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Summary

Reinforcement learning (RL) is a useful tool to allow algorithms to perform un-
supervised training in order to achieve a goal [1]. In the context of games, the
final goal is to successfully complete the selected game or level. Games can be
employed as a simple way to test algorithms thanks to their clear objectives, rules
and sandbox, allowing players to elaborate strategies and tackle new challenges in
many different forms: competitive or cooperative, cards or tabletop, the choice is
very wide and many different games may be chosen for different reasons. Along
with the times and technological advances, new challenges became available under
the form of video games, providing new environments for learning algorithms and,
from Atari games [2] to Doom, many different titles have been the test bench for
reinforcement learning [3].

In order to provide a significant challenge, games should require a certain level of
skill to successfully play; however, depending on the genre, the set of skills may vary:
for example a strategy game needs players to be able to plan in the long term to
succeed, while action-based games are a test of reflexes and so on. Additionally, the
player may be bound to perform actions within a limited time or under uncertain
conditions, such as in simultaneous games (for example Rochambeau) where both of
these aspects are included: each player needs to select a move without knowing the
opponent’s, meaning that both players have the chance to pick a very favorable move
at the expense of the other, however none will know until the move is performed.

The key points for a game to have for this research are, apart from the turn-based
mechanism, required to have a clear separation of different states, some degree of
randomness intrinsic within the game’s sandbox, meaning that the same sequence
of actions may not bring to the same end result. This detail is needed to deploy
an algorithm that must adapt to new scenarios and, in this way, the code may be
put in a condition similar to a real-life decision process, where rarely things have
ideal reactions to an agent’s decisions. Backgammon for example has been part of
thorough studies in the field of reinforcement learning and results have shown that
competent agents are very well achievable with a suitable state recognition and
training.

The combination of the previous points should be able to produce an environment
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that is not quite the same as a real-time scenario but it should provide a close
approximation.

The goal of this project is to develop an algorithm capable of playing Pokémon
[4][5], one of the most famous and grossing games in the industry, which covers
many of the characteristics described above:

• A single game of Pokémon revolves around defeating the opponent’s team in
a turn-based environment, players must devise a strategy using the selected
Pokémons, since Pokémon is a simultaneous game. This system requires agents
to develop strategies taking into account the interactions with other players
which will affect the way states are recognized and play a significant role in
improving performance.

• Pokémon species are described by their name and each species has a unique
statistics distribution that determine how effective they will be during the
game (health, attack, defense, speed etc.). Base values are publicly known,
however according to players’ needs and preferences, the final value can be
tweaked up to some extent, resulting in the exact value for those statistics to
be technically unknown. However, since the total amount of custom values
cannot exceed a game-defined rule, players can still guess the final values.

• Each Pokémon can use up to four unique moves with different levels of power
and side effects, unknown to the opponent until used during the game, which
obviously reveals them: players start therefore with imperfect information on
the opponent’s team.

• Moreover, moves are associated to a percentage-based accuracy value that
determines how likely is a move to successfully land on an opponent under
standard conditions, which results in a non-deterministic result to each move
that has not maximum accuracy.

• Players can also elect to swap the active Pokémon to another one from the team;
however, damage suffered and some of the penalties that can be inflicted are
not restored unless special conditions are met: the previous actions therefore
affect the following turns in different ways to be accounted for when planning
future moves.

These rules suit well the context of a Markovian Decision Process (MDP), to
which the algorithm must find a policy able to take into account the different
aspects of the game and elaborate a strategy. A reinforcement learning algorithm
should be set to gather information between turns based on the effects of both
players’ moves and, with enough training, random variables would be taken into
account when planning a strategy. Moreover, two instances of the algorithm playing
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competitively [6] may result in a performance improvement with the increasing
number of games, given that moves are selected with the intention to win on both
sides to provide realistic reward values for states.

The results should indicate the impact of randomness and other uncontrollable
variables to the overall training and how effective the algorithm is when evaluating
moves and strategies.

To verify the effectiveness of the code, multiple tests were set up to mimic
the different skill levels of opponents online that any player may encounter, from
newbies to experienced players. The simulations will be performed with modified
versions of the project’s algorithm [7] in order to adapt to the desired behavior,
by selecting random moves, greedy moves and by resetting the initial experience
produced by training games respectively to represent new players and inexperienced
opponents. Moreover, the test involving the untrained version acts as an indicator to
determine how the code adapts to a player reacting optimally to certain situations:
given that the training games do not provide an encyclopedic knowledge of the
game, the trained version will play the role of an experienced player by performing
close to optimal moves and developing a coherent strategy along the games, which
serves as a close approximation to what competent players do compared to the
inexperienced ones.

Eventually, the code was able to elaborate strategies according to the opponent
it was facing with variable win rates depending on the other player’s habits: for
example a trained code struggled more against a random opponent than a greedy
code, where win rates are noticeably different with 56.6% and 60% respectively out
of a batch of a thousand test games. However, the results proved that additional
performance upgrades can be applied to the algorithm [8], since it suffers from
some of the well known problems of this kind of approach, namely disk space
requirements and issues when recognizing and handling similarities.

Overall the project proved that this approach is a reasonable solution to the
problem at hand and it may prove useful even in different contexts, nevertheless
additional improvements are available for better performance and to provide a
more accurate reactions in similar scenarios.
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Chapter 1

Background and Problem
Definition

1.1 Machine Learning
Learning is essential to any living being: from animal cubs to children, any youngling
is presented with new tasks to perform or a new skill to master in order to grow
and be successful. Many techniques have been developed to undergo this process
where the student must understand the issue at hand, elaborate a course of action
and apply the strategy to evaluate its effectiveness: children may be given puzzles
while young tigers may fake ambushes on their parents but the results are the same,
learning.

Nature has many way to convey new information across generations but the next
step for some computer engineers is teaching an algorithm how to perform a task.
While some may think this as a modern problem, machine learning research dates
back to the ’50s with Turing’s “learning machine” and the first algorithms to play
checkers, up to the more recent Go algorithms (Alpha Go) and neural networks
applied to a wide variety of different fields.

In order to replicate a similar process to the one used by biological entities,
a computer must be presented with some key elements to undergo the learning
process:

• Context, or environment: machines must be able to probe and interact with
the environment they are deployed in, namely by measuring its variables and
the effect of actions over them, allowing the code to understand and analyse
their performance. Moreover, the code must understand its available actions
and how to perform them during the process.

• Model: the code may be given an initial model to follow when learning the
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Background and Problem Definition

ropes of a new task; one can imagine the model as a map to have a general
idea of the position and direction in an environment. A model however is
not mandatory and model-free algorithms have the advantage of unbiased
learning, in particular when approaching a task for the first times.

• Representation: the available information gathered from the environment and
previous experience must be represented in an effective way to support the
code when learning and producing better results. Data representation is a
very important aspect when dealing with machine learning, since it determines
how detailed the available data will be and consequently the amount of disk
space required to store this information.

• Feedback: a fundamental aspect of learning, since it determines which actions
are suited to the context and which ones are not. Algorithms will use this
data to adapt accordingly in many different forms, from rewards to fitness,
resulting in a more accurate response to known scenarios.

The developer’s goal is to provide software with the right tools to learn how to
perform the desired task and, possibly, to exploit the gathered experience for other
similar tasks.

1.2 Reinforcement Learning
Reinforcement learning is a field of machine learning that aims at training an agent
to make intelligent choices by means of rewards; the code is required to build a
strategy in order to obtain the maximum overall reward1, rather than settling for
the best local decision at any given state (greedy approach).

This approach is similar to training applied to pets: the subject is given a
command and it is given a treat if it responds correctly, or a punishment when the
goal is not achieved. Eventually, subjects start to behave according to the desired
pattern without the need to request it beforehand [1].

This solution is usually employed when an algorithm is set to produce a solution
for a problem with little to no supervision, relying solely on the results gathered
during run-time from the environment; therefore no previous information is required
for the code to properly work.

