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Summary

We developed a new artificial intelligence that takes into consideration hidden
and external information when playing games. Our aim is to show how AIs
can improve their performances by using hidden information, that would
normally require complex human deduction to normally exploit.

Modern game AIs often rely on clear and curated data, deterministic in-
formation and overall accurate numbers to make their calculations, however
there are a lot of games that involve pieces of information that are incom-
plete or hidden. Incomplete information can be extremely helpful to an AI,
but it requires additional care when taken into consideration because it’s
usually based on statistical analysis and heuristics. Our focus is set on a
few innovative computational intelligence techniques that aim at improving
the efficiency of hidden information-based AIs, by allowing them to explore
non-deterministic scenarios:

1. The Double Inverted Index is an algorithm that can be used in hidden
information games, such as card games, to narrow the great possibilities
and scenarios to calculate down to a reasonable number. This approach
is based on how humans would think in similar situation.

2. The Blunder Threshold is a technique that helps the AI navigating prob-
abilistic scenarios balancing the pros and cons of deeper analysis and
uncertain information.

We’ll explore different parameters and options for the previously mentioned
techniques and show their efficacy in practice with a focus on the chosen test
game Hearthstone.
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Chapter 1

Introduction

Artificial intelligence is an ever growing field in computer science, with new
techniques and algorithms getting developed every day. With such an influx
of innovation it’s important to consider all the possibility available when try-
ing to push the boundaries of what AIs can perform.
Our aim is to show how AIs can improve their performances by exploiting
hidden information in a way that would normally require complex human
deduction.
Additionally we want to explore how these hidden information can be ex-
ploited, focusing on the trade off between effectiveness and computational
complexity, ultimately looking for the best improvement at the lowest cost
possible.

1.1 Artificial intelligence and games
In the field of artificial intelligence observing and understating the behaviour
displayed by the machine can be daunting and complicated. In order to
simplify the problem researchers have in the past adopted simpler systems
that are easier to represent and understand; included in this group there are
games. Games have many peculiarities that make them an ideal starting step
from which one can construct and analyze an AI:

• Games have a simple rule set that can be easily represented in a data
structure, making it understandable by the computer.

• Games have a clear and easily identifiable objective, making it simple to
evaluate the result gathered by an AI.

9



1 – Introduction

• Games are a traditional hallmark for intelligence, meaning they histori-
cally are an interesting target for study.

• Games can be a good model for real world competitive or cooperative
activities, which makes the results applicable to other fields.

10



Chapter 2

Background

2.1 Game categories
Games can be categorized in many classes depending on their rules. The
main features to be aware of are:

1. Deterministic vs probabilistic.

2. Perfect information vs imperfect information.

3. Turn-based vs real-time.

4. Zero sum vs non-zero sum.

5. Competitive vs cooperative.

6. Single player vs multiplayer.

The first feature describes whether a game involves chance or is completely
deterministic from start to finish.
The second feature is related to the information included in the game: in
perfect information games all the player have access to the same pieces of
information, while the term imperfect, or hidden, information is used for
games where the information isn’t completely available to all the players.
The third feature differentiates games based on the timing the players are
allowed to play, whether they alternate in turns or the play freely.
The fourth feature is about the outcome of the game and whether the sum
of all players’ result adds to zero or not.
Competitive vs cooperative is a spectrum that describes the objective of the
game and whether the players are put up against one other or if it’s in their
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2 – Background

best interest to cooperate.
The sixth and final aspect of a game is the number of player.

Here are a few examples of famous games described using their features:
Chess: deterministic perfect information turn-based zero sum competitive
game with 2 players.

Figure 2.1. Chess board

Poker: probabilistic imperfect information turn based zero-sum competi-
tive multiplayer.
Hanabi: probabilistic imperfect information turn-based non-zero sum coop-
erative multiplayer.
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2.2 – Computational intelligence techniques

Figure 2.2. Board game Hanabi

Solitaire: probabilistic imperfect information turn-based zero sum single
player.
Hide and seek: probabilistic imperfect information real time zero sum mul-
tiplayer.

2.2 Computational intelligence techniques
Despite the multitude of games and categories they fill, the most common
type of games are competitive 2 players turn-based games. In theese kind
of games AIs can use a particular kind of search called Adversarial Search.
When deciding on a move to make in a game, adversarial search is the pro-
cess of, not only consider all available options given to the player, but also
extend the horizon of observation to the possible moves available to the op-
ponent. Ideally this process can be repeated over and over evaluating the
consequences of a single move many turns in the future.
Adversarial search can be a very powerful tool, however it works best in very
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2 – Background

particular situations:

• Adversarial search gives the best results when applied to deterministic
games, where the AI doesn’t have to keep track of probabilistic results
or base its calculations on chance.

• Adversarial search is limited to simple use cases with a limited and
ideally small number of options. This is because the higher is the number
of possibilities, the quicker the decision tree constructed using theese
choices will grow, making the problem computationally unfeasible.

While the complexity of the problem is a limiting factor, there are advanced
techniques that can help reducing its impact on the efficiency of the adversar-
ial search: theese mainly boil down to pruning the decision tree by discarding
obvious bad decisions or not exploring uninteresting branches using heuristics
based on the game rules.

2.2.1 MinMax
The simplest example of an adversarial search algorithm is MinMax, first
invented by John von Neumann. MinMax creates a complete decision tree
aiming to minimizing the loss, looking for the best worst scenario. Here are
the steps used by MinMax:

1. Create a decision tree starting from the starting position and exploring
all possible moves from the current player.

2. Repeat the process from each new node of the tree until all nodes left
are terminal node (end game positions in which no more moves can be
played)

3. Evaluate each terminal position by giving it a positive score if the player
who won was the starting player, or a negative score if the other player
won.

4. Work your way backwards from the terminal nodes giving each node
you find a score depending on who is the player who’s about to make
a move in the position described by the node: select the highest score
achieved by the children of the node if the starting player is about to
move, otherwise select the lowest score.

14
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5. At the end of the process the root of the decision tree, that describes the
current position, should have an evaluation that is represents the best
possible result if both players play their respective best moves from now
until the end of the game.

Figure 2.3. MinMax tree

2.2.2 Stochastic search and Montecarlo Tree Search
Sometimes it’s impossible to use deterministic techniques to study and ana-
lyze all possible moves, be it because the number of possibilities and the depth
of the game are too high to completely study them, or because the games is
probabilistic and therefore involves chance. To help in theese scenarios, it’s
possible to use Stochastic search techniques, which can’t guarantee to find
the best absolute option, but can lead to very good results within time and
computational constraints. An example of a stochastic search algoritm is the
Montecarlo Tree Search(MTCS): The focus of MCTS is on the analysis of the
most promising moves, expanding the search tree based on random sampling
of the search space. The application of Monte Carlo tree search in games is
based on many playouts. In each playout, the game is played out to the very
end by selecting moves at random. The final game result of each playout is
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then used to weight the nodes in the game tree so that better nodes are more
likely to be chosen in future playouts.

