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Abstract

Multicore processors have introduced new challenges to computer architecture,
particularly in ensuring that all cores have access to up-to-date values of shared
memory. This is achieved through coherence algorithms that contribute to ensuring
consistency across all cores.

The most common coherence protocols implement a writer-initiated invalidation
approach, in which all distributed copies of data are invalidated when one core
requires writing permission. This approach virtualizes memory as a unique shared
resource, making coherence invisible even to the strongest consistency model.
However, this technique can be complex and requires an inclusive directory or
costly communication between cores.

An alternative approach that is gaining popularity is self-invalidating data from
the private cache at synchronization points, which reduces significantly the protocol
complexity at the cost of performance.

In this work, we present a consistency-directed algorithm for CVA6, a 6-stage,
RISC-V based CPU developed by ETH Zurich and the University of Bologna. The
protocol is aware of the RVWMO consistency model and performs self-invalidation
and write-back operations at synchronization points, making the processor com-
pliant with the target memory model. The main goal is to ensure coherence with
a completely distributed protocol that neither requires an inclusive directory, nor
costly communication between cores. Furthermore, we study the complexity and
performance of the design.

Our verification process confirms compliance with the memory model, ensuring
the correctness of the coherence protocol. The design is synthesized in Global-
Foundries 22FDX technology, revealing a negligible increase in complexity and
no reduction in the maximum frequency. Our performance study illustrates that
the performance cost is acceptable when the communication between cores is not
excessive.
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Chapter 1

Introduction

Multi-core processors have become popular for improving performance without
excessively affecting power consumption. Since each core is equipped with a private
cache containing private copies of shared values, there is a need for cache-coherence
mechanisms to provide the abstraction of a unique shared memory.

Most of these mechanisms use MOESI-style protocols to ensure the SWMR
invariant and the data-value invariant [1]. Each cache line has a state between
Modified, Owned, Exclusive, Shared, and Invalid (whence M-O-E-S-I), and the
transition between them is arbitrated through a centralized directory (directory
protocols) or broadcast messages between cores (snooping protocols). To ensure
that each variable is owned by a single core per epoch, they use writer-initiated
invalidations: when a store is executed by a core, all shared copies of the variable
are invalidated. Directory-based protocols typically register the owner and readers
of each cache line in a shared directory.

This methodology is efficient since it only requires a synchronization mechanism
when a variable is accessed between different cores. However, it also brings several
issues. To improve concurrency, the control (and verification process) becomes
complex with many transient states. It suffers from false sharing, where a cache line
is erroneously shared when two cores use different data but within the same line
(state is saved at cache line granularity). Additionally, it requires a shared inclusive
directory, which adds to the area and power consumption. Most of the complexity
arises from the aim of virtualizing the memory as a unique shared resource at every
moment, which simplifies compliance even with the stronger consistency model.

Several implementations that implement these protocols can be found in the
literature, such as Spandex [2], OpenPiton [3], and BlackParrot [4].

Recently, a wide research area has focused on simpler, directory-less coherence
algorithms [5, 6, 7, 8]. A common characteristic of these protocols is that they
rely on the DRF assumption of the language-level memory consistency model to
perform self-invalidation at synchronization points. The main idea is that in a DRF
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Introduction

program, a synchronization operation is executed before accessing a shared variable,
and when this happens, shared variables are invalidated to load the updated value
directly from the main memory. Then, again relying on the DRF assumption, it is
possible to defer flushing dirty data until a synchronization release operation.

The potential advantages of these protocols include a much simpler algorithm,
which means fewer stable/transition states and ease of verification. Furthermore,
there is less latency during store/load operations due to the absence of coherence
mechanisms. Additionally, there is no need for a shared inclusive directory be-
cause it is not required to track the ownership, which means less area and power
consumption.

The main disadvantage of self-invalidation is that, since no shared information is
available, conservatively, it is necessary to invalidate even the eventually up-to-date
lines. This brings two main consequences: executing an acquire or release operation
becomes expensive in terms of time and power consumption, and it significantly
increases the miss ratio.

Several strategies can be used to mitigate these drawbacks. One strategy is to
use private/shared data classification, which can reduce the number of invalidations
proportionally to the number of shared variables. This can be easily implemented
in software [6] or more accurately in hardware [5]. Some strategies retain some
of the classic directory and protocol complexity [9], or use costly write-through
buffers [6].

The self-invalidation protocols listed usually measure the performance impact
by implementing the coherence on top of a simulator (like RADISH [10] and GEMS
[11]) that emulates a real processor, with trade-offs between performance and
accuracy.

The thesis makes a significant contribution by implementing a low-complexity
coherence protocol based on self-invalidation, which is consistency-directed. The
implementation is done on CVA6, a 6-stage, single-issue, in-order CPU that im-
plements the 64-bit RISC-V ISA, designed by ETH Zurich and the University of
Bologna. The primary objective is to investigate the benefits and drawbacks of
the self-invalidation protocol based on the DRF assumption, and its complexity,
area, and performance impact on a real processor. The thesis proposes several
optimizations inspired by the literature to enhance the baseline implementation.
Similar to other related protocols, our implementation’s self-invalidation occurs at
synchronization acquire, and the write-back of dirty lines is deferred until release
operations. The RISC-V ISA provides these types of synchronizations through
acquire/release fences and atomics’ annotations [12].

The coherence implementation is closely linked to the consistency model, and the
verification process aimed to ensure compliance with the RVWMO [12] by stressing
the memory model. Custom benchmarks were used to measure the performance
cost of the design, which showed a significant dependency on the frequency of
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synchronization operations. To enable the use of established benchmarks suitable
for multicore systems that require an underlying kernel, we began an initial Linux
port onto the modified platform synthesized for FPGA. After a few patches to
the Linux kernel, we were able to run the operating system. We compared our
implementation with a standard directory protocol running Splash-3 benchmarks,
showing a tolerable penalty for most of the programs analyzed. The design was
synthesized using GlobalFoundries 22FDX technology, and as expected, the area
cost was negligible, and the critical path was not affected.

Structure In chapter 2, we introduce the relevant background knowledge regard-
ing memory consistency, coherence, and the CVA6 processor used in our work. In
chapter 3, we analyze and compare our approach with related works. The details of
our design are discussed in chapter 4, and its evaluation is presented in chapter 5.
Finally, we propose further optimizations in chapter 6.
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Chapter 2

Background

In this chapter, we will cover the fundamental concepts related to memory consis-
tency and coherence. We will start by discussing the general concept of memory
consistency models and focus on the specific example of the RVWMO in section 2.1
and section 2.2. Next, we will introduce the concept of consistency-directed coher-
ence used in this work in section 2.3. Finally, we will provide a brief overview of
the platform modified to implement the cache-coherence algorithm in section 2.4.

2.1 Memory consistency
With the advent of multithread and multicore processors combined with out-of-
order execution, it became necessary to expose to programmers what behaviour of
shared memory systems to expect and instruct implementers on what to provide.

As stated in [1], a memory consistency model is "a specification of the allowed
behaviour of multithreaded programs executing with shared memory." It defines
what values dynamic loads may return. The memory model of a processor answers
the following question: Which are all the allowed values returned by each load? Or,
in other words: In which order can memory operations from each core be made
visible to other cores?

Let us consider the example in table 2.1: the consistency model defines which
are the possible values that can be read by loads L1 and L2.

Core C1 Core C2 Initialization
S1: x = NEW S2: y = NEW x = 0 & y = 0
L1: r1 = y L2: r2 = x

Table 2.1: Simple multithreaded code. Which are the possible outcomes?
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Background

To understand a memory model, it is important to clarify some concepts. The
program order of each core is the natural order in which instructions are scheduled
in memory. On the other hand, the memory order represents the order in which
loads and stores are performed (or are visible to the other cores). A load performs
when its return value is determined, while a store performs when its value has been
propagated to globally visible memory.

The most simple and strong consistency model is Sequential Consistency, which
states that the memory order respects each core’s program order. If we go back
to table 2.1, it means that core C2 will always see S1 before L1 and core C1
will always see S2 before L2. All the allowed executions of this program for a
sequentially consistent processor are summarized in fig. 2.1, along with a non-
sequential behaviour.

Figure 2.1: Four possible executions of table 2.1

The advantage of a strong memory model like Sequential Consistency is that
it facilitates the programmability of the processor due to an intuitive expected
behaviour. The main disadvantage is the lack of performance. A good model should
ease high-performance implementations by giving freedom to the implementors,
which is hard to achieve with such a strong model. For instance, processors
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commonly use write buffers to hide the cache latency of servicing a store miss.
If properly implemented, it is architecturally invisible for a single-core processor.
However, when applied to a multi-core one, it can result in reordering between
stores and following loads, which is forbidden by Sequential Consistency.

Furthermore, it has been recognized that there are many situations in which
proper operations do not depend on ordering between stores and loads from different
cores. It is clear that when the order is not normally ensured, the instruction
set architecture must provide a way for imposing the order, such as with fence
instructions. An example is shown in fig. 2.2: we don’t care about the order in
which stores and loads are executed in a critical section as long as they are executed
in mutual exclusion.

Figure 2.2: No-SC execution of lock-based program allowed by a weak memory
model.

Allowing these non-strict behaviours provides opportunities for optimizing the
design by implementing non-FIFO coalescing buffers, simpler support for core
speculation, and coupling consistency with coherence, as done in this thesis.

