
POLITECNICO DI TORINO
Master’s Degree in Embedded Systems

Master’s Degree Thesis

Resilience analysis of FPGA-based
Dataflow accelerators

Supervisors

Prof. Claudio PASSERONE

Prof. Maurizio MARTINA

PhD. Pierpaolo MORÌ

PhD. Emanuele VALPREDA

Candidate

Giovanni POLLO

April 2023

Abstract

Neural networks are becoming increasingly popular in several domains, from image
recognition to natural language processing. In addition, neural networks are entering
safety-critical fields, such as autonomous driving. In these cases, it is crucial to
have a fast and reliable inference. It is then necessary to deeply understand a
specific model’s robustness and resilience. These days, neural network models are
also becoming bigger and more complex due to the higher number of parameters
and layers. Therefore, many techniques have been developed to reduce the model’s
size, such as pruning and quantization. These techniques allow the execution of the
model on edge devices, such as FPGA (Field Programmable Gate Arrays). In this
thesis, the focus is on quantized neural network models. Another core aspect when
dealing with edge device deployment is the design of the accelerator. Currently,
there are two main architectures: systolic arrays and dataflow. In general, the
characteristics of both accelerators are to parallelize computational tasks, such as
convolution, and speed up the inference of the model. This allows for obtaining very
high throughput on edge devices. The most significant advantage of the dataflow
architecture is that each network layer has a custom architecture with a custom
number of Processing Elements, contrary to the systolic array where all the layers
share the same computation units. Additionally, on dataflow architecture, the
access to the off-chip memory is minimized, significantly reducing latency with
respect to systolic arrays . On the contrary, systolic arrays allow for more flexibility
and do not require a different binary file to reconfigure the logic when the network
topology changes. This thesis focuses on Dataflow-style architectures. The most
significant contribution of this thesis is the development of a Fault Injector. This
module allows the injection of errors (soft errors, such as bit-flips) inside a specific
network layer to test how resilient networks, or parts of them, are. The critical
aspects considered when developing the Fault Injector are the smallest possible
footprint, low latency overhead, usability, and flexibility. All the modifications
were done directly on the FINN compiler (the chosen framework for generating
dataflow-style accelerators) to obtain higher usability and flexibility. . This ensured
tight integration with the framework and guaranteed the compatibility of the Fault
Injector with almost all already existing neural network models supported by FINN.
Another feature implemented to achieve maximum flexibility is the addition of
configurable parameters for the custom layer. The Fault Injector has some variables
that enable deep customizability. The end user can specify if the inputs of the layer
should be flipped; if the weights of the layer should be flipped; which bit should be
flipped; which operation is faulty and which is not; the frequency of the occurrence
of a fault . Moreover, these parameters are configurable at runtime thanks to a

simple JSON file, removing the need to re-synthesising the model. Small footprints
and low latency were achieved thanks to an optimized fault injection algorithm
and HLS tools, such as pragmas , which are special directives that can be used to
optimize the design, reduce latency, improve throughput performance, and reduce
area and device resource usage. All these optimizations allowed the building of
a faulty model of Mobilenet while still having some free LUTs and FFs. The
experiments shows how a faulty version of Mobilenet-v1 was build with a 24.1%
LUT and 18.8% FF overhead with respect to the original model. The observed
results show that the higher the flipped bit importance (MSB instead LSB) the
lower the final accuracy. Same behaviour is noticed when increasing the percentage
of faulty operations as well as their frequency. Another interesting result is the
comparison between flipping inputs or weights. In general, the experiments show
that the weights are more sensitive compared to the inputs.

ii

i

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor Passerone
Claudio for his invaluable guidance, support, and encouragement throughout my
research. His expertise and feedback have been instrumental in shaping and refining
my work. I am also grateful to my co-supervisors Martina Maurizio, Morì Pierpaolo
and Valpreda Emanuele for their insightful feedback and technical assistance that
have contributed to the quality of my research.

Furthermore, I would like to thank my family for their unwavering love and
support, which has been a constant source of inspiration and motivation throughout
my academic journey. Their encouragement, understanding, and patience have
been invaluable to me, and I would not have been able to complete this thesis
without their support.

Finally, I would like to acknowledge the support of my friends and colleagues,
who have encouraged me throughout the process of completing this thesis. Their
understanding, support, and kindness have been a tremendous help to me.

“Vado così forte in salita per abbreviare la mia agonia”
Marco Pantani

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms xi

1 Introduction 1

2 Background 4
2.1 Artifical Intelligence and Machine Learning Introduction 4
2.2 Convolutional Neural Networks . 5

2.2.1 Convolutional Layer . 6
2.2.2 Padding . 7
2.2.3 Stride . 8
2.2.4 Activation Functions . 9
2.2.5 Pooling . 10
2.2.6 Fully Connected Layer . 11

2.3 Quantized Neural Networks . 11
2.4 Neural Networks Accelerator . 12
2.5 Convolution in Hardware: Im2col 13
2.6 High-level Synthesis (HLS) . 15

3 Related Works 17
3.1 FINN: A Framework for Fast, Scalable Binarized Neural Network

Inference . 17
3.2 Mind the Scaling Factors: Resilience Analysis of Quantized Adver-

sarially Robust CNNs . 18

4 Methodology 19
4.1 Brevitas . 19
4.2 FINN . 20

iv

4.2.1 End-to-End Flow . 20
4.3 Fault Injector . 29
4.4 Intial Fault Injector Design . 30

4.4.1 Adding a new layer in FINN 31
4.4.2 Problems of the Initial Design 32

4.5 Final Fault Injector design . 33
4.5.1 MatrixVectorActivation . 33
4.5.2 Parameters . 33

4.6 Fault Injection code . 37
4.6.1 Matrix Vector Activation . 37
4.6.2 Multiply Accumulate . 39
4.6.3 Multiply . 39
4.6.4 Modified code . 40

5 Experiments 44
5.1 Per-layer Overhead . 44
5.2 Full Network Overhead . 45
5.3 Bit Impact . 47
5.4 Frequency Impact . 48
5.5 MAC Faulty Percentage Impact . 49
5.6 Weight Sensitivity . 51
5.7 Loop Testing . 53

6 Conclusions and Outlook 56

A Listings 57

B Tables 61

Bibliography 65

v

List of Tables

4.1 XOR table . 42

5.1 Matrix Vector Activation Overhead 44
5.2 Vector Vector Activation Overhead 44
5.3 Resource usage of the reference model with no fault and the original

folding config . 45
5.4 Resource usage of the reference model with no fault and the new

folding config . 46
5.5 Resource usage of the faulted model with all layer faulty with the

new folding config . 47
5.6 Throughput performance of faulted Mobilenet-v1 with Figure B.4 . 48
5.7 Throughput performance of not faulted Mobilenet-v1 with Figure B.4 48
5.8 Throughput performance of not faulted Mobilenet-v1 with Figure B.3 49
5.9 Configuration of the network for the spike bar 54
5.10 Configuration of the network for the bar before the spike 54
5.11 Configuration of the network for the bar after the spike 55

B.1 Mobilenet v1 Structure . 61
B.2 Mobilenet v1 Structure with FINN mapping for the experiments . . 62
B.3 Original Folding Config . 63
B.4 Modified Folding Config . 63

vi

List of Figures

2.1 Venn diagram of machine Machine learning algorithms 5
2.2 Shallow neural network . 6
2.3 Convolutional neural network . 6
2.4 Convolution example . 7
2.5 Padding example with padding 1 for height and 1 for width [19] . . 8
2.6 Stride example with a value of 3 for height and 2 for width [19] . . 8
2.7 ReLU function . 9
2.8 Max Pooling operation with stride = 1 [19] 10
2.9 General Matrix Multiplication . 15

4.1 FINN transformations . 22
4.2 FINN transformations . 23
4.3 Structure of the computational unit[39] 26
4.4 Input tensor before and after reshaping 27
4.5 Weight Tensor before and after reshaping 28
4.6 Processing Element structure . 28
4.7 First iteration of the computation 29
4.8 Second iteration of the computation 30
4.9 nth iteration of the computation . 31
4.10 Fault Injector interface . 31
4.11 Layers without Fault Injector . 32
4.12 Initial Fault Injector design . 32
4.13 Hardware structure of is_input_faulty parameter 33
4.14 Hardware structure of is_weight_faulty parameter 34
4.15 Hardware structure of is_input_faulty parameters 34
4.16 Hardware structure of is_input_faulty parameters 35
4.17 Top-level block diagram of the final fault injector implementation . 35

5.1 Top Level FINN Project (Zoom in ??) 46
5.2 Weights faulty, frequency 0.78, percentage of MAC faulty 25% . . . 49
5.3 Inputs faulty, percentage of MAC faulty 25%, bit faulty 1 50

vii

5.4 Inputs faulty, frequency 0.78 . 50
5.5 MAC faulty 25%, bit faulty 0 . 51
5.6 MAC faulty 50%, bit faulty 0 . 52
5.7 MAC faulty 25%, bit faulty 1 . 52
5.8 MAC faulty 50%, bit faulty 1 . 53
5.9 Loop testing with Algorithm 1 . 54

viii

List of Listings

1 Python code of the Tidy-up step 22
2 Part of the code of the original Matrix Vector Activation Unit . . . 38
3 Original Multiply Accumulate (MAC) function 39
4 Original Multiply (MUL) function 40
5 Part of the code of the custom Matrix Vector Activation Unit . . . 41
6 Custom Multiply (MUL) function 43
7 Code to rotate the mac_frequency_mask 43
8 Original MatrixVectorActivation . 57
9 Modified MatrixVectorActivation interface 58
10 Python code of the Streamline step 59
11 Custom Multiply Accumulate (MAC) function 60

ix

Acronyms

AI Artificial Intelligence

ALU Arithmethic Logic Unit

API Application Programming Interface

BNN Binary Neural Network

CNN Convolutional Neural Network

DMA Direct Memory Access

DNN Deep Neural Network

DRAM Dynamic random-access memory

DSP Digital Signal Processor

FC Fully Connected

RTL Register Transfer Level

FIFO First In First Out

FPGA Field Programmable Gate Array

GEMM General Matrix Multiplication

GPU Graphics Processing Unit

xi

HLS High-Level Synthesis

IP Intellectual Property

LUT Look-Up Table

MAC Multiply-Accumulate

ML Machine Learning

ONNX Open Neural Network Exchange

PE Processing Element

QAT Quantization Aware Training

QNN Quantized Neural Network

QONNX Quantized Open Neural Network Exchange

SIMD Single Instruction Multiple Data

VHDL Very High Speed Integrated Circuit Hardware De-
scription Language

LSB Least Significant Bit

MSB Most Significant Bit

NN Neural Network

MVAU Matrix Vector Activation Unit

VVAU Vector Vector Activation Unit

MUL Multiply

JSON JavaScript Object Notation

xii

FF Flip Flop

FM Feature Map

FAT Fault-Aware Training

RGB Red Green Blue

ReLU Rectified Linear Unit

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

DL Deep Learning

xiii

Chapter 1

Introduction

Neural networks are becoming increasingly popular in several domains, from image
recognition to natural language processing. In addition, neural networks are entering
safety-critical fields, such as autonomous driving. In these cases, it is crucial to
have a fast and reliable inference. It is then necessary to deeply understand a
specific model’s robustness and resilience.

These days, neural network models are also becoming bigger and more complex
due to the higher number of parameters and layers. Therefore, many techniques
have been developed to reduce the model’s size, such as pruning and quantization.
These techniques allow the execution of the model on edge devices, such as FPGA
(Field Programmable Gate Arrays). In this thesis, the focus is on quantized neural
network models.

Another core aspect when dealing with edge device deployment is the design
of the accelerator. Currently, there are two main architectures: systolic arrays
and dataflow. In general, the characteristics of both accelerators are to parallelize
computational tasks, such as convolution, and speed up the inference of the model.
This allows for obtaining very high throughput on edge devices. The most significant
advantage of the dataflow architecture is that each network layer has a custom
architecture with a custom number of Processing Elements, contrary to the systolic
array where all the layers share the same computation units. Additionally, on
dataflow architecture, the access to the off-chip memory is minimized, significantly
reducing latency. On the contrary, systolic arrays allow for more flexibility and do
not require a different bitfile when the network topology changes.

For this thesis, the chosen framework to generate dataflow accelerators is FINN
[1], which is an experimental framework from Xilinx Research Labs to explore
deep neural network inference on FPGAs. It specifically targets quantized neural
networks, with emphasis on generating dataflow-style architectures customized for
each network. The first step of the thesis was based on exploring and understanding
in detail how FINN works. The framework is composed of three main parts. The

1

Introduction

first one, external to the FINN compiler, prepares the quantized neural network
by defining and training the model. The chosen framework is Brevitas, a PyTorch
library for neural network quantization focusing on quantization-aware training
(QAT) [2]. The prepared model is then given to the FINN compiler. Here the
network is manipulated thanks to various transformations, which are fundamental
in tidying up the model (for example, by collapsing layers or removing useless ones)
and preparing each layer for the HLS conversion. Subsequently, the HLS code is
generated, and the accelerator is synthesized. When the synthesis is completed,
a bitstream is produced and flashed on the board to program the FPGA. This
execution of the accelerated model on hardware relies on the PYNQ framework;
PYNQ is an open-source project from AMD that makes it easier to use Adaptive
Computing platforms by enabling the access and control of FPGA overlays.

The most significant contribution of this thesis is the development of a Fault
Injector. This module allows the injection of errors (soft errors, such as bit-flips)
inside a specific network layer to test how resilient networks, or parts of them,
are. The critical aspects considered when developing the Fault Injector are the
smallest possible footprint, low latency overhead, usability, and flexibility. All the
modifications were done directly on the FINN compiler to exploit the last two
characteristics. This ensured tight integration with the framework and guaranteed
the compatibility of the Fault Injector with almost all already existing neural
network models supported by FINN. The Fault Injector has some variables that
enable deep customizability. The end user can specify if the inputs of the layer are
faulty; if the weights of the layer are faulty; which operation is faulty and which
is not; the frequency of the occurrence of a fault. Moreover, these parameters
are configurable at runtime thanks to a simple JSON file, removing the need
to re-synthesising the model. Small footprints and low latency were achieved
thanks to an optimized fault injection algorithm and HLS tools, such as pragmas
(special directives that can be used to optimize the design, reduce latency, improve
throughput performance, and reduce area and device resource usage). The main
contribution of this thesis are:

• Design of a Fault Injector module for a Dataflow-style architecture.

• Integration of the Fault Injector with a framework that generates neural
network accelerators, to extend its functionality and scale it to be used for
testing specific models’ resilience.

• Comparison with state-of-the-art, highlighting a higher sensitivity to weights-
flipping of the dataflow architecture.

