
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

The importance of data
visualization tools in modern

enterprises
Cost-effective solutions and empowering of an open source project

Supervisor
prof. Paolo Garza

Candidate
Giacomo Galliano

matricola: s292482

Internship Tutor
ContentWise SpA
ing. Riccardo Biondi

April 2023

Summary

In today’s business world, data visualization tools have become a key compo-
nent for many companies. This is the case also for ContentWise, a company
that mainly works on recommendation engines and metadata enrichment.
They have developed Data Insights, a plug-in service for the UX Engine that
allows us to create and deliver custom dashboards to expose in a visually
clear and effective way to the clients the incredibly high value generated by
ContentWise’s software.
The current implementation is based on Apache Superset 1.0, which provides
most of the needed functionalities out of the box, but it also presents some
important limitations.
The aim of this thesis project is to identify possible solutions to improve the
current product. We started with a market analysis of the available tools
in order to better understand the strengths and weaknesses of the main ac-
tors in the data visualization and exploration fields. After that, we came up
with two possible solutions: the first is a completely custom web application
built with the Next.js framework while the second leverages the 2.0 version
of Apache Superset with all its improvements. In both cases, we integrated
Cube as a semantic layer to increase flexibility and provide better perfor-
mances.
The project ends with the evaluation of proposed solutions to identify the
one that better fits ContentWise’s needs.

iii

Acknowledgements

I would like to thank Professor Paolo Garza for having guided me during this
thesis project. Special thanks to ContentWise, Professor Paolo Cremonesi,
and all the members of the R&D and CS teams. They all made me feel
welcome since my first day in the company and allowed me to work on my
thesis project in an active and stimulating environment. I’m very grateful for
that. In particular, I would like to thank Riccardo Biondi for his willingness,
guidance, and precious pieces of advice.
I would like to deeply thank my mother and my father for their constant
support over all these years and for all the life lessons they taught me. A
huge thanks to my brother, Lorenzo, who took on his shoulders most of the
responsibilities and work at home to allow me to continue this path and for
always being by my side. Many thanks to all the members of my big and
united family for always encouraging me over these years.
Thanks to Dario, Francesco, Roberto, Paolo, and Stefano who shared with
me all the joys and especially the struggles of the exam sessions and project
deadlines. We had a great time together.
Thanks to my friends of a lifetime: Efrem, Tarik, Edoardo, Carlo, Francesco,
and Cesare. For all the moments spent together and for those that will come.
I am also grateful to all my hometown friends for the unforgettable memories
together.

It has been a great and memorable journey, and now I’m eager to know
what the future holds for me.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Company and Project 3
2.1 Data Insights . 3

2.1.1 Architecture overview 4
2.1.2 Apache Superset overview 6

2.2 Project’s goal and structure 6
2.2.1 MovieLens dataset overview 7

3 Business Intelligence 11
3.1 Data Exploration . 11

4 Semantic layer 13
4.1 Overview . 13
4.2 Cube . 14

4.2.1 Architecture . 22

5 Web-based Applications 25
5.1 Multi-page vs Single-page Applications 25
5.2 Development Tools . 26

5.2.1 React . 26
5.2.2 NextJS . 28
5.2.3 Firestore . 30
5.2.4 Ant Design Charts . 31

v

6 Market Analysis 33
6.1 Products analysis . 33

6.1.1 Qlik . 33
6.1.2 PowerBI . 35
6.1.3 Tableau . 36
6.1.4 Looker . 37

6.2 Takeaway . 39

7 Custom Web Application 41
7.1 Architecture . 41
7.2 Implementation results . 42

7.2.1 Landing page . 42
7.2.2 Dashboard Page . 43
7.2.3 Charts Page . 51
7.2.4 Chart Builder Page . 52

8 Hybrid solution 57
8.1 Architecture . 57
8.2 Apache Superset . 58
8.3 Implementation and results 63

9 Conclusions 67

Bibliography 69

vi

List of Tables

2.1 ml-25m, Ratings table structure 8
2.2 ml-25m, Movies table structure 8
2.3 ml-1m, Ratings table structure 9
2.4 ml-1m, Movies table structure 9
8.1 Pre-aggregations example results 65

vii

List of Figures

2.1 ContentWise logo . 3
2.2 Data Insights architecture . 5
2.3 Data Insights architecture, our area of interest 5
4.1 Cube overview . 15
4.2 Cube Data Schema Measures and Calculated Measures 16
4.3 Cube Data Schema Dimensions 17
4.4 Cube Data Schema Join example 17
4.5 Cube Data Schema Segment example 18
4.6 Cube Data Schema PreAggrgation example 18
4.7 Cube Access Control use case example 19
4.8 Cube architecture schema . 22
4.9 Cube production deployment architecture schema 23
5.1 React logo . 26
5.2 Next.js logo . 28
5.3 Firestore logo . 30
5.4 Ant Design Charts logo . 31
6.1 Qlik sense dashboard overview 34
6.2 PowerBI dashboard overview 36
6.3 Tableau dashboard overview 37
6.4 Looker dashboard overview . 38
7.1 Custom web app architecture 42
7.2 Custom Web App - Landing Page 43
7.3 Custom Web App - Dashboard Page 44
7.4 Custom Web App - Dashboard Page Sections. Header in yel-

low, Filter Panel in blue, Dashboard in red 45
7.5 Custom Web App - Dashboard Page Header buttons in visu-

alization mode . 45
7.6 Custom Web App - Dashboard Page Header buttons in edit

mode . 46
7.7 Custom Web App - Dashboard Page Filters Panel 46

viii

7.8 Custom Web App - Dashboard Item Charts example 47
7.9 Custom Web App - Dashboard Item Chart Info 48
7.10 Custom Web App - Dashboard Item Textbox and Textbox editor 49
7.11 Custom Web App - Filter editor modal 50
7.12 Custom Web App - Filter operator types: numeric, text and

date . 51
7.13 Custom Web App - Filter select affected charts 51
7.14 Custom Web App - Charts Page 52
7.15 Custom Web App - Chart Builder Page 53
7.16 Query builder - part one . 54
7.17 Query builder - part two . 54
7.18 Chart Renderer . 55
8.1 Hybrid solution architecture 58
8.2 Apache Superset dashboard overview 58
8.3 Apache Superset available charts 60
8.4 Apache Superset SQL Lab . 61
8.5 Hybrid solution scenario . 64
8.6 Pre-aggregations example chart 65

ix

Chapter 1

Introduction

In the last few years, data visualization tools have become a key component
for many companies. Regardless of the specific market field, the capability of
transforming huge amounts of data and making them easily comprehensible
represents a crucial element to provide benefits to organizations.

Today’s market offers many solutions, each of which differs from the other
in terms of offered functionalities, ease of use, and visualization capabilities.
The majority of these tools are "paid" software, with license prices that can
vary widely depending on the type of usage, but there are also alternatives
in the open-source world that provide a wide set of standard and advanced
functionalities for data visualization.

The aim of this thesis is to identify which could be the best solution in order
to develop a data visualization tool that suits the company’s needs, perform-
ing at the same time evaluations in terms of flexibility, time-to-market, and
development and maintenance costs. We will compare a completely custom
solution (a web application built with the NextJS framework) with a hy-
brid solution (leveraging the new release of Apache Superset) and in both
cases, we will add Cube as a semantic layer between the data source and the
visualization layer.

1

2

Chapter 2

Company and Project

ContentWise is a company that mainly works on recommendation engines
and metadata enrichment, two factors that enforce each other thanks to
Machine Learning algorithms. Over the last ten years, it has developed
two products dedicated to IPTV providers, called UX Engine and Meta-
data Foundry, and one for catalogues enrichment in the fashion field, called
Catalogue Builder.

Figure 2.1. ContentWise logo

This software generates incredibly high value, but nowadays the company
still struggles to expose it in a clear and effective way to the customers. Often
aggregates are made of hard-to-understand numbers or require analysis skills
far from the users’ needs.
To address this problem, Data Insights has been created. This is a plug-
in service for the UX Engine that allows the company to create and deliver
custom dashboards to visually show the customers the beneficial impact that
ContentWise’s software has on their business.

2.1 Data Insights
Data Insights is a solution that helps content and marketing people under-
stand and improve the user experience of their digital services.
In today’s market, the combination of content and user experience has a huge

3

2 – Company and Project

impact on how a business performs. The main goal of those who work on
catalogues is to provide users with the best library possible but to retain and
increase the number of customers they cannot rely only on massive invest-
ments in original content and licensing. It is crucial for the user experience
to be personalized.

A tailored UX comes with the need of defining and prioritizing metrics
and KPIs that measure the impact of personalization but, other than that,
it’s necessary to provide a way to visualize them effectively.

2.1.1 Architecture overview

Data Insights is a cloud-native solution built using Google Cloud Platform
(GCP) services. The application can be seen as the composition of four
macro-layers:

1. Ingestion Layer, responsible for collecting data directly from the sources
and loading it into Data Insights’ data lake.

