
POLITECNICO DI TORINO
Master degree course in Data Science and Engineering

Master Degree Thesis

AI-powered Weed Identification
in cultivated fields: an Object

Detection approach

Supervisor
prof. Andrea Bottino

Candidate
Beatrice Macchia

matricola:292178

Internship Tutor
Data Reply’s Manager Alessandro Piovano

Anno accademico 2022-2023

This work is subject to the Creative Commons Licence

Summary

Over the last decades, Artificial Intelligence has attracted much attention and
it is becoming increasingly common in our lives. AI is entering our physi-
cal spaces in the form of autonomous vehicles, drones or domestic devices.
Among the different AI applications, in the last years part of the research
community has focused on Computer Vision, a sub-field that teaches ma-
chines to analyze and extract relevant information from images and videos,
performing multiple tasks such as classification, object recognition, map-
ping of the position and movement of human body joints. Thanks to the
great improvements in storage systems, processing speeds, and analytic tech-
niques, these types of algorithms are getting even more precise in analysis
and decision-making.

Computer Vision includes multiple tasks, differing in complexity and goals.
Among them, Object Detection works to identify and locate objects within an
image or video by drawing bounding boxes around them. It can be useful for
several real-life applications, from self-driving cars to medicine or agriculture.

Regarding the last one, weeds represent one of the most invasive issues af-
fecting agricultural production. It is very difficult for the farmers to manually
identify and pollute or extrapolate each weed singularly, hence chemical sub-
stances like herbicides are commonly sprayed all over the cultivated fields,
resulting in massive waste and pollution of the farmland’s ecological envi-
ronment. With the continuous improvements in the agricultural production
level, accurately distinguishing crops from weeds has become very important.

This thesis elaborates on the possibility of using object detection meth-
ods to solve weed extirpation problems. It provides an overview of various
systems for weed detection and analyzes the advantages and disadvantages
of state-of-the-art algorithms. In particular, two object detection algorithms
will be further analyzed: YOLO (You Only Look Once) and Faster R-CNN.
YOLO is a one-stage object detector, which means that its model architecture
is built in order to directly predict objects’ bounding boxes in the images.
This leads to a simpler and faster architecture, although it can sometimes

3

lose some accuracy. Instead, Faster R-CNN is a two-stage detector: its struc-
ture is more complex as it is composed of a first stage, where the image is
screened out and some regions of interest are generated and passed to the
second stage, where these regions are filtered and refined.

In this project I deeply analyze the differences between the two detectors
in terms of architecture and potential, then I test both models on agricultural
data. I personally built the dataset using the images that the farmers sent
us, which represent multiple typologies of cultivated fields, and I labeled
them using the LabelImg tool. The data collection phase took a significantly
long time since an unexpected drought led to the seedlings taking longer
than usual to germinate, hence we had to wait. Additionally, the labeling
process took me some weeks considering that images could be very rich in
small crops and weeds presence: each of them needed to be bordered inside
a specific bounding box. In the images the following elements were labeled:
crops, which are the good plants; weeds, the infesting plants; roots of the
weeds, where we want the pistons to specifically hit; rows, which are the
lines of crops.

Once the dataset was set up, I could run the various experiments with
YOLO and Faster R-CNN. The complete dataset has been split into three
parts: training, validation and test sets. The two object detection models
have been fine-tuned on the training set, their hyperparameters have been
tuned and evaluated on the validation set, and the final performances have
been assessed on the test set. The observed results show that YOLO is
the most suitable detector for the purpose of this project: it outperforms
Faster R-CNN especially in recognizing weeds and their roots, that is the
main focus of this project. Therefore YOLO is chosen as a reference model
to evaluate how the system would act in a real-life scenario. In particular
I estimate the real dimension of the weeds represented in the images and
analyze whether their root would be successfully extirpated by the mechanical
piston, when the weed is recognized by the model but the root is not. For
this purpose, I compared and measured the distance between the center of
the weed bounding box and the actual root position. When the weed root
is situated within the piston’s range of action, then it would be successfully
extirpated. As a result, we could observe that the vast majority of roots
would be extrapolated.

Inference time has a key role as well in this project as the model is deployed
in a real-time context: the final step is optimizing its speed in recognizing
the elements of interest in the images. Unfortunately, the computer utilized

4

by the cultivators is not provided with a powerful GPU and internet con-
nection is often quite weak, then it is not possible to exploit online tools
such as Google Colab. For this reason, I use OpenVINO (Open Visual Infer-
ence and Neural Network Optimization) and ONNX (Open Neural Network
Exchange): OpenVINO is an open-source toolkit used to optimize models’
inference on Intel products, while ONNX is usually used as an intermediate
format to convert models to other frameworks, but is also able to reduce
the time required by the model to perform its tasks. Even though ONNX
and OpenVINO bring a moderate improvement in terms of inference time,
they also lead to a significant accuracy loss. Once again, this proves that
we cannot simply speed up the model while keeping the same performances:
it is a trade-off that needs to be carefully assessed taking into consideration
the context requirements. In this sense, the choice of the model needs to
be balanced with respect to the speed reached by the tractor and the time
required by the piston to be activated and hit the detected weeds.

This thesis demonstrates that an object detection approach for weed recog-
nition in a real-time scenario is feasible and brings satisfactory results. The
use of a larger dataset with images from various crop types could potentially
lead to an improvement in the model performances, especially for what con-
cerns generalizability. Currently the model has only been trained on specific
and limited crop types, therefore a bigger and more diversified dataset would
make it possible for the model to learn how to recognize new crops and weeds
that it has not encountered before. Moreover, a bigger training dataset can
enable the use of semantic segmentation techniques, leading to more accu-
rate and detailed predictions. In conclusion, Computer Vision proves to be a
promising tool in agriculture and, more in general, AI-powered solutions are
able not only to help farmers produce more with fewer resources, but also to
increase crop quality and reduce the impact of large-scale production on the
environment.

5

Acknowledgements

Thank you Riccardo for being the best wingman I could ask for. This is a
huge achievement for me and I will never thank you enough for being there
during the whole path: it was fundamental.

Thank you to my parents and my grandparents: I am very proud of being
the first graduate woman in my family, and it would have not been possible
without your sacrifices. Thank you to my brother for being a reference point
during my life.

Finally, thank you to my best friends for being an example to look up to,
and for always supporting me.

6

Contents

List of Tables 9

List of Figures 11

1 Introduction 13
1.1 Artificial Intelligence . 13
1.2 Computer Vision . 14
1.3 Object detection . 14
1.4 Weed Detection . 15
1.5 Data Reply . 15

2 Literature 17
2.1 Computer Vision . 17

2.1.1 Convolutional Neural Networks 19
2.2 Object Detection . 20

2.2.1 Faster R-CNN . 22
2.2.2 YOLO . 24

2.3 ONNX . 29
2.4 OpenVINO . 30

2.4.1 Model Optimizer . 31

3 Problem statement and Solution 33
3.1 Context . 33
3.2 Camera features . 34
3.3 Dataset . 35

3.3.1 Labeling . 37
3.4 Object Detection Training . 39

3.4.1 Faster R-CNN . 40
3.4.2 YOLOv5 . 40

7

3.5 Real performances estimation 41
3.6 Inference optimization with ONNX and OpenVINO 43

4 Results 45
4.1 Metrics . 45

4.1.1 IoU . 45
4.1.2 Precision and Recall 47
4.1.3 Mean Average Precision 47

4.2 Faster R-CNN Results . 48
4.3 YOLO Results . 49
4.4 Real performances estimation 52
4.5 Inference optimization with ONNX and OpenVINO 54

5 Conclusion 57

Bibliography 59

8

List of Tables

3.1 Flir Blackfly S camera main features. 34
4.1 Complete performances of the model evaluated on the valida-

tion set, fine-tuning Faster R-CNN with ResNet-50 backbone
on 100 epochs. 48

4.2 Complete performances of the model evaluated on the valida-
tion set, fine-tuning Faster R-CNN with ResNet-50 backbone
on 100 epochs, excluding rows of crops from the dataset. . . . 49

4.3 Comparison of the performances of YOLOv5s, YOLOv5m and
YOLOv5l evaluated in terms of recall of the weeds and of the
roots of the weeds. Training processes were run using 100
epochs and the default settings. 49

4.4 YOLOv5m results gotten by tuning the image size and the
batch size. Experiments are evaluated in terms of recall of the
weeds and of the weeds roots. Training processes were run
using 100 epochs . 50

4.5 Complete performances of the model evaluated on the valida-
tion set, fine-tuning YOLOv5m and keeping image size=1280
and batch size=8 . 51

4.6 Complete performances of the model evaluated on the valida-
tion set, fine-tuning YOLOv5m and keeping image size=1280
and batch size=8, without the rows of crops. 51

4.7 Estimation of the actual performances of the model in ex-
tirpating the weeds’ roots, considering a piston with a 1 cm
diameter. 53

4.8 Mean inference time for best-performing model in different for-
mats: Pytorch, ONNX, OpenVINO. Statistics are computed
on Intel CPU. 54

4.9 Complete performances of the ONNX model evaluated on the
validation set, fine-tuning YOLOv5m and keeping image size=1280
and batch size=8. 54

9

4.10 Complete performances of the OpenVINO model evaluated on
the validation set, fine-tuning YOLOv5m and keeping image
size=1280 and batch size=8. 55

4.11 Mean inference time for the best-performing model in differ-
ent formats: Pytorch, ONNX, OpenVINO. Statistics are com-
puted on NVIDIA GPU. 55

10

List of Figures

1.1 Multi-Object Detection And Classification. 14
2.1 Computer Vision main tasks [1]. 18
2.2 Convolutional Neural Network example structure. 19
2.3 Two-staged vs One-stage Detectors Diagram. [3] 21
2.4 R-CNN . 22
2.5 Faster R-CNN is a single, unified network for object detection.

