amortizing an
object’s contribution across all row occurrences in which the object is involved.

2.2.6 Intra-feature connection

Current SCPM techniques only focus on a pattern’s interfeature connection: in a
nutshell, what are the categories that frequently appear close? However, it could
be useful to know how the instances appear in a certain pattern. This kind of
insight is called intrafeature connection and can lead to further knowledge about
the pattern.

14

Spatial co-location pattern mining

Figure 2.4: An example of spatial dataset.

An example is shown in the Figure 2.4 in which we can see that in the pattern
{bank, restaurant}, we notice there are several restaurants close to a single bank.
But there are not necessarily multiple banks appearing in the neighborhood of a
restaurant. That phenomenon may show that the presence of banks can encourage
the clustering of restaurants, but that banks typically do not occur in groups, which
is more advantageous for the layout of the city than the traditional co-locations
just taking the association between features into account. So, there are optimum
reasons to study these kinds of characteristics of patterns. In fact, [15] provided
the intra-coupling congregation association index called IntraCAI to capture the
intra-coupling relation per feature in a co-location so as to enrich the semantics of
co-locations.

2.2.7 Knowledge-based approach
Patterns are not equal in terms of value. Some patterns could be more interesting
than other ones, all depending on the user that will use these information to make
decisions. Therefore, the mining techniques should be built on substantial user
interaction to find user-preferred co-location patterns. To do this, the knowledge-
based approach uses prior knowledge about the properties, relationships, and
processes to bind system elements in order to identify the most significant patterns
of co-location. This approach uses existing knowledge about biology, geography,
physics, etc. to filter the data and identify colocations that are most likely and

15

Spatial co-location pattern mining

relevant based on the specific context. So, [16] provided a work based on the
knowledge and ontologies to discover user-preferred co-locations. The work follows
the model presented in FIgure 2.5

Figure 2.5: Schema to discover user-preferred co-locations.

The domain knowledge is obtained by specialists, which includes the connections
between concepts in a particular domain. This knowledge is integrated into the
pipeline used to find semantics co-location patterns, which can help users with
various requirements.

2.2.8 Join-less approach

Yoo et al. in [4] proposed: two novel neighborhood models called star neighborhood
partitioning and clique neighborhood partitioning, and compared the models. The
neighborhood partition model (simply, the clique partition model) partitions a
spatial data set into sets of objects having clique relationships. The it intruduces
a new join-less schema, based on the star neighborhood partitioning, that uses
an instance lookup instead of an expensive spatial or instance join operation for
filtering co-location instances.

2.2.9 iCPI-tree approach

Wang et al. in [5] introduced a structure called iCPI-tree, useful to materialize
neighbor relationships.

16

Spatial co-location pattern mining

Figure 2.6: An example of iCPI-tree of spatial dataset.

As it is shown in Figure 2.6, in this case, the spatial dataset is represented by a
tree structure with features and instances. This particular design choice improves
the efficiency of the co-location pattern algorithm, discovering in less time all the
co-location patterns and increasesing the scalability, allowing the processing of
large amount of data.

2.2.10 Density strategy
Xiao et al. [17] proposed a co-location pattern algorithm based on a density function
that divides the space by a grid to process sub-spaces with a sufficient number of
instances. The result is that not all instances of a candidate will be identified. This
strategy applies a pruning strategy based on an upper bound and the prevalence
threshold to understand which sub-spaces to process to identify co-location pattern.
This novel strategy reduces a lot the number of joint operations between the table
instances of subpatterns.

2.2.11 GPU-based algorithms
A way to improve efficiency and scalability is proposed by [9, 10] through the usage
of GPUs. This design choice leads to the possibility to parallelize the execution
of different neighbor partitions as long as the algorithm itself is parallelizable and
so the building of the patterns is not sequentially. Thanks to the power of the
hardware, it is possible to find co-location patterns in a real dataset and scalability
is ensured. The two main drawbacks are the higher cost of the GPU and its limited

17

Spatial co-location pattern mining

amount of memory. In conclusion, [10] adds some GPU optimizations including
reducing unnecessary memory transfer and using batch memory transfer to replace
frequent small memory transfers.

2.2.12 MapReduce-based model
Yoo et al. in [6] proposed a MapReduce-based parallel co-location mining algorithm.
MapReduce is a programming paradigm used to perform distributed computing
on a large amount of data. MapReduce abstracts away the complexity of working
with distributed systems, such as computational parallelization and job allocation,
to simplify parallel processing.

Figure 2.7: Schema of MapReduce program.

The abstraction is shown in the Figure 2.7 and it is based on two main functions:
map and reduce. When a job is started, the input data is divided into physical
blocks and distributed among cluster nodes. This type of data partitioning and
distribution is known as sharding, and each component is referred to as a shard.
In each shard, there is a list of key-value pairs that will be mapped by the map
function to new key-value pairs. Then, in the shuffle phase, all values with the
same key are grouped together and in conclusion, in the reduce step, a function is

18

Spatial co-location pattern mining

applied on the grouped value associated to the same key. The work, proposed by
Yoo et al., discovers prevalent co-located event sets through two main tasks:

• Spatial neighborhood partition, which divides the colocation search space.

• Parallel co-located event set search, that searches the instance synchronously
by a map worker and then the reduce worker merges instance sets to find
co-location pattern.

The general schema of the algorithm is presented in the Figure 2.8.

Figure 2.8: MapReduce-based algorithm schema.

19

Spatial co-location pattern mining

Based on this work, J. S. Yoo et al. in [7] introduced a novel method to efficiently
search for neighbor relationships and a schema that shares discovered row instances
among nodes by HBase, a distributed NoSQL database that runs on Hadoop. This
approach is called ParColoc and it is able to process a large amount of data thanks
to the power of parallel processing on the cluster. A drawback of this model is
that the possible row instances generation and the clique relationship checking
are expensive and so, Yang et al. in [8] addressed this problem by proposing a
novel MapReduce-based parallel algorithm based on ordered-clique-growth, named
PCPM_OC, in contrast to ParColoc. This approach is based on expanding ordered
cliques in parallel. The ordered cliques expanding operation is performed fastly
because it can re-use the previously processed information, and there is not any
non-clique instance generated. In conclusion, these two algorithms, ParColoc and
PCPM_OC, have two main problems:

• Complete table instance: it is computed for each pattern to obtain the
participation index. For huge datasets, this task is unfeasible.

• The Shuffle phase: since there is poor computing independence, all generated
rows must be shared over the network in the shuffle phase and so, for a large
amount of data, it will be unfeasible.

To address these problems, a novel parallel SCPM approach is proposed based on
neighbor-dependency partition and column calculation, which will be presented in
the next chapter.

20

Chapter 3

Parallel Co-location Pattern
Mining based on
Neighbor-Dependency
Partition and Column
Calculation

In this chapter, the work that has been re-implemented in this Master thesis
is described, namely "Parallel Co-location Pattern Mining based on Neighbor-
Dependency Partition and Column Calculation", it was written by Yang et al. [1].
In this work, a novel SCPM approach is proposed to find co-location patterns.
Compared to previous work based on the MapReduce paradigm, this one solves
several problems regarding the independence of the neighbor partitions and the
computation of the table instance for each co-location pattern. The principal
contributions of this paper are:

• neighbor-dependency partitions: a novel parallelization mechanism that divides
the entire spatial dataset into several overlapped subset. It is done by the usage
of a prefix strategy that is useful to build independent portion of dataset that
will be processed in parallel. This method solves the first problem introduced
at the end of the previous chapter.

• Column-Calculation: a new approach to compute the participation ratio unless
the presence of the entire table instances. This solution solves the second big
problem previously cited and enables the scalability of the algorithm.

21

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

• two novel pruning strategies methods based on "Eligible instances": strategies
that allow us to understand whether a certain pattern could be prevalent or
not, without the need to actually execute the entire process.

3.1 Neighbor-Dependency Partition

In this section, the "neighbor-dependency partition" mechanism is described. Such
novel strategy divides the dataset into independent overlapped subsets that will
processed at the same time. To better explain the reimplemented methodology,
the toy dataset shown in Figure 1.1 will be used to introduce several examples
throughout this chapter. The building of the Neighbor-Dependency Partitions is
done in three steps:

1. Materialize the neighbor relationship: we want to catch the neighbor relation-
ship information (the black link between points in Figure 1.1) and put them
in a table in order to be processed. Given a point o, we define the neighbor
set of instances with the following formula:

Neigh(o) = {o′ | o′ ∈ O, R(o , o′), o′ /≡ o} (3.1)

Then, the neighbor dataset is defined as the set of all instances and their
neighbor sets as it is shown in Table 3.1.

