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Summary

Cancer is a disease that occurs when abnormal cells grow and spread uncontrollably
in the body. There are various types of cancer, each with their own unique
characteristics and treatment options. Renal cell carcinoma (RCC) is a form of
kidney cancer that can be classified into several histological subtypes. RCC is
the most common type of kidney cancer in adults, making up roughly 90% of
cases. Accurately identifying the tumor subtype is critical as treatment approaches
and prognosis may differ based on the subtype and stage of the disease. Some
of the major subtypes of RCC include clear cell carcinoma (ccRCC), papillary
(pRCC), chromophobe, oncocytoma, and others. Deep learning models, specifically
convolutional neural networks (CNNs), have shown great promise in the medical
domain for classifying, segmenting, and detecting objects in images. However, the
medical field poses unique challenges due to the lack of large and diverse datasets
like ImageNet. Self-supervised techniques have been developed to address this
issue, but most proposed methods for histopathological images do not fully exploit
the domain data property. While they utilize the different magnifications present
in whole slide images, they miss the fact that those various fields of view are
interconnected. To address this gap, we propose a new self-supervised task that
aims to interconnect different magnification levels of histopathological images. Our
proposed task requires the model to localize a tile inside a global patch, the image
representing the tile at a higher resolution is extracted from a magnification level
higher than that of the global patch. Both the higher-resolution image and the
global patch are given to the network to perform the localization pre-text task. We
present different possible formulations for this problem and compare our method
to a newly introduced state-of-the-art pretext task. Our results show that our
method performs on par or better than its counterpart and outperforms models
pre-trained on ImageNet. We also discuss the challenges faced during training and
how we handle creating and processing our dataset. Finally, for our future work,
we highlight the potential of our proposed method in a reinforcement learning
framework for the efficient processing of whole slide images. Our approach has the
potential to significantly improve the accuracy of histopathological image analysis,
which could lead to better diagnosis, prognosis, and treatment of cancer.
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Chapter 1

Introduction

1.1 RCC

The kidneys are two bean-shaped dark reddish organs playing a significant role
in our well-being by filtering blood and removing waste, along with other vital
functionalities. Epithelial tissue is one of the four basic animal tissues, and the
Proximal tubule epithelial cells are the most present cells in the kidney. Various
diseases originate from these cells, whereas renal cell carcinoma or RCC [1, 2] is
one of them. RCC is a highly malignant tumor and the most widespread type of
kidney cancer accounting for 90%, this tumor isn’t only the most common cancer
in the kidney but also the 7th most common histological type in the west (Fig
1.1a), and it is continuously increasing. Its mortality rate is considered high with
respect to its incidence rate (Fig 1.1b) as this tumor is typically asymptomatic at
the early stages for many patients, this leads to late diagnosis of the tumor where
the curability likelihood is lower.

RCC can be categorized into multiple histological sub-types, mainly clear cell
RCC forming 75% of RCC, papillary RCC accounting for 10%, and chromophobe
accounting for 5%. Some of the other sub-types include collecting duct RCC,
tubulocystic RCC, and unclassified [3]... these sub-types have different cell and
structural level histological features. hence the gold standard to classify them is
the microscopic visual assessment of Hematoxylin and Eosin (H&E) stained slides
(WSIs) performed by pathologists. The manual diagnosis of the large WSI is both
effort-requiring and time-consuming, which in some cases results in poor alignment
between pathologists [4].

The correct categorization of the tumor sub-type is of major importance as progno-
sis and treatment approaches differ based on it and the disease stage. For instance,
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medication choice differs with sub-types ( refer to [5] for more information on
treatment guidelines).

(a) World incidence ASRs for both sexes. Numbers are expressed per 100 000
people [6, 7].

(b) World mortality ASRs for both sexes. Numbers are expressed per 100 000
people [6, 7].

Figure 1.1: kidney cancer worldwide statistics
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1.2 Deep Learning
In recent years, DL networks have seen their breakthrough with the introduction
of convolutional layers and CNN, specifically, with the establishment of Alexnet
[8] in 2012 and its major classification performance boost on image-net [9] 1000
class challenge. Since then, new improvements and advances in CNN technologies
are continuously and frequently coming to light as more and more research is
carried out in the field. After Alexnet in 2012 which utilized convolutional, fully
connected, and dropout layers, deeper networks like VGG-16, and VGG-19 [10]
were developed along with the inception model family starting with Google-net [11].
However, the next major step was the invention of residual connection with Resnet
[12] in 2016, this mechanism opened the possibility for training and developing
extraordinarily deeper networks. Resnet at the time surpassed the best accuracy
records in all CV task challenges. The majority of later networks adopted the
powerful residual connection within its architecture with some of them adopting
other exceptional layers. For instance, a powerful normalization layer is batch
normalization [13] that allows faster training by minimizing the covariate shift with
its alternatives: instance [14] and layer [15] normalization... The literature of CNN
is full of technologies and architecture, whereas new cutting-edge CNN networks
are still being developed.

Figure 1.2: Algorithms that won the ImageNet Challenge in 2010–2017. The
top-5 error refers to the probability that all top-5 classifications proposed by the
algorithm for the image are wrong. The algorithms in blue are CNN. [16].

On the other hand, NLP tasks have relied primarily on RNN, a recurrent cell is a
layer that accepts two inputs. The first is the previous layer output or the model
input at instant t and the second is the hidden state at instant t-1 which resemble
the memory of the model. This network had two major problems, an exploding
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gradient and a vanishing one (short memory), a technique known as gradient
clipping can be used to overcome the exploding gradient while an alternative cell
called LSTM [17] was designed as a solution for vanishing gradient. However, the
model was still incapable of recognizing the correlation between distant inputs and
it didn’t work well with lengthy sequences until the introduction of attention and
self-attention [18, 19]. These mechanisms revolutionized NLP networks by utilizing
the transformer blocks [19], a special block built upon self-attention. Modern
models are formed following an encoder-decoder scheme to tackle sequence-to-
sequence problems achieving remarkable results on a variety of tasks including
summarization, information retrieval, translation, question answering... Due to
their great success, attention layers have been fused with CNN to form even more
sophisticated networks with millions and sometimes billions of parameters to train,
leading to data-hungry architectures.

1.3 Self Supervision
As mentioned earlier, the great success of DL gave birth to immensely deep and
complex architectures, requiring a vast amount of annotated samples to feasibly
train them in an SL scheme for handling various specific use cases. Transfer
learning is a technique that suggests the usage of previously trained networks
(weights transfer) by fine-tuning them on downstream jobs without the need for
huge data sets. The application of this method has indeed greatly decreased the
necessity of large annotations, yet, it has one condition, the availability of sizable,
general, and well-designed data sets. Luckily, image-net [9] is considered one having
such attributes, still, the best practices and required labels are strongly related
to domain and task similarity between the end-task and image-net challenge (see
Table 1.1 for more details). The fast adaptation of DL in diverse fields has pushed
new challenges on Transfer learning due to domain scarcity, hence, alternative
learning paradigms such as semi-supervised, unsupervised, and weakly supervised
learning were used to compromise transfer learning’s shortcomings.

similar domains disparate domains

abundant
annotations

all layers can be fine tuned
for exceptional performance

fine tune all the network since training
the last layers and fine tuning

the backbone head may not work well

few
annotations

train the end-part of the model
and fine-tune a few layers

the model will probably fail,
training the end-part can be tested

Table 1.1: Best practices according to data abundance and domains similarity

SSL is one of these paradigms, it encompasses the usage of artificially created
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annotations using the natural structure and meta-data of the task’s domain,
automatically generating vast data sets to be used as a pre-training step for the
network. The network is fine-tuned on the downstream job later on. SSL uses
only unlabeled data similar to unsupervised learning, however, it is different at the
learning level (objectives). Where unsupervised learning tries mainly to extract
similarities among the samples, assigning them into clusters, usually without using
feedback step (back-propagation). Though, SSL utilize artificial labels to optimize
an artificially connected objective through a supervised loss and scheme, it operates
similarly to how humans precept and solve a puzzle. The following are some of the
SSL algorithms found in the literature:

• Predicting image rotations: a pretext task aimed at estimating geometric
transformation applied on input images, in particular predicting rotation
angles [20] (Fig 1.3a).

• Patch localization: a patch is randomly selected from an input image
respecting specific rules, next, one out of eight patches surrounding it is
selected randomly and both patches are fed to the network, the objective is to
predict their relative position [21] (Fig 1.3b).

• Image colourization: an image is processed by turning it to gray-scale, this
gray-scale input is fed to an auto-encoder architecture, and the objective is to
output a colourized version that represents the original image. An MSE loss
can be used in this case [22, 23] (Fig 1.3d).

• Jigsaw puzzle: an image or a crop of it is divided in X × X grid and a tile
is taken from each cell (height and width can be the same as the cell ones),
those tiles are then randomly permuted and fed to the model, the task is to
predict the performed permutation [24] (Fig 1.3c).

all of the above are SSL algorithms that can be adopted for CV tasks. Actually, the
discriminator part of a generative adversarial network GAN [25] can be considered
as a model trained following SSL paradigm and can be later used on downstream
problems. There are other SSL techniques that were developed for sequence
problems as videos and language, following the continuous natural order of sequences
such as next word prediction [26] and shuffle & learn [27].
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(a) Predicting image rotations [20] (b) Patch localisation [21]

(c) Jigsaw puzzle [24] (d) Image colourization [23]

Figure 1.3: Some SSL algorithms. In (a) the model is trained to classify 4 different
rotation angles. In (b) the model classifies 8 relative positions, the gap between the
patches is to avoid trivial solutions. (c) shows a possible permutation for the jigsaw
puzzle, note that not all possible permutations should be taken into account so as
not to over-complicate the task, an adequate subset can be used instead. Finally
(d) presents grayscale images used for colourization and their ground truths, the
encoder architecture of the trained auto-encoder is the part used for the end task.
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Chapter 2

Related Works

Whole slide scanners are machines that allow digitized images of whole tissue slides
to be quickly produced even at microscopic resolution. They were introduced
in the 1990s and they are the main reason for the current interest in applying
ML and DL methods in Histopathology. Before the wide adaptation of DL in
the medical field, traditional ML was investigated for Histopathology focusing
on feature extraction both on the object and spatial levels (handcrafted and
domain-inspired), dimensionality reduction, and Manifold Learning... Furthermore,
their applications were directed onto segmentation and detection of histologic
primitives, tissue classification, grading, and precision medicine (papers [28, 29]
carry attentive studies on ML in digital pathology). However, the ability of CNN
to learn discriminative features directly from the raw data not requiring specialist
input from pathologists has fueled the explosion of interest in deep learning applied
to histopathology [30]. This chapter is divided into 2 sections, the first will tackle
the advancement of deep learning generally in the field with a special focus on
tumor classification, and the second will address the developed self-supervision
algorithms in a histopathologic context.