The RPN module serves as the ‘attention’ of this unified network. 24
2.6 YOLO divides the image into an S × S grid and for each grid

cell predicts B bounding boxes. Only the bounding boxes with
the highest confidence are kept. 25

2.7 YOLOv5 architecture. 27
2.8 YOLOv5 equation change. 28
2.9 The workflow of OpenVINO. 30
3.1 Tractor with camera attached. 35
3.2 Dataset composition in terms of crops. 36
3.3 Dataset composition in terms of weeds. 37
3.4 Labeled objects: crops in blue, weeds in red, weeds’ roots in

orange, row of crops in purple. 38
3.5 YOLOv5 different model sizes, where FP16 stands for the half

floating-point precision, V100 is an inference time in millisec-
onds on the Nvidia V100 GPU, and mAP based on the original
COCO dataset. 40

3.6 Image taken putting a meter on the ground, in order to collect
information about crops and weeds’ real dimensions. 42

4.1 Intersection over Union formula. 46
4.2 Case example of how to define TP, TN, FP, FN, when the IoU

threshold is set to 0.7. 47

11

4.3 Confusion Matrix of the best-performing model. On the hori-
zontal axis there is the ground truth, while the predictions are
reported on the vertical axis. In the squares of the matrix we
observe the corresponding percentages. 52

12

Chapter 1

Introduction

Weeds are one of the main agricultural problems, as they limit the yield
and quality of cultivated fields by competing with crops for light, water,
fertilizer, and space. Chemical herbicides have become the primary tool
for farmland weeds management worldwide because of their high efficiency.
However, manually detecting every single weed would be difficult and time-
consuming, hence they are sprayed over large areas, resulting in overuse, low
utilization, and serious pollution. Even though herbicides can directly kill the
wild plants, excessive use will decrease the yield and quality of agricultural
products, cause serious environmental pollution, and reduce the efficiency of
agricultural production.

In this project, I propose an alternative approach based on the recognition
and localization of weeds in fields, in order to be consequentially extracted
through the use of pistons.

1.1 Artificial Intelligence
Artificial intelligence (AI) refers to the simulation of human intelligence in
machines that are programmed to think and learn. It encompasses a wide
range of technologies and techniques, including machine learning, deep learn-
ing, natural language processing, and computer vision, among others. AI
systems can perform tasks that typically require human intelligence, such as
understanding natural language, recognizing images, and making decisions.
The ultimate goal of AI research is to create machines that can perform any
intellectual task that a human being can, and some experts believe that this
goal is attainable in the future.

13

1 – Introduction

1.2 Computer Vision

Machine learning is a particular type of algorithm where machines learn pat-
terns directly from data, perform reasoning about a specific task and extract
meaningful information. Deep learning can be considered as a subset of ma-
chine learning that makes extensive use of neural networks. The architecture
of neural networks is strongly inspired by the structure and functioning of a
biological brain. Basically, an artificial neural network is composed of a vari-
able number of neuron layers connected to each other, hence the name "deep"
neural networks. The information is elaborated by traveling from layer to
layer until the last layer is reached.

1.3 Object detection

Figure 1.1. Multi-Object Detection And Classification.

Object detection is a computer vision problem that concerns the identi-
fication of class instance objects in an image (or video), and locating the
actual position of said object in the picture. The spatial position of the de-
tected object is identified by a surrounding rectangular bounding box that
determines its height and width. Thus, object detection is far more power-
ful than image classification, not only because it "draws" a box where the
object is located, but also because it can identify multiple elements in a sin-
gle image, while classification models have the limit of labeling only the one
predominant object in the scene.

14

1.4 – Weed Detection

1.4 Weed Detection
Technology is improving the ways, methods and approaches many old and
tedious tasks are being performed. Agriculture deals with the cultivation of
crops and rearing of animals for both human and industrial consumption.
Due to this fundamental role, it has been subject to different stages of tech-
nological development throughout the ages due to humans’ need to reduce
man’s intervention and improve crop yield. One symbolic example of this
technological improvement is the invention of machineries such as tractors,
harvesters, planters, sprayers, etc..

Regarding weeds, they are generally found among crops, they compete
with other plants for resources such as water, nutrients, air and space thus
limiting the growth of desired plants. However, since farmers dislike to record
loss in the overall result of their farm investment, they exploit multiple ap-
proaches to eliminate the presence of weeds and their damages on desired
plants: the application of herbicides is the most widespread method. These
traditional ways have a significant level of damaging effect on the desired
plants and on the surrounding environment. This is where the AI comes in
our aid: in order to ensure preciseness and improve accuracy in weed de-
tection, agricultural organizations together with research institutes are now
incorporating artificial intelligence principles through various technological
tools.

1.5 Data Reply
Reply is a global consulting company that specializes in digital transforma-
tion and innovation. The company was founded in Italy in 1996 and has
since expanded to have a presence in over 20 countries around the world.

The company offers a wide range of services, including strategy consulting,
technology consulting, digital marketing, data analytics, and customer expe-
rience design. They work with clients across a variety of industries, including
finance, retail, automotive, telecommunications, and more.

One of Reply’s key strengths is their focus on emerging technologies, such
as artificial intelligence, blockchain, and the Internet of Things (IoT). They
have a team of experts dedicated to researching and developing solutions that
leverage these technologies to help their clients stay ahead of the curve.

Specifically, I worked on this project at Data Reply, that is a subsidiary
of the society group Reply. It focuses specifically on data engineering, data

15

1 – Introduction

science, and data analytics in general. Their main products are based on re-
searching and developing solutions that include technologies such as artificial
intelligence, machine learning, and big data.

Overall, Data Reply’s main goal is to help their clients make sense of the
vast amounts of data they generate and collect, and turn it into actionable
insights that can drive business success.

16

Chapter 2

Literature

In this chapter, I introduce the background and focus area of this thesis,
which is Computer Vision. In particular I will highlight the strengths of
object detection and compare it with other Computer Vision tasks. I will
analyse YOLO’s architecture and explore its potential in recognizing objects
in the images and in creating bounding box around them. Finally I will
investigate ONNX and OpenVINO, two tools used in order to speed up the
model’s inference time.

2.1 Computer Vision
Computer vision is the field of Artificial Intelligence that focuses on trying
to replicate the complexity of the human vision system. It aims at making it
possible for computers to identify and process objects in images and videos
in the same way that humans do. Even though the capacity of computers to
"see" and recognize the elements of videos and images is still limited, research
in artificial intelligence and innovations in deep learning and neural networks
have enabled computers to surpass humans in some tasks related to detecting
and labeling objects, in particular in terms of speed.

Computer vision is all about pattern recognition: the standard method to
teach a computer how to understand visual data is to feed it images - lots
of images - thousands, millions if possible, that have been labeled. These
images go through complex algorithms that allow the computer to learn how
to recognize patterns in all the elements that relate to those labels. The
biggest improvement was provided by Deep learning, that quickly become
the most effective method to do computer vision and AI in general. In most
cases, creating a good deep learning algorithm comes down to gathering a

17

2 – Literature

large amount of labeled training data and tuning the parameters such as the
type and number of layers of neural networks and training epochs.

Figure 2.1. Computer Vision main tasks [1].

The main Computer Vision tasks are summarized in Figure 2.1. In par-
ticular:

1. Image classification: identifying the class to which the main object
represented in the picture belongs. In the example in the picture, the
deep learning model will determine that the animal detected in the image
belongs to the cow class with the highest probability.

2. Object detection: it enables the detection of objects in an image and
their spatial location. Bounding boxes, that are rectangles, are used to
delimit the objects within them.

3. Semantic segmentation: identifying similar objects in the image that
belong to the same class at the pixel level. The similar objects are
colored in the same way to symbolize belonging to the same class.

18

2.1 – Computer Vision

4. Instance segmentation: it recognizes the different instances given in
the image with their boundaries at the deep pixel level.

2.1.1 Convolutional Neural Networks

CNNs are deep neural networks that consist of an input layer, an output
layer, and a variable number of hidden layers with different purposes.

What differs with respect to standard neural networks is that CNNs have
a particular type of layer, called convolutional layer. The input image is rep-
resented as a NxMx3 matrix, where the third dimension corresponds to the
three color planes: Red, Green, and Blue. The role of Convolutional Network
is to reduce the images into a form that is easier to process, without losing
features that are critical for getting a good prediction. This is done by the
kernel, which is a filter that slithers across the image-matrix and acquires
information by making calculations. The objective of the Convolution Oper-
ation is to extract the high-level features from the input image. At the end
of this process the resulting matrix is passed to the following layer, where
other operations will be performed.