Instance Neighbor Set Instance Neighbor Set
A.1 {B.1, C.1} C.2 {A.2, B.2}
A.2 {B.1, B.2, C.1, C.2} C.3 {B.2, D.1}
B.1 {A.1, A.2, C.1} C.4 {B.3, B.4, D.2, D.3}
B.2 {A.2, C.1, C.2, C.3} C.5 {B.4}
B.3 {C.4, D.2, D.3} D.1 {C.3}
B.4 {C.4,C.5,D.3} D.2 {B.3, C.4}
B.5 {D.4} D.3 {B.3,B.4,C.4}
C.1 {A.1,A.2,B.1,B.2} D.4 {B.5}

Table 3.1: Neighbor dataset

22

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Table 3.2: Neighbor dataset with prefix

Instance Prefix Neighbor Set
A.1 {B.1, C.1}
A.2 {B.1, B.2, C.1, C.2}
B.1 A {A.1, A.2, C.1}
B.2 A {A.2, C.1, C.2, C.3}
B.3 {C.4, D.2, D.3}
B.4 {C.4,C.5,D.3}
B.5 {D.4}
C.1 A,B {A.1,A.2,B.1,B.2}
C.2 A,B {A.2, B.2}
C.3 B {B.2, D.1}
C.4 B {B.3, B.4, D.2, D.3}
C.5 B {B.4}
D.1 C {C.3}
D.2 B,C {B.3, C.4}
D.3 B,C {B.3,B.4,C.4}
D.4 B {B.5}

2. Prefix computation: we want to add a useful string to each instance in order
to divide the dataset into independent partitions. Given an instance oi, whose
feature is oi.t = fi, if there is any instance oj with fj as a feature in the
neighbor set of oi and fj is less than fi in alphabetical order, so fj is a prefix
feature of the instance oi. The choice of using the alphabetical order is made
since it is used as an alphabetical identifier to distinguish features and sort
features of a pattern in ascending lexicographic order.

3. Create the partitions: a rule is defined such that each partition of the dataset
is independent. Given the neighbor dataset with prefix D, the neighbor-
dependency partition centered on feature f is defined, denoted as D(f), such
that it must contain:

• All instances of feature f and their neighbor set.

• All instances oj and their neighbor set Neigh(oj), that have f in their
prefix.

23

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Table 3.3: Neighbor dependency partition of A

Instance Prefix Neighbor Set
A.1 {B.1, C.1}
A.2 {B.1, B.2, C.1, C.2}
B.1 A {A.1, A.2, C.1}
B.2 A {A.2, C.1, C.2, C.3}
C.1 A,B {A.1, A.2, B.1, B.2}
C.2 A,B {A.2, B.2}

Table 3.4: Neighbor dependency partition of B

Instance Prefix NeighborSet
B.1 A {A.1, A.2, C.1}
B.2 A {A.2, C.1, C.2, C.3}
B.3 {C.4, D.2, D.3}
B.4 {C.4,C.5,D.3}
B.5 {D.4}
C.1 A,B {A.1, A.2, B.1, B.2}
C.2 A,B {A.2, B.2}
C.3 B {B.2, D.1}
C.4 B {B.3, B.4, D.2, D.3}
C.5 B {B.4}
D.2 B,C {B.3, C.4}
D.3 B,C {B.3, B.4, C.4}
D.4 B {B.5}

Table 3.5: Neighbor dependency partition of C

Instance Prefix Neighbor Set
C.1 A,B {A.1, A.2, B.1, B.2}
C.2 A,B {A.2, B.2}
C.3 B {B.2, D.1}
C.4 B {B.3, B.4, D.2, D.3}
C.5 B {B.4}
D.1 C {C.3}
D.2 B,C {B.3, C.4}
D.3 B,C {B.3, B.4, C.4}

24

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Table 3.6: Neighbor dependency partition of D

Instance Prefix Neighbor Set
D.1 C {C.3}
D.2 B,C {B.3, C.4}
D.3 B,C {B.3,B.4,C.4}
D.4 B {B.5}

Tables 3.3, 3.4, 3.5, 3.6 represent neighbor-dependency partitions centered
on features A,B,C,D, extracted by the neighbor dataset represented in Table
3.2. As it is shown, these tables are a portion of the original dataset. Given
the neighbor-dependency partition centered in f: D(f) and f1, f2...fn are all
the features in alphabetical order, D(f) can produce only the patterns that
start with the f feature. In example D(A) can find all combinations that start
with A: {AB, AC, AD, ABC, ABD, ACD, ABCD}. In the same way, D(B)
can produce the following patterns: {BC, BD, BCD}. As it can be seen,
the greater the feature of the neighbor-dependency partition(in alphabetical
order), the less will be the number of possible patterns that can be found.
The set of all patterns found by all the neighbor-dependency partitions is the
complete set of all possible patterns.

Overall, this novel method proposes a solution to the parallelization problem.
Based on the prefix strategy, each neighbor-dependency partition centered in f
is an independent partition able to find all patterns starting with f. On every
partition, the SCPM algorithm is run without the need of communication between
different partitions. This characteristic allows the system to scale in the case of
large amount of data and so reduces the time needed.

3.2 Column Calculation
Being it time-consuming, the building of the table instance is the second big
problem to solve. Useful to compute the participation ratio, the instance table for
the algorithms considered in the Related Work chapter was built for each pattern.
Column Calculation is the method used to find the participation ratio without
building the entire table instance. Considering the table instance shown in Table
2.1, it is seen that there are two rows that describe all possible instances in the
pattern: {A.1, B.1, B.1}, {A.2, B.2, B.2}. These rows contain all the information
necessary to compute the participation index. The Column Calculation algorithm
was developed based on this observation. This approach puts a step forward in
the state-of-the-art methods to find co-location patterns. In this subsection the
Column Calculation algorithm is described.

25

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Given a co-location pattern C and feature f belonging to C, if there is an
instance o of feature f that is in at least a row instance, o is called participation
instance of f in C and it is denoted as PIns(f, C). Given the table instance (Table
2.1), A.1 is a participation instance of A in the pattern {A, B, C} since A.1 is
present in the row instance {A.1, B.1, C.1}. Now the participation index can be
written in this way:

PR(f, C) = |PIns(f, C)|
|N(f)| (3.2)

As seen in the formula 3.2, the participation ratio of a certain feature f and
a specific pattern C is determined by the number of all participating instances
of f in C over the total number of instances of the same feature f . Then, the
participation index can be computed by the minimum of all participation ratios
over all the features of the co-location pattern. Said that, the problem is how to
find efficiently the participating instances for each feature. To do this, we can
leverage on an important property of subpatterns. Given a size-k (k>2) co-location
C ′ and its size- (k + 1) super pattern C, C ′ ⊂ C, then:

PIns(f, C) ⊆ PIns(f, C ′) if f ∈ C, f ∈ C ′ (3.3)

This formula means that given two patterns such that the first is a subset of the
other, for example:

• {A, B, C} size=3

• {A, B} size=2

the participating instances of A in the pattern {A, B, C}, (PIns(A, {A, B, C})
will be at most the participating instances of A in the pattern of size k-1 , {A, B},
but no more. The same thing is valid for the participating instances of the B
feature.

PIns(A, {A, B, C}) ⊆ PIns(A, {A, B}) (3.4)

PIns(B, {A, B, C}) ⊆ PIns(B, {A, B}) (3.5)
This property can be seen like an upper bound on the number of participating
instances of a feature in the colocation pattern C. The next step is to define
possible candidates that could be participating instances. The candidate partici-
pating instance set of feature f in a size-(k+1) (k > 2) co-location C, denoted as
CPIns(f, C), is defined as:

CPIns(f, C) =
Ü

C′∈Cf
k

PIns(f, C ′) (3.6)

26

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Where Cf
k is the set of all size-k sub-patterns of C containing feature f. Example,

given PIns(A,{A,B}) PIns(A,{A,C}), the candidate participating instance set of
feature A in pattern {A, B, C} will be:

CPIns(A, {A, B, C}) = PIns(A, {A, B})
Ü

PIns(A, {A, C}) (3.7)

In other words, the candidate instances of feature f of a certain pattern C are
done by the intersection of participating instances of the same feature f of all
possible subpatterns of C that contain f .

