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Abstract

Automated machine learning (AutoML) is a new, rapidly growing area of machine
learning (ML) that aims to automate the creation of machine learning pipelines,
including the design, training and deployment of machine learning models, model
selection and hyperparameter tuning. Neural Architecture Search (NAS) is a
sub-field of AutoML that focuses specifically on automating the design of neural
network architectures. NAS has become increasingly popular due to its potential to
significantly improve the performance of deep learning models by discovering optimal
neural network architectures. However, the search process can be computationally
expensive as it requires training and evaluating a large number of architectures. This
is where Zero-cost proxies come in. They are low-fidelity approximation techniques
that can be used to estimate the performance of a candidate architecture without the
need for full training. Zero-cost (ZC) proxies significantly lower the computational
cost of the search procedure and can result in a more effective and efficient NAS.

In this thesis, AutoML and NAS are exhaustively presented providing the reader
with the necessary context for understanding the Zero-cost proxies. Next, existing
Zero-cost proxies are exposed and investigated, followed by the research and analysis
of the newly proposed Hybrid ZC proxy. The Hybrid Zero-cost proxy is obtained
by combining the benefits of both Data-Independent (DI) and Data-Dependent
(DD) ZC proxies. Specifically, the Hybrid ZC proxy is created through a weighted
sum of LogSynflow [1], which is the best performing ZC proxy DI, and Nwot [2] ,
which is the best performing ZC proxy DD.

To make a quantitative comparison with the other existing ZC proxy metrics,
several tests are conducted to evaluate the performances on various reference
datasets. Specifically, the performance of each ZC proxy are measured by calculating
two correlation coefficients, namely Kendall-tau and Spearman, between the score
obtained by the neural network architecture with the ZC proxy and the accuracy
achieved by training and testing the model. The experimental results show that
the proposed Hybrid Zero-cost proxy outperforms the LogSynflow and Nwot ZC
proxies in terms of Kendall-tau and Spearman correlation values, achieving higher
correlation values.

Overall, the Hybrid Zero-cost proxy proposed in this Master’s thesis show highly
promising performance and outperform its main competitors, LogSynflow and
Nwot, in all three tested datasets. These results suggest that the proposed solution
could be a crucial factor in enabling the development of faster and more effective
Automated machine learning systems. Further research and experimentation are
needed to confirm its potential impact, but these initial findings are a strong
indication of its possibilities.
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Chapter 1

Introduction

This Master’s thesis work was carried out at ALTEN Lab of Sophia Antipolis, France.
There are four ALTEN Labs, located throughout France, that are committed to
supporting cutting-edge research and technology initiatives as well as creative
approaches to managing businesses’ upcoming digital transformation. In this
innovative context we find the System Behaviour Management (SBM) project, in
which I was included. The SBM project was created by one of my supervisors,
Marc RAVAINE, and it aims to automate the creation of a complete Machine
Learning pipeline, for different types of problems. In particular, this project wants
to facilitate the work made by data engineers, in which a lot of experience is needed,
and, in the long run, to empower non-expert people to interface with the data
science world. There are numerous tasks to be completed as part of this project,
but the work of this Master’s thesis is concentrated on Neural Architecture Search
(NAS), particularly on the idea of speeding up this task.

Automated Machine Learning (AutoML) is a rapidly expanding field whose goal
is to automate the process of developing machine learning models. Many of the
time-consuming and laborious machine learning tasks, such as feature engineering,
model selection, and hyperparameter tuning, are automated by AutoML methods.
Hence, AutoML aims to make it easier for non-experts to create high-quality
machine learning models by automating the most difficult parts of the process.
AutoML is a broad field that encompasses a range of subfields, each focused on
automating a different aspect of the machine learning process.

Neural Architecture Search (NAS) is a sub-field of AutoML that focuses specifi-
cally on automating the design of neural network architectures. In the traditional
neural network design, the architecture is chosen manually by a human expert,
based on their understanding of the problem and their intuition. It is possible to
categorize different methods for NAS according to three dimensions:
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1. Search Space: The search space is the collection of all neural network archi-
tectures that can be investigated during the NAS process. The level of detail
in the architecture specification may range from high-level descriptions, such
as cells or blocks, to detailed specifications of individual layers in this area.

2. Search Strategy: The search strategy is the process used to sift through
the search space and find the ideal neural network architecture. This can
involve methods like gradient-based optimization, Bayesian optimization,
reinforcement learning, and evolutionary algorithms.

3. Performance Estimation: The techniques used to assess the candidate neural
network architectures’ performance during the NAS process, are known as
performance estimation. This can be accomplished by training and analysing
each architecture on a validation set, or by using proxies that allow fast
evaluation .

The use of neural architecture search (NAS) has become increasingly popular
in recent years. However, this process can be computationally expensive and
time-consuming, making it difficult to apply to real-world problems. One solution
to this problem is to use low-cost or zero-cost proxies for expensive performance
evaluations. These proxies are designed to estimate the performance of a neural
network architecture with minimal computational resources, allowing for a more
efficient search process. In [3] Abdelfattah et al. proposed a set of Zero-cost proxies
that can predict the model score with just a small batch of training data. The
predicted score is correlated to the accuracy of the model on the test data. As a
result, estimating the score ultimately involves estimating how well the model will
perform given a specific set of data.

This Master’s thesis aims to investigate and analyze the Zero-cost proxy metrics
currently available in the field. Additionally, this thesis proposes a novel Hybrid
Zero-cost proxy metric that leverages the benefits of both data-independent and
data-dependent categories of ZC proxies.

The structure of the thesis will be the following:

• Chapter 1: Introduction to the thesis.

• Chapter 2: Introduction to Machine Learning and Deep Learning.

• Chapter 3: Problem Definition that contains an overview of AutoML, NAS
and the Zero-Cost proxies.

• Chapter 4: Related Works about Zero-cost proxies metrics that were researched
while developing the thesis.
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• Chapter 5: Presentation of the methodology used to create the Hybrid Zero-
cost proxy, as well as the experiments that were conducted to evaluate its
performance.

• Chapter 6: Display of the results achieved and comparison to other state-of-
the-art.

• Chapter 7: A brief discussion of the results and possible future works are
proposed.

3



Chapter 2

Introduction to Machine
Learning and Deep Learning

2.1 Introduction to Machine Learning
Machine learning (ML) is a sub-field of Artificial Intelligence (AI) that focuses
on the development of algorithms and statistical models that enable computers
to learn from and make predictions or decisions based on data, without being
explicitly programmed to do so.

Tom Mitchell, a renowned researcher in the field of machine learning, provided
a definition of machine learning that is generally accepted as a standard in the
field. In his book "What is Machine Learning?" he defines machine learning as

“A computer program is said to learn from experience E with respect
to a class of tasks T and a performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.”

In simpler terms, Mitchell’s definition states that machine learning occurs
when a computer program improves at a task through experience and by using a
performance measure. This definition highlights the key characteristics of machine
learning, which include the use of experience, tasks, and performance measures to
drive improvement.

2.1.1 Machine Learning approaches
According to Tom Mitchell’s definition of machine learning, it is possible to distin-
guish three main approaches.

• Supervised Learning: In supervised learning approach, the computer is
instructed by example. The algorithm is trained on labeled data, where the
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correct output is already known. The goal of the algorithm is to learn the
mapping between input and output, and then use this mapping to make
predictions on new, unseen data.

• Unsupervised Learning: In this approach, there are no labelled data
providing instruction to the algorithms. Indeed, the algorithm is trained on
unlabeled data and the goal is to identify patterns and relationships within
the data. The algorithm is not given any specific output to learn, but instead
must identify structure and meaningful relationships in the data on its own.

• Semi-supervised Learning: Semi-supervised learning is another approach
in machine learning that is a hybrid of supervised and unsupervised learning.
In semi-supervised learning, the algorithm is trained on a combination of
labeled and unlabeled data. The labeled data provides the algorithm with
a basic understanding of the mapping between input and output, while the
unlabeled data provides additional information that can be used to refine the
algorithm’s understanding.

• Reinforcement Learning: In this approach it is exploited a learning process
in which the algorithm is trained by making decisions and receiving feedback in
the form of rewards or penalties. The algorithm learns through trial-and-error
and gradually improves its decision-making ability over time.

2.1.2 Machine Learning tasks
There are different tasks in machine learning, and the choice of the task depends
on the type of data, the goals of the project, and the available resources. Machine
learning algorithms can also be combined to perform more complex tasks. The
following are the main tasks for which Machine learning is used to solve.

• Classification: Classification task consists in categorizing data into one of
several predefined classes. The algorithm would use its training data to learn
the features that distinguish each class, and then apply this knowledge to
new images to make predictions. This task is commonly used in a variety of
real-world applications such as image classification, spam detection, and credit
card fraud detection. Classification is a widely used task in machine learning,
and there are many algorithms and techniques that can be used to perform
this task, including decision trees, random forests, support vector machines,
and neural networks. The choice of algorithm depends on the type of data
and the requirements of the specific task.

• Regression: Regression is a task in machine learning that is used to predict a
continuous output value for a given input. Its goal is to model the relationship
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between the input variables and the output variable, and then use this model
to make predictions on new data. Regression is widely used in a variety of
real-world applications such as stock price prediction, weather forecasting,
and house price prediction. For example, the possible features to predict the
price of a house can be the size, location, age, and other features. There are
many algorithms that can be used for regression, including linear regression,
polynomial regression, decision trees, random forests, and neural networks.

• Clustering: Clustering is a task in machine learning that is used to group
data points with similar characteristics into clusters. The goal of clustering
is to identify patterns and structure in the data, and to divide the data into
groups or clusters based on similarity. The algorithm does not have any
prior knowledge of the number of clusters, or what each cluster represents.
Instead, it must learn the structure of the data and determine the number and
composition of the clusters on its own. Clustering can be used in customer
segmentation, where a company wants to divide its customers into different
groups based on their behavior and demographics. The algorithm would
analyze the data on the customers, such as their age, income, location, and
spending habits, and then divide them into groups that are similar to each
other. There are many algorithms that can be used for clustering, including
k-means and hierarchical clustering.

Figure 2.1: The interplay between Artificial Intelligence, Machine Learning and
Deep Learning.

2.2 Introduction to Deep Learning
Deep learning (DL) is a relatively new sub-field of machine learning that has been
growing in popularity in recent years. Deep learning has achieved remarkable success
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in a variety of applications, including computer vision, natural language processing,
and speech recognition. One of the key advantages of deep learning is its ability
to learn high-level abstractions from large amounts of data, making it well-suited
to tasks that require understanding and processing complex and unstructured
data, such as images, videos, and audio signals. Deep learning uses Artificial
Neural Networks (NN) with multiple layers, hence "deep", to learn hierarchical
representations of data. Each layer of deep learning models is responsible for
learning a different level of abstraction. The lower layers learn basic features such
as, in an image, edges and shapes, while, the higher layers, learn higher-level
features such as objects and semantic concepts. This hierarchical representation of
data enables deep learning models to perform complex tasks with high accuracy.

2.3 From Artificial Neural Networks to Deep
Learning models

Deep Learning models and Artificial Neural Networks (ANNs) are two categories
of machine learning models that draw their inspiration from the structure and
operation of the human brain. ANNs are made up of interconnected artificial
neurons that are used to learn relationships between inputs and outputs.