To summarize, each network typically contains several convolutional layers
of different sizes, each one of them performing a convolution operation that
filters its input before passing it to the next layer. The goal of each layer is
to reduce or modify the parameters, thus allowing the network to be deeper.
An example can be observed in Figure 2.2.

Figure 2.2. Convolutional Neural Network example structure.

CNNs, among others, are mainly used to perform computer vision tasks;
in particular they achieve good results in solving object detection problems.

19

2 – Literature

2.2 Object Detection
As one of the primary tasks of computer vision, the ultimate goal of object
detection is to give as output the classes and locations of objects. Its success
has been amplified by the availability of large-scale open-access datasets, the
development of powerful models and the availability of vast computational
power. Thus the final aim of object detection is to develop computational
models that are able to answer to the question: “What objects are where?”
[2].

In the last decade, the fast improvements in the deep learning field have
greatly accelerated the pulse of object detection. In fact the complexity of
deep learning networks and the computing power of GPUs have made it
possible to significantly improve the performance of object detectors, achiev-
ing significant breakthroughs in object detection. As a result, numerous
real-world applications, such as healthcare monitoring, autonomous driving,
video surveillance, anomaly detection, or robot vision, are based on deep
learning object detection.

Even though deep learning based techniques are more robust to complex
scenes in the images, they usually consist of supervised methods. As a conse-
quence a huge amount of training data is needed. In order to build a suitable
training set the process of image annotation is necessary: it may be labor-
intensive and expensive, since a great number of images are required. For
example, labeling thousands of images to train a custom DL object detection
algorithm can be considered a small dataset. However, luckily many bench-
mark datasets (MS COCO, Caltech, KITTI, PASCAL VOC, V5) provide a
great amount of labeled data. Moreover most object detectors are trained
for a specific resolution of input. These detectors generally underperform for
inputs having different scales or resolutions. In general it is important to pay
enough attention on the training data: for example all the object detection
algorithms will tend to perform well on larger objects if the model is trained
on larger objects and will show poor performance on comparatively smaller
sized objects.

Object detectors aim at extracting features from the input image/video
frame by solving two main tasks:

1. Find an arbitrary number of objects (possibly even zero);

2. Classify every single object and estimate its size with a bounding box.
We can divide object detectors into two main types: One-stage and Two-

stage detectors.

20

2.2 – Object Detection

Figure 2.3. Two-staged vs One-stage Detectors Diagram. [3]

You can observe their structure in Figure 2.3.
In a two-staged detector the tasks described above are solved in two sep-

arate stages: first several object candidates are proposed, known as regions
of interest (RoI), using reference boxes (anchors). In the second phase, the
proposals are classified and their localization is refined.

In R-CNN the authors used an external selective search in order to build
proposals that are passed to a CNN in order to perform classification and
bounding box regression. Later, Faster-RCNN significantly improved this
process by proposing a scheme in which features are shared between both
stages: a convolutional backbone network, such as VGG or ResNet, outputs
global feature maps shared between the Region Proposal Network (RPN) and
the detection network. This process reduces the cost of generating proposals
externally.

Faster R-CNN became a pioneer and has inspired many follow-up works
that have tried to improve detection accuracy with different approaches. This
type of architecture achieves a very high accuracy rate but is rather slow, then
these models are usually considered unsuitable for real-time applications.

One-stage detectors combine both tasks into one step to achieve higher
performance at the cost of accuracy. They predict bounding boxes over the
images without the region proposal step, as they contain a single feed-forward

21

2 – Literature

fully convolutional network that directly provides the bounding boxes and
the object classification. These detectors do not apply a separate network for
extracting candidate regions, hence they show better performance in terms
of processing time and can be used more easily in real-time applications. The
most popular one-stage detectors include YOLO, SSD, and RetinaNet.

2.2.1 Faster R-CNN
As anticipated, Faster R-CNN is a two-stage deep convolutional network used
for object detection that can accurately and quickly predict the locations
of different objects. In order to understand how Faster R-CNN works, it is
necessary to do a quick overview of the networks that it evolved from, namely
R-CNN and Fast R-CNN.

R-CNN (Region-based Convolutional Neural Network) [4] is a deep con-
volutional network that can detect 80 different types of objects in images. It
consists of the following 3 main modules that are summarized in Figure 2.4:

• The first module delivers 2,000 region proposals using the Selective
Search algorithm.

• The second module extracts a feature vector of length 4,096 from each
region proposal.

• The third module uses a pre-trained SVM algorithm to classify the region
proposal to either the background or one of the object classes.

Figure 2.4. R-CNN

To overcome some limitations of R-CNN, the Fast R-CNN [5] model has
been proposed as an extension. Its main characteristics are:

• The authors introduced a new layer called ROI Pooling which extracts
equal-length feature vectors from all proposals (i.e. ROIs) in the same
image.

22

2.2 – Object Detection

• The new ROI Pooling layer is also used to share the computations (i.e.
convolutional layer calculations) across all proposals (i.e. ROIs), while in
R-CNN calculations were done singularly for each proposal. This makes
Fast R-CNN significantly faster.

• Fast R-CNN does not cache the extracted features and thus does not
need so much disk storage compared to R-CNN.

• Fast R-CNN reaches a greater accuracy with respect to R-CNN.

Faster R-CNN [6] was created as an extension of Fast R-CNN. The main
contributions brought by its authors are:

• Region Proposal Network (RPN): a fully convolutional network that
generates proposals with various scales and aspect ratios.

• Anchor boxes: reference boxes of a specific scale and aspect ratio. With
multiple reference anchor boxes, then multiple scales and aspect ratios
exist for the single region. This can be thought of as a pyramid of
reference anchor boxes. Each region is then mapped to each reference
anchor box, and thus detecting objects at different scales and aspect
ratios.

• The convolutional computations are shared across the RPN and the Fast
R-CNN. This reduces the computational time.

Summarizing, Faster R-CNN is composed of two modules:

1. Region Proposal Network (RPN): a fully convolutional network that
takes an image as input and outputs a set of object proposals, which
are regions in the image that are likely to contain objects. The RPN is
designed to be computationally efficient and can generate proposals very
quickly. In particular it takes an image as input and passes it through a
series of convolutional layers to generate a set of feature maps. At each
spatial location in the feature maps, the RPN generates a set of anchor
boxes, boxes of different sizes and aspect ratios that are used to propose
object locations. For each anchor box, the RPN predicts two values:
the probability that the anchor box contains an object, and the offset
between the anchor box and the ground-truth box. These predictions
are made using a set of convolutional layers and a set of fully connected
layers. The RPN then applies non-maximum suppression (NMS) to the
proposed boxes to remove redundant detections and select the top N

23

2 – Literature

Figure 2.5. Faster R-CNN is a single, unified network for object detection.
The RPN module serves as the ‘attention’ of this unified network.

boxes for further processing. These boxes are then passed to the second
component of the Faster R-CNN architecture.

2. Fast R-CNN network: its goal is to classify each proposed box as con-
taining an object or not, and to refine the coordinates of the box so
that it more accurately encompasses the object. The Fast R-CNN net-
work takes each proposed box as input and passes it through a series
of convolutional and fully connected layers to generate a fixed-length
feature vector. This feature vector is then used to classify the box and
refine its coordinates using two separate output layers. The classifica-
tion layer produces a probability distribution over the object classes, and
the bounding box regression layer produces four offsets that are used to
refine the coordinates of the box. The final output of the Fast R-CNN
network is a set of object detections, each with a class label and a refined
bounding box.

2.2.2 YOLO
Currently YOLO [7] represents the state of the art of object detection in
real-time. As a matter of fact, although the models increased in accuracy

24

2.2 – Object Detection

each year, object detectors lacked speed that allowed them to perform in
real time. That is the goal of YOLO: turning the entire object detection
pipeline into a single network that could be optimized end-to-end directly on
detection performance.

Figure 2.6. YOLO divides the image into an S × S grid and for each
grid cell predicts B bounding boxes. Only the bounding boxes with the
highest confidence are kept.

This is how YOLO works:

• Divides images into S regular grids;

• Performs detection and localization on these grids, obtaining B bounding
boxes. Each bounding box consists of:

1. the bounding box coordinates: usually they are made up of 5 num-
bers: the x coordinate of the box’s center, the y coordinate of the
box’s center, the width, the height, and the confidence. Note that
the width and height are fractions relative to the entire image size;

2. the object label, which is represented by a one-hot vector of length
C, the number of classes in the dataset. Thus it will be an all-0
vector, unless for the i-th position, which is a 1, where i is the label
index;

3. the probability that the object is in the cell grid; the classification
score will be from 0.0 to 1.0, with 0.0 being the lowest confidence
level and 1.0 being the highest. These confidence levels capture how
much the model is certain that there exists an object in that cell and
that the bounding box is accurate.

• Suppresses the bounding boxes that have lower probability scores;

Then the overall prediction of the model after the first two steps is a tensor
of shape S × S × (C + B ∗ 5).

25

2 – Literature

One possible drawback of this process is that each cell predicts B bounding
boxes and multiple bounding boxes may overlap. Therefore the same object
could be predicted with multiple slightly different bounding boxes. In order
to solve this issue, YOLO exploits a Non-Maximal suppression algorithm:
in summary, it divides the image into grids of equal size, performs object
detection and classification, then it chooses the highest probability score and
suppresses all the bounding boxes having the largest IoU with the current
high probability bounding box. Basically if the same object is surrounded
by multiple overlapping bounding boxes, only the one with the highest score
is kept. It repeats these stages in a loop until the final bounding boxes are
obtained.