Since supervision is not strictly required, the agent is not given instructions on
the available moves and how they affect the states it may find itself in: this is a
key aspect of the algorithm, allowing the agent to perform unbiased decisions when

1usually is associated to the correct result of the proposed task, in our case it means that the
agent won a game
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elaborating a strategy and, possibly, to evaluate more moves than a human agent
would normally do. Combined with a faster computing speed than the average
human, the code is allowed to perform a large amount of tries to determine the
optimal policy for a given task, without the need for detailed explanations about
the requirements and the available tools at disposal, effectively starting at a great
advantage compared to human players.

In the learning process, the algorithm has two mutually exclusive paths it may
choose from: exploration, the action that provides the code with new states and
new move values for future reference, and exploitation, which conversely tests the
previously gathered knowledge and updates its values with data from following
states. Since initially the code has virtually zero knowledge of the environment, the
algorithm should be able to balance these two paths in order to develop a consistent
and useful policy. Due to how tasks usually vary, both in terms of states and
available moves, algorithms must have a reasonable way to balance these two paths,
the most common of which is the ε-greedy approach, that determines the chance
of the code following the exploitation path with probability 1 − ε, very simple
but quite effective solution to provide a reliable performance in many different
environments. Generally, these aspects can be customized via global parameters2

that determine how the code chooses between the two, as well as the extent to
which new values affect previously saved policies.

The reason behind the selection of this kind of algorithms can be found in how
they approach unknown moves and data from the environment, allowing for a
faster learning process, especially under conditions of non deterministic moves and
interactions.

1.2.1 Episode
A task usually has a starting condition, a goal and a set of actions required to be
completed: these elements combined are considered an episode in reinforcement
learning. An algorithm may undergo a large number of episodes to learn the
required skill to complete the given task, each time gathering new data on how
the environment reacts to each action, thus effectively reproducing the process
of learning used in many other contexts: for example, when studying for a math
class, students are given homework consisting in some exercises to be solved; each
of them is an episode they are required to complete and the final result indicates
the correctness of the actions performed during the episode. In this way, both the
student and a reinforcement learning algorithm can understand how they arrived
to a solution and determine if the episode was successful or not, providing an

2also called hyper parameters, ε for example
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evaluation of the actions performed along the way.
Tasks that do not follow this model are called continuous tasks and usually differ

from episodic environments due to the lack of ending state, effectively requiring a
different approach when handling rewards and policy evaluation, mainly due to the
timings at which rewards are assigned.

1.2.2 States
During an episode, the code will need to perform many different actions to complete
the task; a further division of the problem can therefore be achieved via the use
of states. States usually describe the situation of an episode at a given point in
time, usually before the agent’s action, so that the resulting action sequence can be
evaluated accurately. Following the example of the student described above, states
can be identified in the various steps when solving an equation, the most common
point in which the student is required to apply theorems in order to simplify the
equation. Each action will move the episode to a new state and, depending on the
result, some action may appear more effective than others to achieve the end goal.

1.2.3 Rewards
Rewards are a way to evaluate how effective moves are, following an equation that
takes into account many different factors, ranging from the effects on the state to
the effectiveness of following moves, resulting in a simple form of evaluation for
both the move and the pattern. Due to the fact that many moves do not change
substantially the state, there is a significant chance that the reward for a given
move is zero: however, with the increasing number of episodes (and thus experience
of the states) the agent will update values based on moves and values that lead to
successful conclusions for the task, effectively settling the values to more accurate
predictions. Reprising the example of the student seen in the previous points, the
final reward is the grade of the student when handing out their homework to the
teacher, which will affect the outcome of the final exam due to the fact that the
successful actions when completing the assignment will be the best option when
taking the test.

1.2.4 Markovian Process
A Markovian Decision Process (MDP), extension of the Markovian chain described
by the homonym mathematician Andrey Markov, is a model that describes discrete-
time stochastic control processes, which is the most effective way to identify the
kind of problem many turn-based games pose. The key aspect to keep in mind is
that actions lead to different states following a determined probability function: in
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the context of games, the process rarely loops around the same nodes but it can
happen.

MDPs can be represented in directed graphs where nodes are the different
states of the process whereas edges are the available actions associated with the
probabilities to follow the arc to the pointed state. When considering the entire
process, the code will need to evaluate the route to reach the end state, keeping
into account the probabilities of the various actions as they will impact the final
effective route and time of traversal. A possible example of this scenario can be
found in how people in a big city plan a route to reach their destination: some
inconveniences may happen, such as road blocks or heavy traffic in some areas of
the city, more frequently depending on the time, affecting the final path choices.

Considering a game environment, the probabilities are a good approximation
of random events during the game, such as dice rolls or card draws that, since
they cannot be predicted without risk, may have an impact on the overall strategy,
forcing updates and adjustments to complete the process successfully. When dealing
with non deterministic actions, many approaches can be viable depending on the
overall state of the game: when in a losing position, it may seem easier to resort to
risky moves compared to being in a more favorable state. Overall, reaching balance
between risk and reward is often the end goal for players when planning a general
strategy going into a new game but it is usually a guideline taking into account
various different opportunities along the way. For shorter games, it is possible to
have a more accurate plan to deal with random occurrences in a methodical way,
taking educated guesses and controlled risks in order to limit the impact of other
random events: for example, holding on high value cards in a car game or keeping
count of played cards help players maintaining a clear view of the game state.

Markovian processes are widely used as test bench for various forms of machine
learning and dynamic programming algorithms, due to the clear definition of
states and their stochastic property. Moreover, being able to clearly define states
is invaluable when dealing with algorithms, since it may result in a much more
accurate response once experience starts playing a significant role when learning.

Performing several test simulations or deploying the algorithm in a real-life
environment provides the code with a larger amount of data, the “experience”, that
will be recorded and stored for future lookup, eventually leading to a more accurate
analysis of each game state and more elaborate strategies for complex situations.
However, with enough training and accurate design, software may be able to learn
effective strategies by itself, exploiting the processing speed of computers to perform
a larger amount of games in preparation of matches against human players [6].
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Figure 1.1: Example graph of a MDP. 3

1.3 Algorithm overview
When designing the code to tackle this project, many different approaches were
analysed to evaluate the most efficient way to learn how to play the game and
elaborate effective strategies, basing the decisions on the learning process.

The most important features for the final selection are the ability to perform
unsupervised learning, in particular in environments where actions have unknown
side effects4, as well as good performance in terms of memory usage for storage
and execution time required to elaborate a strategy and select a move.

Overall, many algorithms were up to the task; however, the final decision was
based on the performance of the code across different games, keeping in mind that

3File:Markov Decision Process.svg by waldoalvarez is licensed under CC BY-SA 4.0.
4in games, rules usually explain side effects, but writing code to actually be able to understand

written language is a much more sophisticated project

6



Background and Problem Definition

the final review was conducted by analysing the data structures that each algorithm
produced as “experience”, as well as by evaluating the games themselves compared
to matches played by human players.

1.3.1 Rule-based algorithms
Rule-based algorithms are a very simple way to approach this problem: given the
state of the game and the available moves, the code is able to roughly evaluate
the effectiveness of each action from parameters. This approach is often paired
to learning algorithms to identify and add new potentially useful rules to the
system. In the context of this project, a slight customization was added to prevent
predictability, due to repetition of moves in similar states, a common issue in this
kind of algorithms: moves were randomly selected among the available ones using
as weights the estimated values of actions; in this way, the number of options
the code would select at any given turn was increased to a pool of three or four.
However, since the initial version of the algorithm did not include any rule update
policies, due to the very large amount of parameters to keep track of and the
different random effects of moves, this solution proved to be much less effective
than anticipated.

1.3.2 Temporal Difference Learning
Temporal difference (TD) learning algorithms are a common choice when dealing
with model-free reinforcement learning. They use existing action data to predict
rewards for current and future actions, allowing for a totally unsupervised self-
learning mechanism, since moves in the game have additional side effects that have
to be discovered by software5; this approach proved to be particularly successful to
better understand the real worth of the available actions at any given state.