The most basic way to use playouts is to apply the same number of play-
outs after each legal move of the current player, then choose the move which
led to the most victories. The efficiency of this method often increases with
time as more playouts are assigned to the moves that have frequently resulted
in the current player’s victory according to previous playouts. Each round
of Monte Carlo tree search consists of four steps:

• Selection: Start from root R and select successive child nodes until a leaf
node L is reached. The root is the current game state and a leaf is any
node that has a potential child from which no simulation (playout) has
yet been initiated. The section below says more about a way of biasing
choice of child nodes that lets the game tree expand towards the most
promising moves, which is the essence of Monte Carlo tree search.

• Expansion: Unless L ends the game decisively (e.g. win/loss/draw) for
either player, create one (or more) child nodes and choose node C from
one of them. Child nodes are any valid moves from the game position
defined by L.

• Simulation: Complete one random playout from node C. This step is
sometimes also called playout or rollout. A playout may be as simple as
choosing uniform random moves until the game is decided (for example
in chess, the game is won, lost, or drawn).

• Back-propagation: Use the result of the playout to update information
in the nodes on the path from C to R.

Figure 2.4. Montecarlo tree search tree

16



2.3 – Obstacles of probabilistic and hidden information games

2.3 Obstacles of probabilistic and hidden in-
formation games

The space of AIs for probabilistic and hidden information games is large and
not very well explored; this is because it’s more complicated to code agents
when working in non-deterministic environments.

2.3.1 Probabilistic games
The first and most obvious problem of probabilistic games is the complexity
of the task and the time and computational resources required to tackle it.
Most algorithms suited to deal with deterministic problems tend to analyze
all possible options, in order to locate the best outcome reachable, in proba-
bilistic games, however, every time an event is determined by chance (rolling
a dice or like drawing a card from a deck) the algorithm has 2 options:

1. Cover all possible outcomes.

2. Simulate the event.

The first option requires the algorithm to take all possible outcomes into con-
sideration and expand the decision tree using all the new states and children
of the one previously under study. Depending on how often probabilistic
events occur, the decision tree can grow extremely fast and large, making
reaching a solution computationally unfeasible. The second option is a trade
off between results and complexity. The algorithm simulates a random result
of the probabilistic event and takes that as the deterministic outcome of the
event, continuing the computation from there. This method is bias towards
the simulated outcome, regardless of whether that’s positive or negative for
the AI; in order to correct this some algorithms simulate the event multiple
times averaging the results. In this way the result obtained isn’t perfect, but
it can be very close to one and it can be obtained with limited resources.

2.3.2 Hidden information games
When developing AIs for hidden information games, some of the challenges
are similar to probabilistic games: for example every time a player could
make a move based on hidden information, that decision can look random
from outside and therefor can be handled as such. A good example of a
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hidden information game that can be tackled this way is poker: During a
hand of poker no player is aware of the cards in other players hands, but this
lack of information can be substituted with simulation. It’s fairly trivial for
an AI to calculate the range of possible hands that it can beat or the ones
that would win against it, making it possible to stipulate a strategy based
on probability calculation and decide if and how much to bet on any given
hand. Stronger poker AIs also incorporate their opponents behaviour in the
evaluation of the hand, based on optimal play patterns, to extrapolate even
more information hidden to them. Sometimes however, it’s impossible, or
at least impractical, to represent hidden information as probabilistic events,
be it because the chance of each outcome is too complicated to calculate or
there are simply too many possibilities to keep track of. Probably the most
famous genre of games that uses hidden information to the point of making
it impossible to calculate all possible situation are collectible card games.

2.4 Hearthstone as a case study
Hearthstone is a digital collectible card game developed by Activision Bliz-
zard in 2014. Compared to other similar games, Hearthstone is considered to
be simpler thanks to a few key features, the main one being that the players
alternate playing in turns, but are not allowed to play cards outside of their
turns.
Because of this simpler nature and the focus on progressive strategical play
rather than timely responses, as well as the availability of resources to simu-
late the game, Hearthstone has been the go-to game for many studies about
AI in card games.

2.4.1 Rules
The aim of a game of Hearthstone is to reduce the opponent’s life total to
0, starting from a total of 30. At the start of a Hearthstone the game each
player has 3 or 4 cards in their hand, depending on whether they are the
starting player or not, the the players alternate in turns. During each of
their turn a player:

• Draws a card.

• Gains a mana crystal.

• Can play one or more cards.

18



2.4 – Hearthstone as a case study

• Can attack one or more minions.

• Can activate their hero power.

Mana crystals are used to play cards: each card has a cost and in order to
play it the player has to exhaust as many crystals as the cost; theese crystals
will be refilled at the start of the next turn, while at the same time the player
will gain a new one. Each player starts their first turn with one mana crystal
and can’t have more than ten at the same time. In Hearthstone cards can
be one of three type:

• Minion

• Spell

• Weapon

Minions have a mana cost, an attack and a defense. From the turn after
the one when it was summoned a minion can be used to attack, when attack-
ing a minion can attack a minion controlled by the opponent or attack the
opponent life total directly. If a minion attacks the opponent, their life total
is reduce by an amount equal to the minion attack, otherwise when attack-
ing a minion both minion get their defense reduced by the other minion’s
attack, if a minion’s defense ever goes at or below 0 the minion is destroyed.
A player can control at most 7 minions at the same time.

Figure 2.5. An example of Hearthstone minions

Some times minions have effects and keyword that modify their behaviour.
A few examples are:

• Battlecry: the minion has an effects that activates when played, this
effect changes from minion to minion.

19
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• Deathrattle: The minion has an effect when destroyed.

• Charge: the minion can attack even on the turn it was summoned.

• Taunt: minions controlled by the opponent can only attack minions with
taunt as long as at least one of them is on the board.

• Lifesteal: when attacking this minion heals its controller for the same
amount of damage it deals.

Spells have a cost and effect. Spells can have many different effects, ranging
from drawing cards to dealing damage, from destroying minions to reviving
dead ones.

Figure 2.6. Examples of Hearthstone spells

Weapons have a cost, an attack and a durability stat. When a player plays a
weapon it gets equipped to the player, each player can hold a single weapon
at the time, if a player is already holding a weapon when playing a new one
the first one is destroyed. While holding a weapon a player can attack as if
they were a minion, using the attack of the weapon as attack and their health
as defense; for each attack performed this way the durability of the weapon
gets reduced by one, if it ever reaches 0 or below, the weapon is destroyed.