YOLOv5

At the time when this project has been developed, the latest YOLO version
available was YOLOv5 [8], the implementation provided by Ultralytics.

YOLOv5 consists of the same three key components, its architecture can
be observed in Figure 2.7:

1. backbone: it is made up of convolutional layers and it aims at detecting
the key features of an image and processing them.

2. neck: it combines information from layers of different depths, uses the
features from the convolutional layers in the backbone with fully con-
nected layers to make predictions on probabilities and bounding box
coordinates.

3. head: it is the final output layer of the network, it is responsible for the
predictions and it can be interchanged with other layers with the same
input shape in order to transfer learning.

More specifically, in YOLOv5 the three components [11] are built in the
following way:

• CSP-Darknet53 as a backbone: CSP-Darknet53 is just the convolu-
tional network Darknet53 to which the authors applied the Cross Stage
Partial (CSP) network strategy. As a matter of fact YOLO uses resid-
ual and dense blocks in order to deal with the vanishing gradient issue.
However this leads to the problem of redundant gradients. CSPNet helps
tackle this problem by truncating the gradient flow.

26

2.2 – Object Detection

Figure 2.7. YOLOv5 architecture.

The application of this strategy represents a big advantage to YOLOv5,
since it helps reduce the number of parameters hence reducing the num-
ber of FLOPS needed. This leads to increasing the inference speed,
which is a crucial point in real-time object detection models and one of
the main strengths of YOLO.

• SPPF and PANet as a neck: PANet is a feature pyramid network,
it was already used in YOLOv4 and in other previous YOLO variants in
order to improve information flow and help in the proper localization of
pixels in the task of mask prediction. In YOLOv5 this network has been
modified by applying the CSPNet strategy. Also a variant of Spatial
Pyramid Pooling (SPP), that is the SPPF, has been used: it is a block

27

2 – Literature

that performs an aggregation of the information that receives from the
inputs and returns a fixed length output. For this reason it increases the
receptive field and isolates the most relevant context features without
lowering the speed of the network.

• Convolution layers as head: Just like in YOLOv3 and YOLOv4, the
head is composed of three convolution layers that predict the location
of the bounding boxes (x, y, height, width), the scores and the objects
classes. The equation to compute the target coordinates for the bound-
ing boxes has changed from previous versions, the difference is shown in
Figure 2.8.

Figure 2.8. YOLOv5 equation change.

Other important YOLOv5 features include:

• Activation function: first of all the Sigmoid Linear Unit is used with
the convolution operations in the hidden layers, while the Sigmoid ac-
tivation function has been used with the convolution operations in the
output layer.

• Loss function: as anticipated in the previous sections, YOLOv5 gives
three outputs as a result: the classes of the detected objects, their bound-
ing boxes and the objectness scores. The performances over these com-
ponents are computed by using the Binary Cross Entropy (BCE) to
compute the classes loss and the objectness loss, while the Complete
Intersection over Union (CIoU) loss to compute the location loss. Then
the final loss is computed by combining the three losses in the following
way:

Loss = λ1Lcls + λ2Lobj + λ3Lloc

28

2.3 – ONNX

2.3 ONNX
ONNX [9] stands for Open Neural Network Exchange. It is used for mainly
two different tasks:

• Convert model from any framework to ONNX format, and then from
ONNX format to any desired framework

• Faster inference using ONNX model on supported runtimes
Considering that the aim of this project is to build a real-time system

capable of identifying and hitting weeds in the shortest time possible, the
third task is particularly interesting.

In general if you want to reduce the computing power required to train an
AI model you have two options: you can make the AI model smaller, which
is risky in terms of performances, or make the model more efficient. This is
where ONNX comes in our help: you can use ONNX to make a given model
faster, eliminating the need to use a GPU instead of a CPU. As a matter of
fact we need to consider that the PC used by the cultivators is a middle-level
computer and in general CPUs have a broader availability and are cheaper
to use with respect to GPUs.

From a technical point of view, the ONNX format is composed of a proto-
buf schema, that defines the structure of the model, and a set of binary data
files, that report the actual values of the model’s parameters. The protobuf
schema defines the structure of the model as a graph, where nodes represent
operations and edges represent the flow of data between them. Each node in
the graph represents a particular operation in the model, such as a convo-
lution or a fully connected layer, and contains information about its inputs,
outputs, and parameters.

When you export a model to the ONNX format, the framework converts
the model’s graph into the ONNX protobuf schema and saves the parameter
values as binary data files. When you import the model into another frame-
work, that framework can use the ONNX protobuf schema to reconstruct the
graph and load the parameter values from the binary data files. This allows
the model to be used in the new framework without having to retrain it from
scratch.

In conclusion ONNX supports a wide range of operations and architec-
tures, making it a versatile format for exchanging models between differ-
ent frameworks, and provides a standardized way to represent deep learning
models, making it easier and faster to share and reuse models across different
frameworks and platforms.

29

2 – Literature

2.4 OpenVINO
OpenVINO [10] stands for Open Visual Inference and Neural Network Op-
timization. It is an open-source toolkit used to optimize and deploy AI
inference on Intel products. The OpenVINO toolkit covers both computer
vision and non-computer vision workloads across Intel hardware. It maxi-
mizes performance and accelerates application development.

Figure 2.9. The workflow of OpenVINO.

The OpenVINO workflow is summarized in Figure 2.9 and it mainly con-
sists of four main steps:

1. Train: A model is trained with code.

2. Model Optimizer: The trained model is fed to the Model Optimizer.
Its aim is to optimize the model and deliver an Intermediate Represen-
tation (.xml + .bin files) of the model. The models are optimized with
techniques such as quantization, freezing, fusion, and more. In this step,
pre-trained models are configured according to the framework chosen
and then converted with a simple, single-line command.

3. Inference Engine: The Intermediate Representation is passed to the
Inference Engine. The inference engine checks for model compatibility
based on the original framework used to train the model as well as the
environment used, which is the hardware. Frameworks supported by
OpenVINO include, for example, TensorFlow, and ONNX.

4. Deployment: The application is deployed to devices.

30

2.4 – OpenVINO

2.4.1 Model Optimizer
There are many Deep Learning frameworks widely used in the industry such
as TensorFlow; on the other hand, Intel provides a wide range of devices and
platforms to choose from. Mapping from each of these frameworks to any
of these devices can be a complex task. First because the representation of
Deep Learning models is totally different from one framework to the other;
second, each of these devices has a different architecture, different instruction
set and programming model.

Intel supplies one common API that could be used to implement inference
across all of these devices and basically abstract the Hardware for you. It
works in two phases:

• Convert the model into one unified representation called Intermediate
Representation (IR).

• Use the IR file to inference on multiple devices.

The model optimizer is responsible for the first phase: it converts the
format, optimizes and converts the weights and biases.

• Convert: no matter how the model is represented by the Deep Learning
framework, the Model Optimizer will convert it to IR. The IR is com-
posed of two files: an .xml file which describes the topology, the layers,
the connectivity, the parameters; a binary file that holds all the weights
and biases.

• Optimize: the MO optimizes the model using techniques like fusion of
layers, batch-normalization and more. These are hardware agnostic op-
timizations which can save a lot of computation and memory.

• Weight format: models today are usually trained with weight format
of FloatingPoint32, but sometimes the device used can run faster using
FP16. The MO can convert the format of the weights automatically.

However we cannot just squeeze the weights into a smaller format without
losing accuracy of the model. We get to a trade-off: the more bits are
allocated to represent the data and weights, the wider range they could
represent and potentially the better accuracy of the model. But it comes with
a price, because the bigger the data, the more space in memory is required
to store it and the more computational resources and time it requires to
compute.

31

32

Chapter 3

Problem statement and
Solution

In this chapter I will clarify the main goal of this project, as well as the main
obstacles encountered, especially during the data collection process, and the
different solutions that have been adopted.

3.1 Context

The main goal of this project is to develop a Computer Vision tool capable of
identifying weeds and their roots in cultivated fields. This algorithmic tool
could be used by a machine equipped with pistons to automatically detect
weeds through a camera and then extract them through the pistons. For this
specific weed detection application, it is crucial for the model to accurately
detect weed’s roots so that the piston can successfully extrapolate them. If
the piston hits the weed but not in the root, the weed will later grow again,
leading to a decrease in the effectiveness of the weed detection system. By ac-
curately detecting and localizing the weed’s roots, the system can effectively
remove the entire weed from the soil, preventing future regrowth. Thus, the
ability of the model to accurately detect and localize weeds’ roots is a critical
component of the weed detection system, and should be a key consideration
when selecting the appropriate computer vision algorithm.

A Semantic Segmentation approach would be significantly data demand-
ing, as it requires more detailed and comprehensive annotation of each pixel
in the image, and a larger amount of labeled data to effectively train the

33

3 – Problem statement and Solution

model. Therefore the best option was proceeding in an Object Detection di-
rection: the goal is to make the model able to recognize each weed, border it
inside a rectangular box, so that the piston could hit right in the center of the
box and extrapolate it. This is a real-time process: the tractor is equipped
with a camera that takes the picture; approximately one meter following the
camera we have the pistons system that, once the photo has been analyzed
and the weeds detected, acts in order to hit them.