Deep learning models are a type of ANN that consists of multiple layers of
artificial neurons that allow them to learn hierarchical data representations and
increasingly complex features as the data flows through the network. Deep learning
models have several advantages over traditional artificial neural networks. For
example, the usage of non-linear activation functions, such as the rectified linear
unit (ReLU), allows the model to learn non-linear relationships between inputs
and outputs. This makes deep learning models well-suited to tasks where the
relationship between inputs and outputs is non-linear. Additionally, deep learning
models are capable of learning from large amounts of data, making them well-suited
to tasks such as image and speech recognition, natural language processing, and
recommendation systems. Overall, the advantages of deep learning models have
made them a critical component in many artificial intelligence systems and have
driven the recent advancements in artificial intelligence. The following section
delves into one of the cornerstone models of deep learning, the Convolutional Neural
Networks

2.3.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs), introduced by LeCun in 1989, are a type of
deep learning model that excel in computer vision and natural language processing
tasks. The name "convolutional" refers to the use of mathematical convolution
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operations, rather than simple matrix multiplication, to analyze and understand
the input data. In computer vision, CNNs can take an image as input and use a
series of layers to identify and classify different objects or aspects within the image.
The network learns to assign importance, through weights and biases, to different
regions of the image, allowing it to differentiate between objects and background.
There exist different types of layers:

• Convolutional Layers: as stated previously, MLPs usually have fully con-
nected layers, where every neuron takes as input every output from the
previous layer, and this implies a great amount of parameters for the deep
networks. On the contrary, there are the CNNs that have Convolutional layers,
where every neuron is in charge of a specific sub-window of data which "stride"
through the set. The objective of the convolution operation is to extract the
high-level features such as edges, from the input image. CNNs need not be
limited to only one Convolutional Layer. Conventionally, the first ConvLayer
is responsible for capturing the low-level features such as edges, color, gradient
orientation, etc. As more layers are added, the architecture captures to the
higher-Level features as well, giving us a network which has the wholesome
understanding of images in the dataset, similar to how we would.

• Pooling Layers : after generating the convolutional output, a pooling layer
may be inserted. The main purpose of the pooling layers is to progressively
reduce the spatial size of the input image, so that number of computations in
the network are reduced. This layer has the task of dividing the output in
other sub-windows and then collapse each of them in a single data point with
a specific function, that can usually be the average, sum or max.

• Normalization Layers: normalization layers in the CNNs often helps to
speed up and stabilize the learning process. There are different types of
normalization layers such as Batch Normalization (BN), Weight Normalization
(WN), Weight Standardization(WS). The Batch Normalization (BN) is the
most widely used and is responsible for transforming each input in the current
mini-batch of data, by subtracting the input mean in the current mini-batch
and dividing it by the standard deviation.

• Non-linear activation Functions : the purpose of the non-linear activation
functions is to introduce non-linearity into the network. ReLU is increasingly
the default choice of activation functions.
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Chapter 3

Problem Definition

3.1 Introduction to Automated Machine
Learning

Automated Machine Learning (AutoML) is a rapidly growing machine learning
field that aims to make the process of designing, training, and deploying machine
learning models more accessible and efficient. With the increasing demand for
machine learning in various industries, the need for automating the creation of
models has become increasingly important. An informal definition of an AutoML
system is given by Prof. Frank Hutter et al.[4]:

Definition 3.1.1 (AutoML system) Given:
• A Dataset

• A Task (e.g., regression or classification)

• A Cost Metric (e.g., accuracy or RMSE)
an AutoML system automatically determines the approach that performs best

for this particular application.

An AutoML system is a really valuable tool for organizations that want to
leverage the power of machine learning but do not have the specialized knowledge
or expertise in-house. With AutoML, they can build and deploy machine learning
models more quickly and easily, allowing them to scale their machine learning
efforts more effectively. Different advantages can be identified, including:

• Simpleness of use : AutoML offers a user-friendly interface that walks users
through the process of creating, training, and deploying machine learning
models, so users no longer need to possess specialised knowledge or expertise
in the field to do so.
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• Enhancement of performance and efficiency : By automating many of the
manual and time-consuming tasks involved in building machine learning
models, AutoML can speed up the model development process.

• Improved Reproducibility : By automating many of the manual and time-
consuming tasks involved in building machine learning models, AutoML can
speed up the model development process and help organizations scale their
machine learning efforts more quickly.

• Reduced Risk of Human Error : The automation of difficult and complex
tasks involved in machine learning model’s creation can help reduce the risk
of human error, resulting in more reliable and accurate results.

• Better Utilization of Expertise : AutoML allows data scientists and engi-
neers to focus on more trivial tasks, such as feature engineering and model
interpretation, instead of spending time on manual, repetitive tasks.

Figure 3.1: Macro distinctions between an AutoML pipeline and a ML pipeline.
Source:[4]

Figure 3.1 depicts the distinctions between a ML pipeline (above) and an AutoML
pipeline. In order to achieve state-of-the-art performance, the iterative manual
tuning of green tasks within the machine learning pipeline must be repeated for each
new dataset, which is very time-consuming. With AutoML, the time-consuming
aspect is diminished because green tasks are automated and the effectiveness
of developing new ML applications is improved, possibly even achieving better
performance. In summary, AutoML is useful because it makes the process of
building machine learning models more accessible, efficient, and accurate.

There exists risks, even when using AutoML, and it is important to be aware of
them. As previously said, one of the main goals of AutoML is to make it simple
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for people who are not machine learning experts. However, achieving this goal
could have a number of drawbacks, such as the application of AutoML without
doing any research, falling in the production of models that are unreliable, unfair,
or biased. It is therefore essential know how to manage this powerful tool keeping
from having too much faith in it.

In terms of possible real-world applications of AutoML, we can mention the health
sector, specifically image diagnosis using AutoML. Currently, image diagnosis is
performed using machine learning involving the manual process of selecting and
annotating a dataset of images, preprocessing and transforming the images, selecting
an appropriate model architecture, and training the model on the preprocessed
data. The model is then tested and evaluated, and the process is repeated until
satisfactory results are achieved. This process can be really time-consuming and
requires a high level of expertise in both machine learning and medical imaging.
With AutoML, the entire process can be simplified by automating diagnosis based
on medical images or clinical data from the patient, as well as speeding up the
patient’s subsequent treatment plan.

3.2 AutoML sub-fields
AutoML is made up of sub-fields, each of which is involved in a task of the overall
system. The goal of an AutoML system is to optimise a cost function that accounts
for all costs associated with the various sub-fields. An AutoML system include the
following tasks that have to be investigated:

• Hyperparameter Optimization (HPO).

• Model and algorithm selection.

• Dynamic approaches (DAC).

• Neural Architecture Search (NAS).

The following paragraphs briefly describe Hyperparameter Optimization, Model
and Algorithm selection and Dynamic approaches, and then space is given to NAS,
the central topic of study in this thesis work.

3.2.1 Hyperparameter Optimization - HPO
Hyperparameter Optimization is a sub-field of AutoML that deals with the auto-
mated tuning of the hyperparameters of machine learning models. Every machine
learning system has hyperparameters and the most basic task of AutoML is to
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automatically set these hyperparameters that have a crucial impact on how well
the model performs. A formal definition of HPO can be:

Definition 3.2.1 (Hyperparameter Optimization [4]) Let:

• λ be the hyperparameters of an ML algorithm A with domain Λ,

• Dopt be a dataset which is split into Dtrain and Dval,

• c(Aλ, Dtrain, Dval) denote the cost of Aλ trained on Dtrain and evaluated on
Dval.
The Hyperparameter optimization (HPO) problem is to find a hyperparameter
configuration that minimizes this cost:

λ∗ ∈ argminλ∈Λ c (Aλ, Dtrain, Dvalid)

Due to the expanding use of machine learning in companies, HPO is also of
significant commercial interest and assumes an increasingly significant role, whether
in internal company tools, as a component of machine learning cloud services, or
as a service in and of itself.

HPO faces several challenges, making it a difficult problem to solve in practise.
For example the function evaluations can be extremely expensive for large models,
complex machine learning pipelines, or large datasets. Another issue could be
the configuration space of hyperparameters. This is frequently represented as a
combination of continuous, categorical, and conditional hyperparameters, resulting
in a really large space, difficult to deal with. Some commonly used HPO algo-
rithms include Grid Search, Random Search, Bayesan Optimization, Evolutionary
algorithms and so on.

3.2.2 Model and algorithm selection
The model and algorithm selection in AutoML is a crucial part of the overall
AutoML process. The goal is to find the best model that performs optimally on the
given data and provides accurate results for the problem at hand. The selection
of algorithm and hyperparameters are obviously linked, and, in this matter, it is
important to mention the existence of CASH.

CASH (Combined Algorithm Selection and Hyperparameter Optimization) is
a type of AutoML approach that combines the tasks of algorithm selection and
hyperparameter optimization. We can provide a definition below:
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Definition 3.2.2 (CASH [4]) Let:

• A = {A1, A2, ..., Ak} be the set of algorithms,

• Λ be the set of hyperparameters of each machine learning algorithm Ai,

• Dopt be a dataset which is split into Dtrain and Dval,

• c(Aλ, Dtrain, Dval) denote the cost of Aλ trained on Dtrain and evaluated on
Dval.
we want to find the best combination of algorithm A ∈ A and its hyperparameter
configuration λ ∈ Λ minimizing:

(A∗, λ∗) ∈ argminA∈A,λ∈Λ c (Aλ, Dtrain, Dvalid)

The goal of CASH is to find the best algorithm and set of hyperparameters for
a given machine learning task in a single run, rather than performing algorithm
selection and hyperparameter tuning as separate steps. This strategy can result
in better outcomes, lower computational costs, and a better comprehension of the
connections between algorithms, hyperparameters, and performance.

Figure 3.2: Description of the placement and communication of the different
AutoML tasks. Source:[4]
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HPO and CASH are two crucial components of AutoML that are essential to the
effectiveness and performance of machine learning models. HPO is the process of
enhancing a model’s performance by optimising its hyperparameters. Additionally,
CASH is a subset of AutoML that focuses on choosing the model architecture as
well as the hyperparameters. Given the combination of strengths of these two
approaches, AutoML provides a comprehensive solution for model selection and
optimization, making it easier and faster to achieve high-quality machine learning
models. Neural Architecture Search (NAS), represents the final step. It extends
the idea of HPO and CASH by not only searching and tuning the hyperparameters
of a predefined neural network architecture, but also searching for the optimal
architecture itself. Before delving deeper into NAS, it is important to place all of
the elements presented thus far within the AutoML pipeline. Figure 3.2, taken
from the AutoML Lectures of F.Hutter et al. [4], shows, in detail, how the various
tasks (HPO, NAS etc.) interact with each other and, more generally, where they
are located within the AutoML pipeline. It is important to emphasise that there is
no single way to build an AutoML pipeline and that the one depicted in the figure
is intended to give the reader only an idea of what steps to follow.

3.3 Neural Architecture Search: definition and
overview

Neural Architecture Search (NAS) is a sub-field of AutoML that is responsible of
automating the design of artificial neural networks. It aims to find the optimal
combination of different architectural elements, such as layer type, number of layers,
number of neurons, and activation functions, in order to obtain a neural network
that performs well on a particular dataset. NAS has become increasingly popular
in recent years due to its ability to discover novel and effective architectures that
outperform traditional hand-designed models, particularly for complex tasks such
as computer vision and natural language processing. Using NAS can lead to better
performance compared to manually selecting architectures, as well as saving time
and resources compared to training and evaluating multiple architectures manually.
A formal definition of NAS is given by the AutoML lectures of F. Hutter et al.[4]:

Definition 3.3.1 (NAS [4]) Let:

• λ be an architecture for a deep neural network N with domain Λ,

• Dopt be a dataset which is split into Dtrain and Dval,

• c(Nλ, Dtrain, Dval) denote the cost of Nλ trained on Dtrain and evaluated on
Dval.
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The neural architecture search (NAS) problem is to find an architecture that
minimizes this cost:

λ∗ ∈ argminλ∈Λ c (Nλ, Dtrain, Dvalid)

Figure 3.3: Illustration of Neural Architecture Search dimensions. Source:[5]

It is possible to categorize methods for NAS according to three dimensions:
search space, search strategy, and performance estimation strategy. Figure 3.3
depicts the three NAS dimensions:

A Search Strategy selects an architecture from a predefined Search space A.
Then, the architecture is passed through a Performance Estimation Strategy, which
returns an estimate of the performance of the chosen architecture to the Search
Strategy in order to improve the search policy adopted.

• Search Space: The search space defines which architectures are considered.

• Search Strategy: The search strategy details how to explore the search space.

• Performance Estimation Strategy: The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data and
performance estimation refers to the process of estimating this performance.

The following sections go into great detail on each of the three dimensions.

3.3.1 Search Space
NAS aims to search for a robust and well-performing neural architecture, by
selecting and combining different basic elements from a predefined search space.
Incorporating prior knowledge about properties well-suited for a task can reduce
the size of the search space and simplify the search. This, however, also introduces
a human bias, which might prevent the discovery of novel structural elements that
go beyond the state of human knowledge.