2.1 Deep Learning in Histopathology
The earliest adaptation of DL in histopathology took place with Ciresan et al. [31],
by applying CNN-based pixel-wise classifications to detect mitosis in H&E stained
breast cancer images, they were able to outperform all other contestant models
at the ICPR 2012 mitosis detection competition. their work was overthrown later
on with the introduction of faster-RCNN [32] and its adaptation in the field [33].
Nonetheless, the work of [31] was indeed the key to utilizing DL to revolutionize
digital histopathology. One major aspect to point out is the main strategies
addressing the different tasks present in this domain. The data representing
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histopathology data sets are normally WSI, they are large images that are hundreds
of megabytes or a few gigabytes in size which make feeding them directly to deep
networks impracticable (for more information regarding WSI images, please refer to
section 3.1). Instead, they are divided into patches before using them for training.
Thus, dividing data sets into two categories: heavily annotated with regional or
patch annotations, and weakly annotated having only WSIs annotations. Therefore,
the strategies adopted are based on weakly-SL or SL.

2.1.1 Supervised models in Histopathology
Histology-supervised tasks are divided into three main categories: classification,
regression, and segmentation (Fig 2.1). These categories shape the used model ar-
chitecture and training objectives. Histological segmentation focuses on identifying
and contouring histological primitives like cells, glands, and nuclei... Early works
utilized CNNs to perform pixel-wise classification, to put it another way, segmenting
an image by classifying it pixel by pixel. Kumar et al. [34] utilized a CNN to
identify nuclei, they fed the network 51 × 51 windows around the pixels to classify
them as nuclei, background, or boundary. Performing pixel-wise classification is
highly inefficient, hence segmentation techniques started adapting architectures
such as fully convolution networks [35] (FCN) and UNet [36], these architectures
can segment an entire image in one pass. Seth et al. [37] used several UNets to
segment DCIS (an early form of breast cancer), while the winner of GlaS challenge
[38] held at MCCAI 2015 used an architecture inspired by FCN to segment glands.
Recently, novel approaches started exploiting attention mechanisms for histological
segmentation [39, 40].

Similarly, the regression task objective is to localize certain objects such as nuclei
or cells, they differ with segmentation in terms of their attention to separate
overlapped ones. Deep regression models proposed in the histological literature are
based on CNN or fully connected networks, thus, exploiting simple architectures.
To leverage their performances, some authors tried to modify the output of the
network to include distance constraints or a voting mechanism in the learning
process [30].

Finally, histological classification with Deep networks has been used as an in-
termediate task for solving more complex end-task such as the segmentation of
nuclei, cells, and glands... Nonetheless, its fundamental functionalities are broader,
since classification’s main characteristic is identifying discriminative patterns in the
data to distinguish among different classes. Tumor identification and subtyping
are one of the tasks requiring the extraction of high-level discriminative features at
cell and tissue levels. while tumor identification stands for verifying its presence,
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subtyping means differentiating between a set of tumor subtypes. CNNs are the
gold standard for histopathology patch classification, they have been used in a
variety of tumor recognition tasks including lung adenocarcinoma, renal cell carci-
noma, breast cancer, and prostate cancer... In [41], the authors used Resnet-18 [12]
as their backbone to classify patches into 5 categories: lepidic, Acina, papillary,
micropapillary, and solid. They used this division to assign a grade to the tumor
later on, achieving an agreement of 66.6% with three pathologists. While [42]
adopted a 3 level-hierarchy by implementing VGG-inspired [10] networks at levels
1 and 2, the network at the first level handles dividing patches into epithelium,
stroma, and fat. The second Network operates on stroma patches by identifying
tumor-associated stroma. While the last network takes 8 feature maps according
to a selection procedure from network two and uses them to classify the WSI
into invasive cancer vs benign/normal. Ponzio et al. [43] suggested exploiting
’uncertain’ models for histological data cleaning, they deployed their model before
the classifier and proved a notable boost in performance.

The three novels SSL methods
Figure 2.1: Histopathology supervised tasks [30].

Tabibu et al. [4] focused on Deep Learning for RCC recognition and subtyping.
They implemented 2 CNNs, one for identifying cancerous patches and the other
handles classifying them as ccRCC, pRCC, and Chromophobe. However, they
argued that to overcome data imbalance, it is better to use the CNN as a feature
extractor followed by a DAG-SVM [44, 45] classifier. Xiao et al. [46] compared
deep learning networks with a combination of handcrafted features on ccRCC vs
pRCC classification. To minimize annotation cost. [47] replaced full annotations
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with minimal point ones where instead of contouring cancer’s regions, they required
only identifying them with a few points. They adopted three binary classifiers
where each of them discriminates one subtype vs non-tumor. Khoshdeli et al. [48]
demonstrated that a deep model CNN outperforms a shallow model CNN when
differentiating low-grade granular tumors from high-grade clear cell RCC [49].

2.1.2 Weakly Supervised models in Histopathology
Weak supervision entails the usage of lower-quality labels or annotations at a
higher abstraction level. These two types of labels are low-cost, fast, and efficient.
Allowing an easy and fast building of large data sets. The first type relies on
noisy or non-expert annotations, while the second is task-dependent, for example,
using solely image class labels to perform object segmentation. In a histological
context, exploring Weak supervision is recommended as coarse-grained information
is often readily available as image-level labels, e.g., cancer or non-cancer. On the
contrary, pixel-level annotations are difficult to obtain. It dramatically reduces the
annotation burden on pathologists [30].

(a) (b)

Figure 2.2: In (a) supervised learning requires identifying tumorous and normal
regions while in (b) weak supervision uses only abstracted label eg. the WSI label
(ccRCC).

multiple-instance learning (MIL) is a type of supervised learning. Instead of re-
ceiving a set of instances that are individually labeled, the learner receives a set
of labeled bags, each containing many instances. In the simple case of multiple-
instance binary classification, a bag may be labeled negative if all the instances in
it are negative. On the other hand, a bag is labeled positive if there is at least one
positive instance in it. for instance, if our task is to identify the presence of a cat.
Instead of processing an image of the class cat as a whole, the learner processes it
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as a set of tiles. Some of these tiles will have elements of a cat in them and the
rest will not, thus, creating two sets of positive and negative instances with only
the whole image label available. The learner should be able to identify the image
label by the existence or absence of positive instances. From a collection of labeled
bags, the learner tries to either induce a concept that will label individual instances
correctly or learn how to label bags without inducing the concept.

MIL was introduced as a supervised task for normal-size natural images. Nonethe-
less, it fits weak supervision for histological data in a way that seems as if it was
created specifically to address this problem in the first place. Hence, most of the lit-
erature addressing weak supervision in Histopathology used MIL [50, 51]. Hou et al.
[52] integrated a two-level training approach based on an expectation-maximization
MIL method. They proceeded with an initial classification of all instances, then
they applied a thresholding technique to filter out non-discriminative ones. The re-
maining serve as inputs to the second level. At level two, after obtaining patch-level
prediction, instead of applying max-pooling to obtain the WSI label. They feed
the predictions to a logistic regression or a support vector machine model to fuse
them. [52] applied this methodology to glioma and Non-Small-Cell Lung Carcinoma
subtyping. Jia et al. [53] adopted an FCN-like MIL model for cancerous region
segmentation within a weak supervision framework. They argued that despite the
model working well, it tends to assign positive labels, thus the positive instances
predicted by the algorithm tend to progressively outgrow the true cancerous regions.
To counter this effect, they introduced an area constraint that limits the positive
region’s expansion by exploiting an additional rough estimate of the cancer area.
This estimate should be provided by pathologists along the labels. Huang et al.
proposed an architecture (CELNet) that detects the presence of cancerous regions
and localizes them using weakly supervised data. Ilse et al. [54] addresses the issue
of pooling in MIL approaches. The pooling operation following the processing of
instances is normally predefined and not learnable. This poses an issue when the
pooling is done for the embedding of the instances instead of their predictions. To
alleviate this issue, [54] suggested using an attention mechanism.

Chen et al. [55] proceeded following [54] by exploiting vision transformers for
histopathology. However, due to the large number of patches extracted from the
WSI. It is impracticable to use them all in one sequence as neither the memory
nor speed of current GPUs can Handel processing them through a self-attention
mechanism [19]. The authors introduced a hierarchical scheme to overcome this
shortcoming. They divided the WSI into a hierarchy of patches, where a patch
at level n is defined by smaller patches at level n-1 (level 0 is the full resolution).
The first transformer (Fig 2.3 embeds the patches at the lowest level and pools
those embeddings into a single one. This embedding serves as the representation of
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the corresponding patch at the upper level. All other transformers proceed in the
same way until obtaining a WSI-level embedding, which is used for classification.
they achieve state-of-art results on BRCA subtyping, NSCLC subtyping, and RCC
subtyping.

Figure 2.3: Hierarchical transformer architecture [55].

2.2 Self-Supervision in Histopathology
Self-Supervision was introduced as a solution for annotation-hungry models in their
application domains. However, most of the major techniques were created and
tested primarily for natural images. Therefore, using these raw techniques [20,
24, 23, 21] without any modification may not produce the desired results in other
domains. For instance, in histopathology at the cellular level, objects like cells and
nuclei have symmetrical shapes with respect to rotation [20]. Additionally, the
tissue region is homogeneous, making it difficult to allocate patches or identify
their relative positions [21] using only them as the model’s input. It is simply
a problem with no definitive solution. While raw colorization [22, 23] can be
informative if tuned properly. In H&E stained images, the hematoxyline turns
the nuclei purple while the Eosin turns the rest of the tissue pink. Koohbanani1
et al. [56] developed three new methodologies for Histological data (Fig 2.4) and
compared them with standard SSL approaches on cancer classification datasets.
They developed a magnification prediction task, where a CNN is presented with
patches taken at different magnification levels and must predict their corresponding
level. The second is a task inspired by the jigsaw puzzle [24], called jigmag, where
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the network should identify the magnification ordering scheme of a sequence of
four images. Images are taken out of four different levels, stacked randomly in a
square, and fed to the model which assigns them to one of twenty-four possible
outputs. Lastly, they modified image colorization to make it more suitable for
histopathology. The modified version focuses on identifying nuclei by segmenting
hematoxylin channel pixels. The model process the RGB image and outputs a
binary mask. They compared their three pretext tasks to predefined ones such
as rotation and flipping prediction, autoencoder, and generative models on three
cancer classification datasets. They show that the newly histology-specific tasks
perform better than the standard ones by a significant margin, especially in low
annotation regimes. They also show remarkable results for histology domain
adaptation problems.

