
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

FPGA-based implementation of audio
effects for ultralow-latency Networked

Music Performance applications

Supervisors

Prof. Cristina ROTTONDI

Ph.D. Riccardo PELOSO

Candidate

Diego BERT

April 2023

Abstract

A Networked Music Performance (NMP) is a real-time musical interaction that aims
at allowing musicians to play together from remote locations. One of the greatest
challenges of networked performances is keeping latency, i.e. the mouth-to-ear
delay between users, as low as possible. In recent years, several solutions, mainly
software ones, have been developed to ensure a satisfactory communication. A very
promising approach to further reduce latency is the implementation of a dedicated
audio processor. Indeed, this solution permits improvements in terms of speed,
while keeping some degree of flexibility through an implementation based on a
Field-Programmable Gate Array (FPGA). Among the many architectures available,
one of the most suitable for an audio processor with these characteristics is the
Transport Triggered Architecture (TTA). This processor design is a one-instruction
set architecture that is based on different function units connected by buses. The
only available operation is the move one, which allows the execution of more
complex instructions by moving data from one unit to another.
This thesis proposes a hardware implementation of new function units to perform
two of the most widely used functionalities in the music environment: audio mixing
and reverb effect. Specifically, the former is the process of combining different
audio sources to generate a single output sound. This feature is crucial in NMPs
because it allows multiple input channels and different users to be heard together
in real-time. The audio mixing implementation is described starting from its
algorithm, going through a first firmware implementation and achieving a dedicated
hardware design by exploiting a toolset called TTA-based Co-design Environment
(TCE). The second functionality added to the system is the reverb effect, an audio
unit to simulate the acoustic phenomenon of reverberation. Since the goal of NMP
applications is also to provide natural listening conditions to musicians, adding
reverberation artificially can give the sense of being part of a shared acoustic space.
The algorithm chosen for the reverb implementation is the one theorized by Manfred
Robert Schroeder. Regarding its development, a different approach is considered:
MATLAB HDL Coder is employed to generate a hardware implementation starting
from a Simulink model. Finally, the entire audio processor is implemented on
FPGA exploiting Xilinx Vivado, a synthesis tool for hardware design.

iii

Acknowledgements

Dopo averla completata, mi sono reso conto di come questa tesi non sia altro
che l’ennesimo cerchio che si chiude. Diversi anni fa, infatti, quando decisi di
iscrivermi ad ingegneria elettronica, ero guidato dal desiderio di capire come fosse
possibile realizzare dispositivi in grado di acquisire e riprodurre il suono. Oggi,
grazie a questo progetto, sento di aver avuto l’occasione di poter concludere il mio
percorso rispondendo ad alcune delle domande che mi ero sempre posto in passato.
Ovviamente, tutto questo è stato possibile anche grazie all’aiuto di numerose
persone, che voglio ringraziare.

Per prima cosa, desidero ringraziare la Prof. Cristina Rottondi e il Ph.D. Riccardo
Peloso, per avermi coinvolto in questo progetto ricco di sfide. Inoltre, un ringrazia-
mento lo devo anche a Matteo Sacchetto e Leonardo Severi, per avermi supportato
durante tutta la mia permanenza in dipartimento.

Desidero poi ringraziare tutte le persone che ho conosciuto al Politecnico in questi
anni. In particolar modo, voglio ringraziare Paul, Bex, Fili e Vlad. Siete stati i
migliori alleati che potessi trovare.

Ringrazio i miei amici, gli Svincolati: Wong, Publio, Synth, Rugio, Gabbo e Briga.
Ogni bevuta fatta insieme in questi anni mi ha permesso di scrivere circa un
paragrafo della tesi. Fate voi il conto. Ringrazio inoltre Federico, per essere stato
sempre il metro di paragone, la persona da battere.

Un ringraziamento enorme va poi ai miei genitori, che hanno sempre appoggiato le
mie scelte, e a mio fratello e mia sorella, in grado di strapparmi un sorriso anche
nei momenti più difficili.

Infine, desidero ringraziare con tutto me stesso Federica. Sei il motivo principale
per cui credo così tanto in me stesso e per cui non ho mai mollato. Per questo
motivo, questa tesi è dedicata a te.

v

Table of Contents

List of Tables ix

List of Figures xi

Acronyms xiii

1 Introduction 1
1.1 Thesis objectives . 2
1.2 Thesis overview . 3

2 Networked Music Performance 5
2.1 Latency perception . 5
2.2 History . 6
2.3 Current approaches . 7
2.4 Open challenges . 9

3 System description 11
3.1 System overview . 11
3.2 Communication protocols . 13

3.2.1 I2S protocol . 13
3.2.2 MIDI protocol . 14
3.2.3 SPI protocol . 15

3.3 Audio board . 16
3.4 Audio processor . 17

3.4.1 Development board . 17
3.4.2 Top level design . 18
3.4.3 TTA core . 19
3.4.4 Firmware . 21

3.5 Raspberry Pi . 22
3.6 Tools . 24

3.6.1 TTA-based Co-design Environment (TCE) 24

vii

3.6.2 Vivado . 25

4 Mixing Function Unit 27
4.1 Introduction to mixing . 27
4.2 Motivation . 28
4.3 Implementation . 29

4.3.1 Mixing algorithm . 29
4.3.2 Initial firmware . 30
4.3.3 OSAL . 33
4.3.4 Hardware implementation 36
4.3.5 Hardware simulation . 41
4.3.6 Synthesis and implementation on FPGA 43

5 Reverb Function Unit 47
5.1 Introduction to reverb . 47

5.1.1 Acoustic reverberation . 47
5.1.2 History of reverb . 48

5.2 Motivation . 49
5.3 Implementation . 50

5.3.1 Schroeder’s reverberator . 50
5.3.2 OSAL . 56
5.3.3 Hardware implementation 57
5.3.4 Hardware simulation . 63
5.3.5 Synthesis and implementation on FPGA 65

6 System optimizations and final results 69
6.1 Memory optimization . 69
6.2 Latency optimization . 71
6.3 Top level restructuring . 73
6.4 Main firmware restructuring . 74
6.5 Final results . 75

6.5.1 Resource utilization . 76
6.5.2 Timing results . 77
6.5.3 Power consumption . 78

7 Conclusions 81
7.1 Future work . 83

A Code 85
A.1 mevo_run.sh script . 85

Bibliography 89

viii

List of Tables

4.1 Mixing configurations in test_mixing.c 31
4.2 Bus utilization (without a mixing FU) 32
4.3 FU utilization (without a mixing FU) 32
4.4 Operations executed in ALU (without a mixing FU) 33
4.5 Bus utilization (with a mixing FU) 34
4.6 FU utilization (with a mixing FU) 35
4.7 Operations executed in ALU (with a mixing FU) 35
4.8 Operations executed in MIXER_0 35
4.9 DSP final report for the reverb FU (the ’ indicates corresponding

REG is set) . 44

5.1 Comb filter’s parameters . 55
5.2 Time delay parameters for each filter 59
5.3 Gain parameters for each filter . 59
5.4 Static shift register reports for the reverb FU 66
5.5 DSP final report for the reverb FU (the ’ indicates corresponding

REG is set) . 66

6.1 Memory resource utilization before optimizations 70
6.2 Memory resource utilization after optimizations 70
6.3 Resource utilization (initial architecture) 76
6.4 Resource utilization (final architecture) 76
6.5 Timing results (initial architecture) 77
6.6 Timing results (final architecture) 77
6.7 Power consumption (initial architecture) 78
6.8 Power consumption (final architecture) 79

ix

List of Figures

3.1 System block diagram . 12
3.2 I2S left-justified transmission format (24-bit, MSB-first) [22] 14
3.3 Example of MIDI messages [24] . 14
3.4 SPI transmission mode 0 (CPOL=0, CPHA=0) [26] 16
3.5 Custom audio board . 16
3.6 FPGA development board . 18
3.7 Audio processor top level block diagram 19
3.8 TTA core . 21
3.9 Raspberry Pi 4 model B . 23
3.10 TCE design flow [34] . 25

4.1 Mixer wrap . 36
4.2 Mixer FSM . 38
4.3 Mixer component . 39
4.4 Mixer timing diagram . 40
4.5 Mixer FU simulation approach . 41
4.6 DSP48E1 slice (image taken from [38]) 44
4.7 Mixer implementation on DSP slices 45

5.1 Generic comb filter . 51
5.2 Comb filter’s impulse response . 52
5.3 Comb filter’s frequency response . 52
5.4 Generic all-pass filter . 53
5.5 All-pass filter’s impulse response . 53
5.6 All-pass filter’s frequency response 54
5.7 Schroeder’s reverberator . 55
5.8 Reverb wrap . 57
5.9 Comb filter (Simulink model) . 58
5.10 All-pass filter (Simulink model) . 58
5.11 Reverb core (Simulink model) . 60
5.12 Comb filter improved (Simulink model) 61

xi

5.13 All-pass filter improved (Simulink model) 61
5.14 Reverb core improved (Simulink model) 62
5.15 Reverb FU simulation approach . 63
5.16 Reverb core testbench (Simulink model) 64

6.1 Audio processor final top level block diagram 73
6.2 Firmware state diagram . 74

xii

Acronyms

ASIP Application-Specific Instruction set Processor

DSP Digital Signal Processing
DUT Design Under Test

FPGA Field-Programmable Gate Array
FSM Finite-State Machine
FU Function Unit

HDL Hardware Description Language

I2S Inter-IC Sound
IP Intellectual Property

LUT Lookup Table

MIDI Musical Instrument Digital Interface

NMP Networked Music Performance

OSAL Operation Set Abstraction Layer

PLC Packet Loss Concealment
PLL Phase-Locked Loop

SPI Serial Peripheral Interface

TCE TTA-based Co-design Environment
TCP Transmission Control Protocol
TTA Transport Triggered Architecture

UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol

xiii

Chapter 1

Introduction

For thousands of years, music has been one of the greatest ways to link people to
each other, and even today it plays an extremely important role within society
in creating communities. Its unique ability to bring people together, overcoming
language barriers and cultural differences, is one of the main reasons why it is so
loved. Thanks to the technological progresses which have been made over the last
decades, several other methods of connecting people have emerged. One of them in
particular, called Networked Music Performance (NMP), is becoming of interest
nowadays and is succeeding in uniting people once more through music.

A Networked Music Performance is a musical interaction in which musicians can
play together from remote locations. The technology that supports this kind
of interaction aims at connecting performers by exploiting a telecommunication
network to stream audio signals, so to link them even if they are not physically in
the same room. The main purpose of NMP is to provide a real-time scenario, in
which musicians can feel like they are playing close to each other. As said, over the
last decades, the interest in remote performances has notably increased thanks to
the progress in the telecommunication field and in particular, in the last few years,
as a consequence of the COVID-19 pandemic.

The importance of this topic has increased so much, that many researchers have
started to study both technological and social aspects related to NMP. According
to them, the introduction of remote performances in society can bring a lot of
benefits to different kinds of users, such as expert musicians, artists, music teachers
and students [1]. Among the benefits for professional musicians, there is for sure the
possibility to save the huge amount of time they spent commuting from one place
to another. It is well known, indeed, that a consistent part of a performer’s life is
made up of travels. Networked performances may then introduce also new ways
of thinking about music and change considerably the creative process of artists.

1

Introduction

The opportunity to get in touch with other musicians all over the world can be
a boost for creativity and new inspiration. Furthermore, NMP can become also
an interesting approach to music study, providing teachers and students with an
environment in which they can practice from everywhere.

Like other ground-breaking technologies, also NMP is a very challenging field and
has many different issues to overcome. First of all, the necessity of maintaining
a stable real-time communication between two or more users, which is one of the
most problematic but crucial features to achieve. Indeed, as confirmed by a large
number of studies, very strict latency requirements need to be met to ensure a
successful musical interaction. The time delay recognized to be optimal for NMP
is approximately around 20-30 ms [2]. Achieving this kind of latency is not an easy
task, as there are usually several bottlenecks, starting with the telecommunication
network. Indeed, one may wonder why not use modern videoconferencing software.
These tools are acceptable for speech, but are not fast enough for musical interac-
tions, since the mouth-to-ear delays they introduce are in the order of hundreds of
ms. For this reason, dedicated solutions need to be developed to solve the problem.

The solution considered in this thesis consists of a dedicated hardware system
designed to deal with extremely low latency. As it will be explained in the next
chapters, this solution is mainly based on a Field-Programmable Gate Array
(FPGA), used to implement a custom audio processor. Compared to currently
available software, this approach can bring several benefits, that will be analyzed
in detail later.

1.1 Thesis objectives
This master’s thesis investigates a possible hardware implementation for two of
the most widely used functionalities in the music environment: audio mixing and
reverb effect. Specifically, these would be included as Function Units (FUs) in a
custom audio processor to support NMP applications and, for this reason, their
design needs to take in consideration several aspects. First, they should introduce
the lowest possible latency. By doing so, the further time delay added can be
considered a negligible contribution. Moreover, since their physical implementation
is then performed on an FPGA, also resource utilization becomes a major concern.

In addition to this main goal, the thesis has also some other purposes. First, to
give a greater contextualization, it aims to describe in detail the overall system in
which both the new units and the audio processor are placed. Then, its intent is
also to present some possible optimizations to the considered FPGA-based solution,
so that better performances can be achieved.

2

1.2 – Thesis overview

1.2 Thesis overview
Following this introduction, the remainder of the thesis is organized into other 6
chapters:

• Chapter 2, which describes more in detail the NMP field, by giving an overview
of latency studies, the history of networked performances, currently available
solutions and open challenges.

• Chapter 3, which offers a full description of the proposed FPGA-based ap-
proach, examining the different components of the system and the interfaces
between them.

• Chapter 4, which breakdowns the workflow adopted for the development of
the mixing function unit on the audio processor, starting from a firmware
solution and achieving a dedicated hardware structure.

• Chapter 5, which explains the reverb feature design by exploiting MATLAB
HDL Coder and a Simulink modelization of Schroeder’s reverberator.

• Chapter 6, which analyzes the optimizations performed on the audio processor
in terms of latency and resource utilization, taking then a look at the final
outcomes.

• Chapter 7, which summarizes the thesis work and shows future perspectives.

3

4

Chapter 2

Networked Music
Performance

This chapter gives an overview of NMP’s state of the art. First, it focuses on one
of the main actors which influence performances: latency. Then, it describes some
of the most important currently available solutions for networked performances,
introducing also some meaningful milestones in NMP’s history. Finally, future and
still open challenges on the topic are presented.

2.1 Latency perception
One of the major concerns when talking about NMP is latency, which can be
defined as the time delay that occurs between two musicians when playing together.
Indeed, every kind of musical performance is influenced by this delay and by the
way humans perceive it. In the last decades, as the interest in NMP started to
increase, also research and studies on latency started to rise. In particular, the
most common topics were latency perception in different environmental conditions
and strategies to cope with it. The main target of these studies was usually the
understanding of which are the parameters that influence latency perception and
which is a suitable latency range to support real-time performances.

Different experiments on latency perception can be found in literature. Researchers
not only focus their attention on changing environmental and acoustical conditions,
but they also concentrate their efforts on proving the effect of different instruments,
musical pieces and tempos. However, most of the experiments follow the same setup
for testing purposes. Usually, musicians are placed in two different anechoic rooms,
so that they can’t see each other. They can listen to what they are playing through
some kind of communication system that has a negligible time delay. Latency

5

Networked Music Performance

is then introduced in their live interaction artificially to understand its impact.
Another kind of setup used in some experiments also includes video transmission
of each musician to figure out possible differences in perception.

Experiments showed that in general an audio latency of 20-30 ms [2] can be
considered as a suitable range to have an acceptable performance. However, it
seems that different studies have their own opinion on acceptable latency ranges.
Indeed, as observed in [3], it is difficult to determine a common latency threshold
between humans. This is not only because several parameters need to be taken
into account during a performance, but also because subjectivity plays a crucial
role. This study, in which musicians were asked to perform different rhythmical
patterns, demonstrates how they perceive latency in quite different ways.

Another research that deserves to be taken into consideration is the one realized at
the Norwegian University of Science and Technology [4]. In this set of experiments,
participants were both musicians and non-musicians. This was done to understand
the differences between people with some musical training and those who have not.
They were asked again to perform some rhythmical patterns and the results seem
to confirm that being used to music practice has an impact on performances.

As it can be noticed, latency perception in humans is a quite complex field of
study, because it is influenced by many different conditions and also by subjectivity.
This is the reason why the goal of an NMP environment is to reduce as much as
possible the delay introduced, to achieve performative conditions similar to those
of musicians playing together in the same physical space. For a more detailed
overview of the most important studies on latency, the reader can refer to [2].

2.2 History
Networked Music Performances have their roots long before the spread of currently
available telecommunication systems and networks. Indeed, remote music collabo-
rations and the possibility to play from remote locations are concepts that have
been explored many years ago.

In such context, John Cage’s "Imaginary Landscape No.4 for twelve radios" is
accredited to be one of the first NMP experiments [5]. Executed for the first time
in 1951, this composition was written to be performed by 12 interconnected radio
transistors. Cage’s will to investigate new ways of creating music was evident but,
of course, strongly limited by the technological achievements of that time.

Another interesting experiment, which sounds visionary for that period, was held in
1957 by Paul Robeson [6]. The artist performed a concert for people sitting in the

6

2.3 – Current approaches

St Pancras Town Hall in London, while being in a recording studio in New York.
This was possible thanks to the first transatlantic telephone cable system, called
TAT-1. Even if it was a one-way-only musical interaction, Robeson’s performance
can be considered a milestone in music technology since it was one of the first times
that a concert was offered to a remote audience.

One of the first real improvements in creating remote interconnections between
musicians was brought by the spread of early personal computers in the 1970s.
In particular, it was provided by a band called The League of Automatic Music
Composers, which had its origin in the San Francisco Bay Area [7]. This group of
innovators used early networked computers to exchange data and influence each
other on what they were playing. After their first attempts, the same members
of The League of Automatic Music Composers were involved in a new project,
which was named The Hub [7]. From 1987, when they became able to play between
different buildings in New York, they started to increase the distance among players.
One of their most famous experiments was related to a live performance between
the Mills College, California Institute for the Arts and the Arizona State University.
Unfortunately, they recognized that remote performances were heavily limited by
communication networks, so their experiment was a failure.

The greatest advancement in the creation of a system for networked performances
was possible at the beginning of 2000. Thanks to the latest improvements in the
computer networks field, the first bidirectional communications at acceptably low
latency were possible. This was mainly due to the development of Internet2, a
network which provides bandwidth-intensive services for the research and education
community in the United States. The first solution which exploited this kind
of infrastructure was developed at Standford University’s CCRMA (Center for
Computer Research in Music and Acoustics) and was led by Chris Chafe. This
project was named SoundWIRE [8] and had as a main goal the design of a set of tools
for high-quality uncompressed bidirectional audio communications in real-time.

Another important proposal that was made possible by Internet2 is the Distributed
Immersive Performance (DIP) project [9]. Its objective was to develop a technology
for real-time and multi-site live musical interactions. The implementation of the
system was supported by a series of different experiments.

2.3 Current approaches
During the last two decades, the interest in NMP has increased a lot, as witnessed
by a large number of solutions that have been proposed. This interest has increased
so much that also some companies started to create their own product for remote

7

Networked Music Performance

musical interactions. Many different approaches to NMP are available, each one with
its characteristics such as the use of a software or a hardware solution, compressed
or uncompressed audio streaming, digital audio processing algorithms and also
video support.