The simplest search space is composed of chain-structured neural networks,
illustrated in figure 3.4, on the left. A chain-structured neural network architecture
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Figure 3.4: Illustration of an element of a search space of chain-structured neural
network architectures (left) and, a more complex neural network architecture with
multiple branches and skip connections (middle). On the right, a cell-based neural
architecture. Source:[5]

A is composed of sequence of n layers, where the ith layer, Li, receives its input
from layer (i-1), Li−1 , and its output serves as the input for layer (i+1), Li+1. The
search space is, therefore, parameterized by:

• The number of layers n.

• The type of operation each layer executes.

• The hyperparameters related to the operations.

The selection of operations and hyperparameters is closely linked, as the combination
of both can lead to a search space that is not fixed length, but rather a conditional
space. The search space can become more complicated with the addition of multiple-
branches, i.e. having multiple parallel paths or branches within the network, each
with its own set of operations and computations, and skip-connection operations,
as shown in figure 3.4 in the middle. The skip-connections, introduced by He et al.
in [6], allows the gradient flow from earlier layers to reach later layers without being
altered by the activation functions in between. The idea behind skip-connections is
to overcome the vanishing gradients problem in deep networks, which can make it
difficult for the network to learn. In NAS, the presence of skip-connections results
in architectures that can be theoretically infinitely complex, both in the number
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of layers, but also in the operations that consider layers even further back in the
network.

Cell-based Search Space In this respect, the works [7] and [8] by Zoph et
al. represents a turning point, with the introduction of the concept of the cell-
based search space. In the cell-based search space, the neural network architecture
is represented by a set of predefined building blocks called "cells". The final
architecture can be created by combining and repeating these cells in different
configurations. An example of a cell-based search space architecture is reported
in figure 3.4, on the right. Comparatively to exhaustively combing through all
conceivable combinations of operations and hyper-parameters, this enables a more
flexible and scalable method of looking for the ideal architecture. The introduction
of the cell-based search space was made in an effort to simplify the search space
and improve the effectiveness and efficiency of the NAS procedure.

In [8] Zoph introduces two different kind of cells: a normal cell and a reduction
cell. While the normal cell maintains the dimensionality of the input, the latter
reduces the spatial dimension by a factor of 2. The final architecture is then built
by stacking these cells in a predefined manner. The main advantages of choosing a
cell-based search space are:

• Drastically lower size of the search space, as the cells usually consist of
significantly less layers than whole architectures.

• Higher transferability of the architectures, as it is possible to adapt them to
other dataset simply changing the number of cells used.

Consequently, this cell-based search space is also successfully employed by many
other works. DARTS [9] by Liu et al. is a significant example of the use of the
cell-based search space and takes it a step further by introducing the concept
of differentiable architecture research. Differentiable Architecture Search is a
technique for finding neural network architectures using gradient descent. It
involves relaxing the search space of possible architectures into a continuous space,
making it differentiable, so that gradients can be calculated and used to optimize
the performance of the network. In this approach, the architecture is represented
as a Directed Acyclic Graph (DAG) of operations, and the search algorithm is able
to learn the structure of the network, the order and type of operations, and the
parameters of each operation. The result is a neural network architecture that
is tailored to the specific task at hand and has the potential to achieve superior
performance compared to hand-designed architectures.

This method does away with the need for labor-intensive and expensive compu-
tational architecture search techniques like reinforcement learning or evolutionary
algorithms. Furthermore, the differentiability of the architecture search enables the

17



Problem Definition

Figure 3.5: An example of a three-level hierarchical architecture representation is
shown. The level-2 motif is assembled using level-1 primitive operations, as seen in
the bottom row. The level-3 motif that is created by combining level-2 motifs is
displayed in the top row. Source:[10]

use of large amounts of labelled data, allowing for the discovery of more accurate
and efficient architectures for tasks such as image classification, object detection,
and semantic segmentation. Overall, DARTS has contributed to the development
of neural architecture search, and its methods have been widely used and enhanced
in subsequent works.

Hierarchical Search Space When using a cell-based search space, a new design
choice emerges, namely how to select the macro-architecture. Ideally, both the
macro-architecture and the micro-architecture (cell structure) should be optimised
together. Otherwise, once a high-performing cell has been identified, one is forced to
manually engineer the macro-architecture. One step in the direction of optimizing
macro-architectures is the hierarchical search space introduced by Liu et al. [10].
The hierarchical search space can be seen as a multi-level representation of the
architecture, and the search process can be performed either by reinforcement
learning, evolutionary algorithms, or gradient-based methods. The process starts
with a small set of primitives, such as convolutional and pooling operations, at the
lower level of the hierarchy. Then the higher-level computational graphs, or motifs,
are formed using the lower-level motifs as building blocks. The motifs at the top
of the hierarchy are stacked several times to form the final neural network. This
approach allows search algorithms to implement powerful hierarchical modules in
which any changes in the motifs are propagated to the entire network immediately.

Consider a hierarchy of L levels where the l − th level contains Ml motifs.
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The highest-level l = L contains only a single motif corresponding to the full
architecture, and the lowest level l = 1 is the set of primitive operations.
We recursively define o(l)

m , the m − th motif in level l, as the composition of lower-
level motifs o(l−1) =

î
o
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1 , o
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A hierarchical architecture representation is therefore defined by:
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as it is determined by network structures of motifs at all levels and the set of
bottom-level primitives. An actual illustration of a hierarchical space can be seen in
figure 3.5. At first, there are only primitive operations that are 1x1 conv, 3x3 conv,
3x3 max-pooling and the network structure G

(2)
1 . At the first step, the assemble

operation is performed on the network structure and primitives listed above. Then,
at each succeeding step, a new motif is created assembling the components of the
previous motif.

The search space chosen has a significant impact on the accuracy and efficiency
of the final model. The ideal search space should strike a balance between the
architectures’ expressiveness and the evaluation’s computational expense. If the
search space is too narrow, it may limit the ability of the algorithm to discover
optimal architectures. If it is too broad, it may lead to excessive computational
cost and difficulty in finding the best architecture. Therefore, choosing the right
search space is crucial for the success of NAS.
The following section discusses Search Strategies that are well-suited for these types
of search spaces.

3.3.2 Search Strategy
In Neural Architecture Search (NAS), a search strategy is a set of procedures
and formulas for finding the best neural network architecture for a specific task.
The search strategy determines how the search space, which contains possible
architectures, is explored and which architectures are chosen to be evaluated. Many
different search strategies can be used to explore the space of neural architectures,
including Random Search and Grid Search, Bayesian optimization, Evolutionary
methods, Reinforcement Learning (RL), and Gradient-based methods.
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Random Search and Grid Search Both Random Search (RS) and Grid Search
(GS) are simple search policies exploited by several NAS studies. Random search
is certainly the most simplistic strategy that consists in sampling architectures
randomly from the predefined search space. Random search has been shown
to perform well in practice, especially for smaller search spaces, but it can be
computationally expensive and can struggle to find the optimal architecture for
more complex problems.Random search is usually used as a baseline for comparison
with other search policies and algorithms in the majority of the papers ([11],
[12]), and it has proven to be a simple but effective approach for optimising
hyperparameters in deep neural networks. For what concerns Grid Search , it
has been used as a search policy in NAS. However, it is strongly limited by the
computational cost and time requirements of testing each combination. This
method has been used in some early NAS papers, but it has largely been replaced
by more efficient and effective search policies.

Bayesian Optimization It is the most popular search strategy in NAS. This
approach uses Bayesian methods to model the uncertainty in the search process
and guide the optimization towards the best architecture. The basic idea is
to use a probabilistic model to estimate the performance of the architectures
and to guide the search towards the most promising ones. The optimization
process involves iteratively selecting the architectures to evaluate, based on the
model predictions, and updating the model parameters with the newly acquired
performance information.

Evolutionary Methods These methods are inspired by the theory of evolu-
tion and natural selection in biology and are used to generate new architectures
by combining and mutating existing ones. The evolutionary algorithms can be
effective in solving complex optimization problems like NAS, but they can be
computationally expensive due to the large number of architectures that need to
be evaluated. Evolutionary methods make use of Evolutionary algorithms (EA)
that are population-based global optimizer for black-box functions. They consist of
the following essential components: initialization, parent selection, recombination
and mutation, survivor selection. The initialization involves fixing how the first
generation of the population is generated. Then, until termination the following
steps are done (Figure 3.6):

1. Select parents from the population for reproduction.

2. Apply recombination and mutation operations to create new individuals.

3. Evaluate the fitness of the new individuals.
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4. Select the survivors of the population.

Figure 3.6: A general framework for evolutionary algorithms. Source:[13]

The population in the context of neural architecture search consists of a collection
of network architectures. In the first step, either a parent architecture or a pair
of architectures are chosen for mutation or recombination. The steps of mutation
and recombination refer to procedures that produce novel architectural designs in
the search space, which are then assessed for fitness in step 3 and iterated until
the process is complete. In the field of NAS, mutation operators are frequently the
only ones employed. There is no proof that a recombination procedure performed
on two highly fit people would produce children with similar or higher fitness levels.
The most common parent selection method in NAS is tournament selection. This
method selects the individuals for further evolution in two steps. First, it selects
k individuals from the population at random and then it iterates over them in
descending order of their fitness while selecting individuals for further steps with
some (presupposed) probability p.

Genetic algorithms are a class of evolutionary algorithms that have been ex-
tensively used in NAS. These methods are so-called because they use a genotype,
a fixed-length encoding, to represent individuals in their methodology. On this
representation, mutation and recombination operations are carried out. Further-
more, a genotype is used to create the physical appearance of the individual, which
in the case of NAS is the architecture. The phenotype is the manifestation of
this. It’s crucial to remember that certain genotype components can be either
active or inactive. If a change in the genotype causes a change in the phenotype,
the information contained in the genotype is said to be active (given all other
information remains the same).

Liu et al. [10] proposed an evolutionary algorithm that works in a hierarchical
search space as described in 3.3.1. At every step, a mutation chooses the hierarchical
level that will be altered and modifies the level’s representations. The population
starts out with 200 trivial genotypes, which are then diversified by applying 1000
random mutations. Furthermore, only 5% of the population is chosen as parents
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through tournament selection, and no one is eliminated during the evolutionary
process. The mutation phase has the ability to modify, add, or remove operations
from the genotype. The decision of the authors to use an evolutionary algorithm
in conjunction with a hierarchical search space enables effective and efficient
exploration of the vast search space.

Figure 3.7: A general framework for reinforcement learning algorithms. Source:[13]

Reinforcement Learning RL Reinforcement learning (RL) approaches are
useful for modelling a sequential decision-making process in which an agent interacts
with its environment with the sole goal of maximising its future return. Figure
3.7 shows the generic framework for reinforcement learning algorithms and the
functioning of this is described below. Through repeated interactions with the
environment, the agent learns how to improve its behaviour. When the agent takes
a specific action, at step t, it takes in exchange the observation of the state and a
reward r(t). On the other hand, the environment responds to the agent’s action
by changing states and emitting the corresponding observation and reward. The
goal of the agent is to maximise return, which is defined as the discounted sum of
rewards over T decision steps.

TØ
t=0

γr(t) (3.1)

Naturally, such approaches are well suited for neural architecture search where
the agent, namely the search algorithm, makes decisions to change the system’s
state, i.e. the architecture, in order to maximise the long-term objective of high
performance which is frequently measured in terms of accuracy. Even in this
situation, there are a lot of combinatorially possible options.

An important example of the application of RL is in the paper [7] by Zoph et al..
According to the authors, using RL to search for the best architecture can overcome
some of the limitations of traditional methods such as Random Search and Grid
Search and Bayesian Optimization, which can be time-consuming or limited in
their ability to explore the search space. Moreover, the paper specifically describes
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a technique for searching through the architecture space using a reinforcement
learning agent that has been trained to maximise a reward signal reflecting how
well the architecture performed on a validation set. The architecture is represented
as a series of operations, which the agent chooses one at a time until the final
architecture is produced. The proposed method was evaluated experimentally by
the authors, who demonstrated that it performs better than other NAS methods
and conventional search techniques.