2

Introduction

The thesis is organized as follows:

• chapter 1 gives a brief introduction of the topic

• chapter 2 gives the reader all the basic knowledge needed to analyze this
work properly

• chapter 3 presents state-of-the-art, focusing on why this thesis could be a
great advancement in it

• chapter 4 groups together all the tools used for the development of the Fault
Injector, as well as explaining in details the actual implementation of the
module

• chapter 5 presents the experiments and the results

• chapter 6 wraps up the thesis and outlines future works

3

Chapter 2

Background

This section aims at introducing all topics that are necessary for the full compre-
hension of this thesis. It is organized as follows: section 2.1 introduces Artificial
Intelligence (AI), Machine Learning (ML) and Neural Networks (NN), focusing on
their characteristics and relationships; section 2.2 presents Convolutional Neural
Networks (CNN) and explains the structure of such kind of models; section 2.3
explains what are Quantized Neural Networks (QNN) and why they can be useful;
section 2.4 presents Neural Network Accelerators explaining different architectures
with their pros and cons; section 2.5 explains in details how the convolution is
executed in hardware.

2.1 Artifical Intelligence and Machine Learning
Introduction

Artificial intelligence (AI) is a field of computer science that aims to create intelligent
machines. The term was coined in 1956 by John McCarthy, who defined it as
the science and engineering of making intelligent machines, especially intelligent
computer programs.

These days, AI is a vast field with many real-world applications. Some examples
are the use of AI in self-driving cars [3], medical diagnosis [4], speech recognition
[5], computer vision [6], natural language processing [7], and many more [8, 9, 10,
11, 12]. On the other hand, Machine Learning (ML) is a subfield of AI that focuses
on developing computer programs that can improve their performance through
experience.

During the last decades, thanks to the recent advances in computing power
and the availability of large datasets [13], ML has become a trendy field. This
allowed the development of many ML algorithms and the advancement of the
state-of-the-art [14]. Some examples are the development of Deep Learning (DL)

4

Background

algorithms, a class of ML algorithms inspired by the brain’s structure and function
(Figure 2.1). Neural Networks (NNs) are a computation model at the core of Deep
learning, inspired by the human brain structure. They are composed of a set of
interconnected units called neurons. Each neuron receives input from other neurons
and produces an output that is a weighted sum of its inputs. The output of each
neuron is then passed to the next layer of neurons. This process is repeated until
the output layer is reached. Neural Networks can be divided into two big subsets:

1. Shallow Neural Networks: These are neural networks with a small number
of layers. They are usually composed of an input layer, an output layer,
and few hidden layer. An example of a shallow neural network is shown in
Figure 2.2

2. Deep Neural Networks: These are neural networks with many layers. They
are usually composed of an input and an output layer, and many hidden layers.

Depending on the learning task, the field offers various
classes of ML algorithms, each of them coming in multiple
specifications and variants, including regressions models,
instance-based algorithms, decision trees, Bayesian methods,
and ANNs.

The family of artificial neural networks is of particular
interest since their flexible structure allows them to be modi-
fied for a wide variety of contexts across all three types ofML.
Inspired by the principle of information processing in biolog-
ical systems, ANNs consist of mathematical representations of
connected processing units called artificial neurons. Like syn-
apses in a brain, each connection between neurons transmits
signals whose strength can be amplified or attenuated by a
weight that is continuously adjusted during the learning pro-
cess. Signals are only processed by subsequent neurons if a
certain threshold is exceeded as determined by an activation
function. Typically, neurons are organized into networks with
different layers. An input layer usually receives the data input

(e.g., product images of an online shop), and an output layer
produces the ultimate result (e.g., categorization of products).
In between, there are zero or more hidden layers that are re-
sponsible for learning a non-linear mapping between input
and output (Bishop 2006; Goodfellow et al. 2016). The num-
ber of layers and neurons, among other property choices, such
as learning rate or activation function, cannot be learned by
the learning algorithm. They constitute a model’s
hyperparameters and must be set manually or determined by
an optimization routine.

Deep neural networks typically consist of more than one
hidden layer, organized in deeply nested network architec-
tures. Furthermore, they usually contain advanced neurons
in contrast to simple ANNs. That is, they may use advanced
operations (e.g., convolutions) or multiple activations in one
neuron rather than using a simple activation function. These
characteristics allow deep neural networks to be fed with raw
input data and automatically discover a representation that is

Artificial neural networks

Deep neural networks

e.g., support vector machine, decision tree, k-nearest neighbors, …

e.g., shallow autoencoders, …

e.g., convolutional neural networks,
recurrent neural networks, …

Deep
learning

Shallow
machine
learning

Machine
learning

Machine learning algorithmsFig. 1 Venn diagram of machine
learning concepts and classes
(inspired by Goodfellow et al.
2016, p. 9)

Table 1 Overview of types of machine learning

Type Description

Supervised learning Supervised learning requires a training dataset that covers examples for the input as well as labeled answers or target values for the
output. An example could be the prediction of active users subscribed to a market platform in a month’s time as output
(considered as the target variable or y variable) based on different input characteristics, such as the number of sold products or
positive user reviews (often referred to as input features or x variables). The pairs of input and output data in the training set are
then used to calibrate the open parameters of the ML model. Once the model has been successfully trained, it can be used to
predict the target variable y given new or unseen data points of the input features x. Regarding the type of supervised learning,
we can further distinguish between regression problems, where a numeric value is predicted (e.g., number of users), and
classification problems, where the prediction result is a categorical class affiliation such as “lookers” or “buyers”.

Unsupervised
learning

Unsupervised learning takes place when the learning system is supposed to detect patterns without any pre-existing labels or
specifications. Thus, training data only consists of variables x with the goal of finding structural information of interest, such as
groups of elements that share common properties (known as clustering) or data representations that are projected from a
high-dimensional space into a lower one (known as dimensionality reduction) (Bishop 2006). A prominent example of
unsupervised learning in electronic markets is applying clustering techniques to group customers or markets into segments for
the purpose of a more target-group specific communication.

Reinforcement
learning

In a reinforcement learning system, instead of providing input and output pairs, we describe the current state of the system, specify
a goal, provide a list of allowable actions and their environmental constraints for their outcomes, and let the ML model
experience the process of achieving the goal by itself using the principle of trial and error to maximize a reward. Reinforcement
learning models have been applied with great success in closed world environments such as games (Silver et al. 2018), but they
are also relevant for multi-agent systems such as electronic markets (Peters et al. 2013).

Machine learning and deep learning

Figure 2.1: Venn diagram of machine Machine learning algorithms [14]

2.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a type of deep neural network that is
very popular in computer vision [16]. Since computer vision is mainly focused on
images and video, the input of these models are usually composed of images (a
video can be decomposed into a sequence of images). CNNs are composed of a set
of convolutional layers, pooling layers, and fully connected layers [17]. A visual
representation of a CNN is shown in Figure 2.3. Since most of the models used
in this thesis are CNNs, the following sections will go into more detail about the
utility of each layer.

5

Background

Figure 2.2: Shallow neural network [15]

Figure 2.3: Convolutional neural network [16]

2.2.1 Convolutional Layer
As the name suggests, convolutional layers are the primary building block of
CNNs. In ML convolution is applied to multi-dimensional tensors, a N -dimension
generalization of arrays and matrices, and it is computed as a multiplication between
matrices [18]. Its primary usage is to extract features, such as edges and corners,
from the input image by sliding different kernels, a matrix used to extract the
specific features from the input, over it. A visual representation of this operation

6

Background

is shown in Figure 2.4

Figure 2.4: Convolution example

It is essential to understand the impact that different dimensions of inputs and
kernels have on the output. In general, the convolution’s output, also known as
output feature map, is spatially smaller (if padding, stride and other techniques are
not considered) than its input, also known as input feature map . Considering a 2D
Convolutional Layer and defining an input tensor with spatial shape Nix × Niy and
a kernel of shape Nkx ×Nky the output tensor shape will be (Nix −Nkx +1)×(Niy −
Nky + 1) . Since CNNs usually deal with images in real-world applications, a third
dimension Nif (also called channel) is introduced. For example, in RGB images,
three channels are used to represent the color of each pixel. Therefore, assuming an
input tensor with shape Nif × Nix × Niy and a kernel of shape Nif × Nkx × Nky the
output tensor shape will be 1× (Nix −Nkx +1)× (Niy −Nky +1). It’s easy to notice
that the output tensor has only one channel in the latter example. Nof kernels
are defined to get an output with multiple channels. Therefore, defining an input
tensor with shape Nif × Nix × Niy and a kernel of shape Nof × Nif × Nkx × Nky

the output tensor shape will be Nof × (Nix − Nkx + 1) × (Niy − Nky + 1).

2.2.2 Padding

As explained in the previous section, the output of the convolutional layer is smaller
than its input. Sometimes, this behaviour is not good, and it is better to avoid
it. To deal with it, padding is introduced. One straightforward solution to this
problem is to add extra pixels of filler around the boundary of the input tensor,
thus increasing the effective size of it. Typically the value of the extra pixels is 0.
The padding is represented by two values Px, Py used to set how the input should
be padded in the spatial dimensions. Padding is important also becasue it improves
the information quality at the borders.

After the introduction of padding, the dimensions are the following:

7

Background

Figure 2.5: Padding example with padding 1 for height and 1 for width [19]

Input : Nif × Nix × Niy

Weights : Nof × Nif × Nkx × Nky

Output : Nof × (Nix − Nkx + Px + 1) × (Niy − Nky + Py + 1)

2.2.3 Stride

In the previous paragraphs, kernel sliding is assumed to be one pixel at a time.
However, for various reasons, such as computational efficiency or the need for
spatial reduction , it may be useful to slide the kernel more than one pixel at a
time. The stride is represented by two values Sx × Sy, indicating the jump between
the convolution windows in the spatial dimensions.

Figure 2.6: Stride example with a value of 3 for height and 2 for width [19]

Considering a convolution operation between a weight tensor
W l ∈ RNof ×Nif ×Nkx×Nky and an input feature map Al−1 ∈ RNif ×Nix×Niy with stride
Sx × Sy and padding Px × Py, produces an output feature map Al ∈ RNof ×Nox×Noy .
Where Nox and Noy are defined as reported in the following equation:

8

Background

Nox = Nix − Nkx + Px + Sx

Sx

Noy = Niy − Nky + Py + Sy

Sy

2.2.4 Activation Functions
Following the structural diagram of Figure 2.3, mentioning the activation functions
is essential. These functions are differentiable operators to transform input signals
to outputs and always introduce non-linearity [20] in order to reduce overfitting.
The most common activation functions are the Rectified Linear Unit (ReLU), the
Sigmoid, and the Tanh. The ReLU is the most used activation function in image
processing because it is computationally efficient and easy to implement. The
ReLU function is defined as follows:

Definition 2.2.1 (ReLU). Given an element, the function is defined as the maxi-
mum of that element and 0

ReLU(x) = max(0, x) (2.1)

The plot of the function is shown in Figure 2.7

−10 −8 −6 −4 −2 2 4 6 8

2

4

6

8

x

yy = max(0, x)

Figure 2.7: ReLU function

9

Background

2.2.5 Pooling
Pooling layers are usually applied after the convolutional layers and are really
important for the following reasons:

• Dimensionality reduction: The pooling layer reduces the spatial dimension
of the feature map.

• Overfitting reduction: The pooling layer reduces the overfitting of the
model by making the low-level feature (such as edges and corners) extraction
location independent [21].

There are two different types of pooling layers; Max Pooling and Average
Pooling.

Definition 2.2.2 (Max Pooling). Given an input matrix of size Nix ×Niy, a pooling
window of size Nkx × Nky and a stride of value S, with Nkx ≤ Nix and Nky ≤ Niy,
the output matrix is defined as the maximum value of each pooling window.

Max Pooling(x) = max(x) (2.2)

where x represents the pooling window. Figure 2.8 shows an example of Max
Pooling.

Figure 2.8: Max Pooling operation with stride = 1 [19]

Definition 2.2.3 (Average Pooling). Given an input matrix of size Nix × Niy, a
pooling window of size Nkx × Nky and a stride of value S, with Nkx ≤ Nix and
Nky ≤ Niy, the output matrix is defined as the average value of each pooling window

Avg Pooling(x) = avg(x) (2.3)

where x represents the pooling window. One of the reason of using pooling is the
spatial dimensionality reduction. These are the dimension values:

10

Background

Input : Nix × Niy

Pooling Window : Nkx × Nky

Output : Nix − Nkx

S
× Niy − Nky

S
(2.4)

2.2.6 Fully Connected Layer
Fully connected (FC) layers are commonly added at the end of a (CNN) to enable
the neural network to classify images into various categories. Here are some reasons
why FC layers are necessary in CNN architectures:

• Classification: Fully connected layers are used for classification since they
can identify relations between all pixels in the input feature map.

• Feature Composition: Convolutional Layers detect features in an image but
they do not capture feature combinations or variations. FC layers use these
deep features detected from the convolutional layers and combine them in
different ways, enabling them to learn higher-level representations of features,
and allowing for more precise classification.

In conclusion, fully connected layers are widely used for accurate image classification
in CNN architectures.

2.3 Quantized Neural Networks
These days, neural network models are becoming bigger and more complex due
to the higher number of parameters and layers. This led to the need to find new
methods to reduce footprint of specific models to fit in the embedded domain for
edge deployment . The most important technique for this thesis is quantization [2,
22].

The tensors of modern neural networks are usually represented with a float32
datatype. This allows a very high precision, but on the other hand, it requires a lot
of resources for training and inference . A solution may be reducing the number of
bits used to represent the tensors. This guarantees a lower resource impact but on
the other side provokes a decrease in accuracy. This tradeoff is not always feasible
and for this reason, it is really important to define the quantization level to be able
to maintain an acceptable accuracy. It is common to find models whose inputs and
weights are quantized to 2, 4 or 8 bits. The quantization level can be pushed up to
binarization [23], in which inputs and weights can be represented on 1 bit.

11

Background

2.4 Neural Networks Accelerator
The need of high throughput and low latency also on edge devices, such as FPGAs,
created the need to define some techniques to bring neural network models to
hardware [24]. This process has also been simplified by using techniques like
quantization that allowed big network models to fit on resource-constrained devices.
Moreover, to utilize all the possibilities that various hardware architectures offer,
it is crucial to design custom architectures to parallelize as much as possible the
computationally intensive operations. This section is intended to briefly overview
the possible architectures used to accelerate neural networks with their positive
and negative characteristics, focusing on cost, development complexity, flexibility
and throughput [25].

• Graphical Processing Units (GPU): GPUs are one of the most common
architectures to significantly improve neural networks performance. Thanks to
the very high number of ALU they are able to achieve a really high throughput.
Due to their large space requirements and high power consumption, they are
not a common choice for edge deployment . However, thanks to their flexibility
and high performance, they are usually used in datacentres.

• Application Specific Integrated Circuit (ASIC): These architectures,
as the name suggests, are specific for the considered application and are not
flexible. For this reason, the performance are really high, but the complexity
and engineering costs are really high as well, mainly because the design cycle
may span a protracted timeframe.

• Field Programmable Gate Array (FPGA): FPGA stands in the mid-
dle of the other two architectures. They are flexible because they provide
field programmability, but at the same time they maintain high throughput
performance thanks to the high bandwidth of the on-chip memory.