2. Data Lake, a centralized repository that allows you to store all your
structured and unstructured data.

3. Processing Layer, responsible to process data to provide them in the
right format to the visualization layer.

4. Data Visualization Layer, based on Apache Superset 1.0. Here is where
customers’ dashboards are created.

4

2.1 – Data Insights

Figure 2.2. Data Insights architecture

Our focus will be mainly on the last layer and on part of the analytical
one.

Figure 2.3. Data Insights architecture, our area of interest

5

2 – Company and Project

2.1.2 Apache Superset overview
Apache Superset is the tool in use in the current version of Data Insights. It
is an open-source enterprise-ready business intelligence web application. Its
main goals are to help with:

• Data visualization: creating visual representations to represent data in
a more understandable way.

• Data exploration: looking at the data from different perspectives.

• Data Analysis: extracting information from data from various measure-
ments to define patterns and make business predictions.

We will see more details about how it works in the next chapters.

2.2 Project’s goal and structure
The current implementation is based on Apache Superset 1.0, an open-source
business intelligence web application, which provides most of the needed
functionalities out of the box. It is a really good product, but it presents
some important limitations:

• Dashboard stability: after refreshing a dashboard, colors in charts are
incoherent to the previous representation.

• Dashboard spaces management: the way users can edit charts’ dimen-
sions and positions is quite limited

• Missing cross-filtering

• Filter impact visualization: when applying a specific filter, it is not clear
which charts are affected by it.

• Overall charts customization: e.g. users can only select color palettes
and not individual colors.

All these problems have been identified after a confrontation with the Cus-
tomer Success department of the company which, among other things, is the
one in charge of creating dashboards and presenting them to the customers.
They presented us with the main drawbacks they faced while working with
the tool and also with some observations made by the customers themselves.

6

2.2 – Project’s goal and structure

The aim of this thesis is to analyze which are the major functionalities offered
by the main actors in today’s BI/Data Visualization market and try to un-
derstand which could be the best path to follow in order to develop a solution
that meets the company’s needs and possibly fixes all the above-mentioned
issues.

We can divide the project into three phases:

• Market analysis: in this phase, we will look at a few of the most rele-
vant BI/Data Visualization tools available in the market to understand
which are their most interesting features and their weaknesses in order
to improve our strategy and our business decisions.

• Custom solution development: during this step, we will develop a web
application based on React, that should allow users to create different
types of charts, perform queries, and visualize the information through
customizable dashboards.

• Hybrid solution development: here we will adopt the last release of
Apache Superset (which comes with many improvements over the ver-
sion in use in the current solution) with the addition of a semantic layer
between the data source and the visualization layer.

In both solutions, we will adopt Cube as a semantic layer in order to evaluate
the benefits that may come with it.

2.2.1 MovieLens dataset overview
For this project, we used the data collected from MovieLens and made avail-
able by GroupLens Research, a research lab at the University of Minnesota.

MovieLens 25M Dataset

This dataset, ml-25m, describes a 5-star rating and free-text tagging activity
from MovieLens, a movie recommendation service. It contains 25000095
ratings and 1093360 tag applications across 62423 movies. These data were
created by 162541 users between January 09, 1995, and November 21, 2019.
This dataset was generated on November 21, 2019. Users were selected at
random for inclusion. All selected users had rated at least 20 movies. No
demographic information is included. Each user is represented by an id, and

7

2 – Company and Project

no other information is provided.
The dataset contains the following tables: Ratings, Movies, Tags, Links,
Genome-scores, Genome-tags.
In this project, we will mostly focus on the first two tables.

• Ratings Data File Structure: All ratings are contained in the file rat-
ings.csv. Each line of this file after the header row represents one rating
of one movie by one user, and has the following format:

userId movieId rating timestamp

Table 2.1. ml-25m, Ratings table structure

Ratings are made on a 5-star scale, with half-star increments (0.5 stars
- 5.0 stars), while timestamps represent seconds since midnight Coordi-
nated Universal Time (UTC) of January 1, 1970.

• Movies Data File Structure: All tags are contained in the file tags.csv.
Each line of this file after the header row represents one tag applied to
one movie by one user, and has the following format:

movieId title genres

Table 2.2. ml-25m, Movies table structure

Movie titles also include the year of release in parentheses. Genres are
a pipe-separated list, and are selected from the following: Action, Ad-
venture, Animation, Children’s, Comedy, Crime, Documentary, Drama,
Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller,
War, Western, (no genres listed).

MovieLens 1M Dataset

This second dataset has been used in the Hybrid solution to simulate a use
case in which we had two different customers, each of them with the respective
associated Google BigQuery project and dataset. This test was interesting to
perform dashboard duplication tests (we’ll talk in more detail when talking
about the Hybrid solution).
It contains 1,000,209 anonymous ratings of approximately 3,900 movies made
by 6,040 MovieLens users who joined MovieLens in 2000. It’s made up of

8

2.2 – Project’s goal and structure

three tables: Ratings, Movies, Users.
For continuity with the previous dataset, we placed our focus mainly on the
first two tables.

• Ratings Data File Structure: All ratings are contained in the file "rat-
ings.dat" and are in the following format:

userId movieId rating timestamp

Table 2.3. ml-1m, Ratings table structure

UserIDs range between 1 and 6040, MovieIDs range between 1 and 3952,
Ratings are made on a 5-star scale (whole-star ratings only), Timestamp
represents seconds since midnight Coordinated Universal Time (UTC)
of January 1, 1970. Each user has at least 20 ratings.

• Movies Data File Structure: Movie information is in the file "movies.dat"
and is in the following format:

movieId title genres

Table 2.4. ml-1m, Movies table structure

Titles are identical to titles provided by the IMDB (including the year
of release), Genres are pipe-separated and are selected from the follow-
ing genres: Action, Adventure, Animation, Children’s, Comedy, Crime,
Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery,
Romance, Sci-Fi, Thriller, War, Western.

9

10

Chapter 3

Business Intelligence

Business Intelligence (or BI) can be considered a technology-supported pro-
cess or a collection of activities and methods to gather, transform and present
organized information from fragmented data from multiple sources lowering
the needed time to extrapolate useful knowledge that can support an orga-
nization’s decision-making processes.

3.1 Data Exploration
Data Exploration is a key part of BI. It involves the process of discovering
patterns, trends, and relationships within data. This step is essential to get
a better understanding of the data and to possibly gain insights to inform
business decisions. Some examples of techniques used for this purpose are
data mining, data profiling, and data visualization.

• Data Mining is a technique that mainly uses statistical models to elabo-
rate and explore a huge amount of data in order to discover underlying
schemas and hidden relationships between data. In this case, the term
"mining" is more related to the act of "extracting" the relevant infor-
mation. This technique is often used in classification, clustering, or
association rules problems.

• Data Profiling is the process that identifies data quality issues, such as
unknown or missing values, incorrect or duplicate data, values outside
the normal range and so on.

• Data Visualization involves the use of visual representations to help users
to interpret and understand the data. Other than that, it also provides

11

3 – Business Intelligence

an intuitive way to present data to non-technical audiences. We’ll dig
into details in the next paragraph.

A deeper look into Data Visualization

As anticipated above, Data visualization is the graphical representation of
data and information. It uses multiple visual elements, like charts, graphs,
maps and more.
The main strength of these tools is that, if properly made, they can easily
deliver the desired information to the observer, independently of his level of
expertise. We live in a world that is surrounded by visual information, from
advertisements, TV shows, and art. This can be considered one of the most
universal and easily understandable languages to communicate with people
from all around the world. By using colors, shapes and patterns is possible to
instantly grab the attention of the spectator and deliver the desired message.
Other than that, these visualization tools open the door to an interactive
exploration of the data, increasing user engagement with the representation.
To reach this goal, it is necessary to pay attention to the data we are working
with and to the way the message is delivered. Charts and graphical repre-
sentations must be built appropriately to be sure that the core information
is not lost when the final user is interpreting the data.

12

Chapter 4

Semantic layer

Data is the key factor on which business decisions are based today. The
increased adoption of cloud computing technologies led to an impressive vol-
ume and data distribution that added complexity to enterprises’ data man-
agement; for example, they now need to operate with multiple data formats,
definitions, and types.
To help solve these problems, semantic layers have been introduced.

4.1 Overview
Designing dimensions and defining metrics is not a new idea for companies.
What has changed in today’s market is that they no longer use only one
business intelligence tool, but, depending on the needs of each team, differ-
ent visualization tools might be adopted.
Around the end of the 20th century, BI tools were mainly built around SQL
statements and cron jobs (a way of scheduling tasks to be executed in the
future; generally used to schedule jobs that are periodically executed) and
this made it very challenging to manage data pipelines. Other than that,
storing huge amounts of data was expensive, and that increased the level of
attention needed when extracting, transforming, and loading a portion of the
dataset for consumption.
In the "traditional BI" scenario, there is an IT department in charge of for-
mulating data analytics processes to achieve business objectives. Other de-
partments store their data and then ask the IT team to generate performance
reports, trends forecasts, and more. After 2010, as interactive dashboards
became the primary way for data analyst teams to help business stakehold-
ers consume their data, self-service BI tools emerged. These are tools that

13

4 – Semantic layer

opened also to non-technical users the possibility to filter, sort, and analyze
data without the need for IT/BI technical teams.
As more companies invested in data, new low-code or no-code tools started
to appear on the market. On one hand, many people were able to find more
suitable products to their needs, but on the other, a new scenario occurred:
inside the same company different teams might adopt different BI tools, each
of them defining in their own way the metrics.
After quite some time struggling with this problem, in the data community
the concept of Headless BI started to grow. These types of tools are agnostic
from the presentation layer; hence the name headless.
A semantic layer is an example of headless BI tool; it can be seen as a busi-
ness representation of the data that provides a unified view of data definitions
from multiple data sources. This provides business users with an easy way
to understand the data. The goal is to abstract metrics to a higher level,
bringing them closer to experts in the specific business unit of the company.
Looking at it in more detail, we can identify four main components (Data
Modeling, Access Layer, Caching and APIs) that will be deeper analyzed in
the next paragraphs. Typically, the semantic layer is a middleware between
the data source and the data application.