In order to train a model to identify the weeds and distinguish them from
the good crops, it is necessary to build a suitable dataset. For this reason
we needed the cultivators to take pictures of the cultivated fields in the same
condition in which the tool will be finally used. Especially at the beginning
of the project, the cultivators had not provided us with a big amount of
images: collecting the images was a time-consuming process for them, as
well as some crops were still too small to be captured. Also they faced some
climate-related issues as it did not rain for some weeks. As a consequence
the crops have not grown up enough for some weeks longer than usual. Thus
in the very first weeks I had to run my first experiments using only 300
images and the very first models were fine-tuned using this little dataset.
Luckily after some time the farmers were able to collect some new images
that enriched our dataset: we could get 1369 images. Some of the crops
already reached a significant dimension, with a length of more than 1 cm.
Some other crops were just born, measuring only few millimeters.

3.2 Camera features
Figure 3.1 reports the overall system used to collect the images. The camera
is attached to a sliding structure that is pulled by a tractor. The tractor
slowly moves across the fields, while the camera automatically takes pictures.
They used a Flir Blackfly S, a small and compact machine vision camera. Its
main features are summarized in Table 3.2.

Resolution 2048x1536
Megapixels 3.2 MP
Sensor Sony IMX252, CMOS, 1/1.8"
Pixel size 3.45 micron

Table 3.1. Flir Blackfly S camera main features.

34

3.3 – Dataset

Figure 3.1. Tractor with camera attached.

3.3 Dataset
The dataset was built thanks to the farmers who collected hundreds of images
of the crops in the fields. Thus we could create our dataset with 1369 images
distributed along 6 different types of crops:

• Valerian: 182 images, it is commonly used as a sleep aid and as a
sedative for nervous tension, stress, and intestinal cramps;

• Hypericum: 61 images, traditionally considered as a medicinal herb
to treat a variety of ailments, including depression, anxiety, and nerve
pain;

• Mallow: 347 images, its properties are exploited to treat sore throat,
cough, and other respiratory problems, as well as for culinary purposes;

• Savory: 346 images, it is usually used for culinary and medicinal pur-
poses, to help relieve stress and promote relaxation;

• Eschscholzia: 304 images, it is particularly used in cosmetics, as it
is thought to have anti-inflammatory properties and can help reduce
redness and irritation;

35

3 – Problem statement and Solution

Figure 3.2. Dataset composition in terms of crops.

• Echinacea: 129 images, it is widely used as a natural remedy to boost
the immune system and help fight off infections as well as in skincare
products due to its anti-inflammatory and antioxidant properties.

Their form can be seen in Figure 3.2: note that some of them, like Mallow
and Eschscholzia, have a very different aspect, but are both in an advanced
growing state. At the same time Echinacea and Hypericum are at the very
beginning of their growing process. In the latter case it is even difficult to
notice the little crops hidden under the ground.

Regarding the weeds, I summarized the most frequent macro-categories of
weeds’ types in Figure 3.3. Note that weeds can assume multiple forms and
sizes, independently from the crop field in which they grow up. Therefore it
is not easy to categorize them, but by analyzing the images it was possible
to identify the most frequent and representative typologies.

Weeds can vary a lot in the aspect, thus it will be a significant obstacle
for the model in the training phase, where it needs to find common features
in order to learn how to recognize them.

36

3.3 – Dataset

Figure 3.3. Dataset composition in terms of weeds.

3.3.1 Labeling
After collecting the data, in order to build a complete dataset the labeling
step was necessary: this stage consists of delimiting in rectangles the elements
of interest, that the algorithm aims to recognize, using the LabelImg [12] tool.

The labels for the images need to be reproduced in the YOLO recognized
format. For each image, one .txt file is required and it denotes the objects’
labels for the given image. The .txt file reports one row for each object:
if multiple objects are present in a single image, then we will get multiple
rows corresponding to the objects’ labels found in the image. Each row has
5 values of the corresponding bounding box in the following sequence:

class number, x-center, y-center, width, height.

Note that the coordinates for the bounding box should be in the normal-
ized format, so the values should be between 0 and 1. Finally each class
corresponds to a number and the numbering starts from 0.

After that I implemented a script to transform each .txt file to a .xml,
the PASCAL VOC format that is used by Faster R-CNN. In particular the
image data is stored in a folder, with each image file given a unique identi-
fier, and for each image an annotation file is created to describe the objects

37

3 – Problem statement and Solution

present in the image. This file is typically stored in XML format and con-
tains information about the class label, bounding box coordinates, and any
other relevant information about each object. I then used the annotations in
PASCAL VOC format to run my experiments on Faster R-CNN.

Figure 3.4. Labeled objects: crops in blue, weeds in red, weeds’ roots in
orange, row of crops in purple.

As represented in Figure 3.4, in our images I labeled:

• Crops: The good plants

• Weeds: The infesting plants

• Roots: The origin of the weeds, where we want the pistons to hit

• Rows: The line of crops

Note that all the crops’ typologies were generically labeled as "crops", and
the same goes for weeds.

As expected this process took a long time since labeling needs to be as
much precise as possible. In particular labeling the roots for each weed took
a large amount of time and we could not exploit all the images that the client
had sent to us, since some of them were empty, or some others were repeated.

Communication and collaboration with cultivators were critical during the
labeling process.They possess valuable knowledge about the characteristics of
different crops and weeds, which could aid in accurately labeling the training
dataset. By working closely with cultivators to understand the differences
between different plant species and their growth patterns, we could ensure

38

3.4 – Object Detection Training

that the training dataset was properly annotated, which is essential for de-
veloping an accurate and effective weed detection system.

Once the labeling process was concluded, the following amount of each
element was identified:

• 7201 crops

• 2088 weeds

• 2088 weeds’ roots

• 1251 rows of crops

3.4 Object Detection Training
Now the dataset has been split into three sets:

• Training set: 1092 images (80%)

• Validation set: 140 images (10%)

• Test set: 137 images (10%)

The splitting cannot be done randomly because photos were taken one
after the other and most of the time a given image shares some percentage
of the left or right part with the nearby image. Therefore if a given image is
used to train the model, when it is tested on the nearby image, it will surely
recognize the already seen elements quite easily, since some of those elements
were part of the training set.

For this reason, I had to re-plan the splitting of the dataset, using "blocks"
of images for each crop type. For each crop type, the first 80% of images
were assigned to the training set, the following 10% to the validation set and
the last 10% to the test set. In this way the model is not tested on the same
portions of images on which it has been trained on.

For my weed detection application, I selected and evaluated two popular
object detection algorithms, Faster R-CNN and YOLOv5, on my dataset.
Both algorithms were chosen because of their proven effectiveness in detecting
and classifying objects in complex and cluttered environments, which is a
key requirement for accurately detecting weeds in fields with crops. For both
algorithms, since the training dataset is limited in terms of dimensions, I
used a pre-trained model on a significantly larger public dataset and then I
fine-tuned it on the context-specific dataset.

39

3 – Problem statement and Solution

3.4.1 Faster R-CNN
The original Faster R-CNN paper used VGG16 as the backbone network.
Since then, several other backbone architectures have been used, with ResNet
being one of the most popular. Using ResNet can improve the performance
of the model while reducing the training time. For this reason I finetune the
pretrained Faster R-CNN model with a ResNet-50-FPN backbone provided
by torchvision library. In the fine-tuning phase I used as hyperparameters
image size = 1280, learning-rate = 0,001, batch-size = 4.

The Faster R-CNN model included in the torchvision package is pre-
trained on the Microsoft Common Objects in Context (COCO) dataset. This
is a large-scale object detection dataset that contains over 330,000 images and
over 2.5 million object instances labeled with 80 different object categories.
The COCO dataset is commonly used to pre-train object detection models
due to its large size and diverse range of object categories and scenes. By
pre-training on this dataset, the Faster R-CNN model included in torchvision
is able to learn a general understanding of object detection tasks, which can
be fine-tuned on custom datasets for specific applications.

3.4.2 YOLOv5

Figure 3.5. YOLOv5 different model sizes, where FP16 stands for the half
floating-point precision, V100 is an inference time in milliseconds on the
Nvidia V100 GPU, and mAP based on the original COCO dataset.

The YOLOv5 model by Ultralytics is pre-trained on the COCO dataset,
just like Faster R-CNN in torchvision. As a matter of fact The COCO
dataset is a popular choice for pre-training object detection models because
it contains a large and diverse set of images and object categories, which
allows the model to learn robust representations of objects in general.