For this work, the choice has been an FPGA, and all the tests have been held
on a Xilinx ZCU104. As mentioned in the Introduction, the two most popular
accelerator architectures are the Systolic Array [26] and Dataflow. The systolic
array is the simpler one structure-wise. It is composed of a matrix of computational
units shared between all layers. On the other side, the Dataflow architecture is
much more complex since the number of computational units is customizable per
layer offering higher customizability. These are the advantages and disadvantages
of both architectures:

• Compactness: Having one computational matrix in common between all
layers, guarantees that the systolic is more compact architecture-wise with
respect to the datafow one.

12

Background

• Scalability: the simplicity and the generality of the systolic architecture
ensure that the same architecture might be used to accelerate different neural
network models. On the contrary, since the Dataflow is much more network-
specific, it is more difficult to scale it to different models.

• Latency: Having one computational unit in each layer drastically reduces
the off-chip memory access. In fact the Dataflow structure is a streamlined
architecture where data are passed through one layer to another.

• Performance: Both architectures are able to achieve really high throughput.
It isn’t easy to compare them since they are completely different structure-wise.

2.5 Convolution in Hardware: Im2col

To properly understand how a neural network is accelerated on hardware, it is
crucial to know how to accelerate its main operation, the convolution. As explained
in subsection 2.2.1, the convolution is a series of matrix multiplications. There are
various type of hardware implementations, but for this thesis we will focus on the
General Matrix Multiplication (GEMM). To simplify the comprehension of the
GEMM let’s consider the following example.

The input I has a size Nix × Niy × Nif of 3 × 3 × 2, meaning that there are
two channels of shape 3 × 3. The filters K have a size Nof × Nif × Nkx × Nky of
2 × 2 × 2 × 1. Supposing a stride of 1 and no padding, referring to Equation 2.4, it
is easy to derive that the output FM size will be 2 × 2 × 1.

I0 =

I0,0,0 I0,1,0 I0,2,0
I1,0,0 I1,1,0 I1,2,0
I2,0,0 I2,1,0 I2,2,0

 K0 =
[
K0,0,0 K0,1,0
K1,0,0 K1,1,0

]

I1 =

I0,0,1 I0,1,1 I0,2,1
I1,0,1 I1,1,1 I1,2,1
I2,0,1 I2,1,1 I2,2,1

 K1 =
[
K0,0,1 K0,1,1
K1,0,1 K1,1,1

]

To obtain the output, these are the computations that need to be performed:

13

Background

FM0,0 = I0,0,0K0,0,0 + I0,1,0K0,1,0 + I1,0,0K1,0,0 + I1,1,0K1,1,0+
+ I0,0,1K0,0,1 + I0,1,1K0,1,1 + I1,0,1K1,0,1 + I1,1,1K1,1,1

FM0,1 = I0,1,0K0,0,0 + I0,2,0K0,1,0 + I1,1,0K1,0,0 + I1,2,0K1,1,0+
+ I0,1,1K0,0,1 + I0,2,1K0,1,1 + I1,1,1K1,0,1 + I1,2,1K1,1,1

FM1,0 = I1,0,0K0,0,0 + I1,1,0K0,1,0 + I2,0,0K1,0,0 + I2,1,0K1,1,0+
+ I1,0,1K0,0,1 + I1,1,1K0,1,1 + I2,0,1K1,0,1 + I2,1,1K1,1,1

FM1,1 = I1,1,0K0,0,0 + I1,2,0K0,1,0 + I2,1,0K1,0,0 + I2,2,0K1,1,0+
+ I1,1,1K0,0,1 + I1,2,1K0,1,1 + I2,1,1K1,0,1 + I2,2,1K1,1,1

This algorithm is very efficient on CPU, GPU and ASIC . On the contrary, to
achieve high throughput performance on FPGA too, is crucial to minimize the off-
chip access [27]. This is achieved by preparing the data exploiting data-redundancy,
with the downside of increasing memory occupation. the tradeoff memory overhead
and performance is crucial and it changes based on the available resources.

Let’s take FM0,0 as an example. The first four terms are obtained by multiplying
the submatrix of I0 composed by the first two rows and the first two columns
with K0. The other four terms are obtained by multiplying the submatrix of I1
composed by the first two rows and the first two columns with K1. The same logic
can be applied to the other terms of FM . The problem is that the submatrices of
I0 and I1 are not contiguous in memory. Therefore, the data must be loaded from
memory and then transferred to the accelerator. This is a costly operation, and it
is crucial to minimize it. To solve this issue, the easiest solution is to exploit data
redundancy. Therefore, the data are organized as follows:

I =

I0,0,0 I0,1,0 I1,0,0 I1,1,0 I0,0,1 I0,1,1 I1,0,1 I1,1,1
I0,1,0 I0,2,0 I1,1,0 I1,2,0 I0,1,1 I0,2,1 I1,1,1 I1,2,1
I1,0,0 I1,1,0 I2,0,0 I2,1,0 I1,0,1 I1,1,1 I2,0,1 I2,1,1
I1,1,0 I1,2,0 I2,1,0 I2,2,0 I1,1,1 I1,2,1 I2,1,1 I2,2,1

 K =

K0,0,0
K0,1,0
K1,0,0
K1,1,0
K0,0,1
K0,1,1
K1,0,1
K1,1,1

The computation of FM0,0 is now performed dot-multiplying the green values
with the purple ones as follows:

14

Background

I =

I0,0,0 I0,1,0 I1,0,0 I1,1,0 I0,0,1 I0,1,1 I1,0,1 I1,1,1
I0,1,0 I0,2,0 I1,1,0 I1,2,0 I0,1,1 I0,2,1 I1,1,1 I1,2,1
I1,0,0 I1,1,0 I2,0,0 I2,1,0 I1,0,1 I1,1,1 I2,0,1 I2,1,1
I1,1,0 I1,2,0 I2,1,0 I2,2,0 I1,1,1 I1,2,1 I2,1,1 I2,2,1

 K =

K0,0,0
K0,1,0
K1,0,0
K1,1,0
K0,0,1
K0,1,1
K1,0,1
K1,1,1

The exact process shown in the example is repeated for the other terms of FM. A
clear example is visible in Figure 2.9.

II. BACKGROUND

The convolutional layers dominate both the computation
and storage of the network execution [20] in a CNN model.
Therefore, the focus of designing a CNN inference accelerator
falls on the architecture of convolutions. The representation of
direct convolution contains nested loops with 6 upper bounds
(M, C, H, W, Kh, Kw). M and C are the numbers of output
and input channels. H and W are the sizes of the input feature
map. Kh and Kw are the filter sizes of the convolution. In most
cases, Kh is equal to Kw and we denote them as one variable
K = Kh = Kw. When Kh does not equal Kw, we denote
K = max{Kh, Kw}. Optimization for direct convolution
usually involves tiling, as shown in Listing 1 (S is the stride
of convolution). Listing 1 is a two-level loop tiling dataflow by
partitioning (H,W,M,C) and fully unrolling the inner kernel.
Direct convolutions use O(CHW) space for the input feature
map, O(MCKhKw) for the weights, and O(MHW) for the
output feature map, without extra memory space.

for(m=0;m<M;m+=Tm){ //output feature
for(c=0;c<C;c+=Tc){ //input feature
for(h=0;h<H;h+=Th){ //feature row
for(w=0;w<W;w+=Tw){ //feature column
for(th=h;th<min(h+Th,H);++th){
for(tw=w;tc<min(w+Tw,W);++tw){
for(tm=m;tm<min(m+Tm,M);++tm){
for(tc=c;tc<min(c+Tc,C);++tc){
//unrolling the inner loop body
for(i=0;i<Kh;i++){ //filter size
for(j=0;j<Kw;j++){ //filter size
out[tm][th][tw]+=w[tm][tc][i][j]

*in[tc][S*th+i][S*tw+j]
}}}}}}}}}}

Listing 1. Direct convolution with tiling.

� � �

���

� � �

�� �� ��

������

�� �� ��

� �

��

� �

��

,QSXW�IHDWXUH�PDSV

)LOWHU�NHUQHOV

� � ��

� � ��

�� � �

�� � �

�� �� ����

�� �� ����

���� �� ��

���� �� ��

�

�

�

�

�

�

�

�

灤

7UDQVIRUPHG�*(00

Fig. 1. The “im2col”+GEMM (explicit GEMM) method.

“im2col”+GEMM [20] (explicit GEMM) is one of the
common solutions used in CPUs and GPUs. In Fig. 1, we
demonstrate how “im2col” works. We have red and yellow
input feature maps and two filter kernels for them. The number
of input channels M is 2. The number of output channels
C is 1. The shape of feature maps (H,W) is (3, 3). Kernel
size Kh and Kw are both 2. We reallocate the MACs as
dotted circles and solid arrows indicate. In the end, we have
a 4 × 8 matrix multiplying another 8 × 1 matrix. We usually
denote this as a (M ′ = 4, N ′ = 1, K ′ = 8) or (4,1,8) GEMM.
“im2col” requires O(KhKwCHW) extra memory space for
the transformed feature map matrix. If Kh = Kw = 1, explicit
GEMM does not suffer from the data replication.

Explicit GEMM requires too much memory (KhKw-level),
and there exist other alternatives. For example, implicit GEMM
used by NVIDIA Tensor Core [23] computes directly on the
convolution input feature maps and converts the operations
as matrix multiplications on the fly. Implicit GEMM is still a
variant of direct convolution and is not as effective as explicit
GEMMs. We will evaluate the effectiveness of “kernel to row”
based GEMM on FPGAs in this paper.

III. METHODOLOGY

A. Low-Memory GEMM Algorithm

Toeplitz-based “im2col” method transforms a 3D input tensor
into a 2D matrix. The kernel to row (“kn2row”) method is a
4D extension of Toeplitz-based transformation. The ”kn2row”
method is based on the decomposition of convolutions and
reorder the data layout. A Kh × Kw convolution can be
computed using KhKw 1 × 1 convolutions. We shift and add
the intermediate outputs to achieve the final results.

M

M

M

K
hK
w
M

C

HW

C灤

M

M

M

K
hK
w
M

HW

W

H

M

)HDWXUH�0DSV

:HLJKWV ,QWHUPHGLDWH�0DWULFHV

5HVXOWV

6KLIW

$GG

Fig. 2. The “kn2row” method.

As we have discussed in Section II, 1×1 convolution can be
done without extra memory workspace. Kh × Kw convolution
can be expressed as the sum of Kh × Kw separate 1 × 1
convolutions. Each 1 × 1 convolution will produce a matrix
with dimension M × HW , but all these matrices correspond
to different kernels value back to Kh × Kw kernel. We can
add these matrices by offsetting every pixel in every channel
vertically and/or horizontally. For example, if Kh = Kw = 3
(3 × 3 sized filter), the central point of the kernel outputs a
perfectly aligned matrix after the multiplication. This perfectly
aligned matrix does not need to be shifted. For the upper-right
value of the 3 × 3 kernel, the output matrix must be offset up
and right by one pixel. After shifting, the intermediate matrices
can be out of final bounds. These out-of-bounds values should
be discarded. In Fig. 2, we give an illustration of “kn2row”.
The extra memory space is the intermediate matrices marked
by the green color. Hence, “kn2row” method requires an extra
workspace of O(KwKhMHW).

Anderson et al. proposed the accumulating “kn2row” [22], a
variant with only O(KW) extra memory consumption. In the
conventional “kn2row”, the intermediate matrices are generated
by Kh × Kw GEMM operations. If these GEMM operations
work in an accumulating way (O = A × B + O), KhKw

intermediate matrices can be reduced to two matrices: one
accumulating buffer and one intermediate buffer. We illustrate
the accumulating “kn2row” in Fig. 3. The accumulating
algorithm regroups the weight matrix as KhKw smaller M ×C

29

Figure 2.9: General Matrix Multiplication [27]

2.6 High-level Synthesis (HLS)
High-level Synthesis is the process of generating a Register Transfer Level (RTL)
description starting from a higher level of abstraction. The abstracted design is
usually defined using C or C++ and after the Sythesis process, the obtained RTL
design is represented in Verilog or VHDL. During this translation process, the tool
executes some optimization in order to obtain the maximum performance while
respecting some user-defined parameters (such as area occupation, latency and
power consumption). Generally it tries to find the best possibile implementation
given a specific set of inputs. The main goal of HLS is to allow the hardware designer
to work at a higher level of abstraction, focusing on algorithmic optimization rather
that RTL. HLS gained a lot of popularity in the last decades, because they

15

Background

allowed the design of complex architecture with ease and increased the designer’s
productivity. The main advantages of HLS over RTL designs are the following:

• Productivity: By abstracting design to the functional level and relying on
automated high-level synthesis for implementation, designers can more rapidly
explore and develop more optimal architectures

• Reusability: Being free of low-level details, the code is easier to reuse or to
port to a different architecture.

• Simplicity: Being described in C or C++, compared to RTL, high-level
design descriptions typically have an order of magnitude fewer lines of code
and are significantly easier to read and maintain.

16

Chapter 3

Related Works

This chapter aims to provide an overview of the current state of knowledge, identify
gaps in the literature, and emphasize the importance of the thesis’s contribution
to the field. The presented works are the most relevant for this thesis since they
served as a starting point and a methodology inspiration. The chapter is organized
as follows: section 3.1 presents the framwork that has been used for developing
the neural network accelerators; section 3.2 presents a methodology for analyzing
the resilience of neural network accelerators; ?? dives into how FINN implements
the convolution.

3.1 FINN: A Framework for Fast, Scalable Bina-
rized Neural Network Inference [1]

Since the growth in popularity of neural networks, the research to accelerate them
has been really active. In the past years, Dataflow architectures had been discussed
a lot and the need of a framework able to accelerate complex models came up. FINN
is a framework, developed by Xilinx Research Labs, that focuses on building fast
and flexible FPGA accelerators. It has been designed with highly quantized neural
networks in mind (up to BNNs). For the development of this thesis FINN has been
fundamental, and it has been the starting point for developing the Fault Injector.
The approach of this thesis can be scaled and ported to other Dataflow-oriented
frameworks for accelerating neural networks.

The big selling point of FINN is the customizability and the tight integration with
Brevitas, a very popular framework for QNNs built on top of Pytorch. Regarding
customizability, being a Dataflow-oriented framework, FINN guarantees a per-layer
parallelism decision for the accelerator. The authors introduced two parameters,
Processing Elements (PE) and Single Instruction Stream Multiple Data Stream
(SIMD) that are really important when applying the parallelism configurations.

17

Related Works

PE are a subset of the output feature map, while SIMD are a subset of the input
feature map. The results presented by the authors are very convincing, especially
the throughput where "the design outperforms all others".