One of the first solutions, developed in the early 2000s by Chris Chafe and Juan-
Pablo Cáceres, is Jacktrip [10]. This is an open-source software designed after the
previous SoundWIRE project at Standford University’s CCRMA. Jacktrip works
on most general-purpose OSs and supports a number of audio channels limited
only by the network bandwidth. The main approach employed for the real-time
interaction is to send uncompressed audio through Internet2. To support the
project, a collaboration between Standford University’s CCRMA and Silicon Valley
software entrepreneurs was established in 2020, leading to the birth of the Jacktrip
Foundation [11]. Thanks to this, a complete NMP environment called Jacktrip
Visual Studio was built. Moreover, they developed also the JackTrip Analog Bridge,
a hardware solution that acts as a sound card to further reduce latency with respect
to currently available commercial solutions. According to them, the time delay
introduced by this device is about 1 ms.

One more solution inspired by the SoundWIRE project is SoundJack [12], a
software application developed by Alexander Carôt at the International School
of New Media in Lübeck in 2006. The followed approach is similar Jacktrip’s
one, but as a difference, both a compressed audio format (Opus audio coded) or
uncompressed sound can be used. Furthermore, to simplify user accessibility, also
a web version of the application called SJ-lite was developed [13].

Another software approach that can be used on most general-purpose OS is Jamulus
[14]. Also his software was released in 2006 and since then it has increased its
popularity among musicians, creating quite a large user base over the years. It is an
open-source software licensed under the GNU General Public License (GPL) and
has a friendly and intuitive user interface. Some key features of Jamulus include
the use of an Opus compressed audio format and the possibility to add reverb effect
to audio channels. Moreover, Jamulus offers also the opportunity to set up audio
and network parameters for more expert users to achieve better performances.

A research project that is worth mentioning is DIAMOUSES [15]. Also this software
is an open-source one, but it works only on Linux OS. Its main characteristics
are that it uses uncompressed audio signals and that can be used to stream also
video. DIAMOUSES’s main purpose is to create an environment in which different
application scenarios are present to support user experience, such as rehearsals,
teaching lessons or collaborative sessions for jamming.

8

2.4 – Open challenges

One last open-source project is SonoBus [16]. This software was released in 2020,
after the boom of users in NMP usage. It includes almost all the features of
other solutions already described, but it has two main adds-on: it can use both
uncompressed or Opus compressed audio and includes many different effects for
audio processing such as compression, noise gate, equalizers and reverb.

Among the commercial solutions, one of the first products that can be considered is
JamKazam [17], a proprietary software that again works on most general-purpose
OSs. Among its features, it can be recalled the possibility to stream video, record
sessions and play pre-recorded tracks in the background.

A different approach is the one adopted by the Elk Audio company [18]. The
main difference, with respect to the ones described as far, is that they developed
a complete setup for real-time remote performances. In particular, they designed
a hardware audio interface called Elk Bridge that can be used together with a
proprietary software called Elk LIVE. To have greater control over hardware, they
implemented also Elk Audio OS, which is a Linux-based OS optimized for low-
latency audio applications. Thanks to their dedicated audio interface and OS, they
are able to achieve very promising results in terms of latency. According to them,
in suitable conditions, their setup has "about 15-20 ms of latency over 1000 km
(621 miles) on a fiber connection".

This section tried to describe some of the possible implementations of NMP
environments. Of course, many other solutions are currently available, as said
mainly software ones. For a more schematic and detailed comparison of the best
existing solutions, the reader can refer to [19]. In the next chapter, a different
kind of approach, based on an FPGA implementation of an Application-Specific
Instruction set Processor (ASIP) for NMP applications, will be investigated.

2.4 Open challenges
As already said, NMP is a very challenging topic, since it involves many different
expertises. For this reason, even if a lot of progress has been done in the last two
decades, several open challenges persist.

Since latency is one of the main issues to consider and network delays are usually
the bottleneck of every NMP application, some possible future improvements should
address them. Indeed, nowadays NMP traffic is treated the same as other kinds of
services. This is of course a problem for real-time interactions because they have
to share the same telecommunication infrastructure of other content. To increase
performances in this way, commercial agreements for a reserved bandwidth could
be taken into account [1].

9

Networked Music Performance

Another issue to deal with is the portability and ease of use of NMP environments.
In fact, all the currently available solutions require an adequate network connection,
which is not always possible to meet. This is the case for example of wireless
connections [1]. In addition to the portability of NMP, also its ease of use is an
important point. Indeed, most of the currently available solutions are not enough
intuitive for common users and require some minimum knowledge of audio devices
and their parameters.

Finally, one of the most challenging topics to deal with is Packet Loss Concealment
(PLC), which is a method used to cope with packet losses on networks. Indeed, in
telecommunication networks it is quite common for a data packet to be corrupted
in some way or arrive too late at the receiver side. In most of the cases, thanks
to the Transmission Control Protocol (TCP), this is avoided by retransmitting
lost/corrupted packets, thus ensuring a reliable delivery. Unfortunately, since
NMP requires stringent delay guarantees, TCP can’t be used and User Datagram
Protocol (UDP) is used instead. UDP is a lighter transmission protocol but does
not ensure reliable transfer, so it requires some kind of algorithm to deal with
packet losses. For this reason, PLC techniques can have an important impact on
UDP transmissions and as a consequence on NMP quality. Moreover, most of the
current solutions also transmit uncompressed audio to save time, which does not
leverage intrinsic PLC methods implemented by traditional audio codecs. For all
these reasons, PLC techniques need to be implemented in an NMP environment
and several different solutions have already been developed. Current studies are
also trying to understand a possible approach based on deep learning [20]. One of
the greatest challenges, in this regard, is the possibility to use machine learning
models to predict the next packets before their actual arrival.

10

Chapter 3

System description

This chapter analyzes the preliminary version of the system developed for NMP
applications, which will be then modified in the next chapters. First, it gives an
overview of its components and the interfaces between them. Then, each element of
the system is explained, focusing in particular on the FPGA-based audio processor,
which is the main candidate for the improvements treated in this thesis. Finally,
the software development tools used are also introduced.

3.1 System overview
As mentioned in section 2.3, there are several ways to develop an NMP environment.
However, since latency requirements are very severe, a purely software-based
approach is not always the best option. An alternative solution, described also in
[2], is the use of a system based on an FPGA, where audio packets are completely
handled by a dedicated hardware. In this way, the many sources of additional latency
that can exist in a general-purpose architecture, such as the kernel intervention,
are not present.

The system considered in this thesis is a hybrid solution between a software approach
and the mentioned FPGA-based one. In particular, as shown in figure 3.1, it can
be divided into three main components, each of them implemented on a different
hardware support:

• Audio board

• Audio processor

• Raspberry Pi

11

System description

The former is a custom hardware support that acts as a sound card for the considered
system. Its main purpose is to acquire and play sound samples by exploiting several
audio interfaces. The audio board is also the component that is responsible for
interfacing directly with users, by making them control, for example, the volume of
each input audio channel. The second element of the system, the audio processor,
is an ASIP implemented on an FPGA development board. In this preliminary
version of the system, it is simply used to handle the communication between the
audio board and the Raspberry Pi device. However, as introduced in the next
chapters, the audio processor can be also used to perform digital signal processing
operations on the acquired audio samples. Then, the last component of the system
is the Raspberry Pi. This device is in charge of packetizing and depacketizing audio
samples and of managing the network communication through an Ethernet port.
In this preliminary version of the system, it is also used to mix incoming audio
data streams.

Audio processorAudio board Raspberry Pi

MIDI IN 0

MIDI IN 1

MIDI IN 2

MIDI IN 3

MIDI OUT 0

 I2S 0

MIDI OUT 1

 I2S 1

 SPI 0

 SPI 1
ETHERNET

MIDI CONN 4

MIDI CONN 5

JACK CONN 0

MIDI CONN 0

MIDI CONN 1

MIDI CONN 2

MIDI CONN 3

XLR CONN 0

XLR CONN 1

XLR CONN 2

XLR CONN 3

Figure 3.1: System block diagram

With respect to the solutions analyzed in section 2.3, the proposed system can bring
some advantages to an NMP application. One of the most important is definitely
the low latency introduced compared to purely software approaches. Indeed, the
system is mainly composed of dedicated hardware, being the Raspberry Pi the
only general-purpose device. With this kind of solution, the latency introduced
by commonly available sound cards, due to a consistent buffer size, is not present.
Moreover, as mentioned before, no OS runs on the ASIP, reducing further the time
delay introduced. Of course, this solution comes also with some drawbacks, such
as a reduced flexibility compared to pure software solutions.

12

3.2 – Communication protocols

3.2 Communication protocols
As it can be seen from figure 3.1, the three main components of the system exploit
different communication protocols to interface with each other:

• I2S protocol, between audio board and audio processor

• MIDI protocol, between audio board and audio processor

• SPI protocol, between audio processor and Raspberry Pi

3.2.1 I2S protocol
The Inter-IC Sound (I2S) [21] is a synchronous serial communication protocol
designed by Philips Semiconductors (nowadays known as NXP Semiconductors),
introduced in 1986 to deal with the lack of a standard interface for digital audio
systems.

I2S communications are based on a 3-line serial bus composed by:

• Continuous Serial Clock (SCK) or Bit Clock (BCLK): determines the bits
transmission rate

• Word Select (WS) or Left-Right Clock (LRCLK): indicates the channel being
transmitted (typically WS=0 means left channel and WS=1 means right one)

• Serial Data (SD): is the serial audio data line on which data are usually
transmitted in an MSB-first two’s complement representation

The protocol is based on a master/slave communication and permits the presence
of multiple transmitters and receivers. The master device needs to drive the SCK
and WS lines, while the SD one can be driven also by slaves. In particular, if the
master is a transmitter, it will drive also the SD line, while if it is a receiver, SD
will be driven by a slave. In the considered system, the audio processor acts as
master, while the audio board is a slave. Specifically, to work properly with the
I2S interface on the audio board, the processor needs to drive the SCK and WS
lines (also referred to as BCLK and LRCLK), by respecting the following timing:

fbclk = 64 · fs

flrclk = fs

(3.1)

where fs is the sampling frequency of the system, equal to 44.1 kHz.

13

System description

I2S bus specification also supports different transmission formats. In the case of
the considered system, the one shown in figure 3.2 is adopted. This configuration
represents audio data on 24 bits with a left-justified, MSB-first format (LRCLK=1
means left channel and LRCLK=0 means right one). This representation was chosen
since both Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter
(DAC) on the audio board have an embedded I2S interface with these characteristics
(as explained later in section 3.3).

LRCK

BCK

R-ChannelL-Channel

DATA 1 2 N−1 N

MSB LSB

3 N−2 1 2 N−1 N

MSB LSB

3 N−2 1 2

1/fS

(3) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW (Slave Mode)

(= 32 fS, 48 fS or 64 fS)

(4) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW (Master Mode)
Figure 3.2: I2S left-justified transmission format (24-bit, MSB-first) [22]

3.2.2 MIDI protocol
Musical Instrument Digital Interface (MIDI) [23] is a technical standard among
modern digital audio devices introduced by Dave Smith and Chet Wood in 1981. In
particular, this term describes not only a communication protocol but also physical
connectors designed to achieve a standardized interface between different electronic
musical instruments. Unlike I2S, MIDI is not used to transfer audio samples but
messages among devices to exchange control information.

MIDI messages are composed by words of 8 bits, that can represent both a status
or data information. The first bit of each word is used to identify the kind of
message (0 for data and 1 for status).

Figure 3.3: Example of MIDI messages [24]

The communication protocol is UART-like: a start (logic 0) and stop (logic 1) bit
are used to define a frame and data are transmitted with a baud rate of 31.25 kbit/s.

14

3.2 – Communication protocols

As said, the MIDI standard defines also electrical interfaces. For this purpose,
originally, 5-pin DIN connectors were used, carrying information on two pins and
omitting the use of the other three to achieve better electrical isolation. However,
nowadays MIDI messages can also be exchanged on other types of connectors, such
as USB and Ethernet ones.

3.2.3 SPI protocol

The Serial Peripheral Interface (SPI) [25] is a full duplex synchronous serial com-
munication protocol introduced in the 1980s by Motorola. It was mainly intended
for short-distance communication between integrated circuits on the same printed
board and over the years has become a de facto standard.

The SPI interface is composed of 4 lines:

• Serial Clock (SCLK): the serial synchronous clock

• Master Out Slave In (MOSI): the master outputs data line

• Master In Slave Out (MISO): the slave outputs data line

• Chip Select (CS): the line that indicates if a slave is selected (often active
low). If there is more than one slave, multiple CS lines are present.

Also this protocol is based on a master/slave configuration, where usually a single
master manages one or more slave devices. SCLK, CS and MOSI lines are driven
by the master, while the MISO one is driven by the slave. Usually, the SCLK
frequency is determined by the master according to which frequency range slaves
can support. In the case of the considered system, the Raspberry Pi is the master
device, while the audio processor is the slave.

The Serial Peripheral Interface protocol supports different modes of operation. In
particular, it can be configured in four distinct ways according to the value of two
parameters: CPOL, the polarity of the clock during the idle state, and CPHA,
which determines if the rising or falling clock edge is used to sample the data.
Usually, how the bytes exchanged need to be interpreted is defined and specified
for each slave device. In the case of the considered system, the two parameters are
both set to 0, meaning that the clock idle state is low and data are sampled on the
rising edge (while they are shifted on the falling one). This mode of operation, also
known as mode 0, is shown in figure 3.4.

15

System description

Figure 3.4: SPI transmission mode 0 (CPOL=0, CPHA=0) [26]

3.3 Audio board
The first component of the considered system is the audio board [27], a hardware
circuit conceived as a custom sound card that can be used to meet extremely low
latency requirements. A picture of it can be seen in figure 3.5.

Figure 3.5: Custom audio board

As already mentioned, the main role of this component is to acquire and play sound
signals by means of different connectors and electrical interfaces. For this reason,
the audio board is equipped with:

• four XLR connector inputs, to acquire analog audio signals

• one headphone output (3.5 mm jack), to play analog audio signals (stereo
output)

16

3.4 – Audio processor

• four 5-pin DIN connector inputs, to receive MIDI messages

• two 5-pin DIN connector outputs, to transmit MIDI messages

To effectively carry out its tasks, i.e, converting analog signals to digital ones and
vice versa, the audio board includes two ADCs and one DAC. Both of these devices
are designed for audio purposes and are equipped with I2S modules, configurable as
masters or slaves depending on the application. Since in the considered system the
master device is the audio processor, these interfaces are set as slaves. Regarding
the 5-pin DIN connector, input interfaces composed of optocouplers are present to
satisfy MIDI transmission requirements. Moreover, the board features two Pmod
connectors to interact with the audio processor. These are used as physical supports
for both the I2S and the MIDI communication protocols.

One last consideration which needs to be made is that, even if the audio board
features MIDI interfaces, the new function units added to the system will refer only
to signals coming from XLR input channels. This is because MIDI protocol works
with messages and requires different techniques to manage them.

3.4 Audio processor
The second component of the considered system is the audio processor, implemented
as a custom ASIP. Its goal in this preliminary architecture is to manage the
communications between the custom audio board and the Raspberry Pi device. In
this first version, it is still not employed for sound processing intent. However, in
the next chapters and future development, it will be designed to do so.

3.4.1 Development board
Since manufacturing a custom audio processor on an Application-Specific Integrated
Circuit (ASIC) is very expensive, at the early stages of development another solution
is preferred, usually an FPGA-based implementation. This choice comes also with
the necessity of flexibility that a processor under development requires. For these
reasons, a development board that embeds an FPGA was adopted to implement
the audio ASIP and test it easily. The development platform used for this purpose
is the Arty A7-100T board produced by Digilent and built around the Artix-7
model XC7A100TCSG324-1 FPGA from Xilinx. This board is a ready-to-use one
and requires only to install Vivado Design Suite as a software tool. As a flexible
platform, Arty A7-100T board is equipped with many devices such as 4 switches, 4
buttons, 8 LEDs (including 4 RGBs), 4 Pmod connectors and a shield connector
Arduino / chipKIT compatible, while the built-in Artix-7 FPGA features 15850
Configurable Logic Blocks (CLB) slices, 240 Digital Signal Processing (DSP) slices,

17

System description

4860 Kbits of Block RAM (BRAM) and an internal clock generation logic that can
exceed 450 MHz [28]. A picture of the FPGA development board can be seen in
figure 3.6.

Figure 3.6: FPGA development board

3.4.2 Top level design
The preliminary version of the audio processor consists of many layers. As it can be
seen from figure 3.7, it is implemented as a wrapper unit described in the Hardware
Description Language (HDL) file top_pll.sv. This module is organized into two
main blocks: a 11 MHz Phase-Locked Loop (PLL) and a top level, respectively
pll.v and top.vhdl. The former block is the element in charge of generating an
accurate 11.2896 MHz clock to support the I2S communication protocol. This
module takes the main clock clk as input and produces the 11 MHz mclk as output.
To easily implement the PLL unit, a Vivado customizable Intellectual Property
(IP) is used. The second element contained in the wrapper top_pll.sv is the top
level unit, which in turn is organized into different modules:

• TTA core: is the actual processor, containing all the different FUs

• I2S clock generator: generates the bit clock bclk and the left-right clock lrclk
for the I2S protocol (since the audio processor is the master device)

• Instruction memory: contains the sequence of instructions to be executed by
the processor

• Data memory: is used to store data and global variables

18

3.4 – Audio processor

TTA Core
(tta0.vhdl)

Data memory
(synch_sram_synth.vhdl)

Instruction memory
(inst_mem_logic.vhd)

I2S clock generator
(I2S_clock_gen.sv)

11 MHz PLL
(pll.v)

Top level + PLL (top_pll.sv)

Top level (top.vhdl)

X

X

clk

input
signals

output
signalsX

bclk / lrclkX

mclkX

memory
control signals

Figure 3.7: Audio processor top level block diagram

3.4.3 TTA core
The actual core of the audio processor is implemented using a Transport Triggered
Architecture (TTA). This processor design is a one-instruction set architecture,
based on several FUs and some register files connected by buses [29]. In this kind
of architecture, the only available operation is the move one, which allows the
execution of more complex instructions by moving data from one unit to another.
For this reason, programs directly control the transport buses since the internal
datapaths are exposed to the instruction set. The execution of operations happens
as a side-effect of the moves between FUs: moving data into the trigger port of a
FU makes it start working.

A TTA processor design has several advantages that make it particularly suitable
for the system considered. First, it is an optimal solution for the development of
an ASIP, since its characteristics match well with specific application domains,
such as sound processing in this case. Moreover, TTA processors provide also
opportunities to increase the functional parallelism of operations. The instructions
to be executed are usually very long and permit parallelizing the job of several

19

System description

function units, according to the number of buses designed. One more advantage,
of a TTA implementation, comes from the possibility to exploit register bypassing.
This optimization technique is usually adopted in general-purpose processors when
the result of an operation is also the input to one of the following operations. The
write-back register is bypassed using a hardware structure, saving a clock cycle.
The same concept can be applied to a TTA processor. with the difference that
data are directly moved from one unit to another, so registers to store results are
always avoided if the compiler optimizes the operation execution. In addition,
a TTA is also a suitable solution to implement an energy-efficient design. The
only major drawback in using this kind of architecture can be found when talking
about general-purpose processors. In this context, indeed, a TTA implementation
is usually not recommended.