Gradient Descent-based Optimization Gradient Descent-based (GD) opti-
misation methods differ from previous search policies because they do not sample
the neural network architecture from a discrete search space. DARTS algorithm
[9] was the trailblazer in searching for neural architectures over a continuous and
differentiable search space, with a GD-based approach. Specifically, Liu et al. pro-
posed searching over a cell-based search space, performing a continuous relaxation
to enable direct gradient-based optimization:

Let O be the set of all the candidate operations, where each operation represents
some function o(·) to be applied to x(i) . The choice of a particular operation
is relaxed as shown in equation 3.2.To make the search space continuous, they
relax the categorical choice of a particular operation to a Softmax over all possible
operations:

o(i,j) (x) =
Ø
o∈O
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α(i,j)

o

2
q

o′ ∈O
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1
α

(i,j)
o′

2o (x) (3.2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized
by a vector α(i,j) of dimension |O|.

After the relaxation, the task of finding architectures is transformed into a joint
optimization of the neural architecture and its weights. By continuously relaxing
the search space, this method improves search efficiency, making it the fastest,
best-performing, and most widely used method.

In summary, NAS employs a variety of search strategies, including such random
search, grid search, Bayesian optimization, evolutionary algorithms, gradient-based
optimization, and reinforcement learning. Each strategy has advantages and
disadvantages, and the selection of a search strategy is largely influenced by the
particular issue at hand.

3.3.3 Performance Estimation Strategy
A key component in Neural Architecture Search (NAS) algorithms is the Perfor-
mance Estimation Strategy, which is responsible for evaluating the performance of
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candidate neural network architectures. To guide the search process of the neural
network architecture, the performance estimation strategy need to estimate the
performance of a given architecture A they consider.

Some of the commonly used performance estimation strategies in NAS are:

• Full training: This involves training each candidate architecture from scratch
on the entire training dataset to estimate its performance. While this method
provides accurate performance estimates, it can be very computationally
expensive, especially for large datasets and complex architectures An intriguing
application of full training as performance estimation strategy is in [14] by
Chen et al. Their approach consists in dividing the search process into a
number of stages, increasing the depth of the neural network at the conclusion
of each stage, to reduce the cost of the process. In this manner, the full
training is carried out first on smaller networks, taking less time, and on larger
networks only if considered necessary.

• Early stopping: It refers to stopping the training of a neural network when
the validation error stops improving, to avoid overfitting. This method is less
computationally expensive than full training, but it may not provide accurate
estimates, particularly for architectures that require more training time. In
ENAS [15], Pham et al. exploit this performance estimation strategy so that
the neural network is trained for a fixed number of epochs, and the validation
accuracy is used as an estimate of the test accuracy.

• Surrogate models: In NAS, surrogate models are used as a means of estimating
the performance of neural architectures without training them from scratch.
These models learn to predict the accuracy of a given architecture based on a
smaller set of trained architectures. However, the accuracy of the performance
estimates depends on the quality of the surrogate model. One popular type
of surrogate model is the Gaussian process (GP), a probabilistic model that
can capture the uncertainty in the performance estimates, and can provide
information about which regions of the search space are most promising.
This has been used in several NAS methods, such as SMBO (Sequential
Model-Based Optimization) in [16] and BOHB (Bayesian Optimization and
Hyper-band)[17] .
Another type of surrogate model used in NAS is the neural architecture predic-
tor, which is typically trained to predict the accuracy of neural architectures
based on their architectural descriptions. One example is DARTS [9], which
uses a predictor to estimate the validation accuracy of candidate architectures
during the search process.

• Transfer learning: It is a machine learning technique in which a model trained
on one task is re-used as a starting point for training a model on a different
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but related task. In the context of neural architecture search (NAS), transfer
learning can be used to speed up the search process by transferring knowledge
learned from one architecture search to another. This approach can be
particularly useful when searching for architectures in similar domains or when
the search space is hierarchical. However, the accuracy of the performance
estimates depends on the similarity of the architectures and the quality of the
initial set.

Speed-up the Performance Estimation The simplest performance estimation
strategy consists in fully training of the neural architecture A on training data
and evaluating its performance on validation data. However, as previously said,
this can yields computational demands in the order of thousands of GPU days for
NAS. The most notable example of how long and complex the process is, is in [7]
where Zoph and Le used 800 GPUs and three up to four days to train and test the
selected neural network architectures.

Thus, the need to develop methods for accelerating performance estimation
arose inescapably. Here are some of the most used.

• One-Shot Models, Weight Sharing : One-shot neural architecture search
(NAS) is a class of NAS techniques that employs a single neural network to
represent and look for architectures across the entire architecture space. This
is accomplished by training a super network, which is a large neural network
made up of many smaller sub-networks, with architectural parameters that
determine which parts of the super network are used. Then, using gradient
descent, the parameters of each sub-network are optimised to minimise a
loss function that incorporates the training loss as well as an architectural
regularisation term that promotes the use of fewer parameters.To effectively
explore the space of architectures, one-shot NAS methods employ the weight
sharing technique. Weight sharing allows sub-networks to share information
and reduce the number of unique weight tensors that need to be optimised by
tying the weights of the sub-networks to those of the super network during the
optimization process. As a result, searching across the space of architectures
costs less computationally. One example is given in ENAS [15], by Pham et
al.. In ENAS, architecture descriptions are generated by a recurrent neural
network (RNN), and a set of parameters that are common to all architectures
is learned using gradient descent. In comparison to conventional methods,
ENAS is able to drastically reduce the computational cost of NAS by utilising
weight sharing and a shared parameterization.

• Network Morphism : In network morphism, new neural network architectures
that are topologically related to an existing architecture, are discovered, but
with different numbers of layers, widths, or filter sizes. Finding networks that
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perform similarly to existing networks but use less resources can be helpful in
the search for neural architectures that are resource- and computation-efficient.

• Multi-fidelity Optimization : Multi-fidelity optimization is a group of methods
that are frequently employed in the context of neural architecture search
(NAS) to expedite the search process by assessing candidate architectures
incorporating evaluations at various levels of accuracy or computational cost.
In the context of Neural Architecture Search (NAS), multi-fidelity methods
typically involve using low-fidelity approximations or surrogate models to
guide the search towards promising regions of the search space and then
using high-fidelity evaluations to refine the search in those regions. This
can significantly improve the efficiency of the search process, as it allows the
algorithm to explore a larger portion of the search space in less time. Low-
fidelity approximations are generally faster but less accurate. These methods
usually involve evaluating the neural architecture’s performance on a smaller
and simpler dataset or using a simplified evaluation method. The objective
of using these methods is to quickly discard poor-performing architectures
and prioritize the search on the most promising ones. On the other hand,
high-fidelity approximations are slower and more accurate and are used to
refine the search within promising regions. In PDARTS [14] by Chen et al.
we are given an example of the use of multi-fidelity approximations that led
to a significant speed-up of the process and a reduction in computational cost,
while still producing good results for the chosen architecture.

The previous sections discussed the NAS search space, search strategy, and per-
formance estimation techniques. It could be argued that the search space and its
selection are critical components of NAS because they can lead to the discovery of
optimal architectures capable of achieving cutting-edge performance. Moreover, in
order to efficiently explore the chosen search space, NAS search strategies have used
a variety of techniques including random search, grid search, Bayesian optimisation,
Evolutionary Algorithms, and Reinforcement Learning. Still, techniques like Early
Stopping, Full Training, Early Stopping, Surrogate models can be used to precisely
estimate the performance of architectures. To further accelerate the architecture
search process, low-fidelity and multi-fidelity optimisation techniques have been
developed, together with one-shot models and weight sharing.

Among the various types of low-fidelity optimization techniques, Zero-cost proxies
are becoming increasingly popular as a performance estimation strategy in NAS. By
employing a proxy metric that is easy to calculate, they can be used as a method to
lower the computational cost of evaluating the performance of various architectures.
More details are provided in the following section.
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Related Works

The objective of this chapter is to provide an overview of several studies that have
investigated the development of efficient methods for neural architecture search
(NAS) using zero-cost proxies (ZCs). To achieve this, we will first analyze the
different types of zero-cost proxies and their related taxonomy. Then, we will review
related works that have explored zero-cost proxies, highlighting the similarities
and differences between them. Furthermore, the chapter will focus on two key
components of this research, namely NASLib and Nas-Bench-201.

4.1 Zero-Cost Proxies in NAS
Over the past few years, there has been a growing interest in Neural Architecture
Search (NAS) as a means to automate the search for optimal neural network
architectures. However, this search is very expensive, particularly in terms of
computational resources. Many NAS techniques, indeed, necessitate substantial
GPU-hours to complete the search and the evaluation of every considered neural
network architecture, mainly because the training phase can take day, weeks or
even months to be completed. As a potential solution to this limitation, Zero-cost
proxies (ZC) have been proposed.

Zero-cost (ZC) proxies in NAS are metrics that can be used to estimate the
performance of a neural network architecture without actually training it from
scratch. They are a type of low-fidelity performance estimation strategy that
works exploiting a proxy metric that is simple to calculate, such as the number of
parameters in the network or the number of floating point operations required for
a forward pass. The Zero-cost (ZC) proxy can be categorized into different types,
including:

• Data-independent ZC proxy : these measures entirely ignore the dataset, or
use it only to set dimensions. They can be used on their own or in conjunction
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with other NAS methods to universally bias a search space before fine-tuning
to a specific task.There is a natural baseline between data-independent ZC
proxy, the number of params. This merely counts the number of weights in
the network.

• Data-dependent ZC proxy : this includes ZC proxies that compute scores based
on the data, but do not update the network weights with gradients. The vast
majority of ZC proxies is data-dependent, including some measures motivated
by theory, like grasp, and a number of heuristic measures (grad-norm, snip,
jacov, fisher).

One of the first ZC proxies proposed wanted to estimate the separability of the
minibatch of data into different linear regions of the output space [2]. Many other
ZC proxies have been proposed since then, including data-independent ZC proxies
[3] , [18], ZC proxies inspired by pruning-at-initialization techniques [19], [18], and
ZC proxies inspired by neural tangent kernels [20].

EcoNAS In EcoNAS [21], the strategy adopted involves training and evaluating
neural network architectures under proxies, i.e computationally reduced setting.
There are four reduction factors: the number of channels for CNNs, the resolution
of input images, the number of training epochs and the smaller number of data
samples. The authors used the Spearman correlation coefficient as a parameter
to assess the reliability of reduced settings; the correlation then measures the
degree dependency between the original and reduced settings. When tested on the
custom dataset of the authors, consisting of 50 neural architectures, the proxies
were found to be highly effective, as evidenced by a strong Spearman correlation
value. Additionally, the proxies demonstrated remarkable computational speed.
For instance, it was observed that training the model for only 1

10 of the total epochs
was already sufficient to derive a good measure of neural network performance.

However, when the same proxies were utilized on a larger scale search space as
NAS-Bench-201 [22], which comprises over 15,000 models, the correlation value
was considerably lower. As a result, it was necessary to try different approaches
and change the proxy literature.

4.2 Zero-Cost Proxies for Lightweight NAS
The paper by Abdelfattah et al. (2021) [3] represents the main work on the current
Zero-cost proxies that are used in NAS. The authors aimed to develop proxies that
could surpass the limitations of their predecessors, i.e. the reduced settings in
EcoNAS, while maintaining the same level of computational efficiency. To achieve
this, the pruning-at-initialization literature have been widely used within NAS.
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A first example of the use of pruning-at-initialisation literature in NAS is Atom-
NAS by Mei et al. [23]. They proposed a dynamic network pruning technique to
prune atomic blocks with negligible influence. An atomic block is a commonly used
building structure composed of : convolution - channel-wise operation - convolution.
For making the search space exploration easier, atomic blocks are pruned if they
have a low importance for the entire network structure. AtomNAS is able to learn
simultaneously the parameters of the network and the weight of the atomic block.
At the end of the learning phase, atomic blocks with very small weights are pruned.