3.2 Mind the Scaling Factors: Resilience Analysis
of Quantized Adversarially Robust CNNs [28]

As introduced in previous sections, neural networks are widespread in many fields.
It is essential to build fast and reliable architectures in some of them, such as
automotive and aerospace. This paper analyzes the resilience of a Systolic Array
accelerator and compares the failure rate of vanilla-trained networks with respect to
adversarially-trained ones. This paper greatly impacted this thesis since it inspired
the approach and the parameters used to design a Fault Injector from scratch. The
considered parameters are the following:

• Frequency of Bit-Flip occurence

• Datatype

• Bit Position

• Percentange of MAC faulty

As it deals with Systolic Arrays architecture, the mentioned paper does not have a
per-layer control of the faults. In fact, as already explained in section 2.4, that type
of architecture presents a unique computational module, made of N computational
units, shared between all layers. The novelty in the state of the art introduced
by this thesis is the development of a similar Fault Injector design (keeping the
same parameters for consistency) on top of a Dataflow architecture. Thanks to
the different architecture, a per-layer control of the fault is exploited, allowing end
users more granular control of the behaviour of each layer. The technique used in
the paper to extrapolate very interesting results have been a solid starting point
for the execution of various experiments reported in chapter 5. The authors also
investigated the quantization scaling factor. They identified a large difference in
the quantization scaling factors of the CNNs which are resilient to hardware faults
and those which are not. However, since adversarial training focuses on input
perturbations, the internal weights are more prone to hardware faults. To solve
this problem the authors proposed a weight decay and obtained convincing results.

18

Chapter 4

Methodology

This chapter focuses on the methodology behind the implementation of the Fault
Injector. It also presents and explains all the tools, libraries and framework that
have been used. It is organized as follows: section 4.1 presents Brevitas and
some of its features; section 4.2 presents FINN and explains in details how the
tool is composed and how it works; section 4.3 introduces the concepts of the
Fault Injector and lists its parameters; section 4.4 explains the first desing of the
Fault Injector highlighting its characteristics as well as its problems; section 4.5
presents the final Fault Injector design, giving also some examples of how it works
internally; section 4.6 shows the core parts of the code of the final version of the
Fault Injector.

4.1 Brevitas
Brevitas [29] is a python library that sits on top of PyTorch (an optimized tensor
library for deep learning using GPUs and CPUs) , for QNNs with a focus on
Quantization Aware Training . To undesrstand the power of Brevitas, it is important
to mention the various existing techniques to work with QNNs. In general, the
need of quantization for neural network has already been explained in section 2.3.
There are two types of quantizations:

• Post-Training quantization: in this case, the precision reduction happens
after the training. For this reason, it is really easy to apply . There are various
type of post-training quantization, based on what needs to be quantized and
the wanted precision. Tensorflow, for examples, offers Dynamic Range, Full
Range and Float16 quantizations. Post Training Quantization can be easily
used up to 8 bit. However, for low-precision it is not accurate.

• Quantization-Aware Training: this technique, as the name suggests, takes

19

Methodology

place before and during training. In fact, the network is quantized at train-
ing , and therefore the training process is done directly with the quantized
values. This allows a lower accuracy degradation compared to Post-Training
Quantization and it is mandatory for lower than 8 bits quantization [30, 31].

Brevitas exploits the second approach, since it deals with low-precision network
(down to 1 bit) . It provides the quantized implementation of the most common
neural network layers, such as the fully connected and convolutional layer. FINN is
tightly integrated with Brevitas and expects a quantized neural network exported
directly from brevitas as an ONNX model.

4.2 FINN
The FINN project is an experimental framework developed by Xilinx Research Labs
to explore deep neural network inference on FPGAs. Reading the documentation
[32] of the project, we find out that FINN is composed of "two separate but highly
related things:":

• The FINN Project: FINN research project is an experimental framework
to explore deep neural network inference on FPGAs. It specifically targets
QNN, with emphasis on generating dataflow-style architectures customized for
each network. The project is open-source and available on GitHub [33]. For
this thesis, the 0.8.1 version of FINN has been used.

• The FINN Compiler: the compiler is a central part of the FINN project
that maps QNNs dataflow-style FPGA architectures.

4.2.1 End-to-End Flow
The FINN compiler is composed of three main parts: Brevitas Export, Network
Preparation and Harware Build. The following sections focus on the steps that are
executed and which kind of manipulation is done on the network.

Brevitas Export

As already explained in section 4.1, FINN works with QNNs. Thanks to the QAT
and the features of brevitas, it is possible to export the model in ONNX format.
From the ONNX documentation, we can read that:

ONNX aims at providing a common language any machine learning
framework can use to describe its models. With ONNX, it is
possible to build a unique process to deploy a model in production
and independent from the learning framework used to build the
model

20

Methodology

The catch is that the ONNX format is independent from the learning framework
used to build the model. In addition to that, its ease of use makes it a very
good choice for manipulating and modifying neural network models. Moreover,
during the years the ONNX has grown a lot in popularity and nowadays a lot of
visualization tools exists, such as Netron [34].

In order for FINN to support quantization, the FINN developement team has
created a custom Python class, called ModelWrapper, that is used to import ONNX
models into the framework with the support of all the quantization attributes that
are present in the model.

At this step, the model has been correctly imported into FINN, and the trans-
formation process can start.

Network Preparation

This step, as expected, comes right after the Brevitas export. This section will
explain the transformations applied to the model to make it compatible with the
FINN compiler. The scope behind the transformation is to optimize the network
and convert the nodes to custom nodes that correspond to finn-hlslib [35]. The
latter contains the C++ description of custom layers for the implementation of
quantized neural networks using dataflow architecture.

The first group of transformations is called Tidy-up , it is executed after every
modification done to the network and it is composed of the following functions:

• InferShapes: Ensure every tensor in the model has a specified shape (Value-
Info).

• FoldConstants: Replace the output of a node with const-only inputs with a
precomputed result.

• GiveUniqueNodeNames: Give unique names to each node in the graph
using enumeration, starting with given prefix (if specified in the constructor)

• GiveReadableTensorNames: Give more human-readable names to all
internal tensors. You should apply GiveUniqueNodeNames prior to this
transform to avoid empty node names, as the readable names are based on
the node names.

• InferDataTypes: Infer QONNX [36] DataType info for all intermediate/out-
put tensors based on inputs and node type.

These transformations are significant since they are repeated after every step of
the whole process. This ensures that the model is always in a consistent state.

21

Methodology

1 def step_tidy_up(model: ModelWrapper, cfg: DataflowBuildConfig):
2 """
3 Run the tidy-up step on given model. This includes shape
4 and datatype inference, constant folding, and giving nodes
5 and tensors better names.
6 """
7 model = model.transform(InferShapes())
8 model = model.transform(FoldConstants())
9 model = model.transform(GiveUniqueNodeNames())

10 model = model.transform(GiveReadableTensorNames())
11 model = model.transform(InferDataTypes())
12 model = model.transform(RemoveStaticGraphInputs())
13 if VerificationStepType.TIDY_UP_PYTHON in

cfg._resolve_verification_steps():
14 verify_step(model, cfg, "initial_python", need_parent=False)
15 return model

Listing 1: Python code of the Tidy-up step

Figure 4.1: FINN transformations

Moving to Figure 4.1, the first step is called Streamlining Transformations.
Streamlining eliminates floating point operations in a model by moving them
around, collapsing them into one operation and transforming them into multi-
thresholding nodes. Several transformations are involved in this step. To have a
deeper understanding of the streamlining transformations, the FINN documentation
[37] provides a detailed explanation of each transformation.

The next step is the Convert to HLS Layers . This step is very important

22

Methodology

to understand the tight integration that exists between the FINN compiler and
finn-hlslib. In fact, as stated on the documentation of this step:

HLS layers are layers that directly correspond to a finn-hlslib func-
tion call. For example pairs of binary XNORPopcountMatMul
and MultiThreshold layers are converted to MatrixVectorActivation
layers.

In this thesis, the focus is on one particular layer: the MatrixVectorActivation.
At the end of this step the network is divided into a mixture of several HLS and
non-HLS layers. The Dafaflow Partitioning step is the second-last step in the
Figure 4.1. Here the HLS and non-HLS layers are separated and further processed.
Moreover, a starting parallelism of 1 PE and 1 SIMD is assigned to each HLS layer.

The last step is the Folding Adjustment. This step is responsible for assigning
the desired parallelism to each layer of the network. The assignable parameters are
the number of PEs and the number of SIMDs. This allows achieving the desired
performance, latency and area overhead. The higher the PEs and SIMDs the higher
the performance, but the higher the area.

Hardware Build and Deployment

Figure 4.2: FINN transformations

Entering this part of the flow, the model is ready to be synthesized thanks to the
Xilinx tools, such as Vitis HLS and Vivado. Firstly, for each layer of the network,

23

Methodology

an IP is created. Afterwards, all these blocks are interconnected to replicate the
network model’s structure. Moreover, some FIFOs are inserted between streaming
layers to ensure the correct data flow. The need of FIFOs is motivated by the fact
that data are read and written in bursts; therefore, if there are no data ready to be
read, the computation slows down. It is then essential to correctly size the depth
of the FIFOs, to avoid stalls in the execution pipeline. Choosing the wrong depth
can lead to a deadlock in the execution pipeline or high latency.

Now that the accelerator is ready, the process continues by preparing the top-
level project and the host code. This step is mainly done by Vivado, responsible for
generating the bitstream. FINN will now insert custom hardware-oriented ONNX
nodes into the graph. These are DMA engines for moving data into and out of the
accelerator (from DRAM) and data width converters between consecutive nodes
where required.

FINN generates a Python driver to test the model’s performance and accuracy
on hardware. This driver is responsible for loading the bitstream into the FPGA,
initializing the accelerator, and packing/unpacking the input and output tensors.
All these features are exploited thanks to the PYNQ [38] APIs.

The driver has two execution modes:

• Validate: this mode tests the model’s accuracy on the FPGA.

• Throughput: this mode evaluates the model’s performance on the FPGA.
In particular, it measures the following metrics:

– Runtime: the time required to execute the model on the FPGA.
– Throughput[images/s]: the number of images processed per second.
– DRAM_in_bandwidth[MB/s]: the amount of data read from DRAM

per second.
– DRAM_out_bandwidth[MB/s]: the amount of data written to

DRAM per second.
– Fold_input[ms]: the time required to fold the input tensor into the

accelerator’s input format.
– Pack_input[ms]: the time required to pack the input tensor into the

accelerator’s input format.
– Copy_input_data_to_device[ms]: the time required to copy the

input tensor from the host to the FPGA.
– Copy_output_data_from_device[ms]: the time required to copy

the output tensor from the FPGA to the host.
– Unpack_output[ms]: the time required to unpack the output tensor

from the accelerator’s output format.

24

Methodology

– Unfold_output[ms]: the time required to unfold the output tensor
from the accelerator’s output format.

FINN Internal Architecture

For this thesis, the core part of the FINN internal architecture is the module that
executes the convolution. In the following subsections, all the details of how FINN
implements the convolution are explained.

Convolution Input Generator

This module is responsible for preparing the input data that are used to execute the
matrix vector multiplication. Functionality wise, the Convolution Input Generator
uses the algorithm explained in section 2.5. The FINN variant of the Convolution
Input Generator introduces a new parameter, the SIMD. This parameter is
responsible for the parallelism and it is very important to set it coherently with the
SIMD of the Matrix Vector Activation, otherwise the execution will return wrong
results.

Matrix Vector Activations

This module executes the actual dot product between the prepared input data and
the weights. The two most important parameters of this module are the SIMD
and the PE:

• Single Instruction Multiple Data (SIMD): This value exploits the input
lanes of each PE.

• Processing Element (PE): This value exploits the number of computational
units.

The overview of the structure is shown in Figure 4.3. P represents the number
of PE, while S represents the number of SIMD. Each SIMD of each PE receives a
specific value of input and weights and computes the multiplication. The temporary
results is generally saved in an accumulator, as shown in Figure 4.6, until the
convolutional window has been completed when the final value is then written the
output tensor.

Convolution in FINN

To clearly explain how the convolution operation is implemented in FINN based on
the value of PE and SIMD, the following example can be very useful. First, let’s
define the dimensions and parameters of the layer [40]:

25

Methodology

On the RTL Implementation of FINN Matrix Vector Compute Unit A PREPRINT

=

Figure 1: Input, weight and output matrix of convolution implemented as GEMM.

Figure 2: Processing elements (PEs) and SIMDs arrangement.

output vector. Within each PE, number of SIMD lanes will be equal to the number of columns in the weight matrix.
This arrangement is graphically shown in Fig. 2.

However, resources in an FPGA are limited and a fully parallel implementation of the MVU may not be possible. Or
conversely, throughput requirements are not high. Then, it is important to time-multiplex or fold the QNN onto fewer
hardware resources. Time multiplexing is a general technique where only parts of the input are used in a given time
instant for computation on a given hardware resource and the hardware resource is re-used for other time instances
[35].

Consider an example where the weight matrix has a 4 × 4 dimension while the input image is a 4 × 1 vector. Let
the number of PEs equal two with two SIMD lanes in each PE. Assume that the four elements of the input vector are
[x0, x1, x2, x3] and those of the weight matrix are:

Y =

y00 y01 y02 y03

y10 y11 y12 y13

y20 y21 y22 y23

y30 y31 y32 y33

 (1)

The mapping between the input vector/weight matrix to each PE/SIMD, on each clock cycle, is shown in Fig. 3. It
can be seen that elements of the input vector are re-used, thus necessitating the use of an input buffer. This results in a
folded or time-multiplexed architecture whereas setting PE and SIMD to be one will result in a fully unfolded, serial
architecture.

Processing Element and SIMD Lanes Each processing element consists of several SIMD lanes. This arrangement
is shown in Fig. 2. The accumulator is only needed in case of folded architectures to accumulate the outputs of each
clock cycle until the final output is computed.

Each SIMD lane essentially computes the product of the input vector element and weight matrix element, as also
shown in Fig. 3. FINN only used BNNs [14] which was then extended to binary weights and arbitrary precision input
vectors in FINN-R [15]. Thus, the architecture of MVU supports three different types of SIMD lanes/elements for the
different datatypes. The implementations are listed here and shown in Fig. 4 along with associated logic for adding
the output of each SIMD and accumulator.

• XNOR followed by popcount
• Binary weights, interpreted as {±1}, followed by an adder tree

6

Figure 4.3: Structure of the computational unit[39]

• Padding: 0

• Stride: 1

• Input shape1: Nif × Nix

• Weight shape2: Nof × Nif × N2
kd

• Output tensor3: Nof × N2
od

• PE: PE

• SIMD: SIMD

The input tensor is reshaped based on the number of SIMD and its shape is:

Nod × Nod × N2
kd · Nif

SIMD
× SIMD

The reshaped input tensor has more values than the original one. This happens
because data redundancy is exploited in the reshaping phase to maximize per-
formance. Figure 4.4 shows an example of reshaping of an input tensor with 2
SIMD.