40

3.5 – Real performances estimation

Five different pre-trained models alternatives have been proposed by YOLOv5’s
authors. There is no difference between the five models in terms of opera-
tions used except for the number of layers and parameters. Their structure
is summarized in Figure 3.5

In particular, I fine-tuned YOLOv5 using Ultralytics’ repository and I
choose the three pre-trained models in the middle in Figure 3.5, which are
YOLOv5s, YOLOv5m and YOLOv5l, as a basis. YOLOv5s is the smallest
and fastest variant of YOLOv5, with fewer parameters and lower accuracy
compared to the other variants. It is a good choice for real-time applica-
tions or deployment on low-power devices. YOLOv5m is the medium-sized
variant, which offers a balance between speed and accuracy. It has more
parameters and higher accuracy compared to YOLOv5s, but still maintains
a reasonable inference time. Finaly YOLOv5l is the large-sized variant of
YOLOv5, which has even more parameters and higher accuracy compared to
YOLOv5m. However it is slower and requires more computational resources,
but offers better accuracy especially for detecting small objects. I tested these
three pre-trained models with default hyperparameters, image size = 640,
learning-rate = 0,01, batch-size = 16, and selected the best performing
one, then I operated hyperparameters tuning on that.

3.5 Real performances estimation
Once the training phase was concluded, a question arose: "How can we eval-
uate if the piston will actually hit the root of the weeds, especially when the
model is not able to recognize the weed’s root?".

For this reason, we elaborated our strategy:

• When the algorithm detects the root, the piston directly hits the root;

• When the algorithm does not detect the root but successfully detects
the weed, the piston hits the center of the box surrounding the weed.

However the cultivators explained that a weed can be successfully extrap-
olated only if it is hit right in the root. If the piston hits the weed in some
marginal part, this will result only in a reduction in weed’s size. This would
not be a successful result since the weed would grow up again in a short time
and would represent a problem for the surrounding crops.

Therefore it is fundamental to estimate the percentage of successfully ex-
tirpated weeds, both considering the ones that have been detected with their

41

3 – Problem statement and Solution

roots and the ones where the algorithm has missed the root. In order to
perform this estimation one point is missing: we do not know what is the
actual size in centimeters of each weed/crop. This means that, in those cases
in which the model detects the weed but does not detect its root, the system
would simply hit the center of the weed’s box, but we do not know if doing
so the piston would actually hit the root.

Our solution was very simple: I asked the cultivators to come in our help,
taking some additional photos of the cultivated fields reproducing the same
conditions in which the dataset pictures were taken, but putting a meter on
the ground, so that I was able to estimate the actual size of weeds and crops
in images. An example of these images is reported in Figure 3.6.

Figure 3.6. Image taken putting a meter on the ground, in order to collect
information about crops and weeds’ real dimensions.

I passed this image on the labeling tool, LabelImg, where I draw a 1cm x
2cm box, following the meter’s values in the image. After that, I considered
the label that was now created and compared centimeters to pixels. Following
this process, I was able to discover that

1 cm = 110 pixels.

Once the model had been trained and I had chosen the best-performing
one, I applied the final model on the test set. For each image, a .txt file

42

3.6 – Inference optimization with ONNX and OpenVINO

has been delivered, reporting all the objects’ coordinates and classes that the
model was able to detect. In order to evaluate the actual performances of
the model I followed these steps:

• When a weed is detected together with its root, we can assume that the
piston would successfully hit and extrapolate the given weed;

• When the weed is detected, but not its root, we need to consider that
the piston would hit the center of the weed’s box. Therefore I measure
how far the center of the box is with respect to the actual root of the
weed. If the distance falls inside the action range of the piston, then the
root would be hit anyway; otherwise, the root is missed by the piston.

3.6 Inference optimization with ONNX and
OpenVINO

The final aim of this application is to make our system able to recognize
and extrapolate the weeds in a real-time environment, hence speed plays
a fundamental role. Considering that models can be very heavy and need
a lot of time to be run, there is a significant focus around faster inference
for real time use-cases, especially when, just like in our case, models will
be run on a not-powerful computer. This is why a few years back Intel
released OpenVINO toolkit for optimizing inference of Deep Learning models
on Intel’s hardware. In our case, the computer owned by the cultivators is
provided with a Intel CPU, hence it will be possible to exploit OpenVINO.
Note that OpenVINO is not a toolkit for faster training of Deep Learning
tasks, but for faster inference of already trained Deep Neural models. Since
at the moment it is not possible for me to test OpenVINO directly on the
cultivators’ computer, I will simulate the whole processing of converting the
model and testing it on my computer, which is provided with a Intel CPU
as well: 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz.

However it is important to point out that you usually have to sacrifice a
bit of accuracy in inference in order to get better speed: this is a trade-off
that we need to consider and include in the evaluation of the final result. I
will investigate the possibility to improve the speed of the best-performing
model in inference and confront its improvement with the actual changes in
terms of performance metrics.

The whole process consists of the following steps:
• Take the pre-trained best-performing YOLOv5 model;

43

3 – Problem statement and Solution

• Convert the Pytorch model to ONNX, which enables interoperability
between different frameworks;

• The ONNX model is passed to the Model Optimizer, in order to produce
an Intermediate Representation composed of an xml and a bin file.

• Test the OpenVINO model on my personal computer, that is provided
with a Intel CPU and compare the results with the original model.

Observe that this process will be applied only on the best-performing
model, evaluated considering the overall performance metrics. As a matter
of fact it would not make sense to repeat the steps above for all the models
that we will compare.

Moreover one of the intermediate stages is to convert the original model to
the ONNX format, but one of the main ONNX’s potential tasks is to speed
up the model’s inference time. Therefore I test the ONNX-converted model
as well and compare its inference time with the original and the OpenVINO
ones. I also evaluate how its performances change with respect to the Pytorch
format.

As an additional experiment I test OpenVINO also on the GPU, that is a
NVIDIA GeForce RTX 3060, in order to demonstrate and check that we get
an improvement in terms of inference time only on Intel products.

44

Chapter 4

Results

In this chapter I will report all the experiments that I have run as well as
the metrics used to evaluate and compare them.

Each experiment consists of a training phase conducted on the training
dataset, while the performance are computed on the validation set. Once the
model parameters have been tuned, the performances are re-computed and
verified on the test set. In order to evaluate the performances of each model,
multiple metrics are taken into consideration.

4.1 Metrics
Note that the object detection task localizes the objects in the images with
a bounding box associated with its corresponding confidence score to report
how certain the bounding box of the object class is detected. A given object
could be detected by the model, but not completely in its covered area or
it could be completely missed. At the same time objects can be wrongly
identified by the model even when they are not there. For this reason object
detection metrics serve as a measure to assess how well the model performs on
an object detection task, not only considering the number of objects correctly
detected, but also the precision with which the bounding box is drawn around
them.

4.1.1 IoU
One of the main metrics in Object Detection is the Intersection Over Union
(IoU) [13]. Before defining how it works, it is necessary to remind the defi-
nitions of:

45

4 – Results

• True Positive (TP): the prediction by the model is correct.

• False Positive (FP): the prediction by the model is incorrect.

• False Negative (FN): an element in the Ground-truth has not been de-
tected by the object detector.

• True Negative (TN): a background region was correctly not detected
by the model. Actually this metric is not used in object detection be-
cause background regions are not explicitly annotated when preparing
the annotations.

IoU evaluates the degree of overlap between the ground truth and predic-
tion. They can be of any possible shape: rectangular box, circle, or even
irregular shape.

Figure 4.1. Intersection over Union formula.

As shown in Figure 4.1, IoU is computed as the area of the intersection
divided by the area of union between ground-truth and the predicted box.
The result will be a numeric value between 0 and 1. If the two areas perfectly
overlap, then the IoU will be 1; instead if they do not have any common point,
the result will be 0.

But how to define how much overlapping area, and so how much IoU, is
enough to make a prediction a "good" enough prediction? For example, if
the ground-truth and the predicted box correspond to a IoU = 0.8, will the
prediction count as a True Positive or as a False Positive? We need to define
a threshold.

From the example in Figure 4.2 we can observe that, given a IoU threshold
set to 0.7, the first case would be considered as a good prediction (True
Positive). In the second case, the amount of overlapping area is not enough,
thus the ground-truth is considered as not-detected (False Negative), and the
prediction as a false prediction (False Positive). Same for the third case.

46

4.1 – Metrics

Figure 4.2. Case example of how to define TP, TN, FP, FN, when the
IoU threshold is set to 0.7.

Note that, if in the same example the threshold was lowered to 0.2, the
second case would become a True Positive. This underlines that when we
use IoU as a metric, it is important to evaluate the detections taking into
account the IoU fixed threshold.

4.1.2 Precision and Recall
Precision and Recall are commonly used in many Machine Learning fields.
They are defined as:

• Precision: it is the degree of exactness of the model in identifying only
relevant objects. It is the ratio of correct detections over all detections
made by the model. More formally:

Precision = TP

TP + FP

• Recall: it measures the ability of the model to detect the ground truths.
It is the ratio of correct detections over all the ground truths.

Recall = TP

TP + FN

4.1.3 Mean Average Precision
Mean Average Precision (mAP) is commonly used to analyze the performance
of object detection and segmentation systems. The mAP is also used across
several benchmark challenges such as Pascal, VOC, COCO, and more.

To better understand how to compute mAP, here is a summary of the
steps to calculate the AP:

47

4 – Results

• Generate the predictions using the model

• Calculate TP, FP, TN, FN

• Calculate the precision and recall metrics

• Calculate the area under the precision-recall curve

• Measure the average precision

The mAP incorporates the trade-off between precision and recall and con-
siders both false positives (FP) and false negatives (FN). This property makes
mAP a suitable metric for most detection applications.

mAP metric is dependent on the IoU threshold, so calculating mAP over
an IoU threshold range avoids the ambiguity of picking the optimal IoU
threshold for evaluating the model’s accuracy.