In this way, candidate instances are the starting point to find the participating
instances. Once the candidates are computed, the aim is to verify if o, belonging
to CPIns(f,C), takes part in at least one row instance of the instance table of the
pattern C. If o takes part in a row instance, it means that o will have a neighbor
relationship with other instances in the row and so these other instances will be in
the neighborhood of o. Then, Neigh(o) is taken and the instances are divided into
small disjoint groups based on their features by the following formula:

groupN(o, f) = { o′ | o′ ∈ Neigh(o), o′.t = f } (3.8)

where o′.t is the feature type of instance o′. Example:

groupN(A.2, B) = {B.1, B.2} (3.9)

groupN(A.2, C) = {C.1, C.2} (3.10)
To find the row instance which belongs to o, the best way is to compute the

cartesian product between the grouped neighbor sets of o and then test the instance
combination to find a combination S forming a clique. Example:

groupN(A.2, B) × groupN(A.2, C) =
{B.1, C.1}, {B.1, C.2}, {B.2, C.1}, {B.2, C.2}

(3.11)

{B.1, C.1} are a clique since C.1 is in the neighborhood of B.1 and so {A.2, B.1, C.1}
is a row instance of the pattern A,B,C. Said that, A.2 will be a participating in-
stance of the setPIns(A, {A, B, C}), B.1 of the set PIns(B, {A, B, C}) and C.1
of the set PIns(B, {A, B, C}). This process should be done for each instance
of each feature of the co-location pattern. However, this search space is still too
large and it will be furtherly narrowed down further. Before applying the cartesian
product between grouped neighbors, these ones can be further filtered by the usage
of the participation instances when they are known, otherwise by the candidate
instances as in the following formula:

RSSI(o, f) =

groupN(o, f) u
PIns(o, f), if PIns(o, f) known

groupN(o, f) u
CPIns(o, f), otherwise

(3.12)

27

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

in which C is a co-location pattern, o is an instance with feature o.t that is different
from f . The new instance set is called the row instance search space of instance o
on feature f and it is denoted as RISS(o, f).

Thanks to this approach the search space is reduced from groupN(o,f) to RSSI(o,f)
and so it reduces the number of combinations obtained by the cartesian product
and consequently the number clique relationship to check. The algorithm uses a
heuristic strategy to reduce the time taken to find the row instances. In addition
to confirming that instance o is a participating instance of feature f in C, the
discovery of a row instance RI of pattern C containing instance o (o.t = f)
also establishes that the other instances contained in RI are likewise participating
instances of other features in C. To meet the goal of searching for a row instance to
verify many candidate participating instances, it is expected that the searched row
instance RI for verifying instance o also contains as many unconfirmed instances of
other features as possible. In light of this, we first sort all RISS(o, f ′) on other
features, f ′ /≡ f , and place the unconfirmed instances (i.e., instances that have not
been included in PIns(f, C)in the front, so that they can be searched preferentially.
To summarize, the Column calculation method starts from the candidate instances
obtained by sub-patterns and wants to check them. The checking is based on
the cartesian product between feature groups of the neighbor of the candidate to
check. Each feature group is filtered through the candidate of the same feature
and therefore the search space is further reduced. Every combination obtained by
the cartesian product, is tested until a row instance is found. This solution allows
the algorithm to not create the entire instance table for each pattern.

3.3 Pruning strategies
The pruning strategies proposed are based on the observation that the neighbor-
dependency partitions centered on a specific feature f gives us some useful knowledge
to understand which instances are able to expand themselves and potentially become
participating instances. To explain the two pruning strategies adopted, we first
introduce the concept of Eligible instances of a specific feature f ′ respect to a
Neighbor-Dependency Partition D(f), denoted as

EIns(f ′, D(f)) (3.13)

The definition provided by the paper [1] is:
"Given a neighbor-dependency partition D(f), for any feature f ′ ∈ F and instance
o with feature f ′ in D(f), if there is instance o′ in the neighbor set of o and the
feature type of o′ greater than f ′ in alphabetical order, i.e., o′ ∈ Neigh(o) and o′.t
>f ′ , o is an expandable instance of feature f ′.

28

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

The set of all expandable instances of feature f ′ in D(f) is represented as
EIns(f ′, D(f))". An example can be C.3 present in the neighbor-dependency
partition D(B) shown in table 3.4.

Observing the neighborhood of C.3, we observe object D.1, an instance of
feature D, which is alphabetically greater than feature C.3 itself. Thus, C.3 is an
expandable instance of C in D(B). This means that C.3 can form a clique and
could be a participating instance. Next, the expandable rate of f ′ in D(f) and is
defined as follows:

p(f ′, D(f))) = |EIns(f ′, D(f))|
|N(f ′)| (3.14)

The expandable rate represents an upper bound of the participation ratio, computed
using the eligible instances. Given a prevalence threshold min_prev, The first
pruning strategy is based on the following rule:

p(f, D(f)) < min_prev (3.15)

In a specific neighbor-dependency partition D(f), if the expandable rate of f is less
than the prevalence threshold, all patterns that start with f will be non-prevalent.
The second pruning strategy is based on the following rule:

p(fi, D(f1)) < min_prev (3.16)

Given a size-k (k > 2) co-location C = {f1, f2, . . . , fk}, if there is at least a
feature fi with 1<i<k that has its corresponding expandable rate less than the
prevalence threshold, the pattern C will be non-prevalent. Overall, these two
pruning techniques are based on the concept of Eligible instances, instances that
are able to create cliques. The number of all Eligible instances for a specific feature
f with respect to the total number of instances f give us helpful information to
prune the search. In fact, the expandable rate of f allow the algorithm to cut
the search without applying the column calculation method on a useless pattern.
These two techniques avoid waste of computational time.

29

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

3.4 MapReduce ALGORITHM
This section presents two MapReduce-based algorithms to compute co-location
patterns based on Neighbor-Dependency Partition and Column Calculation. As
introduced in Chapter 2 2, mapReduce is a programming paradigm for processing
big data sets with a parallel, distributed algorithm on a cluster. It is based on
two main functions called Map and Reduce in which, in the map phase, data are
mapped into <key,value> pairs, and then in the reduce step all the pair with the
same key are processed together to obtain a new <key, value> pair.

3.4.1 Requirements
The MapReduce algorithm for spatial colocation mining is named PCPM-NDPCC.
Before introducing it, the following information must be computed:

1. for each feature, the number of instances must be computed. They are
necessary to evaluate the participation ratio and apply the aforementioned
pruning strategies.

2. the set of all instance pairs satisfying the neighbor relationship.

The second requirement is a big problem when the dataset is very large since it
may require the computation of all pairwise distances. In the re-implementation of
the algorithm, proper data structures were adopted to reduce the computational
cost for neighborhood evaluation. More specifically, the BallTree algorithm was
used.

This method is used for spatial division of data points and their allocation into
certain regions. Ball Tree Algorithm can be considered a metric tree. Metric trees
group and arrange data points based on the metric space they are situated in. The
points don’t have to be in vectors or have limited dimensions when using metrics.
The algorithm divides the data into two clusters. Each cluster is surrounded by a
circle (2D) or sphere (3D). The sphere is also known as a hypersphere. [18]

The name Ball tree algorithm is derived from the cluster’s sphere form. Each
cluster represents a tree node. How the algorithm works is based on these main
steps:

1. the centroid of the whole space is computed.

2. Get the point p at the maximum distance from the centroid. It will be the
center of the first cluster and child node.

3. the point farthest from the point p (center of the first cluster) will be the
center of the second cluster.

30

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

4. the others data points are allocated to the nearest cluster.

Figure 3.1: Representation of the BallTree algorithm [19].

Within each cluster, the procedure of separating the data points into two
clusters/spheres is continued until a predetermined depth is attained. This results
is a nested cluster with more and more circles as it is shown in the Figure 3.1.

3.4.2 Implementation
After this brief explanation of the Ball Tree algorithm, it is started to shown how
the PCPM-NDPCC algorithm work. Its aim is to build the neighbor database with
prefix. Given all instance pairs < oi, oj > satisfying the neighbor constraint and
such that oi.t<oj.t, the algorithm can be divided into three main phases:

1. map method: processes the input and returns two pairs: < oi, oj >,< oj, oi >.

2. reduce phase: all pairs with the same key are collected together and we obtain
for each instance oi its neighborhood.