For this project, we chose to use Cube, an open-source analytics framework
that has been first released in 2019 and has a continuously growing commu-
nity.

4.2 Cube

"Cube is the Semantic Layer for building data apps. It helps data
engineers and application developers access data from modern data
stores, organize it into consistent definitions, and deliver it to every
application."

14

4.2 – Cube

Figure 4.1. Cube overview

Usually, when building an application with analytics features is probable
to face these three problems:

• SQL code organization: having to model many metrics and dimensions
using pure SQL can become hard to maintain.

• Performance: "time-to-insight" metric has become more and more im-
portant. Using only SQL queries is not the fastest way to obtain results
nowadays.

• Access control: all downstream data-consuming applications must have
controlled and secured access to data.

Through its components, Cube is able to provide a solution to all the above-
mentioned issues.
This framework is characterized by four main areas: Data Modeling, Access
Control, Caching, APIs.

Data Modeling

Data Modeling in Cube is based on the concept of Data Schema, which is a
way of modeling raw data into more useful business interpretations and pre-
aggregating data in order to obtain optimized results. All this is obtained
through JavaScript files.
In Cube, each table of data is represented as a cube, generally declared in

15

4 – Semantic layer

separate files, with one cube per file.
Within each of them, users can define:

• Measures, referred to as quantitative data. Each measure is an aggrega-
tion over a certain column in the database table. They are defined using
different parameters (like the sql expression, the type, the format, the
rolling window, and more...), and it is even possible to create Calculated
Measures that are calculated using other measures.

Figure 4.2. Cube Data Schema Measures and Calculated Measures

• Dimensions, referred to as categorical data. They represent the proper-
ties of a single data point in the cube. If they are time-based properties
(type: ‘time‘) they are called TimeDimensions. Similarly to measures,
they are characterized by multiple properties.

16

4.2 – Cube

Figure 4.3. Cube Data Schema Dimensions

• Joins, to define relationships between cubes. The relationship between
the two cubes can be described with one of these options: belongsTo,
hasMany, hasOne.

Figure 4.4. Cube Data Schema Join example

• Segments, that can be seen as predefined filters. They come in handy
when there is a complex filtering expression that can be reused for many

17

4 – Semantic layer

other queries.

Figure 4.5. Cube Data Schema Segment example

• PreAggregations, a way of caching expensive and frequently-used queries
(they will be discussed in a more detailed way in the next paragraphs
when talking about caching).

Figure 4.6. Cube Data Schema PreAggrgation example

Access Control

In Cube, access control (or authorization) is based on the concept of security
context, while authentication is handled outside.

18

4.2 – Cube

Figure 4.7. Cube Access Control use case example

In the above picture, we can see an example of a use case, in which a
web server serves an HTML page containing the Cube client, which needs to
communicate securely with the Cube API. To achieve this, the web server
should generate a JWT (JSON Web Token) with an expiry timestamp. The
server could include the token in the HTML it serves or provide the token
to the frontend via an XHR request, which is then stored in local storage
or a cookie. The JavaScript client is initialized using this token, which will
be included in the following calls to the Cube API. The token is received
by Cube and verified using any available JWKS(JSON Web Key Sets), if
configured. Once decoded, the token claims are injected into the security
context to evaluate access control rules.
Cube allows you to define granular access control rules for every cube in
your data schema. It uses both the request and security context claims in
the JWT token to generate a SQL query, which includes row-level constraints

19

4 – Semantic layer

from the access control rules.
The additional information about the user passed via JWTs is called se-
curity context. It can be seen as a verified set of claims about the cur-
rent user that the Cube server should use to ensure that users can only
have access to the data that they are authorized to access. To retrieve this
property we have two options, via queryRewrite configuration option or via
COMPILE_CONTEXT global variable. The main difference between the
two is that COMPILE_CONTEXT is used by Cube at schema compilation
time, which allows changing the underlying dataset completely, while the
queryRewrite is only used at query execution time, which simply filters the
dataset with a WHERE clause.

Caching

Cube provides a two-level caching system. The first level is called in-memory
cache (active by default) while the second level is called pre-aggregations (re-
quires an explicit configuration to be activated).

In-memory cache acts as a buffer for your database when there’s a burst
of requests hitting the same data from multiple concurrent users. It lever-
ages an SQL statement as a key, that is used upon every incoming request to
check the cache. If nothing is found inside of it, the query is executed in the
database: the result set is returned and the cache is updated. If an existing
value is present in the cache and the refreshKey value for the query hasn’t
changed, the cached value will be returned. Otherwise, an SQL query will be
executed against either the pre-aggregations storage or the source database
to populate the cache with the results and return them.
Refresh keys represent the "trick" used by Cube to prevent unnecessary, and
potentially expensive, queries from hitting the database. By default, re-
freshKey values are:

• every 2 minutes, for BigQuery (our case), Athena, Snowflake, and Presto.

• every 10 seconds, for all the other databases.

but they can be modified in the configuration of each Cube.

Pre-aggregations are designed to provide the right balance between time to
insight and querying performance. The effects of this layer become more no-
ticeable as the size of the underlying dataset grows. In fact, pre-aggregation

20

4.2 – Cube

can be seen as a condensed version of the source data. By specifying par-
ticular attributes from the source data, Cube is able to crunch the data and
reduce the size of the dataset by several orders of magnitude, ensuring at
the same time that subsequent queries can be served by the same condensed
dataset if any matching attributes are found. Pre-aggregations are defined
within each cube’s data schema, and cubes can have as many pre-aggregations
as they require.
Also, in this case, a refresh strategy is available. By default, the refreshKey
value is set to ’1 hour’, but it can be customized by setting the specific prop-
erty in the pre-aggregation configuration.
The pre-aggregated data can be stored either alongside the source data in
the same database, in an external database that is supported by Cube, or in
Cube Store, a dedicated pre-aggregation storage layer.

APIs

Here is where the "headlessness" nature of this type of tool is highlighted.
Headless BI tools must be able to provide their data to every head applica-
tion, independently by them being used for data visualization, automation,
embedded analytics, or dashboarding. This is obtained thanks to different
types of APIs. In Cube we have three types of APIs:

• SQL API : allows querying Cube via Postgres-compatible SQL. It enables
the use of BI applications on top of Cube. In this scenario, each cube
is represented as a table. Measures, dimensions, and segments in this
table are columns. The SQL API transforms SQL query fragments from
cube tables into Cube’s internal query format through a process called
Cube query rewrite. This type of API is generally used together with
dashboard tools, notebooks, and legacy applications, such as Tableau,
that users formerly would have directly connected to a data warehouse.

• REST API : are used to communicate with Cube’s backend. They allow
users to get the data for a query, get the SQL Code generated by Cube to
be executed in the database, get meta-information for cubes defined in
data schema, trigger a scheduled refresh run to refresh pre-aggregations,
submit pre-aggregation build jobs and retrieve their refresh status, check
the ready state and liveness state of the deployment.

• GraphQL API : represents the last addition to Cube’s APIs. It has grown
in popularity due to its ability for clients to ask for exactly the data they

21

4 – Semantic layer

need and nothing more. After receiving the GraphQL query, Cube will
translate it into a native SQL for the client’s database and execute it.

4.2.1 Architecture
Cube is generally deployed as an additional microservice in existing applica-
tion architectures. The backend microservice is connected to one or multiple
databases, taking care of database queues, data schema, caching, security,
and API gateway, while the Cube client loads aggregated data from the
backend, processes it, and sends it to the chosen visualization library.

Figure 4.8. Cube architecture schema

Speaking about a production deployment, we generally have one or mul-
tiple API instances, a Refresh Worker, and a Cube Store cluster.

• API instance: processes incoming API requests and queries either Cube
Store for pre-aggregated data or connected data sources for raw data. It
is possible to horizontally scale API instances and use a load balancer
to balance incoming requests between multiple API instances.

• Refresh Worker : updates pre-aggregations and the in-memory cache in
background. It also keeps the refresh keys up-to-date for all defined
schemas and pre-aggregations.

22

4.2 – Cube

• Cube Store: is the purpose-built pre-aggregations storage for Cube. It
uses a distributed query engine architecture. In every Cube Store cluster
there are different components:

– Router nodes: one or many of them to handle incoming connections,
manage database metadata, build query plans, and orchestrate their
execution.