20



2.4 – Hearthstone as a case study

Figure 2.7. An example of Hearthstone weapons

When playing a game of Hearthstone, each player plays as one of over 9
heroes and each hero has their own hero power. Hero powers cost 2 mana
and can be activated once each turn. Hero powers usually have less impact
than minions and spells, but are meant to be used often. Some effects of
hero powers are:

Figure 2.8. Examples of Hearthstone hero powers

2.4.2 Strategies
Hearthstone is a complex game and as such it’s possible to choose between
many strategies, depending on the deck and the hero that the player decides
to use. While strategy can be a very complicated topic, the main axis on
which each deck is constructed is how aggressive and proactive its strategy
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is versus how calculated and reactive. The more aggressive deck, also known
as "aggro", tend to play cheaply costed minion with a lot of attack, but not
that much defense, they aim at winning the game as quickly as possible by
attacking the opponent and ignoring their minions before the opponent can
catch up with more expensive and powerful cards. On the other hand of
the spectrum there are "control" deck, that aim to slow down the pace of
the game with defensive minions and spells, while the keep their health high
with healing effects, if they’re successful they then try and close the game
with very expensive cards that are hard to contest. In between aggro and
control it’s possible to find many different decks that are generally grouped
together and the name of "mid-range"; in this kind of decks the player is
looking to gradually get in a more and more advantageous position by being
flexible and adapt during the game. When deciding on what strategy to use,
it’s important to consider that some are more complicated to play, with the
complexity being vaguely correlated with the length of the game that each
strategy aims to reach (this is because in longer games it’s easier to commit
a mistake), as well as what strategy one is expecting to play against, this is
because each strategy tends to perform better against some and worse against
others: aggro is traditionally favored against control, since it can overpower
them in the early turns and close the game out before the control deck can
strike back; on the other hand mid-range performs better against aggro than
it does against control, since it’s better equipped to deal with aggression, but
struggles to keep up with control in the later parts of the game.

Figure 2.9. Strategic match-up chart
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2.4 – Hearthstone as a case study

2.4.3 Sabberstone
With Hearthstone being a digital card game, it is easy to implement sim-
ulators that allow AIs to play at the game by interfacing with APIs. An
additional feature of such simulators is that two AIs facing each other can
play as fast as they can and don’t have to be restrained by UI or other parts
of the game that are essential for humans, but only slow down digital players;
this is very important when testing the efficiency of an agent, as it’s necessary
to reach a high enough number of games meet statistical relevancy. Sabber-
stone is an open source Hearthstone simulator developed in C# and intended
to be used as a research tool for artificial intelligence for Hearthstone.
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Chapter 3

Proposed approach

When attempting to develop an AI for a game as complex as Hearthstone,
it’s necessary to implement creative solutions on top of structured and well
documented algorithms. The first step is to start from an AI that ignores
hidden information all together and build the new logic on top of it step by
step.

3.1 Algorithms and agents
MCTS is perfectly suitable as a search algorithm for games like Hearthstone,
but the granularity of the search, the depth of the tree and the evaluation of
each move can be adjusted to obtain different results. During each turn the
player is tasked to make multiple decisions, considering which move to make
and the order they’re made in. With this in mind, the player should consider
all of their options at the start of their turn, when they’ve just drawn a new
card and when the opponent is not allowed to play until their next turn.
From here the agent should consider what its next move will be, with an eye
to what the rest of his option would be after the best one is picked and how
would these affect each other in the evaluation.

3.1.1 Montecarlo tree search
At the beginning of the turn the agent will perform a MCTS and analyze the
position, considering all available options as the children of the root node,
pick the best move it finds, considering the next followups as well as the
immediate gain. Each move after the first will follow a similar paradigm,
except they’ll start from the newly found game state, allowing for a more
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3 – Proposed approach

in-depth analysis of the branch taken. This means that instead of blindly
following the hypothetical line of move that the first MCTS found when
choosing the first move, each move will be studied in details an perhaps
improved in quality.

3.1.2 Depth of the tree
The depth of the tree is also a key parameter to be considered. Due to time
and computations constraints, the tree has to have a limited depth, however
depending on the scope of the search, this limitation can be of very little
impact. Logically the tree should stop when finding a terminal situation
and the ideal position to label as terminal is when the current turn ends.
This is the ideal situation, because, after ending the turn, the player looses
control of the choices made from now until their next turn, making additional
calculations much less valuable; coincidentally ending the turn is always an
option in Hearthstone, because it’s up to the player to declare the end of their
turn by pressing the "end turn" button when done playing. In order to limit
the tree’s depth and therefore confine the analyzable space of possibilities by
the algorithm, without impairing on it’s ability to select the best options,
one only needs to label all nodes where the agent selected "end turn" as its
option.

3.1.3 Evaluation methods
Once the structure of the tree is decided, each node needs a value that esti-
mates how good or bad a certain position is and to reach this value the AI
needs an evaluation method. Evaluating a position in a game of Hearthstone
is very complicated and deceptive, due to the high amount of hidden infor-
mation, however it’s possible to get a practical evaluation of the board state
with some simple heuristics. An evaluation based on heuristics will be biased
towards one or more aspects of the game, mainly because it’s based on the
comprehension of the analysis of the game by the programmer who codes
the evaluator. The most straight forward method of evaluating a position
using heuristics is to add up all the various factors that compose a game-
state and weight them depending on their importance; for instance one could
sum all of the minions attack and defense and subtract the one controlled by
the opponent, add the current player’s health, but divide this value by 2, to
signal that it’s not as important as minions’ statistics, and so on. A lot of
parameters can be factor in during this calculations:
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• Minion defense.

• Minion attack.

• Number of minions.

• Health of players.

• Mana crystals available.

• Cards in hand of players.

• Abilities of minions in play.

Lastly all of theese can be added linearly or they can be standardised, de-
pending on the desired result. The only way to reach the best result with
this kind of approach is to test multiple sets of parameters and compare the
result of both the evaluator and the relative MCTS.

3.1.4 Hidden information
The last step in developing a good AI for Hearthstone is to consider hidden
information and to do this it’s possible to take inspiration in how humans
play the game. While hidden information is as hidden to humans as it is for
an AI, human players can gather information and recognize patterns from
game to game and use this knowledge to make educated guess about the
hidden pieces of information. The knowledge players accumulate between
games is called meta-game knowledge, from the Greek root meta- which
means beyond. Meta-game knowledge can take many forms, depending on
the skill of the player, from understating the opponent’s strategy from the
very first few turns and adjusting accordingly, to expect a specific card in
the opponent’s deck and playing around it by never leaving a good opening
for that. This last case is an incredibly important skill for expert level play
and it can drastically influence a game by limiting a player’s options without
expending too many resources. In order to acquire this skill, one has to
understand the connections between cards and and figure out what hidden
cards go with the one the opponent already played.

3.2 Inverted index
An inverted index is a database index used in computer science that stores a
mapping from content, such as words or numbers, to their places in a table,
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a document, or a series of documents. It is also known as a postings list,
postings file, or inverted file. An inverted index’s goal is to speed up full-text
searches at the expense of more processing time whenever a new document is
added to the database. It is the most widely used data format in document
retrieval systems and is widely used in search engines.
An inverted index has a few qualities that make it desirable for a Hearthstone
AI. first is its speed: an inverted index is generally quick but it’s slow to
update; luckily the construction and update of such an index happens only
using meta-knowledge and therefore in between games, which means that the
downside is negligible. The second reason an inverted index works perfectly
for this kind of game is that it perfectly describes the kind of information
the AI is looking for, which is the relations between the cards contained in
a deck and the deck itself, intended as the collection of cards as well as the
general strategy of said deck. In order to reach the best performance the
AI should not only understand what deck it’s facing, but also consider the
cards that compose it, this way it can play around them and offer the lowest
amount of opportunities to the opponent.