Algorithm 1 Idea behind reinforcement learning
table← values[m][n] ▷ m (number of states) by n (number of available moves)
state← 0
while state is not terminal do

Select one of the available moves
Observe consequences of actions
values[state][action]← new_value ▷ Value gets updated
state← new_state

end while

5the alternative would be to read the description of the move
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The key for this approach lies in previous experiences, as multiple solutions are
attempted to complete the task, more data about which actions are effective or
not is gathered and the model becomes increasingly more accurate.

The reason behind this improvement is to find in the way rewards are assigned:
the equation that gives a numeric value to actions must take into account the
changes in the perceived state, as well as previous known values and how accurate
they were, both for the current state and the following.

V (St) = V (St) + α[Gt − V (St)]

The general idea is similar to other methods of reinforcement learning, such as
Monte Carlo search [9], that require the code to go through many different states
to gather information about the actions and then proceed to evaluate the values
to correct the initial observations with the value Gt − V (St), that represents the
observed error. The error is then used to adjust the move reward and, with time
and simulations, the values for different moves will move towards their real worth,
allowing for an accurate estimate of each move when deciding the next actions [10].

However the Monte Carlo search requires the algorithm to complete the episode
before evaluating its performance, forcing full executions before realizing that a
policy is detrimental to the final goal.

Instead, temporal difference algorithms use information gathered during state
explorations to update data about moves during simulations, while taking into
account the following states, therefore not completely sacrificing any long term
benefits of a strategy. In particular, the special case of temporal difference learning
TD(0) updates values on the go, considering the following state when updating
values, progressively improving the strategy as it executes.

V (St) = V (St) + α[Rt +1 +γV (St+1)− V (St)]

Following this equation, rewards are updated each time the same move is selected,
in particular, some factors are significant: first, the old value is not completely
replaced but rather updated with the new information acquired, namely the new
reward R, together with the estimate for the next state γV (St+1), is a way to
evaluate the move and its effects towards the completion of the task, to which the
previous value V (St) is subtracted, resulting in a error evaluation that helps correct
the initial value.

Finally, γ and α are two parameters that can be customized to improve per-
formance along the number of completed simulations: they represent respectively
the weight of new values over the old ones and how much of the error will affect
the final value. They can either be updated automatically with the number of
episodes or manually, depending on the performance of the agent or to test different
configurations in a given scenario.
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1.3.3 Q-learning
When discussing reinforcement learning and temporal difference algorithms, proba-
bly the most known among them is the Q-learning: it relies on the same premises
described above but it adds to the reward the value of the best move for the follow-
ing state. This approach was particularly useful due to how effective Q-learning is
for Markovian processes. With this algorithm and a refined reward value assignment
the code reached a satisfying knowledge of the game and it was able to perform
significantly better than the previous versions.

In particular, Q-learning exploits previous experience of future states and actions
to test different policies to reach a successful solution by trying to follow actions
that will provide the maximum cumulative reward.

Algorithm 2 Example of Q-learning
table← values[m][n] ▷ m (number of states) by n (number of available moves)
state← 0
while state is not terminal do

N ← random value ▷ usually between 0 and 1 with uniform distribution
if N ≤ ε then

Select randomly one of the available moves
else

Select the best of the available moves (max value in table[state])
end if
values[state][action]← new_value ▷ Value gets updated
state← new_state

end while

The main difference between the previous algorithm and Q-learning is that it
can directly evaluate the strategy elaborated by the agent across simulations, by
selecting the best rewarding actions at any given state expecting an effective move.

In normal conditions, the code would be able to replicate the results from
previous simulations and achieve the best possible outcome with the available data;
however, in the context of an MDP, the stochastic nature of the process may provide
additional information on the moves, forcing the algorithm to update its data and
potentially lowering the original values for some of them. This possibility may
occur either when moves have side effects that disrupt the original plan or when
the environment reacts differently due to some random occurrences, described by
the MPD but unknown by the code until it stumbles upon said random reactions.

As an additional tool, the algorithm may be forced to take sub-optimal decisions
while exploring the solution space in order to avoid resorting to only a single
well-performing strategy, possibly getting stuck using a single pattern of moves and
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not other more effective solutions. To this end, the mentioned balance between
exploration and exploitation must be included in the code (here in the form of "if
clause"), to ensure that moves which do not follow the optimal pattern are selected
to ensure that they are not a potentially optimal solution. This constraint however
can be progressively lifted by adjusting the ε parameter to reduce the chance of
selecting random moves at any given state [11].

1.4 Game environment
Pokémon is probably the most known video game franchise in the world. Players
collect, train and battle each other with the titular Pokémons, imaginary monsters
with unique characteristics and skills. Various games have been published since
1996, but competitions involving video games started only in 2009 with rules
set by the official organizations “Play! Pokémon” and “The Pokémon Company
International”, that oversee every aspect of the many categories of tournaments.

Video games tournaments are usually organized as a way to promote the latest
game released, hence teams and tactics may vary across different years; however,
the rules were fine tuned with the experience of more international events and
the growing number of participants across the world up to the current version.
The key aspects of the rules employed in official competitions are how battles are
performed and the limitations regarding team compositions: the former requires
players to play in a 2v2 scenario, as opposed to the more common 1v1 greatly used
along the game’s story, to allow more complex strategies involving many different
elements, while the latter is an easy way to avoid single elements to completely
overshadow the rest of the teams and strategies. Moreover, since 2017, IEEE
organizes competitions on a clone of Pokémon games with a similar rule set from
the official competitions, where researchers are given a team, or are required to
build their own, and submit a code that will enter the competition and play in
their stead [4].

Games are divided in turns, in which players select their moves and cannot
affect the results of their decision until the following turn, which means once both
players have selected the actions to perform, they must wait until the next turn
to choose a new move, similarly to rounds of Rochambeau; some exceptions are
possible but generally games are played out with this structure.

Pokémons in a team are identified by their species and their effectiveness is
evaluated by their statistics:

• Attack, which affect the damage dealt by physical moves.

• Defense, which affect the damage reduction for physical moves.

• Special Attack, that will determine damage dealt for special moves.
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Figure 1.2: A turn in a game of Pokémon on the battle simulator "Showdown",
most of the information on the game is available to players via this interface

• Special Defense, that will determine damage reduction for special moves.

• Speed, the value that controls the order in which each Pokémon acts within
the battle, the higher the value the earlier it can move in a turn.

• Health Points (HP), the value that gets subtracted during the battle, once it
reaches zero the Pokémon is defeated.

Each Pokémon interacts within the game with up to four different moves,
identified by a unique name and with set values for power, accuracy and number
of times they can be used during a match. Most moves have additional side effects
that users can learn by reading the associated description in the game: this comes
especially useful when dealing with non damaging moves (status moves). Damaging
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moves are further divided into two categories, physical and special, resulting in
different statistics (described above) required for the move to perform optimally.

Due to the recurring nature of these events and the ongoing support and
development of new video games, the selected set of rules was chosen for convenience
to be the VGC16 rules (from tournaments which took place in 2016): the reason
behind this choice is that older sets of rules usually have established ranking
information for teams, moves and strategies at the expense of a less active player
base. The main aspects of the VGC16 [12] rules are:

• Battles are to be played 2v2, meaning every player must use two Pokémon
simultaneously whenever possible for the duration of the game.

• The match is played up to three times: once one of the players reaches two
wins, they are declared winner; draws are rare but possible: in the event a
match ends with an even outcome, additional games are to be played until
one of the two players wins.

• Players can use only up to four members of their team per game, selected
independently at the beginning of each game.

• Pokémon species within the team must be unique, meaning that players cannot
use multiple copies of the same Pokémon in the same team.

• The team can contain at most two Pokémons included in a specified list, in
order to prevent players from using teams uniquely composed by the most
powerful species in the game, often referred to as Ubers, from their status
in the tier lists, or Legendaries, the label usually employed within the game
story.

• Items used by members of the team must be unique.