Figure 2.4: The three novel SSL methods developed by [56]

Srinidhi et al. [57] proposed a three-phase training scheme that integrates SSL,
semi-SL, and consistency learning. Their self-supervised task, called resolution
sequence prediction (RSP Fig 2.5a), is a variation of the magnification puzzle task
(jigmag) [56]. The main differences lie in two aspects: first, the inputs are processed
as a sequence of three independent images (not stacked), transforming them into
latent vectors, which are then fused to produce a prediction, while jigmag stacks
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all four images in a single input. Second, for RSP, they ensure every patch is taken
from the center of the lower resolution one. After pretraining the network with RSP,
the authors fine-tune it on the main task with the available annotations. In the last
phase, they combine consistency learning [58] and teacher-student semi-SL method
to calculate a consistency loss mixed with supervised cross-entropy loss to train the
model. Boyd et al. [59] deployed an improved version of an unsupervised learning
task known as visual field expansion and employed it as an SSL pretext task. Image
expansion is a problem that addresses creating a wider view of an existing image.
For instance, by taking a crop of an initial image, an autoencoder-inspired network
can be used to expand the crop and form the entire image. The authors’ model
leverage the adversarial autoencoder framework [60] (Fig 2.5b), and their objective
contains three losses. A reconstruction loss and two discriminator losses. The
first discriminator loss is applied at the latent space level to ensure the contextual
representation conforms to a predefined distribution Pz. While the second is at the
generated image level, where the discriminator tries to distinguish between real
and expanded images. Most of the methods discussed in the literature focus on the
importance of low and high magnifications and the various features available at
each level. However, they do not take into account the interconnection between the
patches taken from different levels across their tasks and within their objectives.
A recent task in literature by Ding et al. [61] tackled this point by designing a
pretext task where the model must understand if a magnified patch lies inside
or outside of a zoomed-out one. They found that this simple task outperforms
magnification predictions and other techniques including transfer learning. They
established their experiments on LUAD subtyping where their method outperforms
Transfer learning for acinar, papillary, and solid. While falling short for lepidic,
and nontumor. Our methodology takes a similar approach as it is based on the
concept of inter-level connectivity.
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(a) RSP [57]

(b) adversarial autoencoder [59] (c) [61]

Figure 2.5: (a) shows the overall pipeline and architecture of the RSP model and
the fusion scheme utilized. In (b), the network used for image expansion is shown,
it has encoder and decoder networks (enc, dec), a discriminator in the latent space
(Dz), and another one at the image level (Dy). While (c) shows an example of two
patches of the pretext task presented by Ding et al., in this case, the zoomed-in
patch lies inside the zoomed-out one.
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Chapter 3

Data

In this work, we are addressing a histopathological task by utilizing histology-
specific data, namely WSI. This data type has unique characteristics that need to
be considered when performing analysis and interpretation. To provide a compre-
hensive understanding, we dedicate this chapter to introducing WSI, including its
features and the tools available for managing and processing it. Additionally, we
present our dataset along with relevant statistics to provide further context. The
first section focuses on WSI, while the second section provides an overview of our
dataset.

3.1 WSI

3.1.1 From Glass Slides to WSI
The traditional way of performing diagnoses in pathology relied heavily on the
examination of glass slides. These slides are thin pieces of glass on which thin
sections of tissue samples are mounted for microscopic examination, and are typically
stained with various dyes to highlight specific structures. This allows pathologists
to make a diagnosis based on the tissue’s appearance. However, this method has
several shortcomings, including the difficulty of sharing and storing large numbers
of slides, and the potential for damage or loss over time. Digitalization of these
glass slides helps overcome these challenges by reducing the physical space required
for storage and preserving a backup of the slides in case of damage. Additionally,
it opens up the possibility of sharing data across centers and among pathologists,
enabling more effective collaboration. Digitalization also provides a more organized
way of storing multiple slides belonging to the same patient, along with notes and
observations. [62] contains a comprehensive study comparing the use of whole-
slide digital images versus traditional glass slides for the detection of common
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microscopic features, based on metrics such as time and the specific elements
detected by different pathologists.

3.1.2 Aquisition
Whole slide imaging is a procedure where the physical glass slides are transformed
into high-resolution digital images. Using a digital microscope or slide scanner, the
acquisition procedure goes as follows:

• Preparation: The tissue sample is prepared and mounted onto a glass slide.

• Scanning: The glass slide is placed on the scanner bed and scanned in a
high-resolution manner. The scanner captures multiple images of the tissue at
different magnifications, depending on the required level of detail.

• Stitching: The multiple images captured are stitched together by software to
form a single, high-resolution image of the entire tissue section.

• Quality control: The acquired image is then processed and quality-checked
to ensure that the image is of adequate quality for analysis and interpretation
(Fig 3.1).

Once the above procedure is completed, the images are stored in one of many
available formats such as TIFF, TIF, SVS, JPEG, etc... Each one of them provides
different advantages in terms of quality, compression, fast management, and storage
size...

Figure 3.1: Examples of failed WSIs considering quality control. A) Incomplete
slide scanning, B) Out of Focus image, C) Improper line stitching. D) Thick
sections with tissue cracking and folding, E) Uneven H&E Stain distribution, F)
Air bubbles on slide [63].
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3.1.3 WSI Nature

WSIs are large digital images, often consisting of tens or hundreds of thousands
of pixels. A typical image scanned at a magnification of ×40 has a resolution of
around 0.25 µm per pixel, resulting in a disk space requirement of approximately
48 megabytes (without compression) per 1-mm2 [64]. WSI can be described as
a pyramid-like structure (Fig 3.2), with the base being the highest resolution
image, accounting for the largest number of pixels. As we move up the pyramid,
intermediate representations of the tissue at different magnifications are obtained,
with increased context (tissue architecture) at the higher levels, and more details
(nuclei and cell information) at the lower levels (Fig 3.3). At the top of the pyramid
lies a full representation of the slide, known as the thumbnail. Inter-level maps
can be obtained using pooling operations, such as max pooling if needed. Due to
the continuous zooming in and out during analysis, WSI is normally accessed as
patches from different resolutions and is never accessed as a full slide. As a result,
vendors and visualization software store it in partitions and only read the necessary
ones. In the next section, we will showcase software and libraries that can be used
to manipulate these slides.

Figure 3.2: Pyramidal structure of WSI. At the top we have the lowest-resolution
image showing all the tissue, this image is referred to as a "thumbnail". Going down
we have more details while moving upward we get more context. The base of the
pyramid is the highest resolution map of the WSI taken at maximum magnification.
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Figure 3.3: multi-resolution patches

3.1.4 Software & Libraries
Whole slide imaging offers numerous advantages, resulting in the development of
various software programs for viewing, managing, and analyzing these large images.
ASAP (Automated Slide Analysis Platform) is one such powerful and flexible
tool that is designed specifically for this purpose. ASAP helps with visualization,
annotation of regions of interest ROIs, and management of WSI. The annotations
are stored in organized XML files, which makes it easier to read and modify them
for downstream ML and DL tasks. Additionally, ASAP provides some utilities for
nuclei detection and color deconvolution. Some other platforms include QuPath,
ImageScop, Aperio eSlide Manager, and Pathomation.

ASAP is built on the open-source library, Openslide , which provides methods
and functions for reading and manipulating WSI. The most noteworthy ones in-
clude the The read_region function and the Deep_Zoom_generator . The read_region
function helps to extract patches of specific sizes from any magnification level in
the WSI, while the Deep_Zoom_generator divides the WSI into a grid of tiles.

3.2 Our Data-Set
The objective of this study is to classify different subtypes of RCC, namely ccRCC,
pRCC, chromophore, and oncocytoma (Fig 3.4). Hence, the dataset consists of
patients diagnosed with one of the mentioned subtypes stored in separate folders
based on the classes. Each file is identified by a patient identifier and a WSI
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identifier. The slides were collected by pathologists at CHU Nice using H&E
staining and annotated by former students. The dataset is heterogeneous in terms
of file formats and annotations. For instance, the main format used for ccRCC and
pRCC data is SCN, and ASAP was used for annotating them. The annotation
process focuses on identifying homogeneous ROI for both tumor and non-tumor
classes such as fiber, normal cell, and necrosis (Fig 3.4), with the homogeneity
consisting of having a single class within the ROI and excluding boundary regions.
On the other hand, oncocytoma and chromophobe folders contain samples with
TIF and SVS formats, and their annotation was produced by cropping the tumor
ROI out of the slides. As a result, no non-tumor annotations are available for them.

Figure 3.4: Tumor & non-tumor classes. The first row shows all RCC subtypes
while the second one shows the non-tumorous regions of the tissue

The dataset contains a total of 91 patients diagnosed with one of the four RCC, as
shown in the table 3.1 The data is heavily imbalanced, with the majority class being
ccRCC. This imbalance is due to the actual distribution and rarity of the different
subtypes, as previously mentioned in section 1.1, ccRCC is the most prevalent
RCC (accounting for approximately 75%). The data was split on a patient level to
ensure that the model is tested on patients it has not encountered during training,
as tumor characteristics can vary between patients. Initially, the data was divided
into three sets: train, test, and validation. However, due to the low abundance
of patients with chromophobe and oncocytoma, the test set was unrepresentative
for these two subtypes, so the initial split was adjusted. The validation set was
sacrificed and replaced with a split taken at the patch level. This means that the
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dataset was first split into a train and test set on a patient level, and then after
processing the training data and transforming it into patches, the train set was
further split into a train and validation set. Although this approach solved the
previous problem, the new validation set is less representative.

Subtype Initial-Split Final-Split Total
Train Validation Test Train Test

ccRCC 36 6 14 33 23 56
pRCC 14 2 6 15 7 22
Onco 5 1 1 3 4 7
Chromo 4 1 1 3 3 6

Table 3.1: Patients division across splits and subtypes. The table shows how
patients are distributed with respect to the four subtypes and by splits’ sets both
the initial and final one.

Lastly, the time of detection of a tumor differs among patients due to RCC being
asymptomatic cancer (as discussed in Section 1.1). As a result, the growth and size
of tumors vary from patient to patient, leading to different regions of interest ROI
and instances of the tumor being found across the dataset. Table 3.2 displays some
statistics that will prove useful in defining our downsampling strategy later on

Statistic ccRCC pRCC Fiber Necrosis Normal Onco Chromo
Nb-Slides 69 36 78 26 44 18 8

Nb-Annotations 307 141 269 95 85 __ __
avg-Annotations 4.45 3.92 3.45 3.65 1.93 __ __
max-Annotations 19 9 14 23 7 __ __
min-Annotations 1 1 1 1 1 __ __

Table 3.2: Class statistics. Nb-Annotations is the total number of annotations for
the class while the remaining statistics are computed per slide
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Chapter 4

Methodology

in the following sections, we delve into our approach, motivating it with the
data underlying properties and structure, discussing possible formulations, and
presenting a detailed overview of our implementation while including the challenges
and limitations encountered. This chapter is divided into four main sections, starting
with a general introduction and motivation, followed by a detailed formulation and
an in-depth implementation, and ending with a brief overview of the pretext results
and findings.

4.1 Introduction & Motivation
The objective of self-supervised learning is to foster the development of human-like
common sense in the model through the learning and extraction of semantic and
natural features from data, regardless of their discriminative nature for a spe-
cific downstream task. This makes self-supervision methods general and reusable
across various domains. By harnessing the inherent characteristics of the data, a
well-crafted pretext task can allow the model to comprehend and identify com-
mon patterns and redundant features. Utilizing this acquired knowledge, the
model should be capable of solving the defined self-supervised task. Hence the
better the task is designed, the more information can be extracted. thus, SSL re-
search is focused on finding and designing tasks serving the aforementioned purpose.