3. reduce method: given the pairs: < oi, Neigh(o) >, this method iterates over
the neighborhood and checks if there are instances oj that have their feature oj.t

31

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

alphabetically lower than the o feature o.t. In the positive case, oj.t is added in
the prefix. The output pair will have this form: ⟨oi, (prefixF (oi), Neigh(oi))⟩

The entire algorithm is written as pseudocode in Algorithm 1.

Algorithm 1 Neighbor database generation
1: procedure Map(key = oi, value = oj)
2: ▷ emit(oi, oj), emit(oj, oi)
3: end procedure
4: procedure Reduce(key = o, value = Neigh(o))
5: ▷ prefixF (o) = []
6: for each x ∈ Neigh(o) do
7: if x.t < o.t then
8: ▷ append x.t to prefixF(o)
9: end if

10: end for
11: ▷ emit(o, ⟨prefixF (o), Neigh(o)⟩)
12: end procedure

The second MapReduce algorithm analyzes the produced output. The following
method aims to build each neighbor-dependency partition and then apply the
Column Calculation method to possible patterns. The algorithm is based on two
phases:

1. map: given the input ⟨o, (prefixF (o), Neigh(o))⟩, firstly, ⟨o.t, (o, Neigh(o))⟩
is emitted. Secondly, for each feature f in prefixF (o) ⟨f, (o, Neigh(o))⟩ is
emitted. In this way the same pair < o, Neigh(o) > will be sent to different
neighbor dependency partitions to find patterns.

2. reduce: the input of this step is the pair < f, D(f) >. Each partition will
produce all possible patterns that start alphabetically with f . The searching
process of co-location patterns uses an Apriori-like bottom-up search and so
it starts from patterns of dimension 2 to build patterns of dimension 3 and
so on. Therefore, each pattern of dimension k gives an upper bound to build
patterns of dimension k+1.

32

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Algorithm 2 Partition and co-location search.
1: procedure Map(key = o, value = ⟨prefixF (o), Neigh(o)⟩)
2: ▷ emit(o.t, ⟨o, Neigh(o)⟩)
3: for each f ∈ prefixF (o) do
4: ▷ emit(f, ⟨o, Neigh(o)⟩)
5: end for
6: end procedure
7: procedure Reduce(key = f, value = D(f))
8: ▷ P1 = {f}
9: ▷ k = 2

10: ▷ P = []
11: while Pk−1 /≡ ∅ do
12: ▷ Ck = gen_candidate_pattern(Pk−1, k)
13: ▷ filter_candidate_pattern(Ck, Pk−1, D(f))
14: ▷ PIns = search_participating_instance(Ck, D(f))
15: ▷ calculate_PI(Ck, P Ins)
16: ▷ Pk = select_prevalent_pattern(Ck)
17: ▷ P = P ∪ Pk

18: ▷ k = k + 1
19: end while
20: ▷ emit(f, P)
21: end procedure

After the first iteration of Algorithm 2 (reduce phase), all patterns of dimension
2 are computed, All the following iterations starts with patterns of size k and
produce as output patterns of size k + 1. In the first iteration, generation of
patterns of size 2 is done by concatenating the feature f and the others features
in the partition. Example: given f=A and others features are: {B, C, D},
the candidate patterns, at the first iterations will be {AB, AC, AD}. From
the second iteration onwards, the candidate patterns are generated by the
join operation between frequent patterns. Example: confirmed patterns of
dimension 2 {AB, AC, AD} the candidate patterns of dimension 3 will be
{ABC, ABD, ACD}. As the next step, the candidate patterns are filtered
through the two pruning techniques previously explained. Then, for each
candidate pattern, the Column Calculation technique is applied. Once the
Participating instances for each feature of the pattern are obtained, the
Participation Ratio is calculated. Then, Participation Ratio is compared
with the prevalence threshold set at the beginning of the pipeline. If the
participation ratio is grater than the threshold, the pattern of dimension k
will be prevalent and will be used in the next iteration to build candidate

33

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

patterns of dimension k+1. The validated pattern is added to the set of all
prevalent patterns. In conclusion, when the loop is finished, the output of
the algorithm will be the pair < f, P > in which P is the set of all prevalent
patterns of any dimension that start with f .

To conclude this subsection, a complexity analysis is performed/given for each
individual step to better comprehend the computation complexity of each individual
step of the algorithm. Such analysis is fundamental to understand the change
in execution time as the data volume grows. For each step of the algorithm its
complexity is shown in Table 3.7.

Step Complexity
Map

Algorithm 1
O(|R|)

Reduce
Algorithm 1

O(|O|*max(|Neigh(o)|))

Map
Algorithm 2

O(|O|* max(|PrefixF(o))

Reduce
Algorithm 2

O(maxK ∗ |Ck| ∗ k ∗ n1 ∗ nk−1
2)

Table 3.7: Complexity analysis.

In the first step. the algorithm checks all pairwise neighbor relationship. |R| is
the number of instance pairs and so the complexity is O(|R|). In the second one,
given the number of the instances |O| and the number of instances in the neigh-
borhood |Neigh(o)|, the algorithm scans for each instance and its neighborhood
and so, the complexity will be O(|O| ∗ max(|Neigh(o)|)) In the map method of the
second algorithm, given the number of instances |O| and the number of prefix of
instance o |PrefixF (o)|, the method iterates all the instances and for each of them
their prefixes. In the last step, the candidate generation step with the pruning
methodologies is considered. The candidate generation process starts with patterns
of size 1 and is iteratively repeated k-1 times to obtain patterns of size up to k. At
each step and for each pattern, the method checks all candidate instances n1 for all
features k and for each candidate instance, all combination of the remaining features
nk−1

2 are tested, in which n2 is maximum length of CPIns(f, C). In conclusion
the overall complexity is O(maxK ∗ |Ck| ∗ k ∗ n1 ∗ nk−1

2). It can be noted that the
entire algorithm is performed in parallel and two pruning techniques are applied
and therefore the actual complexity is lower than the worst case described in the
complexity analysis.

34

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

3.5 Experimental Evaluation
This section presents the experimental setup and the obtained results of the
reimplemented algorithm.

3.5.1 Setup
The experiments are conducted on a real dataset about plants in Gaoligong Moun-
tain, located in the Szechwan Highlands in the southern part of China. The dataset
consists in 11062 spatial instances divided into 10 features. The names of the
plant categories are written in a foreign language and so they are mapped through
capital letters:{B, J, K, L, M, O, P, V, W, X, Y } . The distribution of the dataset is
reported in: 3.2.

Figure 3.2: number of plants for each category.

As seen in the distribution plot the category with the maximum number of
plants is the K category with 2866 plants. Instead the X is the category with

35

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

the minimum number of plants that are 53. The average number of plants per
categories is 1194. The previously described algorithm is implemented in Python,
using the PySpark library and run on the SmartData@PoliTO cluster. This cluster
is composed of 36 nodes with a maximum capacity of 220 TB of data (around 650
TB of raw disk space).

3.5.2 Execution time performance

In this subsection, the performance of the algorithm are evaluated and the experi-
ments presented in the original paper are conducted. A comparison between the
official implementation and the version developed in the context of this thesis is
done. The first experiment wants to investigate the growth of the execution time
as the input distance threshold varies. As a reminder, increasing such thresholds
increases the number of pairwise neighbor relationships between objects. The
experiment is conducted by setting the prevalence threshold to 0.1 and varying the
distance threshold. The thresholds chosen are 3, 3.5, 4, 4.5, 5 km. The behavior
is shown in Figure 3.3. In the chart can be seen that there are two different
sub-regions in the graph: before and after 4 km.

Figure 3.3: Execution time as distance threshold increases.

The behaviour of the function from 3 to 4 km is different with respect to from 4
to 5 km. It is possible since larger the distance threshold, larger the size of the
patterns and so the time to check a specific pattern increases.

36

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 3.4: Number of mined colocation patterns for each considered distance
threshold.

The better quantify the growing complexity of the problem, Figure 3.4 shows
the number of extracted co-location patterns by varying the distance threshold.

Figure 3.5: The time spent according to the prevalence threshold.

Looking at the two plots, it is seen that in the case that will call "a" in which

37

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

the distance threshold is equal to 5 km, the number of patterns founds is almost
160. Considering the the ratio: number of patterns over the the execution time, 8
patterns per second are found.

Figure 3.6: Number of patterns found according to the prevalence threshold.