• Levels will be normalized at 50, to reduce overall battle times by limiting the
maximum available values for statistics.

• Matches have a 15 minute overall timer, at the end of which the team with
the most undefeated Pokémons is declared winner; in the event of a tie, HP
count will determine the winner.

• Players have 90 seconds to select the four Pokémons to be used in the match.

• Players have 45 seconds to select the moves to be used in any turn.
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1.4.1 Team Preview
Competitive players refer to “team preview” as the initial 90 seconds of a match
in which contenders have to select the four Pokémons they are going to use for
the rest of the battle. When performing that choice, it is a common behavior to
analyse the opponent’s team, trying to anticipate the possible tactics they are going
to employ, how to disrupt them and trying to imagine possible counterattacks for
their own, while planning a reasonable strategy and backup for their team as well.
Definitely a complex task that requires experience, as seeing many different games
from the same player, or team, highlights their best options and weaknesses, as well
as knowledge of both their team and the opponent’s, to more accurately preview
how some moves may play out in optimal conditions and exploit the advantage for
a more precise plan. Selecting four out of six Pokémons, often allows players to
reverse the odds in their favor with a different strategy: for this reason matches are
played in a “best-of-three” format, where players need to win two separate games
to win the match, similarly to tennis sets, to allow players to recover from poor
starts and even out possible random occurrences.

1.4.2 Moves
Every turn, players must select a move to progress the battle until it reaches its
conclusion; failing to do so results in a random move selected among the available
ones. Moves usually have the most diverse effects that may help achieving victory
in different ways; however, building a team with a single effect in mind is not
always a successful strategy, which is why players usually need to find good balance
around the main move types.

Damaging attacks, usually described with a name, damage value and accuracy,
are the primary way to reduce the opponent’s health to zero, which leads to victory
in case the whole team is defeated in this way. These moves are the main focus of
Pokémon whose purpose is to push towards the conclusion of the game (often called
“sweepers”, due to their role to remove foes from the game by quickly defeating
them), which have many different attacks as the ones described to choose from.
This kind of move usually comes with a trade-off, with more powerful moves come
more penalties; for example, a high damage attack may have 90% as accuracy value
and/or an additional effect that temporarily reduces the Pokémon’s statistics.

Status moves, often referred to as support, are moves that do not excel in
damage but are very useful when their side effects activate, potentially disrupting
the opponent’s strategy or strengthening the player’s position in a game. Such
attacks are often associated to very defensive Pokémons that need to stay on the
field for as long as possible to support the rest of the team, usually not as bulky as
them, and ensure the correct execution of a strategy. Since their damage is mostly
negligible, it is usually considered as “chip damage”, that is welcome in case of need
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Figure 1.3: Interface for customization of Pokémon, the four moves are on top
and the sliders are used to customize the statistics of the selected Pokémon

but it is rarely expected to be the main solution when defeating opponents. The
longer the game, however, the more it becomes relevant, since Pokémons that have
already suffered damage are not guaranteed to be able to sustain more powerful
attacks from sweepers: an additional reason why players usually need to keep in
consideration their opponent’s defensive tactics. When a status move has very little
damage, or no damage at all, usually it comes with a persistent side effect that
benefits players for a prolonged period of time, allowing strategies to be more and
more complex in the long run and discouraging greedy, and rather easily blocked,
tactics.

Protect moves are the easiest way to avoid taking damage for a single turn,
often used to bait attacks or to scout the opponent’s strategy while maintaining the
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position on the field. Pokémons who protect themselves however are not allowed to
move for the rest of the turn, resulting in a move effective for stalling turns while
waiting for a side effect to subside or to block a very powerful attack in unfavorable
conditions. To prevent players to spam the move and abuse this mechanism, the
game progressively reduces the chance of protection moves to correctly apply for
each following turn the move is used successfully (n), according to the formula 1

1+n
,

where n is reset after a different move is selected or the protection move fails.
Considering that any Pokémons can learn up to four distinct moves, this allows

players to customize their team to account for a wide range of tactics to produce
a win condition for any game; however, not every species can learn every move,
therefore opponents can make educated guesses on which Pokémon covers which
role, a key aspect when the game starts and contenders have to select the four
members for the game.

In addition to attacks, since players have up to two reserves when entering a
game, switching a Pokémon is an available move in most cases (there are conditions,
moves and Pokémon abilities that prevent some or all other Pokémons from leaving
the field), often employed to reposition the team in a defensive configuration or,
usually when expecting a similar move from the opponent, to maintain a favorable
position when setting up the strategy. Players may also switch in order to prevent
damage, either by removing from the field a weakened Pokémon or by sending out
a bigger threat to the opponent’s tactics. Overall, switches are another available
move that adds some depth to the battles, forcing players to take into account a
wider array of moves and tactics rather than focusing on what is visible at any
given turn, from the team preview up to the final turn of a battle.

1.4.3 Turn resolution
After both players have selected their moves, the new turn is resolved following
some rules and players can analyze the results before selecting new actions. Since
many aspects of the opposing team are unknown until shown during the game,
contenders pay particular attention to the many details hidden in the resolution
phase of turns.

First, the order of movement is one of the main points of interest of many
players, since attacking first is usually a significant advantage that may lead
to defeat opponents before they can act: each Pokémon has a Speed stat, that
determines the initial order of action by ranking every Pokémon on the field by
the value of such stat in reverse order. Top level players build their team to have
a very precise Speed to scout the opponent’s configurations earlier than others,
usually by selecting values that differ by a single point rounding either up or down.
Skills are also activated following this order, which will be the primary indicator to
observe right before turn 1, where Pokémons are sent out after the team preview
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phase but before acting, since players still need to select their first actions. In case
two (or more) Pokémons have the exact same value of Speed, the order is randomly
selected.

Some moves, however, ignore the order stated by Speed and are usually marked
in their description by strings such as “usually goes first” or “will always go first”;
these moves are called “priority moves”, due to their property that allows them
to act earlier. Priority is basically the value that indicates when a move will act
compared to the regular Speed-based resolution. Ranging from a value of +6 to
-5, where 0 is the value for standard moves, a higher value will result in an early
movement, while a lower one will force moves to act later; for negative values, the
move will activate after the standard turn order. In case multiple moves with the
same priority are selected within the same turn, the final order will follow the rules
for regular (0 priority) moves.

Another important aspect to keep under control is how damage is applied by
attacks, due to some random variables involved in the calculations: the formula
that produces the value of the damage applied by a move covers many aspects
of the game state at any turn, as well as some multipliers that may apply under
specific circumstances, and expands as follows:

Damage = (
(2

5 · L + 2) · P · A
D

50 + 2) · STAB · T · C · R ·Other

where

• L is the level of the attacking Pokémon, the maximum available value is 50.

• P is the power of the attack, the main source of damage of a move before
multipliers are added to the formula.

• A is the attack of the Pokémon performing the move, may be either Attack or
Special Attack depending on the move and its effects.

• D is the defense of the target Pokémon, may be either Defense or Special
Defense depending on the move and its effects.

• STAB or Same Type Attack Bonus is an additional multiplier of value 1.5
when the move performed is of the same type as the Pokémon performing it,
otherwise it is 1.

• T is the type effectiveness of the move against the type(s) of the defending
Pokémon.

• C or Critical is the multiplier for critical hits, that may randomly take the
value of 1.5 with a chance of about 6.25% (4.17% in newer versions of the
game) under normal circumstances, but can be increased up to 50%.
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• R is a value that ranges from 0.85 to 1 that is generated for each attack
performed by any Pokémon on the field that determines a degree of randomness
to the final value.

• Other covers a larger number of multipliers that may be applied under specific
circumstances but ultimately is not useful for the discussion.