– Worker nodes: multiple nodes to ingest warmed-up data and execute
queries in parallel.

– Blob storage: local or cloud-based blob (Binary Large Object, a
type of cloud storage for unstructured data) storage that keeps pre-
aggregated data in columnar format. It can be run in single-instance
mode but is generally better to run it as a cluster of multiple in-
stances to increase concurrency.

Figure 4.9. Cube production deployment architecture schema

23

24

Chapter 5

Web-based Applications

5.1 Multi-page vs Single-page Applications
Multi-page applications and single-page applications are two common archi-
tectural patterns used for web development.
Multi-page applications (MPAs) represent the traditional way in which web
applications were made. Each user interaction (e.g. submitting a form) or
action that changes what is displayed, causes the browser to request a new
page from the server and reload the entire document. Single-page Appli-
cations (SPAs) consist of a single page that is rendered on the client-side
using JavaScript. MPAs rely on server-side rendering and full-page reloads,
while SPAs rely on client-side rendering and partial page updates. Both so-
lutions have some advantages and disadvantages. MPAs are very good for
Search Engine Optimization (SEO) performances, but they provide a worse
user experience (UX), as each page reload causes a delay and possible white
screens. Other than that, the consumption in terms of bandwidth and server
resources is higher. SPAs allow for a better UX, as each page only transfers
the necessary data and does not need to reload the entire page. They also
perform better from the bandwidth consumption point of view. On the other
hand, they have worse SEO performance, as each page comes with the same
URL and search engines find it hard to index metadata.
The choice of a pattern over the other depends on the requirements and
the aim of the web application. Multi-page applications are generally more
suitable for static websites that may need to be SEO-friendly. Single-page
applications are more appropriate for dynamic websites that need to provide
an interactive user experience.

25

5 – Web-based Applications

In our implementation, we decided that a Single-page Application was the
best solution.

5.2 Development Tools
In this section, we will illustrate the tools that have been used to develop the
custom web application.

5.2.1 React
React is a JavaScript library for creating user interfaces (UIs). It was released
by Facebook in 2013 and soon became one of the most popular and most
adopted tools for web development.

Figure 5.1. React logo

It is characterized by a declarative approach for rendering UI components,
meaning that users are in charge of describing what they want to see in the
UI and not how (imperative approach) things should be rendered. The only
focus is on the final state that the UI is in. React is able to take charge of all
the things that need to happen to ensure that the UI is properly represented.
One of the problems that React aims to solve concerns DOM modification.
The Document Object Model (DOM) is the data representation of the objects
that comprise the structure and content of a document on the web. Manually
performing operations on the DOM is really slow, but unfortunately, it is
necessary in single-page applications in order to respond to users’ actions
and provide them with new content. Using React, the programmer will never
directly modify the DOM but he will modify a virtual DOM instead. This
operation is very fast and then React will take care of updating the actual
DOM during a process called reconciliation. In this phase, React will figure
out which are the changes that actually matter and then will make the least

26

5.2 – Development Tools

amount of modification possible to the actual DOM.
React is characterized by three main concepts:

• Components: React uses a component-based architecture. Each visual
element is broken down into smaller and reusable building blocks called
components; they can have their own state and logic and can then be
combined together to create complex User Interfaces.

• Props: they are custom arguments that can be accepted by components
and can eventually change their behavior or aspect once they are ren-
dered on the screen. Props can be passed from the parent component
to child components, following what is called one-way data flow, which
is a React characteristic for which data flows down the component tree.

• State: it can be seen as any information in the User Interface that can
change over time, generally after being triggered by user interaction. To
add this state logic to components, React provides a set of functions
called state hooks.

The description of how the UI should look is done using JSX, which is a
syntax extension that allows writing HTML-like code in JavaScript. This is
very useful because it allows leveraging all the power and flexibility provided
by JavaScript while still writing in a more familiar syntax. JSX is then
compiled into JavaScript and rendered by React into the DOM. Other than
that, is worth mentioning that in React JavaScript code and visuals often are
in the same location, so there is no need of handling multiple files to define
the behavioral and look aspects of a single component.
As specified at the beginning of this paragraph, React is a library, not a
framework; so it does not provide an indication of the general behavior of
the whole application.
Let us do now a short digression speaking about the MVC architecture. It is
an architectural pattern that splits the application into three logical parts:
the Model, the View, and the Controller. The Model is in charge of managing
all the activities related to the data, so it handles database connections and it
answers the requests made by the Controller. It never communicates directly
with the View. The View part is in charge of providing a visual representation
of the data by generating the UI for the final user. The View communicates
directly only with the Controller. The Controller is the component that
allows interconnecting the Model and the View by telling the Model what
type of data it needs. After it receives data from it, it elaborates them to
provide them in a suitable format for the View.

27

5 – Web-based Applications

Going back to React we can say that it can be seen as the V in the MVC
architecture. All its concerns are related to visual representation and keeping
the visual elements up to date. For the M and C parts other technologies
can be used, making React suitable not only for the development of new web
applications but also for the refactoring of existing ones.

5.2.2 NextJS
Next.js is a React framework that allows developers to create fast and user-
friendly web applications.

Figure 5.2. Next.js logo

When building an application you can identify different parts: UI, Rout-
ing, Data Fetching, Rendering, Integrations, Infrastructure, Performance,
Scalability, and Developer Experience. React is a library that helps develop-
ers build UIs, but does not cover all the other parts that we have mentioned
above. On the other hand, Next.js let you implement the UI using React and
then incrementally provides features to solve the other application require-
ments. Here we will take a look only at the most important ones.

• Next.js comes with an automatic code splitting and bundling feature.
When an application is moved from the development environment to
the production one, the code needs to be compiled, bundled, minified,
and split. Next.js is able to handle these transformations and help move
the application into production. For compiling we refer to the process of
taking code in one language (e.g. JSX) and outputting it into another
language (e.g. JavaScript). The term minifying describes the mechanism
of removing unnecessary code (e.g. comments) without changing code
functionalities with the aim of reducing the size of the files and improving
the application performances. With the bundling process Next.js is able
to reduce the number of requests for files when a user visits a web page by
resolving the dependencies and merging the files into optimized bundles
for the browser. A web application can have many entry points (e.g.

28

5.2 – Development Tools

multiple pages accessible via different URLs) and thanks to code-splitting
the application’s bundle is split into smaller chunks that are required by
each entry point. By doing so is possible to improve the initial load time
by only loading the code needed to run the page.

• In the client-server architecture we identify the client as the actor (e.g.
a browser on a user’s device) who sends requests to a server for the
application code. After receiving the response, it turns it into a visual
interface that the user can interact with. The server, on the other hand,
is the one that stores the application code and receives requests from the
client, elaborates a response, and then sends it back to the client. This
introduction comes in handy when speaking about the rendering pro-
cess, that is the conversion of the React code into the HTML code used
for the UI. This mechanism can happen on the server or on the client,
either at build time or runtime. Next.js offer three rendering methods:
Client-Side Rendering, Static Site Generation, and Server-Side Render-
ing (with the last two that can be also referred to as Pre-Rendering). The
first method represents what happens in a standard React application,
in which the client receives an empty HTML along with the JavaScript
instruction to construct the UI (the user will initially see a blank page).
It is called that way because the initial rendering is performed on the
client side. On the contrary, with the Pre-Rendering methods the HTML
page is generated on the server side and then sent to the client. With
Server-Side Rendering (SSR), the HTML page on the server is generated
for each request (runtime). Together with the HTML page, the server
will send the client also JSON data and JavaScript instructions; React
will use these other files to make components interactive through the
process of hydration. In Static Site Generation the HTML page is gen-
erated once at build time, then is stored in a Content Delivery Network
(CDN) and re-used for each request. This rendering choice can be done
on a page-by-page basis depending on the use case.

• Next.js comes with a built-in file-system-based router built around the
concept of pages. It automatically creates routes based on the file struc-
ture in the pages directory. Other routing features are the dynamic
routing, which allows creating routes with parameters and query strings,
prefetching, which preloads the code for the next page in the background,
and fallback pages, which can be used to customize a loading indicator
or an error page to show when a route is not found.

29

5 – Web-based Applications

As we illustrated above, we can see why Next.js has become one of the top
and most used React frameworks on the market. It provides many useful fea-
tures that make it the ideal solution for developers who want to leverage the
power of React but at the same time can enjoy a fast and easier development
experience with less boilerplate code.

5.2.3 Firestore
Google Firestore is a cloud-hosted, NoSQL document database that allows
developers to store and sync data for mobile, web, and server applications.
It is part of the Firebase platform and Google Cloud services, and it offers
several key features and benefits for app development.