Following our discussion, rotation prediction [20] is a task that primarily relies on
geometrical non-symmetrical features and can effectively extract object contours
to separate them from the background of the image. The outer geometry of the
object is crucial in determining the alignment and orientation of the image (Fig
4.1). This leads to a more comprehensive understanding of the object’s rotation
within the image and therefore, a better performance in the task. Image colors and
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inter-object fine details such as a cat’s eye pupil and fur play a secondary role in
solving this task. In contrast, colorization tasks [23, 22] place a higher emphasis on
object color and color transitions, utilizing color information to separate objects
from their backgrounds and map a grayscale image to its original form. Such
separation of background and object can be observed in figure 4.1. On the other
hand, localization [21] considers both geometry and color to effectively understand
high-level features within an object, identify similar regions, and learn discrimina-
tive features that distinguish between image regions while fully comprehending the
object’s structure. For instance, even if presented with just two regions, such as
a cat’s right ear and left eye (as seen in Figure 4.1), the model must understand
the symmetrical structure of the cat and accurately distinguish between its right
and left features to effectively solve the task. In addition, a jigsaw puzzle [24]
can be considered a comprehensive patch localization technique as it focuses on
determining the arrangement of all patches within a crop, not just the relationship
between two of them.

Figure 4.1: Behind pretext tasks. Useful semantics and natural features to solve
the mentioned pretext tasks.

Even though these tasks were designed with care, they were intended for natural
image problems and not histopathology. In digital pathology, tissues are often
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homogeneous at high magnification, with simple geometries, colors, and symmet-
rical structures for cells and nuclei. As a result, methods relying on geometry
fail to identify meaningful patterns. While colorization can still be effective to
some extent due to the H&E staining that separates nuclei and tissue based on
color, the intensity of color depends on the amount and type of staining material
used. Hence, simple colorization cannot function optimally. This is reflected in
the degraded performance of such methods, as demonstrated by [56]. The only
exceptions are autoencoders and GANs, as they are more adaptable to new domains.

Therefore, the proposed self-supervised task for histopathology focused on the
data nature, since designing a pretext task following only the structure is inefficient
as a result of tissue homogeneity. The foundation of WSI and histopathology lies
in the capturing of tissue at high resolution, providing multiple filed of view for
diagnosis. This is due to the availability of various information obtained from dif-
ferent viewpoints (magnifications). Thus, new tasks adapted magnification-inspired
puzzles, where inputs are extracted at different magnifications such as [56, 57, 61].
These tasks have shown improved performance compared to traditional methods.

Figure 4.2: Magnification inspired tasks VS traditional SSL. The failure of rotation
and localization to extract discriminative features for their respective tasks from a
single patch can be attributed to symmetry and basic geometric characteristics. The
magnification-inspired task takes patches from different magnifications. Although
the geometry of each patch may still be simple, it varies between them. At high
magnifications, the nuclei and cell structure play a dominant role, while tissue
architecture becomes the key factor at lower magnifications.
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Despite recent advancements in self-supervised pretext tasks for histology, such as
magnification prediction and magnification ordering [56, 57], they were limited in
one aspect. These approaches used high and low magnification to create their tasks,
but they failed to fully leverage the relationship between high and low-resolution
images. For example, they didn’t consider how small features such as nuclei and
cells, which are visible in high-resolution images, impact the topology when viewed
at a lower resolution. Pathologists don’t typically examine low and high-resolution
images in isolation. They zoom in and out while keeping in mind the information
they gathered from previous observations. Thus, the relationship between low and
high magnification is a crucial aspect that should be taken into account.

Our approach, as well as the work of Ding et al. [61] explores this relation-
ship in the underlying pretext task. Ding et al. used it in a simple manner to
answer a binary question of whether a high-resolution patch is contained within a
lower-resolution one, and their results showed that this simple task outperforms
other tasks in the literature. In contrast, our method assumes the membership
criteria are met and asks the model to locate the high-magnification patch within
the low-magnification one. Our approach leverages the capability of patch lo-
calization methods to understand the underlying image structure by adequately
adapting them to histological data. The model needs to understand both low
and high-resolution features and map them in such a way that it can comprehend
the overall connection between the two patches to perform the localization task
accurately.

The task resembles solving a complex puzzle, where instead of only giving the
pieces, a small image of the completed puzzle is also provided as a reference. In
conclusion, our method takes advantage of the WSI structure through different
magnifications while using a localization task that is based on the relationship
between the different inputs.
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Figure 4.3: Difference between our method and Ding et al.

4.2 Formulation
Suppose a WSI has N magnification levels, where 0 is the max resolution level and
N is the lowest. the width and height of the image at level t expressed as (Wt, Ht)
are correlated with those at level t − 1 as follows:

Wt−1 = 2 × Wt & Ht−1 = 2 × Ht

Thus a patch p in t can be represented as 4 non-overlapping patches in t − 1
having the same dimensions as p. Assume that we have 2 magnification levels x &
y ∈ [0 . . . N ] such that x < y. Denote by Px and Py the sets of all possible patches
extracted from the WSI at level x & y respectively with a fixed height and width. g
is a mapping function from Px to Py which maps a subset C of Px into an element
of Py (g map a high-resolution set into their corresponding representation in the
low-resolution space).

g(C) = i where C ⊂ Px & i ∈ Py (4.1)

Let px and py be two patches such that px ∈ Px, py ∈ Py, and px ∈ C where
g(C) = py. In other words, px lies inside the magnified version of py. The objective
of our model is to understand the location of the representation of px inside py

expressed as our true label ytrue :

min
θ

Loss(Fθ(px, py), ytrue) (4.2)
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where F is our model with parameters θ. So far, we have introduced a general
abstract formulation that can be applied to a variety of cases for modeling the
objective and handling inputs. In the following subsections, we will provide specific
formulations for each of these cases.

Figure 4.4: An example of px and py.

4.2.1 Fusion
First, we address the model Fθ, which comprises a convolutional neural network
for feature extraction and an end part connected to our objective (we will touch on
this in the next subsection). Hence, splitting Fθ into fw1 for the backbone and hw2
for the head: Fθ(x) = hw2 ◦ fw1(x).

Our task involves processing multiple inputs (px and py form one input sam-
ple). As such, we need to determine a fusion strategy. Fusion [65] is a well-studied
technique in the literature, often applied to samples that include multiple data
modalities (such as text and image), and involves adapting these heterogeneous
domains. Leveraging information from different modalities is crucial to effectively
perform many real-world tasks, as they provide diverse knowledge. Some examples
of these tasks include video analysis, visual question answering, analyzing medical
data, and many more. In some cases, collecting data from different modalities
can even improve the performance of single-modality tasks (such as speech under-
standing). For example, collecting vision information can help the model observe
mouth movements and improve its performance. Different types of fusion have
been investigated, including input fusion, latent space fusion, and hybrid fusion.
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Figure 4.5: Model general structure.

Input fusion

Input fusion entails fusing the input data before feeding it to the model. This can
be challenging when the data has different structures and modalities, requiring some
representation adaptations before feeding it to the network. Such adaptation steps
might result in information loss. However, in our case, the multiple inputs share
the same nature and size, so a simple input concatenation approach may suffice
to implement input fusion. Following the approach in [61], we can concatenate
the images on the channel dimension, as a result, the head hw2 stays the same
while the first convolution in our backbone fw1 changes to accommodate the new
6-channel inputs instead of the previous 3 RGB inputs. Another example of input
fusion can be seen in [56], where they stacked four patches into a single RGB image
for their Jigmag task while keeping their backbone intact.

Figure 4.6: Channel concatenation.
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Latent space fusion

Fusion can be performed after the extraction of latent vectors using either the
same backbone network or different ones. In the case of multimodal data, adequate
architectures can be used for the extraction process ( eg. attention mechanism
for text and convolution for images). After extraction, all inputs are represented
as vectors, making fusion simple with fully connected layers or more complex
functions like attention. In our case, we need our model to extract both high
and low-magnification features, so we use the same backbone for both px and py

feature extraction. This is similar to the approach used by [57] in their pretext-task
training. In this case, fw1 remains unchanged, and an additional fusion layer L is
added before hw2. Depending on the output dimension of the fusion layer, hw2 may
change or stay the same. It’s worth noting that latent space fusion only considers
high-level features and may miss correlations between low-level ones.

Figure 4.7: Latent space fusion.

Hybrid fusion

Hybrid fusion involves combining both input and latent space fusion methods
to leverage the advantages of both and overcome their shortcomings. It can
be implemented using subnetworks and aggregation operations, making it more
complex than other fusion methods. However, hybrid fusion is less relevant for
our method since input fusion does not require representation adaptation for the
inputs. As a result, there is no loss in the process.
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4.2.2 Objectives
Considering the nature of our self-supervised task, which is built upon localiza-
tion, there are two possible formulations for the objective that can be used: a
classification-based objective and a regression-based one. These formulations differ
in the following manners:

• Labels: The way labels and predictions are expressed, as a consequence, the
loss function also differs.

• Flexibility: The choice of objective can impact the flexibility in sample
generation and the dataset’s capacity for heterogeneity, as one objective may
impose more constraints than the other.

• Difficulty: The task will be more challenging to the model depending on the
objective used. The difficulty is also related to flexibility in terms of sample
heterogeneity. The more heterogeneous the data is, the harder the task.

Moving forward, we will delve into the aforementioned objectives, providing a
comprehensive overview of the points mentioned earlier.

Classification

In such an objective, py is partitioned into a grid of distinct and non-overlapping
tiles. This grid consists of 4n tiles, where n = y − x. The set representing the tiles
at level x is C (equation 4.1), and one patch is sampled from it representing our
px. ytrue is generated using the location (i, j) of the tile represented by px as:

ytrue = i × 2n + j ⇒ y ∈ {0,1,2, . . . , 4n − 1}
where i & j ∈ {0,1,2, . . . , 2n − 1}

As the problem is now a classification task, we can use the cross-entropy loss
function to measure the discrepancy between the predicted class probabilities and
the actual class labels, where equation 4.2 becomes:

min
θ

1
k

kØ
i=1

Loss(ŷi, yi) where Loss(ŷi, yi) = −
cØ

j=1
yij log(ŷij) (4.3)
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where

• yi: the true label ytrue for sample i.

• k: the number of samples.

• c: the number of classes 4n − 1.

• ŷi: the model prediction Fθ(pxi, pyi) for sample i.

In the classification formulation, the representation of labels can pose some flexibility
and difficulty. We have observed that the range of ytrue is dependent on n which is
equal to x − y. To ensure that the range of ytrue is maintained for our outputs, we
need to fix the difference between x and y. In other words, we are free to extract
patches from different levels, but the zooming difference between our two levels
must remain fixed. This results in less heterogeneous data, making the task easier,
as the size of tiles in the zoomed-out patch is fixed.

Figure 4.8: Classification formulation. In this example, n is set to 2, as a result,
py is partitioned into a grid of 4 × 4 tiles. Sampling the tile at coordinate (i=2,j=1)
as px (i and j start at 0), we obtain our label ytrue = 2 × 22 + 1. The output of
our model is then used along with ytrue to calculate the cross-entropy loss for the
training process.
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Regression

In This approach, rather than modeling py as a grid of tiles, we consider it as a
"continuous" interval of points ranging from 0 to the width or height of the image.
In such case, there are two possible methods to define C: a single element in Px

for each coordinate (i, j) representing the top left corner of a tile in py (one-to-one)
or a neighborhood for each coordinate (many-to-one), refer to figure 4.9 for more
details. Although both approaches are viable, we opt for the simpler strategy of
constructing C using the one-to-one approach. As a result, C has a size of H × W .
When py and px share the same size, the tile representing px in py should have a
size of ( w

2n , h
2n ). the true label ytrue is expressed as the coordinate (i, j).