The designed TTA core is reported in figure 3.8 and, as it can be seen, it contains
several units and two register files fully connected by means of four transport buses.
In particular, the architecture is composed by the following FUs:

• I2S_LJ_master_TX_0 : the I2S master-transmitter module used to transmit
audio samples to the audio board

• I2S_LJ_master_RX_x: the I2S master-receiver modules used to receive
audio samples from the audio board

• UART_TX_x : the UART transmitter modules used to transmit MIDI mes-
sages to the audio board

• UART_RX_x: the UART receiver modules used to receive MIDI messages
from the audio board

• SPI_slave_x: the SPI slave modules used to transmit and receive audio
samples and MIDI messages to/from the Raspberry Pi device

• LED_DRIVER_x : a module to drive the onboard RGB LEDs

• SWITCH_DRIVER_x : a module to read the status of the onboard switches

• TIMER_0 : a timer unit

• alu: an Arithmetic-Logic Unit (ALU)

• lsu: a Load-Store Unit (LSU)

Furthermore, the processor architecture contains some other fundamental blocks:
a Global Control Unit called gcu, that manages all the operations to be performed,
and two register files called REG_FILE_0 and bool, used respectively to store
32x32 bits and 16x1 bits values.

20

3.4 – Audio processor

I2S_LJ_master_TX_0

I2S_LJ_master_RX_0

I2S_LJ_master_RX_1

SPI_SLAVE_0

SPI_SLAVE_1

UART_TX_0

UART_TX_1

UART_RX_0

UART_RX_1

UART_RX_2

UART_RX_3

SWITCH_DRIVER_0

LED_DRIVER_0

SWITCH_DRIVER_1

LED_DRIVER_1

alu

TIMER_0

SWITCH_DRIVER_2

LED_DRIVER_2

SWITCH_DRIVER_3

LED_DRIVER_3

lsu

gcu

REF_FILE_0

bool

Figure 3.8: TTA core

3.4.4 Firmware
The developed audio processor can execute different firmware. This can be done
just by changing the content of the instruction and data memories. Two firmware
have been developed for the processor as far: test_loopback.c and main_final.c.

To test the correct behavior of the designed FUs, the firmware called test_loopback.c
can be used. This code has been developed primarily to test the loopback capabilities
of the system, which means checking if the transmitting and receiving interfaces are
working. While executing the firmware, the processor is supposed first to acquire
audio samples and MIDI messages from inputs and second to send them back.
Of course, each elaborated audio data has to remain unaltered and this can be
checked from the sender device after coming back. Using this firmware, the correct
operation of the units can be tested and evaluated.

The main_final.c firmware is instead the main code to be executed by the audio
processor to make the whole system work. Unlike test_loopback.c, it is not used to
transmit audio samples and MIDI messages back to the sender, but to stream them
from the audio board to the Raspberry Pi device and vice versa. In particular, the
firmware supports two modes of operation: one in which the audio samples mixing
is performed by the Raspberry Pi and another one in which, instead, the mixing is
performed by the custom processor (a feature still to be developed in this initial
version). Being the Raspberry Pi device the master of SPI communication, it has
to properly set the mode of operation of the system. Moreover, it is also in charge
of sending some configuration parameters to the audio processor, so that a correct
communication can take place.

21

System description

In particular, the Raspberry Pi can configure:

• ws: samples bitwidth (default value is 16 bits, but should be 24 for the
considered system)

• nCHF : number of channels sent by the processor in case of mixing performed
by Raspberry Pi (default value is 4 channels, all of them)

• chann_mask: bitmask to understand which channels are activated (default
value is 0x0F, all channels activated)

• sn: number of samples inside each audio packet (default value is 112 samples)

• nCHRP I : number of channels coming from SPI in case of mixing performed by
the audio processor (default value is 4 channels)

Moreover, a custom protocol has been developed to communicate over SPI between
the audio processor and the Raspberry Pi. Specifically, a preamble sequence
(0b10101010) has been introduced to understand when the communication is going
to start and three custom command sequences have been developed:

• Command 1 (sequence 0b00000011): used to the change configuration variables

• Command 2 (sequence 0b00001100): used to start streaming audio samples,
with mixing performed by Raspberry Pi

• Command 3 (sequence 0b00110000): used to start streaming audio samples,
with mixing performed by the audio processor (feature still to be developed in
this initial version)

To minimize the possibility that an error occurs during an SPI communication, the
protocol involves also some redundancy. Indeed, the preamble sequence has to be
repeated 5 times, while commands 3 times. More detailed information about the
initial version of the audio processor and the main firmware can be found at [30].

3.5 Raspberry Pi
The last element that composes the system described so far is a Raspberry Pi. In
particular, the adopted device is a Raspberry Pi 4 model B [31], released in 2019 by
the Raspberry Pi Foundation. As already mentioned in section 3.1, this single-board
computer aims to manage the transmittion and reception of audio packets to and
from the network to support NMP applications. Since the latency requirements
are very stringent and the delay associated with data networking is typically the
bottleneck of real-time communications, the choice of an appropriate device was

22

3.5 – Raspberry Pi

crucial. To take into account these major concerns, the Raspberry Pi 4 series was
chosen since it features a full gigabit Ethernet. This was not true for other series,
which have a throughput limited by the internal USB connection. Moreover, the B
model was adopted because it features an Ethernet port (Raspberry model A does
not have Ethernet circuitry). A picture of the Raspberry Pi 4 model B device can
be seen in figure 3.9.

Figure 3.9: Raspberry Pi 4 model B

Other important features of the Raspberry to be considered are a 1.5 GHz 64-
bit quad-core ARM Cortex-A72 processor, 8 GB RAM, two USB 2.0 ports, two
USB 3.0 ports, two micro-HDMI ports and on-board wireless and Bluetooth
modules. Moreover, it features 28 General Purpose Input/Output (GPIO) pins
supporting various interface options, including the possibility to handle 5 different
SPI communications. For the considered system, only one of them is actually
needed to interact with the FPGA board. Regarding the adopted OS, for speed
purposes, a real-time Linux kernel is running on the device. This was done since
having hard time limits on system call execution can bring improvements to the
system.

From a networking perspective, two main aspects must be taken into account to
achieve low latencies. The first of them is the chosen communication protocol.
Indeed, to guarantee suitable performances UDP was used. This kind of protocol
is particularly convenient for time-critical data transmissions since it is faster than
TCP. UDP does not require handshake techniques to set up a connection before
transmitting data and, for this reason, can speed up the overall communication.
However, as a main drawback, UDP communications are also less reliable and
usually need PLC methods to deal with missing data packets. The other important
aspect to be considered is the use of a peer-to-peer architecture between users of
the NMP environment, which can decrease even more the perceived latency with

23

System description

respect to a client-server solution. The developed software routines running on
Raspberry Pi adopt the above-mentioned design choices [32].

3.6 Tools
3.6.1 TTA-based Co-design Environment (TCE)
TTA-based Co-design Environment (TCE) [33] is a toolset that can be used to
design and program a custom TTA-based processor. Its development is led by
the Customized Parallel Computing (CPC) group at Tampere University, Finland.
This toolset permits to adapt several points of the architecture, such as function
units, register files and interconnection networks, to the designer’s needs. Such
customizations are useful to obtain different kinds of performances from the pro-
cessor and moreover to analyze the advantages and disadvantages of several design
choices.

One of the greatest advantages of using TCE is that it contains a complete set of
tools to design the system from a high-level representation to low-level hardware.
In particular, as a co-design environment, it offers the possibility to understand
if a software task can be accelerated by means of a dedicated hardware function
unit or not. This is done by employing high-level custom operations which emulate
the non yet existing hardware function units. With this procedure, a designer can
analyze what are the advantages of having a dedicated function unit for a certain
task, without even know how to implement it in hardware.

The typical design flow that can be adopted when using TCE is the one shown
in figure 3.10. As it can be seen, to achieve an optimal architecture several steps
are required. In particular, in the case of the considered system, since the audio
processor is already present, only new FUs need to be managed. The first step is
usually the creation of a firmware version of the feature to be added, by employing
high-level languages. Then, to evaluate if the introduction of a dedicated structure
can bring some advantages, a FU can be added to the processor (defining also
its custom operations). In this way, it is possible to simulate its behavior and
determine whether to implement it in hardware or not.

To follow this design approach, several tools can be exploited:

• ProDe: Processor Design, a graphical tool for editing the custom TTA processor
and select hardware implementations for each component

• tcecc: TCE compiler, which compiles high-level language sources according to
the processor’s characteristics

24

3.6 – Tools

• proxim: TTA Processor Simulator, which simulates programs on the target
processor

• ProGe: Processor Generator, which produces a synthesizable hardware de-
scription of the processor

• OSEd: Operation Set Editor, a graphical application for managing the library
which contains operation definitions called Operation Set Abstraction Layer
(OSAL)

• HDBEditor: HDB Editor, a graphical tool for creating and modifying the
databases that contain hardware implementations

Figure 3.10: TCE design flow [34]

Furthermore, another feature of TCE is a tool called Processor Cost/Performance
Estimator, which can be used to estimate die area, energy consumption and the
maximum clock rate of the designed processor. Unfortunately, no estimations
could be run on the considered audio processor, because some cost estimation
plugins were missing. Anyway, even if this data could not be retrieved, more
accurate estimations and results will be discussed after describing the synthesis
and implementation processes on FPGA.

To speed up the execution of the different steps required for the implementation of
new function units in TCE, a bash script was implemented and can be found in
appendix A.1.

3.6.2 Vivado
Vivado [35] is a software suite developed by Xilinx to synthesize and implement
HDL designs on its proprietary FPGA devices. As a software suite, Vivado includes

25

System description

different tools to improve the digital design flow of a hardware architecture. As
well as being able to synthesize a design, Vivado can also simulate it by defining a
simulation source file (generally a HDL testbench) and integrate customizable IPs
from the Xilinx library. Moreover, after the synthesis step and the implementation
one (also known as Place & Route), the software provides several metrics to analyze
the final result in terms of resource utilization (so employed area), timing and
power consumption.

26

Chapter 4

Mixing Function Unit

This chapter describes the first feature added to the system: the audio mixing.
First, it introduces what mixing is and what are the main reasons to implement it
on an FPGA. Then, the adopted workflow is explained, starting from a high-level
firmware implementation and getting to a hardware function unit.

4.1 Introduction to mixing
Audio mixing is the process of combining different sound sources (also called tracks)
together to obtain a musical piece as a final result [36]. Its main goal is to balance
the volume of each track to make some of these sound louder than others. Nowadays,
this practice is widely employed both in live performances and in music recordings.

Since the introduction of multi-track recorders, audio mixing has played a crucial
role in music production. Before that, in fact, all sounds were mixed together
during live performances, with less control over recording results. Without separate
tracks, there was no possibility to perform sound processing, add effects or adjust
the volume of each instrument. Moreover, if some kind of mistake occurred during
the performance, the only way to proceed was to record again the entire piece.
In the 50s, the birth of multi-track recorders brought some more flexibility for
musicians and producers. Indeed, it allowed them to record each instrument onto
a separate track and as a consequence to have greater control over how the final
record sounded. But with the possibility to record separate tracks, the need of
combining them into a single product rose. The solution to this problem was
achieved thanks to an electronic device known as mixer. The first kind of mixers
were hardware devices that allowed the control of each track through a series of
physical knobs and sliders. However, in the 90s, with the increasing use of the early
Digital Audio Workstations (DAWs), also software mixers became popular.

27

Mixing Function Unit

Nowadays, modern mixers are not only used to combine sounds, but can also offer
several features such as equalization, filtering and panning management [37]. In
particular, the latter is an extremely common element in music production and
will be also implemented in the mixing function unit described in the next sections.
Panning is an audio technique used to give a particular direction to audio signals
and distribute them so that a listener can enjoy a more realistic sound environment.
This can be done by introducing the concept of stereophonic sound (or stereo),
which is a method to reproduce sound to give a multi-directional experience to
listeners. This is usually performed using two different sound sources: left and
right channels. Indeed, if a single output source reproduces all the sounds, the
listener is not going to perceive spatial dimensions. This different approach is also
known as monophonic sound reproduction (or mono).

4.2 Motivation
As for musical production and live performances, audio mixing has an important
role also in NMPs. Indeed, like in live interactions, also in this case a way of
combining different sound sources and setting their volumes is needed. In the
preliminary version of the system considered, sound mixing was implemented in
software and ran on the Raspberry Pi device. The purpose of this chapter is to
move the mixing operation from software to a hardware unit on the audio processor.

Implementing an audio mixer in hardware, exploiting a dedicated function unit,
could have some advantages for the overall system. In particular, it can:

• Reduce resource utilization on the Raspberry Pi, so that it has only to care
about acquiring samples from the SPI interface, packetizing and sending them
to the network.

• Reduce the amount of time taken by the mixing process, since a hardware-
dedicated solution can usually bring improvements in terms of speed and
latency.

However, this kind of approach has also some drawbacks to take into account,
which are related to:

• An increased use of area on FPGA (not a problem for the considered system,
since there are still many resources available)

• Possible limitations when dealing with a very large amount of audio sources,
due to the SPI communication bandwidth

28

4.3 – Implementation

4.3 Implementation

4.3.1 Mixing algorithm
Before going into the firmware and hardware implementation details, a brief
theoretical explanation of the mixing algorithm is needed. As described in the
previous sections, a mixer can have different features, but the most basic ones are:

• Combining different sound sources

• Adjusting the volume of each track

• Performing panning

The first of these features can be accomplished by performing sum operations
between the different sound sources (input channels). Indeed, this will result in a
single output which is the combination of all of them. The second feature, instead,
can be performed by exploiting a multiplication between each input source and
a coefficient (gain) that determines the volume. In particular, if this coefficient
is lower than 1, then the volume is decreased accordingly, while if is greater, it
is increased. Moreover, a coefficient equal to 1 means unaltered sound, while a
coefficient equal to 0 means silence on output. This concept can be easily extended
to obtain also the panning feature. Indeed, this can be implemented by considering
two coefficients for each input channel instead of one. In this way, each input
source is multiplied by two different values which quantify the amount of sound
going into the left and right output channels respectively.

The mixing algorithm is based on the concept of gain matrix. This algebraic struc-
ture contains all the coefficients explained above, thus the information regarding
the output volume and the panning of each input channel. This matrix has a
number of rows which is equivalent to the number of input channels and a number
of columns which is equivalent to the number of output sources. For this reason,
the gain matrix developed for the considered system is composed of 4 rows (4 input
channels) and 2 columns (2 output channels) and can be written as:

G =


G00 G01
G10 G11
G20 G21
G30 G31

 (4.1)

That said, the mixing algorithm performs nothing but a matrix multiplication
between an input sound sources vector and the gain matrix. The result of this
operation is a vector containing output channels. The complete equation of the

29

Mixing Function Unit

mixing algorithm is reported in formula 4.2, where again the case of the considered
system is taken into account.è

CH0 CH1 CH2 CH3
é

· G =
è
CHL CHR

é
(4.2)

Rewriting equation 4.2 in an expanded form, it can be seen that output channels
can be computed as:

CHL = CH0 · G00 + CH1 · G10 + CH2 · G20 + CH3 · G30

CHR = CH0 · G01 + CH1 · G11 + CH2 · G21 + CH3 · G31
(4.3)

To implement the mixing function unit, the workflow suggested by TCE was
adopted. As already explained in subsection 3.6.1, the workflow can be split into
several steps, the first of which is to implement a firmware version of the algorithm.

4.3.2 Initial firmware
To correctly evaluate the benefits that a hardware mixing unit can bring to the
system, the first step performed was to write an initial test firmware. This program
executes a software version of the mixing algorithm and runs it by exploiting the
preliminary version of the architecture, so the basic ALU unit for additions and
multiplications. In the next subsection, another version of this firmware, containing
custom operations to perform mixing, will be described to compare performances.

The developed initial firmware is called test_mixing.c and is similar to the loopback
test firmware (test_loopback.c). What this program does is to acquire audio
channels from the I2S interfaces, mix them by exploiting matrix multiplication and
then transmit the resulting output channels on the I2S interface again.

To make the test firmware as complete as possible, different mixing conditions
can be configured by acting on the physical switches on the FPGA development
board. In particular, what a user can do is deciding which couple of channels
he/she wants to listen to as outputs. Switches 0 (SW0) and 1 (SW1) can be used to
turn ON/OFF the couple of channels CH0/CH1 and CH2/CH3 respectively, while
switches 2 (SW2) and 3 (SW3) can be used to test mono/stereo configurations for
each couple. As an example, if SW1 is turned ON while SW3 is OFF, the user
can hear the couple CH2/CH3 in mono on output. If then SW3 is turned ON
too, the system switches to stereo conditions, so CH2 can be heard on the left
output channel, while CH3 on the right one. A complete list of the different mixing
configurations is shown in table 4.1.

To easily debug the code, while performing onboard testing, also two RGB LEDs
were exploited. Each of them is related to a couple of channels and is turned on
with a red color for mono mode, while with a blue one for stereo.

30

4.3 – Implementation

SW0 SW1 SW2 SW3 CH0/CH1 CH2/CH3
OFF OFF OFF OFF OFF OFF
ON OFF OFF OFF MONO OFF
OFF ON OFF OFF OFF MONO
ON ON OFF OFF MONO MONO
OFF OFF ON OFF OFF OFF
ON OFF ON OFF STEREO OFF
OFF ON ON OFF OFF MONO
ON ON ON OFF STEREO MONO
OFF OFF OFF ON OFF OFF
ON OFF OFF ON MONO OFF
OFF ON OFF ON OFF STEREO
ON ON OFF ON MONO STEREO
OFF OFF ON ON OFF OFF
ON OFF ON ON STEREO OFF
OFF ON ON ON OFF STEREO
ON ON ON ON STEREO STEREO

Table 4.1: Mixing configurations in test_mixing.c

Additionally, two considerations need to be made on the test_mixing.c firmware.
The first regards the fact that all the coefficients in the gain matrix have been
assumed to be integer numbers so far. This is because the preliminary version of
the considered architecture is based on 32 bits and it is not yet taking into account
a possible fixed-point representation. The second consideration, instead, concerns
the possibility to deal with different gain matrixes, one for each user of the system
on a networked performance. In this initial firmware, this feature is not taken into
account, but it will be implemented when considering mixing custom operations.

The compilation of the firmware was carried out using the tcecc command and
gives a total number of instructions to be executed by the audio processor, equal to
187. After this operation, the proxim command was executed to run the instruction
set simulator. This TCE tool simulates TTA cores at an architectural level, without
caring about their hardware implementation, and it produces statistics about cycle
counts and utilization of units. This simulator is a very powerful tool since it
permits us to understand which are the characteristics of a firmware and to compare
it with another one. Indeed, to understand differences, the same procedure will be
performed also in the next subsection when dealing with the new custom operations.

The simulation provides different kinds of results. Some of the most significant
ones are reported here. Since the firmware under analysis does not have an ending

31

Mixing Function Unit

point, a timeout was set for the simulation. This was possible thanks to the
simulation_timeout parameter, which permits specifying the number of seconds
before the timeout expires. In particular, for this firmware, a simulation timeout of
60 seconds was applied. This is because it was found that 60 seconds were enough
to converge to stable results.

During the simulation, a total number of 47595527 clock cycles were evaluated.
First, the tool provides some information regarding the utilization of each bus,
which can be seen in table 4.2. As it can be observed, buses B3 and B4 are the
most used ones (more than 60%) and have a very high utilization rate with respect
to buses B1 and B2 (less than 25%). Bus utilization is a consequence of how
operations are distributed by the compiler. Since the fourth bus is used very few
times (2.55% of the simulated instructions), for this firmware it seems that 3 buses
are enough to execute the code without impacting too much on performance.