6
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2.2 RISC-V Weak Memory Ordering (RVWMO)
An example of a relaxed consistency model is the RVWMO adopted by RISC-V
compliant processors, as explained in detail in [12]. It was designed to enable
architects to build simple designs or aggressive implementations while being strong
enough to support programming language models at high performance. The model
is fully described by three axioms and the preserved program order.

Axiom 1 (Load Value Axiom). Each byte of each load i returns the value written
to that byte by the store that is the latest in global memory order among the
following stores:

• Stores that write that byte and that precede i in the global memory order

• Stores that write that byte and that precede i in program order

Axiom 2 (Atomicity Axiom). If r and w are paired load and store operations
generated by aligned LR and SC instructions in a core h, s is a store to byte x,
and r returns a value written by s, then s must precede w in the global memory
order, and there can be no store from a core other than h to byte x following s and
preceding w in the global memory order.

Axiom 3 (Progress Axiom). No memory operation may be preceded in the global
memory order by an infinite sequence of other memory operations.

These axioms, combined with the subset of program order that must be respected
within the global memory order, fully define the memory model. It is worth
mentioning the explicit ordering mechanisms provided by the RISC-V ISA.

The first possibility is the fence instruction; it ensures that all memory accesses
from instructions preceding the fence in program order (predecessor set) appear in
the global memory order before all memory accesses after it (successor set). It is
possible to restrict the predecessor and successor set to only load/store memory
accesses.

The second possible mechanism is the use of acquire and/or release annotations
for atomic instructions. If an atomic instruction is tagged as an acquire, it imposes
that all subsequent memory accesses will be performed after the atomic opera-
tion. If it is tagged as a release, all earlier memory accesses must be performed
before the atomic operation. These semantics are frequently used for locking and
unlocking critical sections. An interesting example is shown in listing 2.1 and in
listing 2.2 taken from [12]. It can be seen how acquire and release operations can
be implemented with aq/rl annotations or with fences.

Both codes ensure a correct locking mechanism, but with slightly different
ordering requirements: in listing 2.1, the stores and loads inside the critical sections
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Listing 2.1: Spinlock asm code with atomics
1 sd x1 , ( a1 ) # Arbi t rary unre la t ed s t o r e
2 ld x2 , ( a2 ) # Arbi t rary unre la t ed load
3 l i t0 , 1 # I n i t i a l i z e swap value .
4 again :
5 amoswap .w. aq t0 , t0 , ( a0 ) # Attempt to acqu i r e l ock .
6 bnez t0 , again # Retry i f he ld .
7 # . . .
8 # C r i t i c a l s e c t i o n .
9 # . . .

10 amoswap .w. r l x0 , x0 , ( a0 ) # Release l ock by s t o r i n g 0 .
11 sd x3 , ( a3 ) # Arbi t rary unre la t ed s t o r e
12 ld x4 , ( a4 ) # Arbi t rary unre la t ed load
13

Listing 2.2: Spinlock asm code with fences
1 x1 , ( a1 ) # Arbi t rary unre la ted s t o r e
2 ld x2 , ( a2 ) # Arbi t rary unre la t ed load
3 l i t0 , 1 # I n i t i a l i z e swap value .
4 again :
5 amoswap .w t0 , t0 , ( a0 ) # Attempt to acqu i r e l ock .
6 f ence r , rw # Enforce " acqu i r e " memory orde r ing
7 bnez t0 , again # Retry i f he ld .
8 # . . .
9 # C r i t i c a l s e c t i o n .

10 # . . .
11 f ence rw , w # Enforce " r e l e a s e " memory orde r ing
12 amoswap .w x0 , x0 , ( a0 ) # Release l ock by s t o r i n g 0 .
13 sd x3 , ( a3 ) # Arbi t rary unre la t ed s t o r e
14 ld x4 , ( a4 ) # Arbi t rary unre la t ed load
15

must appear in the global memory order after and before the acquire and release
atomics respectively, and no other ordering must be provided. In listing 2.2, it is
additionally required that all loads before the "acquire" fence r,rw are performed
before the critical section, and similarly all stores after the "release" fence rw,w
appear in memory order after the critical section.

8
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2.3 Consistency-directed coherence

Coherence problems arise whenever there are multiple cores, DMA engines, or
external devices that can access a private cache in a shared memory system. If there
is at least one write process, this can lead to incoherence when the updated value
is not propagated to readers appropriately. Let’s suppose that core C1 updates the
value of variable x inside its private cache without propagating it to the shared
memory. If core C2 is waiting for the new value, without a coherence mechanism,
it will spin forever on the stale value inside its private cache without being able
to see the new value. A coherence algorithm tries to avoid this kind of incoherent
behaviour.

It’s important to understand the relation between consistency and coherence
shown in fig. 2.3. The memory model defines all the allowed executions of programs
in terms of global memory order. This is determined by both the pipeline reordering
of instructions and by the coherence algorithm that controls how and when the
shared memory communicates with private caches. It follows that coherence can be
seen as part of the effort done by implementors to design a processor in accordance
with a consistency model.

[1] proposes a useful categorization of coherence protocols related to the memory
model.

Consistency-agnostic coherence: Each write operation is made immediately
visible to all other cores before returning. This is obtained by imposing that
each variable can have either a single writer core or multiple readers (SWMR
invariant) and by correctly propagating the updated values between cores (Data-
Value invariant). From a consistency point of view, this makes the private cache
invisible and virtualizes the memory as a unique shared resource.

Consistency-directed coherence: Writes are propagated asynchronously, al-
lowing for stale data to be observed. However, the coherence protocol, together
with the pipeline (fig. 2.3), must adhere to the ordering mandated by the specific
consistency model. This more recent category gained prominence during the last
decade.

If the former category simplifies the implementation of the memory model by
splitting the complexity between the pipeline and the black-box coherence algorithm,
the latter allows for pushing performance (or reduces complexity) by mixing
together coherence and consistency. This work is focused on the implementation of
a consistency-directed coherence protocol.
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Figure 2.3: How the consistency model interacts with coherence

2.4 CVA6
CVA6 (formerly known as Ariane) is a 6-stage, single-issue, in-order CPU that
implements the 64-bit RISC-V instruction set (see fig. 2.4). It fully implements
the I, M, A, and C extensions, as well as three privilege levels (M, S, and U) to
support a Unix-like operating system. CVA6 has configurable size separate TLBs, a
hardware PTW, and a branch prediction unit (consisting of a branch target buffer
and branch history table). A more complete description of the microarchitecture
can be found in [13].

It’s important to note that CVA6 is not fully in order. Issue and commit are
performed in order, but to increase IPC, it features a scoreboard that allows the
out-of-order execution of data-independent instructions which write back the result
in the scoreboard during the execution stage. The access to the data cache is
managed by three partially independent entities (the load unit, the store unit, and
the PTW) right in the execution stage (see fig. 2.5).

CVA6 contains a tightly integrated data cache. The coherence protocol imple-
mented in this work is developed within the data cache subsystem. The memory is a
partially set-associative cache with a pseudo-random eviction policy and write-back
writing policy. The cache management is the complex subsystem shown in fig. 2.6.

10
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Figure 2.4: CVA6 microarchitecture from [14].

Figure 2.5: CVA6 load store unit from [14]. It interfaces with the data cache.

The three controllers handle requests from the pipeline and send them to the data
cache: if it’s a hit, the variable is read/written in the cache; otherwise, the request
is handled by the miss handler, which is responsible for communicating with the
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higher-level shared memory through an AXI bus, an on-chip communication bus
protocol developed by ARM.

Figure 2.6: Data cache subsystem.
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Chapter 3

Related Work

In this chapter, we first introduce several implementations of mostly standard
coherence algorithms in section 3.1, and then we discuss alternative self-invalidation-
based coherence protocols that inspired our work in section 3.2.

3.1 Coherence implementations
OpenPiton is an open-source, general-purpose, multithreaded manycore proces-
sor and framework described in the industry-standard Verilog [3]. It leverages the
OpenSPARC T1 core with several modifications and implements a directory-based
MESI coherence protocol. The communication between the private L1.5 cache and
the shared distributed L2 cache is provided by three NoCs, carefully designed to
ensure deadlock-free operation. The protocol belongs to the standard consistency-
agnostic coherence, used to ensure a strong consistency model like TSO, with all
the disadvantages discussed before. The implementation is described with HDL and
simulated through an EDA tool, as we did with CVA6. OpenPiton uses Synopsys
VCS, while we simulate CVA6 with QuestaSim. The work represents an important
enabler for simulation, synthesis, and software exploration but does not target our
goal of investigating novel low-complexity coherence protocols.

BP-BedRock is the open-source cache coherence protocol implemented within
the BlackParrot 64-bit RISC-V multicore processor [4]. It implements a directory-
based MOESIF cache coherence protocol with two different engines, one is FSM-
based, and the other is microcode programmable. The work is focused on the
advantages of a programmable coherence implementation that allows flexibility
in the protocol choice, while we propose a completely different low-complexity
algorithm that tries to take advantage of the weak memory model proposed by the
RISC-V ISA. BP-BedRock exploits Splash-3 benchmarks to measure performance;
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this choice would fit well with our design since Splash-3 improves the well-established
Splash-2 benchmarks by removing data races.