Figure 5.3. Firestore logo

One of the main characteristics of Google Firestore is its flexible and hi-
erarchical data model. Data is stored in documents, which are organized
into collections. Documents can contain fields of various data types, includ-
ing nested objects and subcollections. This allows developers to model their
data according to their needs.
In addition to that, Firestore comes with expressive and efficient querying
capabilities. Developers can use queries to retrieve individual or multiple
documents that match their criteria, with support for filtering, sorting, pag-
ination, and compound queries. They can also create shallow queries to
retrieve data at the document level without needing to retrieve the entire
collection or any nested subcollections. Queries are also indexed by default,
which means that they are fast and scalable, regardless of the size of the data
set.
A third characteristic of Google Firestore is its realtime and offline support.
Firestore uses data synchronization to update data across multiple devices
in realtime, with automatic conflict resolution. Adding realtime listeners to
the app, it gets notified with a data snapshot whenever the data that the
client apps are listening to changes, retrieving only the new changes and

30

5.2 – Development Tools

avoiding retrieving the entire database. It also provides offline support for
mobile and web apps, by caching data locally and allowing the client to
write, read, listen to, and query the cached data. Once the connection is re-
established Firestore synchronizes the local changes with its backend. This
enables developers to build responsive and collaborative apps that work even
in low-connectivity environments.

For this project we used the version 9 of the Firebase JS SDK, available
as an npm module.

5.2.4 Ant Design Charts
Ant Design Charts is a React library of charts based on AntV that provides
a set of high-quality and interactive data visualization solutions.

Figure 5.4. Ant Design Charts logo

Ant Design Charts aims to simplify the process of creating charts by pro-
viding a declarative and reactive API that can handle various scenarios with
ease. Ant Design Charts also follows the design principles and specifications
of Ant Design, a popular design system for enterprise-level applications.
It provides many different types of charts (Line, Area, Column, Bar, Flowchart,
Pie, Heatmap, Progress Plots, Relation Plots, and many more) so that users
can choose the one that best fits their needs to explore and understand data
patterns and insights.
It allows users to deeply configure the behavior and the look of the charts;
they have control over the plot container, the plot components (such as axis,
legend, label, tooltip, annotations, etc.), the data mapping, the graphic style
and the interactions that the final user can have with the chart.
In conclusion, Ant Design Charts is a powerful library of charts that can help
users create beautiful and interactive data visualizations.

31

32

Chapter 6

Market Analysis

In the first phase of this project, we looked at some of the products already
available on the market to figure out which are their most interesting fea-
tures and their weaknesses in order to improve our strategy and our business
decisions.

We took into consideration four products, that are Qlik, PowerBI, Tableau,
and Looker.

6.1 Products analysis

6.1.1 Qlik

Qlik, more specifically Qlik Sense, is a data analytics solution that provides
the ability to manage data and create visualizations using data from multiple
sources.

33

6 – Market Analysis

Figure 6.1. Qlik sense dashboard overview

One of its main characteristics is the use of Artificial Intelligence (AI) to
help users to use data more effectively in what they call "Augmented Analyt-
ics". Thanks to the Insight Advisor, the user is able to get suggestions about
the best types of charts and visualizations, and recommendations about the
associations between data sources; everything is dependent on the data that
he’s working with. Other than that, Qlik provides a natural language con-
versational analytics experience: this process is based on Natural Language
Processing (NLP), to understand user intent, and Natural Language Gener-
ation (NLG), to provide insights. This feature can be used to explore data
in a faster way: for example, let’s suppose that the user is working with a
Product Inventory data collection; on the dashboard, he has multiple charts
showing different information in different forms and he wants to visualize only
products from Italy that are less than 2500. Instead of manually creating the
corresponding filters, with Qlik the user can simply ask the Insight Advisor
"Show me the Product Inventory for Italy under 2500". This will update the
chart visualization with the corresponding results. This is a simple example,
but more complex requests could be made:

• "Show me sales from customers who bought in 2014 Q2": applies a time
filter for a specific year and quarter, and automatically provides a rank
analysis.

• "Which customers did not buy any Car Boots in Caracas in 2014?":

34

6.1 – Products analysis

combines an "exclude" category filter with both an "include" category
filter and a date filter.

• "What is the count of Customer that did not buy Bike Helmet?": com-
bines aggregation with an exclusion filter.

• "How much Sales Revenue comes from Company Name with Customer
Age between 35 and 55?: asks for a measure and a dimension, filtered
by another measure.

All these just mentioned features are what make Qlik a very interesting
product in today’s market, but, as always, there are also some drawbacks
that must be taken into consideration while analyzing a product. The most
relevant can be summarized in:

• Memory usage: to provide faster access, the browser version of Qlik
stores some data in memory but, sometimes, while working with huge
datasets in analysis mode (chart construction phase) more than usual
memory space is used, leading to a slowdown in the process and inter-
fering with the proper functioning of the application.

• Pricing: licensing can be expensive; different licensing prices must be
paid to give access to the dashboards to multiple users in edit or viewer
mode.

6.1.2 PowerBI

PowerBI is one of the most used tools in the BI field. It allows users to create
effective dashboards, reports, and interactive visualization.

35

6 – Market Analysis

Figure 6.2. PowerBI dashboard overview

One of its main advantages is the ease of use also for non-technical users;
thanks to its drag-and-drop feature, dashboards can be created without writ-
ing any code. Other than that, it provides the possibility to integrate with
other Microsoft products. Also in this case, the tool can be connected to
a wide range of data sources, making it easy to bring all the data into one
place for analysis.
PowerBi comes with a Desktop and a Web version. A huge drawback, in
particular for our scenario, is that these two types of products have different
purposes and functionalities: the first one is in charge of handling almost
all the chart and dashboard editing functionalities, while the Web version is
more suitable for visualization and sharing. The desktop application provides
users with advanced features for creating complex reports and dashboards.
Users can create custom visuals, import data from multiple sources, and
build complex calculations using DAX language. Once the report is created,
it can be published to the Power BI service, which is hosted on the cloud.
The web application provides users with a platform for sharing reports and
dashboards with others. Users can share reports with specific individuals or
groups, and the reports can be accessed from anywhere using a web browser
or mobile device.

6.1.3 Tableau

Tableau is probably the reference product when speaking about data visual-
ization.

36

6.1 – Products analysis

Figure 6.3. Tableau dashboard overview

It is able to deliver great performance when handling huge amounts of
data. One of the most useful features is the combination of drag-and-drop
capabilities with real-time data exploration: by mixing these aspects, users
can easily interact with the visual representation that they are constructing
without the need of writing code. Given the huge amount of functionalities
that it offers, the learning curve to master the product might be steep.
Also in this case, we have different products: Tableau Desktop provides
everything that is needed to access, visualize, and analyze data. All the
main editing functionalities for the creation of dashboards and workbooks
are available here. Tableau Cloud is more suitable for the publication and
visualization of dashboards created with Tableau Desktop.

6.1.4 Looker
Looker is probably the most interesting tool that we have analyzed in this
phase.

37

6 – Market Analysis

Figure 6.4. Looker dashboard overview

First of all, it is different from the competitors that we have tested in this
project from an architectural point of view. It is built on a web architecture
hosted in the cloud and it runs completely in the browser, hence, differently
from PowerBI, Tableau and Qlik, there is no need of installing a desktop
version.
A second noticeable difference is that Looker does not come with an analyt-
ics engine of its own but it operates directly on the data in the database,
leveraging database features and working on the entire dataset.
Finally, the most interesting feature that makes Looker stand out from the
others is the LookML language: it is a modeling language used to describe,
with a higher abstraction level, dimensions, measures, aggregated calcula-
tions and many more. Thanks to LookML, queries are easy to write and
reuse. As it is easy to guess, this is the core feature of Looker, but the fact
that is a proprietary language can be seen as a huge downside if we think
about a scenario in which a company wants to switch products after having
defined all its metrics in Looker’s LookML.

38

6.2 – Takeaway

6.2 Takeaway
All the analyzed products provide interesting features that make them stand
out from the competition.
The product that gets closer to our needs is Looker: we were looking for
a solution that could be deployed on the cloud, so we decided to exclude
PowerBI, Qlik, and Tableau for their limitations on the web application.
Other than that, its semantic layer represents probably the most interesting
feature we have observed.
Another important consideration is about licensing costs: all the above-
analyzed products offer a free-trial license, which generally becomes quite
expensive after its expiration. These expenses are not negligible and repre-
sent one of the reasons why we decided to explore possible solutions based
on the use of open-source software, trying to understand what could be the
possible drawbacks in terms of time-to-market and development effort.

39

40

Chapter 7

Custom Web Application

The first solution is a custom React web application that should allow the
user to connect to the data source, perform queries, create different types of
charts and compose dashboards to visualize the desired pieces of information.
With this solution, we didn’t address authentication and authorization. We
know that these are key components in a real-world product of this type
and, for this very reason, there are already plenty of implementations that
are currently available. We decided to focus more on the building and the
management of dashboards and charts.

7.1 Architecture
As previously mentioned, the architecture of this solution is made up of these
components:

• Frontend: a graphic interface that allows users to interact with the
application. It contains also the Cube Client needed to communicate
with Cube Backend. It has been developed using React.

• Backend: built using the Next.js framework.

• Firestore: NoSQL document database used to persist application data
regarding charts and dashboards.

• Big Query: data warehouse where the client’s data (the MovieLens
dataset in this case) are stored.

• Cube: semantic layer (middleware between the data source and the
application) used to increase performances and data reliability.