The random value intrinsic in the formula is mostly negligible: its magnitude is
fairly limited as opposed to the other factors and players build their team taking
into account worst case scenarios in which damage is always rounded down to
the lowest value possible. However, critical damage may result in an unexpected
turn in the original strategies, producing an advantage or disadvantage that needs
to be taken into account: for example, if an attack’s expected damage is about
40% of the health of a target, suddenly receiving 60% means that the minimum
required hits to be defeated decreases from being guaranteed three to possibly
being two, depending on the random variable multiplier, forcing the player to adapt
the strategy according to the new state, less likely than the expected outcome but
still plausible [13].
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Chapter 2

Proposed approach

2.1 Motivations

Reinforcement learning is a very useful tool, but what is the reason behind its
adoption as opposed to other algorithms? Many other algorithms have the means
to tackle episodic tasks and learn how to complete a series of actions in the best
possible way; tree search, for example, is an easy way to represent problems in
a human readable way and provides a more accurate image of the task at hand.
Moreover, some evolutionary algorithms are specialized in graph traversal and tree
search, proving other options are available when dealing with this kind of scenarios.

However, the main issue with tree traversal is not in the algorithms, but in the
trees structures themselves: for simple tasks, a tree might have a limited amount of
nodes and a proportional number of edges, therefore it may seem reasonable, but
increasing the number of nodes leads to a messy representation with long traversal
times, combined with the fact that edges must convey the required information for
the algorithm to evaluate the available option at any given state.

In addition, reinforcement learning can be set up to manage the simulation
autonomously, requiring little to no intervention by the user both during training
and deployment, which proves particularly useful when dealing with complex
systems with variables that experienced users may give for granted when taking
decisions. Reinforcement is key in this case since the algorithm is able to understand
the given task by the reactions of the environment rather than from supervision,
allowing for a completely unsupervised code that may be executed in several
different fields like content filters or search engine support algorithms: for example,
spam filters [14], email, SMS and calls can be automatically managed as the user
is part of the environment, therefore unwanted content can be marked and, with a
large enough set of data, the code may be able to predict what to filter, whereas
for search engines it is possible to redirect the user towards more relevant results
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according to preferences and previous keywords.
Given all the minute details to be accounted for described in the previous

sections, it is highly unlikely that a player can luck their way out of the competition
for long, especially against more experienced opponents that may know better move
combinations and counter strategies to severely limit the available options during
the game. For this reason, players planning to take part in tournaments spend a
significant amount of time building their teams, developing strategies against the
most common threats and, in general, preparing for the competition.

To this end, players usually have to take part in a large number of private games
to verify possible flaws in their approach to the game or in their team, resulting in
a proper training session, similar to what a reinforcement learning algorithm may
undergo: with this premise, the idea of the project is to verify that, provided that
a sufficient training is conducted, a reinforcement-learning-based algorithm may
result in a competent behavior in the context of the game.

In particular, human players exploit these test matches to gather information
about their team, in particular regarding the damage dealt and received by the
various Pokémons, the impact of randomness of some aspects of the game on the
strategy, as well as the psychological training to be prepared during both easier
and harder games, to prevent mistakes due to anxiety or distractions.

As the project is not capable of human emotions, the main goal behind the
training for the algorithm is to gather information; however, since the code does
not rely on the descriptions attached to moves or on in-depth knowledge of the
game and the team it is using, the required data is going to be significantly larger
compared to a human player.

With the inclusion of Pokémon into IEEE competitions and the increasing
interest in the field of machine learning, some research has been published discussing
various aspects of this game as a benchmark for future studies; however, due to
the sheer number of available formats and the ongoing development of new games,
the research focus is often limited to older games [15].

2.2 Issues
In order to train the algorithm, a sufficient number of games must be played; the
best way to achieve this feat is to deploy the agent online and let it play against
the largest number of available opponents; nevertheless, there are a few issues with
this approach that may alter the experiments’ results. It is a known fact that the
competitive scene in any kind of game has to take into account many unorthodox
behaviors on behalf of the player base like smurfing and gimmick exploitation
only to name a few. Smurfing is the practice of creating a new account as an
experienced player, relevant mostly in ranking-based matchmaking, to win easily
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by pairing with newer users, whereas gimmick exploitation is the practice of players
disregarding common approaches to games only to win using trick strategies that
work only against oblivious opponent.

Moreover, a human player may behave differently when playing against non-
human agents or try to tamper with the algorithm by playing non optimally to win
in future matches. The trade off of playing with human opponents is to significantly
speed up the training process sacrificing the exploration of some solution space an
is probably not worth the risks presented above; in addition, the chosen rule set
is (at the time of writing) already seven years old: it is therefore unlikely to find
players that fall under the requirements for an optimal training routine.

Finally using a private server for training helps circumventing all the security
measures placed by developers to prevent spamming and flooding, while giving
administrators the right tools to find any possible users with malicious intents,
since the environment would be used only by non-human agents on a local machine,
possibly preventing access to third parties [5].
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2.3 Tests
The required tests for the agent follow the described guidelines in the above sections;
in particular, the algorithm is expected to be able to react to players at different
levels of skill, as well as to adapt to new opponents or strategies.

The reason behind the tests presented hereafter is to verify that the algorithm is
actually capable of making choices according to the provided environment and the
past experience; in particular, the main reference will be the comparison between
trained and untrained agents against various forms of opponents, designed to mimic
players at different skill levels [5][16].

However, the agent should be trained as a general purpose player rather than to
actively counter specific tactics: therefore, a training routine against itself with
hyper-parameters set up for exploration might prove useful when the code has
not any experience of the game [17], since the code has no understanding of the
moves’ descriptions, which usually suggests to human players how to effectively
use a move and its side effects. For instance a move such as “Icy Wind” is very
weak compared to other damage-oriented attacks, with a power of 65 it is exactly
half as powerful as Groudon’s “Precipice Blades” which has 130 power; however,
the purpose of this move is to slow down opponents, reducing their Speed stat
and allowing allies to attack first in the next turns, providing a significant tactical
advantage over the opponent’s damage-dealing Pokémons. In addition, Pokémons
can have at their disposal multiple moves with similar side effects aimed at helping
the team, meaning that the agent must have a reasonable understanding of how
these moves work and how to include them in a more complex strategy.

2.3.1 Test 1
The first and possibly most common test is to compare the trained version of the
agent against itself in various different ways to see how the training impacts on
performance; in particular, the focus should be to understand how effective is the
strategy of the trained model and how quickly the untrained model is able to adapt
to a new opponent. The objective of this comparison is to show how the trained
model is able to devise a strategy taking into account many possible aspects within
the game, random and not, balancing risks and rewards to achieve victory, while
still adapting to the new possible game states provided by untrained models or
new opponents.

The aim of this test is to simulate the interactions that many players have to
face, i.e. different players using the same team with different strategies: in the
final ranking of the world tournament held in San Francisco, California, the same
team classified first, third and eighth out of the top 16. While the answer for
this kind of occurrence is usually a different combination of factors such as luck,
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strategy, skill and experience, the tournament results prove that different strategies
are possible and their effectiveness varies: the code should therefore be able to find
a way to beat opponents with a consistent strategy accounting for risks, but still it
is required to switch between known strategies seamlessly according to the state
and to known results.

The most common occurrence for this kind of scenario is usually after an
international tournament, when the participants give to the public most of the
information about their teams due to the larger audience and more focused interest.
With this data, any player can use a top level team for testing matches, improving
strategies with and against said team; however, even less experienced players will
possibly start using a winning team to improve themselves rather than the available
tactics, often trying different approaches than the ones proposed by others.

2.3.2 Test 2
An additional test to be conducted is how effectively the agent is able to react
to different strategies against the same team, such as a novice’s in contrast to an
experienced player: how much the training will be of use or, conversely, be an
obstacle. Theoretically, the code should have a reasonable amount of data about
which moves to use in many potential scenarios involving members of any two given
teams; however, the initial games may lead to a number of defeats linked to the
multi-turn setup of more complex strategies, which require users to use suboptimal
moves during the first turns in order to have a stronger position at a later stage of
the game.