Figure 4.9: Two strategies. A set of neighboring pixels in a high-resolution patch
gets mapped to a single pixel in its low-resolution version. This is where the two
strategies originate. Many-to-one takes into consideration all of these pixels while
one-to-one takes only one (center...).

In this formulation, utilizing the mean squared error loss may not be the optimal
approach, as tissues are typically homogeneous, and the data is artificially generated.
Causing the model to output predictions in the vicinity of the true label. However,
for some images, there may be regions that are almost identical, resulting in
incorrect predictions. To ensure a smooth training and prevent exploding gradients,
it is better to use the smoothL1 loss, as explained in [66]. To account for predictions
that are slightly inaccurate, we define a circular neighborhood around ytrue with a
radius R, and we adjust smoothL1 and represent equation 4.2 in the following way:

min
θ

1
k

kØ
i=1

smoothL1(ŷi − yi) (4.4)

in which

smoothL1(b) =

0.5( b
R

)2 if |b| < R

|b| − R + 0.5 otherwise
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where

• yi: the true label ytrue for sample i.

• k: the number of samples.

• R: is the radius, which can be considered as a hyper-parameter.

• ŷi: the model prediction Fθ(pxi, pyi) for sample i.

The Regression formulation provides more flexibility, allowing patches to be ex-
tracted from different magnification levels, while also allowing the magnification
gap between px and py to vary, which wasn’t the case with the classification ap-
proach. The latter makes the task more challenging by introducing different tile
sizes (inside py), making the data more diverse. Hence, it might be more challenging
to successfully train the network.

Figure 4.10: Regression formulation. The one-to-one strategy is used, and px is
randomly sampled from C with ytrue equal to the tile coordinate representing px in
py. The patches here are all extracted with n = 2, however, n is not constrained to
stay fixed.
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4.3 Implementation
This section will provide a detailed account of our implementation of the self-
supervised pretext task. This will include our choice of model architecture, the
creation of artificial data, and the pre-processing pipeline. We will also provide an
overview of the training process, including the challenges we encountered and the
strategies we used to overcome them.

4.3.1 Model Architecture
We opted for a simple version of the pretext task for our preliminary experiment
to evaluate its potential. Specifically, we chose to use the classification formulation
in this stage. Another important decision we had to make was whether to use
latent fusion or input fusion, both of which have been tested in previous studies
[61, 57]. In our case, since our goal is to pre-train the model and encourage it
to learn useful features from multiple magnification levels, we decided to use the
latent space fusion approach. This method constrains the model, ensuring that it
only uses high-level extracted features for the fusion process, and also allows for
easy transferability to downstream tasks.

To ensure that the model doesn’t rely on trivial solutions, we incorporate an
augmentation layer at the input stage. the trivial solutions refer to instances where
the model focuses on specific regions of the patches to solve the task, creating
shortcuts for the network. For example, the model may use border information
from the high-resolution patch to locate it inside the low-resolution one. Given that
the task is a classification problem, using such tricks could be relatively easy, since
the possible locations of the low-resolution patch are limited to a fixed number. To
address this issue, we apply random augmentations to the input images. These
augmentations force the model to consider the entire patch and prevent it from
relying on shortcuts.

Additionally, we have included an optional dropout layer after fusing the latent
vectors to mitigate over-fitting. This layer restricts the use of the fused features,
but it also causes a significant slowdown in the training process. The general
architecture of the network is illustrated in Fig. 4.11. Following this architecture,
we will now present each section in detail:

• Input: The input to the network is comprised of two images, one at low
magnification and one at high magnification, both of which share the same
dimensions. Since the fusion occurs in the latent space, the two images are fed
separately into the network. As a result, each input sample has dimensions of
(2, w, h,3).
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Figure 4.11: General architecture.

• Augmentation: As previously mentioned, augmentations are crucial for
preventing the model from relying on shortcuts. To achieve this, it is important
that the augmentations applied to the patches are randomized and varied.
However, the applied augmentations to the low-resolution patch should not be
geometrical, as this could cause confusion by altering the actual labels. On the
other hand, all types of transformations can be applied to the high-resolution
patch.

• Backbone: The feature extractor can be any CNN. Our primary choice is
VGG16 [10], Additionally, we deploy a light version of Resnet-18 [12]. However,
This version is only used to show some insights in our observations section
4.4. While all the significant results which we present later on are obtained
using VGG16. The reason behind such a decision will be explained further in
the training subsection 4.3.3.

• Concatenate: In this layer, we concatenate the latent vectors obtained from
the feature extractor, combining them into a single tensor in preparation for
the subsequent fusion layer.

• Fuse: To perform the fusion, we use a fully connected layer with a ReLU
activation function. The number of neurons in this dense layer can be adjusted
as a hyperparameter.

• Dropout: This layer is implemented to prevent the overfitting of the fused
features. Its usefulness is particularly apparent when the dense neuron number
is large. Thus, The dropout rate is usually selected according to the dense
neuron number.

35



Methodology

• Classifier: The classifier in our model is a fully connected layer with a softmax
activation function. The number of outputs in the layer is determined by the
difference between the magnification levels of the input patches x and y. For
our implementation, we set n to two (Sec.4.2.2), resulting in 16 possible values
for ytrue, thus, 16 neurons in the output layer.

VGG16

VGG [10] is a convolutional neural network (CNN) model family developed by K.
Simonyan and A. Zisserman from the University of Oxford. It includes multiple
variants, such as VGG16 and VGG19. VGG16 is a specific variant that consists
of 16 layers, including convolutional layers, pooling layers, and fully connected
layers. One of the key features of the VGG16 model is its use of small 3x3 filters
to extract features from input images, instead of larger filters commonly used in
other models. The researchers found that using multiple smaller layers instead of a
single large layer improved decision functions and allowed the network to converge
quickly. Additionally, cascading 3x3 filters in VGG16 allows for more nonlinearity
in the model. This approach also helps decrease the number of parameters, making
the model more efficient and better at combating overfitting.

layer channels kernel size stride output size parameters
input 3 —– —– 224 × 224 (224 ⇒ 112) 0

2× conv 64 3 × 3 1 224 × 224 (224 ⇒ 112) 38.7
max pool 64 3 × 3 2 112 × 112 (112 ⇒ 56) 0
2× conv 128 3 × 3 1 112 × 112 (112 ⇒ 56) 221.44
max pool 128 3 × 3 2 56 × 56 (56 ⇒ 28) 0
3× conv 256 3 × 3 1 56 × 56 (56 ⇒ 28) 1475.33
max pool 256 3 × 3 2 28 × 28 (28 ⇒ 14) 0
3× conv 512 3 × 3 1 28 × 28 (28 ⇒ 14) 5899.77
max pool 512 3 × 3 2 14 × 14 (14 ⇒ 7) 0
3× conv 512 3 × 3 1 14 × 14 (14 ⇒ 7) 7079.4
max pool
avg pool 512 3 × 3

—–
2

—–
7 × 7 (7 ⇒ 3)

1 × 1 0

Total (parameters are expressed in 103) 14714.66

Table 4.1: VGG16 backbone architecture. the red colored fields are the changes
adopted in our implementation, in general, the only changes are the input dimension
and the addition of global average pooling after the last max pooling layer.
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In the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2014,
VGG16 achieved a test accuracy of 92.7%, which made it one of the top-performing
models in the competition. Tables 4.1 and 4.2 show the network architecture in
detail.

As shown in the tables the input images were resized to 112 × 112 × 3 in or-
der to speed up the training process by reducing the number of convolutions at each
layer. While the augmentations performed include random contrast with a small
factor of 0.2 for the low-resolution patch, Random rotation with the flexibility of
around 320 degrees, Random flips both horizontal and vertical, big random crops
of size 100 × 100, resizing to the original input size, and weak contrast of factor 0.1
for the high-resolution ones. In addition, the dropout was set to 0, as the fusion
layer only contains a small number of neurons (256 neurons).

VGG16 classifier Implemented classifier

layer output parameters layer output parameters
flatten 25088 0 Concat. 1024 0
FC 4096 102760.4 FC 256 262.14
FC 4096 16777.2 dropout rate = 0 0
FC 1000 4096 FC 16 4.1

Table 4.2: VGG16 classifiers. The majority of VGG16 parameters (expressed in
103) come from the fully connected layers in its classifier. However, in our model,
this is not a major concern as we have utilized an average pooling layer. Therefore,
after concatenating both images, our combined latent vector has a total of 1024
features (512 from each image).

Light resnet

Residual networks [12] were proposed to overcome the problem of vanishing gradi-
ents in deep neural networks, which caused lower training and testing performance
in very deep architectures compared to shallower ones. Although additional useless
layers should ideally be rendered as identity mapping by the network, it was chal-
lenging to learn the identity function using standard convolutions.

Residual networks addressed this issue by introducing residual connections, which
act as shortcuts that bypass one or more layers and feed the input directly to a
later layer. Proving that such a connection allows the model to bypass unnecessary
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layers and improve performance. Unlike other works such as highway networks
[67, 68] that used gated connections with learnable parameters (inspired by LSTM
[17]), resnet connections had no parameters when the input and output channel
dimensions were the same.

Some variants of ResNet, such as ResNet-18, ResNet-50, and ResNet-101, have
been developed with different depths. For our purposes, we used ResNet-18 to
build our "light" version of the network by reducing channel sizes. Both the original
ResNet-18 and our modified version can be found in the table...

layer channels kernel size stride output size parameters
input 3 (3) —– —– 224 × 224 0 (0)
conv 64 (32) 7 × 7 2 112 × 112 9.47 (4.74)

max pool 64 (32) 3 × 3 2 56 × 56 0 (0)
4× conv 64 (32) 3 × 3 1 56 × 56 147.7 (37)

conv 128 (64) 3 × 3 2 28 × 28 73.86 (18.5)
3× conv 128 (64) 3 × 3 1 28 × 28 442.75 (110.78)

conv 256 (128) 3 × 3 2 14 × 14 295.17 (73.86)
3× conv 256 (128) 3 × 3 1 14 × 14 1770.24 (442.75)

conv 512 (256) 3 × 3 2 7 × 7 1180.16 (295.17)
3× conv 512(256) 3 × 3 1 7 × 7 7079.4 (1770.2)
avg pool 512 (256) 7 × 7 1 1 × 1 0 (0)

Total (parameters are expressed in 103) 11000 (2753)

Table 4.3: Resnet-18 Backbone. The residual connection happens every 2 convo-
lutions after the max pooling layer. While a special connection that expands the
channel size by linear transformation (1 × 1 conv) takes place when the output
and input channel dimensions aren’t the same. In red we have the light resnet
modifications leading to one-quarter of the number of parameters.