B1 2.55% (1212593 writes)
B2 21.97% (10456742 writes)
B3 63.38% (30164514 writes)
B4 75.31% (35845080 writes)

Table 4.2: Bus utilization (without a mixing FU)

Another useful information which the simulator gives is the usage of each function
unit. In table 4.3, the most used units are reported along with their utilization
percentage and number of triggers. As it can be seen, the ALU unit is the most
used FU with a number of triggers which is almost 55% of the total instructions.
This means that more than a half of the executed instructions consist of some kind
of arithmetical or logical operations. In the same table, it can be also noticed that
I2S utilization is around 1% for TX and 5% for RX, while LSU is triggered 3.83%
of the times. These data will be useful for comparison in the next subsection.

alu 54.45% (25917431 triggers)
I2S_LJ_master_TX_0 0.96% (455540 triggers)
I2S_LJ_master_RX_0 5.09% (2424920 triggers)
I2S_LJ_master_RX_1 5.09% (2424920 triggers)

lsu 3.83% (1822161 triggers)

Table 4.3: FU utilization (without a mixing FU)

The simulator can also retrieve a more detailed analysis on the percentage for each
operation in ALU. The resulting data are presented in table 4.4. As expected, it

32

4.3 – Implementation

can be seen that two of the most used operations are the ADD (16.10% of total
ALU instructions) and the MUL (7.03% of total ALU instructions).

ADD 16.10% of FU total (4173471 executions)
AND 34.19% of FU total (8862212 executions)
EQ 11.40% of FU total (2954203 executions)
IOR 15.20% of FU total (3938761 executions)
SHL 8.48% of FU total (2197151 executions)
XOR 7.60% of FU total (1969380 executions)
MUL 7.03% of FU total (1822160 executions)

Table 4.4: Operations executed in ALU (without a mixing FU)

4.3.3 OSAL
After testing the first firmware solution, another version of test_mixing.c was
developed by using custom operations to implement the mixing algorithm. This
was done by using the osed command, which opens a graphical application to
manage the OSAL database. To implement mixing, a new module called MIXER
was added to the OSAL. Then, two custom operations were added to the new module.
This procedure can be used to accelerate application-specific functionalities.

In particular, the first operation to speed up is the one which permits to mix
audio samples. This operation is called MIXER_MIX_CHANNELS and can be
performed using the custom macro:

MIXER_MIX_CHANNELS(USER, CH0, CH1, CH2, CH3, CHL, CHR)

where USER is an unsigned input number associated with the gain matrix of each
user, CH0 to CH4 are signed 2’s complement input numbers containing the samples
to mix and CHL/CHR are signed output numbers containing the mixed samples.

The second operation added to the MIXER module is MIXER_SET_GAIN. This
operation can be used to change the coefficients in one of the gain matrixes. This
can be performed using the custom macro:

MIXER_SET_GAIN(USER, G0, G1, G2, G3, G4, G5, G6, G7)

where USER is an unsigned input number that is used to determine the correct gain
matrix to be changed and G0 to G7 are the gain coefficients written as unsigned
input numbers.

To use these operations in the new version of test_mixing.c, a dedicated function
unit needed to be added to the processor’s architecture. For this reason, the

33

Mixing Function Unit

MIXER_0 unit was conceived. When creating a FU, an important parameter that
needs to be determined for both custom operations is latency. This parameter is
fundamental to simulate the new architecture since it tells how many clock cycles
every operation will take. The latency setting is almost a trial and error process at
the early stage of the project because usually a developer still doesn’t know the
hardware that he/she is going to develop. For this reason, he/she does not even
know how many clock cycles are required for its execution. However, the results
which can be found in the remaining part of the section refer to the final latency
chosen (obtained after knowing the implemented hardware). Latency has been
fixed to 1 clock cycle for the MIXER_SET_GAIN operation and to 5 cycles for
MIXER_MIX_CHANNELS.

Having all the necessary ingredients, the new version of test_mixing.c was devel-
oped. This was done by replacing the lines of code related to the mixing with
the MIXER_MIX_CHANNELS custom operation and the ones related to the
configuration changing with a MIXER_SET_GAIN one.

To evaluate the impact of these two new operations, the instruction set simulator
was executed again, with a simulation timeout of 60 seconds. The first difference
with respect to the previous solution is that the program is composed of 166
instructions instead of 187. This means that mixing custom operations decreases
the total number of instructions to be executed by 11.2%. This improvement has
as a major consequence an increase in speed, since fewer instructions need to be
performed by the processor. Moreover, since each instruction has a length of 176
bits, having less instructions permits also to decrease the size of the instruction
memory (462 bytes in this case).

For the new firmware, the tool simulates 48823712 clock cycles, so the following
data will refer to them. Again, results on bus utilization were retrieved and can
be seen in table 4.5. As it can be observed, the use of each bus follows almost the
same trend as before, but with some differences. Indeed, it seems that both buses
B1, B2 and B4 share an increased usage, while the B3 one is decreasing.

B1 3.01% (1471781 writes)
B2 24.25% (11837905 writes)
B3 59.72% (29157755 writes)
B4 76.37% (37284294 writes)

Table 4.5: Bus utilization (with a mixing FU)

Regarding the FUs, their utilization is reported in table 4.6. As it can be seen,
with the new firmware the ALU unit was triggered a lower amount of times. This

34

4.3 – Implementation

is of course happening because the new FU is taking care of the mixing operations.
The ALU utilization decreased to a 53.21% of total instructions, with respect to
a 54.45% of the previous version. The MIXER_0 unit was triggered only 0.48%
of the time, meaning that once the samples have been sent to it, the unit is quite
independent from the rest of the architecture. From the table, it can be seen
also that I2S interfaces were triggered more times. This is probably because, in
almost the same number of simulated cycles, more of them can be dedicated to
I2S handling. Instead, as expected, LSU is triggered very few times, since no gain
coefficients need to be retrieved from the data memory.

alu 53.21% (25979857 triggers)
I2S_LJ_master_TX_0 0.96% (469042 triggers)
I2S_LJ_master_RX_0 6.03% (2943296 triggers)
I2S_LJ_master_RX_1 6.03% (2943296 triggers)

lsu 2.05e-06% (1 triggers)
MIXER_0 0.48% (234560 triggers)

Table 4.6: FU utilization (with a mixing FU)

The evidence that the ALU unit is no more used for mixing purposes can be
found in table 4.7. Looking at it, it can be noticed that both the ADD and MUL
operations have a lower number of executions. The ADD execution decreases from
the previous 16.10% to 4.76%, while MUL from 7.03% to no executions at all.

ADD 4.76% of FU total (1237128 executions)
AND 42.86% of FU total (11134145 executions)
EQ 14.29% of FU total (3711488 executions)
IOR 19.05% of FU total (4948508 executions)
SHL 9.52% of FU total (2474255 executions)
XOR 9.52% of FU total (2474254 executions)
MUL 0% of FU total (0 executions)

Table 4.7: Operations executed in ALU (with a mixing FU)

Finally, also results related to the mixing FU can be seen in table 4.8. As expected,
most of the simulated operations are MIXER_MIX_CHANNELS, since changing
the gain matrix is quite rare with respect to mixing new samples.

MIXER_SET_GAIN 0.017% of FU total (39 executions)
MIXER_MIX_CHANNELS 99.983% of FU total (234521 executions)

Table 4.8: Operations executed in MIXER_0

35

Mixing Function Unit

4.3.4 Hardware implementation
Since the simulation of the custom operations gave the expected improvements
in terms of number of instructions to be executed, the next step was to design
the hardware FU. In particular, the goal was to develop a mixing unit that can
combine audio samples using a different set of gain coefficients for each user. To
achieve this result, the hardware module shown in figure 4.1 was conceived.

Mixer

X

X
X
X
X

X

X

X

X

X

X
X
X
X

X

X

X

X

X

X

X

X

X

X

en

glock_i

clk_i
rst_n_i

opcode_i

p1_i
p1_load_i

p2_i
p2_load_i

p3_i
p3_load_i

p4_i
p4_load_i

p5_i
p5_load_i

p6_i
p6_load_i

p7_i
p7_load_i

p8_i
p8_load_i

p9_i
p9_load_i

p10_o

p11_o

D Q

en_i
rst_n_i

data_i

coeff_i

 data_o
en
D Q

en
D Q

en
D Q

en
D Q

en
D Q

en
D Q

en
D Q

en
D Q

en
D Q

en
D Q

 dina[0]

addra

FSM
ena
wea

To all
components

 dina[1]

 dina[2]

 dina[3]

 dina[4]

 dina[5]

 dina[6]

 dina[7]

douta[0]

douta[1]

douta[2]

douta[3]

douta[4]

douta[5]

douta[6]

dout[7]

8-port
RAM

From
FSM

From
FSM

From
FSM

32

Unused

32

32

32

32

32

32

32

32

32

32

Figure 4.1: Mixer wrap

The developed module, called mixer_wrap.sv, is mainly composed by three different
blocks: an 8-port RAM, a Mixer component and a Finite-State Machine (FSM).
Each of them has an important role inside the architecture and will be explained
in detail later. First, however, some considerations on the wrap module need to
be made. From figure 4.1, it can be observed that the unit has several ports. In
addition to the clock (clk_i) and the reset (rst_n_i) ones, there are two other input
ports used for control signals: glock_i, which can be exploited for locking purposes
but is unused so far, and opcode_i, which is used to determine the correct custom
operation to be performed. Then, as it can be seen, the developed FU features other
input ports with 32-bit width. Each of them is associated with a load signal and it
is connected from outside to all the transport buses of the TTA processor. Port

36

4.3 – Implementation

p1_i, which is also the trigger one, is used to receive the unsigned number related
to the user, while the others have different meanings depending on the custom
operation to be executed. Specifically, when performing MIXER_SET_GAIN all
the other input ports are used to receive the gain coefficients (8 values on 32 bits,
one per port), while when executing MIXER_MIX_CHANNELS only ports from
p2_i to p5_i are actually exploited to receive the samples to be mixed (4 values on
32 bits). Moreover, the input ports assume different meanings in terms of numerical
representation depending on the operation. When dealing with gain coefficients, the
input values to be provided need to have a 24p8 fixed-point representation, so that
fractional numbers can be used (where 24 is the integer part and 8 is the fractional
one). Instead, audio samples need to have a 32p0 representation. Obviously, having
the same numerical representation for all the inputs is the most convenient way to
proceed when designing a hardware unit, but in this case the choice was imposed
by the numerical representation of the overall processor, that is not taking into
account fractional numbers. For this reason, numeric conversions are applied inside
the FU and in particular in the Mixer component so far (a possible improvement
for the processor should take in consideration a fixed-point representation for the
entire architecture). Also the output ports of the unit are connected to all the
transport buses of the processor. In particular, ports p10_i and p11_i are used to
output respectively left and right output channels. Since they are used for audio
samples only, they are always characterized by a 32p0 numeric representation.

As it can be seen from figure 4.1, input and output registers were introduced into
the mixing FU. In this way, the new unit is not likely to increase critical paths that
can exist outside of it. Moreover, input registers are also used to properly sample
the data, by enabling them only when the corresponding load signal occurs. The
enabling of output registers, instead, is managed by an internal control signal.

The first element to be described is the FSM, which was realized to properly handle
all the control signals in the hardware unit, depending on the custom operation
that needs to be performed. Its state diagram is shown in figure 4.2 and as it can
be seen, the FSM can evolve in 5 different states:

• RESET: the entry point of the FSM and the state that can be reached only
in case of errors

• IDLE: the state in which the unit is waiting for a new operation to be triggered

• SET_GAIN: the state in which the unit is storing a set of gain coefficients for
a specific user

• READ_MEM: the state in which the unit is reading a set of gain coefficients
to start the mixing operation for a specific user

37

Mixing Function Unit

• MIX_CHANNELS: the state in which audio mixing is actually performed

RESET

IDLE

SET
GAIN

READ
MEM

MIX
CHANNELS

p1_load_i == 1 &&
opcode_i == 0

p1_load_i == 1 &&
opcode_i == 1

p1_load_i == 0

p1_load_i == 1
&& opcode_i == 1

p1_load_i == 0

p1_load_i == 1 &&
opcode_i == 0

mix_cnt == 1 &&
p1_load_i == 0

mix_cnt == 1 &&
p1_load_i == 1 &&

opcode_i == 1

mix_cnt == 1 &&
p1_load_i == 1 &&

opcode_i == 0

mix_cnt == 0

Entry point

Figure 4.2: Mixer FSM

As it can be observed, the transition between states usually happens when a new
custom operation is triggered, so when p1_load_i, i.e., the trigger of the FU, is equal
to 1. Moreover, the opcode_i is used to determine which kind of operation needs to
be executed. The only two states that are behaving in a slightly different way are
READ_MEM and MIX_CHANNELS. In fact, the former has always a transition
to the latter, regardless of the value of other signals, while MIX_CHANNELS
always lasts two clock cycles. These behaviors are the consequence of the fact that
the MIXER_MIX_CHANNELS custom operation has a latency greater than one
clock cycle to be executed.

The second main component of the mixing FU is the 8-port RAM. This block
is used to store all the gain coefficients needed by each user. The first solution
attempted to implement this module was based on an HDL file called nport_ram.sv,
that was describing a generic and configurable N-port RAM. However, during the
synthesis step, Vivado had some problems exploiting the most appropriate resources
for its implementation, so another solution was considered. In particular, memories
from the Vivado IP catalog were chosen. Since by using this component it was
not possible to directly implement an 8-port RAM, the solution was to design 8
different single port memories. To store all the needed coefficients, each of them
has a word width of 32 bits (coefficients have a 24p8 numerical representation) and
a depth of 256 words (equal to the number of maximum supported users so far).

38

4.3 – Implementation

The last component of the architecture is called Mixer and it is the one that is
actually in charge of mixing the audio samples. This module is described by means
of the HDL file called mixer.sv and its schematic is reported in figure 4.3.

+
X

XXdata_i[0]

Pipeline stages

X data_o[0]

Xen_i

Xclk_i

Xrst_n_i

Xcoeff_i

coeff_i[0] en
D Q

en
D Q

X

X
en
D Q

en
D Q

en
D Q Rounding

Unit
Overflow

Unit

+
X

X

X data_o[1]

en
D Q

en
D Q

X

X
en
D Q

en
D Q

en
D Q Rounding

Unit
Overflow

Unit

X
coeff_i[2]

X
coeff_i[4]

X
coeff_i[6]

coeff_i[1]

coeff_i[3]

coeff_i[5]

coeff_i[7]

To different
components

data_i[1]

data_i[2]

data_i[3]
32

32

32

32

32 x 8

32

32

35

35

35

35

35

35

35

35

37

37

29 24

29 24

24

24

24

24

11

11

11

11

11

11

11

11

Figure 4.3: Mixer component

As it can be observed, the Mixer component performs the algorithm described
in subsection 4.3.1, by parallelizing as much as possible the different arithmetical
operations, so without sharing common hardware resources. This was done in order
not to introduce too much latency on audio samples, although it is at the expense
of the area used. Audio mixing is computed by means of an internal dedicated data
width and a fixed-point representation to support fractional numbers. Indeed, as
already mentioned, coefficients have a 24p8 numeric representation and arithmetic
operators need to take them into account properly. Furthermore, two other elements
were introduced in the Mixer module: a rounding unit and an overflow one. The
former is used to round the final results of the mixing operation to integer values
by exploiting the rounding to the nearest method, while the latter performs an
arithmetic saturation on possible overflows.

Two major improvements were performed on the Mixer component to optimize

39

Mixing Function Unit

it. First, to save some area, a smaller data width was actually exploited to
compute the algorithm. Indeed, even if the audio samples coming from outsides
are represented on 32 bits, only 24 of them are actually used (audio board’s ADCs
provide samples with a 24-bit width). For this reason, a lower number of bits
can be used. A similar reasoning can be made for the gain coefficients, indeed to
have less complex arithmetic operators, their dynamic was limited too (11 bits
with a 3p8 representation were used). The second optimization performed regards,
instead, the introduction of two pipeline register stages. This was done to improve
the maximum frequency achievable by the unit, because otherwise too long paths
would be implemented. As a drawback, these stages add two clock periods of
latency, but in this way the required timing can be met.

To have a better understanding of how the designed unit behaves, a timing diagram,
depicted in figure 4.4, was realized. In particular, as it can be seen, the two
implemented custom operations are shown: first, MIXER_SET_GAIN and then,
MIXER_MIX_CHANNELS.

clk_i

rst_n_i

opcode_i

p1_i U1 U2

p1_load_i

p2_i D1 D2

p2_load_i

...

p10_o CH_L

p11_o CH_R

present_state RESET IDLE SG IDLE RM MC IDLE

next_state IDLE SG IDLE RM MC IDLE

en_ram

rd_wr_n_ram

en_mix

user_addr U1 U2

data_in_reg D1 D2

data_out_mix CH_L & CH_R

Figure 4.4: Mixer timing diagram

It can be noticed that present_state and next_state are the signals that determine

40

4.3 – Implementation

the state machine transitions. By taking a look at them and considering input/out-
put registers, it is possible to observe that the overall latency of the FU is equal to 1
for the MIXER_SET_GAIN operation and to 5 for MIXER_MIX_CHANNELS.

After its design, the mixing FU was added to the Hardware Database using the
hdbeditor command. Then, generateprocessor was executed to generate the
complete audio processor from the hardware source files and generatebits was
launched to create the contents of both instruction and data memories.

4.3.5 Hardware simulation
Before synthesizing the designed unit on FPGA, another step is usually performed
in a digital design flow. Indeed, the implemented module, which takes the name
of Design Under Test (DUT), needs to be simulated by means of a hardware
simulation tool. For this purpose, Xilinx Vivado simulator was exploited. Moreover,
to check if the DUT behaves correctly or not, a verification environment needs to
be built. As it can be seen from figure 4.5, to test the design in the most generic
way, an approach based on a C golden reference model was adopted.

mixing_generator.c

mixing_model.c

mixing_
input.txt

mixing_
output_
gold.txt

mixer_tb.sv mixing_
output.txt

mixing_checker.c

Figure 4.5: Mixer FU simulation approach

The full verification environment is composted by different elements:

• mixing_generator.c

• mixing_model.c

• mixer_tb.sv

• mixing_checker.c

The first component of the simulation environment is mixing_generator.c. This is a
C program whose purpose is to generate random operations to be executed by the
DUT. It creates a text file called mixing_input.txt containing an instruction for each
line. Since the DUT can perform two different operations, each line starts with an

41

Mixing Function Unit

’S’ character if MIXER_SET_GAIN needs to be executed or with an ’M’ character
in the case of MIXER_MIX_CHANNELS. Some parameters of mixing_generator.c
can be configured by acting on internally defined macros. In particular, one can
change the number of random samples generated, the maximum range of both
samples and gain coefficients and the occurrence of the MIXER_SET_GAIN
operation.

The second element is mixing_model.c, another C program that acts as the golden
reference model to be compared with the DUT. It takes mixing_input.txt as a
parameter and generates a text file called mixing_output_gold.txt containing the
result of each instruction read. To have a reliable reference model, mixing_model.c
computes its output values using a floating-point representation on 64 bits.