4.2 Faster R-CNN Results
In this paragraph, I report the results that I got utilizing Faster R-CNN to
analyze our weed dataset and evaluate its performance in detecting and clas-
sifying weeds and crops. The results of the analysis are reported in the Table
4.1 and reveal that, while the model was able to achieve moderate success in
identifying and detecting crops and weeds, it struggled to detect very small
objects such as weeds’ roots. At the same time, it finds it very difficult to de-
tect the rows of crops, probably due to their indefinite dimension. However
the model produced discrete results on crops and weeds, that are slightly
bigger objects with respect to the roots, highlighting the limitations of the
algorithm in accurately detecting smaller objects

Class Images Istances Precision Recall
all 140 1207 0.216 0.289
Crop 140 670 0.405 0.546
Weed 140 205 0.460 0.607
Weed Root 140 205 0.001 0.003
Row of crops 140 127 0.000 0.000

Table 4.1. Complete performances of the model evaluated on the validation
set, fine-tuning Faster R-CNN with ResNet-50 backbone on 100 epochs.

48

4.3 – YOLO Results

Given the very low performance of the model in identifying the rows of
crops, I tested it by excluding the rows of crops from the dataset, so that the
training process will be more centered on learning how to detect crops and
weeds. The results are reported in Table 4.2: as expected I get better results
in weeds’ recall, passing from 0.607 to 0.724, while there is no significant
improvement in roots’ recognition.

Class Images Istances Precision Recall
all 140 1207 0.345 0.463
Crop 140 670 0.464 0.667
Weed 140 205 0.572 0.724
Weed Root 140 205 0.001 0.003

Table 4.2. Complete performances of the model evaluated on the valida-
tion set, fine-tuning Faster R-CNN with ResNet-50 backbone on 100 epochs,
excluding rows of crops from the dataset.

4.3 YOLO Results
First I decided to compare the three "middle" models in terms of size: YOLOv5s,
YOLOv5m and YOLOv5l. As reported in Figure 3.5, their main difference
is the total number of parameters, which implies a consequent greater or
smaller time required to perform inference. As anticipated, the main term
of comparison between the experiments is the recall computed for weeds and
for weeds roots. As a matter of fact, it is fundamental to reduce the number
of weeds as much as possible, even though some crops could be mistaken for
weeds and hence extirpated.

Model size Weeds’ Recall Weeds roots’ Recall
YOLOv5s 0.932 0.678
YOLOv5m 0.932 0.688
YOLOv5l 0.922 0.678

Table 4.3. Comparison of the performances of YOLOv5s, YOLOv5m and
YOLOv5l evaluated in terms of recall of the weeds and of the roots of the
weeds. Training processes were run using 100 epochs and the default settings.

Results are reported in Table 4.3: YOLOv5m is the best performing model.

49

4 – Results

It is capable of detecting the 93.2% of weeds correctly and in the 68.8% of
cases, it also detects the weeds’ roots successfully.

At this stage I tune the hyperparameters related to the image size and the
batch size. The image size is the pixel size at which photos are processed:
larger image sizes usually lead to better results, but take longer to process,
so it’s up to the user to find the right compromise between speed and ac-
curacy. Consider that the various YOLOv5 models were trained on 640 x
640 images. Our images are taken at high quality (2048x1536 in terms of
resolution), hence I keep 1280 as a starting image size and try with different
batch sizes, maximizing the GPU memory usage on Google Colab. Due to
the GPU memory limit, it was not possible to run the experiment using both
batch size = 32 and image size = 640, then I downgrade the image size
to 640.

The results are summarized in Table 4.4. It is reasonable that by lowering
the image size, we get a significant drop in terms of weeds roots’ recall:
their dimension is very small, then it makes sense for the model to struggle
in learning the main features related to the roots having a smaller number
of pixels to look at.

Image size Batch size Weeds’ Recall Weeds roots’ Recall
1280 8 0.932 0.688
1280 16 0.927 0.668
640 32 0.917 0.357

Table 4.4. YOLOv5m results gotten by tuning the image size and the batch
size. Experiments are evaluated in terms of recall of the weeds and of the
weeds roots. Training processes were run using 100 epochs

In Table 4.5 you can observe the complete performances of the best per-
forming model with image size=1280 and batch size=8 with all the met-
rics described previously. Moreover it is possible to better analyze how and
when the model is doing mistakes by observing the Figure 4.3.

We can state that the model successfully recognizes weeds and it is widely
capable of distinguishing them from the good crops. This is fundamental in
order not to get the pistons to hit and kill the crops.

When weeds are mistaken, it is because the model seems to identify weeds
in the background, when they are not there. This is comforting since the
pistons would simply hit the free ground in most of cases.

Moreover a good number of weeds’ roots have been successfully identified.

50

4.3 – YOLO Results

Class Images Istances Precision Recall mAP50 mAP50-95
all 140 1207 0.779 0.788 0.825 0.474
Crop 140 670 0.902 0.936 0.965 0.727
Weed 140 205 0.87 0.932 0.956 0.721
Weed Root 140 205 0.63 0.688 0.664 0.207
Row of crops 140 127 0.715 0.598 0.716 0.24

Table 4.5. Complete performances of the model evaluated on the validation
set, fine-tuning YOLOv5m and keeping image size=1280 and batch size=8

Due to their very small dimensions, roots’ performances are slightly lower
with respect to weeds.

Class Images Istances Precision Recall mAP50 mAP50-95
all 140 1080 0.836 0.815 0.845 0.551
Crop 140 670 0.905 0.918 0.963 0.737
Weed 140 205 0.911 0.902 0.959 0.738
Weed Root 140 205 0.692 0.626 0.613 0.177

Table 4.6. Complete performances of the model evaluated on the validation
set, fine-tuning YOLOv5m and keeping image size=1280 and batch size=8,
without the rows of crops.

I also repeated the experiment with the same parameters, but excluding
the rows of crops from the labels. The result can be observed in Table 4.6,
where it is possible to note that there is a decrease in performances in terms
of recall of weeds and weeds’ roots.

After conducting further experiments on my dataset, it was found that
YOLOv5 outperformed Faster R-CNN in detecting and classifying both small
and larger objects such as weeds, crops, and weeds’ roots. YOLOv5 achieved
significantly higher accuracy in identifying smaller objects that were previ-
ously missed by Faster R-CNN, while also maintaining its performance on
larger ones. These findings suggest that YOLOv5 is better suited for this
specific weed detection application, where the identification of smaller objects
such as weeds’ roots is crucial.

51

4 – Results

Figure 4.3. Confusion Matrix of the best-performing model. On the
horizontal axis there is the ground truth, while the predictions are re-
ported on the vertical axis. In the squares of the matrix we observe the
corresponding percentages.

4.4 Real performances estimation

In order to correctly evaluate the model’s performance in the real application,
it needs to be tested considering the pistons’ dimensions as well as the crops
and weeds’ real size.

As a matter of fact in Section 4.3 we have observed that the model is able
to correctly detect the 93,2% of weeds, but only the 68,8% of weeds’ roots in
the validation set. The final strategy can be summarized as follows:

52

4.4 – Real performances estimation

• hit the weed’s root when it is detected inside the weed box;

• hit the center of the weed’s box when no root is detected.

Therefore now it is fundamental to understand if the pistons would actu-
ally hit the roots, even when no root has been identified by the model.

To finalize this process I considered the result of the prediction of the best-
performing model over the validation and test sets. I took as a reference the
weeds reported in the labels. First of all, I excluded all the weeds whose root
was correctly identified by the model: 297 weeds out of 436. At this point, I
took into consideration all the weeds that were detected by the model but not
their root. For each of those target weeds, I computed the distance between
the center of the weed’s box (detected by the model) and the actual position
of the root. At first, the distance was calculated in pixels, and then converted
to centimeters considering that, thanks to the reference images provided by
the cultivators, I was able to observe that 1 cm in real life corresponds to
110 pixels in the image.

The piston that will be used to hit the weeds has a diameter of 1 cm,
therefore the weed’s root has to be inside this range in order to be successfully
extrapolated. Therefore if the distance between the center of the box detected
by the model and the actual position of the weed’s root is smaller than 0.5
cm (piston’s radius) we can consider the weed as extirpated, otherwise the
weed survives. The final results can be seen in Table 4.7.

Result Number of images
Weed’s root detected by the model 297
Weed’s root inside the piston’s radius 113
Weed’s root not extirpated 26

Table 4.7. Estimation of the actual performances of the model in extirpating
the weeds’ roots, considering a piston with a 1 cm diameter.

As a result for 410 weeds out of 436, which is the 94% of the total, the
root gets within the range of action of the piston; the remaining 26 roots
would not be hit by the piston. This successful result is given by the fact
that the majority of weeds whose root has not been detected by the model
has a very small size, hence even if the model is not able to detect their root,
their center is anyway inside the range of the piston.

Finally I was able to observe that in most cases, when the model is not
even able to detect the weed itself, it’s because the weed is very small, or it

53

4 – Results

blends in with the ground.