The light resnet-18 variant has only one-quarter of the parameters of the stan-
dard resnet-18, which makes it faster to train and less susceptible to overfitting.
Augmentations are applied only to the higher resolution image, including random
rotation, and horizontal and vertical flipping. The network has 1024 dense neurons
in the fusion layer, and a dropout rate of 0.5 is applied. As the number of channels
is reduced by half for each layer, the final latent vector has half its original size.
Therefore, after the concatenation layer, the network produces a vector of 512
features.
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Resnet-18 classifier Light resnet classifier

layer output parameters layer output parameters
FC 1000 512 Concat. 512 0
—– —– —– FC 1024 524.3
—– —– —– dropout rate = 0.5 0
—– —– —– FC 16 16.4

Table 4.4: Resnet-18 classifiers.

4.3.2 Data Preparation
In this section, we will present the data creation process for our pretext task,
including the steps involved in extraction and processing. Our approach to data
extraction is both random and incremental, using parallelism to ensure versatility
and efficiency in terms of memory and time. Each decision we make in the process
is carefully considered to address resource constraints and optimize resource usage
as much as possible. Through this approach, we aim to create high-quality data
that is diverse, representative, and efficient for training our model

Dataset Creation

Our data creation process is designed to be both incremental and random. The
incremental aspect allows us to run the creation script multiple times, producing
different sets that can be combined later on. The randomness comes into play when
extracting samples from a WSI, as the location is chosen randomly. This approach
helps us to avoid memory and time issues that may arise if we were to extract all
possible patches from a WSI. Additionally, it allows us to better represent the WSI
in the dataset, as samples are extracted randomly from all over the slide, rather
than following a sequence. By doing so, we can achieve a more diverse and repre-
sentative dataset, with a better balance of samples from different regions of the slide.

First, we showcase the extraction process on a slide level for which We have
5 main parameters:

• Mode: this parameter can be either set to classification or regression, rep-
resenting the formulation used. This parameter determines how the high-
resolution patch is extracted and labeled. In our case, we have set it to
classification.
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• Size: the extracted patches have a width and a height equal to the value of
this parameter, we set it to 256.

• Nb: this parameter controls the total number of samples extracted from one
WSI per run or set. We set it between two to six hundred.

• Zoom: This parameter should be fixed when creating different subsets, in
other words, it should be kept constant across the dataset when the mode is
set to classification. It controls the gap n between levels x and y. In our case,
we have set it to two, meaning that px can be one out of sixteen possible tiles.

• Deviation: To provide more versatility in terms of the field of view to our
dataset, we allow the levels from which our patches are extracted to differ
while keeping the gap parameter (zoom) constant. This is controlled by the
deviation parameter, which determines the possible levels from which the
high-resolution patch can be extracted. Specifically, x can be any value in the
range [0, 0 + deviation], and y follows it as x + zoom. In our case, we initially
set the deviation parameter to two and degrade it for later sets.

Figure 4.12: Extraction procedure. The figure above shows an example of data
extraction, illustrating how samples look when deviation and zoom are set to two,
and mode is set to classification. the numbers on the WSI indicate the magnification
levels with 0 being the max resolution/magnification.

Each of the parameters mentioned above plays a significant role in preserving time
and ensuring data correctness. Setting Nb too high can produce more samples
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but at the cost of time. The zoom parameter should be carefully set to ensure
task feasibility. The deviation parameter provides versatility, but it should be kept
small as lower magnification levels contain fewer patches and are less informative.
In fact, this is why we degrade the parameter for later sets. Figure 4.12 shows an
example of the samples extracted.

Another important consideration in the image data extraction process is iden-
tifying background patches that do not contain any tissue parts. These gray
patches are typically ignored and do not count toward the Nb parameter. High-
resolution patches are also tested for the same condition.

Each Nb sample extracted randomly from a single slide is handled with a process
out of a process pool. This means that multiple slides can be processed simulta-
neously, with the number of parallel processes being a parameter that is chosen
depending on the machine ’s capacity. Increasing the number of processes leads to
a faster and more efficient extraction process.

The use of multiprocessing is particularly useful in this case since the openside
library used to read and process the WSI files operates in I/O mode, where the files
are too large to be loaded directly into the main memory. As a result, a lot of time
is spent waiting for this operation to execute. Increasing the number of processes
from 1 to 5 can improve the speed by nearly four times due to the centralized
execution of the writing operation by the main process.

To optimize RAM usage, the extracted data is written to disk over time after
processing a specific number of slides. This also creates checkpoints in case the
process is interrupted. For example, if the process is interrupted after processing
some folders, the already processed folders can be skipped, and the extraction
continues from the last checkpoint that was correctly saved. This approach not only
optimizes RAM usage but also provides a mechanism for resuming the extraction
process in case of unexpected interruptions.

Due to randomness, running the script multiple times produces different sets
with different samples. These sets can be combined into a single dataset using an-
other script, allowing for an incremental increase in the available dataset size when
needed. Initially, sets with a deviation of 2 are created, then we reset the deviation
to 1 for the subsequent sets. After combining all the sets, we obtain a dataset
with approximately 864,000 samples. Of these samples, 172,800 are extracted from
levels (x = 2, y = 4), while the remaining 691,200 samples are extracted from lev-
els (x = 1, y = 3) and (x = 0, y = 2), with each level accounting for 345,600 samples.
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To summarise our extraction process takes place on the training WSIs in a mul-
tiprocessing fashion including a checkpoint mechanism, fixing some parameters
and varying others over time. As a result, time and memory-efficient, safe, and
incremental preparation of correct, versatile, and large artificial datasets is insured
by our framework.

Pre-processing Pipeline

Once the data has been extracted, it is saved into Numpy files for convenient
pre-processing. Our pre-processing pipeline is designed to be resource-efficient and
includes shuffling and filtering of the dataset, as well as the calculation of mean
and standard deviation values. However, during our testing, we found that training
with or without standardization resulted in equivalent performance. Therefore, we
skip this step when training the model later on.

The final step of our pre-processing pipeline involves transforming the image
files into a structure that is compatible with TensorFlow datasets. Throughout
the pipeline, we process the images as matrices of unsigned integers (uint) to
optimize our resources until the final reading of the data as a TensorFlow dataset.
This ensures that our pipeline is efficient and effective in preparing the data for
training the machine learning model. Next, we showcase the pipeline steps with
their implementation:

• Filtering: To efficiently filter and clean the extracted data, we utilize mul-
tiprocessing, where each process filters out one Numpy file at a time and
writes back the clean version. The filters used in the process make use of pixel
statistics and compare them to specific thresholds to determine whether or
not to remove a sample. One filter calculates the ratio of white or gray pixels
to the size of the image, providing an estimate of how much of the image
is background. Another filter attempts to identify color standard deviation
between pixels, as some patches may have a single color region outside of the
tissue due to dirty glass or other factors. The thresholds used for these filters
were chosen manually to ensure optimal cleaning of the dataset. We set the
thresholds for color’s standard deviation filters at 4.5 and around 50% for
white (gray) pixel filters. After applying these filters, our dataset was cleaned
and resulted in 784,495 samples.

• Shuffling: Due to the size and structure of our dataset, all the extracted
files belong to the same cancer type. To avoid memory overload, we perform
partial shuffling of the dataset using multiprocessing. Each process takes two
files at a time, concatenates them, shuffles the concatenated dataset, and splits
it into two equal parts. The shuffled parts are then written back to memory.
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Since the shuffling procedure is limited to two files, we run it multiple times
to ensure that the dataset is well-mixed.

• Splitting: To train our model effectively on our self-supervised task, we require
a metric to detect any overfitting issues and to select the best hyperparameters.
Therefore, we must create a validation dataset from our large collection of
samples. For a massive dataset such as ours, setting aside only 8% of the
data for validation and using the remaining 92% for training is sufficient. In
addition, we ensure that our validation set is representative of the training one
by employing a splitting strategy that splits the data file by file. As a result,
our split comprises 721,737 training samples and 62,758 validation samples.

• Tensorflow Dataset: Once the dataset is shuffled, filtered, split, and struc-
tured as Numpy files of appropriate sizes, we utilize the generator function of
the TensorFlow dataset API to read the data. With this API, we normalize
the pixel values to a range of 0 to 1, transform them into float32, and perform
a local shuffling of the samples. To expedite the training process, we also
employ the prefetch function. By utilizing these techniques, we optimize RAM
usage while maintaining a reasonable training time.

Finally, the obtained dataset contains samples with the following structure
[[px, py], ytrue] with [px, py] being an array with shape (2,256,256,3) which are
further rescaled 224 for Light-resnet and 112 for VGG16.

Figure 4.13: SSL data pre-processing pipeline.

4.3.3 Training
Here we discuss the main challenges we encountered while training our model
and the solutions we employed to overcome them. Additionally, we present some
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potential solutions that we did not implement but could be useful in addressing
these challenges. This section is divided into two subsections, one that focuses on
Light-resnet training, and the other addresses VGG16 training.

Light-resnet training

At the beginning of our experiments, we prepared a set of 20,000 training samples to
validate our task. The first model we tested was the standard ResNet-18, which was
able to reach 100% training accuracy. However, when we looked at the validation
accuracy, we noticed that it remained stagnant at 6%. We attempted to change
hyperparameters, but the best result we could achieve at this stage was only 12%
validation accuracy, indicating severe overfitting. Transfer learning did not improve
performance, likely because our task was significantly different from natural image
classification tasks. Both our problem domain and task nature are different, in
addition, our task even differs from localization tasks.

The main contrast between object localization and our patch localization lies
in the nature of the features required for each task. Object localization involves
identifying and extracting specific repeated patterns to enable recognition and
detection of the object. On the other hand, patches are not objects they are pieces
from an object, a background, or both combined. to locate them, one should learn a
general set of repeated features from high and low-resolution patches to understand
the probable region that contains the high-resolution patch using fusion. As a
result, the approach required to solve patch localization tasks is markedly different
from that used for standard detection tasks.

The only solution was to increase the training dataset size. Fortunately, due
to the incremental nature of our data extraction framework, this was relatively
easy to accomplish. We added an extra 100,000 samples to the training set and ran
some experiments using different hyperparameters. This resulted in a remarkable
improvement over our previous results, as shown in Figure 4.14.

However, despite this improvement, we still encountered overfitting issues rel-
atively early in the training process. To overcome this, we decided to increase the
size of our dataset even further, until it reached a total of 480,000 samples. We also
opted to use the light-resnet architecture for training, as it is both easier and faster
to train while having fewer parameters. These data were generated using the initial
split (section 3.2), in addition, light-resnet doesn’t have an ImageNet-initialized
weights [9]. Thus, we decide to use it only for insights and not for our final studies
and evaluations.
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Figure 4.14: Resnet-18 training insights. Trying different learning rates and
batch sizes on the 120,000 samples training dataset. Note that the best learning
rates obtained for each batch size in the scatter plot are used in the other graphs.

With the large dataset, The trend of increasing the learning rate for an increased
performance didn’t hold as in 4.14 due to augmentation, dropout, and the new
samples. We rerun the hyper-parameters tuning for light-resnet obtaining the
following parameters: lr= 0.0003, weight decay= 0.00001, batch= 256, using Adam
as optimizer with its default beta1 and beta2. We train the model for 200 epochs
while saving the weights with the best validation accuracy and stop the training
when performance stops improving for a certain amount of epochs. Figure 4.15
shows light-resnet training. The highest performance we reached was around 70%
validation accuracy before it degraded.