41

7 – Custom Web Application

Figure 7.1. Custom web app architecture

In this solution, Cube has been deployed in a Docker container.

7.2 Implementation results

In this section, the custom web-based application will be presented in each
of its parts.

7.2.1 Landing page

On the landing page of the application, we can see a list containing all the
dashboards that have been created. From the main table, we can get infor-
mation like the name of the dashboard, the date on which has been created
and how many days ago has been modified.

42

7.2 – Implementation results

Figure 7.2. Custom Web App - Landing Page

From this page is possible to create a dashboard by clicking on the dedi-
cated button. After that, the user will be redirected to the empty dashboard
page. Other than that, is possible to visualize or delete an existing dash-
board.

7.2.2 Dashboard Page

A dashboard page can work in two different modes: visualization mode or
edit mode. By default, once the user opens a dashboard, he would enter in
visualization mode. As the name suggests, each mode offers or limits the
actions that can be performed by the user.

43

7 – Custom Web Application

Figure 7.3. Custom Web App - Dashboard Page

The page can be split into three main sections:

44

7.2 – Implementation results

Figure 7.4. Custom Web App - Dashboard Page Sections. Header in yellow,
Filter Panel in blue, Dashboard in red

• Header: it shows the dashboard’s name and a few buttons that depend
on the current visualization mode.

– Visualization mode: we have the Add Filter button, which allows the
user to create dashboard-level filters, and the Edit button to switch
to the Edit mode.

Figure 7.5. Custom Web App - Dashboard Page Header buttons in
visualization mode

– Edit mode: we have the Add Textbox button that allows creating

45

7 – Custom Web Application

textbox descriptors, the Add Chart button that allows the user to
choose between a list of the already created charts that are currently
not assigned to any other dashboard, or to create a new chart from
scratch. Finally, there is a Save button to persist all the changes
that have been made and to switch back to Visualization mode.

Figure 7.6. Custom Web App - Dashboard Page Header buttons in edit mode

• Filters Panel: is a collapsible panel that shows the filters that have
already been created for the specific dashboard. The active filters are
highlighted in green to be more recognizable. Hovering over the filter
chip, a textual description of the filter will appear to provide details
about what information the filter is trying to get. By pressing on the
"bin icon" is possible to permanently delete an existing filter.

Figure 7.7. Custom Web App - Dashboard Page Filters Panel

• Dashboard: here is where the content is actually presented to the user.
It consists of a React-Grid-Layout where items can be displayed, resized,

46

7.2 – Implementation results

and moved around, providing huge flexibility when configuring the dash-
board layout. In visualization mode, items are fixed, while in edit mode
they can be modified in size and position or eventually be deleted.

Let’s now take a closer look at the dashboard items.

Dashboard items

There are three types of possible items in our dashboard.

• Chart: here is where the results of the query are shown as charts of
various types. The user can interact (e.g. select a slice, scroll the times-
tamp bar, etc.) with the charts according to the settings selected when
it has been created.
Each chart can possibly be affected by some filters. Each time this hap-
pens, a badge with a counter will appear on the top right corner of the
card; this indicates the number of filters that are currently affecting the
chart and, if the user hovers over it, a dropdown textbox with the infor-
mation about the names of the filters will appear.
If the query results are not available, an information message is delivered
to the user.

Figure 7.8. Custom Web App - Dashboard Item Charts example

47

7 – Custom Web Application

Figure 7.9. Custom Web App - Dashboard Item Chart Info

• Textbox: is the instrument used to add textual descriptions or com-
ments that could be relevant when visualizing the dashboard. Each of
these items is created using a rich-text editor that provides many use-
ful editing options: from the basic ones, like font size, formatting, text
alignment, and more, to some more advanced ones, like bullet and nu-
merical lists, link embedding, code formatting, emoji support, and more.
These text boxes come in handy when there is the need to facilitate chart
interpretation, especially when the represented information is complex.

48

7.2 – Implementation results

Figure 7.10. Custom Web App - Dashboard Item Textbox and Textbox editor

• Filter: dashboard-level filters represent a high-level interaction that the
user can have with the dashboard, in both visualization and edit mode.
Once clicked on the dedicated button, a pop-up menu will present all
the options to create a filter.

49

7 – Custom Web Application

Figure 7.11. Custom Web App - Filter editor modal

The user must provide a series of parameters:

– Title: filter’s title

– Table: here the user can choose only from the tables that are cur-
rently populating the dashboard’s charts. This is done to prevent
errors caused by filtering data fields that are not related to the cur-
rent visualization.

– Measure/Dimension: allow to choose a measure or a dimension that
belongs to the previously selected table.

– Operator: based on the type of the selected measure or dimension,
different types of operators become available (numerical, text, date).

50

7.2 – Implementation results

Figure 7.12. Custom Web App - Filter operator types: numeric, text and date

– Filter Value: here the user inserts the discriminant value for the
filter.

– Affected Charts: allow to select the charts that are affected by the
current filter. Two options are available: select all or manual selec-
tion.

Figure 7.13. Custom Web App - Filter select affected charts

– Description: provide a textual description of the filter that will be
displayed when the user hovers on the filter chip in the Filter Panel.

7.2.3 Charts Page
The charts page is where the user can decide to create a new chart or see all
the ones that have already been created (in a real-world scenario, the content

51

7 – Custom Web Application

of this page will be affected by the permission level of the user and, of course,
different customers will only have visibility on their charts).
Here we can get the following information:

• Name: chart name.

• Chart Type: type of the chart; the possible values are: Line, Area, Bar,
Column, Pie, Radial Bar, Sunburst, Number.

• Dashboard Name: if assigned, the user will see the name (and the link)
of the corresponding dashboard, otherwise a Not Assigned message will
be prompted.

• Last Modified: days since last modifications.

Figure 7.14. Custom Web App - Charts Page

7.2.4 Chart Builder Page
The Chart Builder Page is one of the most important of the entire project.
Here users can generate the queries leveraging Cube’s APis and then visualize
the result set in the more suitable chart representation.

52

7.2 – Implementation results

Figure 7.15. Custom Web App - Chart Builder Page

The page can be split into two main sections, the Query Builder and the
Chart Renderer.

Query Builder

In the Query Builder section the user can compose queries by choosing the
desired values for:

• Measures

• Dimensions

• Time Dimensions

• Filters

• Order

53

7 – Custom Web Application

Figure 7.16. Query builder - part one

Figure 7.17. Query builder - part two

Each of the elements listed above can be selected via dropdown menus that
show the available values from the respective Cubes (tables). The query itself
is represented as a JavaScript object that describes an analytics query.

It is possible to directly query Cube backend via REST API, but in our
case is much easier to use Cube JavaScript client together with the binding
for the React framework.

• Cube JavaScript Client: provides methods to communicate with Cube
API Gateway in order to retrieve and process data (it’s possible to pivot
the result set to display as chart or table, split in series or table columns,
and many more)

• Cube React Package: provides convenient tools to work with Cube in Re-
act. We can use the useCubeQuery hook together with React functional
components to execute Cube queries, and you also have some specific
components to separate state management and API calls from rendering
code or others to access directly Cube from anywhere in the application.

Chart Renderer

This section is where the chart is rendered. Users can effectively see if the
chosen visualization type corresponds to the best way to deliver the desired
information.

54

7.2 – Implementation results

Figure 7.18. Chart Renderer

The ResultSet data returned by Cube backend is elaborated and presented
in a chart visualization. Depending on which interactions have been enabled,
users can interact with it by selecting or highlighting specific areas of the
chart.
Thanks to an integration with the Ant Design Charts library, a chart-specific
settings panel has been developed. This allows users to customize many
aspects of the chart, in order to obtain the desired data representation.
Taking as an example the Line chart shown in the above picture, here are
the settings that we have decided to make available for the user:

• Plot Components

– Legend: allow the user to choose if he wants to see the legend and,
if he does, which should be the layout (horizontal or vertical) and
the position (top, bottom, left, right).

– Axis settings: allow the user to choose which axis should be visible
and, if it is, which should be its title and its format (Category or
Time). If the axis represents time information, is also possible to
provide a label mask (e.g. YYYY-MM) to obtain the date/time in
the desired format. Other than that, is possible to limit to a max
value the Y axis.

– Threshold settings: allow the user to set a specific value or use the de-
fault one (mean) as a threshold. Values that are below that amount
will be represented with a different color that can be set within this
setting option.

55

7 – Custom Web Application

• Graph Style:

– isStack: in the case of a multi-line chart, when this option is en-
abled, values will be stacked one over the other instead of being
independent.

– Smooth: it changes the smoothness of the line that connects the
points of the chart

– Slider : used when there is a temporal dimension on the horizontal
axis. If enabled, this option transforms it into a slider with an ex-
tendable window that can be moved over the whole axis to change
interactively the time frame of the chart.

– Color : allow to select the desired color for the line. In the case of
a multi-line chart, multiple selectors will become available (one for
each dimension value) allowing the user to color pick a specific color
for each line.