Spandex is a flexible coherence interface that can efficiently integrate different co-
herence protocols without requiring intrusive changes to their memory structure. It
can link coherence protocols that differ in invalidation strategies (writer-invalidation
vs self-invalidation), write propagation (ownership vs write-through), and gran-
ularity (word vs line). It is evaluated on Simics [15] and GEMS [11] simulators.
Since the work aims at interfacing coherence protocols and is compatible with
self-invalidation algorithms, Spandex research is orthogonal to ours and could allow
integrating our coherence with other stronger protocols in bigger heterogeneous
systems.

3.2 Coherence self-invalidation protocols
A lot of effort has been devoted to simplifying standard MOESI coherence protocols
in recent years. Lebeck and Wood proposed the first self-invalidation-based coher-
ence protocol [16]. The main idea behind this protocol is that it is possible to avoid
registering sharers in the directory if each core can recognize when invalidating a
cache line at synchronization points. However, as the authors noted, this protocol
is compatible only with a weak memory model. The proposed protocol dynamically
restricts the self-invalidation through a complex classification performed at the
directory. This algorithm is presented as an optimization to reduce traffic on top
of a standard directory protocol.

In the direction of scaling the directory, Kaxiras and Keramidas proposed SARC
[9], in which readers are definitely removed from the directory by imposing self-
invalidation and writer-prediction to reduce indirection. Nevertheless, the protocol
still retains the directory and the complexity of standard coherence.

More recently, directory-less protocols were proposed, with minimal complexity
and based on self-invalidation [8, 6, 5]. These protocols rely on the DRF assump-
tion and maintain coherence only in the absence of data races. Data races are
the culprits of many problems in parallel programs, even with strong coherence
implementations and consistency models. Despite this assumption, our proposal
satisfies the RVWMO consistency model.

A further common aspect of previous works regards the implementation and
evaluation with system-level simulators like GEMS [11], SIMICS [15], and RADISH
[10]. These simulators allow modelling multiprocessor systems with a high level of
abstraction and performing performance analysis of various system components,
such as memory hierarchy, interconnects, and other parameters.

However, our work takes a different direction. We aim to analyze more in detail
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the impact of this novel category of protocols, describe the algorithm with an HDL,
and integrate it into a real processor (CVA6) based on the RISC-V ISA. We use
an EDA (QuestaSim) for digital circuit accurate simulation and verification. The
main algorithms that inspired this work are described below.

VIPS-M [6] proposes a directory-less protocol based on private/shared data
classification that is performed by the operating system and registered in the
TLB. No coherence mechanisms are used for private data, while shared data
follow a delayed write-through policy (up to a synchronization point or an MSHR
replacement) removing the necessity of registering owners in the directory. At
synchronization points, shared data is self-invalidated to remove sharers. The
algorithm uses page granularity for private/shared classification, making it sensitive
to data access patterns, and it has a limited impact on programs that mainly access
shared pages. It also requires underlying software (an operating system) to perform
page classification. We use a different writing policy by deferring flush until a
release operation, and we propose different lightweight strategies for reducing the
cost of self-invalidation.

DIR1-SISD [5] proposes the same idea of private/shared classification, but it
is carried out by hardware. The LLC performs the classification dynamically and
sends it to private caches, which ensures consistency for a weak memory model by
self-invalidation and self-downgrade (cache line flush) at synchronization points.
This strategy presents significant advantages compared to VIPS-M: the classification
is done at a finer granularity (i.e., a cache line) and improves adaptivity with simple
recovery transitions between private and shared classification. On the other hand,
it is slightly more complex and requires a shared directory with owner registration
(but not inclusive LLC).

Again, we propose different strategies for mitigating self-invalidation, but the
DIR1-SISD idea seems orthogonal to our implementation: the same classification
mechanism could be integrated into our design as an optimization layer.

Neat [8] is a low-complexity self-invalidation protocol based on the distinction
between two synchronization primitives: lock acquire executed before accessing
shared variables and lock release after that. The baseline protocol states that
whenever an acquire is encountered, the entire cache should be invalidated, and
dirty lines need to be written back to shared memory. When a release is executed,
all dirty lines in the cache should be flushed and cleaned, but not invalidated.

Due to the high conservativeness of the protocol, several lightweight mechanisms
are used to reduce the number of invalidations at synchronization points. These
mechanisms include adding the partial invalidate state and using write signatures
at the LLC to recognize when the same line is used by more processors.
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We use the Neat protocol as our baseline protocol to investigate the impact of
self-invalidation for a real processor like CVA6 through digital circuit simulation
and verification (QuestaSim), and ASIC/FPGA synthesis (Synopsys/Vivado).
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Implementation

As anticipated in chapter 3, the implemented protocol is inspired by [8]. It provides
coherence to the data cache of a multicore processor with minimal modifications,
without requiring either a directory or communication between cores and is com-
pletely integrated into the cache controller subsystem of each core without the
need for a complex LLC control. Like many other self-invalidation protocols, it
does not ensure the SWMR invariant, allowing for reading stale copies of data
and writing updated values without any notification to other cores. Therefore, we
rely on the DRF assumption provided by languages such as C++. A data race
occurs when two threads access the same memory location, at least one of them
is writing, and there are no intervening synchronization operations between them.
While they are usually programming errors, data races can lead to unexpected
behaviour when coupled with processors that implement weak memory models
like RVWMO. Since our target processor, CVA6 implements the RISC-V ISA
and its weak consistency model, we chose to implement a low-complex algorithm
that provides coherence only for the important category of DRF programs. The
protocol assumes the processor’s ability to recognize synchronization operations.
According to the RISC-V specification manual [12], each fence or atomic instruction
is interpreted as a synchronization point. Moreover, our protocol is implemented
in SystemVerilog HDL, which is the same language used to describe CVA6.

It follows the detailed description of the protocol in section 4.1 and the required
modifications to the CVA6 data cache subsystem in section 4.2.

4.1 Protocol
The protocol is designed for a two-level memory hierarchy, consisting of a private L1
cache per core and a shared higher-level cache or main memory (see fig. 2.3). The
protocol is implemented entirely in the private L1 cache controllers and requires
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minimal capabilities from the interconnection network or the shared cache controller
(table 4.3).

The main characteristic of the protocol is its simplicity. It requires only two
states (valid/invalid) and a dirty bit per byte to be set whenever a byte in the
L1 cache is overwritten. This functional requirement is important because the
protocol maintains the DRF assumption at the same granularity at which data are
accessed (e.g., a byte for RISC-V ISA), which helps to avoid overwriting variables
with possibly stale bytes.

The protocol is fully described by tables 4.1 to 4.3. When a cache line is invalid,
a load or store instruction from the core triggers a miss request from the cache
controller, which is sent to the LLC. When the requested data is received, the state
of the cache line switches to valid. If the core request was a load, the data is sent
to the core. If it was a store, the data overwrites the received cache line, and the
dirty bits are updated.

If the cache set is full and a new cache line is needed, an existing line must be
evicted. If the line is clean, it can be evicted silently. Otherwise, the data and
dirty bits must be sent to the LLC, the state must switch to invalid, and the dirty
bits must be cleaned. To ensure that the data-value invariant is maintained, it is
important that the LLC controller is able to overwrite only the bytes signaled by
the dirty bits.

Finally, self-invalidation is performed at synchronization points, which are iden-
tified by the execution of fence or atomic instructions [12]. During self-invalidation,
each cache line is invalidated, and any dirty bytes are sent to the LLC and cleared
(table 4.1). Every memory request from the core should be stalled until the end of
the self-invalidation process.

Normal Execution
(NE)

per line, action if synchro-
nization: -/SI;

Self-invalidation (SI) per line self-invalidation
and write-back

Table 4.1: Core wide cache control.

4.2 Design
The protocol is described in SystemVerilog and is mostly confined inside the already
implemented CVA6 data cache subsystem shown in fig. 2.6.

The cache is accessed by four units: three identical cache controllers and the
miss handler.
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Load Store Line evic-
tion

Self-
invalidation

Data from
LLC

Invalid (I) Miss to LLC /
-

Miss to LLC /
-

N/A N/A If write: set
corresp. Dbs
/ V; If read: -
/ V

Valid (V) - / - Set corresp.
Dbs / -

If dirty: write-
back to LLC
and clear
all Dbs/I; if
clean: -/I

If dirty: write-
back to LLC
and clear
all Dbs/I; if
clean: -/I

N/A

Table 4.2: Per line cache controller.

Miss line from core Write-back from core
send data update line data corresponding to Dbs

Table 4.3: LLC controller.

Each cache controller handles load/store requests from three partially indepen-
dent units shown in fig. 2.5: the store unit, the load unit, and the PTW. Cache
controllers interface the pipeline with the data cache sending a request to the miss
handler when a miss occurs.

The miss handler receives requests from the cache controllers and from the core
(atomic requests) and connects the data cache to the external world (i.e. the main
memory) throughout an AXI adapter: when a miss request comes from one of the
cache controllers it sends an AXI message, waits for the response and updates the
cache memory; when it receives an atomic instruction it forwards it through the
AXI bus.

The tag comparator interfaces the finite state machines (the miss handler and
the three cache controllers) with the data cache providing both arbitration and tag
comparison for signaling a hit.