In the meanwhile, the same input file is given to mixer_tb.sv, which is the actual
testbench designed in SystemVerilog. During the simulation, this file extracts the
instructions that the DUT has to perform from mixing_input.txt, generating input
signals according to its content. As mentioned earlier, a MIXER_SET_GAIN oper-
ation is executed when an ’S’ character is read, while a MIXER_MIX_CHANNELS
one is performed when the testbench reads an ’M’ character. This is done by act-
ing on the opcode_i input port of the DUT, which is forced to 0 to mix input
samples and to 1 to set one of the gain matrixes. Finally, mixer_tb.sv writes each
value computed by the DUT on an output file called mixing_output.txt so that a
comparison with the reference model can be performed.

The component in charge of comparing the mixed output samples of the DUT
with respect to the golden ones is called mixing_checker.c. In practice, this C
program computes the difference between them to check if there is some kind of
inconsistency. Here, further considerations should be taken into account. As already
explained in subsection 4.3.4, the output values computed by the DUT are already
rounded internally to the module, since a rounding unit is implemented in mixer.sv.
Because of this, it is clear that the difference computed by mixing_checker.c could
be different from 0: reference values are computed using floating-point and they
own an intrinsic better precision. In particular, since the rounding to the nearest
method was applied in the Mixer component, the expected difference could be at
most 0.5. For this reason, differences below such threshold are not considered as
errors. Unfortunately, a more accurate estimation of the internal precision of the
mixing unit can’t be performed without having access to internal signals.

After executing all these programs and performing the hardware simulation on
Vivado, no differences greater than 0.5 were found. For this reason, the design flow
proceeded with its last phase: the implementation on FPGA.

42

4.3 – Implementation

4.3.6 Synthesis and implementation on FPGA
The final step performed is the synthesis of the design into a digital circuit and
its implementation on FPGA. These operations were performed again by means
of Vivado, which made some improvements possible. Indeed, since this software
knows on which FPGA it is going to implement the digital circuit, it is also able
to optimize resource utilization. The two main elements exploited to achieve
improvements in the mixing unit are BRAM blocks and DSP slices.

BRAM blocks are RAM embedded into the FPGA that can be used to optimize
data storage. Each BRAMs can store up to 36 kbit and, to further optimize storage,
it can be divided in two completely independent blocks of 18 kbit. To do that,
each BRAM has two independent ports that share nothing but the stored data.
Artix-7 family FPGAs are equipped with a different amount of storage capacity
depending on the device. For the considered XC7A100T model, the total number
of BRAMs is equal to 135, giving a maximum storage capacity of 4860 kbit [28].

For the design of the mixing unit, BRAMs were exploited to implement the 8-port
RAM component. In this way, it was possible to store gain coefficients more
efficiently. Indeed, by employing these embedded memory blocks, better results in
terms of speed could be obtained and it was possible to meet the clock frequency
requirement of 100 MHz. Each single port memory has a word width of 32 bits
and a depth of 256 words, so it requires a total capacity of 8192 bits (1 BRAM
block of 18 kbit). Since 8 memories are used in the FU, 4 BRAM blocks of 36 kbit
were needed to properly store all the coefficients.

The second enhancement made during the synthesis step regards the use of DSP
slices to improve arithmetic operations. Artix-7 family’s FPGAs provide specific
hardware accelerator called DSP48E1 for signal processing purposes. In particular,
the XC7A100T device contains 240 of these slices, so that many arithmetic and
logic operations can be performed in parallel [28]. An internal representation of
a DSP48E1 slice is shown in figure 4.6. As it can be noticed, each DSP slice is
mainly composed by [38]:

• A pre-adder for power saving purposes

• A 25 × 18 two’s-complement multiplier

• A 48-bit three-input adder

• A pattern detector to support rounding and overflow / underflow detection

• Optional pipeline registers and dedicated buses for slices cascading

43

Mixing Function Unit

X-Ref Target - Figure 2-1

UG369_c1_01_052109
*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

X

17-Bit Shift

17-Bit Shift

0

Y

Z

1
0

0

48

48

4

48

BCIN* ACIN*

OPMODE

PCIN*

MULTSIGNIN*

PCOUT*
CARRYCASCOUT*

MULTSIGNOUT*

CREG/C Bypass/Mask

CARRYCASCIN*

CARRYIN

CARRYINSEL

A:B

ALUMODE

B
B

A

C

M

P

P
P

C

MULT
25 X 18

A

18

30

3

PATTERNDETECT

PATTERNBDETECT

CARRYOUT
4

7

48

48

30

18
P

P

5

D 25

25

INMODE

BCOUT* ACOUT*

18

30

4 1

3018

Dual B Register

Dual A, D,
and Pre-adder

Figure 4.6: DSP48E1 slice (image taken from [38])

After performing the synthesis, the inferred logic was analyzed by taking a look at
the runme.log file generated by Vivado. The retrieved results about DSP blocks
utilization are shown in table 5.5.

DSP Mapping A Size B Size P Size MREG PREG
(A’*B)’ 30 18 0 0 1

PCIN+(A’*B)’ 30 18 0 1 0
PCIN+(A’*B)’ 30 18 0 1 0

(PCIN+(A’*B)’)’ 30 18 37 1 1
(A’*B)’ 30 18 0 0 1

PCIN+(A’*B)’ 30 18 0 1 0
PCIN+(A’*B)’ 30 18 0 1 0

(PCIN+(A’*B)’)’ 30 18 37 1 1

Table 4.9: DSP final report for the reverb FU (the ’ indicates corresponding REG
is set)

As it can be observed, Vivado exploits 8 different DSP blocks to implement the
arithmetic operations. Specifically, the first and the fifth slices are used to perform
only a multiplication, while the others compute also an addition. The tool exploits
the dedicated internal bus called PCIN to perform slices cascading. To better
understand how Vivado decided to implement audio mixing by means of its DSP

44

4.3 – Implementation

slices, a graphical representation of the synthesized hardware is reported in figure 4.7.
Looking at this picture, the purpose of the tool becomes clear: Vivado implemented
the architecture exploiting slices cascading so that a higher clock frequency could
be achieved.

+

+

X

X

X

X
data_sign[0]

sum_reg[0]

coeff_sign[2]

coeff_sign[4]

coeff_sign[0]

coeff_sign[6]

PREG

MREG

MREG

+
MREG

PREG

PCIN

PCIN

PCIN

AREG

data_sign[3]

AREG

data_sign[1]

AREG

data_sign[2]

AREG

(A’*B)’

PCIN+(A’*B)’

(PCIN+(A’*B)’)’

PCIN+(A’*B)’

Figure 4.7: Mixer implementation on DSP slices

45

46

Chapter 5

Reverb Function Unit

This chapter describes the hardware implementation of the reverb FU. First, it
introduces the concept of reverberation and its relevance as an element of an NMP
environment. Then, it analyses the chosen reverb algorithm, its implementation
and the applied design improvements.

5.1 Introduction to reverb

5.1.1 Acoustic reverberation
The reverb is an audio effect that can be applied to a sound signal to simulate
reverberation [39], a physical phenomenon present in every acoustic environment.
Reverberation can be defined as the persistence of sound after it is produced by a
source and is the main consequence of the reflection of signals by objects in space
[40]. Indeed, when a sound is generated, it can get both reflected and absorbed
by the different surfaces present in the environment. Reflections add up to one
another and make the sound persist in the space, while absorptions make their
amplitude decay at a certain rate. The result is an acoustic experience that is not
perceived as separate sound events [41].

Reverberation is influenced by different conditions, which can have also an impact
on the loudness and timbre of the perceived sound. In particular, one of the most
important parameters to consider when talking about this phenomenon is the
reverberation time. This is defined as the amount of time required by reflections
to reduce to inaudible levels. Different mathematical equations were proposed to
describe this parameter, but the most common definition is the time it takes for
the sound pressure level to reduce by 60 dB. Depending on the kind of acoustic
space considered and its reverberation time, different type of reverb can occur.

47

Reverb Function Unit

Acoustic environments can also present other characteristics which can influence
sound perception. In fact, in the same family of reverberation, more phenomena
can be found, such as echo and delay. While the reverb is characterized as a random
reflection of sounds, the echo is a more structured acoustic perception in which
every reflection can be heard as an independent sound. Usually, reverberation
occurs when reflections come to the listener in less than 50 ms, while when the
time delay is longer distinct echoes are detectable.

5.1.2 History of reverb
Since its first use, the reverb effect has played a key role in audio productions.
The Harmonicats’ "Peg o’ My Heart", released in 1947, is credited to be one of
the first songs that made intentional use of acoustic reverberation [42]. For the
musical piece, the producer Bill Putnam recreated this sound effect by recording
instruments into a reverberant environment. The recording setup was fairly simple:
a loudspeaker was placed in the studio’s bathroom (a typical reverberant space)
and the produced sound was then recorded by means of a microphone. This very
cheap but efficient solution has been taken as an example by a large number of
musicians over the years for its simplicity.

Thanks to those first experiments, in the following years there was an increasing
interest in adding artificial reverberation to musical pieces by many recording
studios and musicians. This led to the birth of the first echo chambers, special
rooms designed to sound as reverberant environments. Even if nowadays other
methods are used to create this effect, some of them are still used, such as the
one built at Capitol Records’ studios [42]. However, echo chambers have several
drawbacks: the reverberation produced is not so flexible and editable, because of
their fixed structure, and they are also very expensive.

The first solution that aims to solve these kinds of problems was the plate reverb.
Introduced in the 50s with the EMT 140 by Elektromesstechnik, this electro-
mechanic system could add artificial reverberation by exploiting the mechanical
vibrations of large metal plates [39]. Indeed, to produce the desired sound effect, a
transducer was used to convert sound signals into vibrations that were then picked
up by one or more contact microphones. However, although this solution added
some possibility to tune the output sound, it was still very expensive.

The real spread of the reverb effect occurred in the 60s with the introduction of the
spring reverb [42]. Its wide use was possible thanks to its cheapness and portability
with respect to other available solutions. Moreover, the spring reverb became
famous and iconic very quickly because of surf music, popular at that time. To
simulate reverberation, this system exploited a set of springs mounted inside a box.

48

5.2 – Motivation

The working principle was similar to the one used in plate reverb, but this time
the transducer and the pickup were placed at the ends of each spring.

Finally, thanks to improvements in electronics, starting from the 80s, most of these
electro-mechanic devices were replaced by digital reverbs. That is because, in 1976,
the EMT 250 was released by Elektromesstechnik. It was the first commercial
digital reverb and increased the number of studies on algorithms to add artificial
reverberation. In particular, one of the most noticeable solutions was developed in
1999 by Sony, when they released the DRE S777, the first real-time convolution
reverb. This device aims at recreating the reverberation of real physical spaces
exploiting their impulse response. As known, indeed, if an acoustic space is treated
as a Linear Time-Invariant (LTI) system, the output sound can be computed as
the convolution operation between the input source and the room impulse response.
Thanks to this characteristic, the convolution reverb became widely used to simulate
different environmental conditions, especially in film production [39].

5.2 Motivation
As described previously, reverberation is an acoustic phenomenon of fundamental
importance. Several studies have confirmed that acoustic reverberation is a critical
characteristic for musicians, that often rely on it to interact properly with other
players [2][9]. Indeed, the absence of a reverberant environment is perceived as
unnatural and can also have a relevant impact on sensitivity to delay. In particular,
a research has pointed out that "anechoic conditions lead to a higher imprecision,
and a larger asymmetry than reverberant conditions" [4]. All these factors thus
highlight how the introduction of a reverb unit can be essential to recreate a
convincing immersive experience [41].

In addition, as discussed in subsection 5.1.2, the reverb effect is also highly appreci-
ated by producers as a tool to add creativity to musical pieces. Indeed, nowadays,
reverb is one of the most popular and used sound effects. For this reason, a reverb
unit could be developed also for merely creative purposes and to meet different
musical tastes. For example, one of the thing usually done is to add reverb to
simulate imaginary and unrealistic spaces in order to make an instrument or a
voice sounds in a particular way.

A hardware approach to the reverb implementation requires for sure considerable
effort, but it has some advantages, especially for NMP purposes. First of all, a
great improvement in speed with respect to a software solution is possible. This is
because a hardware unit can parallelize most of the operations, which would instead
be executed sequentially. As a consequence of that, also the introduced latency can

49

Reverb Function Unit

be impacted. Furthermore, this solution can bring some improvements regarding
power consumption. Obviously, a hardware approach has also some weaknesses
and, in particular, flexibility is one of those. Indeed, a dedicated unit can usually
perform fewer functionalities compared to a software one and, to have the same
features, usually requires a greater effort to be developed.

5.3 Implementation
During the last decades, several algorithms were developed to simulate reverberation,
so a large number of different implementations were possible. To understand which
of them would be the most suitable for an NMP application, some considerations
were taken into account. First of all, the implemented reverb effect needed to
give musicians an experience as immersive as possible, making them feel like they
are playing in a real environment. Secondly, users need to have the possibility to
customize their experience, being able to control how their reverb effect sounds.

A possible solution to meet these requirements could be the implementation of a
convolution reverb, which is one of the best options to simulate the acoustic of
existing spaces in real-time. However, this approach has some drawbacks since it is
quite inflexible and expensive from a computational point of view. This solution
does not allow for a real-time control over reverb sound characteristics, due to
the fact that usually a large number of coefficients needs to be recomputed when
changing a parameter. For this reason, another group of reverb effects was taken
into account, i.e., those based on comb and all-pass filters. The forefather of this
family is Schroeder’s reverberator, which is also one of the first digital reverbs
conceived ever. Over the years, several improvements and similar approaches were
considered, but as a starting point, this implementation seemed to have reasonable
characteristics for the considered system and to achieve a more natural NMP
environment. A summary of other important available solutions can be found in
[41], where the pros and cons of each implementation are discussed in detail.

5.3.1 Schroeder’s reverberator
Schroeder’s reverberator is one of the first algorithms introduced to create a digital
artificial reverberation. In 1962, in his seminal paper [43], Manfred Robert Schroeder
described different methods and configurations for generating a reverberation by
purely electronic means. The main purpose of his studies was to find a way to
generate a natural-sounding reverb effect, that can overcome the shortcomings of
the reverberators available at that time.

As underlined by Schroeder, the two main aspects to consider when designing

50

5.3 – Implementation

a reverb unit are its frequency response and its echo density. The former is a
key point, since it determines if the reverberated sound acquires some unpleasant
coloration, i.e. the amplitude of some frequency ranges is altered. Among the
proposed methods, Schroeder introduced a flat response reverb unit. The second
major concern regards echo density, i.e. the number of echos per second generated
by the reverb unit. This is essential to reproduce a natural reverberation, since real
rooms can generate a very large number of reflections. The main phenomenon to
avoid is fluttering, a condition that occurs when the generated echo density is too
low, which leads to output sound more similar to the one a listener can experience
with the delay audio effect. Indeed, if this density is too low, distinct echoes can
be heard and interpreted as independent acoustic events. Empirical experiments
conducted by Schroeder and his team demonstrated that approximately 1000 echos
per second are required to avoid fluttering.

All the different configurations proposed by Schroeder, are mainly based on two
components: the comb filter and the all-pass one. The former can be considered as
the simplest way to produce multiple echos characterized by an exponential sound
decay. A block scheme of a generic comb filter can be seen in figure 5.1. As it
can be observed, this component is mainly composed of a delay line inserted into
a feedback loop and is characterized by two different parameters, that make its
behavior tunable. Specifically, τ is the time delay introduced by the delay line,
while g is the gain of the feedback loop (always less than 1 to have a stable loop).

Delay line, 𝜏

Gain, g

+Input Output

Figure 5.1: Generic comb filter

To better understand the behavior of the comb filter, both its impulse and frequency
responses can be analyzed. In particular, the former can be written as:

h(t) = δ(t − τ) + gδ(t − 2τ) + g2δ(t − 3τ) + ... (5.1)

where δ(t) is the impulse function, also known as delta function.

A graphical representation of the comb filter’s impulse response can be seen in
figure 5.2, where τ=10 ms and g=0.7 were assumed.

51

Reverb Function Unit

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

200

400

600

800

1000

Time (seconds)

A
m

p
lit

u
d

e

Figure 5.2: Comb filter’s impulse response

By exploiting the formula for summing geometric series, instead, the frequency
response of the comb filter can be written, and then its magnitude derived as:

H(ω) = e−iωτ

1 − ge−iωτ
⇒ |H(ω)| = 1√

1 + g2 − 2g cos ωτ
(5.2)

This magnitude is shown in figure 5.3, where the same parameters reported above
were assumed. As it can be observed, the filter’s response is not flat, but resembles
the teeth of a comb (after which it is named), so it can influence the output sound.

0 50 100 150 200 250 300 350
-1

0

1

2

3

4

5

M
a

g
n

it
u

d
e

 (
a

b
s
)

Frequency (Hz)

Figure 5.3: Comb filter’s frequency response

52

5.3 – Implementation

The second main element introduced by Schroeder is the all-pass filter. This
component is again capable of generating several echos, but this time, it features
also a flat frequency response, which makes it very suitable to avoid unpleasant
coloration of sounds. A block scheme of a generic all-pass filter can be seen in
figure 5.4. As it can be noticed, to obtain an equal response for all frequencies, a
mixture of the delayed sound and the undelayed one is exploited.

Delay line, 𝜏

Gain, g

+Input Output

Gain, -g

Gain, 1-g2 +

Figure 5.4: Generic all-pass filter

In this case, the generic impulse response of the filter can be written as:

h(t) = −gδ(t) + (1 − g2)[δ(t − τ) + gδ(t − 2τ) + ...] (5.3)

A graphical representation of this impulse response is reported in figure 5.5, where
again τ=10 ms and g=0.7 were assumed.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

-600

-400

-200

0

200

400

Time (seconds)

A
m

p
lit

u
d

e

Figure 5.5: All-pass filter’s impulse response

53

Reverb Function Unit

Regarding the all-pass filter’s frequency response and in particular its magnitude,
it is possible to obtain:

H(ω) = e−iωτ · 1 − geiωτ

1 − ge−iωτ
⇒ |H(ω)| = 1 (5.4)

As it can be seen from figure 5.6, the filter exhibits a flat response, thereby
introducing a time delay without altering the sound.

0 50 100 150 200 250 300 350
-1

0

1

2

3

4

5

M
a

g
n

it
u

d
e

 (
a

b
s
)

Frequency (Hz)

Figure 5.6: All-pass filter’s frequency response

Schroeder proposed several configurations to solve the problems related the fre-
quency response and the echo density of the reverberator. Among all of them,
the one depicted in figure 5.7 was actually chosen to be implemented as a FU.
According to Schroeder, this configuration, also named "the comb filter approach",
has an output sound that is indistinguishable from the one of real rooms. Indeed, it
can be demonstrated that it features an exponential decay, avoiding the fluttering
phenomenon by employing different delay lines. As it can be observed, however,
this architecture lacks a flat frequency response, since it includes comb filters.
Schroeder explained that this is not a problem, because physical rooms are usually
characterized by irregular responses. In particular, the fact that comb filters do not
have a flat response can be made imperceptible if the density of their peaks and
valleys is high enough. For this reason, four different comb filters in parallel could
be used to obtain a result very similar to the one of real environments. Furthermore,
since the echo density was still insufficient, two all-pass filters were added in series
to the architecture. In this way, the number of echos could be amplified without
impacting the overall frequency response. As it can be observed, the final output
of the unit is then computed as the sum between the direct input sound and the

54

5.3 – Implementation

reverberated one.