The weight tensor is reshaped (Figure 4.5) based on both the number of PE
and SIMD and its shape is:

Nof · Nif · N2
kd

PE · SIMD
× PE · SIMD

1Supposing Nix = Niy = Nid

2Supposing Nkx = Nky = Nkd

3Supposing Nix − Nkx − 1 = Niy − Nky − 1 = Nod

26

Methodology

(a) Input Tensor Pytorch repre-
sentation

(b) Input Tensor after reshaping with 2 SIMD

Figure 4.4: Input tensor before and after reshaping

The reshaped weight tensor is read N2
od times. So its final shape is:

N2
od × Nof · Nif · N2

kd

PE · SIMD
× PE · SIMD

When the tensors are in the correct shape, the computation can start. The
structure of the computational unit is shown in Figure 4.6. The accumulator plays
a crucial role and since the computation takes more than one cycle, the temporary
value is accumulated in that block (usually initialiazed to 0).

Figure 4.7 shows the first iteration of the computational loop. The orange values
are passed to both computational units. Conversely, the green values are passed to
the first computational unit, while the yellow ones are to the second. So these are
the operations executed by the units:

Accumulator Computational Unit 0 = I0,0,0 · W 0
0,0,0 + I1,0,0 · W 0

1,0,0

Accumulator Computational Unit 1 = I0,0,0 · W 1
0,0,0 + I1,0,0 · W 1

1,0,0

Figure 4.8 shows the second iteration. In this case, the new value of the
accumlators is the old value of the accumulators plus the new computed value
based on the Inputs and Weights received. After N2

kd·Nif

SIMD
iterations (when I2,1,1

and I3,1,1 are reached), the accumulators contain two of the final values, which are
written to the output tensor. Therefore, the accumulators are reset to 0 and the

27

Methodology

(a) Weight Tensor Pytorch representation (b) Weight Tensor after reshaping
with 2 SIMD

Figure 4.5: Weight Tensor before and after reshaping

Multiplication

Input Weight

Output Accumulator

Sum

Figure 4.6: Processing Element structure

computation restarts to compute another convolution window (Figure 4.9). This
process is repeated until all values have been processed and the output tensor is
complete.

28

Methodology

(a) Input tensor. The orange values are passed to both
computational units

(b) Weight Tensor. The green val-
ues are passed to the first compu-
tational unit, the yellow ones to
the second one

Figure 4.7: First iteration of the computation

4.3 Fault Injector
As introduced in chapter 1 , it is crucial to evaluate the accuracy of a neural network
model in adversarial conditions. The design of this Fault Injector is mainly focused
on soft-errors, such as bit-flips. The parameters of the Fault Injector, keeping them
consistent with [28], are the following:

• Input Faulty: whether the input is faulty or not.

• Weight Faulty: whether the weights are faulty or not.

• Bit Faulty: the position of bit to be flipped.

• Percentage of MAC faulty: the percentage of MAC that is faulty.

• Frequency: the frequency of the fault occurrence.

To better understand the use of these parameters, it’s better to first dive into
the design on the Fault Injector.

29

Methodology

(a) Input tensor. The orange values are passed to both
computational units

(b) Weight Tensor. The green val-
ues are passed to the first compu-
tational unit, the yellow ones to
the second one

Figure 4.8: Second iteration of the computation

4.4 Intial Fault Injector Design

At the begging of the project, the easiest solution was to create a Fault Injector as
an additional layer to the original neural network. The interface of the added layer,
shown in Figure 4.10, is the following:

• input_values: The values computed by the previous convolutional layer.

• frequency: The frequency of the fault occurrence.

• output_values: The faulted values computed by the Fault Injector.

To clarify the setup, Figure 4.11 shows a zoom of the original model, where
each layer is interconnected to the next one. After inserting the Fault Injector, the
network structure is shown in Figure 4.12.

The internal of the added layer is really simple. Based on the frequency, it flips
some bit of the input. Let’s say the frequency is 50%, then every two bits one will
be flipped.

30

Methodology

(a) Input tensor. The orange values are passed to both
computational units

(b) Weight Tensor. The green val-
ues are passed to the first compu-
tational unit, the yellow ones to
the second one

Figure 4.9: nth iteration of the computation

Fault Injector

input_values

frequency

output_values

Figure 4.10: Fault Injector interface

4.4.1 Adding a new layer in FINN
To exploit the flexibility and integration with FINN, the insertion of the Fault
Injector in the network is done coherently with the FINN flow.

The flow, as already described, is composed of various steps. Inserting a new
layer in the network is as easy as adding a new phase in the flow. The added step
receives the ONNX model of the network, that is modified as needed. To insert
a custom layer define a new class that inherits from HLSCustomOp. It is essential
to override some original class methods to obtain the expected behaviour when
generating the HLS code. For simplicity, only the most important are listed here.

31

Methodology

0101100Convolutional

layer

Convolutional

layer

Figure 4.11: Layers without Fault Injector

0101100
Fault Injector

0000110
0000110Convolutional

layer

Convolutional

layer

Figure 4.12: Initial Fault Injector design

The complete list of methods is visible by reverse engineering the original class.

• get_nodeattr_types: this method returns a dictionary containing the
node’s attributes. Some of them are very important, such as PE and SIMD,
that define the parallelism of the layer.

• defines: this method writes in the output dictionary the #define directives
that will be used in the HLS code.

• pragmas: this method writes in the output dictionary the #pragma directives
that will be used in the HLS code.

• blackbox_function: this method writes the top-level function of the HLS
code in the output dictionary.

• docompute: this method writes the call to the finn-hlslib function that
implements the layer in the output dictionary.

4.4.2 Problems of the Initial Design
It’s clear from the previous section that implementing this design is pretty simple.
However, some major drawbacks make this design not suitable for real-world
applications.

• Network alteration: the network is altered by adding one or more layers
and this may cause a very high overhead in terms of latency and resources.

• Control of the Faults: the control of the faults is not as granular as it
should be. The user can only control the frequency of the faults, but this
is only one of the many parameters that are suitable for a complete fault
injection [28] (refer to the bullet points in section 4.3)

32

Methodology

4.5 Final Fault Injector design
The final design is not only an improvement of the initial design but a complete
redesign. The main difference is that the fault injector is not a standalone layer
anymore but an extension of the original convolutional layer. This means the
network is no longer altered structure-wise, and the user can control the faults
more granularly.

4.5.1 MatrixVectorActivation
For this purpose, the MatrixVectorActivation has been modified and adapted.
Listing 8 shows the interface of the original MatrixVectorActivation module,
while Listing 9 shows the interface of the custom MatrixVectorActivation that
supports faults. In the next sections, all the custom MatrixVectorActivation
parameters are explained.

4.5.2 Parameters
In this section, the additional parameters of Listing 9 with respect to Listing 8 are
explained.

• is_input_faulty: this parameter enables the fault on the layer’s input. If
it is set to 1, the input is corrupted. Figure 4.13 shows a possible hardware
implementation of this module.

is_input_faulty

faulty_mask

0

1

00...000

input_value

new_input_value

Figure 4.13: Hardware structure of is_input_faulty parameter

• is_weight_faulty: this parameter enables the fault on the layer’s weight. If
it is set to 1, the weights are corrupted. Figure 4.14 shows a possible hardware
implementation of this module.

33

Methodology

is_weight_faulty

faulty_mask

0

1

00...000

weight_value

new_weight_value

Figure 4.14: Hardware structure of is_weight_faulty parameter

• mac_frequency_mask: this parameter is used to control the frequency of
the faults. It is a NUM_BITS_FREQUENCY-bit integer that is rotated to the right
every time a MAC operation is performed. If the bit at the rightmost position
(LSB) is set to 1, the MAC operation is faulty, otherwise, it is not. In chap-
ter 5, NUM_BITS_FREQUENCY is set to 128. In general, the mac_frequency_mask
can assume any value between 0 and NUM_BITS_FREQUENCY. The lowest pos-
sibile non-zero frequency is 1

NUM_BIT S_F REQUENCY
, while the highest is

NUM_BIT S_F REQUENCY
NUM_BIT S_F REQUENCY

. Figure 4.15 shows a possibile hardware implementa-
tion of this module.

......LSB MSB

Parallel Load

fault_decision

Figure 4.15: Hardware structure of is_input_faulty parameters

• bit_faulty: this parameter controls the bit to flip. It is the same for both
inputs and weights, and its size is

max(log2(num_bits_input), log2(num_bits_weights))

This value is NUM_BITS_BIT_FAULTY-wide. Figure 4.16 shows a possible hard-
ware implementation of this module.

34

Methodology

bit_faulty

00...010

0

1

00...001

2

.

.

.

.

NUM_BITS_BIT_FAULTY - 1
10...000

00...100

faulty_mask

.

.

.

.

Figure 4.16: Hardware structure of is_input_faulty parameters

• mac_faulty: this parameter controls whether a specific MAC is faulty. It
is a 2-dimensional array (that collapses to a 1-dimension array when one
parameter between PE and SIMD is 1) of 1-bit values. If the bit is set to 1, the
corresponding MAC is faulty.

Figure 4.17 shows a top-level view of the full module.

Frequency

Matrix of

MAC Faulty

is_input_faulty

is_weight_faulty

Weight

Computation
Mux
Selector

Input

Computation
Mux
Selector

new input

new weight

Figure 4.17: Top-level block diagram of the final fault injector implementation

To better clarify the meaning of these parameters, let’s see two examples
considering the following configuration for a convolutional layer.

• SIMD: 2

• PE: 2

35

Methodology

• num_bits_input: the number of bits needed to represent the input values.
In this case, it is 8.

• num_bits_weights: the number of bits needed to represent the values of
the weights. In this case, it is 8.

• is_input_faulty: 1

• is_weight_faulty: 1

• mac_frequency_mask: defined, for simplicity, on 8 bits, with a value of
11111111

• bit_faulty: 1

• mac_faulty:
(P E0 P E1

0 1 SIMD0

1 0 SIMD1

)

In this case, the input and weights are both faulty. So let’s imagine that
the computational unit represented by PE0 and SIMD0 (position (0,0) of the
mac_faulty matrix) receives 24 as input and 2 as weights. Let’s convert these
values to binary on 8 bits:

24 = 00011000
2 = 00000010

The value of mac_faulty at the position (0,0) is 0. This means that the
operation will be executed normally. So the result of the MAC operation is:

24 · 2 = 48

Now, keeping the same value of input and weights for simplicity, let’s consider
the computational unit represented by PE0 and SIMD1 (position (0,1)). In this
case, the value of mac_faulty at the position (0,1) is 1. This means that the
operation may be faulty and depends on the value of mac_frequency_mask. In this
case, the value of mac_frequency_mask is 11111111, which means that every MAC
operation is faulty. Since is_input_faulty and is_weight_faulty are both 1,
the value of input and weights are faulted accordingly to the value of bit_faulty.
In this case, bit_faulty is 1, so the LSB - 1 flipped. Therefore the value of input
and weights are:

26 = 00011010
0 = 00000000

36

Methodology

The result of the MAC operation is:

26 · 0 = 0

To understand the real usage of mac_frequency_mask, let’s continue the example
keeping the same configuration but changing the value of mac_frequency_mask to
00000001. In this case, only one operation out of eight executed by each MAC is
faulty. For this variation of the example, it is crucial to consider two iterations,
where in every iteration each MAC executes one operation.

• Iteration 1: the value of mac_frequency_mask is 00000001. This means
that the first operation executed by each MAC is faulty because the LSB is
1. Considering the computational unit represented by PE0 and SIMD1, the
result will be 0, as already shown above.

• Between Iteration 1 and Iteration 2: the value of mac_frequency_mask
is rotated (it is not important the direction of the rotation). For this example,
the rotation is executed to the right, so the value of mac_frequency_mask
becomes 10000000 , as shown in Equation 4.1:

00000001 → 10000000 (4.1)

• Iteration 2: the value of mac_frequency_mask is 10000000 . This means
that the second operation executed by each MAC is not faulty because the
LSB is 0.

4.6 Fault Injection code
Now that all the parameters are defined and clearly explained, let’s see the actual
code implementation. There have been many iterations of the code, but for
simplicity, only the best one is reported. At the end of the section, where the
results in terms of area overhead are shown, there will be a comparison between
the first version of the Fault Injector (the worst one) and the one explained (the
best one). Since the code is long and complex, only the core parts are reported.

4.6.1 Matrix Vector Activation
The Matrix Vector Activation Unit, as already explained, is the module that
effectively executes the computations behind the convolution. Before going into
the explanation of the modified code, let’s analyze the logic behind the original
code. The code is shown in Listing 2.

37

Methodology

1 // compute matrix-vector product for each processing element
2 for(unsigned pe = 0; pe < PE; pe++) {
3 #pragma HLS UNROLL
4 auto const act = TSrcI()(inElem, 0);
5 auto const wgt = TWeightI()(w[pe]);
6 //auto const wgt = w[pe];
7 accu[0][pe] = mac<SIMD>(accu[0][pe], wgt, act, r, 0);
8 }

Listing 2: Part of the code of the original Matrix Vector Activation Unit

The loop iterates over all the PEs and for each one of them, it executes the
MAC operation. The most important parameters of the mac are:

• accu[0][pe]: the accumulator of the MAC operation.

• wgt: the weight of the MAC operation.

• act: the input of the MAC operation.

• r: the type of resource used for the MAC operation. There are three types of
resources:

1. ap_resource_lut: force HLS to implement the multiplier in LUTs
2. ap_resource_dsp: force HLS tool to implement the multiplier in DSP48
3. ap_resource_dflt: let the HLS tool choose the best one

It’s important to notice the use of #pragma. Citing the Xilinx Documentation
[41]:

The HLS tool provides pragmas that can be used to optimize the
design, reduce latency, improve throughput performance, and reduce
area and device resource usage of the resulting RTL code

In most of the pieces of code shown in this section, there is the use of the
#pragma HLS UNROLL [42]. This directive is used to exploit the unrolling technique,
which is a technique that allows the compiler to expand the loop into a sequence
of instructions. This may seem counterintuitive since it increases the code size.
However, in the hardware implementation, these operations can be parallelized and
drastically improve the throughput. The loop bounds must be known at compile
time to unroll it completely.

38

Methodology

4.6.2 Multiply Accumulate
The (MAC) function is really simple. It is composed of a for-loop that iterates
over the number of SIMDs and for each one of them, it calls the mul function,
which executes the multiplication of the weight (represented by c) and the input
(represented by d) and then it adds the result to the accumulator. The code is
shown in Listing 3.

1 template<
2 unsigned N,
3 typename T,
4 typename TC,
5 typename TD,
6 typename R
7 >
8 T mac(
9 T const &a,

10 TC const &c,
11 TD const &d,
12 R const &r,
13 unsigned mmv
14) {
15 #pragma HLS inline
16 T res = a;
17 for(unsigned i = 0; i < N; i++) {
18 #pragma HLS unroll
19 res += mul(c[i], d(i,mmv), r);
20 }
21 return res;
22 }

Listing 3: Original Multiply Accumulate (MAC) function

The #pragma HLS inline [43] directive is used to force the compiler to inline
the function. This means that the compiler will replace the function call with the
function body. This is done to reduce the number of function calls and to increase
the performance of the code, but can also increase the area overhead of the RTL
implementation.

4.6.3 Multiply
The Multiply (MUL) function is the one that executes the multiplication of the
weight and the input. The code is shown in Listing 4. The #pragma HLS BIND_OP

39

Methodology

[44] specifies that for a specific variable, a specific operation (op) should be
mapped to a specific device resource for implementation (impl) in the RTL.