The cache memory is n-way set-associative (with parametric n): it is made up
of n SRAMs for data and tags, and another SRAM for collecting valid and dirty
bits. Both data and tag SRAM word sizes are parametric, as well as the number of
lines. In table 4.4 are listed the parameters that dictate the behavior of the data
cache.

Our contribution consists of the design of the SRAM for retaining the valid
and dirty bits and modifications to the miss handler and the cache controllers to
manage coherence (highlighted with italics to distinguish them from what was
already implemented).
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DCACHE_LINE_WIDTH Width of a cacheline
DCACHE_SET_ASSOC Number of cache lines per set
DCACHE_INDEX_WIDTH Width of the address portion used

for addressing the cache, connected
to the cache number of lines

DCACHE_TAG_WIDTH Width of the address portion used
for the tag comparison

Table 4.4: Data cache parameters.

4.2.1 Valid Dirty Sram
In order to keep track of the state (valid/invalid) of each cache line and to identify
the modified bytes, a valid bit per cache line and a dirty bit per byte is needed.
The required storage per data set can be computed using the following formula:

x = (DCACHE_LINE_WIDTH/8 + 1) ∗ DCACHE_SET_ASSOC

For example, if the cache has 16 bytes per line, 8-way set-associativity and 256
sets the storage required is 4.352 kB for a 32kB data cache.

Given the large storage demand, a SRAM is used to store this information, as
it is more cost-effective than registers. The SRAM is addressed using the same
index as the data and tags SRAMs and provides all the valid and dirty bits for a
set on each access. Bit enables are used to access the SRAM to ensure that only
the correct dirty bits are overwritten.

A high-level diagram of the full data cache is shown in fig. 4.1.

Figure 4.1: Data Cache made up of n tag and data SRAMs and a single Valid
Dirty SRAM.

4.2.2 Cache Controller
The cache controller interfaces the core with the data cache. The FSM (see fig. 4.2)
can handle three types of requests: load, store, and bypass.

20



Implementation

When the pipeline sends a load request, the controller first tries to access the
data cache. If it succeeds, it waits for one cycle for the tag and then compares
it with the n values from the tag SRAMs. If there is a hit, the read data is sent
to the core with a valid signal. Otherwise, a request is sent to the miss handler,
and the controller is stalled until the miss handler responds with the data from
the shared memory. This behaviour is left unchanged, but care must be taken
during the self-invalidation process. Several transitions added to save cycles between
consecutive operations must be suppressed when the miss handler is executing
the self-invalidation to avoid reading stale data. As a result, at the end of each
transaction, the transition to the IDLE state is imposed if the flush signal arises,
where the FSM stalls until the end of flushing (or self-invalidation). In the best
case, a load request has a latency of one clock cycle.

Figure 4.2: High-level cache controller FSM.

When the pipeline sends a store request, one more cycle is required for writing
the cache (fig. 4.3). If there is a hit, the data SRAM is overwritten along with the
corresponding dirty bits in the Valid Dirty SRAM. If there is a miss, the request is
forwarded to the miss handler, which will update the dirty bits. In the best case, a
store request has a latency of two clock cycles.

Finally, a bypass request is treated as a miss and directed to the miss handler.
It is important to highlight that before sending a miss request, the cache controller
always checks if the miss handler is actually serving a transaction to the same
address checking the MSHR and eventually waits for its termination.
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Figure 4.3: Focus on the STORE_REQ state of the cache controller.

4.2.3 Miss Handler
The miss handler interfaces the core with the rest of the system by connecting
through an adapter to the AXI bus. Its FSM (fig. 4.4) serves three types of requests:
misses, flushes, and atomic operations.

When a cache controller sends a miss request the FSM first reads the valid bits
of the corresponding set from the data cache to check if there is space for a new
line: if there is no space it picks a pseudo-random cache line from the set, sends
the data together with the dirty bits through the AXI bus and clears the dirty bits.
Then it requests the missed cache line (fig. 4.5), waits for the data from the shared
memory, and saves the new value in the cache: if the miss was a store, the data is
overwritten in the received cache line and the dirty bits are updated.

When a fence or an atomic instruction is executed it is interpreted by the miss
handler as a synchronization operation and triggers the self-invalidation of the
entire cache (see fig. 4.6). The FSM goes through each set in order to invalidate
the cache lines and clear the dirty bits: if there is a dirty cache line it is sent to the
shared memory with its dirty bits before being invalidated and cleared; if instead,
the entire set is clean it is invalidated in block.
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Finally, if the self-invalidation was triggered by an atomic operation, it is imme-
diately delivered to the AXI bus and the miss handler waits until the termination
of the transaction to return the result to the core.

Figure 4.4: High level miss handler FSM.

Figure 4.5: Focus on the SAVE_CACHELINE state of the miss handler.
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Figure 4.6: Focus on the FLUSHING set of states of the miss handler.
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Chapter 5

Evaluation and Results

In this chapter, we first describe the verification procedure adopted in section 5.1.
Then, we explain our attempt to boot Linux on a multicore platform that uses our
coherence protocol in section 5.2. We study the performance and complexity cost
of our implementation in section 5.3, and finally, analyze the results of the CVA6
core synthesis in section 5.4.

5.1 Functional Verification

First, we verify the compliance of the data cache subsystem with the protocol
description detailed in section 3.2. This process is described in section 5.1.1.

Secondly, we build a multi-core platform to demonstrate the processor’s ability
to run parallel programs. Since the algorithm belongs to the category of consistency-
directed coherence protocols, it is important to further verify that "the order in
which writes are eventually made visible adheres to the ordering mandated by the
consistency model" [1], or in other words, that it complies with the RVWMO. The
adopted procedure is described in section 5.2.1.

5.1.1 Cache Subsystem

Experimental Setup

To set up the testing environment, we utilized the CVA6 official repository as a
starting point [14]. The testbench is described in SystemVerilog and was simulated
using QuestaSim (v10.7_b1). The parameters selected for the tested data cache
configuration are presented in table 5.1.
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DCACHE_LINE_WIDTH 128b
DCACHE_SET_ASSOC 8
DCACHE_INDEX_WIDTH 12b (256 lines)
DCACHE_TAG_WIDTH 44b

Table 5.1: Data cache configuration used for verification.

Testbench

The testbench, depicted in fig. 5.1, includes the data cache subsystem (fig. 2.6)
denoted by the red block, and several testbench modules (in yellow) that emulate
the requests from the core pipeline. Specifically, AMO0 simulates the atomic buffer,
WR0 the store unit, RD1 the load unit, and RD0 emulates the PTW. The DUT
communicates with a testbench memory via an AXI adapter that sends write and
read requests. To ensure the correctness of the data cache, a Shadow Memory is
instantiated. The verification strategy is straightforward: each write request from
AMO0 and WR0 is forwarded to the shadow memory, bypassing the cache. This
makes the values saved in the Shadow Memory the expected results for each load.
Additionally, an external writer that directly writes to both memories emulates a
second core.

To verify the correctness of the DUT, the values read by AMO0, RD1, and RD0
during the simulation are compared to those in the Shadow Memory. Furthermore,
to ensure the correctness of writes, the content of the Memory is compared to that
of the Shadow Memory after the flushing of the entire cache.

Figure 5.1: Data cache subsystem testbench.
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Several tests have already been written to test the DUT, using a mix of se-
quence types (linear/random/burst), operations (read/write/AMOs), request rates,
cachable area sizes, TLB enablement, and invalidation frequency.

In this case, the focus is on the tests designed to verify the coherence protocol,
with the main added feature being the support for dirty bits. These tests aim to
ensure that the dirty bits are correctly set by the cache controller and the miss
handler and are appropriately sent to the shared memory.

The coherence tests are depicted in fig. 5.2. The memory is split into two halves:
one is touched only by the external writer, and the other half is written by the
WR0 module through the DUT. This division avoids the presence of data races.
Memory fragmentation is achieved by selecting different values for one of the four
LSBs of the memory address, which makes it easy to restrict address generation.

The various cases in fig. 5.2 show all tested memory divisions. The testing
procedure involves the application of 20,000 write requests sent by WR0 to the
DUT with random addresses limited to half memory, interspersed with random
invalidations. It’s essential to highlight that the size of stores is controlled to avoid
crossing over the other memory half.

At the same time, the external writer overwrites its half memory, repeating the
same operation on the Shadow Memory. Then, the data cache is flushed, and the
memory and shadow memory are compared for correctness. If they are not equal, it
means that the cache write-back overwrites unused bytes during cache line eviction
or invalidation, revealing a protocol error when dirty bits are set or sent.

5.1.2 Multi-core platform
Thanks to the verification process we explained earlier, we can demonstrate that
our implementation follows the protocol. However, this raises some important
questions: is it sufficient to say that coherence is ensured? Can our design run
parallel programs and produce correct results? And if so, what are the correct
results? We aim to address these questions in this section.

Since our implementation belongs to the consistency-directed family of coherence
protocols, the correctness of the algorithm is closely related to the memory model.
Specifically, as long as each program outcome follows the axioms dictated by the
consistency model (in our case, the RVWMO), coherence is respected, even if the
SWMR invariant is not guaranteed.