3.2.1 Double inverted index
Starting from a list of popular decks, constructed by either collecting data
from games or observing the meta-game from outside, the first step to con-
struct the ideal data structure is to create an inverted index that uses the
cards as entries to look for possible decks in which it is played. At this point,
during a game, the algorithm could look up every file that contains one of the
possible decks that the opponent could be playing, restricting the list with
every card played, however this process is slow by itself, as the IO of open-
ing files can be slow. The solution to this process is to modify the previous
inverted index by translating each deck as a list of the card it contains.

Figure 3.1. Double inverted index building process

28



3.2 – Inverted index

The end product of this last step is an inverted index that uses cards as key
and returns a list of cards that are played with that card in one or more deck
and for each card played by the opponent it’s possible to intersect each list
obtained with the index, slowly getting closer and closer to the opponent’s
deck list.

Figure 3.2. Double inverted index end result

Sometimes the meta-game information gathered isn’t perfect or the oppo-
nent could be playing an unknown or sub optimal deck, which could contain
cards that aren’t in the inverted index; this could throw off the algorithm.
There are many ways to solve this issue, each one with up and downsides:

• Ignore all impossible information: when a new cards would make the
set of possible cards that the opponent could have in the deck empty,
the AI discards the last card. This is the simplest method and it can
return an optimal behaviour, however it performs the best only when the
unpredictable card that the opponent played is the one getting discarded.

• Ignore the least likely information: when the nth card would create an
empty set, the algorithm tests all possible n-1 sets that all the cards
played thus far would make and keeps only the biggest one. This ap-
proach has a better chance than the one before to exclude the least
popular card, meaning the inverted index can still perform well, how-
ever the calculation can be slow, the result isn’t guaranteed and it might
be necessary to repeat the process if the first choice wasn’t correct.

• Produce multiple indexes: when a card would create an empty set, the
algorithm splits the index in multiple n-1 indexes and keeps going on all
non-empty one. This approach is guaranteed to exclude the least popu-
lar card, however the process is extremely slow and using the information
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obtained by this set of indexes is complicated and computationally ex-
haustive.

Often times the Ignore all impossible information gives acceptable re-
sults while requiring by far the lowest overhead, however the other approaches
are valuable when working without constraint.

3.3 Incorporating hidden information in MCTS
Using an inverted index to extract meta-game information isn’t enough for
the AI to understand it or use it in any significant way, the next step is to
connect the possible cards the opponent could be playing to the MCTS.
Once the AI has access to the cards the opponent could play, it could use
them to simulate what the opponent could do, if their hand contained a
random set of cards obtained from the inverted index. This isn’t perfect in
therms of result, as the information is still speculative and the amount of
cards is usually going to be quite high, but with this new simulation it’s now
possible to move the end of the tree from the end of the turn to any arbitrary
point, whether that’s during the opponent next turn or during any other turn
after. Simulating the opponent turn has a few issues that how and when the
information gathered from this simulation can be used:

1. Due to how the mana crystal system work, each node in the tree tends
to have less options as the previous one; when a turn starts, however,
all mana crystals are refilled and the number of options grows back up.
This means that for each turn considered in a single MCTS calculation,
the tree grows much larger and quickly becomes unusable.

2. Each time the AI simulates a new game-state based on a card in the op-
ponent hand, the new state is only hypothetical and has a good chance
of not actually happen. The more information is drawn from hypothet-
ical positions, the higher is the chance of reaching unrealistic situation
that have a very low chance of happening and tend to just increase the
error of the algorithm without actually providing useful insight.

Both previous points show that the meta-game information isn’t suited to
drastically increase the depth of analysis of a position, and that not all new
results are to be considered useful.

30



3.3 – Incorporating hidden information in MCTS

3.3.1 Blunder Threshold
A blunder is a mistake make out of carelessness and, in games, it can be the
difference between winning and loosing. In Hearthstone blunders can take
many forms, from playing a spell on the wrong card, to attacking a minion
instead of the opponent when there’s a chance of killing them, however the
most common kind of blunder is when playing a card when the opponent
has a clear answer that makes the first card nearly useless. This last kind
of blunders is directly linked to the card from the opponent hand and it
can be detect by just simulating the card being played; in other words this
kind of mistake can be avoided by considering the opponent options without
analysing all of their possibilities in detail.
A blunder threshold is a value used to consider if a move can be a blunder,
given the correct cards in the opponent hand. When using MCTS, a blunder
can be detected when the evaluation of a position drastically drops. While
a drop is inevitable when simulating a move for the opponent, since they’re
trying to improve their position, sharp and sudden drops are usually con-
nected with important and avoidable mistakes. Deciding if and when taking
the information gathered from meta-game knowledge depends on many fac-
tors, for example game loosing mistakes should be avoided at all costs, but
the chance of the opponent having the correct counter-move is also impor-
tant, sometimes it’s better to commit to a risky play, knowing the chance of
blundering isn’t zero, but still reasonably low, instead of making a safer play,
that will often result in a weaker state most of the time. Lastly not all value
are suitable blunder thresholds, that’s because the opponent might have a
good move, regardless of what the AI does, meaning it should play its best
move and ignore the blunder.

Figure 3.3. Snippet of the code implementation of a blunder threshold

To properly use the Blunder Threshold, the AI should evaluate each ter-
minal position it reaches as normal, however, instead of using this evaluation
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as the value for the node, it should continue the search, until it reaches the
new terminal position (set by constraints instead of logical end-of-turn). Af-
ter reaching the new terminal state it should calculate the new evaluation
and use it if it’s lower than the original by at a value equal or greater than
the threshold, identifying a possible blunder and signaling to the rest of the
tree.

3.3.2 Strategy-based BT
It would be impossible to determine the most optimal value for a blunder
threshold, because the gravity of a blunder, compared to the risk of the oppo-
nent having a countermove, is constantly changing during a game, increasing
and decreasing depending on many factors, such as duration of the game,
what cards have been played and how the game has generally been going,
but also parameters that are impossible to quantify, such as the opponent
play style and skill level; on the other hand a static, supposed to catch all
the important blunders, while discarding possible risk that are worth taking,
can be determined with sufficient testing, assuming a tolerable error.
The static approach, however simple, can be improved by gathering absolute
information from the game state. The most obvious factor that affects what
constitutes a blunder, and the blunder threshold as a consequence, is the
deck the AI is playing. Since the deck content, before getting shuffled before
starting the game, is a known information for the player, the AI can adjust
the blunder threshold to better suit the deck and its supposed strategy, for
example:

• An aggressive deck is supposed to take high-risk high-reward bets, giving
the opponent an advantage on the board, while reducing their health to
0 as quickly as possible. Aggro decks should use a blunder threshold
that reflects this kind of pattern and detect blunder only when their
very serious.