In a second experiment we evaluate the execution time as the prevalence threshold
varies. The setup of this experiment is based on a fixed value of distance threshold
equal to 4.5 km and 5 possible values of prevalence threshold: 0.1, 0.15, 0.2, 0.25,
0.3. As a reminder, prevalence threshold determines whether a pattern is prevalent
or not. The higher the prevalence threshold, the lower the number of prevalent
patterns since patterns with a low participation ratio will be removed. In fact, it is
seen the trend of the function 3.3 is negative. Furthermore it can be noted that
the big drop down is obtained from 0.1 to 0.15 of prevalence threshold in which
the execution time decreases of 65% from 11 seconds to 4 seconds around.

38

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 3.7: Pattern distribution according to the size of the patterns found in
the case "a" .

Figure 3.8: Pattern distribution according to the size of the patterns found in
the case "b".

39

Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Like 3.4, the function 3.6 seems linear but in this case there is a degrowth. In
the case that will call "b", in which the prevalence threshold is equal to 0.3 the
number of patterns found is 43 with an execution time near to 0. Considering a
time of 0.2 seconds, the average number of patterns per second is 215. This number
is very different from the previous one; a possible explanation of this phenomenon
can be found in the complexity of Column calculation method. In fact, in the
complexity analysis the algorithm has an exponential factor and so, average time
per pattern depends on the size of the patterns found. Therefore, when it is tested
the performance of the method with a higher prevalence threshold, most of the
patterns are small and so the average number of patterns per second increases
exponentially. For small patterns, patterns with size equal to 2 or 3 are intended.
As proof of this in the Figure 3.7 and 3.8 are shown the distribution of the patterns
according to their size in the case "a" and "b". In general, most of the patterns
have their size equal to 2,3,4.

40

Chapter 4

Spatial-temporal Pattern
Mining based on
Neighbor-Dependency
Partition and Column
Calculation

The topic of "Spatial-Temporal Pattern Mining," which is the extraction of space-
time models, or events that occur in a given location at a certain time, will be
covered in the subsequent thesis chapter.

Data mining techniques are needed to identify connected events both geographi-
cally and temporally since their identification can be challenging and calls for the
examination of a lot of data.

The significance of this kind of study comes from the fact that there are frequent
connections between events taking place in a particular location during a certain
time. For instance, traffic patterns, high-crime regions, and user behaviors in
certain places may all be studied using spatial temporal pattern detection.

Spatial-temporal pattern extraction may be used to relate a person’s behaviors
to other people and locations of interest in order to understand their own routines.
For instance, one may examine a person’s behavior throughout the course of the
day to learn what pursuits and locations they enjoy.

This might be helpful for commercial objectives, such as sending targeted
advertising, or for urban planning purposes, such as identifying regions that need
greater public service development.

41

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

For these reasons, the focus of this experimental part of the thesis is Spatial-
Temporal Pattern Mining, especially in human behavior understanding.

Figure 4.1: People use case.

42

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

In conclusion of this brief introduction, it is said spatio-temporal pattern analysis
is an essential activity that may be used in a number of situations ranging from
urban safety to tailored marketing. Data mining techniques may be used to detect
them, and they are a useful source of information for understanding an individual’s
routines and the linkages between geographical and temporal occurrences.

4.1 Use Cases

Nowadays, each person, during the day, interacts with a lot of entities. To design
a good algorithm that takes into account most of these entities, 3 main use cases
have been defined.

4.1.1 People only

Considering the assumption that if two people are friends or they have any sort
of relationship between them, they will share a portion of their time together and
so they will be in the same place at the same time. Overall, these two people are
correlated with each other. An example of this use case is shown in 4.1. In the
plot are shown 6 subplots representing 6 consecutive time points that go from the
left-top side to right-bottom side of the plot. For each sub-chart, people’s positions
are displayed and each person is represented by a point of a specific color. The
chart wants to analyze the trajectory of the person in red and related neighbors
during the time. The red point highlighted with the black circle is the last point
of the trajectory and the circle represents its neighborhood. In the table 4.1 the
neighbors for each time point is monitored. As can be seen, in the first three
instants, the person in red doesn’t meet anyone, then he meets the blue person,
they go together and in the last time point they meet the person in orange.

Person Time point Neighbor
Red 1 {}
Red 2 {}
Red 3 {}
Red 4 {Blue}
Red 5 {Blue}
Red 6 {Blue, Orange}

Table 4.1: Neighbors dataset of the red point in People only use case

43

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

4.1.2 People-POI
The second use case is related to a sort of relation between a person and a point of
interest. A point of interest (POI) is a specific point location that someone may
find useful or interesting like a restaurant or a shop.

Figure 4.2: People-POI use case.

44

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

The based assumption is that a person and a POI have a sort of relation if the
person frequently attends that place and therefore a portion of his time is spent in
that location. In that case, the person and the POI are correlated. The plot 4.2
represents an example of people-POI correlation. The chart has the same structure
of the previous one: it consists of 6 sub-charts that represent the position of the
person in red in 6 consecutive time points. The unique difference with respect
to the plot 4.1 is the point in blue that represents a point of interest and so its
position doesn’t change over time. In the example, the person in red goes two
times to the POI; in fact, through the table 4.2 it is seen that the POI appears
in the neighborhood of two red points, in other words,the POI appears in the
neighborhood of the person in red in two different timestamps.

Person Time point Neighbor
Red 1 {}
Red 2 {}
Red 3 {Blue}
Red 4 {}
Red 5 {}
Red 6 {Blue}

Table 4.2: Neighbors dataset of the person in Red in People-POI use case.

4.1.3 People-vehicle

The motivation of the People-vehicle use case is based on the assumption that most
of time the people share the same transport vehicle to move like their own vehicle
or public vehicles (tram, metro or bus). Therefore, the person is correlated with
the transport vehicle. The vehicles can be seen like people since they can move and
their position can change unlike the POI. Therefore this use case can be mapped
as the people-only case considering the vehicles like people.

4.2 Implementation

In this section, it will be presented the implementation of the algorithm, some
reasoning useful to understand how to efficiently design the method and consider
the time dimension in the process.

45

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

4.2.1 Reasoning
Considering the previous use cases, the mandatory data to perform spatial-temporal
correlation are the following:

< person_id, timestamp, (latitude, longitude) > (4.1)

Thus, for each person, it is wanted to know its id number and the list of positions
and related timestamps. Since the aim of the algorithm is to find the correlation
among people, the id number of the person can be considered the feature of the
spatial dataset and each point with coordinate and timestamp the instance of a
specific person. It is applied a change of paradigm, summarized in the table 4.3
with respect to the mapping in spatial correlation.

Type of
correlation Feature Instance Purpose

Spatial The category
of the entities The entity Correlation

among categories

Spatial-temporal The entity itself
The entity in a
specific location in
a certain time

Correlation
among entities

Table 4.3: Change of paradigm

Before, the instances were the different entities and the features were the
categories of these entities and the aim of the process was to find the correlation
among categories. Now, the features are the entities, the instances are the points
of the entities in space and time, and the aim of the method is to find correlations
between entities. The main difference is that in spatial correlation it is taken into
account entities that do not move like plants, points of interest. So, to perform
spatial-temporal pattern mining, it is added the time dimension. As identifier of
the instances, the tuple < person_id, timestamp > can be used since the same
person cannot be in two places at the same time and so this tuple is unique. The
desired output of our method, which must be provided as input to 1, must be of
the following form:

< oi, oj > (4.2)

in which the feature of oi is greater alphabetically of oj and these two instances
have the neighbor relationship 2.2 and are under the Time constraint.

T (oi, oj) ⇐⇒ |oi.ts − oi.ts| < min_t (4.3)

46

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Given two instances oi,oj and their timestamps: oi.ts, oi.ts, if the time distance
between oi.ts, oi.ts is less than a certain threshold, they will satisfy the Time
relationship T (oi, oj).

Given a dataset of N timestamped points, checking each pair of points is a
problem since it involves cartesian product with a complexity of O(N2). In the
following section, the solution to this problem is addressed.

4.2.2 Design choices

To summarize the entire algorithm from the input dataset to the desired outputs,
figure 4.3 describes the entire pipeline.

Figure 4.3: Spatial-temporal pipeline.

47

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

The algorithm to be developed analyzes data with spatial and temporal infor-
mation 4.3. The goal of such algorithm is to extract pairs of points satisfying the
neighbor (distance) constraint and temporal constraint. A possible solution to
this problem can be addressed by building a unique Ball tree and querying for
each instances. Despite its efficiency, in case of millions of instances, the BallTree
takes a lot of time. So, another method is needed. The solution based on a unique
balltree is a sequential, non-parallelizable therefore the method doesn’t leverage
the power of the parallel computing of the cluster. So, a solution that involves
parallelization could be useful.