This leads us to run executable C programs on a platform with multiple in-
stances of CVA6, collect the output, and verify compliance with RVWMO. The
input programs we use for this purpose are called litmus tests. These are simple
multithread programs designed to test or expose a specific feature of a consistency
model, which we explain in more detail in section 5.1.2. There are two main reasons
why we chose to use litmus tests: firstly, there are several test suites in the literature
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Figure 5.2: Tests added to verify the support for dirty bits. The external writer
and the store unit testbench emulator overwrite a different portion of memory.

with thousands of litmus tests that stress the RVWMO more or less exhaustively
(we used [17]); secondly, there is a useful tool suite called diy7 [18] that allows us to
run the same tests on top of a consistency model described in the domain-specific
language Cat and collect all allowed results.

It is important to note that this approach not only tests the correctness of
our coherence protocol, but also the CVA6 pipeline and the AXI interconnection
network. Together, these determine the global order of memory accesses.

Experimental Setup

To enable the execution of executable files, we developed a multi-core platform in
SystemVerilog that instantiated four instances of CVA6 with minimal peripheral
support. Fortunately, most of the testing platform was already implemented, and
our contribution consisted of the parametric instantiation of four CVA6 cores and
their connections with the AXI bus.

It is crucial to take care of the interface between cores and three peripherals:
the PLIC, which manages multiple interrupt events generated from the peripherals,
the CLINT, responsible for timer interrupts, and the Debug Module. These
peripherals must be configured to support a multi-core platform, particularly for
FPGA synthesis, where we will need all these peripherals to run an operating
system. The design is almost identical to the one used for testing Linux, which is
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shown in fig. 5.6.
During the verification process, it is essential to collect program outputs. We

accomplish this by using the UART peripheral connected to a SystemVerilog
behavioral module that logs the results in an appropriate file.

The executable tests are written in the C language and compiled using riscv64-
gcc (v8.5.0). The SystemVerilog testbench copies the binary programs into the
main memory and starts the multi-core platform. We simulate the complex system
using QuestaSim (v2020.1).

Litmus tests

Litmus tests are simple multithreaded programs designed to test and highlight
the characteristics of a memory consistency model. An example taken from [12]
is illustrated in fig. 5.3. The litmus test code is listed on the left, and the visual
representation of one particular execution is shown on the right.

Despite its simplicity, the code demonstrates a subtle feature of the memory
model called the Load Value Axiom (see section 2.2), which permits the use of store
buffers. Referring to fig. 5.3, the red arrows (rf) represent the dependencies from
each store to the loads that return a value written by that store, the yellow arrows
(fr) depict the dependencies from each load to co-successors of the store from which
the load returned a value, and the green arrows (fence) show the ordering enforced
by a fence instruction.

One possible global order that achieves the same results is (b) → (d) → (f) →
(h) → (a) → (e). The stores are propagated to the shared memory at the end
of the program, but they are executed first (and eventually stored in a buffer).
This specific execution illustrates that the model allows making stores visible to
loads of the same core before propagating them to the global memory, enabling
the implementation of store buffers. Returning to our coherence protocol, the
aforementioned axiom permits us to delay the propagation of stores from the L1
cache to the shared memory.

Figure 5.3: A sample litmus test and one permitted execution from [12].
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Testbench

In fig. 5.4 is illustrated the testing procedure. A set of almost three thousand
litmus tests with four threads at most is taken from [17]. These tests are generated
partially using the diy7 tool suite [18] and partially created manually.

To convert the assembly tests into bare-metal executable files, enhance coverage,
and display results, a straightforward verification environment is developed in the
C language. The CHERI-Litmus repository [19] is used as a starting point. The
main flow of each test program is displayed in figure fig. 5.5. Firstly, the core ID is
read from the corresponding CSR to differentiate the execution of different cores.
Next, the UART is initialized with frequency and baud rate by Core 0. After this,
the specific litmus test is executed 100 times. On each iteration, the variables used
are randomly allocated in memory and initialized. The test is executed, and each
loaded value is saved. Finally, all outputs are collected together and sent to the
UART, which saves them in a properly named file.

Several operations surround the execution of the litmus test to improve coverage:
firstly, both cores wait until they are both executing the test function to avoid
a constant shift between cores; a random small delay is applied to interleave
executions in different ways, and the real litmus test is executed. The loaded
values are saved in a proper global structure, and another barrier is applied to let
both cores finish at the same time. This ensures that during the last execution,
results are displayed only after both cores have terminated. Each executable file is
simulated on CVA6 using QuestaSim, and all results are merged together.

Litmus tests are also simulated on top of an axiomatic description of the
RVWMO, producing all allowed results saved in a log file. Finally, the hardware
results are compared against the model output using diy7 [18]. The comparison
demonstrates compliance with the RVWMO. It is noteworthy to highlight that the
coherence protocol respects the memory model despite litmus tests not being DRF
programs. This means that the RVWMO is weak enough to allow a self-invalidation
coherence algorithm like ours. However, our testing approach based on sample
test programs is unable to exhaustively stress the memory model and obtain 100%
coverage. For instance, the Progress Axiom states informally that each memory
access should be eventually visible to other cores in finite time (see section 2.2).
This axiom can’t be verified by litmus tests, and in the absence of synchronization
operations, our coherence protocol never propagates or fetches updated variables
to the shared memory, violating the axiom.

5.2 Booting Linux
Our research on benchmarks shows that an underlying operating system is a typical
requirement among multithreaded benchmarks since synchronization is complex to
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Figure 5.4: Testing procedure to run and verify litmus tests on CVA6.

be implemented and is typically provided by system calls.
As CVA6 was designed to be capable of booting a Unix-like operating system,

we attempted to port a SMP version of Linux to our platform, as the ability to
run an operating system would be a significant enabler. Our attempt is described
in detail in this section.

5.2.1 Experimental setup
In order to be able to run the operating system with reasonable performance
we synthesized a dual-core platform with our coherent CVA6 for FPGA. The
infrastructure and procedure to produce the bitstream are provided by [14] and
our contribution is limited to the instantiation of multiple CVA6 instances, their
connections with the AXI bus, and the configuration of peripherals in accordance
to the presence multiple cores. A high-level representation of the platform is
illustrated in fig. 5.6.

The platform comes with a preloaded Bootrom that includes the ZSBL. This
program initializes the UART and SPI, copies the content of the SD card to the
main memory, and jumps to the first memory address. To support two cores, we
partially modified the code, removing an infinite loop in the main function of the
ZSBL that prevented the boot core (which loads memory) from waking up the
second core through an interrupt. This allows both cores to jump to the operating
system.

The Bootrom also includes the platform device tree, a data structure used to
describe the hardware components of a computer system. It informs the operating
system about the physical structure of the system, including the number of CPUs,
memory and peripheral addresses, and other hardware components. It’s crucial
to modify the old device tree to indicate the presence of one more CPU and
its interrupts. Additionally, the device tree enables us to register the UART as
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Figure 5.5: Flowchart of the C testing environment to run litmus tests.

standard input and output to communicate with the operating system.
We designed the platform in SystemVerilog and synthesized it for FPGA using

Vivado (v2018.2). The resulting bitstream is loaded onto the Digilent Genesys 2
board, which is based on the latest Kintex-7 FPGA from Xilinx.

We used a pre-built Linux image from [20]. Although this distribution is quite
old and uses the Berkeley Boot Loader to initialize the system’s hardware and set
up the environment to execute the operating system, we chose to use it because
it is the same distribution used by OpenPiton [3], a multicore platform that can
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be configured to instantiate CVA6 cores with a write-through L1 cache. We were
motivated to use the same image because it allowed us to reuse some of their work
and compare our results. The image is saved on an SD card in a properly formatted
manner.

The booting process is analyzed using OpenOCD , which is an open-source
software package for debugging and programming embedded target devices in-
system. It enables us to connect through JTAG to the hardware debug module of
our platform and attach GDB to debug the operating system effectively.

Figure 5.6: Multi-core platform used for running Linux (taken from [14]).

5.2.2 Synchronization issue
After making sure the ZSBL was working properly, we started the execution of the
operating system image.

The first obstacle encountered was the inability of waking up the second core
demonstrated by the output error "CPU1: failed to come online". Using GDB we
found out that the culprit was the presence of a data race (as defined in [1]) in the
wake-up synchronization mechanism used by Linux. In listing 5.1 and listing 5.2
it can be seen the approach used for waking non-boot cores: the _start module
chooses randomly the first hart to boot the kernel and causes the others to spin in
a loop waiting for their stack pointer to be written by that main hart. If the other
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harts don’t come online, the boot one prints the error message we encountered.
The data race is due to the absence of a synchronization operation executed by the
sleeping hart, as can be seen in listing 5.2. The stack and task pointer are read
without the execution of any barriers. The RISC-V memory model doesn’t give
any assurance on when each store will become visible to other cores (neither if the
time is 1000 milliseconds), making the implementation faulty. On the other end,
without an operation interpreted as a synchronization our coherence protocol never
invalidates variables from its private cache, reading always the stale stack pointer
value. We propose a small patch introducing a fence instruction before reading the
variables pointed by the stack and the task pointer, between lines two and three of
listing 5.2 that solved the bug.

Despite the modification, the operating system remains deadlocked. From the
output of GDB, it can be seen that both harts are stalled in the arch_spin_lock()
function shown in listing 5.3, but with different values of the lock variable. It
appears that the unlock operation is not being propagated correctly to the main
memory, causing each hart to wait indefinitely for the lock to be released by the
other, which believes it has already released it.