The principal aspect of pruning-at-initialization literature entails feeding a
neural network with a single mini-batch of data and computing the saliency per
parameter by multiplying the gradient and the initial parameter value. Saliency
in the literature on pruning-at-initialization describes the significance of specific
weights or connections in a neural network. The idea behind calculating saliency is
to recognise the critical connections in a neural network right after initialization
and then cut out the unnecessary ones.

The work by Abdelfattah et al. proposes six new zero-cost proxies, drawing
from the recent pruning-at-initialisation literature, to rank neural network models
in NAS. It then compares the new proxies with conventional proxies (EcoNAS)
showing that Synflow performs better than the others. To validate the effectiveness
of the proposed new metrics, the authors tested them on four other datasets with
different sizes and tasks. The results showed that of the six zero-cost metrics
initially considered, only Synflow demonstrated robustness across the different
datasets and also when integrated within NAS algorithms.The work of Abdelfattah
et al. lays the groundwork for additional Zero-cost proxies that can increase the
accessibility of NAS without requiring computationally intensive resources. Future
research should focus on determining why the Synflow ZC proxy is the best and
most generally applicable.

Snip, Grasp and Synflow Three of the six Zero-cost proxies used by Abdelfattah
et al. in their work are Snip [19], Grasp [24], and SynFlow [18]. All these methods
originated for pruning neural networks and have recently been adapted for NAS.
They share the common goal of identifying and removing unimportant connections
or neurons in the network to increase efficiency and performance. All three methods
use a metric to estimate the importance of each connection or neuron, the Saliency.
In Snip [19] Lee et al. use the saliency as approximation of the changes in loss when
a specific parameter is removed, instead, Wang et al. in [24] Grasp attempted to
improve on the snip metric by approximating the change in gradient norm, instead
of loss, when a parameter is pruned. Synflow [18] is actually a modified version of
snip and grasp. Instead of using a minibatch of training data and cross-entropy
loss(as in snip or grasp), since Synflow is a Data-Independent ZC proxy, the loss is
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simply calculated as the product of all the parameters of the network, therefore,
no data is needed to calculate the loss or the Synflow metric. Below it is presented
the Synflow formula used by [3] to score the neural networks in the Nas-Bench-201.

synflow :Sp (θ) = δL

δθ
⊙ θ (4.1)

where L is the loss function of a neural network with parameters θ, Sp is the
per-parameter saliency and ⊙ is the Hadamard product. In the end the saliency
score is extended to the entire neural network by summing over all parameters N
in the model: Sn = qN

i Sp (θ)i

4.3 FreeREA : Training-Free Evolution-based Ar-
chitecture Search

The work by Cavagnero et al. (2023) aims to provide a fast and efficient method for
identifying neural networks that achieve high accuracy while preserving the typical
constraints of tiny devices [1] . FreeREA is designed to be completely training-free,
allowing for a significant reduction in computation time and resource requirements
and maintaining the limitations of small devices.

The paper presents their approach to neural architecture search (NAS) that
involves using the proxies as training-free metrics to evaluate the performance of
candidate architectures and using an evolution approach to search for the optimal
model, in the constrained scenario of tiny models. To evaluate the suitability of
various metrics as a substitute for test accuracy, the authors conducted a series of
performance tests on NATS-Bench [25]. Their findings indicate that LogSynflow
(paragraph 4.3), Linear Regions, and the number of Skipped Layers are the most
reliable metrics.

Additionally, Cavagnero et al. pioneered the concept of combining these metrics
to estimate neural architecture performance. They achieved superior empirical
results by summing the normalized scores of each individual metric, rather than
relying on a standard cumulative classification score

With regard to the search policy, the authors use an improved version of
Tournament Selection with Ageing (REA) [26]. The novelty introduced concerns
the sample phase of this genetic algorithm where, in order to improve the search
capability, two parents are sampled for each step. The two parents are then
independently mutated to generate two children, while a third child is generated
through a crossover operation. This increases the exploration capability of the
search algorithm since, while mutation is inherently local, the combination of two
different genotypes can lead to more varied individuals which significantly differ
from their parents.
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The authors conducted experiments on two benchmarks, NATS-Bench [25] and
NASBench-101 [27], to evaluate their method, FreeREA. Interestingly, the results of
the experiments demonstrated that FreeREA not only efficiently searches for neural
architectures, without training any candidates, but also outperforms state-of-the-art
training-based methods, making it the most efficient and accurate NAS algorithm
currently available for the considered benchmarks. Additionally, the search time
for FreeREA is four orders of magnitude shorter than that of the state-of-the-art
algorithms.

LogSynflow LogSynflow was introduced by Cavagnero et al., grew out as a
revision of Synflow. The latter started out as a tool for a local evaluation of the
relevance of the weights in the network and was later extended to allow scoring
of the entire neural network. However, to calculate Synflow we are very likely to
get a gradient explosion, even in small architectures. Consequently, Synflow might
overlook the importance of the values of the weights because the term associated
with the gradients can be several orders of magnitude higher than the corresponding
weight.

LogSynflow proposes to scale the values of the gradients with a logarithmic
function before summing the contributions of each weight in the network, so as to
restore the correct weight values. Below it is presented the LogSynflow formula:

logsynflow :Sp (θ) = θ · log

A
δL

δθ
+ 1

B
(4.2)

The performance of LogSynflow is a significant aspect to consider, as observed
by the authors. They tested the ZC proxy on three datasets of NATS-Bench [25],
which is an improved version of Nas-bench-201 benchmark, and achieved high
correlation values.

Hence, a direct comparison of the results obtained by the authors with those of
this thesis work is currently not possible.

4.4 NAS-Bench-Suite-Zero
The paper by Krishnakumar et al. (2022) introduces a comprehensive dataset of
Zero-cost proxies, for accelerating research on Neural Architecture Search (NAS)
[28]. The authors evaluated 13 ZC proxies on a total of 28 tasks through NASLib
[29], yielding by far the most comprehensive dataset and single code base for ZC
proxies. As a result, the experiments on ZC proxies could be conducted more quickly
and without ambiguity due to different implementations or training pipelines.

The starting point for this work is the notion that, while ZC proxies hold a lot of
promise, they are still understudied in some ways and their true potential has yet
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to be realised. In particular, it is almost unknown what outcomes can be obtained
by incorporating ZC proxies into NAS algorithms. In addition to providing the
most comprehensive dataset of ZC proxies, it aims to answer questions related to
generalizability, complementariness and bias in ZC proxies. Based on the results
obtained by the authors, it can be inferred that the nwot ZC proxy exhibits the
highest Spearman correlation among the benchmarks. However, it should be noted
that its performance is not entirely consistent across all of them. For instance, in
the case of TransNAS-Bench-101 [30] , all the ZC proxies display unsatisfactory
results, whereas most of them perform well on the NAS-Bench-201 benchmark.
Thus, it can be concluded that only a handful of ZC proxies demonstrate the ability
to generalize effectively across different tasks and benchmarks. Nonetheless, the
authors propose to exploit this feature to assess the similarities between the various
benchmarks in meta-learning settings.

The authors arrived at another significant conclusion which sets the groundwork
for the possibility of combining multiple ZC proxies. They determined the level of
complementary information that each ZC proxy can offer, which they found to be
closely linked to the benchmark type. While this may initially appear to be a draw-
back, the authors propose that a machine learning model could effectively identify
valuable combinations of ZC proxies, opening up a new perspective regarding the
use of ZC proxies.

This work unquestionably marks a turning point in the investigation of ZC
proxies and the search for new viewpoints on their application in NAS. However,
although this work has made substantial progress in motivating and increasing
the speed of research on ZC proxies, there are still some limitations. The authors
of this work have only presented an empirical analysis, which is a significant
limitation. While they do provide an initial theoretical assessment in the appendix,
they fail to provide clear conclusions. Additionally, the idea of combining several
proxies together is also limited. The authors note that there is a substantial
complementarity of information between the ZC proxies in some benchmarks, but
this degree of complementarity depends on the specific NAS benchmark. This
implies that combining proxies based on benchmark-dependent features may not
always provide the right information. Therefore, a more intrinsic feature of the ZC
proxy itself should be identified for combining proxies. Machine learning models
could be useful in identifying such features and finding useful combinations of ZC
proxies.

Nwot Krishnakumar et al. have identified Nwot as the top-performing and most
consistent proxy among all the benchmarks tested [28]. nwot, that stays for NAS
without training was introduced by Mellor et al. (2020) in [2]. Nwot is actually the
latest version of the metric proposed by Mellor et al. Its earlier version, known as
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Jacov, has also been widely studied in the literature. This is one of the earliest work
we can find that attempts to perform a type of NAS by scoring neural networks,
without training them, but computing statistics from a forward pass of a single
mini-batch of data. The Nwot proxy captures the activation correlation within a
neural network when it is subjected to different inputs within a mini-batch of data.
One of the key practical benefits of using Nwot is its rapid execution time, which
can be crucial when running the NAS process multiple times for different datasets.
This makes Nwot an attractive option for researchers and practitioners who need
to optimize the efficiency of their NAS algorithms.

Figure 4.1: A high-level representation of the NASLib library which follows the
typical steps of NAS. There are three main blocks that interacts each other : Search
spaces, Optimizers and Trainers/Evaluators. Source:[29]

4.5 NASLib : a NAS library built upon PyTorch
NASLib by Ruchte et al., is a new open-source library designed to facilitate neural
architecture search (NAS) by providing a highly modular and flexible framework
for researchers to develop and evaluate NAS algorithms [29] . With its features and
user-friendly interface, NASLib allows users to easily experiment with a variety of
search spaces, search strategies and performance estimation strategies, enabling
them to discover optimal neural architectures for a wide range of tasks. The authors
state that NASLib and its implementation were developed in response to a specific
need: the necessity of a library that could provide basic strategies without requiring
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researchers to implement them. This frees up time and mental resources that can
be dedicated for developing new and innovative ideas.

Figure 4.1 shows a high-level representation of the NASLib library and its ap-
proach to neural architecture search. First, the search space is defined, representing
the set of potential architectures that the framework will consider. Next, the
optimiser begins its search, aiming to identify the optimal architecture within the
defined search space. Finally, the selected architecture is thoroughly evaluated to
determine its performance.

A minimal example on how running the search and evaluation for DARTS [9]
using NASLib is provided in the following snippet of code.

1 from naslib . search_spaces import DartsSearchSpace
2 from naslib . optimizers import DARTSOptimizer
3 from naslib . defaults . trainer import Trainer
4

5 config = utils. get_config_from_args ()
6

7 search_space = DartsSearchSpace ()
8 optimizer = DARTSOptimizer ( config )
9

10 optimizer . adapt_search_space ( search_space )
11 trainer = Trainer (optimizer , config )
12 trainer . search ()
13 trainer . evaluate ()

NASLib relies on an effective representation of the search space to facilitate the
combination of optimizers and search spaces. In the field of Neural Architecture
Search (NAS), the most common way of representing search spaces is through
Directed Acyclic Graph (DAG), which can be easily implemented as computational
graphs in PyTorch. The search space in NASLib is built upon NetworkX [31]
(Hagberg et al., 2008). This allows the complete definition of the search space in a
single location, using recursive calls of the same object. This unified representation
allows both high-level abstractions, such as the macro-graph, and low-level details,
such as operations on edges and/or nodes of the Directed Acyclic graph (DAG),
to be defined. One of the primary goals of NASLib is to promote the re-usability
of search methods across different search spaces, thereby reducing the overhead
involved in constructing search spaces from scratch.

In addition to its capabilities for graph creation and manipulation, NASLib
offers a unified interface for several Neural Architecture Search (NAS) benchmarks.
Currently, the following benchmarks are supported:

• NAS-Bench-201 [22] : It is a benchmark for evaluating NAS algorithms. It
consists of a collection of 15.625 unique convolutional neural network (CNN)
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architectures. The architectures are evaluated on three datasets: CIFAR10,
CIFAR100 and ImageNet16-120.

• NAS-Bench-101 [27] :This benchmark consists of a set of 4.096 neural network
architectures, each trained and evaluated only on the CIFAR-10 dataset.

• NAS-Bench-301 [32] : It consists of a set of 10.000 neural network architectures
that are trained and evaluated only on CIFAR10.