This approach to the game relies on the idea that the opponent is trying to set
up a strategy of their own and is able to possibly counter simpler moves, which
may result in poor performance against new players who are just unaware of more
complex interactions. Depending on the way training has been conducted and on
how effective the agent is with a given pairing of teams, the results should be a
helpful insight of how unexpected behavior is handled and how much the strategies
of a trained algorithm must be adapted when changing opponent, particularly
relevant in the context of real life tournaments, which (as described above) may
host different players with the same team.

While trained players may find some difficulties when dealing with a suboptimal
opponent, a completely novice one should be able to adapt rather quickly to novice
strategies and to develop a strategy of their own to effectively counter the only
one the agent ever faced. Although it may seem pointless to develop a strategy
against a non-adaptive agent, this may help point out how quick and effective the
code is to find a response to certain strategies, be it more advanced or simpler, in
particular when usually dealing with the most common optimal ones.

Usually human players build their team around the most used teams and
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combinations, as well as personal preference in Pokémons and strategies, but the
shared experience is usually built upon official competitions and their results,
working as a test bench for future competitions: in fact, it is rare for players to
take part in multiple major tournaments with the same team, unless it is good
enough to remain relevant after some time, which is uncommon as well.

Players also prefer to use the same team for longer periods, as they usually adapt
the strategies to new opponents in a similar way a reinforcement learning algorithm
would do: the more they play, the more information they gather on how the team
interacts with new combinations and new moves, with little to no adjustments,
ending up in more consistency in terms of results as well, when possible.

2.3.3 Test 3
Another important aspect to consider is to verify the code flexibility when facing
unorthodox strategies, keeping in mind the main problems involving low ranking
players: some opponents might use unusual tactics to catch inexperienced opponents
off guard, resulting in easy victories with possibly very weak teams. In order to
verify this feature, the algorithm must face a player performing very similar moves
in the same conditions or suboptimal strategies.

Players using these kind of moves are often trying to exploit particular game
mechanics or combinations to their advantage and are mostly well known among
experienced human players, who usually have a simpler strategy to manage such
opponents. They are also recognizable because of non-standard team composition
and the moves used they use; they are therefore rather easy to predict compared to
the tactics employed in international tournaments, which hardly count such teams
in their final rankings.

The aim of this test is to verify how quickly the code is able to adapt to this
kind of tactics and how effective the resulting strategy is.
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2.4 Implementation
The project revolves around a custom distribution of the popular battle simulator
Pokémon Showdown, a web based application capable of setting up, simulate and
record matches between players in many different formats. The server side is
developed in Typescript and can be easily configured thanks to the public GitHub
repository that allows free access to all of the source code files; however, the only
file that has been edited is the configuration file “server/config.ts” to lift limitations
on the allowed number of messages to the server per second. This security measure
was added to prevent spam from users and bots alike and help the developers
keep in check the system for DOS attacks, but since this instance of the server is
used solely for the training of the code and no outside connection will be possible,
this small tweak allows the project to definitely improve on performance while
remaining safe for usage; besides that, the environment is exactly the same as
human players use.

Usually, the communication between server and client is carried out via a web
application which handles all the server messages, that mostly consist in pipe-
delimited plain text or sometimes JSON snippets, to display the user available
information in a Graphical User Interface (GUI) similar to the one used in official
games for easier understanding. Since most of the information is transferred via
text over a bidirectional socket channel, the code does not need to access the GUI
or wait for the information rendering to start working on the game. Combined
with the configuration changes described above, this helped greatly during testing.

The core of the project is written in Python, connections to the server are
managed via a socket in the same way as the public distribution to allow the code
to run seamlessly in any server compliant to the original communication protocol
[18]. The interaction between server and the project is therefore managed by means
of an interface that acts as parser for the code and converts all server inputs from
string to Python data structures, which are later normalized to ensure that the code
only handles data in a predictable way. Because of the initial (lack of) knowledge of
the project, additional redundancy measures have been included to prevent locks in
case of errors and, when possible, try to recover to proceed with execution, thanks
to recognizable patterns in received server messages.

The code handles single games separately and independently to emulate the web
application, as well as allowing multiple simultaneous games with the same settings
for a team. Once a team has been selected and loaded into memory, the code tries
to access previous learning memory by querying the shelf dedicated to the team,
when available, it loads the table in memory as well, otherwise it creates a new
record to start training: this option is needed as, due to the match-up oriented
nature of the game, different team combinations are handled separately to reduce
the overall memory requirements at run-time.
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Chapter 3

Experiments and Results

3.1 Setup
First, the agent requires information about the team it is using and its moves to be
able to determine the effectiveness of each move in the current state. In order to
achieve this goal, the initial simulations were set up to explore as much as possible
the solution space, so that each new move used by either side of the game would
be added to the internal database for future reference. This solution reduced the
required time for each turn by decreased the number of messages sent to the server,
saving up to 50 ms per message, greatly improving the performance since each
request to the server usually has to handle up to three messages as response.

Following the initial setup stage, training has been conducted with hyper-
parameters set to α = 0.8, ϵ = 0.5, γ = 0.8 to provide a wide enough variety for
many different states of the game, while maintaining the chance for on-policy plays
to avoid unbalanced values across the table, potentially resulting in a strong enough
local optimum that would prevent the exploration of more successful strategies
when increasing the chance of on-policy plays.

The resulting memory was then backed up for consistency across different
experiments, providing a common starting condition for all instances of the trained
agent.

Many training sessions were performed before producing a satisfactory learning
table for the agent: this was mainly due to the randomness involved in the process,
leading to larger values for suboptimal values caused by some very beneficial
coincidences during the exploration. Such values were slowly decreasing to more
balanced rewards; however, the results would eventually indicate a large portion of
games lost to fix the initial value of a single move when playing on-policy.

When referring to learning tables or simulations as “balanced”, it means that
the agent is not actively exploiting a single strategy due to initial games influencing
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heavily the following batch. The need for this distinction is due to the wide solution
space of a single match-up between two teams: exploiting a single pattern might
therefore prove useful when testing a single strategy but overall fails the purpose
of this project; to this end, initial training simulations were filtered to verify the
effectiveness of the agent in many possible scenarios.

3.2 Experiments
Keeping in mind the scenarios described in 2.3, testing has been conducted by
maintaining a copy of the starting learning table and customizing the various
opponents starting from a common code base. The different instances of the
agent would still use predefined teams, whose information has been gathered from
team reports of the original players who created them, rather than building them
from scratch, to keep the simulation environment as close as possible to the real
tournament scenario.

The simulation parameters were chosen to be α = 0.8, ϵ = 0.8, γ = 0.2 to allow
the code to still learn and adapt to the new specialized tactics that opponents might
use, since the goal is to test the strategies and verify how effective they are when
playing to win. However, since the value for new moves is still considered, new
strategies may still be discovered, but the amount of games required to be taken
into consideration by the agent is going to be slightly larger in case of completely
new moves. Finally, the reason why the optimal moves rate is 80% is to prevent
local optima from stalling the simulation and encourage exploration up to some
degree, in addition to the fact that across multiple games the agent would be
prevented from mindlessly repeating moves in case of favorable states.

Usually, players use the Pokémon Showdown simulator to test teams before
competitions, due to how quickly it is for users to set up a team and start games,
allowing for multiple simultaneous games to be played. The number of games for
a human to determine whether the team is viable and which tactics work better
in different occasions varies, since the team building phase usually starts from a
core strategy to be developed with some variations, depending on how opponents
are expected to react. Moreover, testing helps when collecting information about
new strategies and teams, and provides details on how to further tweak the team
composition to increase effectiveness. Finally, with the gathered data they would
eventually build the team on the official game, which is a slower process compared
to Showdown, and start testing on the platform used for the competition, where
players are usually more similar to the expected opponents.

However, the teams used during the simulations are the two teams which reached
the finals of the 2016 Pokémon World Championship: their expected performance
is therefore mostly known and the code has access to some of the best tools and
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strategies available in the VGC16 format. This solution was adopted to focus on
the learning and decision-making phases of the agent, expecting the two teams to
be well built and overall an effective starting point for the simulations.