• A control deck has to play a slow, but calculated, game, where the
opponent will inevitably gain some advantage and it’s important to not
over commit, while keeping the phase of the game slow. Control decks
perform better with a blunder threshold near the middle, where they
don’t panic over every great play the opponent can make, but can still
realize when the game is slipping away and react accordingly.

• Midrange decks play the best with a very low blunder threshold, that’s
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because their strategy involves getting small advantages at every pos-
sibility and any slip up could lead to a defeat. Since adaptability is
midrange’s best weapon, a higher caution around making mistakes is
very helpful.

By basing the blunder threshold on the strategy of the deck, it possible to
alter the value before starting the game, working with a static value, that is
easier to test and nudge towards the optimal value, with the added benefit
of using a more tuned threshold.

3.4 Single step simulation

After highlighting how to use meta-game knowledge to improve the AI re-
sults, it’s necessary to show how theese data structures actually take form
inside the MCTS. When reaching a "end of turn" action in the tree, the agent
should start to simulate moves from the opponent, using the inverted index
to determine the cards in hand; in practice, however, the index returns a list
of possible cards and it’s up to the AI to exhaust all the interesting combina-
tion that could compose the opponent hand and start simulating from there.
In addition to the increasing complexity that multiple combination of cards
can create, the number of possible options is very large, due to the newly
refilled mana crystals, meaning that expanding the tree from this point on is
very expensive. In order to work within time and computational complexity
constrains the best node where to stop the expansion is close to the "end of
turn" one, ideally the one right after that. The proposed approach is to run
the MCTS as usual, but instead of stopping at the end of turn, the AI should
create a random hand of cards, taken from the ones returned by the reverse
index, and simulate all of the options once; at the end of the process the AI
should consider the best option found for the opponent and check if the gap
between the evaluation of that state and the one of the "end of turn" state is
higher than the blunder threshold, then adjust the evaluation of the previous
state when necessary, before continuing with the normal MCTS algorithm.
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Figure 3.4. Single step simulation flowchart

Because the AI is only simulating one node after the end of the turn,
it can skip checking all the combination possible, since it will never check
what happens when playing more than a card, this drastically reduces the
complexity of the tree. With a single step, the AI can detect very obvious
mistakes that it would normally be blind to, such as playing a minion that
can be easily destroyed with an attack or filling the board with minions when
the opponent has access to spells that can kill multiple at the same time. A
downside of single step simulation is that the AI is blind to possible two
or more cards combination that can turn the tide of the game, luckily this
kind of combination aren’t very common and, sometimes, the first card of
a combination can be enough to point at a possible blunder and suggest a
different sequence of actions.

3.4.1 Testing the AI

In order to find the best parameters for the AI, as well as to best understand
the behaviour of it, it’s necessary to have an adequate testing environment,
with conditions that become gradually more complicated and highlight what
works and what doesn’t.
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Complete information

The first step in testing any strategy based on hidden information is to check
if this kind of information is even helpful. To do so we decided to do is to
have the AI play against other AIs while having perfect information of the
opponent hand, this way, if the AI that uses the cards in the opponent hand
performs better than an identical counterpart that doesn’t use this kind of
information, we can say that the strategy has the potential to work, since, if
every guess it makes on the opponent hand is correct, than it will perform
like in this test. The results obtained in this phase aren’t strict proof that
the strategy and the parameters being tested will return a strong AI, but this
step is necessary to understand which strategy don’t have chance of working,
for any reason whatsoever.

Deck knowledge

After a strategy has proven that it has potential, the next step is to test
whether the inverted index, and consequentially the uncertainty of what cards
the opponent is holding in hand, is a limiting factor or not. The best way to
test the performance of the AI when having to guess the cards in the opponent
is to fill the inverted index database with a single deck, that is exactly the
one the opponent is playing, this way the AI will never get confused about
possible other decks or cards that don’t have a chance of actually appearing
in the game. During this test the AI is bound to get worse, or at best
keep the same results as before, because every time it starts analysing the
opponent’s options it has to try all possible cards in their deck, devolving
more time than before at this activity, therefore spending less time expanding
the MCTS and exploiting the results. This is the first phase where the AI
actually uses hidden information to make decisions, however, despite the
cards in hand being unknown, the AI should always take into consideration
all the possible next move by the opponent, since it will try all of them.

Meta-game knowledge

If a set of parameters still gives acceptable results after the previous phase,
then it becomes the subject of the most complex set of tests, that closely
resemble an actual competition: the database of the inverted index is filled
with all the popular decks found using meta-game knowledge, and then the
AI is put up against a multitude of opponents with different parameters. The
database should contains enough decks that the inverted index can’t be used
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to find the opponent exactly deck with just a few cards, but if the deck is
contained in the database, the AI will eventually know what cards it’s up
against, slowly returning to a case similar to the one in the previous phase.

Figure 3.5. Games in each testing phase include all possible games
in the previous phases

This last phase should show if the AI is performing accordingly to expec-
tation in an environment that is very complex, but is also realistic.

3.4.2 Multiple steps simulation
A different approach from single step simulation can be taken: instead of try-
ing all possible one-move options, the AI can simulated a random hand and
test it for a higher amount of step before evaluating the new position. This
new approach, called Multiple Steps simulation (MSS), needs to be repeated
a predetermined amount of time and then return the maximum evaluation
found; this way the algorithm can scout ahead for the opponent’s possible
counter-plays, gaining insight and depth in the analysis, in exchange for the
certainty of having tested all of the possibilities. In alternative the evaluation
can be based off of an average calculated from all the simulations; this type
of evaluation is more indicative of the average quality of options the oppo-
nent has rather than specifically looking fro blunders, therefore the blunder
threshold might need to be adjusted to better respond to the different kind

36



3.4 – Single step simulation

of input. Multiple steps simulation has a chance of uncovering information
that single step simulation could never find, however the number of iteration
that the algorithm has to go through to find sufficient information, without
it being misleading, is very high. Because of this multiple steps simulation
is better used in situation where time and memory aren’t a factor, or where
the limits aren’t very restricting.
MSS comes with a few risks that need to be taken into consideration, the
main one being that some options might get overlooked. When the algo-
rithm composes a random hand some cards, or combination of cards, will
inevitably be tested more than others and sometimes when testing multiple
moves at the time, the end result might not be as valuable as one found in
between the steps taken to get there, meaning that taking random options
could result in a worse evaluation for the opponent than one found earlier,
hiding possible blunders behind random simulation. In addition to options
being overlooked, the blunder threshold value needs to be reconsidered, be-
cause the change in evaluation can be more drastic than the one experienced
with single step simulation and also because the likelihood of a simulated
event actually happening is quite low and gets lower and lower the deeper
the analysis goes.
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Chapter 4

Experimental results

In order to prove the theory behind the efficiency of the inverted index and the
effectiveness of the blunder threshold, we decided to test them by simulating
games between different AIs and record their results.