• NAS-Bench-ASR [33] : It is a benchmark for evaluating NAS algorithms for
Automatic Speech Recognition (ASR) tasks. It consists of a set of 5.000 unique
convolutional and recurrent neural network (CNN and RNN) architectures,
each trained and evaluated on the Google Speech Commands dataset.

• NAS-Bench-NLP [34] : This benchmark is for evaluating NAS algorithms
for natural language processing (NLP) tasks. It consists of a set of 8.840
neural network architectures, each trained and evaluated on the WikiText-103
language modeling dataset.

• TransNAS-Bench-101 [30] : It is a benchmark for evaluating transfer learning
performance of NAS algorithms. It is an extension of NAS-Bench-101 and
consists of a set of 1.000 neural network architectures, each trained and
evaluated on the ImageNet dataset using a fixed set of hyperparameters. In
addition, each architecture is also fine-tuned on 7 computer vision tasks.

This functionality enables researchers to query results from these benchmarks at
any time and to train discrete optimizers without needing to modify any code when
switching between applications or changing the search space and corresponding
benchmark API.

In this thesis work, experiments were performed on the NAS-Bench-201 bench-
mark because it provides a unified benchmark for the most up-to-date NAS algo-
rithms, including all cell-based NAS methods.

4.6 NAS-Bench-201
The NAS-Bench-201 [22] is a neural architecture search (NAS) benchmark and
search space. The architecture of each model inside the NAS-Bench-201 search space
is defined by a stack of cells that fit into a predefined skeleton. By decomposing the
architecture into smaller components, the task of finding an optimal architecture is
simplified to finding a good cell.
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Figure 4.2: On the top the figure shows the macro-skeleton of each candidate
architecture in the search space. To the bottom left, there are some examples of
cells with 4 nodes. To the bottom right, the set of predefined operations that are
used in our search space are displayed. Source:[22]

Architectures in the search space The design of the search space is based on
the successful neural cell-based NAS algorithms introduced previously by Liu [9] et
al. (2019), Zoph [8] et al. (2018), and Pham [15] et al. (2018). As illustrated in
Figure 4.2, the search space consists of a macro-skeleton architecture that starts
with a 3x3 convolution layer with 16 output channels and a batch normalization
layer. The main body of the skeleton consists of three stacks of cells that are
connected by a residual block with stride=2. Each cell is repeated N = 5 times
and has 16, 32, and 64 output channels for the first, second, and third stages,
respectively. At the end of the macro-skeleton architecture, it is included a global
average pooling layer that flattens the feature map into a feature vector. Then a
fully connected layer with a Softmax activation it is employed to transform the
feature vector into the final prediction for classification.

For what concerns the searched cells, they are represented as a densely connected
Directed Acyclic Graph (DAG). The DAG is obtained by assigning a direction from
the ith node to the jth node, with i < j, for each edge of the graph. In this DAG,
each edge is associated with an operation that transforms the feature map from
the source node to the target node. Each DAG has V = 4 nodes, where each node
is the sum of all feature maps transformed through the associated operations of
the edges pointing to this node. The possible operation are shown in figure 4.2 on
the bottom right. So, the set of the possible operation O has five operations :

{(1) zeroize, (2) skip connection, (3) 1-by-1 convolution,

(4) 3-by-3 convolution, (5) 3-by-3 average pooling}
(4.3)

In this case, when speaking of convolution operation, the sequence of ReLU,
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Convolution and Batch Normalisation is implied.

Dataset The architectures in the NAS-Bench-201 search space are trained and
tested on three widely-used datasets: CIFAR-10, CIFAR-100 [35], and ImageNet16-
120 [36], chosen based on their popularity and relevance in the field of computer
vision.

• CIFAR10 : It is a widely used image classification dataset, comprising 60.000
32×32 color images divided into 10 classes. The original training set contains
50.000 images, with 5.000 images per class. In order to have a separate
validation set, the original training set was divided into two groups, each with
25.000 images and 10 classes. We designate the first group as the new training
set and use it to train models, while the second group serves as the validation
set for evaluating model performance.

• CIFAR100 : It is a variant of CIFAR-10, but with the fine-grained categoriza-
tion of 100 classes. The original training set contains 50,000 images, while
the original test set contains 10,000 images. The validation set is creating
splitting the original test set into two groups of 5,000 images each.

• ImageNet16-120 : This is constructed from the down-sampled variant of
ImageNet (ImageNet16×16). [36]. Indeed, images are down-sampled to 16×16
pixels to form ImageNet16×16, from which all images with label ∈ [1, 120] to
construct ImageNet16-120. At the end, this contains 151.700 training images,
3.000 validation images, and 3.000 test images with 120 classes.

Here is provided a code snippet demonstrating how to instantiate NAS-Bench-201
search space inside the NASLib library and how the primitive operation inside a
cell are set. The nodes of the DAG are labeled starting from 1 to 4 and then the
edges are created such that u, v ∈ {1, 2, 3, 4} with u < v. The output node is the
node with the highest index, and the input nodes are those without an incoming
edge. For each stage of the overall search space, different settings are needed when
setting up primitive operations. For this, three different scopes are identified.

1 class NasBench201SearchSpace (Graph):
2 OPTIMIZER_SCOPE = [
3 " stage_1 ",
4 " stage_2 ",
5 " stage_3 ", ]
6

7 def __init__ (self):
8 super (). __init__ ()
9 # Cell definition
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10 cell = Graph ()
11 cell.name = "cell"
12 cell. add_nodes_from ([1, 2, 3, 4])
13 cell. add_edges_densly ()
14

15 # Set primitives as ops at the cells
16 channels = [16 , 32 , 64]
17 for c, scope in zip(channels ,
18 self. OPTIMIZER_SCOPE ):
19 self. update_edges ( update_func = lambda current_edge_data :

_set_cell_ops ( current_edge_data ,
C=c), scope=scope ,
private_edge_data =True)

4.6.1 Querying NAS-Bench-201 through NASLib
In this thesis, we focus in particular on a remarkable feature of NASLib, namely
the possibility to query NAS-Bench-201 and obtain information on the performance
of models within its search space. This represents an excellent opportunity that
provides access to over 15,000 models and gives us a preliminary knowledge of the
accuracy obtained by those models on the reference dataset. This unique capability
has significant potential for our research and increases our ability to achieve our
ultimate goal.

Below is a code snippet provided to facilitate a clearer comprehension of how to
query NAS-Bench-201. After installing NASLib in the environment using either
pip or conda, the next step is to initialize the NAS-Bench-201 dataset. Once the
dataset is initialized, the benchmark provides a function that allows the access
to all the architectures available. Finally, by using the query_architecture()
function, it is possible to obtain the performance metrics, i.e the accuracy, of the
specific architecture you are interested in.

1

2 from naslib .data. datasets import NASBench201Dataset
3

4 # Initialize the dataset
5 nasbench201_dataset = NASBench201Dataset ()
6

7 # Load the data
8 nasbench201_dataset .load ()
9

10 # Get all architectures in the dataset
11 architectures = nasbench201_dataset . get_all_architectures ()
12

13 # Print the number of architectures
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14 print(" Number of architectures in NAS -Bench -201 dataset : ", len(
architectures ))

15

16 # Query performance metrics for a specific architecture
17 architecture = architectures [0] # Example : get the first

architecture in the dataset
18 perf_metrics = nasbench201_dataset . query_architecture ( architecture

)
19

20 # Print the performance metrics
21 print(" Performance metrics for architecture : ", architecture )
22 print("Test accuracy : ", perf_metrics [" test_acc "])
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Chapter 5

Methodology

In this chapter, the focus is on the main problem addressed in this thesis, namely
the study and creation of the Hybrid Zero-cost proxy.

5.1 The Hybrid Zero-cost proxy
The development of the new Hybrid zero-cost proxy started with a careful study of
the definition of Zero-cost proxies, with a focus on its classification. Through an
in-depth analysis of the literature and existing research on the subject, we were
able to identify the main characteristics and peculiarities of zero-cost proxies. As
previously stated in section 4.1, zero-cost proxies are classified according to their
data dependency as:

• Data-Independent;

• Data-Dependent;

Table 5.1 displays the proxies that were examined and analyzed in this thesis.
Each existing ZC proxy belongs to a single category and possesses the unique
characteristics and behaviour associated with that category. Consequently, the ZC
proxy is able to provide the neural network architecture score based on its individual
behaviour as well as the broader characteristics associated with its category.

The central idea proposed in this thesis is to develop a novel Hybrid ZC proxy
that seamlessly integrates both key features of data dependency, thus combining
the strengths of data-independent and data-dependent proxies. This innovative
approach represents a significant advancement in performance estimation of neural
architecture in NAS, and has the potential to overcome the limitations of existing
proxy solutions. By leveraging the complementary nature of the two data depen-
dency characteristics, the Hybrid ZC proxy can provide a more comprehensive and
accurate score for approximating the neural network architecture behavior.
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Zero-Cost Proxy
Data-Independent (DI) Data-Dependent (DD)

epe-nas [37]
fisher [38]

synflow[18] grad-norm[3]
logsynflow[1] jacov[2]

zen[39] grasp[24]
l2-norm[3] nwot[2]

plain[3]
snip[19]

Table 5.1: List of ZC proxies discussed in this work. The distinction is made
between data-independent and data-dependent.

The strategy developed proposes a two-stage approach to calculate the final
neural network architecture score, using the Hybrid Zero-cost proxy.

1. The first stage involves calculating the initial score of each neural architecture
in the benchmark for each considered ZC proxies. Subsequently, the correlation
between the scores and the model’s accuracy is determined. The best ZC
DI (Zero-Cost Data-Independent) and ZC DD (Zero-Cost Data-dependent)
are then selected and normalized. Once normalized, the scores are ready for
refinement in the second step

2. In the second stage, the Hybrid ZC proxy is calculated by leveraging the
previously chosen ZC DI and ZC DD. The new score is derived from a
weighted sum of two parameters, taking into consideration specific cases

During the course of this thesis, the process of combining the two scores was
a key focus of study and discussion. Several tests were conducted to evaluate
different methods of combining the two normalized scores. Among these methods,
a weighted summation of the two scores emerged as the most promising approach.
The formula for the analytical expression is the equation 5.4.

5.2 Evaluation of the Hybrid Zero-cost proxy
To perform the final evaluation of the proposed Hybrid ZC proxy, the correlation
between the measurement obtained through this approach and the actual accuracy
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achieved by the neural network during testing, is calculated. In particular, two
different correlation measures are calculated:

• The Spearman Correlation : It is a statistical measure used to assess the
strength and direction of the relationship between two variables. The Spearman
correlation coefficient is represented by the symbol ρ and can take on values
in [−1, 1]. A value of 1 indicates a perfect positive correlation, where the two
variables move in the same direction with the same magnitude. A value of 0
indicates no correlation between the two variables and a value of -1 indicated
a relative correlation. To calculate the Spearman correlation coefficient, the
ranks of the values for each variable are first determined. The differences
di between these ranks are then calculated, and the sum of the squares of
these differences is used to compute the Spearman correlation coefficient. The
formula for computing the Spearman correlation coefficient is:

ρ = 1 − 6q d2
i

n(n2 − 1) (5.1)

• The Kendall tau Correlation : it is a non-parametric measure of the association
between two variables. It is similar to the Spearman correlation since it
is based on rank-order data, but it uses a different formula to calculate
the correlation coefficient. Like the Spearman correlation, the Kendall tau
correlation coefficient can take values in [−1, 1]. nc is the number of concordant
pairs and nd is the number of discordant pairs.

τ = nc − nd

n · (n − 1)/2 (5.2)

Critique of the Evaluation of Zero-Cost proxies The evaluation method
described above was originally developed by Abdelfattah in [3] and has since been
widely adopted as the standard to evaluate the effectiveness of a Zero-cost proxy.
However, during our experiments, we discovered that this method of evaluation has
some limitations and inaccuracies. In addition to calculating the correlation between
each Zero-cost proxy and the actual accuracy of the model, we also extracted the
accuracy of the model judged to be better from that same ZC proxy. However, we
observed that a high correlation measure, measured with Kendall Tau or Spearman,
did not always indicate that the zero-cost proxy found a better architecture than
other proxies with a lower correlation. This suggests that using the correlation
measure alone may not be a sufficient metric to fully assess the effectiveness of
zero-cost proxies. Other factors, such as the computational cost of each proxy, or
the amount of information that it brings, may also be needed to better evaluate
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the performance of each proxy. Therefore, a more comprehensive evaluation metric
that takes into account multiple factors may be necessary to accurately evaluate
the efficacy of zero-cost proxies.