This issue could be related to the implementation of the release and acquire
operations in Linux, as shown in listing 5.4. The release of a lock followed by the
acquire of the same lock performed by another hart constitutes a data race, as the
two operations access the same variables without any intervening synchronization.
While this behaviour is compatible with RVWMO, which requires that each store
should be visible to other cores in finite time, our implementation does not satisfy
the axiom in the presence of data races, and therefore, the operating system cannot
be executed.

In listing 5.4 is shown the usage of special memory access macros, namely
READ_ONCE and WRITE_ONCE. These macros are used whenever the operating
system needs to order memory accesses. To solve the deadlock, we conservatively
introduced a full fence at the end of the WRITE_ONCE macro and one at
the beginning of the READ_ONCE macro. Additionally, to avoid the same
issue, we inserted a full fence before executing the wfi instruction inside the
wait_for_interrupt function. This allows one core to write back all modified
variables before entering a wait condition, enabling the other processor to proceed
with its computation without waiting for any lock.

The proposed patches allowed us to successfully boot Linux on our platform.
However, it occasionally happens that during execution, one core detects a stall
and the system gets stuck. In such cases, connecting with GDB can resolve the
stall, as the interaction between the debug module and the cores causes the cache
flushing, behaving like the execution of a fence instruction. We discovered that
these stalls are generated by the RCU synchronization mechanism used by the
Linux kernel. The advantage of RCU’s approach is that readers do not need to
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acquire any locks, perform any atomic instructions, write to shared memory, or
execute any memory barriers. However, this optimized synchronization is not
compatible with our coherence implementation and should be avoided.

Overall, our platform is capable of running an operating system, even though
occasionally the RCU module detects a stall and the system needs to be resumed
by connecting with GDB.

Listing 5.1: __cpu_up() C function from the linux kernel. It wakes up non-boot
cores.

1 i n t __cpu_up( unsigned i n t cpu , s t r u c t task_struct ∗ t i d l e )
2 {
3 i n t r e t = 0 ;
4 i n t ha r t id = cpuid_to_hartid_map ( cpu ) ;
5 t i d l e −>thread_info . cpu = cpu ;
6

7 /∗
8 ∗ On RISC−V systems , a l l har t s boot on t h e i r own accord . Our

_start
9 ∗ s e l e c t s the f i r s t hart to boot the ke rne l and causes the

remainder
10 ∗ o f the har t s to sp in in a loop wai t ing f o r t h e i r s tack po in t e r

to be
11 ∗ setup by that main hart . Writing __cpu_up_stack_pointer

s i g n a l s to
12 ∗ the sp inn ing har t s that they can cont inue the boot p roce s s .
13 ∗/
14 smp_mb( ) ;
15 WRITE_ONCE( __cpu_up_stack_pointer [ ha r t id ] ,
16 task_stack_page ( t i d l e ) + THREAD_SIZE) ;
17 WRITE_ONCE( __cpu_up_task_pointer [ ha r t id ] , t i d l e ) ;
18

19 lockdep_assert_held(&cpu_running ) ;
20 wait_for_completion_timeout(&cpu_running ,
21 m se c s _t o_ j i f f i e s (1000) ) ;
22

23 i f ( ! cpu_online ( cpu ) ) {
24 pr_cr i t ( "CPU%u : f a i l e d to come o n l i n e \n " , cpu ) ;
25 r e t = −EIO ;
26 }
27

28 re turn r e t ;
29 }
30
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Listing 5.2: Wait loop for non-boot harts.
1 . Lwait_for_cpu_up :
2 /∗ FIXME: We should WFI to save some energy here . ∗/
3 REG_L sp , ( a1 )
4 REG_L tp , ( a2 )
5 beqz sp , . Lwait_for_cpu_up
6 beqz tp , . Lwait_for_cpu_up
7 f ence
8

9 /∗ Enable v i r t u a l memory and r e l o c a t e to v i r t u a l address ∗/
10 c a l l r e l o c a t e
11

12 t a i l smp_cal l in
13

Listing 5.3: arch_spin_lock() C function from the linux kernel. It waits until the
lock is released.

1 Wait u n t i l the l ock i s r e l e a s e d . } , l a b e l={ l s t : arch_spin_lock } ]
2 s t a t i c i n l i n e void arch_spin_lock ( arch_spinlock_t ∗ l o ck )
3 {
4 whi le (1 ) {
5 i f ( arch_spin_is_locked ( l ock ) )
6 cont inue ;
7

8 i f ( arch_spin_trylock ( l ock ) )
9 break ;

10 }
11 }
12
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Listing 5.4: Release and acquire Linux implementation.
1 #d e f i n e __smp_store_release (p , v )
2

3 compiletime_assert_atomic_type (∗p) ;
4 RISCV_FENCE(rw ,w) ;
5 WRITE_ONCE(∗p , v ) ;
6 } whi l e (0 )
7

8 . . .
9

10 #d e f i n e __smp_load_acquire (p)
11 ({
12 typeo f (∗p) ___p1 = READ_ONCE(∗p) ;
13 compiletime_assert_atomic_type (∗p) ;
14 RISCV_FENCE( r , rw) ;
15 ___p1;
16 })
17

18
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5.3 Benchmarks and FPGA utilization
In this section, we analyze the performance and area impact of our implementation.
For the sake of comparison, we decided to compare our platform with OpenPiton
[3], a many-core research framework developed by Princeton.

We made this choice because it is possible to configure OpenPiton to instantiate
the same CVA6 core that we used for our work but with a write-through data cache
and without any coherence mechanism. Since the two platforms use the same core,
it is simpler to compare the overhead required for providing coherence. OpenPiton
implements a directory-based MESI coherence protocol through an L1.5 data cache
that communicates with the L2 distributed data cache through three NoCs, which
are carefully designed to ensure deadlock-free operations. The L1.5 data cache
serves as both the glue logic between the AXI protocol used by CVA6 and the
three NoCs, and as a write-back layer.

Both platforms were synthesized for the Genesys 2 Kintex-7 FPGA board. Our
system is the same one used for booting Linux, with a 4-way 8kB L1 data cache.
OpenPiton is configured to use the same L1 cache size, an L1.5 data cache with
equal dimensions, and a 64kB L2 cache. Both our platform and OpenPiton use
similar peripherals and have a core clock frequency of 50MHz.

Next, we present the performance results in section 5.3.1, followed by the
comparison in terms of FPGA utilization in section 5.3.2.

5.3.1 Splash-3 Benchmarks
Our research led us to choose the Splash-3 benchmark suite to analyze the perfor-
mance of our implementation. This suite requires a Linux-based operating system
environment, which we are able to provide, and is well-suited for the study of
centralized and distributed shared-address-space multiprocessors. Splash-3 is based
on the popular Splash-2 suite of parallel applications but without data races. We
need to use Splash-3 since data races, along with the RISC-V weak memory model,
can lead to unexpected results and errors.

The results of running these programs on OpenPiton and our coherent platform
for two cores are shown in fig. 5.7. It can be observed that our platform has a
penalty between 40% and 66% concerning OpenPiton for the barnes, fmm, and
radiosity programs. This is due to the presence of one or two orders of magnitude
more synchronization inserted to remove data races, which also means more barriers.
The execution of memory barriers is costly for our coherence protocol (as explained
in appendix A), and this results in a significant penalty. On the other hand, most
of the analyzed programs have a small penalty in the range of 0% to 18%. It is also
important to note that OpenPiton uses a 64kB L2 cache that certainly improves
its performance, even though the DDR3 is fast compared to the core frequency of
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50MHz.

Figure 5.7: Number of cycles to execute each Splash-3 program.

5.3.2 FPGA utilization
We compared the FPGA utilization for three platforms: OpenPiton, the dual-core
system that uses CVA6 with our coherence protocol, and the same platform with
the baseline CVA6 core without our implementation. We aim to compute the cost
in terms of utilization of our protocol compared to the core from which we started.
Moreover, we want to compare it with the standard coherence implementation used
in OpenPiton. To have a fair comparison, the utilization due to the OpenPiton
L2 cache is removed from reports, and only its directory required for coherence is
included.

Figure 5.8 shows the results: the darker colours represent the utilization of the
two cores, and the lighter ones represent the rest of the system, such as peripherals
and interconnections. By comparing the difference concerning the baseline CVA6,
it can be seen that OpenPiton uses 53% more LUTs and 5 times more flip-flops
than our implementation. Despite the L1.5 cache, OpenPiton has a smaller block
RAM usage than our platform due to a more efficient mapping between this specific
cache and the board RAM.

Figure 5.9 highlights the block RAM usage of the cores alone. It shows that the
significant cost of our implementation is the Valid&Dirty SRAM, which requires
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4% (2% per core) of RAM usage, increasing it by 20% compared to the baseline
CVA6. It is important to notice that since the xpm_memory_base Vivado module
used for mapping the Valid Dirty&SRAM doesn’t allow to use of bit enables, the
memory was oversized by a factor of eight to access each line at bit granularity, as
required by our protocol. A more accurate analysis of the area overhead compared
to the baseline CVA6 core is done in the following section.

Figure 5.8: FPGA utilization report for three platforms: OpenPiton, the dual-
core platform with coherent CVA6, and the same platform without our coherence
implementation.
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Figure 5.9: Focus of the utilization report on the block RAM usage of the two
cores.