Figure 4.4: Dimension problem.

To parallelize the algorithm, for each instance the set of neighbors must be
identified, considering the spatial and temporal dimension. But how to group
them? Two possible ways are along the space that has 2 dimensions or along the
time with 1 dimension. A visual example is shown in figure 4.4, in which are
compared these two cases. On the left it is analyzed the choice of the space and
on the right the time. Starting from the left, given a zone delimited by the black
rectangle that groups a set of instances, all points located near the black line are
named boundary points and are critical, due to the possibility of having neighbors
outside the considered partition (black box). In fact, if a BallTree is applied in the
zone in black, the neighbors of boundary points may be incomplete. Analyzing
the time choice, it is seen that, imagining splitting the time into days, for each
day, boundary points are located only at the beginning and at the end of the day.

48

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

As can be seen, the choice of time seems easier to handle. However, this choice
depends on the distribution of the dataset. As an example if the dataset consists of
all instances in which timestamps refer to the same day, the choice of the time may
be not the correct one. In conclusion,the choice taken is based on the temporal
data split: given the entire dataset, multiple partitions are generated based on a
one-day split.

4.2.3 People-only algorithm

Figure 4.5: Parallel BallTree Design.

49

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

This subsection considers just the People-only use case and so, all instances have
the timestamp. The figure 4.6 shows the structure of the algorithm. The spatial
temporal dataset is divided into sets according to the day of the timestamp.
Then, for each day a BallTree is built and for each pair of closed points the time
relationship is checked. At the same time, to tackle the aforementioned boundary
points’ case, all the boundary points (red lines in the schema) are processed by a
further Ball Tree to verify the spatial and temporal constraints. The space distance
is computed by the haversine distance. The output of each partition is a list of
instance pairs < oi, oj >. In conclusion, all these lists are merged in a single dataset
that will be used to feed the Algorithm 1.

4.2.4 People-POI algorithm

This subsection considers the People-POI use case and so, the instances related to
the points of interest don’t have the timestamp. For this use case, there are two
ways to consider the POIs:

• Unique POIs: each point of interest is considered a unique one and so, it
doesn’t belong to any category. In this case the POI will be mapped in this
way:

< POI_id, (lat, long) > (4.4)

• Category POIs: each point of interest is not considered a unique one and so,
it belongs to a category. In this case the POI will be mapped in this way:

< POI_category, POI_id, (lat, long) > (4.5)

In the first case the feature of the instance is the identifier; instead in the
Category POIs case, the feature of the instance is the category to which the POI
belongs. In the first case, the entire algorithm will consider all POIs unique and
so, will search for correlations between people and specific POIs. An example
pattern is be {John, Frank′sRestaurant} and its meaning is: John frequently
goes to Frank’s Restaurant. In the second case, instead, considering a POI part
of a category, the entire algorithm will search correlation between people and the
category of the POI. An example could be: {John, Restaurant}, and its meaning
is: John frequently goes to Restaurants.

50

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.6: People-POI algorithm.

To implement the identification of correlation between people and POIs, the
starting point is the algorithm described in Figure 4.6 previously explained. Since
the POIs are static, they can’t be partitioned according to the temporal strategy
mentioned in the previous paragraphs. Therefore, the POIs dataset is added to each
partition (also for the boundary partition) to the trajectory Dataset. In this way, the
building of the ballTree takes into account also the points of interest. In the last step
namely "neighbor and time relationship checking", when the pairs <person,POI>
are checked, only the neighbor relationship will be searched without any verification
on the temporal constraint due to the absence of a timestamp associated to a POI.
To clarify, this second algorithm proposed finds both correlations among people
and between people and POIs. Thus, it is an extension to the aforementioned
People-only case

51

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

4.3 Experimental Evaluation

This section presents the experimental setup and the obtained results of the
proposed algorithm.

4.3.1 Setup

The experiments are conducted on a real Dataset called Geolife trajectories. This
GPS trajectory dataset was collected in Microsoft Research Asia’s Geolife project. It
involed 182 participants over a period of 3+ years. A GPS trajectory is represented
by a sequence of time-stamped points, each of which contains information about
latitude, longitude and altitude. This dataset contains 17,621 trajectories with a
total distance of about 1.2 million kilometers. Most of the points are located in
Beijing (China). The total number of time-stamped points is around 20 million.
Due to computational issues and limited resources, one-sixth of the original dataset
was considered in this work, with a total number of 3.3M points. The dataset was
sampled with an irregular sampling rate, with a variable time distance between
two consecutive samples ranging from 1 to 5 seconds. To reduce the number of
points to be processed without any loss of generality of the proposed approaches,
we undersampled the dataset to a sampling period of 30 seconds. In figure 4.7
the top 10 people with the highest number of points are shown. The second
dataset used is related to the points of interest of Beijing. To obtain this dataset
we used OSMnx, that is a Python package that lets you download geospatial
data from OpenStreetMap and model, project, visualize, and analyze real-world
street networks and any other geospatial geometries. Doing so, 10148 POIs are
downloaded : and injected into the dataset. Figure 4.8 showns the top 10 categories
of points of interest according to the number of POI.

52

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.7: Top 10 people according to the number of points .

Figure 4.8: Top 10 POI categories according to the number of POI.

53

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

The previously described algorithms are implemented in Python, using the
PySpark library and run on the SmartData@PoliTO cluster.

4.3.2 Pattern visualization

Analyzing and interpreting spatiotemporal patterns is a difficult work because it
requires dealing with complex interactions and dependencies that span both in
space and time. One way to overcome these challenges is to use visualizations to
explore and interpret spatiotemporal patterns. Visualizations allow us to represent
complex data in an accessible and intuitive way, making it easier to identify and
verify prevalence patterns. Moreover, visualizations can help us understand the
meaning and significance of the participation index, a measure that reflects the
degree of involvement of an entity in a given spatiotemporal pattern. By visualizing
the patterns and the participation index, we can gain a deeper understanding
of the spatial and temporal dynamics underlying the data and their practical
implications. In this section, two found patterns are analyzed from a visual point
of view. Specifically, we investigate the patterns, where two individuals frequently
interact in a specific spatiotemporal context or where an individual tends to visit
a particular location repeatedly. The visualizations illustrate these patterns by
creating graphs for each day in which the individuals are close in both space and
time or the individual is close to the point of interest. The participation index is
adapted to the spatiotemporal domain, reflecting the percentage of time and space
the entities spend together or the individual spends close to the point of interest
within the observed period. The settings used to find spatiotemporal patterns are
a time constraint of 1 second and 50 meters as a space constraint. The first pattern
is related to two people, the first one has 58 as an identifier and it is characterized
through 4138 time-stamped points in the dataset.

54

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

55

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.9: All the points of the people 58 and 59 that are close to each other
according to the day.

56

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

The second person, instead, has 59 as an identifier and it is described through
3937 time-stamped points. The proposed algorithm has found that these two people
are correlated with a participation index of 0.95. What is the meaning of such
number?

It means that, given all the points of person 58, at least 95% of these ones are
closed in terms of time and space to a point of person 59. Specularly, given all the
points of person 59, at least 95% of these points are close to a point of person 58.

57

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.10: All the points of person 40 that are close to the point of interest
according to the day.

Said that, in the graphs, person 59 is described by points in red instead, the
person 58 by points in blue. As seen in Figure 4.9, each graph is characterized by
a day and a time range in which the points are collected. The points in red and
blue follow the same trajectory every day. Based on these visual representations, it

58

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

is possible that people 58 and 59 have a strong relationship and so they potentially
be wife and husband, or friends leaving nearby and sharing the same place of
work as two examples. The second pattern to analyze is related to a person and a
restaurant. The person has 40 as an identifier and it is characterized through 9348
time-stamped points in the dataset. The proposed algorithm has found that these
two people are correlated with a participation index of 0.32. Like the previous case,
it means that given all points of person 40, 32% of these ones are close to the point
of interest considered. The graphs, in Figure 4.10, have the same structure as the
previous ones, and therefore each graph presents a day and a time range. The
restaurant is described by a blue point and the person by red points. As can be
seen, the person moves around the point of interest. It is possible that the entire
zone is full of other services like pubs, supermarkets, and so on. Analyzing also the
time ranges reported, it is possible that it is an area frequented both by night and
by day.