It’s important to note that all of the data used here are not part of our final
study as they were built upon the initial patient split (limited test split). Thus,
they were only explained here to show how severe overfitting is in our task and to
motivate the huge dataset size we built and described in subsection 4.3.2.
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Figure 4.15: Light-resnet training.

VGG16 training

Training VGG16 on our self-supervised task posed a number of challenges due to
the high number of parameters, large dataset, and complex nature of the task. In
this section, we will detail these challenges and describe the decisions we made to
overcome them.

• Overfitting: As previously mentioned, we encountered severe overfitting
issues when training with the light-resnet model. To address this problem, we
decided to build a much larger dataset (subsection 4.3.2) and add additional
augmentation layers such as crops and contrast.

• Slow training: To address the challenge of long training time due to the
complexity of the VGG16 network and the large dataset, we made two key
modifications. First, we rescaled the input image size from 224 × 224 to
112 × 112. This helped minimize the number of convolution operations
required during training. Secondly, we set the dropout rate to 0. As a result
of these modifications, we were able to train one epoch in approximately 15
minutes using an NVIDIA A100 GPU.

• Hyper-parameters tuning: To mitigate the challenge of long training
time and improve our search for optimal hyperparameters, we made several
adjustments to our approach. Rather than running a standard hyperparameter
tuning process on the entire dataset, we limited this step to using only a fraction
of the data. Additionally, we manually selected a set of hyperparameters to
change and carefully studied their effects to make informed decisions.
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• Learning-rate sensitivity: We observed that the training process is highly
sensitive to the value of the learning rate. In fact, there exists a small range
of learning rate values, typically between 5 × 10−5 and 10−5, where learning is
feasible and effective. Additionally, due to the low initial value of the learning
rate, the network is at risk of getting stuck in bad local optima. To mitigate
this risk, we implemented a manual warm-up [69] process by increasing the
learning rate after some epochs. This approach helped to improve the stability
of the training process and avoid getting trapped in sub-optimal solutions.

Figure 4.16: Learning rate sensitivity.

• Decaying the learning rate: In our training process, we encountered an
anomaly when decreasing the learning rate to break through a plateau. While
this method usually leads to better performance, we observed that our model’s
performance on the training set initially increased, but then gradually degraded
(Fig. 4.17a). We believe that this was caused by overfitting complex samples
(Fig. 4.17b) in our dataset, which introduced noise instead of useful knowledge.
However, the initial increase may have been due to better learning of normal
patterns. To address this issue, we considered two solutions: reducing the
weight decay when decreasing the learning rate to allow the model to fit the
data better while still having some constraints, or increasing the batch size
[70] instead of decreasing the learning rate. However, both approaches can
also increase overfitting. This was a challenging problem, as it is difficult
to automatically determine which samples are informative during dataset
generation and other factors may also be contributing to the issue.

• Forgetfulness: While this is a major issue when the model is switched to
train on a new task [71, 72], it also slightly exists when training the same task
on a large dataset [73], as the model tends to forget some of what it learned
on earlier batches when continuing with the training process. However, using
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an appropriate batch size can help mitigate this issue.

(a)

(b)

Figure 4.17: Decaying learning rate effect. In (a)m the learning rate is divided
by 10 in both light-Resnet and VGG16 after reaching a plateau. In (b), we show
some examples of hard and noisy inputs.

Aside from the solutions we have already implemented, there are other techniques
that could be utilized to further enhance and streamline the training process. For
example, cosine annealing [74], knowledge distillation [75], and curriculum learning
[76, 77, 78] are all potential methods that could be employed. Curriculum learning,
in particular, could be highly effective for our task as it involves gradually increasing
the difficulty of the training data over time which can be easily implemented in
our pretext task. By implementing this approach, we could further improve the
training process and potentially achieve even better results.
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We Train VGG16 with an initial 2 × 10−5 learning rate, a batch size of 32, and
a 10−5 weight decay, using Adam as optimizer with beta2 set to 0.999 and beta1
left unchanged. We vary this parameter later on upon reaching a plateau multiple
times except for the optimizer exclusive parameters (beta1 and beta2).

Figure 4.18: In VGG16 training, the red lines signify that some parameters have
been changed. The first change is increasing the learning rate to 10−4, while the
second change is increasing the batch size to 64.

4.4 Observations
In order to gain insights into what our model has learned and its capabilities, we
utilized interpretability methods designed for CV tasks such as Grad-CAM [79].
We provide a brief overview of Grad-CAM, its workings, and how we implemented
it for our model. Finally, we conclude this chapter with some interesting findings
that we observed.

Grad-CAM (Gradient-weighted Class Activation Mapping) is a popular inter-
pretability technique used in CNN. It is an extension of the earlier technique known
as CAM [80] (Class Activation Mapping). CAM requires the network to be fully
convolutional with only one fully connected layer acting as a classifier. It computes
the importance of different activation maps outputted by the last convolutional
layer by using the weights connected to the predicted class. Finally, it performs a
weighted sum of these maps to form a heatmap of the image with the most relevant
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regions affecting the output having the highest scores.

Grad-CAM follows a similar process, but it allows the model to have different
types of layers beyond just the convolutional ones. Rather than directly using the
weights, Grad-CAM uses the gradients to determine the importance of each feature
map. These gradients are backpropagated through the network until they reach
the last convolutional layer, where they are used as the importance weights for the
different activation maps. This approach can be used with a wider range of neural
network architectures. However, when the network has only one fully connected
layer, both CAM and Grad-CAM become equivalent.

Our network incorporates multiple fully connected layers to support a fusion
layer, thus, we built the heatmaps using grad-CAM. In our implementation, the
gradient is split into two after reaching the fusion layer, which produces a different
weight array for each input image (px and py). Finally, we rescale the heatmap to
match the input image size of 256 × 256 for better visualization.

We can observe that the process of generating heatmaps is closely related to
the size of the activation maps, which, in turn, depends on the size of the input
images. The Light-resnet architecture produces activation maps of size 7 × 7,
while the VGG16 architecture produces maps of size 3 × 3. Therefore, by utilizing
Light-resnet here, we can generate higher-resolution heatmaps that provide better
highlighting of the regions that significantly influence the model’s output.

In Figure 4.19, we observe that the model’s attention is not always focused on the
zoomed-in patch region. Instead, it often scans the entire zoomed-out patch which
helps it exclude some patches. This behavior is akin to a student omitting certain
options in a multiple-choice exam. This pattern is evident across multiple inference
instances and is sometimes accompanied by the typical behavior seen in image
classification tasks. This observation is particularly noteworthy, as it suggests that
the model has learned an exclusion rule, which is not typically observed in image
classification models that tend to focus on the entire or specific parts of the object
being classified.

To further validate our observation, we examined the weights between the fu-
sion layer and the output layer. We calculated some statistics and discovered that
the minimum weight had a larger absolute value than the maximum weight by
multiple times. Typically, in a network with the RELU activation function, active
neurons have positive values. Thus, negative weights play a role in deactivating
their corresponding output neurons. However, this behavior is not typical in image
classification networks. We showcase these statistics and compare them to the
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weights of a resnet50 trained on imagenet in table 4.5. For all networks, we show
top5(max(W )) where max is calculated with respect to the output neuron.

model 1 2 3 4 5

Resnet50 max 0.74 0.7 0.68 0.67 0.67
min -0.21 -0.2 -0.18 -0.17 -0.17

Light-resnet max 0.077 0.068 0.067 0,065 0.065
min -4.68 -4.67 -4.53 -4,5 -4.5

VGG16 max 0.0073 0.0063 0.0063 0.006 0.0051
min -0.375 -0.37 -0.368 -0.366 -0.364

Table 4.5: Weights, top5 maximum and minimum classifier weights of three
different models: Imagnet trained Resnet50 and both our self-supervised trained
networks

This chapter presented the methodology we developed for our research, motivating
it by a comparison with existing methods in the field. We provided a detailed
explanation of our formulation, implementation, and the challenges we encountered
along the way, including the solutions we adopted to overcome them. In addition,
we showcased the interesting patterns that our model learned using Grad-CAM and
further validated our approach by examining the classifier weights after opening up
the network.
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Figure 4.19: Heatmaps.
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Results

In this chapter, we will walk through the data preparation process for our Main
task of RCC subtyping. Additionally, we will present an experimental section where
we compare our pretext-task approach to both transfer learning and the method
proposed by Ding et al. [61].

5.1 Data Pre-processing
To begin with, we present our dataset annotation format, which is a crucial compo-
nent of the pre-processing pipeline. In the case of chromophobe and oncocytoma,
there exist annotation folders that include crops of the tumor regions extracted
from the WSI in the respective data folders. On the other hand, for ccRCC and
pRCC, XML files in ASAP format are used containing ROI annotations of both
tumorous and non-tumorous regions including fiber, necrosis, and normal cells.
Figure 5.1 shows an overall view of the pipeline.

1 <ASAP_Annotations>
2 <Annotations>
3 <Annotation Name= . . . Type = . . . PartOfGroup=" n e c r o s i s " Color = . . .>
4 <Coordinates>
5 <Coordinate Order=" 0 " X=" 60130.6914 " Y=" 152329.781 " />
6 . . . .
7 <Coordinate Order=" 44 " X=" 60345.6523 " Y=" 152701.078 " />
8 </ Coordinates>
9 </ Annotation>

10 . . .
11 </ Annotations>
12 </ASAP_Annotations>
13
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Figure 5.1: Main task pre-processing pipeline.

Starting with XML annotation files, Each ROI is included in a <Annotation> field,
which contains a PartOfGroup element specifying its type. The coordinates are
represented as subfields that define the boundaries of the annotation. To begin the
patch extraction process, we first extract all annotations and represent them as
a list of points along with an element that describes the type of tissue contained
within each ROI. Next, we define a box that encloses the ROI, as shown in Figure
5.1, and divides this box into a set of non-overlapping tiles measuring 1024 × 1024
at the highest resolution level. Finally, we obtain a list of square patches for each
annotation, which can be used for further analysis or processing.

We calculate the intersection area over square area ratio for each patch by deter-
mining the area of intersection between the patch and the actual annotation. When
the square patch lies completely within the actual ROI, this ratio is equal to one,
whereas when the patch is completely outside the ROI, the ratio is equal to zero.
Next, we define a threshold to filter out patches with a low intersection. Since the
area around the actual ROI is mostly homogenous with what is inside it, we set a
smooth threshold of 10-20%. This means that patches with a higher ratio than the
threshold are considered while those with a lower ratio are ignored.

For chromophobe and oncocytoma samples, we split the tumor crops directly
into a grid of non-overlapping tiles. However, there is one key difference, as the
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edge tiles may overlap with the previous ones if they are not large enough to reach
the size of 1024 × 1024. After The extraction phase, we end up with a list of tuples
containing a patch and its label.

We apply the same filtering procedure described in Section 4.3.2 to remove back-
ground elements from the list of patches. We then perform a primary downsampling
step to balance the dataset and remove excess patches. This step involves extracting
the minority class data first and determining the number of samples available for
them. We then extract a metadata file that contains the number of annotations
for each class by WSI, which we use to gain insights into the average number of
class annotations present within a file, as well as other statistics such as the total
number of files per class.