5.4 Synthesis

5.4.1 Experimental setup
We used Synopsis (v2022.03) to synthesize the CVA6 core in GlobalFoundries
22FDX technology. The data cache configuration used in this step is described
in table 5.1. The macro cells used to map the SRAMs present in the data cache
subsystem are listed in table 5.2. It is important to remember that eight data and
tag SRAMs are instantiated, as many as the number of ways in a set.

It can be seen that the Valid Dirty SRAM requires two macros because the
library doesn’t have a cell with a word width of 136 bits, causing inefficiency. A
simple solution to save area could be to store the valid bits inside the tag SRAMs
that are bigger than required since our tag is 44 bits wide, and use only a macro
cell of 128 word width for storing the dirty bits.

The PVT corner synthesized is shown in table 5.3, together with the equivalent
area of a NAND gate in gf22 technology. We decided to operate in the worst
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condition; the SSG process corner provided by gf22 is slightly less pessimistic than
the classic SS.

Finally, the clock constraints imposed on the synthesis are summarized in
table 5.4

SRAM Macro Cell Macro Word Width (bit)
Data SRAM IN22FDX_R1PH_NFHN_W00256B128M02C256 128
Tag SRAM IN22FDX_R1PH_NFHN_W00256B046M02C256 46
Valid Dirty SRAM IN22FDX_R1PH_NFHN_W00256B128M02C256 128

IN22FDX_R1PH_NFHN_W00256B046M02C256 46

Table 5.2: Correspondence between the SRAMs of the data cache subsystem and
the macro cells where they are mapped.

Process Temperature Voltage GE
SSG (global slow) -40C 0.72V 0.199um2

Table 5.3: Synthesis PVT and gate equivalent for the gf22 technology.

5.4.2 Area and timing results
Area The hierarchical area report from Synopsis focused on the modified modules,
is presented in table 5.5. Comparing it with the synthesis of the CVA6 core before
the implementation of the coherence protocol, a negligible increment in the total
area (1.6%) can be observed. The increase in size is due entirely to the Valid
Dirty SRAM, which grows by 44%. This growth is almost equal to the area of the
46-word width macro cell, which could be saved by storing the valid bits inside the
tag SRAMs. It may seem like the protocol virtually does not affect the area at all;
however, this is not entirely true. In the old version of the core, the Valid Dirty
SRAM, used to store a state bit and only a dirty bit per each cache line, is mapped
with a macro cell of 128-word width, wasting a lot of space. A smarter design
would map the valid bit and the single dirty bit in the tag SRAM, saving area.

By cleverly mapping SRAMs to macro cells for both versions, our design would
have an area cost of a 128-word width cell, corresponding to 3.2% of the total core
area, which is still negligible.

Timing We computed the maximum frequency of our design and compared it
with the old version to determine whether our modifications affected the critical
path, considering the process corner shown in table 5.3. We first performed synthe-
sis of the CVA6 core by imposing a clock period of 0ps and gradually increasing it
until a slack of almost zero was achieved. The maximum frequency in the range
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Period Uncertainty Latency
1250ps 100ps 500ps

Table 5.4: Clock constraints for the synthesis.

Total Area Miss Handler Cache Controller Valid Dirty SRAM
CVA6 without coherence 1.24MGE 13.8kGE 3.16kGE 39.8kGE
CVA6 with coherence 1.26MGE(1.6%) 14.2kGE(3%) 3.16kGE 57.2kGE(44%)

Table 5.5: Area results for the CVA6 core

of (961MHz, 971MHz) was obtained for both cores, with the critical path going
through the FPU inside the execution stage.

In terms of area, our modifications resulted in a negligible growth of only 3.2%
at worst, with no effect on the critical path’s maximum frequency.
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Chapter 6

Conclusion and Future Work

We have implemented a low-complexity, consistency-directed coherence protocol
for CVA6, a RISC-V core processor described in SystemVerilog. Inspired by recent
efforts to simplify coherence and reduce directory cost, our algorithm performs
self-invalidation at synchronization points, which can be recognized by the execution
of ordering instructions such as fences or atomics with acquire/release annotations.

As a result of our approach, we provide coherence only for programs that satisfy
the DRF condition. While this may appear to be a strong constraint, it is worth
noting that there is an industry-wide agreement that data races must be prevented.
When the processor implements a weak memory model, programmers cannot assume
that modifications to shared variables will be immediately propagated to other
cores; they can only be certain that they will eventually occur at some undefined
point. This makes data races extremely dangerous.

We demonstrated the ability of our coherence protocol to run parallel appli-
cations on a multicore platform that was built with multiple instances of CVA6.
Despite the DRF requirement, our verification process showed compliance with the
target RVWMO except for the Progress Axiom in the absence of synchronization
operations. We believe that if we fully comply with the consistency model, i.e. by
incorporating a timer to periodically invalidate the data cache every n cycles, we
can remove the DRF limitation. Eventually, any errors due to data races would be
a result of a programming bug rather than a coherence error.

Our analysis has shown that the frequency of synchronization operations heavily
impacts the performance cost of our coherence protocol, with degradation ranging
from a few per cent to a significant degree. This effect stems from two factors: the
first-order cost, which is related to the time needed to execute synchronizations,
and the second-order penalty, which is caused by the conservative self-invalidation
that increases the miss ratio. In Section 6.1, we propose design optimizations to
mitigate performance degradation.
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We compared our implementation with OpenPiton, which implements a directory-
based coherence protocol. The Splash-3 benchmark suite showed that the penalty
ranges from 0% to 66%, indicating a strong dependence on the frequency of
synchronizations.

The ability to run a Linux-based operating system, albeit with the requirement
of some small patches, represents a significant enabler for our work. It appears
that further work is necessary in this direction to prevent the RCU module from
detecting stalls and causing the system to become stuck.

Finally, our synthesis for gf22 technology demonstrates that the cost in terms
of area is negligible, and there is no modification in the critical path, indicating its
effectiveness in terms of complexity. As a further step, it would be compelling to
conduct a power analysis by annotating switching activity for a suite of benchmarks.
This would allow us to understand the power impact of our implementation.

6.1 Design Optimizations
The implementation presented in this thesis can be improved with several opti-
mizations that we have considered during our work. The primary weakness of
the protocol is its conservative invalidation and write-back of each cache line at
synchronization points, and this section describes ways to reduce this cost.

Distinguish between acquire and release semantics The related work on
self-invalidation is based on the common intuition that the purpose of release
synchronization is to make globally visible all modified variables since other cores
may need to access them. As a result, the core that executes the release instruction
needs to write back dirty cache lines, but since it is the last writer, there is no need
to invalidate them. This approach leads to a reduction in the miss ratio due to
fewer invalidations.

Fortunately, the RISC-V ISA provides a way to differentiate between acquire and
release semantics during the decode stage, using acquire and release annotations,
fence predecessors, and successors sets. This information can be sent to the data
cache subsystem and used to determine whether to invalidate the cache line during
synchronizations.

Partial Invalid state An interesting idea for reducing the number of invalidations
at acquire using a lightweight mechanism is presented in [8]. The authors suggest
that self-invalidation can be postponed until clean bytes are read. If the load
instruction address only dirty bytes, or the operation is a store, there is no need to
send a miss request to the shared memory for a DRF program.
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To achieve this, the authors introduce a new state called Partial Invalidate
(PI) which allows for partial invalidation of all clean lines at acquire. Then, if a
clean byte is addressed by the core for a load operation, a miss request is sent
to the shared memory. This approach could significantly reduce the number of
write-backs, improving both the synchronization overhead and the hit ratio.

Implementing this feature would require adding one bit per cache line to encode
three states (I/V/PI) and some modifications to the cache controller unit to send a
miss request when a clean partial-invalidated byte is read.

Write Signatures Another idea proposed by [8] suggests avoiding invalidation
when a cache line is not updated in the LLC by any other core since the last
self-invalidation. To implement this, write signatures need to be stored in the LLC
for each core. These signatures are sent to the core executing an acquire and so
cleared, and set when another core writes back its cache line to the LLC.

Although this approach reintroduces some complexity in the form of a shared di-
rectory, it can be mitigated by using Bloom Filters. Furthermore, this optimization
can significantly improve performance when acquire operations are frequent.

Private/Shared data classification A promising alternative to the lightweight
optimizations discussed so far is to classify variables as either private or shared [6, 5].
This approach offers the advantage of executing coherence operations only on shared
variables, thus significantly reducing the performance cost of self-invalidation.

There are several ways to perform this classification, as discussed in chapter 3.
One method involves the operating system, which saves the result in the TLB with
minimal complexity but collects information at the page granularity and requires an
underlying kernel. Alternatively, this classification can be performed in hardware by
implementing a more sophisticated LLC controller that registers the classification
in a structure similar to a shared directory and sends it to cores together with data.
This approach increases complexity but improves granularity and adaptivity by
allowing for dynamic switching between private and shared classifications. Notably,
interesting work in this direction is presented in [5].
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Appendix A

Performance estimation

As previously mentioned in section 5.2, our research has shown the need for an
underlying operating system or a custom synchronization library to run well-known
multithreaded DRF benchmarks.

To simplify the process and obtain some performance estimations, we have
designed custom C programs with simple synchronization mechanisms that use
shared variables. The procedure used to run executable files on a multi-core
platform is the same as the one used to run litmus tests (as seen in section 5.1).
The C testing environment is very similar, and the data cache configuration has
been previously verified (table 5.1).