Given the limitations of using correlation as a sole metric for evaluating the
effectiveness of the Zero-cost proxies, we decided to report in the results about our
Hybrid ZC proxy, both the correlation value and the accuracy of the best-ranked
model. Indeed, by reporting the correlation value, we can ZC proxies that use
this metric as their primary evaluation tool. However, we also believe that it is
important to report the accuracy of the best-ranked model, as this provides a
more accurate assessment of the actual performance of the Hybrid ZC proxy. By
reporting both metrics, we can provide a more comprehensive evaluation of each
zero-cost proxy and enable a better comparison of the efficacy of different proxies.

5.3 Experiments
In this section, we provide a detailed description of the steps involved in the design
and calculation of the new Hybrid ZC proxy: scoring of neural network architectures
with existing ZC proxies, design of the Hybrid Zero-cost Proxy and evaluating the
novel Hybrid ZC proxy.

All experiments were conducted exclusively on the Central Processing Unit (CPU),
utilizing the Visual Studio Code development environment in conjunction with
Anaconda, an open-source distribution of Python and R programming languages
for scientific computing, data science, and machine learning tasks

5.3.1 Scoring neural network architectures with existing
Zero-cost proxies

In the first step, we begin calculating the score of every neural network architecture
in the NAS-Bench-201 search space using existing Zero-cost proxies proposed by
previous works. We made the decision to perform these calculations for all models
in the search space to ensure that no potential high-performing architectures were
overlooked. By considering all 15.625 models, in the next steps, we can more
comprehensively evaluate the quality of the newly proposed Hybrid Zero-cost proxy,
against existing methods on the same set of models, providing a more meaningful
comparison between methods. All the Zero-cost proxy metrics are listed in table
5.1. It should be noted that for each step, we perform three calculations for the
following datasets: CIFAR10, CIFAR100, and ImageNet16-120.
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In the following code snippet, we fix the configuration of the experiment, in-
cluding the search space and the dataset to be tested. In the case presented, we
set the search space to be NAS-Bench-201 and the dataset ImageNet16-120. Then
we create the object iterator_arcs that enables iteration over the entire search
space, allowing us to evaluate each architecture in NAS-Bench-201 one at a time.

1 #Load the configuration from the configs / predictor_config .yaml
2

3 config = utils. get_config_from_args ()
4

5 #or set the searchspace and the dataset manually
6

7 config . search_space =’nasbench201 ’
8 config . dataset =’ImageNet16 -120 ’
9 dataset_api = get_dataset_api (’nasbench201 ’, ’ImageNet16 -120 ’)

10

11 # Search Space creation
12 search_space = NasBench201SearchSpace ()
13

14 #Get Itarator on archs
15 iterator_arcs = search_space . get_arch_iterator ( dataset_api =

dataset_api )

After establishing the search space and dataset to be used, we extract each
neural architecture accuracy score, i.e actual_score. To extrapolate the accuracy
of each architecture on the test dataset, we query the NASLib library that contains
all the accuracy scores for each search space and dataset. After obtaining the real
accuracy of the evaluated neural network architecture, we then proceed to compute
the scores for all the Zero-cost proxies that have been taken into account. We also
record the time, which is measured in seconds, that was used to calculate each
measurement.

1 # List of Zero -cost proxies considered
2 METRICS = [" synflow ", "snip", "jacov", " grad_norm ", "grasp",
3 " fisher ", " epe_nas ", " l2_norm ", " logsynflow ", "nwot", "plain", "

zen"]
4

5 def calculate_score_from_metric (metric , model , dataloader ):
6 start_time = time.time ()
7 predictor = ZeroCost ( method_type = metric )
8 score = predictor .query(model , dataloader = dataloader )
9 end_time = time.time ()

10 return end_time -start_time , score
11

12 # Iterate over the neural network architectures
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13 for i, op_indices in tqdm( enumerate ( iterator_arcs )):
14 ...
15

16 actual_score = model.query( metric = Metric . VAL_ACCURACY , dataset =’
ImageNet16 -120 ’, dataset_api =
dataset_api )

17 output = list(
18 map( functools . partial ( calculate_score_from_metric , model=

model , dataloader = test_loader ),
METRICS )

19 )
20 ...

5.3.2 Design of the Hybrid Zero-cost Proxy
The Hybrid Zero-cost proxy is essentially a combination of two zero-cost proxies,
one independent of the data and the other dependent. The calculation of the
proposed Hybrid Zero-cost proxy first involves a normalisation phase, then the
selection of the best Data-independent (DI) and Data-dependent (DD) proxies and
finally their combination.

Normalization of the scores To begin with, we retrieve the scores of each
neural architecture that were previously calculated using the Zero-cost Proxies,
as already described in section 5.3.1. To ensure consistency and comparability of
scores, we employ a max-normalization process, resulting in improved empirical
outcomes when assessed against a standardized cumulative ranking score. Working
with normalized scores can be beneficial in several ways. First of all normalizing
is particularly beneficial when analyzing or comparing data of different groups.
Additionally, when examining the previously calculated scores, we notice important
magnitude variations among them. This variability can be misleading and may
result in inaccuracies when computing a composite score from these individual
measures. In such cases, the relative importance of each measure in the composite
score calculation may be biased towards the measure with the highest magnitude,
leading to an incorrect final evaluation of the Zero-cost Hybrid proxy.

Select one Data-Independent and one Data-Dependent ZC proxy At
this point, it is important to clarify the selection process of the two Zero-Cost
Proxy measure used to obtain the Hybrid ZC proxy. As the Hybrid Zero-Cost
Proxy approach involves combining one ZC DI proxy and one ZC DD proxy, we
carefully evaluated and selected the best performing ZC proxy measures for both
the categories. This ensured that we had an optimal combination of the two
proxy methods for our experiments, which would help to improve the accuracy
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and reliability of our results. To this end, we computed the two correlation scores,
namely the Kendall-Tau 5.2 and Spearman 5.1, in order to assess the efficacy of
each proxy. After analyzing the results, we found that the logsynflow (4.3) was
the best performing Data-Independent (DI) proxy, while the nwot (4.4) was the
most effective Data-Dependent (DD) proxy.

Combination of LogSynflow (DI) and Nwot (DD) During the development
of the thesis, the strategy for combining LogSynflow (DI) and Nwot (DD) has
undergone numerous revisions and sparked intense debate. After careful consid-
eration, we ultimately settled on a weighted summation approach for combining
the scores, which occurs if and only if the normalized score of the Data-dependent
ZC proxy is greater than the Data-independent one. This strategy was chosen
after weighing various factors and considering input from multiple stakeholders.
To provide greater clarity, we have compiled a summary of the key points that
underpin this strategy:

• LogSynflow (DI) and Nwot (DD) are combined since they have demonstrated
superior performance in both categories, as evidenced by their high Kendall-tau
and Spearman correlation score.

• The strategy places a primary emphasis on the DI score, while utilizing the
DD score in a supporting role. This is due in part to the fact that the DI score
provides an evaluation of a model’s capacity to handle inputs of a given size.
However, it’s worth noting that the DI score does not account for the specific
data distribution at hand and thus cannot tailor the architecture judgement
to the nuances of the data.

• In the event that the DI score misjudges the capability of a model, providing
a low score, the DD score serves as a crucial support. By assessing the
performance of a model using a mini-batch of data during the training process,
the DD score provides additional information that can complement and refine
the assessments made by the DI score. This dual approach helps ensure that
our evaluations are as accurate and reliable as possible, ultimately leading to
better model selection and performance.

• The two scores are combined using a weighted sum with alpha and beta
parameters. The sum in performed element-wise only in case the DD Zero-cost
proxy score is greater than or equal the DI Zero-cost proxy.

Below it is provided a clear and rigorous definition of the derivation process for
calculating the hybrid ZC proxy.
Let x⃗ be the vector containing the n architectures of the benchmark we are analyzing,
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then the Data-independent and Data-dependent ZC proxy normalized scores are
defined as follow:

x⃗ = (x1, x2, . . . , xn)

DIN(xi) = data_independent_normalized(xi) = logsyn(xi)
max(logsyn(x⃗))

DDN(xi) = data_dependent_normalized(xi) = nwot(xi)
max(nwot(x⃗))

(5.3)

The Hybrid zero-cost proxy can be conceptualized as a vector that is computed
point-wise, employing the following function for its derivation:

h(xi, xi) =
αDIN(xi) + βDDN(xi) if DIN(xi) ≤ DDN(xi)

DIN(xi) if DIN(xi) > DDN(xi)

Hybrid ZC Proxy = (h(x1, x1), h(x2, x2), . . . h(xn))
(5.4)

5.3.3 Evaluating the novel Hybrid ZC proxy: calculation
of the correlation values

Once the Hybrid zero-cost proxy formula has been derived, to assess the effectiveness
of the new measure relative to previous ones, we calculate both Kendall-tau and
Spearman correlation values between the Hybrid ZC proxy score and the actual
Accuracy of the model. By comparing the correlation values of the new measure
with those of previous ones, we can determine whether our new approach is superior
and whether it warrants further consideration in future evaluations.

In addition to calculating Kendall-tau and Spearman correlations, we also
conduct a study of the α and β parameters used in the weighted sum. Through this
study, we are able to identify the values of α and β that lead to the highest levels
of correlation scores. This analysis provides valuable insights into the weighting of
the scores and enables us to fine-tune our approach for even greater accuracy and
effectiveness. By refining the values of alpha and beta, we can achieve a higher
final correlation, ultimately leading to better model selection and performance.
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Chapter 6

Results

In this chapter, we present the results of our experiments to evaluate the effectiveness
of the new Hybrid zero-cost proxy that we proposed in this Master’s thesis. We
will provide a detailed analysis of the results obtained for each of the three datasets
that we analyzed, differentiating them according to the different phases of our
experiments. It is also discussed the impact of alpha and beta parameters on the
performance of our Hybrid Zero-cost proxy, providing additional insights into the
relationship between these parameters and final correlation values. Finally, we
conclude the chapter with a discussion of our findings and an exploration of the
implications of our work for the field of NAS and, more in general, AutoML.

6.1 Scoring neural network architectures with
existing ZC proxies

The first part of the experiment involved computing the score for each neural
network architecture in the search space of NAS-Bench-201 using the currently
available Zero-cost proxy metrics.

Each architecture’s metrics took an average of 6.5 seconds to calculate, and the
entire process took a total of 28 hours.

The following tables show the Kendall-tau and Spearman correlations computed
for the three reference datasets: CIFAR10 (Table 6.2), CIFAR100 (Table 6.3), and
ImageNet16-120 (Table 6.4). The tables are presented in the same order as the
datasets were listed. The tables highlight the ZC proxies with the highest Kendall-
tau and Spearman correlation values in bold, as obtained from our experiments.
As part of our experimental methodology, we included a column in the table to
report the Spearman correlation values calculated in NAS-Bench-Suite-Zero [28].
We deemed it important to include this column in order to assess the accreditation
of our results, and to ensure that our ZC proxy measures are indeed reflective of
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the performance obtained by others in same setting.
During the process of comparing our correlation values to those reported in

NAS-Bench-Suite-Zero, we did observe a difference in thousandths. We arrived at
the conclusion that the observed differences are likely attributable to the variance
in hardware settings between our system and the compared system. Nevertheless,
these differences have minimal impact on the overall analysis. Therefore, we deemed
our results to be acceptable and reflective of the actual performance of the models.
It is worth noting that such minor differences are not uncommon in empirical
studies and do not necessarily invalidate the findings, especially when they do not
affect the main conclusions of the study.