3.2.1 Preliminary results
Balanced training simulations proved that both instances of the code had all the
means to prevent either agent to gain a significant lead, usually remaining within
40 wins between the two versions, indicating not only that the two can actually
adapt to each other, but also that, with the resulting table, the agents would still
be able to employ a couple of viable strategies to win.

However, the final results proved that, although balanced in terms of performance,
a slightly early start during training leads to a significant advantage in terms of
victories: even a simple 100 games jump start resulted in a 6% increase in victory
rate, possibly linked to the, even shallow, experience of the first few turns of a
game, at the expense of a more specialized training for the instance that starts at
disadvantage.

Moreover, after training, the two files containing the two agents’ learning tables
had respectively a size of 4.58 GB and 4.45 GB, slowly increasing along with the
number of training games; given the remarkable disk space required by these files,
they are monitored for the duration of the experiments.

3.2.2 Simulation 1
Following the testing program presented in section 2.3, the first conducted experi-
ment involved a completely untrained instance of the agent against a trained version
of itself: the expected results should suggest that the trained agent be more effective
initially, while the untrained agent should be able to slowly discover better ways to
counter the most effective strategies. A useful aspect to take into consideration
compared to peer training is that the opponent will mostly use near optimal moves,
maximizing the penalties for any very disadvantageous move; however, since the
only difference between the two agents is their experience, effective moves would
still be awarded reasonable rewards, meaning that the trained code has access to
optimal moves but is not overwhelmingly stronger, since both teams have all the
right means to have balanced games.

The simulation is executed over 1000 games, in which agents will use the same
teams as during training with parameters set as α = 0.8, ϵ = 0.8, γ = 0.2 for both
agents in order to provide a challenge for the untrained agent while being able to
explore solutions across several different game states. The untrained instance of
the code is allowed to update its learning table to adapt to the strategies from the
trained code.
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3.2.3 Simulation 2
When players first log into the official Pokémon Showdown server, they are all given
a score of 1000 points, the baseline for ranking players based on their performance.
As all users start from the same score, even experienced players must at first adapt
to low ranking plays and strategies, even with very specialized teams, usually built
for top level competitions. To emulate such scenario, the code will play against an
agent playing random moves; the reason behind this decision lies with the need for
many different potentially suboptimal (if not wrong) moves across many different
matches.

Since the goal is to test the code under low ranking conditions, the opponent
is set up to not learn from previous games and force it to play only with random
moves over the required 1000 games with the same hyper parameters as above,
α = 0.8, ϵ = 0.8, γ = 0.2 due to the need for potentially new strategies and to
better adapt to the opponents.

3.2.4 Simulation 3
Along with higher rankings come more effective tactics, as well as more experienced
opponents, so that testing teams against them may be more precise and potentially
interesting. These opponents are expected to have developed reliable strategies
to win enough matches to progress towards higher scores; however, due to the
same initial conditions described in point 3.2.3, these tactics may be potentially
suboptimal because they were developed against low-ranking players.

To emulate this scenario, the agent is set up against a similar code as in 3.2.3,
but the opponent selects the best four moves in a greedy fashion as a pool for
the random selection, resulting in a greedy-like approach but not as repetitive
as a completely greedy algorithm, in order to prevent repetition and therefore
predictable by the tested agent. Again, the simulation is executed over 1000 games
with hyper parameters set up as in the previous points to α = 0.8, ϵ = 0.8, γ = 0.2.
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3.3 Results
The overall results pointed out some expected factors that heavily influenced
performance: namely, how states are defined and how training is conducted, as
hinted at in the previous sections, play a significant role in how the agent selects
moves and plans for strategies during games.

First, the amount of details recorded when defining a new state helps the
algorithm when elaborating a strategy in the following games, since the conditions
for the strategy to work are well defined and the code is capable of replaying the
steps required to end up in an advantageous state. Moreover, since some moves
react differently to different targets or scenarios (weather, statistics modifiers etc.),
the code is capable of exploiting information gathered during previous runs to
adapt to the opponent’s counter moves, which often lead to conditions similar to
those seen in other games, but with some subtle difference that may drastically
reduce the effectiveness of the optimal strategy. However the trade-off for a higher
level of detail is a notable increase in disk space usage for the learning tables due
to the granularity of states and the sheer number of variables that define them;
to limit the file size to a reasonable value, the minimum amount of data to be
stored proved to be a combination of information about the field and previous
moves to achieve a satisfactory performance. In addition to the state definition,
training had to be conducted without supervision; however, the code would be
stuck in local optima if during some games at the beginning one of the agents
developed a predictable strategy due to a very unsafe move, easily exploited by the
opponent and resulting in a learning table heavily suggesting said action, expecting
the opponent to make the same mistake. This often leads to a hiatus that could
extend for several games before the code could develop new strategies and break
free from the initial optimum. There is not much to do to prevent this kind of
behavior due to the initial randomness of the training, however combinations of
moves such as described are not common, so restarting the simulation from scratch
proved to be a quite effective solution to save disk space and time for training. This
is a common issue when dealing with reinforcement learning in large state-action
spaces, leading to agents exploring the solution space without ever reaching a
satisfactory conclusion or to instances of very short episodes due to early defeats
for the code [19].
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3.3.1 Game Analysis
In order to reasonably analyse the results of games, many different approaches have
been proposed; however, due to the variety of strategies and randomness involved
in games, trying to reduce the evaluation to a mere numerical value would overly
simplify the evaluation and planning processes. As mentioned in the previous
chapters, high profile players usually produce a “team report”, a document (be
it written or on a video) that describes in detail all the decisions taken during
team building and the general strategies they expected to employ in different
occasions, with some references to nuances and possible adjustments needed in case
of unexpected occurrences (random critical hits, activating side effect to name a
few). Players may be able, with the help of such documents, to reproduce the team
and its general behavior without the need to go through the process of building it
and planning for strategies, resulting in an effective tool to study the strengths and
weaknesses of the best teams, as well as effective strategies in the chosen format.
This information was particularly useful even years after the tournament, as it
provided a fair scale to compare the algorithm to a real player side by side in
similar scenarios, supporting the evaluation process of the games played across the
various simulations. In particular, sample games have been selected approximately
every 25 matches to evaluate the strategies employed by either agent, with a close
attention to the code with learning options. Lastly, since the teams used during the
simulations were the two from the 2016 VGC World Tournament finals, a direct
record of the game is available as additional reference.

The main way to evaluate competitors, due to the randomness involved in the
game environment, is to measure the amount of victories against opponents and,
according to rating, a score will be added to the winner depending on the difference
of rating (ELO rating system). This method however relies on the premise that
players have equal chances of victory when entering a game (the original rating
system was designed for chess competitions); therefore, the actual rating may suffer
from match-up oriented games such as Pokémon. To compensate this issue, official
tournaments expect player to win the most out of three games against the same
opponent to record the match as a win, focusing more on the amount of victories
during the competition to produce a rating.

To evaluate the agent’s performance, a mix of the two proposed solutions has
been employed, taking into account that both players have access to top level teams
and strategies, being the best results of an international competition, hence having
comparable chances of victory. Either method alone would not be sufficiently
accurate to describe how the two agent approached the games.
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3.3.2 Trained against Untrained
When playing against a trained version of the code, an untrained agent is required
to understand the opponent’s strategy and elaborate a counter plan to effectively
limit their moves and learn as much as possible from the limited number of games.
The results of this test accurately proved this assumption, providing significant
insights on how trained agents react to the provided situation as well.

Starting from mere results, the trained agent won 57% of the times, an expected
result since the initial games were easily won due to its advantage; however, the
untrained code was able to catch up on the opponent’s strategy rather quickly.

Figure 3.1: Plotting the number of wins every 50 games, the average is the axis
of symmetry for the two players

Looking in detail how the simulation unfolded, the initial few games are generally
won by the trained code, exploiting the lack of experience until around game 300
when the untrained code started developing viable tactics which led to a notable
number of victories and overall balance between the two, until the trained algorithm
adjusted the strategy to gain a major advantage for the last hundreds of games.