Our SystemVerilog testbench registers each instruction retired by every core in a
log file, along with other relevant information such as simulation time, instruction
opcode, program counter value, and the content of used registers. This information
has proven extremely useful for debugging program execution and is utilized in
this phase to compute the number of cycles required to execute an instruction or
function using a Python script.

It is worth noting that the data cache is connected to a behavioral main memory
with a latency of one clock cycle via the AXI bus. The latency for accessing the
main memory is mainly due to the complex interconnection network that follows the
AXI handshake protocol and introduces a random delay toward the main memory
between 0 and 15 cycles.

In this section, we will first analyze in detail the time required for synchronization
operations alone in appendix A.1. We will then discuss the performance overhead
for a custom benchmark in appendix A.2.

47



Performance estimation

A.1 Synchronization overhead
We have designed two simple functions for multithreaded synchronization, namely
acquire and release, which are shown in listing A.1. The acquire function attempts
to acquire the lock by atomically storing one to the corresponding address. If the
lock was free (i.e., points to zero), the function terminates; otherwise, it keeps
trying. The atomic swap operation, which reads the previous value of the lock and
then stores one, has an acquire annotation to impose the ordering of the following
instructions inside the critical section. On the other hand, the release function
atomically stores zero to the lock. It has a release annotation to ensure the visibility
of all prior memory accesses before its execution. This implementation of acquire
and release semantics is recommended by [12] and has already been discussed in
section 2.2.

Listing A.1: Release and acquire custom implementations.
1 void acqu i r e ( v o l a t i l e uint32_t ∗ l o ck )
2 {
3 asm v o l a t i l e (
4

5 ‘ l i t0 , 1 \n ‘
6 ‘ again : \n ‘
7 ‘ amoswap .w. aq t0 , t0 , (%0) \n ‘
8 ‘ bnez t0 , again \n ‘
9

10 : /∗ output operands ∗/
11 : /∗ input operands ∗/
12 ‘ r ‘ ( l o ck ) ) ;
13 }
14

15 void r e l e a s e ( v o l a t i l e uint32_t ∗ l o ck )
16 {
17 asm v o l a t i l e (
18

19 ‘ amoswap .w. r l x0 , x0 , (%0)\n ‘
20 : /∗ output operands ∗/
21 : /∗ input operands ∗/
22 ‘ r ‘ ( l o ck ) ) ;
23 }
24

We aim to compute the number of cycles required to execute the synchronization
functions described earlier, which is almost the same time required for executing
the atomic RISC-V instructions inside them. This can be easily accomplished
by generating an executable file that uses the acquire and release functions and
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simulating it with QuestaSim.
During simulation, the amoswap.aq/rl instructions are captured by our coherence

protocol, which triggers the invalidation of the entire data cache and the write-back
of dirty lines. The time required for invalidating a clean set can be extracted
from the miss handler FSM in fig. 4.4 and is equal to two cycles. Each dirty
cache line causes a write-back to the main memory, whose latency depends on the
interconnection traffic and control. As a result, the number of cycles for executing
our synchronization mechanism is made up of three parts: the time required for
invalidating 256 clean sets (constant and equal to 512 cycles), the time required for
writing back each dirty cache line, and finally the time for the atomic access.

Several experiments were done to measure the number of cycles required to
execute the acquire and release as a function of the number of dirty lines. The test
was repeated ten times and the average was computed. The results are presented
in tabular form in table A.1. It is important to highlight that only one core is
awakened and thus the acquire function always reads zero, no lock contention is
included in these measurements.

The numbers demonstrate a direct proportionality with the number of dirty
lines, and that the average time for writing back a modified cache line (including
FSM control) is about 40 cycles. The maximum latency is clearly related to the
cache size. These results confirm our expectations and highlight the significant
overhead of synchronization mechanisms.

Dirty lines Acquire cycles Release Cycles
0 573 575
1 612 614
10 982 975
100 4486 4545
1000 41537 41273
2000 82227 82592

Table A.1: Number of cycles required for executing an acquire and release function
of the number of dirty lines.

A.2 Random memory accesses
The algorithm implemented by our custom benchmark is depicted in fig. A.1. Each
core initially performs a random number of read and write operations on randomly
selected private variables, which are stored in a static vector for each core. Then,
both cores execute their critical section where they access another set of private
variables and perform read and write operations on a shared vector. The critical
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section is protected by the acquire and release functions previously described, which
use the same lock to ensure mutual exclusion. The program uses the parameters
in table A.2 to control the size of the critical section, the size of the "non-critical
section", and the number of iterations of the algorithm. The number of accesses to
private/shared variables, as well as their addresses within the static vectors, are
randomized.

We implemented the Random Read/Write algorithm to estimate the performance
penalties of our coherence protocol. This algorithm allows us to compute the first-
order effect of self-invalidation, which is caused by the time required to execute
a synchronization operation, specifically our acquire and release functions. In
many programs, some sections can be executed in parallel while others must be
serialized, making it a common scenario. By iterating multiple times, we obtain
several interleavings between synchronizations that improve the generality of our
benchmark.

Since we are primarily interested in memory accesses and traffic, we use read
and write operations as the main computing element, along with random number
computations. This approach enables us to estimate the second-order cost of the
coherence algorithm, which is associated with the resulting miss ratio generated by
conservatively invalidating the entire cache.

Figure A.1: Random read/write algorithm for performance estimation.

NUM_ITERATIONS Number of iterations of the algorithm.
MAX_PRIV Size of private vectors and also the maximum number of read/write to it.
MAX_SHARE Size of shared vector and also the maximum number of read/write to it.

Table A.2: Parametes used in the random read/write program.

The results of the first experiment are shown in fig. A.2. The pie charts display
the distribution of the algorithm’s execution time divided into four segments for
each core: time spent inside the acquire and release functions, time spent inside
the critical section, and remaining time spent outside the critical section. In this
experiment, we ran only a single iteration, and we varied the sizes of the critical and
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non-critical sections from left to right, which impacted the total execution cycles
and allowed us to adjust the frequency of synchronization operations. To ensure
reasonable results, we maintained the critical section time to be about one-fifth of
the non-critical section time.

For comparison, we compute the execution time in the ideal case where syn-
chronizations return immediately, in zero cycles. In this case, the execution cycles
depend on the interleaving of the two critical sections and oscillate between two
limits. The best case occurs when the critical section of one core is executed during
the non-critical section of the other core, and the worst case occurs when one core
needs to wait for the entire critical section of the other core before executing its
critical section, resulting in serialization.
Mathematically:

bestCase = max(csT imeCore0 + nonCsT imeCore0,

csT imeCore1 + nonCsT imeCore1) (A.1)

worstCase = max(csT imeCore0 + csT imeCore1 + nonCsT imeCore0,

csT imeCore0 + csT imeCore1 + nonCsT imeCore1) (A.2)

In table A.3 is shown the ideal execution times and the performance penalty of
our implementation. It also reports the number of spins, i.e. the number of times
the lock is read before being acquired. A value of two means that the lock is read
only once per core, indicating that every core successfully locked its critical section
at the first attempt. This number is useful because says how close the comparison
is to the best or the worst-case situation.

The results highlight how the frequency of synchronizations impacts perfor-
mance. When two synchronizations (an acquire and a release) are executed every
approximately 2500 cycles (first column of fig. A.2), the penalty concerning the
ideal case ranges from 102% to 63% (first row of table A.3). A spin number of three
shows that the comparison is closer to the worst case. By reducing the frequency
of synchronizations by a factor of almost 30, the penalty is reduced to a maximum
of 16%, and the execution time is actually better than the ideal worst case (last
column of fig. A.2 and last row of table A.3). Similar considerations can be made
from fig. A.2, where it can be seen that the synchronization time slices decrease
from left to right.

The same experiment was repeated by iterating the algorithm ten times to
improve the generality of the test, allowing for multiple possible interleavings of
critical sections. The results are summarized in fig. A.3 and compared with the
ideal case in table A.4. In this case, the ideal number of spins is twenty, since there
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Figure A.2: Time breakdown for the random read/write program, a single
iteration of the algorithm. The frequency of synchronizations decreases from left
to right.

Total cycles(#spins) Ideal best case (penalty) Ideal worst case (penalty)
5473(3) 2708(102%) 3364(63%)
15962(2) 11974(33%) 13815(15%)
155383(2) 134119(16%) 160113(-3%)

Table A.3: Total number of cycles to execute the random read/write program
against the ideal case (one iteration).

are two cores and ten iterations, corresponding to the best case where each core
always finds the lock free.

The same trend observed for one iteration is confirmed for ten iterations, revealing
a penalty that increases with the frequency of synchronizations.

Overall, the coherence protocol appears to degrade performance significantly
compared with an ideal synchronization in zero time, but this impact depends
heavily on the frequency of synchronizations and, therefore, on the algorithm itself.
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Figure A.3: Time breakdown for the random read/write program, 10 iterations
of the algorithm. The frequency of synchronizations decreases from left to right.

Total cycles(#spins) Ideal best case (penalty) Ideal worst case (penalty)
29027(26) 13045(122%) 16431(77%)
152324(34) 118094(29%) 138070(10%)
1302561(70) 1081412(20%) 1250083(4%)

Table A.4: Total number of cycles to execute the random read/write program
against the ideal case (ten iterations).
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