1 template<
2 typename TC,
3 typename TD
4 >
5 auto mul(
6 TC const &c,
7 TD const &d,
8 ap_resource_lut const&
9) -> decltype(c*d) {

10 #pragma HLS inline
11 decltype(c*d) const res = c*d;
12 #pragma HLS BIND_OP variable=res op=mul impl=fabric
13 return res;
14 }

Listing 4: Original Multiply (MUL) function

4.6.4 Modified code
The interface of the custom Matrix Vector Activation Unit (MVAU) is shown in
Listing 9. What may look strange is the definition of the mac_faulty, that is a 2D
array of size (PE, SIMD). After some test, it was found that the best implementation
in terms of LUTs usage is the 2D array, instead of the more straightforward 1D
array. The overhead of selecting the correct element from the 1D array is higher
than the reduction in LUTs obtained using an ap_unit<PE*SIMD>.

Therefore, by using an ap_uint<1> mac_faulty [PE][SIMD] the indexing is
done really easily, by using mac_faulty[pe]. The other parameters that charac-
terize a fault are propagated to the mac function, as shown in Listing 5.

40

Methodology

1 for(unsigned pe = 0; pe < PE; pe++) {
2 #pragma HLS UNROLL
3 auto const act = TSrcI()(inElem, 0);
4 auto const wgt = TWeightI()(w[pe]);
5 accu[0][pe] = mac<SIMD, NUM_BITS_BIT_FAULTY>(
6 accu[0][pe],
7 wgt,
8 act,
9 r,

10 0,
11 is_input_faulty,
12 is_weight_faulty,
13 mac_frequency_mask[0],
14 bit_faulty,
15 mac_faulty[pe]
16);
17 }

Listing 5: Part of the code of the custom Matrix Vector Activation Unit

The mac function is shown in Listing 11. Also in this case, the implementation
is straightforward, since all the necessary parameters are propagated to the mul
function. The main reason behind the decision of moving all the computational
complexity to the deepest function is to execute the most expensive operations with
the smallest possible parallelism. This is done to reduce the number of hardware
resources (LUTs and DSPs) used in the implementation.

The function where the faults are injected and the computations are executed
is the mul, whose code is shown in Listing 6. To better explain the flow, let’s
adapt (keeping the same configuration) the example made in subsection 4.5.2 to be
coherent with the code nomenclature.

Let’s consider the computation unit represented by PE0 and SIMD0. The value
received by the function are the following:

• c (weight) = 2

• d (input) = 24

• is_input_faulty = 1

• is_weight_faulty = 1

41

Methodology

• bit_faulty = 1

• mac_faulty = 0

• mac_frequency_mask = 1

The first thing to do is to check, based on the mac_frequency_mask value, if the
MAC is faulty. This value is saved in the mac_faulty_frequency_mask variable,
which must be anded with is_input_faulty and is_weight_faulty to check if
the input and the weight are faulty. If, after all this computation, the obtained
value is 1, then the MAC is operation must be faulted. To manage the fault, which
is effectively a bit, the decision is to use a XOR operation (truth table in Table 4.1).
In fact, xoring a value with 1 flips the value, while xoring a value with 0 does not
change it. After all these computations, we obtained the new value for both the
weights and the activations. The final result is the multiplication of the two values,
which the function returns.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.1: XOR table

Let’s try to follow the execution by replacing the variable names with their
values:

mac_faulty_frequency_mask = 0 AND 1 = 0
new_c[bit_faulty] = 1 XOR (1 AND 0) = 1
new_d[bit_faulty] = 0 XOR (1 AND 0) = 0

new_c = 2
new_d = 24

res = 2 · 24 = 48

42

Methodology

1 template <
2 unsigned NUM_BITS_BIT_FAULTY,
3 typename TC,
4 typename TD
5 >
6 auto mul(
7 TC const &c,
8 TD const &d,
9 ap_resource_dsp const &,

10 const ap_uint<1> &is_input_faulty,
11 const ap_uint<1> &is_weight_faulty,
12 const ap_uint<NUM_BITS_BIT_FAULTY> &bit_faulty,
13 const ap_uint<1> &mac_faulty,
14 const ap_uint<1> mac_frequency_mask
15) -> decltype(c * d) {
16 #pragma HLS inline
17 ap_uint<1> mac_faulty_frequency_mask = mac_faulty &
18 mac_frequency_mask;
19 TC new_c = c;
20 new_c.set_bit(bit_faulty, c[bit_faulty] ^ (is_weight_faulty &
21 mac_faulty_frequency_mask));
22 TD new_d = d;
23 new_d.set_bit(bit_faulty, d[bit_faulty] ^ (is_input_faulty &
24 mac_faulty_frequency_mask));
25 decltype(new_c * new_d) res = new_c * new_d;
26 #pragma HLS BIND_OP variable = res op = mul impl = dsp
27 return res;
28 }

Listing 6: Custom Multiply (MUL) function

The last modification done to the code is the management of the frequency. The
implementation is based on inferring a shift register, as explained in the Vitis HLS
Documentation [45]. The code is shown in Listing 7.

1 // Rotate the mac_frequency_mask
2 ap_uint<1> temp = mac_frequency_mask[0];
3 for (int i = 0; i < NUM_BITS_FREQUENCY - 1; ++i)
4 #pragma HLS unroll
5 mac_frequency_mask[i] = mac_frequency_mask[i+1];
6 mac_frequency_mask[NUM_BITS_FREQUENCY - 1] = temp;

Listing 7: Code to rotate the mac_frequency_mask

43

Chapter 5

Experiments

This section is dedicated to explaining the experiments and presenting the interest-
ing results obtained. To keep this thesis related to real-world application, all the
experiments have been done on a neural network called Mobilenet v1 [46] . More
in general, Mobilenets are a class of neural networks mainly focused on mobile
and embedded computer vision [46]. The structure of Mobilenet v1 is shown in
Table B.1.

5.1 Per-layer Overhead
Before moving on to a full network, it is important to analyze the resource overhead
of a single layer. Table 5.1 shows the resource usage of conv7 (refer to Table B.2)
of Mobilenet-v1. faulted and not faulted. Table 5.2 shows the comparison of the
faulted and not faulted conv6 (refer to Table B.2). This layer implements the
depthwise convolution .

Layer Type PE SIMD Latency (ns) FF LUT
Original Layer 16 8 2.168e + 06 1408 5269
Faulted Layer 16 8 2.168e + 06 2329 8339

Table 5.1: Matrix Vector Activation Overhead

Layer Type PE SIMD Latency (ns) FF LUT
Original Layer 16 1 1.219e + 06 579 1430
Faulted Layer 16 1 1.219e + 06 1103 1944

Table 5.2: Vector Vector Activation Overhead

44

Experiments

For MVAU the overhead in terms of FF is around 65.4%. In terms of LUT
the increase is around 58.3%. On the other hand, VVAU shows an increase of
90.5% in terms of FF and 35.9% in terms of LUT. These results may not look very
convincing, since the overheais pretty high. The reason of this increase is mainly
due to the addition of 5 parameters, and the logic to control them. . However, as
explained in the following section, they allowed building Mobilenet-v1 with little
parallelism reduction (see Figure B.3 and Figure B.4).

5.2 Full Network Overhead
Firstly a reference mobilenet-v1 build has been done. The starting pretrained
model is available in the brevitas repository. Therefore, following the instruction
of the finn-examples repository allowed the build of the reference model with the
folding config shown in Figure B.3. Table 5.3 shows the resource usage.

Resource Utilization Available Utlization %
LUT 189474 230400 82.236984

LUTRAM 9781 101760 9.611832
FF 167276 460800 36.301216

BRAM 281.5 312 90.224365
URAM 69 96 71.875

DSP 50 1728 2.8935184
BUFG 26 544 4.779412

Table 5.3: Resource usage of the reference model with no fault and the original
folding config

Moving on to the faulty model, keeping the same folding config , the build did
not end up properly because of the need for more resources (LUT) compared to the
available ones. The required resources were slightly higher, around 3% more, but no
optimization has been found to fit the board. That 3% overhead requires, for the
synthesis to complete, a LUT availability of 237312. Comparing the latter value with
the one shown in Table 5.3, the percentage increase is around 25.2%, which is much
smaller than per-layer overhead already described in section 5.1. The reason of this
divergence is due to the presence of addition module used to create all the necessary
interconnections to make the FPGA work properly. Figure 5.1 shows the top-
level project generated by FINN. The hardware implementation of the considered
network is contained inside the StreamingDataflowPartition_1. All the other
blocks are necessary to create the correct interconnections between the SoC and
the Logic, in order to move data to the accelerator and to read data after they have
been processed. In addition to that, inside the StreamingDataflowPartition_1

45

https://github.com/Xilinx/brevitas/tree/master/src/brevitas_examples/imagenet_classification
https://github.com/Xilinx/finn-examples/tree/main/build/mobilenet-v1

Experiments

between each layer there is a FF, that is added by FINN as already explained in
section 4.2.1

StreamingDataflowPartition_1

StreamingDataflowPartition_1_v1_0

s_axilite_0

s_axilite_1

s_axilite_2

s_axis_0
m_axis_0

ap_clk

ap_rst_n

axi_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

idma0

StreamingDataflowPartition_0_v1_0

s_axi_control_0
m_axi_gmem0

m_axis_0
ap_clk

ap_rst_n

odma0

StreamingDataflowPartition_2_v1_0

s_axi_control_0

m_axi_gmem0
s_axis_0

ap_clk

ap_rst_n

rst_zynq_ps_166M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

smartconnect_0

AXI SmartConnect

S00_AXI

S01_AXI
M00_AXI

aclk

aresetn

zynq_ps

Zynq UltraScale+ MPSoC

M_AXI_HPM0_FPD
S_AXI_HP0_FPD

maxihpm0_fpd_aclk

saxihp0_fpd_aclk

pl_ps_irq0[0:0]

pl_resetn0

pl_clk0

Figure 5.1: Top Level FINN Project (Zoom in ??)

However, it is a pretty good improvement compared to the initial version of the
Fault Injector, where the same faulty build required double the available resources
(around 100% more). With more time available and further investigation, an
optimization to reduce that 3% is perfectly doable. To bypass this problem, a new
folding config, showed in Figure B.4) has been generated to lower the resources to
fit the faulty model. The resource usage of the reference model (no fault) with the
new folding config are reported in Table 5.4. On the other hand, Table 5.5 shows
the resource usage of the model with all layer faulty with the custom folding config.

Resource Utilization Available Utlization %
LUT 167549 230400 72.720924

LUTRAM 9781 101760 9.611832
FF 147533 460800 32.01671

BRAM 267.5 312 85.73718
URAM 69 96 71.875

DSP 50 1728 2.8935184
BUFG 11 544 2.022059

Table 5.4: Resource usage of the reference model with no fault and the new
folding config

The biggest resource overhead is in the LUT and it is about 18%. However, the
faulty model is set up to have all layers faulty so that the end user can decide at
runtime if a specific layer should be correct or faulty. If it is decided to be faulty,
the parameters explained in subsection 4.5.2 can be set. This setup, also if the
resource overhead in terms of LUT and FF is not negligible, allows synthesizing
the model only once and then be able to test different configurations at runtime.
To make everything as flexible as possible in the case of a smaller FPGA with

46

Experiments

Resource Utilization Available Utlization %
LUT 207926 230400 90.24566

LUTRAM 10465 101760 10.284001
FF 175272 460800 38.03646

BRAM 282.5 312 90.544876
URAM 69 96 71.875

DSP 50 1728 2.8935184
BUFG 10 544 1.838235

Table 5.5: Resource usage of the faulted model with all layer faulty with the new
folding config

fewer resources, it is possible to decide before the synthesis, which layer should
be faulty. By doing this, the FINN compiler inserts the normal layer instead of
the one with the fault support, consistently reducing the resource overhead as
already explained in section 5.1. This guarantees a modular resource usage based
on hardware availability. The resource usage is only one of the metrics to take into
consideration when comparing the modified design with the original one. Another
key metric is the computational performance, measured in images processed in
one second. The final version of the Fault Injector has been designed in such
a way to minimize as much as possible any performance degradation. As it is
visible in Table 5.6 and Table 5.7 the performance in terms of throughtput are
almost identical, as well as other metrics, which are all within a narrow margin of
error (the slight variation of some parameters may be due to the non-deterministic
performance of any computational device). What is interesting is the fact that
the performance of the models with the Figure B.4 are really similar compared
to Figure B.3, which means that the little parallelism reduction is not significant
performance-wise.

5.3 Bit Impact

The possibility of the designed Fault Injector to decide which bit should be flipped
allowed the verification of the Bit Sensitivity. As already observed by the authors
in [28], increasing the importance of the flipped bit (such as flipping the MSB
instead of the LSB) decreases the network accuracy. This is a reasonable behaviour,
since the higher the importance of the bit (closer to MSB), the higher the error
introduced. Figure 5.2 shows an example of a the accuracy degradation with the
bit importance increase. The configuration, reported in the image’s caption, is
applied identically to all layers.

47

Experiments

runtime[ms] 495.8786964416504
throughput[images/s] 201.66222247010143
DRAM_in_bandwidth[MB/s] 30.355811023979427
DRAM_out_bandwidth[MB/s] 0.0020166222247010143
fclk[mhz] 99.999
batch_size 100
fold_input[ms] 0.1327991485595703
pack_input[ms] 0.08940696716308594
copy_input_data_to_device[ms] 16.594886779785156
copy_output_data_from_device[ms] 0.2257823944091797
unpack_output[ms] 109.7860336303711
unfold_output[ms] 0.04792213439941406

Table 5.6: Throughput performance of faulted Mobilenet-v1 with Figure B.4

runtime[ms] 495.87321281433105
throughput[images/s] 201.6644525572363
DRAM_in_bandwidth[MB/s] 30.356146714535665
DRAM_out_bandwidth[MB/s] 0.002016644525572363
fclk[mhz] 99.999
batch_size 100
fold_input[ms] 0.11563301086425781
pack_input[ms] 0.08177757263183594
copy_input_data_to_device[ms] 14.848709106445312
copy_output_data_from_device[ms] 0.16808509826660156
unpack_output[ms] 107.24759101867676
unfold_output[ms] 0.037670135498046875

Table 5.7: Throughput performance of not faulted Mobilenet-v1 with Figure B.4

5.4 Frequency Impact

As in the previous section, also for the frequency all other parameters have been
kept constant. The considered frequency value are 1, 0.5, 0.25, 0.12, 0.062, 0.0313,
0.0156, 0.0078 . Figure 5.3 shows how the frequency impacts accuracy. It’s clear
that increasing the frequency, which is equal to increasing the total number of
faults, decreases the accuracy.