Looking at the above data, it is clear that the initial experience from training
proved to be useful to maintain a consistent advantage over the opponent, in
particular when the games required a different approach: the larger learning table
suggested the agent a wider variety of moves to avoid repetition and exploitation
by part of the untrained algorithm. On the other side however, using a specialized
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opponent not only helped during training, resulting in a substantially smaller table
size, but also provided a competent agent, capable of dealing with a far more
effective player, at the expense of some exploration but ultimately proving to be a
suitable training routine for the algorithm.

As an additional remark, the file containing the final learning table for the
untrained agent was significantly smaller than the opponent’s, due to the limited
amount of exploration allowed against a player employing near optimal strategies,
eventually settling at 809 MB. The fact that the untrained agent was able to catch
up on the opponent rather quickly may be due to the larger overall penalties for
moves that do not counter the opponent’s tactics efficiently, leading to a relatively
swift defeat, producing a smaller state space [20][19].

3.3.3 Games against random agent
To determine the effectiveness and robustness of the agent’s planning, playing
against opponents who approach games in a suboptimal way is an interesting test
bench. The player should be able to recognize various game states, potentially
discovering new viable tactics for unorthodox players, however it is a good way
to overall understand how the agent handles opponents who develop different
strategies than the ones it was prepared for during the training.

Figure 3.2: Plotting the number of wins every 50 games, the average is the axis
of symmetry for the two players
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The results are as expected at the beginning, since the agent is planning its
moves expecting the opponent to develop a strategy of their own with the given
team; however, conventional tactics are not meant to be adopted against such kind
of players and they are very likely to fail if the moves from the other team are not
considering the bigger picture. For example, in a very disadvantageous situation an
experienced player tries to protect the team and switches out the most important
assets to preserve their win conditions, while a random player could try to attack
mindlessly: expecting the former move a trained agent may try to set up for the
following turn and maintain the advantage, while the optimal move in the latter
case is to attack right away exploiting said advantage.

The agent is very close to the average in the initial games, meaning that the
number of wins is even during the first few hundred games; however, as the
simulation progresses the algorithm is capable of developing a solid strategy that
allows the code to achieve a large amount of victories for the rest of the simulation,
with some exceptions around games 550 an 900, possibly due to a critical flaw in
the strategy that arose in some selected scenarios.

The simulation ended with a win rate of 56.6% for the agent, slightly inferior
compared to the performance against an adaptive agent (described in the previous
section), linked to the key factor that the opponent was not adjusting a strategy,
but rather kept playing random moves, therefore the algorithm could only refine
its tactics based on random data.

3.3.4 Games against greedy agent
Greedy agents are a common way to program algorithms when first approaching a
task, either because they are easier to code or due to their faster convergence. In
the context of Pokémon, a greedy player should be a reasonable approximation for
new players or users trying a team from other peers: the latter in particular is a
common scenario for player who want to learn but cannot build a strong enough
team on their own, usually trying basic strategies to check if they are effective.
The agent should be able to adapt rather quickly to such behavior and develop a
consistent counter strategy to maintain a significant advantage.

Moreover in this case, both a trained and untrained agent should be able to
produce relevant performances in terms of both strategy and results; therefore,
each of them were tested as additional comparison between the two instances.

The results show that the trained agent struggles during the first few games but
overall it has the upper hand over the greedy algorithm, however when trying to
optimize the strategy to be more effective, the states it moves in are different enough
to change the opponent’s pattern and therefore restart the optimization process,
although the frequency of these occurrences is decreasing along the simulation as
the only moments where the agent has a negative win rate are around games 250,
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Figure 3.3: Plotting the number of wins every 50 games, the average is the axis
of symmetry for the two players

400 and 700, possibly due to better optimization of past strategies. Again the
training is likely the reason behind this behavior, as the code expects more optimal
plays rather than greedy solutions, however, since the other player is predictable,
results are on average better than the ones from the random opponent, rounding
up with a win rate of 60.4%.

On the other side the untrained version of the code has a stronger start and
overall better consistency since not having previous knowledge encourages the
algorithm to exploit the best strategy at the maximum of its potential, however
due to the non negligible probability to explore new solutions left by design, the
code has still room for improvement, as suggested by the minima at around games
250 and 350, possibly linked to some attempts at optimization exploited by the
opponent. The final better consistency with respect to the trained instance is
remarkable, not only for the adaptation itself, which led to a comparable number
of victories as the trained version, but also for the final result, which ended up as
the best simulation with a 62% of win rate.

The code had to face a predictable opponent with a simplified decision making
process; nevertheless, both players have very well built and all around balanced
teams, meaning that such a result was far from obvious. Moreover the comparison
between the two instances pointed out that this algorithm is suitable for playing
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Figure 3.4: Plotting the number of wins every 50 games, the average is the axis
of symmetry for the two players

against human players at high level, since the strategies are designed to follow a gen-
eral pattern, with training providing a fair understanding of the game environment
to reproduce competent tactics.
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Chapter 4

Conclusions

Reinforcement learning proved to be a very effective tool to handle the proposed
environment, efficiently learning the various options in the game and their con-
sequences with little to no external intervention; however, the proposed solution
comes with a number of caveats and issues that further highlight the limits of
simple reinforcement learning. The first issue encountered when setting up the
algorithm was how states were encoded and recognized: while it is rather easy to
develop a parser to allow the code to gather more and more information on the
game state and memorize a large amount of data to elaborate the strategy, the
early implementation of the code struggled with symmetries and had to handle
technically identical situations as separate occurrences, potentially with different
strategies as well. Although this issue was patched later in development, it clearly
showed a potential limitation in basic reinforcement learning algorithms, leading
to additional work towards state recognition and modeling. This relatively smaller
problem set back the initial training simulations for the mentioned reasons; however,
additional states led to a significant increase in disk space requirements, more than
doubling the size of the final files used for memory.

An additional aspect to be taken into account is how memory is managed in the
code, in particular, as mentioned above, the way the algorithm saves each state
is key for the performance of the agent; however, the amount of details stored
when describing game states determines the final disk space required to store the
memory table. A compromise had to be made between accuracy when recording
a new state and memory requirements, affecting performance and containing the
maximum learning table file size.

Finally, many more minor details may affect the overall performance of the
algorithm, from the regular expressions used in the parser up to internal data
structures and their management can be crucial when trying to improve performance,
nevertheless reaction time is still acceptable and further optimization is due only
to the data saving process, that may take many seconds to complete.
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This project is an effective example of how reinforcement learning algorithms
approach decision-making in uncertain conditions, however, as mentioned above,
it suffered from some of the most well known issues of this approach[8]: bloating
file sizes to store training and experience as well as pattern recognition issues
that, while easily fixed in some cases, usually require a much more complex coding
effort to correctly handle similar situations and potentially save some disk space.
Overall the produced results were in line with expectations and they surely open
to some improvements starting from the code written to tackle this problem, to the
adoption of neural networks to a more efficient data management many ideas can
be developed to further boost performance and potentially rival with experienced
human players.

Moreover, due to the ongoing development of new games, together with the
addition of new mechanics and rules, the software can be expanded to recognize the
format of the game(s) it is playing and adapt to the increasing number of different
categories where a variety of players may compete. This may lead the resulting
algorithm to a deeper understanding of the game and potentially to some more
accurate strategies in various scenarios proposed by each of the rule-sets used in
separate competitions.

In addition to the proposed improvements, a very useful change that might be
added for future testing is parallelism: with little modifications, by using multi-
threading, the code might be able to process a larger number of agents during
simulations, allowing for a further increase in performance during testing as well
as giving the opportunity for multiple games on a public server, to improve the
experience with real-life data combined with the original training.

Lastly, because of the very limited human intervention during training and
across the many simulations, a similar approach might be exploited for different
fields, involving random occurrences in the environment and non-deterministic
actions during simulations; the key role for this transfer lies in the interface between
the code and the environment, which requires a sufficiently large amount of control
variables to accurately recognize and process states, actions and consequences.
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