Overall, these visualizations demonstrate the importance of patterns in under-
standing spatiotemporal data. We can obtain a better grasp of the underlying
processes and their practical implications by incorporating the participation index’s
extension to the spatio-temporal domain.

4.3.3 Performance

In this paragraph, several experiments are conducted and related results are shown.
The first algorithm that has been investigated is the "People-only" method which
finds the correlations among people.

Figure 4.11: Execution time of the People-only algorithm.

59

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.12: Number of pattern found of the People-only algorithm.

Setting the time threshold to 1 second and the distance threshold to 50 meters,
Figure 4.11 shows the execution time of the method according to the prevalence
threshold that varies from 0.1 to 0.01. The chart shows that the execution time
doesn’t change. Despite this, Figure 4.12 shows that the number of patterns found
changes. In fact, from 0.1 to 0.01 the patterns are quadruplicated. Its behaviour
seems at most exponential. The second experiment fixes the time threshold to 1
second and the prevalence threshold to 0.5 and analyzes the number of patterns
and execution time as the distance threshold varies. The thresholds used are 50,
100 and 150 meters.

60

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.13: Execution time of the People-only algorithm.

Figure 4.14: Number of pattersn found of the People-only algorithm.

In this case the behaviour is different. The larger the distance threshold is, the
longer is the execution time that changes from 100 seconds to 200 seconds. The
number of patterns seems to grow linearly with a maximum of 50 patterns. Then,
the impact of the introduction of POIs in the dataset is investigated with respect to
the performances of the algorithm. In this case each point of interest is considered
a unique point that doesn’t belong to any category. To clarify, this algorithm finds
both correlations among people and correlations between people and POI.

61

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.15: Execution time of the People-(unique POIs) algorithm.

Figure 4.16: Number of pattern found of the People-(unique POIs) algorithm.

Setting the time threshold to 1 second and the distance threshold to 50 meters,
Figure 4.15 shows the execution time of the second method. Also in this case the
execution time doesn’t change and remains at 140 seconds. Instead, the growth
of the number of extracted patterns is shown in Figure 4.16. The number of
extracted patterns severely increase with a prevalence threshold of 0.1 until at most
1600 patterns. The next experiment fixes the time threshold to 1 second and the
prevalence threshold to 0.1 and observes how the time and number of patterns

62

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

found change according to the distance threshold. The used thresholds are 50, 100
and 150 meters.

Figure 4.17: Execution time of the People-(unique POIs) algorithm.

Figure 4.18: Number of pattern found of the People-(unique POIs) algorithm.

In the chart 4.17, a higher increase in execution time is observed passing from
100 to 150 meters with respect to the 50m to 100m case. Similarly, also the number
of patterns found grows rapidly when the threshold is set to 150 meters. As it is

63

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

seen in the 4.18 the minimum number of patterns is 132 with 50 meters of threshold
and the maximum is 518 with 150 meters of threshold.

Figure 4.19: Execution time of the People-(category POIs) algorithm.

Figure 4.20: Number of pattern found of the People-(category POIs) algorithm.

The next series of analyses are conducted on the third algorithm. It finds
correlations between people and POIs, but in this case each point of interest is
considered belonging to a category. The first experiments conducted, shown in
Figures 4.19 and 4.20, fixes the time threshold always equal to 1 second and the

64

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

distance to 50 meters, and experiments fix to analyze how the execution time and
the number of patterns found change when the prevalence threshold is modified.
The results obtained are very similar with respect to the results previously shown
in the case of POIs as unique entities. The main difference is in the maximum
number of patterns found with prevalence threshold equal to 0.01. In this case,
they are 1073, less than previous case. A possible explanation can be taken as
an example of restaurants: a person will tend to go frequently to a specific place
to eat, if he likes it, compared to going frequently to several different restaurants.
Hence, it is easier to find correlations by considering the unique POI.

Figure 4.21: Patterns distribution according to their size.

To further investigate the patterns found with prevalence threshold equal to
0.01, Figure 4.21 shows the distribution of the patterns according their size. The
distribution displays that most of patterns found have size equal to 2. Next, the
performance of the algorithm is analyzed with respect to the value of the distance
threshold. Setting the time threshold to 1 second and the distance equal to 50
meters, the experiment wants to understand how the time and the number of
patterns found change when the distance threshold changes. Like the previous
algorithm, the threshold used are 50, 100 and 150 meters.

65

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.22: Execution time of the People-(category POIs) algorithm.

Figure 4.23: Number of pattern found of the People-(category POIs) algorithm.

The results obtained in the plot 4.22 and 4.23 are similar to charts 4.19 and
4.20 obtained with the second algorithm.

66

Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

Figure 4.24: Comparison of patterns found using two different time thresholds

The last experiment conducted is related to the time threshold used. The
experiment shown in Figure 4.20 has been repeated with a time threshold equal to
10 seconds. The comparison is displayed in Figure 4.24 in which it is seen that for
each prevalence threshold the number of patterns found is approximately the same.
Also, in terms of execution time, no significant difference is observed.

67

Chapter 5

Conclusion

In this master thesis, we have investigated co-location patterns: two or more
categories of entities that appear frequently close to each other. Their importance
is undeniable, from the urban field to the logistics and the medicine, finding
these kinds of patterns is very useful. Therefore, understanding the multitude of
algorithms invented to find them, will be needed, if we want to discover prevalent
patterns. Obviously, the algorithm to use changes according our needs like the size
the dataset used, the typology of the correlation that we want to find or if we have
constraints on the time in which the output should be ready. Spatial instances could
retrieve tons of information but the question is: which information are we interested
in? Do we want to know if two categories are correlated in space or over time?
Are we interested in understanding how the entities frequently occurs? When they
appear together, is a category the prevail on the other? These kinds of information
are obtained through different algorithms and so it is necessary to understand
which is the most suitable algorithm depending on the task. There is an important
category of patterns called co-location patterns that reveals underlying correlations
between entities in the space. To find co-location patterns, several algorithms have
been implemented through different approaches. A step forward has been done
by the designing of parallel algorithms run on specific hardware such as GPU and
cluster. These technologies speed up the discovery of patterns and allow the usage
of huge dataset. However, the state of the art algorithms that use the parallel
approach are stuck because of two problems. The first problem is related to the
independence of the partitions that will be run in parallel. Finding co-location
patterns is a sequential process and so it is difficult to build a method that takes
full advantage of the parallelization. The second problem is a technical one, to find
a co-location pattern is necessary to build the instance table: a huge table that
contains all combinations of instances belonging to different categories. The novel
algorithm re-implemented in the master thesis tackles these two problems obtaning
competitive performances. The proposed algorithm is based on two main parts.

68

Conclusion

The first one is related to how to divide the instances to take advantage of the
parallelization. The novel solution is based on the concept of "neighbor-dependency
partition" and is able to divide the entire dataset, through the prefix strategy, into
subset which are independent to each other, containing all the required information
to compute the participation ratio. This solution tackles the independence problem.
For the second step of the work re-implemented, it introduces a novel algorithm
called "Column Calculation" that allows the identification of all instances that
take part in the pattern without building the huge table previously mentioned.
The column calculation will be used on each partition for each candidate pattern
found. Using The developed algorithm in combination, state-of-the-art results are
obtained. The algorithm reimplemented in the context of this thesis was compared
with the performance declared by the original authors (which did not disclose the
source code), demonstrating similar performances. The second part of the master
thesis introduces a novel pipeline by extending the aforementioned algorithm by
adapting the spatial co-location mining algorithm to the spatio-temporal domain
adding a new algorithm. The new algorithm defines a new neighborhood not just
geographically, but also temporally. In a nutshell, two entities are close if and only
if they are in the same place at the same time. Based on this assumption, the
proposed algorithm maps the instances into instance pairs, in a parallel way, only
if they respect the time and space constraint. The output of proposed algorithm
is used as input of the re-implemented one and in combination are able to return
spatial-temporal co-location patterns, in particular we can extract people behaviour
finding correlation among people and between people and points of interest. The
great advantage of the method is the ability to handle large datasets with limited
execution time as as seen in the experimental analysis conducted on a dataset of 3.5
millions of time-stamped points. There are, however, various potential directions
for expanding and improving on this study. To begin, one possible future research
route would be to expand the spatial-temporal correlation analysis to points of
interest (POIs) with more complicated shapes, such as polygons. Because it takes
into consideration the exact form and position of individual POIs, this would
allow for a more precise and nuanced understanding of the association between
people and points of interest. Second, another feasible enhancement would be to
investigate other temporal correlations between events. For example, rather than
restricting the analysis to precise co-presence of individuals, one may look into the
relationship between events that happened many days or even weeks apart. This
would offer a more complete picture of complex events.