48

Experiments

runtime[ms] 493.9761161804199
throughput[images/s] 202.43893727743708
DRAM_in_bandwidth[MB/s] 30.47272835049805
DRAM_out_bandwidth[MB/s] 0.002024389372774371
fclk[mhz] 99.999
batch_size 100
fold_input[ms] 0.12612342834472656
pack_input[ms] 0.07796287536621094
copy_input_data_to_device[ms] 14.952421188354492
copy_output_data_from_device[ms] 0.14066696166992188
unpack_output[ms] 106.81343078613281
unfold_output[ms] 0.03504753112792969

Table 5.8: Throughput performance of not faulted Mobilenet-v1 with Figure B.3

Figure 5.2: Weights faulty, frequency 0.78, percentage of MAC faulty 25%

5.5 MAC Faulty Percentage Impact
To test the impact of the percentage of the MAC faulty on the accuracy, the same
methodology explained in section 5.4 has been used. All parameters, except the
MAC faulty percentage, have been kept constant. The considered value are 100%,
50% and 25%. To decide which MAC are faulty, a simple randomic algorithm
based on the percentage has been used. Figure 5.4 shows an example of the impact

49

Experiments

Figure 5.3: Inputs faulty, percentage of MAC faulty 25%, bit faulty 1

of the MAC faulty value. Increasing its value decreases the accuracy. In addition
to that, to show the impact of the bit faulty again, each line keeps the bit constant.
It’s clear that the overall accuracy keeps degrading if the bit faulty is increased.

Figure 5.4: Inputs faulty, frequency 0.78

50

Experiments

5.6 Weight Sensitivity
In [28] the authors observed that the activations had a higher impact on the
accuracy degradation. They stated that

Flipping bits of input activations A is more likely to cause failures
compared to flipping weight bits in W at any bit-flip position, on
any number of multipliers and any frequency of bit-flip injection

The failure rate is defined as follows:
Definition 5.6.1 (Failure Rate). Given the predecitions P of the non-faulty

model and the predictions
△
P of the faulty model, the failure rate is defined as

the number of different values between P and
△
P divided by the total number of

predictions (size of the validation dataset)

failure_rate = CountDifference(P,
△
P)

len(validation_dataset)
Results obtained with the experiment of this thesis are partially consistent.

They are coherent with any value of MAC faulty percentage if the bit faulty is 0
(see Figure 5.5 and Figure 5.6). When increasing the flipped bit, the results become
inconsistent (see Figure 5.7 and Figure 5.8). A possible reason is the different
architecture used in this thesis compared to the one used by the authors in [28].
However, drawing any conclusion is unsafe; further investigations must be done.

Figure 5.5: MAC faulty 25%, bit faulty 0

51

Experiments

Figure 5.6: MAC faulty 50%, bit faulty 0

Figure 5.7: MAC faulty 25%, bit faulty 1

52

Experiments

Figure 5.8: MAC faulty 50%, bit faulty 1

5.7 Loop Testing
Following what the authors did in [28], the last tests are done with a similar loop.
The pseudocode is shown in Algorithm 1

Algorithm 1 Pseudocode of the loop testing
frequency = [0.0625, 0.03125, 0.0156, 0.0078]
type = [weights, activations]
bit = [0, 1, 2]
mac_faulty = [25%, 50%, 100%]
for f in frequency do

for t in type do
for b in bit do

for m in mac_faulty do
ApplyFaultConfiguration()
accuracy = EvaluateAccuracy()
failure_rate = EvaluateFailureRate()

end for
end for

end for
end for

53

Experiments

The obtained plot is shown in Figure 5.9

Figure 5.9: Loop testing with Algorithm 1

The graph confirms that weights are generally more sensitive compared to input.
It is interesting to explain the reason behind the spike marked by the black circle.
The bar in correspondence of the spike is evaluated with the configuration of
Table 5.9. Conversely, the bar before the one with the spike has the configuration
shown in Table 5.10, while the bar after has the configuration shown in Table 5.11.
This highlights that sometimes a higher value of MAC_faulty with a lower bit
(closer to LSB) can impact on the failure rate more compared to flipping a bit closer
to MSB but with a lower value of MAC_faulty, considering a constant frequency.

frequency type bit mac_faulty
0.03125 weights 1 100%

Table 5.9: Configuration of the network for the spike bar

frequency type bit mac_faulty
0.03125 weights 1 50%

Table 5.10: Configuration of the network for the bar before the spike

54

Experiments

frequency type bit mac_faulty
0.03125 weights 2 25%

Table 5.11: Configuration of the network for the bar after the spike

55

Chapter 6

Conclusions and Outlook

This thesis focuses on the implementation of a module, called Fault Injector, to
test the resilience of Neural Networks accelerators against soft errors, such as bit-
flips. This thesis’s novelty is using a Dataflow architecture for the NN accelerator,
compared to [28] where the authors used a Systolic Array architecture. The
proposed implementation in chapter 4 has been optimized to work with FINN, a
framework that generates dataflow accelerators. However, the methodology can be
exported and reused with any accelerator. The parameters of the Fault Injector
allowed a deep testing, simulating situations as close as possible to real-world usage.
Furthermore, the Neural Network under test is Mobilenet-v1, which is a really
popular streamline convolutional neural network designed for mobile and embedded
vision applications. Results clearly showed the importance of the position of the
flipped bit, as well as the importance of the frequency of the fault and of the
percentage of the faulty computational modules. Future works can span in various
directions; analyzing the impact of some faults on Mobilenet-v1 with different
quantization level, such as 2 bits or 8 bits; doing a Fault Aware Training (FAT)
[47] on the network and verifying if the accuracy degradation due to the same
faults is lower; investigating the reason behind the higher sensitivity of the weights,
differently from what observed by the authors in [28]; further optimize the Fault
Injector to be able to build a full Mobilenet-v1 model with the folding config of
Figure B.3.

56

Appendix A

Listings

1 template<
2 unsigned MatrixW,
3 unsigned MatrixH,
4 unsigned SIMD,
5 unsigned PE,
6 typename TSrcI = Identity,
7 typename TDstI = Identity,
8 typename TWeightI = Identity,
9 typename TW,

10 typename TI,
11 typename TO,
12 typename TA,
13 typename R
14 >
15 void Matrix_Vector_Activate_Stream_Batch(
16 hls::stream<TI> &in,
17 hls::stream<TO> &out,
18 hls::stream<ap_uint<PE*SIMD*TW::width>> &weight,
19 TA const &activation,
20 int const reps,
21 R const &r
22)

Listing 8: Original MatrixVectorActivation

57

Listings

1 template<
2 unsigned MatrixW,
3 unsigned MatrixH,
4 unsigned SIMD,
5 unsigned PE,
6 unsigned NUM_BITS_BIT_FAULTY,
7 unsigned NUM_BITS_FREQUENCY,
8 typename TSrcI = Identity,
9 typename TDstI = Identity,

10 typename TWeightI = Identity,
11 typename TW,
12 typename TI,
13 typename TO,
14 typename TA,
15 typename R
16 >
17 void Matrix_Vector_Activate_Stream_Batch(
18 hls::stream<TI> &in,
19 hls::stream<TO> &out,
20 hls::stream<ap_uint<PE*SIMD*TW::width>> &weight,
21 TA const &activation,
22 int const reps,
23 R const &r,
24 const ap_uint<1> &is_input_faulty,
25 const ap_uint<1> &is_weight_faulty,
26 ap_uint<NUM_BITS_FREQUENCY> &mac_frequency_mask,
27 const ap_uint<NUM_BITS_BIT_FAULTY> &bit_faulty,
28 const ap_uint<1> mac_faulty[PE][SIMD]
29)

Listing 9: Modified MatrixVectorActivation interface

58

Listings

1 streamline_transformations = [
2 ConvertSubToAdd(),
3 ConvertDivToMul(),
4 BatchNormToAffine(),
5 ConvertSignToThres(),
6 MoveMulPastMaxPool(),
7 MoveScalarLinearPastInvariants(),
8 AbsorbSignBiasIntoMultiThreshold(),
9 MoveAddPastMul(),

10 MoveScalarAddPastMatMul(),
11 MoveAddPastConv(),
12 MoveScalarMulPastMatMul(),
13 MoveScalarMulPastConv(),
14 MoveAddPastMul(),
15 CollapseRepeatedAdd(),
16 CollapseRepeatedMul(),
17 MoveMulPastMaxPool(),
18 AbsorbAddIntoMultiThreshold(),
19 FactorOutMulSignMagnitude(),
20 AbsorbMulIntoMultiThreshold(),
21 Absorb1BitMulIntoMatMul(),
22 Absorb1BitMulIntoConv(),
23 RoundAndClipThresholds(),
24]
25 for trn in streamline_transformations:
26 model = model.transform(trn)
27 model = model.transform(RemoveIdentityOps())
28 model = model.transform(GiveUniqueNodeNames())
29 model = model.transform(GiveReadableTensorNames())
30 model = model.transform(InferDataTypes())

Listing 10: Python code of the Streamline step

59

Listings

1 template <
2 unsigned N,
3 unsigned NUM_BITS_BIT_FAULTY,
4 typename T,
5 typename TC,
6 typename TD,
7 typename R
8 >
9 T mac(

10 T const &a,
11 TC const &c,
12 TD const &d,
13 R const &r,
14 unsigned mmv,
15 const ap_uint<1> &is_input_faulty,
16 const ap_uint<1> &is_weight_faulty,
17 const ap_uint<1> &mac_frequency_mask,
18 const ap_uint<NUM_BITS_BIT_FAULTY> &bit_faulty,
19 const ap_uint<1> mac_faulty[]
20) {
21 #pragma HLS inline
22 T res = a;
23 for (unsigned i = 0; i < N; i++) {
24 #pragma HLS unroll
25 res += mul<NUM_BITS_BIT_FAULTY>(
26 c[i],
27 d(i, mmv),
28 r,
29 is_input_faulty,
30 is_weight_faulty,
31 bit_faulty,
32 mac_faulty[i],
33 mac_frequency_mask
34);
35 }
36 return res;
37 }

Listing 11: Custom Multiply Accumulate (MAC) function

60

Appendix B

Tables

Type / Stride Filter / Shape Input Size
Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3

Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32
Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32

Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64
Conv / s1 1 × 1 × 64 × 128 56 × 56 × 64

Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128
Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128

Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128
Conv / s1 1 × 1 × 128 × 256 28 × 28 × 128

Conv dw / s1 3 × 3 × 256 dw 28 × 28 × 256
Conv / s1 1 × 1 × 256 × 256 28 × 28 × 256

Conv dw / s2 3 × 3 × 256 dw 28 × 28 × 256
Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256

5× Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
5x Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512
Conv dw / s2 3 × 3 × 512 dw 14 × 14 × 512

Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512
Conv dw / s2 3 × 3 × 1024 dw 7 × 7 × 1024

Conv / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024
Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024

FC / s1 1024 × 1000 1 × 1 × 1024
Softmax / s1 Classifier 1 × 1 × 1000

Table B.1: Mobilenet v1 Structure

61

Type / Stride Filter / Shape Input Size Mapping
Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3 conv1

Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32 conv2
Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32 conv3

Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64 conv4
Conv / s1 1 × 1 × 64 × 128 56 × 56 × 64 conv5

Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128 conv6
Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128 conv7

Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128 conv8
Conv / s1 1 × 1 × 128 × 256 28 × 28 × 128 conv9

Conv dw / s1 3 × 3 × 256 dw 28 × 28 × 256 conv10
Conv / s1 1 × 1 × 256 × 256 28 × 28 × 256 conv11

Conv dw / s2 3 × 3 × 256 dw 28 × 28 × 256 conv12
Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256 conv13

Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512 conv14
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512 conv15

Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512 conv16
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512 conv17

Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512 conv18
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512 conv19

Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512 conv20
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512 conv21

Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512 conv22
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512 conv23

Conv dw / s2 3 × 3 × 512 dw 14 × 14 × 512 conv24
Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512 conv25

Conv dw / s2 3 × 3 × 1024 dw 7 × 7 × 1024 conv 26
Conv / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024 conv27

Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024
FC / s1 1024 × 1000 1 × 1 × 1024 conv28

Softmax / s1 Classifier 1 × 1 × 1000

Table B.2: Mobilenet v1 Structure with FINN mapping for the experiments

Layer PE SIMD
conv1 16 3
conv2 16 1
conv3 8 8
conv4 8 1
conv5 16 8
conv6 16 1
conv7 32 8
conv8 4 1
conv9 16 8
conv10 8 1
conv11 32 8
conv12 2 1
conv13 16 8
conv14 4 1
conv15 32 8
conv16 4 1
conv17 32 8
conv18 4 1
conv19 32 8
conv20 4 1
conv21 32 8
conv22 4 1
conv23 32 8
conv24 1 1
conv25 16 8
conv26 2 1
conv27 32 8
conv28 1 16

Table B.3: Original
Folding Config

Layer PE SIMD
conv1 16 3
conv2 16 1
conv3 8 8
conv4 8 1
conv5 16 8
conv6 16 1
conv7 16 8
conv8 4 1
conv9 16 8
conv10 8 1
conv11 16 8
conv12 2 1
conv13 16 8
conv14 4 1
conv15 16 8
conv16 4 1
conv17 16 8
conv18 4 1
conv19 32 8
conv20 4 1
conv21 16 8
conv22 4 1
conv23 32 8
conv24 1 1
conv25 16 8
conv26 2 1
conv27 32 8
conv28 1 16

Table B.4: Modified
Folding Config

St
re

am
in

gD
at

af
lo

w
Pa

rti
tio

n_
1

St
re

am
in

gD
at

af
lo

w
Pa

rti
tio

n_
1_

v1
_0

s_
ax

ilit
e_

0

s_
ax

ilit
e_

1

s_
ax

ilit
e_

2

s_
ax

is
_0

m
_a

xi
s_

0

ap
_c

lk

ap
_r

st
_n

ax
i_

in
te

rc
on

ne
ct

_0

AX
I I

nt
er

co
nn

ec
t

S0
0_

AX
I

M
00

_A
XI

M
01

_A
XI

M
02

_A
XI

M
03

_A
XI

M
04

_A
XI

AC
LK

AR
ES

ET
N

S0
0_

AC
LK

S0
0_

AR
ES

ET
N

M
00

_A
C

LK

M
00

_A
R

ES
ET

N

M
01

_A
C

LK

M
01

_A
R

ES
ET

N

M
02

_A
C

LK

M
02

_A
R

ES
ET

N

M
03

_A
C

LK

M
03

_A
R

ES
ET

N

M
04

_A
C

LK

M
04

_A
R

ES
ET

N

id
m

a0

St
re

am
in

gD
at

af
lo

w
Pa

rti
tio

n_
0_

v1
_0

s_
ax

i_
co

nt
ro

l_
0

m
_a

xi
_g

m
em

0

m
_a

xi
s_

0
ap

_c
lk

ap
_r

st
_n

od
m

a0

St
re

am
in

gD
at

af
lo

w
Pa

rti
tio

n_
2_

v1
_0

s_
ax

i_
co

nt
ro

l_
0

m
_a

xi
_g

m
em

0
s_

ax
is

_0

ap
_c

lk

ap
_r

st
_n

rs
t_

zy
nq

_p
s_

16
6M

Pr
oc

es
so

r S
ys

te
m

 R
es

et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

sm
ar

tc
on

ne
ct

_0

AX
I S

m
ar

tC
on

ne
ct

S0
0_

AX
I

S0
1_

AX
I

M
00

_A
XI

ac
lk

ar
es

et
n

zy
nq

_p
s

Zy
nq

 U
ltr

aS
ca

le
+

M
PS

oC

M
_A

XI
_H

PM
0_

FP
D

S_
AX

I_
H

P0
_F

PD

m
ax

ih
pm

0_
fp

d_
ac

lk

sa
xi

hp
0_

fp
d_

ac
lk

pl
_p

s_
irq

0[
0:

0]

pl
_r

es
et

n0

pl
_c

lk
0

Bibliography

1. Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P. H. W.,
Jahre, M. & Vissers, K. A. FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference. CoRR abs/1612.07119. arXiv: 1612.07119. http:
//arxiv.org/abs/1612.07119 (2016) (cit. on pp. 1, 17).