4.1 Agents
The starting process involved selecting an agent that doesn’t use meta-game
knowledge upon which building all the data structures and algorithms that
we’re interested in. We started the testing process with 5 different agents:

• The first 3 agents were all different MCTS agents, that varied for a few
parameters: tree policy, selection policy and estimator policy. Some
were choosing the path to follow based on the best results, others based
on the average of the visits, some where exploring new nodes at random,
others were focusing on the ones that yield the better results, some were
calculating estimation linearly, others by attenuating each member of it
by performing a square root.

• The forth agent was a greedy agent: a greedy agent is more focused
on exploiting the best solution it found thus far, rather than exploring
multiple promising lines. Greedy agents are usually quicker, but often
times get stuck in sub-optimal solutions.

• The last agent was an experimental agent, that could change its param-
eters during the game based off of the classes of the two players, as well
as how the game was going.
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All five agents were based on the same MCTS algorithm, however the differ-
ent approaches made them excel at different things. We made all the agents
play against each other testing the performance of everyone keeping track of
all the different match-ups.
Here are the results:

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 65% 16.2% 76.2% 52.6%

As Mid-range 83.7% 51.3% 75% 70%
As Aggro 22.5% 27.5% 62.5% 37.5%
Overall 57% 31.7% 71.2% 53.4%

Table 4.1. Results for the MCTS1 agent

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 55% 12.5% 77.5% 48.3%

As Mid-range 85% 47.5% 78.8% 70,4%
As Aggro 25% 25% 51.3% 33.8%
Overall 55% 38.3% 63.4% 52.2%

Table 4.2. Results for the MCTS2 agent

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 46.3% 20% 88.8% 51.7%

As Mid-range 83.8% 56.3% 81.3% 73.8%
As Aggro 27.5% 23.8% 57.5% 36.3%
Overall 52.5% 33.3% 75.9% 53.9%

Table 4.3. Results for the MCTS3 agent

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 61.3% 12.5% 73.8% 49.2%

As Mid-range 83.8% 47.5% 76.3% 69.2%
As Aggro 21.3% 20% 30% 23.7%
Overall 55.5% 26.7% 60% 47.4%

Table 4.4. Results for the Greedy agent
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Winrate vs Control vs Mid-range vs Aggro Overall
As Control 22.5% 16.3% 78.8% 39.2%

As Mid-range 86.3% 47.5% 75% 69.6%
As Aggro 8.8% 17.5% 48.8% 25%
Overall 39.2% 27.1% 57.9% 41.4%

Table 4.5. Results for the experimental agent

If we take a closer look at the results, it’s easy to spot 2 agents that per-
fromed better then the rest while still being quite comparable between each
other: MCTS1 and MCTS3. Comparing the results of these two best per-
formers shows that MCTS3 has the overall best winrate, but it comes mainly
from its outstanding pefrormance when piloting the mid-range deck, while
MCTS1 has is just .5% behind in terms of overall winrate, but has a more
balanced winrate distribution. In the end we decided to use MCTS1 as the
base for the new AI since it’s the agent that shows a better understanding
of the game overall and therefore provided the highest potential for improve-
ment.
MCTS1 has the following characteristics:

• Calculates its best move based on the average of the results of the visit
of each node.ù

• Preferred expanding nodes based on promising results rather than choos-
ing at random.

• Calculated the evaluation of each position using a linear algorithm.

4.2 Testing process
To test the AIs in the best way possible, we provided them 3 different decks,
each with a different strategy; this way we could see how each agent would
perform in the whole spectrum and we had them play each other on a long
series of games.
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4.2.1 The decks

The first deck is an aggressive shaman
deck that aims at flooding the board
with cheap and aggressive creatures
and lower the opponent hp to 0 as
quickly as possible.

Figure 4.1. Aggro Shaman decklist
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Figure 4.2. Control Warrior decklist

The second deck is a control deck
that uses the warrior as its class.
Thanks to he’s hero power, that
grants him more health, and the

efficient removal spell at he’s
disposal, the warrior is well suited at

withstanding the opponent aggression
and reach the later part of the game,

where he can play strong and
potentially game ending minions, of

which the deck is filled.
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The third and last deck is a mid-range
hunter deck. This deck plays many
efficient minions, most of which have
powerful effects upon death, such as
summoning other smaller minions or
dealing damage, this way the hunter
can gain small value by attacking the
enemy minion even when he looses
some. The deck also plays some ex-
pensive spells and strong minions that
can help closing a game out.

Figure 4.3. Mid-range Hunter decklist
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4.2.2 The tournament
To see how each agent would perform, we put them against each other in a
long series of game called tournament. In order to witness the proficiency
of the agent in piloting a specific deck we decided to divide each tournament
in two part:

• The first part is dedicated to see the ability of the AI in playing a given
deck. During this phase we provided the same deck to both players and
let them play in a double round Robin1, with each player playing both
as the first player and the second one. This phase was repeated 3 times,
one for each deck provided, and for each deck we ran ten double round
Robin.

• The second part of the tournament is spent investigating how the AI
performs when its strategy is different from the one of the opponent.
During this phase we made each AI play all other AIs with all possible
match-ups that haven’t been tested yet, meaning excluding warrior vs
warrior, shaman vs shaman and hunter vs hunter, bot has the player
going first and the player going second. We repeated this process a total
of ten times.

4.3 Complete information results
The first step in testing a set of parameters is check whether on not they are
promising. To do so we took the best performing AI, it being MCTS1, and
implemented the part of the code responsible for the single step simulation.
After that we tested its performance against MCTS1 itself while having both
play with complete knowledge of what cards each player held in hand. We
decided to use static blunder thresholds based on the strategy the AI was
playing. After a few test, where the AI played against itself, we landed on:

• 0.5 when playing control: a fairly high value, still sensible to blunders,
but it allowing small hypothetical mistakes.

1A round Robin involves each player playing against each other player, so that everyone
plays everyone. A double round Robin is composed of 2 round Robin back to back and
it’s usually preferred to a single round Robin in games that have 2 sides with different
advantages
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• 0.0 when playing mid-range: the test showed that, when playing mid-
range, always listening to the opponent simulation, rather than stopping
at the end of the turn, lead to the best results.

• 0.8 when playing aggro: the threshold used for aggro is by far the highest
in value, this is because when playing aggro the AI often had to take
risks in order to win the game.

4.3.1 One vs one
Here are the result of the 2 player tournament between MCTS1 and Hid-
den Information, where the latter is the new AI: The results are really

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 60% 30% 70% 53.3%

As Mid-range 80% 55% 70% 68.3%
As Aggro 25% 25% 70% 40%
Overall 55% 36.6% 70% 54%

Table 4.6. Results for the one vs one tournament with complete information

interesting and show important patters:

• In all the mirror matches, control vs control, mid-range vs mid-range
and aggro vs aggro, Hidden Information (HI) has a winrate above 50%,
meaning it improved from MCTS, which was the version we used to
decide HI’s parameters.