By combining these statistics with the number of samples available for the mi-
nority class, we advise an upper limit on the number of patches that can be
extracted from a single annotation. Since this is only a primary step, we use a
soft limit that allows for the total number of samples for the majority classes
to be around five times the number of available samples for the minority class.
The sampling of patches from a single annotation is not uniform and is based
on a probability distribution proportional to the intersection over square area ratios.

The list of patches extracted from a single WSI is saved and the whole process is
performed in parallel by multiple processes. When this step ends, we read the whole
dataset and rescale all the patches to 224 × 224, perform the final downsampling,
and split the data into validation and train sets (85% and 15% of data respectively
for each set).

Dividing the process into two phases allows for more flexibility in terms of how the
data is processed for downstream tasks. For instance, instead of downsampling
directly to 224 × 224, we could crop the patches into smaller ones representing
different magnification views. Thanks to the initial step of extracting the patches
with the size of 1024 × 1024, we do not need to rerun the full pipeline to perform
different processing.

Finally, for the test set, we perform data extraction in two different ways. One
approach addresses patient-level tests, and the other approach tackles patch-level
tests. For the patch-level test, the extraction procedure is aligned with the training
data extraction; however, no undersampling is needed. For the patient-level test,
we extract all patches that are not background from the WSI, regardless of whether
they belong to an ROI or not. Then, we assign the label to the patient based on a
majority voting method using the patches from that patient.
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5.2 Experiments
We conducted a comparative analysis of our proposed method against two other
approaches, transfer learning and Ding et al. [61] method, which is the closest to
our method regarding the fundamental idea. We chose to compare our method
only with Ding et al. due to the high cost of extracting data and training different
pretext tasks, and because they had already tested their method against various
other ones in the literature. To evaluate the effectiveness of our method, we con-
ducted empirical experiments on patient and patch-level for our dataset.

To train Vgg16 using Ding et al. pretext task, we started from our self-supervised
task dataset and generated data using a simple transformation. We took a tuple of
samples and decided to switch their high-resolution patch with a probability of 0.5.
If the patches were switched, both samples became negative samples, and if they
were not switched, the samples were considered positive. We trained the network
for around 50 epochs using the hyperparameters utilized by Ding et al.

Training

We Transfer the self-supervised trained networks to the downstream task of cancer
subtyping where both networks are trained in two stages. The first one act as an
initialization of the classifier weight where the models are trained for 4 epochs while
freezing their backbones. A learning rate of 10−3 is used for the first 2 epochs and
it is divided by 10 for the next 2. In the second stage, we unfreeze the backbones
and deploy a cosine warmup, which allows the learning rate to reach the maximum
value of 10−4 within 5% of the total training iterations. We train the models for 120
epochs using a batch size of 2. The best-performing models in terms of validation
accuracy are saved.

For each self-supervision task, we tested two network weight sets: the first was the
base set after pre-training the network as discussed earlier in the self-supervised
task, and the second was a fine-tuned version on the self-supervised task, which
we called "finetuned". The finetuned version was simply a fine-tuning of the base
version on the pretext task with a lower learning rate.

We experiment with two versions of ImageNet pre-trained VGG16 models. The
first version is trained with a batch size of 2 and a learning rate of 10−4. For the
second version, we freeze the entire network except for the last convolution layer
and train it with a batch size of 128 and a learning rate of 10−5. Both models
are trained for 120 epochs, the best-performing models are also saved similarly to
the self-supervised networks. All the mentioned models are trained using Adam
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optimizer with the default set of parameters and a weight decay of 10−5.

Discussion

Our study demonstrates that our model outperforms all the other models at the
patient level (Fig. 5.2), with both the finetuned and base versions performing well.
The finetuned version prioritized Onco over Chromo, achieving 3 out of 4 correct
predictions for Onco and 1 out of 3 for Chromo. Meanwhile, the base version was
fairer towards Chromo, achieving 2 out of 4 correct predictions for Onco and 2
out of 3 for Chromo. Both versions shared one Chromo patient wrongly predicted
as ccRCC and one Onco patient wrongly predicted as pRCC. Considering pRCC,
both versions correctly predicted all 7 patients. However, for ccRCC, the base
version outperformed the finetuned version with one patient, as the latter had one
additionally misclassified patient as pRCC.

On the other hand, the finetuned version of Ding et al.’s initialized network
outperformed the base one, especially with respect to the ccRCC class, with only
one patient difference. Both versions had 2 correctly classified Onco, 1 correctly
classified Chromo, and all 7 pRCC correctly classified. Once again, the addition-
ally misclassified ccRCC in the base version was wrongly assigned to pRCC. The
finetuned version had 7 wrong predictions, compared to 8 wrong predictions for
the base one, while our base version had only 5 wrong predictions.

Finally, the transfer learning trained networks ranked last, with the unfrozen
version performing poorly, with 11 misclassifications. The highest misclassification
rate was for ccRCC, where 7 patients were assigned to pRCC, 1 pRCC patient was
assigned to Onco, and 1 Onco patient was wrongly assigned to pRCC. Chromo
had only 1 correct prediction. However, the frozen version performed better with
9 misclassifications, most of them coming from ccRCC. This time, only 3 were
misclassified as pRCC while the rest of the mispredictions accounting for 3 were
assigned to Onco. This version is considered the best, in terms of Onco and Chromo
predictions, achieving 3 out of 4 correct Onco predictions and 2 out of 3 accurate
Chromo predictions. Lastly, it had only one pRCC patient misclassified as ccRCC.

In our patch-level analysis, we present the per-class recalls and macro F1 scores for
each model. We chose these metrics due to the unbalanced nature of our dataset.
Although balanced accuracy is another option, it only considers recall, whereas
the F1 score takes both recall and precision into account. AUC score is another
alternative, which we will mention in the following section, along with the model
that achieved the highest score. Overall, we present our results in terms of the F1
score as our primary metric.
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Table 5.1 clearly demonstrates that our method outperforms both Ding et al.
and transfer learning, achieving an impressive F1 score of 0.865. What’s more,
our model achieves the highest balanced accuracy and AUC of 0.876 and 0.983,
respectively. When it comes to per-class recalls, our technique excels in identifying
chromo, onco, and ccRCC, achieving the highest recall scores for these classes
(0.987, 0.873, and 0.873, respectively). Notably, the no-freeze version of the transfer
learning model achieved the second-highest recall score for onco, with a score of
0.76, but this still represents a 10% gap from our fine-tuned technique.

Ding et al.’s method achieved the highest per-class recall for non-tumor and pRCC
with values of 0.946 and 0.877, respectively. Although this method performs well
for pRCC and ccRCC, it performs poorly for onco, having the lowest recall of
approximately 0.53.

In addition, it is worth noting that the frozen version of Transfer learning at-
tained the lowest F1 score of 0.76, while the unfrozen version achieved a score of
0.835, ranking it second. This is contrary to the results obtained for each version
at the patient level where the frozen version outperformed the unfrozen one.

In summary, our model achieves impressive results on both patch and patient
levels, outperforming both the Ding et al. method and transfer learning. Our
model exhibits the highest F1 score, balanced accuracy, and AUC score, with a
per-class recall that excels in identifying chromo, onco, and ccRCC. Additionally,
our model achieved the lowest cross-entropy loss, indicating high confidence in its
classifications. Overall, our results demonstrate the effectiveness of our method in
accurately classifying renal cell carcinoma subtypes.

Table 5.1: Patch level results.

models Non-Tumor ccRCC pRCC Chromo Onco F1 score

TL Freeze 0.873 0.755 0.866 0.86 0.66 0.76
No freeze 0.94 0.815 0.851 0.85 0.767 0.835

[61] Finetuned 0.927 0.856 0.877 0.945 0.532 0.817
Base 0.946 0.821 0.87 0.846 0.535 0.795

Ours Finetuned 0.929 0.846 0.82 0.912 0.873 0.865
Base 0.934 0.873 0.767 0.987 0.666 0.835
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Figure 5.2: Patient level results
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Chapter 6

Conclusion and Future Work

Our project aims to address the critical task of subtyping Renal cell carcinoma,
which is a significant and prevalent cancer worldwide. Specifically, we focus on the
four major subtypes: ccRCC, pRCC, Chromophore, and oncocytoma. Accurate
categorization of these subtypes is crucial for effective prognosis and treatment.
The task is approached using deep learning techniques, and we highlight a major
challenge posed by the scarcity of training data due to the high cost of annotating
whole slide images and the rarity of some subtypes.

To overcome this issue, we propose a novel pretext task based on self-supervised
learning that leverages the interconnection between high and low-resolution patches.
Our method involves a localization-driven task where the model is presented with
low and high-resolution patches, with the high-resolution patch being located inside
the lower-resolution one. The model must use features from both resolutions to
accurately localize the magnified patch within the global view.

We constructed a large-scale artificial dataset, carefully documenting each step and
rationale behind our decisions. We utilized this dataset to train a Vgg16 network
on our proposed pretext task and transferred the learned weights to compare
against the weights of a Vgg16 network trained using Ding et al.’s method and an
Imagenet initialized network. Our evaluation focused on the downstream task of
RCC subtyping, where we demonstrate that our self-supervised learning approach
outperforms transfer learning and achieves similar or better results than Ding et
al.’s method, and in some cases, surpasses it.

Additionally, we provide insights into the training process and decision-making
of the networks trained on our pretext task, highlighting possible challenges and
strategies to overcome them. While we only implemented a straightforward and
easy version of our pretext task, we presented two possible formulations, including
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a regression-based formulation and a classification-based one. In our future work,
we plan to investigate the regression-based formulation, which aligns more naturally
with localization-based objectives.

Another noteworthy aspect is the nature of our pretext task, it does not only
involves capturing the relationship between high and low magnifications but is
also more effectively solved by zooming in on specific regions in the low-resolution
patch. Hence we introduce another interesting part of our future work.

"pathologist zooms in and out into each region, where the tissue is examined
at high to low resolution to obtain the details of individual cells and their sur-
roundings" [57]. To emulate this process, an ideal framework would be able to
dynamically zoom in and out of WSIs, capturing a sequence of images that can be
processed to make a final decision about the cancer subtype present in the WSI.
This framework would enable a more comprehensive and accurate analysis of the
tissue samples.

A complex framework utilizing Reinforcement Learning (RL) can be employed to
implement this approach. The agent’s actions can include zooming in or out, as well
as moving up, down, left, and right, culminating in a final decision output which
represents the 4-class classification in our case. This framework works on WSI
level meaning that fewer training samples are available while the model complexity
is higher. However, in the best-case scenario, a working model following this
methodology is efficient, scalable, and better interpretable.

On the other hand, the nature of our pretext task accommodates well such a frame-
work where the network’s decision becomes the location of the high-magnification
patch. This allows for even more challenging samples with larger zoom gaps,
unlocking the full potential of our proposed self-supervised pretext task. Exploring
the potential of RL for cancer subtyping and developing more sophisticated RL
algorithms tailored to this task could be a breakthrough in WSI analysis and cancer
subtyping making it a key element of our future work.
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