In this project, we tried to implement eight different types of charts: Area,
Line, Bar, Column, Pie, Radial, Sunburst, and Number.
This has been done to experience the required time and effort to add a new
type of visualization from scratch. Each of them needs to be configured with
a specific transformation function that maps the data from the format of
the ResultSet (returned by Cube backend) into the chart-specific input data
format.
Regarding the customization part, using a complex and complete library such
as Ant Design Charts allow the developer to choose for each chart and its
components the desired level of granularity for personalization.

56

Chapter 8

Hybrid solution

The aim of this second solution is to evaluate the required effort to integrate
a semantic layer into an architecture similar to the one that is currently used
by ContwntWise’s solution. We will use the release 2.0 of Apache Superset
and, in addition to that, Cube will be added as a semantic layer between
BigQuery and Superset.
In this phase, we’ll focus on the performance enhancement provided by Cube
caching technology and we will also test the capability of handling requests
from different users, each of them requiring a connection to its own data (e.g.
scenario in which each client company has its own BigQuery project).

8.1 Architecture

Here, the architecture is very similar to the one adopted for the current
Data Insights implementation in ContentWise (at least for the part related
to this project - see figure 2.3 in paragraph 2.1.1). The only difference is the
insertion of Cube between Google BigQuery and Apache Superset. By doing
so, the visualization tool will be no longer connected directly to a BigQuery
project, but to the Cube instance instead.

57

8 – Hybrid solution

Figure 8.1. Hybrid solution architecture

In this scenario, both Cube and Apache Superset have been deployed on
Docker containers.

8.2 Apache Superset
Let us go deeper into what Apache Superset is and which are its main char-
acteristics.

Figure 8.2. Apache Superset dashboard overview

Superset is a cloud-native application, hence is very flexible. It can be
used on a laptop, in a container as well as in distributed environments.

58

8.2 – Apache Superset

As written in paragraph 2.1.2, we can identify three main areas of the prod-
uct:

• Data Visualization, that is the ability to create visual representations
of huge amounts of data with the aim of providing useful, generally
easy-to-understand, insights;

• Data Exploration, that indicates the process of looking at the data from
a new perspective, even considering new metrics that could help users
to better understand the data they are working with;

• Data Analysis, which consists in using the retrieved information to iden-
tify patterns, and make observations and predictions, in order to take
informed business decisions.

Dashboards and slices

Dashboards can be considered the user interface through which Apache Su-
perset allows users to communicate to the customers a "story" by combining
different types of charts to form a narrative. They are made of different
slices, which can have the form of data, graphs, numbers, or text.

Two types of dashboards can be identified, Narrative Dashboard or Met-
rics Dashboard. The first one is ideal for engaging and explanatory content,
and generally, it uses text or content-based data rather than KPIs (Key Pro-
gression Indicators) or measurements to provide information. The second
is more indicated for performance analysis, monitoring and canned analysis
display (complex analysis conveyed in a visual format to the customers with
the purpose to deliver meaningful insights) and it generally relies on KPIs,
metrics and filters on measurements to show different facets of information.
When building dashboards in Superset users can leverage different elements:

• Tabs: to group charts for a more structured narrative;

• Header : to add titles;

• Text: to add description text and even images (via HTML);

• Divider : to isolate different parts within the same dashboard;

• Rows and Columns: to configure charts layout within the dashboard.

59

8 – Hybrid solution

Speaking about data visualization, is worth mentioning the huge amount
of available chart types provided by default by Superset.

Figure 8.3. Apache Superset available charts

Currently, there are nearly 60 different charts available under 10 categories.
This is a crucial strength of the product with respect to the others available
on the market.

SQL Lab

SQL Lab is a powerful React-based SQL IDE inside Apache Superset, mainly
used for data exploration. It allows users to write their personalized SQL
query and eventually visualize the result set via Slices and it works with
any database that comes with an SQLAlchemy Python connector. The main
feature is called SQL Editor, and it is used to explore datasets by composing
complex queries that can be saved and later re-used, or even shared with
other users.

60

8.2 – Apache Superset

Figure 8.4. Apache Superset SQL Lab

Security

Apache Superset also comes with a Role-based Access Control (RBAC) frame-
work that allows managing access via data access roles and row-level security.
Three different roles are available:

• Admin: they have all the possible rights, including granting or revoking
other users’ rights or altering other people’s slices and dashboards.

• Alpha: they have access to all data sources, but they cannot add or
revoke access from other users. Other than that, they are limited to
altering only objects that they own.

• Gamma: they can only consume data coming from data sources they
have been given access to, hence they can only view dashboards or slices
made from data sources that they have access to. They are mostly
content consumers.

There is also a specific role called sql_lab used specifically to grant access
to the SQL Lab section of Superset.

Roles are composed of a set of permissions that can be divided into dif-
ferent categories:

• Model Action: Dashboards, Slices and Users are considered entities
called models. Each of them has a fixed set of permissions like can_edit,

61

8 – Hybrid solution

can_show, can_delete, can_list, can_add. If, for example, we want to
allow a user to delete dashboards we could add the can_delete permission
on the Dashboard entity of a specific role, and then assign that role to
the specific user.

• Views: views are individual web pages, like the SQL Lab view or the
Explore view. When a user is granted view permission, he will be able
to see that view in its menu and be able to load that page.

• Data source: each data source has a specific permission. Unless a user
is provided with the all_datasource_access permission, he will only be
able to see Slices or explore data sources granted to him.

• Database: by providing access to a database to a user, he will be able
to access all the data sources within that database and he will also be
able to query that database in the SQL Lab (if the SQL Lab permission
is granted to the user)

Row Level Security filters are filters assigned to a specific table, as well as a
set of roles. For example, if we want members of the Human Resources team
to only have access to rows where department = "HR" you should create a
Row Level Security filter with the clause department = "HR" and then assign
the clause to the HR role and the to the table it applies to.

Version 2.0 improvements

As of today, 2.0 is the last available release. Released in the summer of 2022,
it brings many improvements in both the stability and functionality aspects.
Taking into consideration the problems faced in the previous version (listed
in paragraph 2.2), we are pleased to see that the problem with non-matching
colors after a page refresh has been fixed: now the color assigned to a specific
value does not change, avoiding misleading representation that could confuse
who is looking at the chart. Together with that, the cross-filtering function-
ality has been improved and is now fully working: by selecting specific data
from a chart (e.g. a "slice" of a pie chart representing movie genres) all the
others charts within the same dashboards will be filtered by that value (e.g.
genre equals ’Drama’). This represents a huge enhancement in the user ex-
perience while navigating a dashboard. Some new charts have been added
(e.g. Horizontal Bar Chart), together with some customization options and

62

8.3 – Implementation and results

the visualization switcher has been improved, allowing users to change visu-
alization type (e.g. from a line chart to an area chart) while retaining chosen
metrics and dimensions.

8.3 Implementation and results
In this solution, we tried to integrate Cube, with the role of semantic layer,
with version 2.0 of Apache Superset. They were both deployed as Docker
containers.
Other than all the advantages highlighted in the previous chapters, adopting
Cube in this type of scenario increases the overall flexibility. Ideally, once
Superset is connected to the data source, this never changes its structure.
Unfortunately, this is not what happens in most real-world cases: many
upstream changes could occur, being them renamed or deleted columns,
dropped tables, the migration of a data source, etc. In Superset terms, all
these changes would translate into broken charts and dashboards that would
need to be fixed manually. With the addition of Cube, the only thing to do
is to update the data model without touching anything else.
Let us take as an example the "renamed or deleted column" scenario, in which
a column is removed because it is redundant (it can be obtained by combining
with a mathematical expression other two dimensions). One way to solve the
problem could be to edit the dataset within Superset, removing the column
or removing and then adding it back as a calculated column. This might
work, but these types of changes would not be visible from the SQL Editor
when performing data exploration and, if Superset is not the only tool used
in the company, those changes would need to be replicated. Alternatively,
we could simply replace the column with a calculation in Cube’s data model.
By doing so, Superset (and eventually other tools) would keep working as if
that column was never removed or edited.
In case, for any reason, the company decides to move data from Google
BigQuery to, for example, Amazon Redshift, we should only replace dataset-
specific functions and update the cube.js configuration file in order to specify
the right drivers for the connection. No other changes are needed to keep
Superset dashboards and charts in a healthy state.

Having analyzed some possible use cases, we decided to simulate a scenario
with two customers, respectively with their BigQuery projects, to see how
the multi-user management works within Cube and, finally, we focused our

63

8 – Hybrid solution

attention on pre-aggregations and their impact on performances.

Figure 8.5. Hybrid solution scenario

The first customer, called cwtest, was using the Movielens 25M dataset,
while the second, called cwtest2, was using the Movielens 1M dataset.
As explained before, in terms of access control or authorization, Cube al-
lows the definition of granular access control rules for every cube in the data
schema. The additional information about the user that is passed via JWTs
is called security context. Therefore we configured the cube.js file to select
the right database connection based on the customer information received;
for each connection, we needed a projectID, a key file, and the location. Man-
aging multiple users with Cube was not a complex task, mainly thanks to the
fact that the configuration file is a JavaScript file, hence very flexible. Other
than controlling access to the data, we experimented with the definition of
customer-specific measures and dimensions: this feature comes in handy to
answer each customer’s needs, providing them with personalized metrics that
are more meaningful for their specific business.