69

Bibliography

[1] Peizhong Yang, Lizhen Wang, Xiaoxuan Wang, Lihua Zhou, and Hongmei
Chen. «Parallel Co-location Pattern Mining based on Neighbor-Dependency
Partition and Column Calculation». In: Nov. 2021, pp. 365–374. doi: 10.
1145/3474717.3483984 (cit. on pp. 5, 21, 28).

[2] S. Shekhar and Y. Huang. «Co-location rules mining: a summary of results».
In: Proceedings of SSTD (2021), pp. 236–256 (cit. on pp. 6, 9, 10).

[3] Y. Huang, S. Shekhar, and H. Xiong. «Discovering colocation patterns from
spatial data sets: a general approach». In: IEEE Transactions on Knowledge
and Data Engineering 16.12 (2004), pp. 1472–1485. doi: 10.1109/TKDE.2004.
90 (cit. on p. 11).

[4] Jin Soung Yoo and S. Shekhar. «A Joinless Approach for Mining Spatial
Colocation Patterns». In: IEEE Transactions on Knowledge and Data Engi-
neering 18.10 (2006), pp. 1323–1337. doi: 10.1109/TKDE.2006.150 (cit. on
pp. 11, 16).

[5] Lizhen Wang, Yuzhen Bao, and Zhongyu Lu. «Efficient Discovery of Spatial
CoLocation Patterns Using the iCPI-tree». In: The Open Information Systems
Journal 3 (Sept. 2009), pp. 69–80. doi: 10.2174/1874133900903020069 (cit.
on pp. 11, 16).

[6] Jin Soung Yoo, Douglas Boulware, and David Kimmey. «A Parallel Spatial
Co-location Mining Algorithm Based on MapReduce». In: (2014), pp. 25–31.
doi: 10.1109/BigData.Congress.2014.14 (cit. on pp. 11, 18).

[7] Jin Soung Yoo, Douglas Boulware, and David Kimmey. «Parallel Co-Location
Mining with MapReduce and NoSQL Systems». In: Knowl. Inf. Syst. 62.4
(Apr. 2020), pp. 1433–1463. issn: 0219-1377 (cit. on pp. 11, 20).

[8] Peizhong Yang, Lizhen Wang, and Xiaoxuan Wang. «A MapReduce approach
for spatial co-location pattern mining via ordered-clique-growth». In: Dis-
tributed and Parallel Databases 38 (June 2020). doi: 10.1007/s10619-019-
07278-7 (cit. on pp. 11, 20).

70

https://doi.org/10.1145/3474717.3483984
https://doi.org/10.1145/3474717.3483984
https://doi.org/10.1109/TKDE.2004.90
https://doi.org/10.1109/TKDE.2004.90
https://doi.org/10.1109/TKDE.2006.150
https://doi.org/10.2174/1874133900903020069
https://doi.org/10.1109/BigData.Congress.2014.14
https://doi.org/10.1007/s10619-019-07278-7
https://doi.org/10.1007/s10619-019-07278-7

BIBLIOGRAPHY

[9] Witold Andrzejewski and Pawel Boinski. «Efficient Spatial Co-location Pat-
tern Mining on Multiple GPUs». In: Expert Systems with Applications 93
(Oct. 2017). doi: 10.1016/j.eswa.2017.10.025 (cit. on pp. 11, 17).

[10] Arpan Man Sainju, Danial Aghajarian, Zhe Jiang, and Sushil Prasad. «Parallel
Grid-Based Colocation Mining Algorithms on GPUs for Big Spatial Event
Data». In: IEEE Transactions on Big Data 6.1 (2020), pp. 107–118. doi:
10.1109/TBDATA.2018.2871062 (cit. on pp. 11, 17, 18).

[11] Yong Ge, Zijun Yao, and Huayu Li. «Computing Co-Location Patterns in
Spatial Data with Extended Objects: A Scalable Buffer-Based Approach».
In: IEEE Transactions on Knowledge and Data Engineering 33.2 (2021),
pp. 401–414. doi: 10.1109/TKDE.2019.2930598 (cit. on pp. 11, 12).

[12] Xiaojing Yao, Ling Peng, and Tianhe Chi. «A co-location pattern-mining
algorithm with a density-weighted distance thresholding consideration». In:
Information Sciences 396 (Feb. 2017). doi: 10.1016/j.ins.2017.02.040
(cit. on p. 13).

[13] Peizhong Yang, Lizhen Wang, Xiaoxuan Wang, and Lihua Zhou. «Efficient
discovery of co-location patterns from massive spatial datasets with or without
rare features». In: Knowledge and Information Systems 63 (June 2021). doi:
10.1007/s10115-021-01559-3 (cit. on p. 14).

[14] Harry Kai-Ho Chan, Cheng Long, Da Yan, and Raymond Chi-Wing Wong.
«Fraction-Score: A New Support Measure for Co-location Pattern Mining».
In: (2019), pp. 1514–1525. doi: 10.1109/ICDE.2019.00136 (cit. on p. 14).

[15] Peizhong Yang, Lizhen Wang, Xiaoxuan Wang, and Lihua Zhou. «SCPM-CR:
A Novel Method for Spatial Co-Location Pattern Mining With Coupling
Relation Consideration». In: IEEE Transactions on Knowledge and Data
Engineering 34.12 (2022), pp. 5979–5992. doi: 10.1109/TKDE.2021.3060119
(cit. on p. 15).

[16] Xuguang Bao, Gu Tianlong, Liang Chang, Zhoubo Xu, and Long Li. «Knowledge-
Based Interactive Postmining of User-Preferred Co-Location Patterns Using
Ontologies». In: IEEE Transactions on Cybernetics PP (Mar. 2021), pp. 1–14.
doi: 10.1109/TCYB.2021.3054923 (cit. on p. 16).

[17] Xiangye Xiao, Xing Xie, Qiong Luo, and Wei-Ying Ma. «Density based co-
location pattern discovery». In: Nov. 2008, p. 29. doi: 10.1145/1463434.
1463471 (cit. on p. 17).

[18] M. Prasad and Venkata Jarugumalli. «Performance Evaluation: Ball-Tree
and KD-Tree in the Context of MST». In: vol. 62. Oct. 2012. isbn: 978-3-
642-32572-4. doi: 10.1007/978-3-642-32573-1_38 (cit. on p. 30).

71

https://doi.org/10.1016/j.eswa.2017.10.025
https://doi.org/10.1109/TBDATA.2018.2871062
https://doi.org/10.1109/TKDE.2019.2930598
https://doi.org/10.1016/j.ins.2017.02.040
https://doi.org/10.1007/s10115-021-01559-3
https://doi.org/10.1109/ICDE.2019.00136
https://doi.org/10.1109/TKDE.2021.3060119
https://doi.org/10.1109/TCYB.2021.3054923
https://doi.org/10.1145/1463434.1463471
https://doi.org/10.1145/1463434.1463471
https://doi.org/10.1007/978-3-642-32573-1_38

BIBLIOGRAPHY

[19] https://towardsdatascience.com/tree-algorithms-explained-ball-tree-algorithm-
vs-kd-tree-vs-brute-force-9746debcd940. In: (cit. on p. 31).

72

	Introduction
	The importance of the data
	Co-location pattern
	Spatial-temporal correlation
	Thesis structure

	Spatial co-location pattern mining
	Problem definition
	Related works
	Buffer-Based Approach
	Maximal dynamic co-locations
	Kernel-density based model
	Weighted participation index
	Fraction-score measure
	Intra-feature connection
	Knowledge-based approach
	Join-less approach
	iCPI-tree approach
	Density strategy
	GPU-based algorithms
	MapReduce-based model

	Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation
	Neighbor-Dependency Partition
	Column Calculation
	Pruning strategies
	MapReduce ALGORITHM
	Requirements
	Implementation

	Experimental Evaluation
	Setup
	Execution time performance

	Spatial-temporal Pattern Mining based on Neighbor-Dependency Partition and Column Calculation
	Use Cases
	People only
	People-POI
	People-vehicle

	Implementation
	Reasoning
	Design choices
	People-only algorithm
	People-POI algorithm

	Experimental Evaluation
	Setup
	Pattern visualization
	Performance

	Conclusion
	Bibliography