Comb Filter
(𝜏1 and g1)

+

Comb Filter
(𝜏2 and g2)

Comb Filter
(𝜏3 and g3)

Comb Filter
(𝜏4 and g4)

All-pass Filter
(𝜏5 and g5)

All-pass Filter
(𝜏6 and g6)Input

Gain, g7 + Output

Figure 5.7: Schroeder’s reverberator

In his analysis, Schroeder proposed also a way to determine the different parameters
for each filter. In particular, he suggested spreading the time delay values from τ1 to
τ4 between 30 and 45 ms, while setting τ5=5 ms and τ6=1.7 ms. Regarding instead
the gain parameters, and in particular the comb filters’ ones, he explained how
they can be used to tune the reverberation time of the architecture, by employing
the equation:

T = 3τn

− log |gn|
⇒ gn = 10− 3τn

T (5.5)

where T is the desired reverberation time.

Since real rooms are usually characterized by a reverberation time of about 1
second, this value was also chosen for the FU implementation. In this way, the
gain parameters shown in table 5.1 were computed.

Filter τn gn

Comb 1 30 ms 0.813
Comb 2 35 ms 0.785
Comb 3 40 ms 0.759
Comb 4 45 ms 0.733

Table 5.1: Comb filter’s parameters

55

Reverb Function Unit

For what concern the gain g5 and g6, Schroeder suggested to conventionally set
them equal to 0.7, while g7 could be chosen arbitrarily since it determines the
amount of reverberated sound which is going to be heard in output with respect to
the direct one. In the hardware implementation, gain g7 will be configurable from
outside and referred to as wet parameter.

5.3.2 OSAL
The implementation of the reverb FU was carried out by adopting a different
workflow than the one used for audio mixing. Indeed, in this case, the first step of
the TCE design flow was skipped. The development of an initial firmware version of
the reverb was not performed because fractional numbers were required to represent
the filters’ gain coefficients. Since, as already mentioned, the architecture of the
audio processor is based on 32-bit integers, this step could not be performed.

Before proceeding with the hardware implementation, however, a new module
called REVERB and its custom operation REVERB_ADD needed to be included
in the OSAL. In particular, this operation can be used to add the reverb effect on
input audio samples, while collecting reverberated outputs and can be exploited in
firmware using the macro:

REVERB_ADD(INPUT_CH, WET_PARAM, OUTPUT_CH)

where INPUT_CH and OUTPUT_CH are respectively input and output signed
numbers containing the corresponding audio samples, while WET_PARAM is an
unsigned input number associated with the wet parameter. As mentioned before,
this is the value that determines the amount of reverberated sound to be heard in
output and, for this reason, it can range from a minimum of 0 (no reverb added) to 1
(no direct sound in output, only reverberated one). However, since the architecture
can not deal with fractional numbers, this value can actually range from 0 to 256,
being then rescaled in the FU according to a fixed-point representation that will
be explained in the next subsection.

After adding the module and its custom operation to the OSAL, a new dedicated
FU called REVERB_0 was added to the processor’s architecture. In this way, it
was possible to design the test_reverb.c firmware. This program aims at testing
the new operation by exploiting a loopback on I2S. Specifically, according to the
position of switch 0 (SW0), the reverb effect can be turned ON/OFF, while acting
on switch 1 (SW1), the user can change the wet parameter supplied to the FU.
When the status of SW1 is equal to 0, the value 64 is provided (which means 0.25
in the internal fixed-point representation), while when its status is equal to 1, 192
is given as a parameter (0.75 in the internal fixed-point representation).

56

5.3 – Implementation

5.3.3 Hardware implementation
The hardware implementation of the reverb FU started with the design of the top
level wrapper called reverb_wrap.sv, shown in figure 5.8. As it can be seen, this
unit is mainly composed by another component called Reverb, which is the one
that is actually taking care of the algorithm developed by Schroeder and that will
be explained in detail later. It can be also observed that the FU has different input
ports. In particular, the control ones are the same as for the mixing unit, but this
time opcode_i is not present. This is because, as mentioned in subsection 5.3.2, the
unit features only one custom operation. The reverb FU has also two 32-bit width
ports: data_i and wet_param_i. The former is the one related to input audio
samples, while the latter refers to the wet parameter. Even if both these ports
exploit 32 bits, they have different numerical representations and, for this reason,
conversions are applied to the input and output of the FU. In particular, data_i
requires a 32p0 value, while wet_param_i has a 24p8 fixed-point representation.
Regarding the output port data_o, the same considerations made on data_i apply.

As for the mixing feature design, input and output registers were implemented.
Also in this case, this was done in order not to increase critical paths that can exist
outside of the unit.

Reverb
X
X

X
X

X

X

X

X

glock_i

clk_i
rst_n_i

data_i
data_load_i

wet_param_i
wet_param_load_i

data_o

en_i

 rst_n_i

data_i
wet_param_i

 data_o

en
D Q

en
D Q

en
D Q

To all
components

 en_clk_i

 en_clk_o

en
D Q

'1' '1'

'1'

Unused

Unused

32

32

32

10

32

32

Figure 5.8: Reverb wrap

The design of the Reverb component was performed using a tool called HDL coder
[44], a MATLAB add-on to generate HDL code from Simulink models. This software
permits to translate a graphical representation of an architecture into a hardware
logic, written both in VHDL or in Verilog language. It is a very useful tool to
increase productivity and make several enhancements to a design. Moreover, since
the model was built on Simulink, it was possible to hear the output sound of the
reverb before actually implementing it on FPGA.

57

Reverb Function Unit

The reverb model on Simulink was implemented by exploiting a hierarchical design.
First, the two main components of Schroeder’s reverberator were developed. The
comb filter model is shown in figure 5.9, while the all-pass one in figure 5.10.

COMB	FILTER

1
data_o

sfix32_En8

1
data_i

sfix32_En8

2
en_i

boolean gain

++
sum

Z-d

delay_main

Figure 5.9: Comb filter (Simulink model)

ALL	PASS	FILTER

1
data_o

sfix32_En8

1
data_i

sfix32_En8

2
en_i

boolean gain1

++
sum1

Z-d

delay_main

++
sum2

gain2

gain3

Figure 5.10: All-pass filter (Simulink model)

It can be observed that the Simulink models reflect the ones in figures 5.1 and 5.4.
In particular, the gain blocks were realized using the corresponding operators, while
to design the delay lines, shift register components were exploited. In particular,
to make each filter of the unit behave according to the parameters suggested
by Schroeder, the length of each delay line in terms of number of samples was
computed. This was done by employing the following expression:

di = fs · τi (5.6)
where fs is the sampling frequency and τi is the desired time delay.

The obtained values can be seen in table 5.2, where also the resulting time delay
of each component is reported. Indeed, since the number of registers can assume

58

5.3 – Implementation

only integer values, the latency introduced by each filter is quantized. Despite of
that, time delays are pretty much the same as those expected and the maximum
deviation introduced by this design procedure is 0.2% (percentage concerning τ5,
so all-pass filter 1, while for other components is lower).

Filter di τi (quantized)
Comb 1 1323 30 ms
Comb 2 1543 34.99 ms
Comb 3 1764 40 ms
Comb 4 1984 44.99 ms

All-pass 1 220 4.99 ms
All-pass 2 75 1.7 ms

Table 5.2: Time delay parameters for each filter

Another aspect to be considered for each filter is the quantization of gain parameters.
In fact, as known, real numbers may not be characterized accurately using a fixed-
point representation and some approximations can be introduced. Moreover, to
save FPGA resources, the multiplicative coefficients were represented on 9 bits
using a 1p8 representation. The outcomes of this design choice can be seen in table
5.3. It can be noticed that, this time, the maximum deviation introduced is 0.18%
(percentage concerning gain g4 and lower for other components).

Filter gi (quantized)
Comb 1 0.8125
Comb 2 0.78515625
Comb 3 0.7578125
Comb 4 0.734375

All-pass 1 0.69921875
All-pass 2 0.69921875

Table 5.3: Gain parameters for each filter

By combining all the developed components, it was possible to achieve the reverb
structure shown in figure 5.11. As it can be noticed, this architecture is very similar
to the one depicted in figure 5.7, but it has some differences. First, arithmetic
shifts were exploited after every sum operation to reduce signal dynamics. Indeed,
by adding together four different delayed samples, saturation can occur. Second,
to properly mix the reverberated and the direct sound, two different multipliers
were exploited to achieve again signal dynamics comparable to that of the input.

59

Reverb Function Unit

1
data_i

1
data_o

++
sum

_com
bs2

++
sum

_com
bs1

++
sum

_com
bs3

2
w
et_param

_i

constant_one

x
prod2_w

et

+−
subtract_w

et

3en_i

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter1

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter2

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter3

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter4

Shift	R
ight

	Arithm
etic

Length	:	1
sum

_shift_com
b1

Shift	R
ight

	Arithm
etic

Length	:	1
sum

_shift_com
b2

Shift	R
ight

	Arithm
etic

Length	:	1
sum

_shift_com
b3

A
LL	PA

SS	FILTER

data_i

en_i
data_o

allpass_filter1

++
sum

_w
et1

x

prod_w
et1

A
LL	PA

SS	FILTER

data_i

en_i
data_o

allpass_filter2

F
igure

5.11:
R

everb
core

(Sim
ulink

m
odel)

60

5.3 – Implementation

The main issue related to this first version of the architecture is the maximum
achievable clock frequency. Indeed, as it can be observed, the Reverb component is
characterized by very long paths starting from the output of each comb filter and
arriving at the data_o output. Since the goal was to reach a clock frequency of 100
MHz, some improvements needed to be made. The first optimization performed
was register retiming. This technique can be exploited to optimize timing paths in
a digital circuit by moving registers, without affecting its behavior. In Simulink
models, it was applied on shift registers, leading to the components shown in figures
5.12 and 5.13. In this way, the critical path of the circuit was strongly reduced.

COMB	FILTER

1
data_o

sfix32_En8

1
data_i

sfix32_En8

2
en_i

boolean

gain

++
sum

Z-d

delay_main

Z-6

delay_retime1

Figure 5.12: Comb filter improved (Simulink model)ALL	PASS	FILTER

1
data_o

sfix32_En8

1
data_i

sfix32_En8

2
en_i

boolean gain1

++
sum1

Z-d

delay_main

Z-3

delay_retime4

++
sum2

gain2

Z-1

delay_retime2

Z-5

delay_retime1

Z-1

delay_retime3

gain3

Figure 5.13: All-pass filter improved (Simulink model)

Then, the second optimization applied was pipelining, a technique that can be used
to further reduce timing paths, but at the expense of latency. As it can be seen
from figure 5.14, the final architecture achieved features a pipeline stage to split
the timing path of subtract_wet and prod2_wet in two different contributes.

61

Reverb Function Unit

1
data_i

1
data_o

++
sum

_com
bs2

++
sum

_com
bs1

++
sum

_com
bs3

2
w
et_param

_i

constant_one
x

prod2_w
et

+−
subtract_w

et

3en_i

Z -1
delay_pipe6

Z -1

delay_pipe3

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter1

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter2

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter3

C
O
M
B
	FILTER

data_o
data_i

en_i
gain

sum
delay_m

ain

delay_retim
e1

data_i

en_i
data_o

com
b_filter4

Shift	R
ight

	Arithm
etic

Length	:	1
sum

_shift_com
b1

Shift	R
ight

	Arithm
etic

Length	:	1
sum

_shift_com
b2

Shift	R
ight

	Arithm
etic

Length	:	1
sum

_shift_com
b3

A
LL	PA

SS	FILTER

data_i

en_i
data_o

allpass_filter1

++
sum

_w
et1

x

prod_w
et1

Z -1

delay_retim
e3

Z -1

delay_pipe5

Z -1

delay_pipe4

Z -1

delay_retim
e1

Z -1

delay_retim
e2

A
LL	PA

SS	FILTER

data_i

en_i
data_o

allpass_filter2

Z -1

delay_pipe1

Z -1

delay_pipe2

F
igure

5.14:
R

everb
core

im
proved

(Sim
ulink

m
odel)

62

5.3 – Implementation

5.3.4 Hardware simulation
As already done for the mixing unit, also the hardware implementation of the
reverb needed to be simulated. In this case, however, a different procedure was
adopted to check the correctness of the computed output samples. This alternative
verification approach is reported in figure 5.15. As it can be seen, this time a
MATLAB script called export_data.m was used to generate both the input file
(reverb_input.txt) and the output golden reference one (reverb_output_gold.txt).
Then, to simulate the implemented DUT on Vivado, the same input values were
provided to reverb_tb.sv, a testbench in SystemVerilog. Thanks to this, output
values were written on reverb_output.txt and were finally compared to the reference
ones using a C program called reverb_checker.c.

export_data.m
(simulates

reverb_tb.slx)

reverb_
input.txt

reverb_
output_
gold.txt

reverb_tb.sv reverb_
output.txt

reverb_checker.c

Figure 5.15: Reverb FU simulation approach

As mentioned before, the first element of the whole simulation procedure is ex-
port_data.m. This MATLAB script performs two main activities: it simulates
the behavior of the reference reverb on Simulink employing a testbench model
(reverb_tb.slx) and it exports the input and output data on different text files.
However, the real core of this script is the Simulink testbench model itself, shown
in figure 5.16. As it can be observed, the designed reverb module is the DUT of this
testbench and several other blocks are present to properly evaluate its behavior.
First of all, the data_i input is provided by means of a multimedia file reader,
which takes an audio file called RockGuitar.wav (sample file from MATLAB library)
and converts it to raw data. In particular, it can be seen that its audio samples are
represented on 16 bits, in stereo mode (two channels) and with a sampling frequency
of 44.1 kHz. To make these input data consistent with the one expected from the
DUT, two other blocks are needed: a selector, to retrieve only one audio channel
from the .wav file, and a converter, to adapt data to the reverb internal fixed-point
representation. Then, the wet_param_i input is set to a constant value of 0.25.
To make the simulation more complex, this value can be made time-dependent
in future developments. Next, the en_i input port is connected instead to the
output of a pulse generator, providing an enable signal every 44.1 kHz. Also in this

63

Reverb Function Unit

case, a converter is needed since the output data type of the generator is a double
value, while the DUT is expecting a boolean. Finally, the data_o output values are
converted again to a 16 bits representation and are written to output_reverb.wav
using a multimedia file writer. Moreover, in the testbench model, two blocks to
export data on the MATLAB workspace and a scope element to see the simulated
waveforms in real-time are present. To test the DUT, the simulation time was set
to 1 second, so that a total number of 44100 samples were computed.

reverbdata_i

wet_param_i

en_i

data_o

u_reverb

Constant

RockGuitar.wav
A:	44100	Hz,	16	bit,	stereoAudio

From	Multimedia	File Data	Type	Conversion

Pulse
Generator

U Y

Selector

Scope1

Data	Type	Conversion1

output_reverb.wavAudio

To	Multimedia	FileData	Type	Conversion2

To	Workspace To	Workspace2

Figure 5.16: Reverb core testbench (Simulink model)

The second component employed for the hardware simulation is reverb_tb.sv, the
HDL testbench to be simulated on Vivado. This module reads the reverb_input.txt
file and provides appropriate control signals to the DUT, that in this case is the
designed hardware FU (reverb_wrap.sv). In the meanwhile, reverb_tb.sv also
writes the computed output samples to the output file reverb_output.txt.

Then, to check the correctness of the hardware implementation with respect to
the Simulink model, reverb_checker.c was executed. This program compares the
output samples from reverb_output.txt to the ones from reverb_output_gold.txt
and computes some statistics. Before going to the results, it is necessary to make a
last clarification. To properly check the accuracy, the output values generated by
the Simulink model are not yet rounded and are still including their fractional part,
while the ones from the hardware unit are rounded to integer and represented on
24 bits (as required by the top level architecture). For this reason and since floor
rounding is applied, a maximum deviation (difference compared to reference values)
of 1 LSB is acceptable. In particular, for the performed simulation, it was found
that the maximum deviation from the golden values is equal to 0.996 and the mean
difference is equal to 0.4996. As it can be observed, these results confirmed the
expected ones, since, as known, the floor function introduces a maximum difference
of 1 and a mean error of about 0.5 on the rounded output values.

64

5.3 – Implementation

5.3.5 Synthesis and implementation on FPGA
After running the hardware simulations, the synthesis and implementation steps
were performed again using Vivado. To improve resource utilization on the FPGA,
some optimizations were performed on the delay lines and the arithmetic operators
of the reverb FU.

The first enhancement regards the implementation on FPGA of the large delay
lines contained in the designed reverb unit. To do so, the Artix-7 family’s FPGAs
feature dedicated cells to design and optimize shift register, called SRL16E and
SRLC32E. These resources are integrated into look-up tables and permit to effi-
ciently implement 1-bit shift registers without using flip-flop resources. However,
what Vivado usually does without being instructed properly is to infer delay regis-
ters as distributed logic, instead of exploiting dedicated resources. This is because,
if some precise coding guidelines are not followed, Vivado is unable to understand
the designer’s purposes, causing occasionally synthesis issues and some difficulties
to met the timing requirements. For this reason, Vivado was instructed to use
dedicated shift registers by means of mevo_constraints.xdc, the synthesis file used
to define the constraints that the synthesizer needs to meet. To do so, the following
line was added:

set_property SHREG_EXTRACT yes [get_cells core/fu_REVERB_0/u_reverb]

The second improvement performed regards the use of DSP slices for the arithmetic
operations. Also in this case, Vivado needed to be instructed on how to infer these
blocks because adders, subtractors, and accumulators are by default implemented
using generic logic. This will not happen only if a multiplication operation is
involved too. For this reason, to force Vivado to use DSP slices also for additions,
another line was added to mevo_constraints.xdc:

set_property USE_DSP yes [get_cells core/fu_REVERB_0/u_reverb]

Thanks to both these improvements, it was again possible to meet the established
timing requirement and achieve a clock frequency of 100 MHz.

After performing the synthesis, the inferred logic was analyzed by taking a look
again at the runme.log file generated by Vivado. The results about shift registers
utilization are provided in table 5.4. As it can be seen, the delay lines contained in
each comb and all-pass filter are mapped both into an SRL16E or an SRLC32E
block. In particular, the largest ones are inferred as SRLC32E, while the others
exploit SRL16E cells. Also, it is possible to recognize that the comb filter’s delays
are correctly divided into two contributions: the first is the main delay, while the
second is due to the registers re-timed during the hardware design on Simulink.

65

Reverb Function Unit

Module name Length Width SRL16E SRLC32E
u_comb_filter1 1317 32 0 1344
u_comb_filter1 6 32 32 0
u_comb_filter2 1537 32 0 1536
u_comb_filter2 6 32 32 0
u_comb_filter3 1758 32 0 1760
u_comb_filter3 6 32 32 0
u_comb_filter4 1978 32 0 1984
u_comb_filter4 6 32 32 0

u_allpass_filter1 216 32 0 224
u_allpass_filter2 73 32 0 96

Cell Total number
SRL16E 128

SRLC32E 6944

Table 5.4: Static shift register reports for the reverb FU

Furthermore, the retrieved results about DSP blocks utilization are shown in table
5.5.