2. Weng, O. Neural Network Quantization for Efficient Inference: A Survey.
CoRR abs/2112.06126. arXiv: 2112.06126. https://arxiv.org/abs/
2112.06126 (2021) (cit. on pp. 2, 11).

3. Elallid, B. B., Benamar, N., Hafid, A. S., Rachidi, T. & Mrani, N. A Com-
prehensive Survey on the Application of Deep and Reinforcement Learn-
ing Approaches in Autonomous Driving. Journal of King Saud University -
Computer and Information Sciences 34, 7366–7390. issn: 1319-1578. https:
//www.sciencedirect.com/science/article/pii/S1319157822000970
(2022) (cit. on p. 4).

4. Jiang, J., Trundle, P. & Ren, J. Medical image analysis with artificial neural
networks. Computerized Medical Imaging and Graphics 34, 617–631. issn:
0895-6111. https://www.sciencedirect.com/science/article/pii/
S0895611110000741 (2010) (cit. on p. 4).

5. Li, J. Recent Advances in End-to-End Automatic Speech Recognition 2022.
arXiv: 2111.01690 [eess.AS] (cit. on p. 4).

6. Sultana, F., Sufian, A. & Dutta, P. Advancements in Image Classification using
Convolutional Neural Network. CoRR abs/1905.03288. arXiv: 1905.03288.
http://arxiv.org/abs/1905.03288 (2019) (cit. on p. 4).

7. Otter, D. W., Medina, J. R. & Kalita, J. K. A Survey of the Usages of Deep
Learning in Natural Language Processing. CoRR abs/1807.10854. arXiv:
1807.10854. http://arxiv.org/abs/1807.10854 (2018) (cit. on p. 4).

8. Zou, J., Zhao, Q., Jiao, Y., Cao, H., Liu, Y., Yan, Q., Abbasnejad, E., Liu, L.
& Shi, J. Q. Stock Market Prediction via Deep Learning Techniques: A Survey
2023. arXiv: 2212.12717 [q-fin.GN] (cit. on p. 4).

65

https://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1612.07119
https://arxiv.org/abs/2112.06126
https://arxiv.org/abs/2112.06126
https://arxiv.org/abs/2112.06126
https://www.sciencedirect.com/science/article/pii/S1319157822000970
https://www.sciencedirect.com/science/article/pii/S1319157822000970
https://www.sciencedirect.com/science/article/pii/S0895611110000741
https://www.sciencedirect.com/science/article/pii/S0895611110000741
https://arxiv.org/abs/2111.01690
https://arxiv.org/abs/1905.03288
http://arxiv.org/abs/1905.03288
https://arxiv.org/abs/1807.10854
http://arxiv.org/abs/1807.10854
https://arxiv.org/abs/2212.12717

9. Singh, S. S. & Karayev, S. Full Page Handwriting Recognition via Image to
Sequence Extraction. CoRR abs/2103.06450. arXiv: 2103.06450. https:
//arxiv.org/abs/2103.06450 (2021) (cit. on p. 4).

10. Keisler, R. Forecasting Global Weather with Graph Neural Networks 2022.
arXiv: 2202.07575 [physics.ao-ph] (cit. on p. 4).

11. Podder, P., Bharati, S., Mondal, M. R. H., Paul, P. K. & Kose, U. Arti-
ficial Neural Network for Cybersecurity: A Comprehensive Review. CoRR
abs/2107.01185. arXiv: 2107.01185. https://arxiv.org/abs/2107.
01185 (2021) (cit. on p. 4).

12. Hernandez-Olivan, C., Hernandez-Olivan, J. & Beltran, J. R. A Survey on
Artificial Intelligence for Music Generation: Agents, Domains and Perspectives
2022. arXiv: 2210.13944 [cs.AI] (cit. on p. 4).

13. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. ImageNet: A
large-scale hierarchical image database in 2009 IEEE Conference on Computer
Vision and Pattern Recognition (2009), 248–255 (cit. on p. 4).

14. Janiesch, C., Zschech, P. & Heinrich, K. Machine learning and deep learning.
CoRR abs/2104.05314. arXiv: 2104.05314. https://arxiv.org/abs/
2104.05314 (2021) (cit. on pp. 4, 5).

15. Artificial neural network — Wikipedia, The Free Encyclopedia https://
en.wikipedia.org/w/index.php?title=Artificial_neural_network&
oldid=1142333251 (cit. on p. 6).

16. Valueva, M., Nagornov, N., Lyakhov, P., Valuev, G. & Chervyakov, N. Applica-
tion of the residue number system to reduce hardware costs of the convolutional
neural network implementation. Mathematics and Computers in Simulation
177, 232–243. issn: 0378-4754. https://www.sciencedirect.com/science/
article/pii/S0378475420301580 (2020) (cit. on pp. 5, 6).

17. O’Shea, K. & Nash, R. An Introduction to Convolutional Neural Networks.
CoRR abs/1511.08458. arXiv: 1511.08458. http://arxiv.org/abs/1511.
08458 (2015) (cit. on p. 5).

18. Dumoulin, V. & Visin, F. A guide to convolution arithmetic for deep learning
2018. arXiv: 1603.07285 [stat.ML] (cit. on p. 6).

19. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning http : / / www .
deeplearningbook.org (MIT Press, 2016) (cit. on pp. 8, 10).

20. Zhang, A., Lipton, Z. C., Li, M. & Smola, A. J. Dive into Deep Learning.
arXiv preprint arXiv:2106.11342 (2021) (cit. on p. 9).

21. Dive into Deep Learning: Pooling https://d2l.ai/chapter_convolutional-
neural-networks/pooling.html (cit. on p. 10).

https://arxiv.org/abs/2103.06450
https://arxiv.org/abs/2103.06450
https://arxiv.org/abs/2103.06450
https://arxiv.org/abs/2202.07575
https://arxiv.org/abs/2107.01185
https://arxiv.org/abs/2107.01185
https://arxiv.org/abs/2107.01185
https://arxiv.org/abs/2210.13944
https://arxiv.org/abs/2104.05314
https://arxiv.org/abs/2104.05314
https://arxiv.org/abs/2104.05314
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=1142333251
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=1142333251
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=1142333251
https://www.sciencedirect.com/science/article/pii/S0378475420301580
https://www.sciencedirect.com/science/article/pii/S0378475420301580
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1603.07285
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://d2l.ai/chapter_convolutional-neural-networks/pooling.html
https://d2l.ai/chapter_convolutional-neural-networks/pooling.html

22. Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., van Baalen, M.
& Blankevoort, T. A White Paper on Neural Network Quantization. CoRR
abs/2106.08295. arXiv: 2106.08295. https://arxiv.org/abs/2106.
08295 (2021) (cit. on p. 11).

23. Courbariaux, M. & Bengio, Y. BinaryNet: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1. CoRR abs/1602.02830.
arXiv: 1602.02830. http://arxiv.org/abs/1602.02830 (2016) (cit. on
p. 11).

24. Yi, Q., Sun, H. & Fujita, M. FPGA Based Accelerator for Neural Networks
Computation with Flexible Pipelining. CoRR abs/2112.15443. arXiv: 2112.
15443. https://arxiv.org/abs/2112.15443 (2021) (cit. on p. 12).

25. Wu, R., Guo, X., Du, J. & Li, J. Accelerating Neural Network Inference on
FPGA-Based Platforms—A Survey. Electronics 10. issn: 2079-9292. https:
//www.mdpi.com/2079-9292/10/9/1025 (2021) (cit. on p. 12).

26. Liu, Z. G., Whatmough, P. N. & Mattina, M. Systolic Tensor Array: An
Efficient Structured-Sparse GEMM Accelerator for Mobile CNN Inference.
CoRR abs/2005.08098. arXiv: 2005.08098. https://arxiv.org/abs/
2005.08098 (2020) (cit. on p. 12).

27. Zhang, W., Jiang, M. & Luo, G. Evaluating Low-Memory GEMMs for Convo-
lutional Neural Network Inference on FPGAs in (May 2020), 28–32 (cit. on
pp. 14, 15).

28. Fasfous, N., Frickenstein, L., Neumeier, M., Vemparala, M. R., Frickenstein, A.,
Valpreda, E., Martina, M. & Stechele, W. Mind the Scaling Factors: Resilience
Analysis of Quantized Adversarially Robust CNNs in 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE) (2022), 706–711 (cit. on
pp. 18, 29, 32, 47, 51, 53, 56).

29. Pappalardo, A. Xilinx/brevitas https://doi.org/10.5281/zenodo.3333552
(cit. on p. 19).

30. Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I., Srinivasan, V. &
Gopalakrishnan, K. PACT: Parameterized Clipping Activation for Quan-
tized Neural Networks. CoRR abs/1805.06085. arXiv: 1805.06085. http:
//arxiv.org/abs/1805.06085 (2018) (cit. on p. 20).

31. Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y. & Zou, Y. DoReFa-Net: Training
Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.
CoRR abs/1606.06160. arXiv: 1606.06160. http://arxiv.org/abs/1606.
06160 (2016) (cit. on p. 20).

32. FINN documentation https://finn.readthedocs.io/en/latest/ (cit. on
p. 20).

https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
https://arxiv.org/abs/2112.15443
https://arxiv.org/abs/2112.15443
https://arxiv.org/abs/2112.15443
https://www.mdpi.com/2079-9292/10/9/1025
https://www.mdpi.com/2079-9292/10/9/1025
https://arxiv.org/abs/2005.08098
https://arxiv.org/abs/2005.08098
https://arxiv.org/abs/2005.08098
https://doi.org/10.5281/zenodo.3333552
https://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
https://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1606.06160
https://finn.readthedocs.io/en/latest/

33. FINN documentation https://github.com/Xilinx/finn (cit. on p. 20).
34. Netron https://github.com/lutzroeder/netron (cit. on p. 21).
35. FINN-HLSLIB https://finn-hlslib.readthedocs.io/en/latest/ (cit.

on p. 21).
36. Pappalardo, A. et al. QONNX: Representing Arbitrary-Precision Quantized

Neural Networks 2022. arXiv: 2206.07527 [cs.LG] (cit. on p. 21).
37. FINN Streamline Transformations https://finn.readthedocs.io/en/

latest/source_code/finn.transformation.streamline.html (cit. on
p. 22).

38. PYNQ http://www.pynq.io/ (cit. on p. 24).
39. Alam, S. A., Gregg, D., Gambardella, G., Preusser, T. & Blott, M. On the

RTL Implementation of FINN Matrix Vector Compute Unit 2022. https:
//arxiv.org/abs/2201.11409 (cit. on p. 26).

40. Alam, S. A., Gregg, D., Gambardella, G., Preußer, M. & Blott, M. On
the RTL Implementation of FINN Matrix Vector Compute Unit. CoRR
abs/2201.11409. arXiv: 2201.11409. https://arxiv.org/abs/2201.
11409 (2022) (cit. on p. 25).

41. HLS Pragmas hhttps://docs.xilinx.com/r/en- US/ug1399- vitis-
hls/HLS-Pragmas (cit. on p. 38).

42. Pragma HLS Unroll https://docs.xilinx.com/r/en-US/ug1399-vitis-
hls/pragma-HLS-unroll (cit. on p. 38).

43. Pragma HLS Inline https://docs.xilinx.com/r/en-US/ug1399-vitis-
hls/pragma-HLS-inline (cit. on p. 39).

44. Pragma HLS Bind-Op https://docs.xilinx.com/r/en-US/ug1399-vitis-
hls/pragma-HLS-bind%5C_op (cit. on p. 40).

45. Inferring Shift Register https://docs.xilinx.com/r/en- US/ug1399-
vitis-hls/Inferring-Shift-Registers (cit. on p. 43).

46. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M. & Adam, H. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. CoRR abs/1704.04861. arXiv:
1704.04861. http://arxiv.org/abs/1704.04861 (2017) (cit. on p. 44).

47. Zahid, U., Gambardella, G., Fraser, N. J., Blott, M. & Vissers, K. A. FAT:
Training Neural Networks for Reliable Inference Under Hardware Faults.
CoRR abs/2011.05873. arXiv: 2011.05873. https://arxiv.org/abs/
2011.05873 (2020) (cit. on p. 56).

https://github.com/Xilinx/finn
https://github.com/lutzroeder/netron
https://finn-hlslib.readthedocs.io/en/latest/
https://arxiv.org/abs/2206.07527
https://finn.readthedocs.io/en/latest/source_code/finn.transformation.streamline.html
https://finn.readthedocs.io/en/latest/source_code/finn.transformation.streamline.html
http://www.pynq.io/
https://arxiv.org/abs/2201.11409
https://arxiv.org/abs/2201.11409
https://arxiv.org/abs/2201.11409
https://arxiv.org/abs/2201.11409
https://arxiv.org/abs/2201.11409
hhttps://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
hhttps://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-unroll
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-unroll
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-inline
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-inline
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind%5C_op
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind%5C_op
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Inferring-Shift-Registers
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Inferring-Shift-Registers
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/2011.05873
https://arxiv.org/abs/2011.05873
https://arxiv.org/abs/2011.05873

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Artifical Intelligence and Machine Learning Introduction
	Convolutional Neural Networks
	Convolutional Layer
	Padding
	Stride
	Activation Functions
	Pooling
	Fully Connected Layer

	Quantized Neural Networks
	Neural Networks Accelerator
	Convolution in Hardware: Im2col
	High-level Synthesis (HLS)

	Related Works
	FINN: A Framework for Fast, Scalable Binarized Neural Network Inference
	Mind the Scaling Factors: Resilience Analysis of Quantized Adversarially Robust CNNCNNs

	Methodology
	Brevitas
	FINN
	End-to-End Flow

	Fault Injector
	Intial Fault Injector Design
	Adding a new layer in FINN
	Problems of the Initial Design

	Final Fault Injector design
	MatrixVectorActivation
	Parameters

	Fault Injection code
	Matrix Vector Activation
	Multiply Accumulate
	Multiply
	Modified code

	Experiments
	Per-layer Overhead
	Full Network Overhead
	Bit Impact
	Frequency Impact
	MAC Faulty Percentage Impact
	Weight Sensitivity
	Loop Testing

	Conclusions and Outlook
	Listings
	Tables
	Bibliography