• Mid-range is performing above all the other decks. This could be because
of many factors: the deck might be stronger than the other two, it might
be easier to play or it might be more resilient to mistakes.

• Aggro is the worst deck between the 3. Regardless of who play the deck,
it usually comes out as the looser, the only difference is when Hi plays
aggro vs aggro, where the new agent seems to play better on average.

Overall HI has a winrate higher than 50%, with high peaks in specific match-
ups, therefore we decided to move forward and test the AI in a more varied
field.
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4.3.2 Complete Tournament
The next test was checking weather HI playing against different opponents,
opponents that didn’t share the same decision making method, would show
worse results.
All of the following data has been extracted from a tournament against all 5
of the agent tested, using all three decks and giving the AI full information
about the cards in hand. We only included the games played by HI. Com-

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 64% 22% 76% 54%

As Mid-range 83% 60% 80% 74.3%
As Aggro 33% 24% 49% 35.3%
Overall 60% 35.3% 68.3% 54.6%

Table 4.7. Results for the complete tournament with complete information

paring theese results with the previous ones we can see that the AI performs
similarly regardless of the opponent, with a few exceptions:

• The AI’s winrate when playing aggro vs aggro plummeted from a high
70% to slightly less than 50%, this could be because the other agents
are more proficient at playing aggro in general, as it also shows when
looking at the overall winrate vs Aggro.

• HI’s worst match-up is now control vs mid-range, in which control is
usually favourite. This result however is more indicative of how well all
the AIs play the mid-range deck and how strong the deck itself is, rather
than HI’s ability to pilot a control deck; we arrived at this conclusion by
observing the overall winrate as control, that went up rather than down
despite the bad match-up.

• Despite the few places where the winrate went down, most winrate went
up. This fact reinforces the fact MCTS1 was already a strong candidate
and that HI’s parameters usually perform better than the rest of the
field.

With a consistent winrate, although with some shaky match-ups, HI shows
it can be a promising AI.
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4.4 Deck knowledge results
The next step in testing is observing HI’s performance when it has to actually
use hidden information. We implemented the inverted index algorithm and
we loaded it with just the 3 decks in the testing pool. Thanks to the class
system in Hearthstone the algorithm can narrow the decks down to just one
at the start of the game.

4.4.1 One vs one
As we did in the step before, we started by testing Hi’s performance against
the base agent from which its parameters were taken.
Here are the results: As it was to be expected, the results in this phase show

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 60% 20% 80% 53.3%

As Mid-range 75% 45% 80% 66.6%
As Aggro 20% 45% 45% 36.3%
Overall 51.6% 36.6% 68.3% 52.6%

Table 4.8. Results for the one vs one tournament with deck information

a worse performance, compared to the one where the AI had perfect complete
information.
A few takeaways from this test are:

• The main winrate drop is registered when playing against Control, this
is due to two different reasons: the first one is that when playing against
Control it can be very beneficial to know exactly when the opponent has
access to powerful spells that can easily clear the board and reset any
advantage gained, now with incomplete information the AI has to play
around theese scary spell the whole game, resulting in a worse perfor-
mance. The second one is related to the length of the game: Control
decks tend to hold many cards in hand and prolong the game as much as
possible, this means that it usually reach a high number of mana crystals
and can therefore play a larger pool of cards. This high number of pos-
sible cards tends to require longer simulations, slowing down the main
MCTS algorithm and reducing its efficiency due to time constraints.
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4.4 – Deck knowledge results

• HI’s Aggro vs Mid-range match-up significantly improved, despite still
not edging a winrate higher than 50%. This shows how volatile and
unpredictable the match-up can be but also how well the AI can play it,
especially when considering it has an 80% when playing from the other
side.

• Mid-range’s winrate lowered a little. This was to be expected, as this
deck is the one that most benefits from having complete information and
is allowed to squeeze as much advantage from each move.

With a winrate barely over 50%, we still consider Hi as a small improvement
over MCTS1, regardless of the performance getting worse, as this result was
expected.

4.4.2 Complete Tournament
Not unlike the complete information phase, we put HI’s newest iteration
in a tournament against all the other agents. We expected the results to
show a slight performance loss, compared to the complete tournament ran in
the previous phase. Here are the results: As predicted, the overall winrate

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 57% 16% 69% 47.3%

As Mid-range 84% 54% 82% 73.3%
As Aggro 27% 28% 51% 35.3%
Overall 56% 32.6% 67.3% 52%

Table 4.9. Results for the complete tournament with deck information

lowered a little, with some match-ups being particularly notable:

• Control vs Mid-range is steadily in decline with each test. While the rest
of the control match-up are still well above 50%, mid-range still proves
to be in favor of the mid-range deck. It’s important also to note that
HI performs very well when playing the opposite side, which means it is
still ate least on par with the rest of the agents.

• Piggybacking off of the previous point, control has a winrate below 50%.
While some variance is still in effect, it’s important to note that HI isn’t
always the favorite when playing the control deck.
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• The Mid-range mirror match is back in favour of the new AI, even tho
it’s lower than the previous complete tournament. This result once again
enforces the fact that hidden information are less reliable than complete
knowledge, but being able to use them gives the new agent an advantage.

HI’s performance at the end of this last tournament show marginal improve-
ments over its original MCTS1 form, however its sligtly positive winrate,
as well as its proficiency in playing the mid-range deck mean it’s still an
interesting test subject.

4.5 Meta-game Knowledge results
The last step in testing the new AI is to simulate an almost random environ-
ment, where the only information it has is a list of popular decks. This last
test is the most important, as it resembles how actual competition would
work. Before starting we predicted that the performance recorded would
lower once again, however the difference between this and the previous phase
should be lower than the one between the previous two, mainly because the
inverted index should be able in most cases to narrow down the possible
decks very quickly, falling back to the previous test case.

4.5.1 One vs one
We loaded over 100 decks in the inverted index and asked HI and MCTS1 to
play a full tournament against each other.
Here are the results: The results are unsurprisingly similar to the ones from

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 55% 20% 75% 50%

As Mid-range 80% 60% 85% 75%
As Aggro 20% 35% 40% 31.6%
Overall 51.6% 38.3% 66.6% 52.2%

Table 4.10. Results for the one vs one tournament with meta-game information

the previous phase:

• Mid-range keeps performing the best, with a very high winrate, but HI
keeps showing a solid winrate even when playing against it. This shows
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4.5 – Meta-game Knowledge results

that the approach has improved HI performance when playing Mid-range
as well as a small edge when playing against it.

• Control sits at a flat 50% winrate, meaning the new hidden informa-
tion didn’t change much in the way the AI plays control decks. HI wins
slightly more than MCTS1 does when playing Control, however the dif-
ference is so slim that we can probably safely say that this approach
didn’t change much.

• Similarly to Control, the Aggro result don’t show major upgrades, while
overall the AI preforms better than the opponent, the advantage is small
even on a large number of games.