4.5 Inference optimization with ONNX and
OpenVINO

As a first step I compare the different results obtained by performing inference
on the validation set using the same model, that is the best performing one
from Section 4.3. From Table 4.8 it is possible to observe the results in terms
of inference time. As expected we have an improvement both with ONNX
and OpenVINO, with respect to the Pytorch model, which is the baseline.
Regarding ONNX, the model is sped up by the 43.9% of the original inference
time; while OpenVINO brings an advance of 13,4%.

Mean inference time (ms) Standard deviation (ms)
Pytorch 221.63 7.95
ONNX 124.14 0.85
OpenVINO 192.02 5.65

Table 4.8. Mean inference time for best-performing model in different for-
mats: Pytorch, ONNX, OpenVINO. Statistics are computed on Intel CPU.

In particular for what concerns ONNX, we get a satisfactory result. How-
ever, we need to evaluate how the model’s performances have changed, and
possibly got worsened.

Class Images Istances Precision Recall mAP50 mAP50-95
all 140 1207 0.818 0.779 0.806 0.5
Crop 140 670 0.852 0.942 0.956 0.708
Weed 140 205 0.863 0.917 0.937 0.68
Weed Root 140 205 0.575 0.351 0.355 0.095
Row of crops 140 127 0.983 0.908 0.974 0.517

Table 4.9. Complete performances of the ONNX model evaluated
on the validation set, fine-tuning YOLOv5m and keeping image
size=1280 and batch size=8.

In Table 4.9 we observe the overall performance of the ONNX model on
the validation set. We need to compare it with Table 4.5: there is a decrease

54

4.5 – Inference optimization with ONNX and OpenVINO

in weed’s recall from 0.932 to 0.917, and a significant drop in weed root’s
recall from 0.688 to 0.351. This is very meaningful and demonstrates that
we cannot just fasten the model without losing accuracy. We get to a trade-
off between speed and performance.

Class Images Istances Precision Recall mAP50 mAP50-95
all 140 1207 0.848 0.765 0.803 0.507
Crop 140 670 0.9 0.925 0.957 0.716
Weed 140 205 0.881 0.922 0.933 0.686
Weed Root 140 205 0.622 0.322 0.345 0.094
Row of crops 140 127 0.991 0.891 0.976 0.53

Table 4.10. Complete performances of the OpenVINO model evalu-
ated on the validation set, fine-tuning YOLOv5m and keeping image
size=1280 and batch size=8.

We can proceed with the same evaluation for the OpenVINO model and
observe the Table 4.10: here we can note a slightly lower decrease in weed’s
recall from 0.932 to 0.922, but again an even more significant drop in weed
root’s recall from 0.688 to 0.322. If we balance this result with the small im-
provement in terms of inference time - that was only 13.4% - the performance
worsening helps us move the needle.

As an additional experiment I tested OpenVINO and ONNX also on
NVIDIA GeForce RTX 3060 GPU. This is not an Intel product, hence we
expect no improvement in terms of inference time. The result can be seen
in Table 4.11: while Pytorch performs significantly better on GPU, passing
from 221.63 ms as mean inference time to 10.84 ms, ONNX is quite the same
with respect to CPU performances, and OpenVINO gets worse, passing from
192.02 ms to 227.46 ms.

Mean inference time (ms) Standard deviation (ms)
Pytorch 10.84 0.56
ONNX 127.61 2.32
OpenVINO 227.46 8.59

Table 4.11. Mean inference time for the best-performing model in
different formats: Pytorch, ONNX, OpenVINO. Statistics are com-
puted on NVIDIA GPU.

55

56

Chapter 5

Conclusion

The objective of this thesis was to investigate the use of computer vision
techniques for real-time weed recognition in cultivated fields. The idea be-
hind this project is to build a system equipped with a set of pistons, capable
of automatically identifying weeds in cultivated fields and consequently ex-
trapolating them through the use of mechanical components. Due to the
limited size of the dataset, an object detection approach was preferred over a
semantic segmentation one. Two state-of-the-art pre-trained models, Faster
R-CNN and YOLOv5, were utilized, and their performance was evaluated
after finetuning on a custom dataset.

The results of the experiments showed that both models are capable of
detecting weeds and roots in the images. However, YOLOv5 outperformed
Faster R-CNN: the evaluation criteria were specifically focused on weed de-
tection, with an emphasis on recall, especially for weed roots. This is because
in agricultural applications, it is crucial to detect as many weeds as possible,
even if some crops could be mistaken for weeds.

The finetuned YOLOv5 model demonstrated high recall rates for both
weed detection and weed root detection, making it a viable solution for weed
management in cultivated fields. Hence, YOLOv5 was selected as the pre-
ferred model and was further optimized through hyperparameters tuning.

In order to correctly evaluate the model’s performance in the real appli-
cation, it was tested considering the pistons’ dimensions as well as the crops
and weeds’ real size. To address this, I developed a strategy to hit the weed
root when it is detected inside the weed box, and hit the center of the weed’s
box when no root is detected. Based on this analysis, the roots of 94% of the
total weeds were within the range of the piston, hence would be successfully
extrapolated. The majority of the remaining 6% were not detected by the

57

5 – Conclusion

model since they were very small and/or blended in with the ground.
Since YOLOv5 model is intended to be used in a real-time application, it

is crucial to optimize its inference time to ensure that it can keep up with the
demands of the system. To accomplish this, I used ONNX and OpenVINO
to optimize the model’s performance in terms of inference time. Even though
this process is necessary to ensure that the model can operate in real time
without significant lag or delay, it could result in a decrease of quality metrics.

After carefully assessing the resulting trade-off between speed and recall
loss, it emerged that ONNX brings an improvement in terms of inference
time, speeding up the model of 44%, at the expense of 0.33 recall points on
weeds’ roots.

In conclusion, the use of Artificial Intelligence in agriculture has proven to
be a promising technology that can significantly improve crop yield, reduce
costs and increase efficiency. One area in particular where AI has shown great
potential is weed detection and this thesis has demonstrated the feasibility
and effectiveness of using object detection techniques, specifically YOLOv5
model, for weed recognition in cultivated fields. The use of a bigger dataset
with images from various crop types could potentially improve the model per-
formance. Currently, the model has only been trained on specific crop types,
which limits its generalizability. A bigger dataset could provide the model
images of new crops and weeds that the model has not encountered before,
allowing it to learn better how to distinguish weeds from crops. Moreover,
a bigger training dataset can enable the use of semantic segmentation tech-
niques, leading to more accurate and detailed predictions. In general, the
use of AI-based weed detection systems can enable farmers to identify and
target weeds more accurately and efficiently, allowing for timely intervention
and reducing the need for herbicides. This not only saves time and money
but also reduces the environmental impact of farming. As the demand for
food continues to increase with the growing population, the adoption of AI
in agriculture will become more important than ever before.

58

Bibliography

[1] Computer vision: the ultimate guide on the 4 main tasks; N. Cac-
ciotti; http://www.smart-interaction.com/2022/07/14/computer-vision-
the-ultimate-guide-on-the-4-main-tasks/

[2] Object Detection in 2023: The Definitive Guide; G. Boesch;
https://viso.ai/deep-learning/object-detection/

[3] Object Detection State of the Art 2022; P. Azevedo;
https://medium.com/@pedroazevedo6/object-detection-state-of-the-
art-2022-ad750e0f6003

[4] Rich feature hierarchies for accurate object detection and semantic seg-
mentation; Ross Girshick et al.; https://arxiv.org/pdf/1311.2524.pdf

[5] Fast R-CNN; Ross Girshick et al.; https://arxiv.org/pdf/1504.08083.pdf
[6] Faster R-CNN: Towards Real-Time Object Detection with Region Pro-

posal Networks; S. Ren et al.; https://arxiv.org/pdf/1506.01497.pdf
[7] YOLO: Real-Time Object Detection; Redmon et al.;

https://pjreddie.com/darknet/yolo/
[8] YOLOv5 by Ultralytics; https://github.com/ultralytics/yolov5
[9] ONNX; https://onnx.ai/
[10] OpenVINO; https://viso.ai/computer-vision/intel-openvino-toolkit-

overview/
[11] YOLOv5 model architecture; C. Imane;

https://iq.opengenus.org/yolov5/
[12] LabelImg; Tzutalin; https://github.com/heartexlabs/labelImg
[13] Object Detection Metrics With Worked Example; Kiprono Eli-

jah Koech; https://towardsdatascience.com/on-object-detection-metrics-
with-worked-example-216f173ed31e

59

	List of Tables
	List of Figures
	Introduction
	Artificial Intelligence
	Computer Vision
	Object detection
	Weed Detection
	Data Reply

	Literature
	Computer Vision
	Convolutional Neural Networks

	Object Detection
	Faster R-CNN
	YOLO

	ONNX
	OpenVINO
	Model Optimizer

	Problem statement and Solution
	Context
	Camera features
	Dataset
	Labeling

	Object Detection Training
	Faster R-CNN
	YOLOv5

	Real performances estimation
	Inference optimization with ONNX and OpenVINO

	Results
	Metrics
	IoU
	Precision and Recall
	Mean Average Precision

	Faster R-CNN Results
	YOLO Results
	Real performances estimation
	Inference optimization with ONNX and OpenVINO

	Conclusion
	Bibliography