Moving on to performances, we decided to configure the pre-aggregations
for the Movies and for the Ratings tables. One of the most representa-
tive examples of the effects of pre-aggregations is the one that involves a
time_dimension. For example, in the Ratings table we decided to pre-
aggregate on the rating dimension and on the timestamp time dimension,
providing month as granularity value. As a test, we then used a query to
obtain the trend for each rating over the whole time interval at our disposal;
for each execution, we provided a different time granularity.
The obtained results can be summarized in the following table.

64

8.3 – Implementation and results

Query Time Granularity Query Completion Time(ms)
1 week 2006
2 week 2
3 month 1537
4 year 23
5 quarter 14

Table 8.1. Pre-aggregations example results

Figure 8.6. Pre-aggregations example chart

When a query is executed, the common Cube workflow is:

1. Check if the exact same query has been made within the time specified
in the refreshKey. If present, pull the results from the in-memory cache.

2. If the query is not present in the in-memory cache, analyze the query
against the defined set of pre-aggregation rules to choose the optimal
one in order to create the pre-aggregation table.

(a) If found a suitable pre-aggregation rule, check if an up-to-date copy
of the pre-aggregation exists. If it does, execute a query against the
pre-aggregated data.

65

8 – Hybrid solution

3. If no suitable pre-aggregation rule is available, execute the query over
the raw data.

Looking at the data from table 8.1, we can notice that the first query
took more than two 2 seconds to be executed. On the second execution, the
required time drastically decreases. This is because we executed the same
query within the refreshKey time interval of the in-memory cache, so the
result was ready-to-use. With the third query, we can see again that over
1.5 seconds are required; this is due to the fact that even if month is the
selected granularity for the pre-aggregations, the first time the query needs
to be executed over the raw data. The advantages of pre-aggregations are
visible with queries 4 and 5. Here we can see that even if no queries with
year or quarter granularity have been executed before, Cube is able to match
the pre-aggregation rule with month granularity and provide an aggregation
of results in few milliseconds.
Having made the above observations on the behavior of pre-aggregations, is
clear that to increase the chances of user queries hitting the pre-aggregations
rules we could add more dimensions and more measures to Cube’s pre-
aggregation definition. This will result in bigger pre-aggregations and, conse-
quently, slightly slower query response time. This is the trade-off that users
should keep in mind when defining their semantic layer to better suit their
needs.

66

Chapter 9

Conclusions

This thesis presented two data visualization solutions suitable for exploring
and analyzing huge datasets. The first one is a custom web application built
using the Next.js framework while the second uses version 2.0 of Apache Su-
perset, an open-source tool for data visualization and exploration. In both
cases, we integrated Cube as a semantic layer to provide great flexibility in
terms of metrics management and performance improvements.
Both solutions come with their advantages and disadvantages. The custom
web application allows for more control over the design of the user interface
and user experience, as well as the possibility to develop ad hoc functionalities
and integrate the product with additional features (e.g. an alerting system
for dashboard failures based on Cube’s logs). Other than that, the chart li-
brary can be expanded and charts can be deeply customized according to the
customers’ needs. However, it requires more development and maintenance
effort. On the other hand, Apache Superset provides a ready-made solution
that supports out-of-the-box a wide range of data visualization types, as well
as user authentication and role-based access control. Other than that, it
has a huge and active community that keeps supporting the product and
developing new functionalities; examples of that are the improvements intro-
duced with the last release of the product, in which some key features, such
as the cross filtering, have been added. But also in this case we have some
limitations, especially related to the customization of the product and the
development of new features that is bounded to Superset releases. Even if it
is true that, being open-source, Superset source code could be modified and
adapted to our company’s needs in terms of user experience, we must keep
in mind that every customization we perform should be then propagated to
the future releases of the product. This could lead to a not negligible effort

67

9 – Conclusions

in terms of maintenance of the solution.

In both cases, the integration of Cube as a semantic layer brings many ad-
vantages in terms of flexibility and reliability. By adopting this separation
layer between the data and its visual representation we were able to improve
the way we manage metrics and also increase the resilience of our system to
future possible changes on the data side.

In conclusion, we observed that the second solution is the most suitable
for our company’s needs. Being the current version of Data Insights already
based on Apache Superset, maintaining a similar environment would avoid
the need of scheduling training time for the employees. Other than that,
we were pleased to notice how some new interesting features, such as charts
drill-down (starting from a chart, is the ability to navigate from a more gen-
eral view of the data to a more specific one by interacting with the chart
itself), are already in the development road-map of the next Apache Super-
set release.
Other than improving the current solution, the integration of Cube could
open new scenarios for other ContentWise’s products: for example, we could
introduce a report section inside each customer’s profile page of the UX-
Engine in which, with a few static charts (maybe developed using the Ant
Design Chart library) that directly query Cube, convey information about
user’s most valuable KPIs.

68

Bibliography

[1] MovieLens - F. Maxwell Harper and Joseph A. Konstan. 2015. The Movie-
Lens Datasets: History and Context. ACM Transactions on Interactive
Intelligent Systems (TiiS) 5, 4: 19:1–19:19. https://doi.org/10.1145/
2827872

[2] Apache Superset documentation https://superset.apache.org/docs/
[3] Preset documentation https://docs.preset.io/docs/
[4] Cube documentation https://cube.dev/docs/
[5] Firestore documentation https://firebase.google.com/docs/

firestore
[6] react-grid-layout https://github.com/react-grid-layout/

react-grid-layout
[7] Qlik Sense https://www.qlik.com/us/products/qlik-sense
[8] Qlik AI https://www.qlik.com/us/products/qlik-sense/ai
[9] Semantic layer article on kyligence.io https://kyligence.io/blog/

semantic-layer-the-bi-trend-you-dont-want-to-miss-in-2020/
[10] Introduction to the DOM https://developer.mozilla.org/en-US/

docs/Web/API/Document_Object_Model/Introduction
[11] Semantic layer definition https://www.atscale.com/glossary/

semantic-layer/
[12] The Rise of the Semantic Layer: Met-

rics On-The-Fly - https://airbyte.com/blog/
the-rise-of-the-semantic-layer-metrics-on-the-fly

[13] The impact of Business Intelligence on the quality of decision making –
a mediation model - Bernhard WiederMaria, Luise Ossimitz

[14] What is Data Profiling? https://www.talend.com/resources/
what-is-data-profiling/#:~:text=Data%20profiling%20is%20the%
20process,then%20leverage%20to%20their%20advantage

[15] MVC Architecture https://towardsdatascience.com/
everything-you-need-to-know-about-mvc-architecture-3c827930b4c1

69

https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://superset.apache.org/docs/
https://docs.preset.io/docs/
https://cube.dev/docs/
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://github.com/react-grid-layout/react-grid-layout
https://github.com/react-grid-layout/react-grid-layout
https://www.qlik.com/us/products/qlik-sense
https://www.qlik.com/us/products/qlik-sense/ai
https://kyligence.io/blog/semantic-layer-the-bi-trend-you-dont-want-to-miss-in-2020/
https://kyligence.io/blog/semantic-layer-the-bi-trend-you-dont-want-to-miss-in-2020/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://www.atscale.com/glossary/semantic-layer/
https://www.atscale.com/glossary/semantic-layer/
https://airbyte.com/blog/the-rise-of-the-semantic-layer-metrics-on-the-fly
https://airbyte.com/blog/the-rise-of-the-semantic-layer-metrics-on-the-fly
https://www.talend.com/resources/what-is-data-profiling/#:~:text=Data%20profiling%20is%20the%20process,then%20leverage%20to%20their%20advantage
https://www.talend.com/resources/what-is-data-profiling/#:~:text=Data%20profiling%20is%20the%20process,then%20leverage%20to%20their%20advantage
https://www.talend.com/resources/what-is-data-profiling/#:~:text=Data%20profiling%20is%20the%20process,then%20leverage%20to%20their%20advantage
https://towardsdatascience.com/everything-you-need-to-know-about-mvc-architecture-3c827930b4c1
https://towardsdatascience.com/everything-you-need-to-know-about-mvc-architecture-3c827930b4c1

Bibliography

[16] Cos’è il data mining? https://aws.amazon.com/it/what-is/
data-mining/

70

https://aws.amazon.com/it/what-is/data-mining/
https://aws.amazon.com/it/what-is/data-mining/

	List of Tables
	List of Figures
	Introduction
	Company and Project
	Data Insights
	Architecture overview
	Apache Superset overview

	Project's goal and structure
	MovieLens dataset overview

	Business Intelligence
	Data Exploration

	Semantic layer
	Overview
	Cube
	Architecture

	Web-based Applications
	Multi-page vs Single-page Applications
	Development Tools
	React
	NextJS
	Firestore
	Ant Design Charts

	Market Analysis
	Products analysis
	Qlik
	PowerBI
	Tableau
	Looker

	Takeaway

	Custom Web Application
	Architecture
	Implementation results
	Landing page
	Dashboard Page
	Charts Page
	Chart Builder Page

	Hybrid solution
	Architecture
	Apache Superset
	Implementation and results

	Conclusions
	Bibliography