DSP Mapping A Size B Size C Size P Size MREG PREG
C+A:B 30 18 48 33 0 0
C+A:B 30 18 48 33 0 0
C+A:B 30 18 48 33 0 0
C+A:B 30 18 9 11 0 0

C’+A’:B’ 30 18 48 33 0 0
A”*B” 17 18 0 48 0 0

PCIN»17+A”*B” 30 18 0 25 0 0
A”*B’ 17 18 0 48 0 0

PCIN»17+A”*B’ 30 18 0 25 0 0

Table 5.5: DSP final report for the reverb FU (the ’ indicates corresponding REG
is set)

It can be observed that Vivado maps the sum operations between the comb filter’s
outputs into three different blocks (first three lines), then the wet parameter
subtraction and the final sum between direct and reverberated data into other two
DSP slices (lines four and five). The remaining blocks are used to implement the

66

5.3 – Implementation

two multipliers present in the design. As it can be seen, two DSPs are exploited
for each product operation since the multiplier contained in a slice can have a
maximum dimension of 25 x 18 bits.

67

68

Chapter 6

System optimizations and
final results

This chapter describes some of the most important improvements made to the
system and, in particular, to the audio processor. To achieve better performances,
both architectural and firmware optimizations were introduced and can be found
in detail in the next sections. Finally, also the most important results provided by
Vivado on the final FPGA implementation are analyzed.

6.1 Memory optimization
The first optimization performed on the audio processor is the one related to
the implementation of memories. In the preliminary architecture, these compo-
nents were implemented by means of two HDL files called inst_mem_logic.vhd
and synch_sram_synth.vhdl, which described the instruction and data memory
respectively. In particular, synch_sram_synth.vhdl was a hand-written file, while
inst_mem_logic.vhd was generated by TCE exploiting the generatebits com-
mand. This tool was also used to automatically create the contents of each memory,
called mevo_proc_imem_pkg.vhdl for instructions and mevo_proc_data.img for
data.

The optimization of these components consisted of replacing them with two cus-
tomizable memory elements taken from the Vivado IP catalog. Specifically, the
Block Memory Generator tool was used to implement the new components. The
instruction memory was designed as a single port RAM, with a word width of 176
bits (the length of each instruction in the TTA processor) and a depth of 1024
words (an arbitrary value, large enough to contain the different firmware developed
so far). In this way, a 10-bit addressable memory module called inst_mem.vhd was

69

System optimizations and final results

obtained. The data memory, instead, was realized as a single port RAM, with a
word width of 32 bits (the data width in the TTA processor) and a depth of 1024
words (again an arbitrary value, sufficient for the considered firmware). By doing
so, a 10-bit addressable memory called data_mem.vhd was obtained. However,
the content of these IP modules still needed to be initialized (in particular using
a .coe file). This was possible by coming back to the TCE tool and changing
some of the options provided to the generatebits command. In this way, two
memory initialization files called mevo_proc_inst.coe and mevo_proc_data.coe
were generated and were then provided to Vivado for the synthesis process.

This new approach to memory implementation can introduce several benefits for
the architecture. First of all, FPGA resources can be better exploited. Indeed, as it
can be observed comparing tables 6.1 and 6.2, the large number of LUTRAMs used
initially to implement the memories (43.76% of the total availability) can be saved
by using BRAMs instead (only 6 more of them are enough). A LUTRAM block,
also known as distributed RAM, is a memory device contained inside FPGA’s
Lookup Tables (LUTs) and is the best way to design a very fast memory component.
However, if a large memory needs to be implemented, BRAM usually performs better
in terms of speed, since there is no need to implement complex interconnections
between the exploited LUTs. This is because BRAMs are dedicated RAM blocks,
that do not consume any additional LUT.

Resource Utilization Available Utilization %
LUT 12117 63400 19.11%

LUTRAM 8314 19000 43.76%
BRAM 3 135 2.22%

Table 6.1: Memory resource utilization before optimizations

Resource Utilization Available Utilization %
LUT 3519 63400 5.71%

LUTRAM 122 19000 0.64%
BRAM 9 135 6.67%

Table 6.2: Memory resource utilization after optimizations

Another additional improvement introduced by the use of BRAMs is the speed up
of both synthesis and implementation processes (since a lower number of complex
interconnections needs to be routed). The only drawback that this implementation
choice can bring is that the architecture becomes less portable on other platforms
and devices that are not specifically designed by Xilinx.

70

6.2 – Latency optimization

6.2 Latency optimization
Since the latency introduced by the system is a crucial parameter to be minimized
for an NMP application, some optimizations were made in this regard as well. In
particular, the improvements introduced refer to the time delay of audio samples and
are not taking into account MIDI messages. Indeed, only the I2S communication is
considered so far, but a similar approach can be used also to improve both UART
and SPI interfaces.

As a case study to evaluate the latency introduced by the system, the test_loopback.c
firmware was chosen. As already explained in subsection 3.4.4, this program is
used to test the loopback capabilities of the system, so to verify if an input
sound can be acquired and played back without being modified. In this process
several factors contribute to the total latency introduced: the sound needs to be
digitized, transferred using I2S, managed by the processor, transferred back and
then converted again into an analog signal. For this reason, the overall latency
introduced by the loopback test can be split into different contributions:

Tlat = TADC + TI2S + Tproc + TI2S + TDAC (6.1)

where TADC and TDAC are the time delays associated with audio conversions, TI2S

is the one regarding data transfers (considered two times since data are going back
and forth) and Tproc refers to the latency introduced by the processor.

The first contributions that can be analyzed are TADC and TDAC . Determining
these delays is very important for the total latency since they represent a significant
part of it. This is due to the fact that both signal conversions, featured in the
audio board, are based on Delta-Sigma modulation, a method used to reduce noise
and increase the accuracy of samples. To make this technique work, a digital filter
is always present in the conversion structure, being responsible for the introduction
of a considerable delay. Indeed, as Linear Time-Invariant (LTI) system, this
component can add a delay associated with its phase response, called group delay
and defined as:

Group delay (ω) = −dΦ(ω)
dω

(6.2)

where Φ(ω) is the phase response of the system and ω is the angular frequency.

The digital filters exploited in this conversion process are low-pass ones and usually
present a sinc function response in the frequency domain. For this reason, they
also show a linear phase and as a consequence a constant group delay, that can be
generally computed in a deterministic way as a function of the sampling frequency

71

System optimizations and final results

(that in the considered case is 44.1 kHz). To take into account the latency introduced
by both the ADCs and the DAC, the information on group delay was retrieved
from their datasheets. In particular, it was found that:

TADC = 17.4
fs

= 17.4
44.1 kHz = 394.56 µs

TDAC = 20
fs

= 20
44.1 kHz = 453.51 µs

(6.3)

The second contribution to the overall latency is the one associated with the I2S
communication protocol and in particular with the time required to transfer an
audio sample. In this case, the delay introduced can be computed as the product
between the BCLK period and the number of bits for each I2S transfer. Otherwise,
it can be also expressed as the LRCLK semi-period, getting to:

TI2S = Tbclk · 32 = Tlrclk

2 = 11.34 µs (6.4)

The latency introduced by the audio processor is the last contribution to be
considered. Indeed, the acquired samples need to be correctly retrieved from the
I2S receiver and sent to the transmitter. In the initial version of test_loopback.c,
this procedure takes a lot of time due to the misuse of the I2S transmission FIFO.
The program was supposed to fill this audio buffer with zeros until SW0 is in
OFF position, but this was done without respecting the correct timing behavior
of the I2S communication. For this reason, the delay introduced for each sample
depended on the FIFO length. This latency can be computed as:

Tproc = Tlrclk · lF IF O = 22.68 µs · 64 = 1.45 ms (6.5)

By looking at the different latency contributions described so far, it is clear that
T_proc is the only parameter to act on to reduce the total delay. In particular,
what could be done is to manage properly the I2S transmission. The firmware was
then modified to ensure an appropriate timing (transmission FIFO was filled every
44.1 kHz). In this way, the following theoretical delay can be achieved:

Tproc = 3 · Tlrclk

2 = 3 · 11.34 µs = 34.02 µs (6.6)

Summing together all these time delays, it is possible to compute the total theoretical
latency associated to the initial version of test_loopback.c and the optimized one:

Tlat = TADC + TI2S + Tproc + TI2S + TDAC = 2.31 ms
Tlat,opt = TADC + TI2S + Tproc + TI2S + TDAC = 0.89 ms

(6.7)

72

6.3 – Top level restructuring

To evaluate the latency improvements introduced by the optimization explained
above, a real-world test was performed. By using a tool to measure audio latency, it
was possible to compare the first version with the optimized one. Results show that
the initial loopback firmware had a total latency of 2.115 ms, while the improved
version can achieve 0.859 ms. These values are subject to an uncertainty of 0.005
ms, since the sampling time of the measurement tool is equal to 192 kHz. As it can
be observed, these outcomes almost reflect the expected ones and give the system
a decrease in latency of 59.4%.

6.3 Top level restructuring
Some other improvements were performed on the architecture, before optimizing
the firmware. For example, to simplify the audio processor representation, its top
level structure was restructured. In particular, one of the intermediate layers of
hierarchy was removed, leading to the final architecture reported in figure 6.1. As
it can be seen, all the main components of the processor (already described in
subsection 3.4.2) are contained into a single design module called top.vhdl.

TTA Core
(tta0.vhdl)

Data memory
(data_mem.vhd)

Instruction memory
(inst_mem.vhd)

I2S clock generator
(I2S_clock_gen.sv)

11 MHz PLL
(pll.v)

Top level (top.vhdl)

X

X

clk

input
signals

output
signalsX

memory
control signals

bclk / lrclkX

mclkX

Figure 6.1: Audio processor final top level block diagram

73

System optimizations and final results

6.4 Main firmware restructuring
In addition to architectural optimizations, also the main firmware running on the
audio processor was improved. In particular, an approach based on a software FSM
was considered to make the code more clear and to bring some advantages for future
developments. A state machine is usually a very flexible way to model the behavior
of a system and its code can be highly maintainable. Moreover, functionalities
can be quite isolated, so that new features can be introduced without the need
to consider already existing ones. This can be a great advantage, especially in a
project run by several people over time.

The new version of the main firmware, mevo_main.c, is replacing the old one called
main_final.c. Its state diagram can be seen in figure 6.2.

MEVO
WAIT

PREAMBLE

MEVO
WAIT

COMMAND

MEVO
CONFIG

MEVO
STREAM

MEVO
STREAM

MIX

Entry point

general_cnt == 5 &&
 preamble_cnt >= 3

general_cnt == 3 &&
 command_cnt[0] >= 2

general_cnt == 3 &&
 command_cnt[1] >= 2

count_config ==
N_CONFIG

general_cnt == 3 &&
 command_cnt[0] < 2 &&
command_cnt[1] < 2 &&
 command_cnt[2] < 2

general_cnt == 3 &&
 command_cnt[2] >= 2

new_data ==
current_config.s_n

new_data ==
current_config.s_n

Figure 6.2: Firmware state diagram

Besides the changes introduced in its structure, some other improvements were
performed. In particular, the same considerations already described in section
6.2 for test_loopback.c were made to properly handle communication protocols.
Furthermore, the command 3 missing feature, about handling the mixing operation

74

6.5 – Final results

on FPGA, was added. Unfortunately, even if all the new FUs are present in the
processor architecture, a discussion about how to include the reverb feature on the
main firmware has not been made yet.

Back to the FSM, as it can be seen in figure 6.2, the firmware was reorganized in 5
different states:

• MEVO_WAIT_PREAMBLE: in which the processor is waiting for the pream-
ble sequence to occur from SPI

• MEVO_WAIT_COMMAND: in which the processor is waiting for a command
to occur from SPI

• MEVO_CONFIG: in which the processor is changing its configuration param-
eters according to the values received from SPI

• MEVO_STREAM: in which the processor is streaming audio samples and
MIDI messages from the audio board to the Raspberry Pi and vice versa,
without performing audio mixing

• MEVO_STREAM_MIX: in which the processor is streaming audio samples
and MIDI messages from the audio board to the Raspberry Pi and vice versa,
performing also audio mixing

To understand the difference between the new main firmware and its previous
version, both of them were compiled and the proxim command was run. Results
show that the old program consisted of 362 instructions, while the new one has
608. This is probably the consequence of introducing a proper way of handling
interfaces. Despite all, the new structure of the main firmware can be seen almost
as a starting point for future development, since there is definitely a lot of room
for improvements.

6.5 Final results
After developing the new required FUs and optimizing the audio processor from
an architectural and firmware point of view, the final results provided by Vivado
can be analyzed in detail. This tool can report different information about the
implemented design and, specifically, outcomes in terms of resource utilization,
timing and power consumption. To provide an exhaustive analysis of the obtained
results, a comparison with respect to the initial architecture can be made.

75

System optimizations and final results

6.5.1 Resource utilization
The first results that can be considered are the ones regarding the final utilization
of FPGA resources. These outcomes are important to understand possible future
developments of the processor and in particular which components should require
further optimizations. Vivado can provide some very detailed reports on resource
allocation. A comparison between the initial utilization and the final one can be
made by taking a look at tables 6.3 and 6.4.

Resource Utilization Available Utilization %
LUT 12117 63400 19.11%

LUTRAM 8314 19000 43.76%
FF 3312 126800 2.61%

BRAM 3 135 2.22%
DSP 3 240 1.25%
IO 42 210 20.00%

BUFG 3 32 9.38%
MMCM 1 6 16.67%

Table 6.3: Resource utilization (initial architecture)

Resource Utilization Available Utilization %
LUT 13479 63400 21.26%

LUTRAM 7193 19000 37.86%
FF 7662 126800 6.04%

BRAM 13 135 9.63%
DSP 20 240 8.33%
IO 42 210 20.00%

BUFG 3 32 9.38%
MMCM 1 6 16.67%

Table 6.4: Resource utilization (final architecture)

The first thing which can be observed is that the number of exploited LUT has
increased. Of course, this is mostly the consequence of adding two FUs. It can
be seen, however, that the increment in LUT utilization is quite limited (only 2%
more are used), because dedicated cells were used as much as possible during the
development of these new features. Regarding the LUTRAM utilization, it can
be seen that their number has decreased, but not as much as expected. As it was
observed previously in table 6.2, indeed, after optimizing the memory optimization,
a very low number of LUTRAM were exploited by Vivado (merely 0.64%). However,

76

6.5 – Final results

this value was not yet taking into account the reverb FU and specifically its large
shift registers. Considering them, it is possible to see that a final utilization of
37.86% can be achieved. Some future works may aim to see if this value can be
improved by exploring new algorithms and implementations for the reverb FU. A
few other considerations can be made also regarding BRAMs and DSP resources.
As it can be observed, their utilization reflects the expectations made during the
design of the new units. In the initial architecture, only 3 BRAMs were exploited,
in particular for I2S buffers, while now 13 of them are used. This increment can be
explained by considering that 6 cells are needed for data and instruction memories,
while 4 more are used to store audio mixing coefficients. Instead, concerning DSP,
the architecture is increasing their utilization from 3 to 20. First, this kind of
resource was exploited only for the ALU, while now 8 more are used for audio
mixing and 9 to implement the reverb algorithm.

6.5.2 Timing results
The timing results are the second type of report that can be analyzed. As already
mentioned, a clock frequency of 100 MHz was set as a goal for the audio processor
implementation on FPGA. This requirement was met in both architectures, but
some differences in timing behaviors need to be commented. In tables 6.5 and
6.6, it is possible to observe some of the fundamental metrics used to compare the
previous architecture with the final one.

Type Worst slack Total violation Failing endpoints Tot endpoints
Setup 0.023 ns 0 ns 0 89179
Hold 0.035 ns 0 ns 0 89179

Pulse width 3 ns 0 ns 0 11648

Table 6.5: Timing results (initial architecture)

Type Worst slack Total violation Failing endpoints Tot endpoints
Setup 0.217 ns 0 ns 0 31360
Hold 0.015 ns 0 ns 0 31360

Pulse width 3 ns 0 ns 0 14918

Table 6.6: Timing results (final architecture)

As said, timing violations and failing paths are not present in any of them, but
some variations could be noticed about the worst slack, in particular on the setup
time. This design characteristic refers to the longest existing path in the circuit
and usually determines the maximum achievable clock frequency. As it can be

77

System optimizations and final results

observed, the initial architecture has a worst slack on setup time of 0.023 ns, while
the final processor exhibits a greater value equal to 0.217 ns. These results show
that the new architecture is faster than the previous one and that, theoretically, it
can achieve a maximum frequency that is almost 2% higher (100.23 MHz of the
previous vs. 102.22 MHz of the new one). The reason for this improvement in terms
of speed can be found mostly in the optimization performed on memories (described
in section 6.1). Indeed, since BRAMs are now exploited for both instruction and
data memories, the architecture has shorter critical paths. Moreover, for the same
reason, it can also be proved that the implementation results are no more dependent
on the firmware used.

6.5.3 Power consumption
The last outcomes that can be considered are the ones related to power consumption.
Since Vivado has not enough information about the actual switching activity of
internal signals, these results were estimated with a low confidence level. This is
because usually to retrieve a satisfactory evaluation of the power consumption,
different simulations in some real case scenarios need to be performed. To sim-
plify this process, the switching activity arithmetically estimated by Vivado was
considered.

The power consumption for both the initial and the final architectures can be found
in tables 6.7 and 6.8. As it can be seen, Vivado can provide detailed information on
the type and the different contributions that make up the total value. Specifically,
the first distinction that can be made is between dynamic and static power. The
former, which includes both the switching and the short-circuit factors, is the
one related to the activity of signals and the frequency of the system. The latter,
instead, regards the leakage of transistors and the power consumed when there is
signals are not switching.

Type Estimation Contribute Estimation

Dynamic 0.185 W (65%)

Clock 0.024 W
Signals 0.014 W
Logic 0.016 W

BRAM 0.002 W
DSP < 0.001 W

MMCM 0.125 W
IO 0.004 W

Static 0.098 W (35%) PL static 0.098 W

Table 6.7: Power consumption (initial architecture)

78

6.5 – Final results

Type Estimation Contribute Estimation

Dynamic 0.252 W (72%)

Clock 0.031 W
Signals 0.047 W
Logic 0.024 W

BRAM 0.013 W
DSP 0.007 W

MMCM 0.125 W
IO 0.004 W

Static 0.099 W (28%) PL static 0.099 W

Table 6.8: Power consumption (final architecture)

Comparing these tables, it is possible to observe that the dynamic power estimated
for the final architecture is higher. This is because, as expected, the new developed
features have an impact on consumption. It can be seen that all the different
contributions of the dynamic power increased, in particular the one regarding
signals. One consideration that can be made concerns the contribution of BRAM
and DSP resources. It can be noticed that, even though several new blocks were
exploited during the design, the energy associated with these cells is quite low,
probably because they are dedicated facilities. For this reason, a greater use of
them needs definitely to be considered in future optimizations. The only dynamic
contribution that remained the same is MMCM, the one associated mainly with
the PLL component. As it can be observed, this estimated power is the greatest
one for both the architectures. Regarding static power, it is possible to notice that
it has remained almost unchanged. Summing each contribution, the architecture
went from an initial consumption of 0.283 W to a final value of 0.352 W.

79

80

Chapter 7

Conclusions

This thesis proposed a hardware implementation of two different audio effects to
be included in a system for NMP applications. Specifically, they were designed
to be used as FUs in a custom TTA processor for audio purposes. This solution,
based on an FPGA implementation, was described in detail and compared with
the currently available ones, which are mainly software. As seen, this approach can
bring several enhancements in terms of latency to a networked performance, since
a dedicated hardware architecture is exploited.