With the one vs one test going more or less as expected, we expected HI to
settle on similar performances against the rest of the field.

4.5.2 Complete Tournament
The very last part of the test was to take HI’s latest set up and put it against
all the agents we started from.
Here are the results: As predicted, the result are very similar to the one from

Winrate vs Control vs Mid-range vs Aggro Overall
As Control 53% 13% 83% 49.6%

As Mid-range 81% 55% 76% 70.6%
As Aggro 32% 29% 60% 40.3%
Overall 55.3% 32.3% 73% 53.6%

Table 4.11. Results for the complete tournament with meta-game information

the last phase:
• HI’s winrate is overall higher than 50%.

• The average winrate combining playing as and against a certain deck
are all above 50%.

• The only few outliers are the exceptionally low winrate as Control vs
Mid-range and the surprising rise in Aggro winrate. The first is symptom
of how much the Control deck rely on the hidden information to evaluate
when to commit to a play and when not to, the second shows again how
the AI is just playing better than most other agents.
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The results gathered with this last tournament show that HI has in fact im-
proved, being able to outperform the same AI from which it was constructed
as well as maintaining an edge over the rest of the AIs.

4.6 Comparing results
After gathering the final results for the new agent, it’s worth comparing them
with the ones gathered in table 4.2 and assess the newest data. By looking
at HI’s overall winrate, when playing a specific deck, we can see that new
agent improved when playing aggro, became slightly better at playing mid-
range, and became a little worse at playing control. Overall the HI’s winrate
is higher than its predecessor, signaling that the approach taken has had a
positive impact on the agent, even if it could still use some fine tuning to
counteract the negative impact it has when playing control. It’s also worth
noting that the starting point from which we gathered the results for HI differ
slightly from the one of MCTS1: the new agent had to face all 5 other AIs,
while MCTS1 only played against 4, as it did not play against itself, and,
with MCTS1 being one of the best performers, therefore HI played against
stronger opponents on average, naturally pushing its results lower. With this
new consideration in mind, as well as the fact that MCTS1 was the agent
with the best results, when playing against control, HI’s results are even
more impressive.

4.7 Multiple steps simulation results
During the development of HI using single step simulation we decided to
study the results of a multiple step simulation agent to see if we could exploit
the theoretically more promising algorithm. The first test we ran involved
the new agent (MSS) playing with complete information against MCTS1.
MSS used the same blunder threshold as HI, with the main difference be-
ing that instead of testing all possible options from the opponent once, it
would simulate 1000 random sequences of options that all ended with the
"end turn" action and use the best result as the opponent simulation. The
results showed by MSS were very poor, the AI couldn’t surpass 5% winrate
when playing against its own carbon copy with perfect information, even
when given ten times as much time to process information, to circumvent
the high computational cost that the algorithm has. Multiple steps simula-
tion remains an interesting algorithm that has a high chance of outperforming
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4.7 – Multiple steps simulation results

single step simulation, however finding the right parameters and calibrating
all variables to extract such a result will require a lot of testing. Because of
theese considerations we decided to scrap the AI and continue on the more
concrete approach.
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Chapter 5

Conclusions

• When speaking about AI in games, hidden information is a wildly un-
explored space, that can yield very interesting result, but one requires
an unorthodox approach to it.

• We showed that textbook AI algorithms can improve their performances
when coupled with well thought heuristics as well as sufficient testing,
balanced between exploring new options and exploiting the most promis-
ing ones.

• The results gathered from the performance of the newly developed Hid-
den Information agent clearly prove that the approach we took has po-
tential and can increase an agent’s result.

• The Blunder Threshold is an effective method of detecting possible mis-
takes and works well with the way AIs approach a game. Even a simple
approach like the static strategy-based threshold is enough to guide an
agent towards a better option.

• The inverted index is a powerful algorithm that can help sort information
quickly. It’s use has been essential to reach our results and similarly
powerful algorithm will need to be found when applying to other kind
of hidden information in different games.

5.1 Possible improvements
While the AI we developed shows promising results, it doesn’t mean it can’t
improve with additional work, tests and new idea. There are two main points
that we can spot where the AI could be improved:
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5 – Conclusions

1. Even more precise Blunder Threshold.

2. Multiple steps simulation.

The first area of improvement is to look for more accurate methods of deter-
mining the blunder threshold’s value. We settled for the simple, yet effective,
static strategy-based threshold, however this approach voluntarily ignores a
lot of possibly useful information, such as the opponent’s supposed strategy
or the current state of the game. With a more accurate threshold, that can
span between sensibly different values, the AI could more accurately detect
blunders and determine weather or not to take risk. Not unlike the first
point, multiple steps simulation has the potential to return more intricate
and complete information about a certain game-state, which in terms leads
to better play. We decided to focus on single step simulation and find use-
ful results there, however it’s surely possible to find better results with a
correctly calibrated multiple steps simulation. The challenge with MSS is to
determine the correct simulation policy when simulating the opponent’s turn,
as well as find the optimal ending point, weather that’s a specific action, the
end of the game or a predetermined depth. There is also the possibility that
both of theese characteristics could be mutable during the game, meaning
that an agent capable of understating when to analyse deeper vs when to
stop early could prove an interesting research topic.

5.2 Alternative routes
The Montecarlo tree search is just one way to perform adversarial search
and while it is a very powerful one, it doesn’t mean it’s the best way to
do it. In the past few decades many games have been conquered by AIs,
some examples include the complete information board games chess and go,
but span all the way to strategy based real time videogames like Dota2 and
Starcraft2. The common factor of many of theese AIs is that they are all
piloted by neural network, that are data structures that aim to imitate the
behaviour of the human brain. Many of theese neural networks are trained
by letting the agent play against itself an enormous number of times and
adjust its weights to improve in a process called supervised learning. While
neural networks tend to be very cryptic and hide their internal behaviour
to human observer, due to the sheer mathematical complexity they work
with, it would be possible to develop AIs for Hearthstone using this same
technique and even provide meta-game information to the neural network.
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5.3 – Other interesting study case

Using meta-game information to train a neural network is a very unexplored
topic, but it could lead to very important result.

5.3 Other interesting study case
Recently a new card game has been developed with the aim of providing a
set of rules that make it easy to develop AI to play, the name of this game is
Legends of Code and Magic. This new game is similar to Hearthstone, but is
more deterministic and has an overall simpler set of rules. The one particular
that makes Legends of Code and Magic interesting when talking about hidden
information is that the AIs don’t play with preconstructed decks, but are
tasked to build one from a set of procedurally generated cards. This means
that players can’t use meta-game information, as each game is completely
different form the previous the others, however, since the pool of cards given
to the AI to construct the deck is the same for both players, it’s possible to
save theese cards and use them the same way we did, incorporating human-
researched meta-game knowledge directly into the decision process of the AI.
Legends of Code and Magic already has a prominent community of amateur
coders, as well as academic researchers, interested in it and it could very well
become the next topic of future research.
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