Audio mixing was the first unit added to the custom processor. NMP applications
need a way to mix the samples coming from different channels and users in real-
time and, for this reason, a dedicated hardware was conceived. By adopting
the TCE design flow, an initial firmware implementation, to be executed by the
already existing audio processor, was developed first. Then, to evaluate whether the
introduction of a hardware mixing unit could give a performance boost to the system,
this implementation was compared to another one in which the mixing process was
performed by some custom operations. In particular, MIXER_SET_GAIN and
MIXER_MIX_CHANNELS were added to the architecture and a new version of the
firmware was developed, by replacing previous arithmetical operations with them.
By doing that, it was possible to observe that the total number of instructions to
be executed decreased by 11.2%. For this reason, a hardware mixing unit was then
designed. Its implementation had to consider different aspects and, in particular,
the fact that it needed to manage the two custom operations mentioned before. An
FSM was developed to properly handle control signals according to the operation to
be performed, while an 8-port RAM and a Mixer component were implemented to
execute them. The correctness of the design was then checked using a verification
procedure based on a SystemVerilog testbench and a golden reference model written
in C language. Finally, during the FPGA implementation, some improvements on
the developed FU were performed. In particular, optimizations in terms of BRAM

81

Conclusions

and DSP blocks permit to achieve a clock frequency of 100 MHz and led to better
utilization of resources.

The second unit introduced into the system was the one implementing the reverb
effect. Over the years, several studies have confirmed that the absence of rever-
beration can sound unnatural to musicians and may have an impact on the way
they interact. Since networked performances are susceptible to this phenomenon,
a technique to add artificial reverberation was implemented. However, in this
case, a different procedure was adopted to develop the dedicated hardware unit.
No initial firmware could be realized, since the audio processor was unable to
support fractional numbers and as a consequence no comparison with new custom
operations was possible. For this reason, the reverb implementation started directly
with the hardware design, which was carried on by exploiting MATLAB HDL
Coder and a Simulink model of the unit. In particular, the architecture chosen
for the development of this audio effect was the one proposed by Manfred Robert
Schroeder. This solution, mainly consisting of comb filters and all-pass ones, was
optimized to meet the timing requirements and occupy as little area as possible.
To check the hardware implementation, a verification process was again executed.
This time a Simulink testbench was used as a golden reference, instead of a C
model. Finally, also in this case, optimizations were performed on the FPGA
implementation, focusing in particular on DSP and SRL blocks. Thanks to them,
the architecture was able to meet the target clock frequency of 100 MHz.

As an additional purpose, some other improvements were applied to increase the
performance of the audio processor. Optimizations on memories were introduced
by taking advantage of the Vivado library and in particular of its customizable IPs.
Thanks to them, LUTRAM resource utilization decreased from 43.76% to 0.64%,
leaving more room for other future features. Moreover, since NMP applications
have very strict latency requirements, optimizations were made to the system in
this regard. Using the test_loopback.c firmware as a case study, it was possible to
demonstrate that lower time delays could be achieved by properly handling I2S
interfaces. Real-world tests show that a decrease of 59.4% was obtainable, leading
to a lower loopback latency of 0.859 ms. After performing all these optimizations,
the final results of the FPGA implementation were retrieved. Resource utilization
and power consumption have increased as a consequence of the fact that two new
FUs were added to the processor. Despite that, positive outcomes for these metrics
were achieved through the use of dedicated FPGA blocks, such as DSP slices.
Instead, regarding timing results, an improved setup time slack was obtained. The
final architecture could theoretically be synthesized at a maximum clock frequency
of 102.22 MHz, which is almost 2% higher than before.

82

7.1 – Future work

7.1 Future work
The system considered in this thesis and in particular the FPGA-based audio
processor offers several opportunities for future work. Indeed, as seen in the
previous chapters, the exploited resources are far from being exhausted and many
features can still be implemented.

First, some improvements and work can be done on the already existing functional-
ities. An optimization that could be explored is the possibility to bring the entire
architecture to a unique fixed-point representation on 32-bit, maybe also taking
advantage of TCE’s future developments. Another enhancement could be related
to the reverb FU designed in chapter 5. Many solutions are present in literature
about algorithms to create an artificial reverberation and some of them are surely
good candidates to improve the quality and the naturalness of the developed one.
Moreover, some plans about how to include the reverb feature in the main firmware
running on the processor should be made. The designed code needs to be optimized
and properly tested in real-world, focusing in particular on the interface with the
Raspberry Pi device.

Finally, regarding new features that can be investigated for a possible FPGA-based
implementation, two possibilities may be mentioned. First, PLC techniques can be
taken into account from a hardware point of view, to realize a system that is able
to deal with the lack of audio samples in real-time. Second, some research on the
possibility to include new hardware audio effects could be examined. Among all
of them, some suggested options are a compressor unit to dynamically handle the
volume of each track or a filtering unit to perform sound equalization.

83

84

Appendix A

Code

A.1 mevo_run.sh script
mevo_run.sh is a bash script that can be used to automatize some of the most
used steps in the TCE workflow. In practice, what it does is to execute in sequence
tcecc, generateprocessor and generatebits commands, while doing also some
housekeeping operations on project folders. mevo_run.sh can be used from the
command-line by specifying options to achieve different kinds of results.

The available options are the following:

• -a <ARCHITECTURE_NAME> : option to specify the name of the architecture
(.adf file) you want to use. Default is mevo_proc.adf.

• -c <FIRMWARE_NAME> : option to specify the name of the firmware (.c file)
you want to use. Default is fw_src/fw_test/test_loopback.c.

• -h : option to display the help manual

• -i <IMPLEMENTATION_NAME> : option to specify the name of the implementa-
tion (.idf file) you want to use. Default is mevo_proc.idf.

• -t <TPEF_PROGRAM_NAME> : option to specify the name of the TPEF program
(.tpef file) you want to use. Default is mevo_proc.tpef.

• -x : option to perform only the C source code compilation (by means of
tcecc). generateprocessor and generatebits are not performed.

85

Code

1 #! / bin /bash
2

3 ##
4 ## F i l e : mevo_run . sh
5 ## Author : Diego Bert
6 ##
7 ## Desc r ip t i on : This s c r i p t i s used to automatize some o f the
8 ## most used s t ep s in the TCE workflow .
9 ## Note : Before us ing t h i s s c r i p t you MUST c r e a t e . adf ,

10 ## . i d f and . c f i l e s .
11 ##
12 ## Rev i s i ons :
13 ## Date Vers ion Author Desc r ip t i on
14 ## 2022−11−18 1 .0 Diego Bert Created
15 ## 2022−12−11 1 .1 Diego Bert New command opt ions added
16 ##
17

18

19 # Var iab l e s
20 ADF_SOURCE=" mevo_proc . adf "
21 IDF_SOURCE=" mevo_proc . i d f "
22 C_SOURCE=" fw_src/ fw_test / test_loopback . c "
23 TPEF_SOURCE=" mevo_proc . t p e f "
24 HDL_FOLDER=" proge−output "
25 TOP_FOLDER=" top−output "
26 ONLY_TCECC=0
27

28 # Choose opt ions
29 whi le ge topt s " a : i : c : t : xh " OPTION
30 do
31 case $OPTION in
32 a)
33 # Change a r c h i t e c t u r e name
34 ADF_SOURCE=$OPTARG
35 ; ;
36 i)
37 # Change implementation name
38 IDF_SOURCE=$OPTARG
39 ; ;
40 c)
41 # Change C program name
42 C_SOURCE=$OPTARG
43 ; ;
44 t)
45 # Change TPEF program name
46 TPEF_SOURCE=$OPTARG
47 ; ;
48 x)

86

A.1 – mevo_run.sh script

49 # Perform only TCECC source code compi la t ion
50 ONLY_TCECC=1
51 ; ;
52 h)
53 man . / mevo_run_man . 1
54 e x i t
55 ; ;
56 ∗)
57 e x i t
58 esac
59 done
60

61 # Star t message
62 echo "−−−−− Automated TCE workflow −−−−−"
63

64 # Tcecc command
65 echo " [∗] TCECC . . . "
66 t c e c c −O3 −a $ADF_SOURCE −o $TPEF_SOURCE $C_SOURCE
67

68 i f [$ONLY_TCECC == 0]
69 then
70

71 # Generateproces sor command
72 echo " [∗] GENERATEPROCESSOR . . . "
73 gene ra t ep ro c e s s o r −i $IDF_SOURCE −o proge−tmp/ $ADF_SOURCE
74

75 # Generateproces sor housekeeping ope ra t i on s
76 cp $HDL_FOLDER/README.md proge−tmp/
77 rm −r $HDL_FOLDER
78 mv proge−tmp/ $HDL_FOLDER
79

80 # Generateb i t s command
81 echo " [∗] GENERATEBITS . . . "
82 g e n e r a t e b i t s −w 4 −f coe −d −o coe −p $TPEF_SOURCE −x $HDL_FOLDER

$ADF_SOURCE
83

84 # Generateb i t s housekeeping ope ra t i on s
85 mv mevo_proc . coe $TOP_FOLDER/mevo_proc_inst . coe
86 mv mevo_proc_data . coe $TOP_FOLDER
87

88 f i
89

90 # End message
91 echo "−−−−− Done −−−−−"

87

88

Bibliography

[1] Cristina Rottondi. «Networked music performances in the COVID19 pandemic
era: achievements and open challenges». In: IEEE Student Branch: W[I]E
Present! 2020 (cit. on pp. 1, 9, 10).

[2] Cristina Rottondi, Chris Chafe, Claudio Allocchio, and Augusto Sarti. «An
Overview on Networked Music Performance Technologies». In: IEEE Access
(2016) (cit. on pp. 2, 6, 11, 49).

[3] Alexander Carôt, Christian Werner, and Timo Fischinger. «Towards a Com-
prehensive Cognitive Analysis of Delay-Influenced Rhythmical Interaction».
In: Proceedings of the International Computer Music Conference. 2009 (cit. on
p. 6).

[4] Snorre Farner, Audun Solvang, Asbjørn Sæbø, and U. Peter Svensson. «En-
semble Hand-Clapping Experiments under the Influence of Delay and Various
Acoustic Environments». In: Journal of the Audio Engineering Society (2009)
(cit. on pp. 6, 49).

[5] Alain B. Renaud, Alexander Carôt, and Pedro Rebelo. «Networked Music
Performance : State Of The Art». In: AES 30th International Conference.
2007 (cit. on p. 6).

[6] Hidden Histories of the Information Age - Tat-1. url: https://www.bbc.co.
uk/programmes/b04m3bcc (cit. on p. 6).

[7] Introduction : Experimental Music in the Bay Area. url: http://crossfade.
walkerart.org/brownbischoff/ (cit. on p. 7).

[8] Chris Chafe, Scott Wilson, Randal Leistikow, Dave Chisholm, and Gary
Scavone. «A simplified approach to high quality music and sound over IP». In:
Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00).
2000 (cit. on p. 7).

[9] Alexander A. Sawchuk, Elaine Chew, Roger Zimmermann, Christos Pa-
padopoulos, and Chris Kyriakakis. «From remote media immersion to Dis-
tributed Immersive Performance». In: Proceedings of the 2003 ACM SIGMM
workshop on Experiential telepresence. 2003 (cit. on pp. 7, 49).

89

https://www.bbc.co.uk/programmes/b04m3bcc
https://www.bbc.co.uk/programmes/b04m3bcc
http://crossfade.walkerart.org/brownbischoff/
http://crossfade.walkerart.org/brownbischoff/

BIBLIOGRAPHY

[10] Juan-Pablo Cáceres and Chris Chafe. «JackTrip: Under the Hood of an Engine
for Network Audio». In: Journal of New Music Research (2010) (cit. on p. 8).

[11] JackTrip Foundation. url: https://www.jacktrip.org/ (cit. on p. 8).
[12] Alexander Carôt, Alain B. Renaud, and Bruno Verbrugghe. «Network Music

Performance (NMP) with Soundjack». In: Proceedings of the 6th NIME
Conference. 2006 (cit. on p. 8).

[13] SoundJack. url: https://www.soundjack.eu/ (cit. on p. 8).
[14] Jamulus. url: https://jamulus.io/ (cit. on p. 8).
[15] Chrisoula Alexandraki, Panayotis Koutlemanis, Petros Gasteratos, Nikolas

Valsamakis, Demosthenes Akoumianakis, and Giannis Milolidakis. «Towards
the implementation of a generic platform for networked music performance:
The DIAMOUSES approach». In: EProceedings of the ICMC 2008 Interna-
tional Computer Music Conference (ICMC). 2008 (cit. on p. 8).

[16] SonoBus. url: https://sonobus.net/ (cit. on p. 9).
[17] JamKazam. url: https://jamkazam.com/ (cit. on p. 9).
[18] Elk Audio. url: https://www.elk.audio/ (cit. on p. 9).
[19] Comparison of Remote Music Performance Software. url: https://en.wik

ipedia.org/wiki/Comparison_of_Remote_Music_Performance_Software
(cit. on p. 9).

[20] Prateek Verma, Alessandro I. Mezza, Chris Chafe, and Cristina Rottondi.
«A Deep Learning Approach for Low-Latency Packet Loss Concealment of
Audio Signals in Networked Music Performance Applications». In: 2020 27th
Conference of Open Innovations Association (FRUCT). 2020 (cit. on p. 10).

[21] I2S bus specification. url: https://www.nxp.com/docs/en/user-manual/
UM11732.pdf (cit. on p. 13).

[22] DAC PCM1771 datasheet. url: https://www.ti.com/lit/ds/symlink/
pcm1771.pdf (cit. on p. 14).

[23] MIDI. url: https://en.wikipedia.org/wiki/MIDI (cit. on p. 14).
[24] Bernardo Breve, Stefano Cirillo, Mariano Cuofano, and Domenico Desiato.

«Perceiving space through sound: mapping human movements into MIDI».
In: 26th International Conference on Distributed Multimedia Systems. 2020
(cit. on p. 14).

[25] SPI Block Guide V04.01. url: https://www.nxp.com/files- static/
microcontrollers/doc/ref_manual/S12SPIV4.pdf (cit. on p. 15).

[26] Introduction to SPI Interface. url: https://www.analog.com/en/analog-
dialogue / articles / introduction - to - spi - interface . html (cit. on
p. 16).

90

https://www.jacktrip.org/
https://www.soundjack.eu/
https://jamulus.io/
https://sonobus.net/
https://jamkazam.com/
https://www.elk.audio/
https://en.wikipedia.org/wiki/Comparison_of_Remote_Music_Performance_Software
https://en.wikipedia.org/wiki/Comparison_of_Remote_Music_Performance_Software
https://www.nxp.com/docs/en/user-manual/UM11732.pdf
https://www.nxp.com/docs/en/user-manual/UM11732.pdf
https://www.ti.com/lit/ds/symlink/pcm1771.pdf
https://www.ti.com/lit/ds/symlink/pcm1771.pdf
https://en.wikipedia.org/wiki/MIDI
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html

BIBLIOGRAPHY

[27] Riccardo Peloso. Custom hardware audio board. 2021 (cit. on p. 16).
[28] 7 Series FPGAs Data Sheet: Overview. url: https://docs.xilinx.com/v/

u/en-US/ds180_7Series_Overview (cit. on pp. 18, 43).
[29] About Transport-Triggered Architectures. url: http://openasip.org/tta.

html (cit. on p. 19).
[30] Nicola Domini. Ultralow Latency Audio Processing Via FPGA For Networked

Music Performance Applications. 2022 (cit. on p. 22).
[31] Raspberry Pi 4 Model B. url: https://datasheets.raspberrypi.com/

rpi4/raspberry-pi-4-datasheet.pdf (cit. on p. 22).
[32] Matteo Sacchetto and Leonardo Severi. Software development on Raspberry

Pi (cit. on p. 24).
[33] Pekka Jääskeläinen, Timo Viitanen, Jarmo Takala, and Heikki Berg. «HW/SW

Co-design Toolset for Customization of Exposed Datapath Processors». In:
Computing Platforms for Software-Defined Radio. 2017 (cit. on p. 24).

[34] TTA-based Co-design Environment. url: http://openasip.org/ (cit. on
p. 25).

[35] Vivado ML Overview. url: https://www.xilinx.com/products/design-
tools/vivado.html (cit. on p. 25).

[36] Audio mixing (recorded music). url: https://en.wikipedia.org/wiki/
Audio_mixing_(recorded_music) (cit. on p. 27).

[37] Mixing Music: What is Sound Mixing? url: https://online.berklee.edu/
takenote/mixing-music-what-is-sound-audio-mixing/ (cit. on p. 28).

[38] 7 Series DSP48E1 Slice - User Guide (UG479). url: https://docs.xilinx.
com/v/u/en-US/ug479_7Series_DSP48E1 (cit. on pp. 43, 44).

[39] Reverb effect. url: https://en.wikipedia.org/wiki/Reverb_effect
(cit. on pp. 47–49).

[40] Reverberation. url: https://en.wikipedia.org/wiki/Reverberation
(cit. on p. 47).

[41] Mark Kahrs and Karlheinz Brandenburg. Applications of Digital Signal Pro-
cessing to Audio and Acoustics. The Springer International Series in Engi-
neering and Computer Science. Springer US, 1998 (cit. on pp. 47, 49, 50).

[42] William Weir. «How Humans Conquered Echo». In: The Atlantic (2012). url:
https://www.theatlantic.com/entertainment/archive/2012/06/how-
humans-conquered-echo/258557/ (cit. on p. 48).

[43] Manfred R. Schroeder. «Natural Sounding Artificial Reverberation». In:
Journal of the Audio Engineering Society (1962) (cit. on p. 50).

91

https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
http://openasip.org/tta.html
http://openasip.org/tta.html
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
http://openasip.org/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://en.wikipedia.org/wiki/Audio_mixing_(recorded_music)
https://en.wikipedia.org/wiki/Audio_mixing_(recorded_music)
https://online.berklee.edu/takenote/mixing-music-what-is-sound-audio-mixing/
https://online.berklee.edu/takenote/mixing-music-what-is-sound-audio-mixing/
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
https://en.wikipedia.org/wiki/Reverb_effect
https://en.wikipedia.org/wiki/Reverberation
https://www.theatlantic.com/entertainment/archive/2012/06/how-humans-conquered-echo/258557/
https://www.theatlantic.com/entertainment/archive/2012/06/how-humans-conquered-echo/258557/

BIBLIOGRAPHY

[44] MATLAB HDL Coder. url: https://it.mathworks.com/products/hdl-
coder.html (cit. on p. 57).

92

https://it.mathworks.com/products/hdl-coder.html
https://it.mathworks.com/products/hdl-coder.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis objectives
	Thesis overview

	Networked Music Performance
	Latency perception
	History
	Current approaches
	Open challenges

	System description
	System overview
	Communication protocols
	I2S protocol
	MIDI protocol
	SPI protocol

	Audio board
	Audio processor
	Development board
	Top level design
	TTA core
	Firmware

	Raspberry Pi
	Tools
	TTA-based Co-design Environment (TCE)
	Vivado

	Mixing Function Unit
	Introduction to mixing
	Motivation
	Implementation
	Mixing algorithm
	Initial firmware
	OSAL
	Hardware implementation
	Hardware simulation
	Synthesis and implementation on FPGA

	Reverb Function Unit
	Introduction to reverb
	Acoustic reverberation
	History of reverb

	Motivation
	Implementation
	Schroeder's reverberator
	OSAL
	Hardware implementation
	Hardware simulation
	Synthesis and implementation on FPGA

	System optimizations and final results
	Memory optimization
	Latency optimization
	Top level restructuring
	Main firmware restructuring
	Final results
	Resource utilization
	Timing results
	Power consumption

	Conclusions
	Future work

	Code
	mevo_run.sh script

	Bibliography