Furthermore, it is important to note that the metric logsynflow is not included
in the table as it is not calculated in the NAS-Bench-Suite-Zero benchmark. The
evaluation of LogSynflow was carried out by the authors on a distinct search space,
namely the NATS-Bench [25]. While the topology of the search space for NATS-
Bench and NAS-Bench-201 is consistent, it is important to note that the results of
the former benchmark were updated based on a larger number of evaluations for
candidate architectures. Despite the lack of direct comparability with our results
due to differences in the benchmarks used, we have chosen to include the results of
LogSynflow as presented in FreeREA 4.3 in Table

LogSynflow CIFAR10 CIFAR100 ImageNet16-120
Kendall-Tau 0,61 0,60 0,59
Spearman 0,81 0,79 0,78

Table 6.1: Kendall and Spearman correlation between LogSynflow and the test
accuracy, evaluated on the three datasets of NATS-Bench [25].

The outcomes presented so far in this study reveal that the Zero-Cost (ZC)
proxies with the highest Kendall-tau and Spearman correlation values are LogSyn-
flow and Nwot for Data-Independent (DI) and Data-Dependent (DD) ZC proxies,
respectively. Therefore, LogSynflow and Nwot are the most effective ZC proxies
for accurately estimating the performance of neural network architectures on the
three datasets examined.

Based on these results, in the next phase of the experiment, LogSynflow and
Nwot are selected as the ZC DI and ZC DD proxies, respectively, for all three
datasets. By doing so, we can ensure that the computation process of the novel
Hybrid ZC proxy is driven by the most reliable and accurate ZC proxies available,
which should lead to improved performance and efficiency of the neural network
models.
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Kendall-Tau Spearman Spearman - NAS-Bench-Suite-Zero
Nwot 0,58 0,77 0,77
LogSynflow 0,56 0,76 -
Jacov 0,56 0,73 0,75
Synflow 0,54 0,73 0,73
EpeNas 0,54 0,72 0,7
L2 0,49 0,68 0,68
Snip 0,43 0,59 0,58
Grad 0,42 0,59 0,58
Grasp 0,33 0,48 0,51
Fisher 0,37 0,51 0,5
Zen 0,27 0,35 0,35
Plain -0,12 -0,24 -0,26

Table 6.2: The table displays the Kendall-tau and Spearman correlations obtained
from our evaluation of existing Zero-cost proxies on the CIFAR10 dataset. The
results in the Spearman - NAS-Bench-Suite-Zero column are derived from the study
conducted by [28].

Kendall-Tau Spearman Spearman - NAS-Bench-Suite-Zero
Nwot 0,62 0,80 0,80
LogSynflow 0,59 0,79 -
Synflow 0,57 0,76 0,76
Jacov 0,54 0,71 0,71
L2 0,52 0,71 0,72
EpeNas 0,51 0,69 0,60
Snip 0,47 0,63 0,63
Grad 0,47 0,63 0,63
Fisher 0,40 0,55 0,54
Grasp 0,38 0,54 0,54
Zen 0,28 0,36 0,35
Plain -0,16 -0,23 -0,21

Table 6.3: The table displays the Kendall-tau and Spearman correlations obtained
from our evaluation of existing Zero-cost proxies on the CIFAR100 dataset. The
results in the Spearman - NAS-Bench-Suite-Zero column are derived from the study
conducted by [28].
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Kendall-Tau Spearman Spearman - NAS-Bench-Suite-Zero
Nwot 0,60 0,78 0,77
LogSynflow 0,58 0,77 -
Synflow 0,56 0,75 0,75
Jacov 0,54 0,71 0,71
L2 0,50 0,69 0,69
Snip 0,43 0,58 0,57
Grad 0,43 0,58 0,57
Grasp 0,39 0,55 0,55
Fisher 0,37 0,49 0,48
EpeNas 0,35 0,51 0,51
Zen 0,29 0,40 0,39
Plain -0,15 -0,22 -0,22

Table 6.4: The table displays the Kendall-tau and Spearman correlations obtained
from our evaluation of existing Zero-cost proxies on the ImageNet16-120 dataset.
The results in the Spearman - NAS-Bench-Suite-Zero column are derived from the
study conducted by [28].

6.2 Evaluating the new Hybrid Zero-Cost Proxy
To calculate and evaluate the new Hybrid Zero-Cost (ZC) proxy, we undertook a
multi-step process. Each step was carefully designed and executed to ensure reliable
and accurate results. In this section, we present the outcomes of the evaluation
conducted on the Hybrid ZC proxy.

To evaluate the effectiveness of the newly proposed Hybrid Zero-cost proxy,
we conducted experiments to measure the correlation between the proxy and the
model accuracy. Specifically, we calculated both the Kendall-tau and Spearman
correlations between the Hybrid ZC proxy and the test accuracy of the model,
obtained by querying NASLib as previously explained in section 4.6.1. Furthermore,
we provide the optimal values of the parameters α and β, which were determined
through a rigorous evaluation process involving systematic variation of these two
parameters over a predefined range of values of [0, 100] , step = 0.5. This critical
stage of our experiments represents the final step in our evaluation.

Upon analyzing the results presented in tables 6.5, 6.6 and 6.7 it is evident that
the newly proposed Hybrid ZC proxy exhibits consistent performances across all
three datasets. The results demonstrate that the Hybrid ZC proxy outperforms
LogSynflow and Nwot, in terms of obtaining higher correlations. This finding
indicates that the Hybrid ZC proxy is a more effective tool for accurately evaluating
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neural network architectures compared to the individual ZC proxies that compose
it.
The results of our experiments confirm the assumptions made during the study.
Specifically, we found that the Hybrid ZC proxy showed higher correlation values,
which supports our initial assumption that combining the Zero-cost DI and Zero-cost
DD proxies would provide more accurate estimates of neural network performance
than using each proxy individually. Furthermore, our approach of using a weighted
sum of the two proxies, only when the DD proxy provides more information than the
DI proxy, was validated. Our hypothesis stated that the Hybrid ZC proxy should be
calculated only when the DD Zero-cost proxy judges a network as performing better
than its DI Zero-cost proxy counterpart. By incorporating additional information
only when necessary, our combination approach enables us to be more precise and,
at the same time, to save resources when the neural networks have already been
judged as performing well and able to work with the considered input dimensions.

Figure 6.1: Kendall-Tau and Spearman correlation values of the Hybrid ZC
proxies obtained varying the parameters α and β. The highest correlation values
are obtained, for the first time, at the point where α = 0.5 and β = 1.5.

Based on our results, we have found that the optimal values for the weighting
parameters are α = 0.5 and β = 1.5. It is important to note that these parameter
settings represent the minimum values required to achieve the highest correlation
values. Figure 6.1 illustrates how the Kendall-tau and Spearman correlation values
vary as the alpha and beta parameters change. For the purpose of synthesizing
information and enhancing graph readability, the complete range of variations in the
two parameters is not depicted. Instead, we have chosen to highlight the segment
that we find most illustrative. Although there is no clear trend observed, we can
identify that the highest correlation values are achieved when alpha equals 0.5 and
beta equals 1.5. While it is true that these values are attained at a later point, we
have chosen to consider the point where the highest values are initially obtained
as the points of the optimal parameters to use. Interestingly, we observed several
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cases where wider parameter settings did not lead to even higher correlation values.
It is important to recognise that future investigations could benefit from a more
in-depth exploration of the effects of wider parameter settings, whereby the analysis
can gain a more comprehensive understanding of how weighting parameters may
influence the performance of the proxy approach; we therefore encourage further
research in this direction.

Overall, our results have demonstrated the effectiveness of the newly proposed
Hybrid Zero-cost proxy as a tool for evaluating the performance of neural network
architectures. By combining the strengths of its constituent ZC proxies, LogSynflow
and Nwot, the Hybrid ZC proxy outperformed both individual proxies in terms
of correlation values on the NAS-Bench-201 benchmark. Our findings provide a
good starting point for further exploring the capabilities of the Hybrid ZC proxy
and its potential applications in the neural network evaluation phase in NAS. As
machine learning models continue to grow in complexity and size, the need for
efficient and accurate evaluation methods becomes increasingly important. The
Hybrid ZC proxy shows great promise as a tool for addressing this need, and we
believe that further investigation into its capabilities and limitations can help to
refine and optimize its use.

Kendall-Tau Spearman Alpha Beta Top Accuracy
Hybrid ZC proxy 0,62 0,81 0,5 1,5 90,74%
Nwot 0,58 0,77 - - 88,95%
LogSynflow 0,56 0,76 - - 90,36%

Table 6.5: The table shows the Kendall-tau and Spearman correlation for Hybrid
Zero-cost proxies on CIFAR10 dataset. Alpha and Beta here are the minimum
values for which we obtain such results. Finally, the Top Accuracy is the accuracy
value of the model found as optimal from that ZC proxy.

Final observation A final observation regarding the results obtained is that
they serve as a practical realization of the points discussed in the previous section
5.2.

As previously noted, using the correlation, Kendall-Tau or Spearman, as the
unique evaluation metric for Zero-cost proxies may not always be appropriate or
fair. Specifically, our experiments with the CIFAR10 dataset revealed that the
highest accuracy achieved by a model was 91,57% and the Hybrid ZC proxy was
able to identify a model with a slightly lower accuracy of 90,74%, outperforming the
other two ZC proxies, Nwot and LogSynflow, (which identified models of accuracy
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Kendall-Tau Spearman Alpha Beta Top Accuracy
Hybrid ZC proxy 0,65 0,84 0,5 1,5 70,88%
Nwot 0,62 0,80 - - 68,62%
LogSynflow 0,59 0,79 - - 71,34%

Table 6.6: The table shows the Kendall-tau and Spearman correlation for Hybrid
Zero-cost proxies on CIFAR100 dataset. Alpha and Beta here are the minimum
values for which we obtain such results. Finally, the Top Accuracy is the accuracy
value of the model found as optimal from that ZC proxy.

Kendall-Tau Spearman Alpha Beta Top Accuracy
Hybrid ZC proxy 0,64 0,82 0,5 1,5 45,73%
Nwot 0,60 0,78 - - 45,9%
LogSynflow 0,58 0,77 - - 41,23%

Table 6.7: The table shows the Kendall-tau and Spearman correlation for Hybrid
Zero-cost proxies on ImageNet dataset. Alpha and Beta here are the minimum
values for which we obtain such results. Finally, the Top Accuracy is the accuracy
value of the model found as optimal from that ZC proxy.

of 88,95% and 90,36%, respectively). While our experiments with the CIFAR10
dataset showed promising results for the Hybrid ZC proxy, it is important to note
that the same level of performance was not observed in the other two datasets
we evaluated. Specifically, the Hybrid ZC proxy was not able to find the highest
accuracy models on CIFAR100 and ImageNet16-120, unlike its constituent proxies
LogSynflow and Nwot. Further analysis revealed that the LogSynflow and Nwot
ZC proxies were able to identify models with high accuracy rates on CIFAR100 and
ImageNet16-120, respectively, which were competitive with the highest accuracy
models on each dataset. For instance, on CIFAR100, where the model with the
highest accuracy achieved a rate of 73,26%, the LogSynflow proxy identified a
model with an accuracy rate of 71,34%. Similarly, on ImageNet16-120, where the
model with the highest accuracy achieved a rate of 47,33%, the Nwot proxy found
a model with an accuracy rate of 45,9%. It is worth noting that, in both cases
described above, the Hybrid ZC proxy was able to identify models with only slightly
lower accuracy rates.

Although our results have confirmed that the Zero-cost proxies and the new
Hybrid ZC proxy can be useful in identifying accurate and efficient models, it is
important to note that the current evaluation metrics, based on the Kendall-tau
and Spearman correlation, may not be sufficient for assessing Zero-cost proxies.

54



Results

Correlation measures evaluate the correspondence between the rankings of two
lists, and a higher correlation may indicate a fairer ranking in the middle or at the
end of the list of models, but it may not necessarily reflect the performance of the
models ranked at the beginning of the list, where the best-performing models are
located within the search space. Therefore, the ability of the ZC proxies to identify
the best models more accurately cannot be reliably measured using correlation
measures alone. To comprehensively evaluate the performance of zero-cost proxies,
it is important to consider additional metrics beyond correlation measures, such as
run time or memory usage, which can reflect the practicality and effectiveness of
the identified models. Therefore, we recommend that future studies explore and
adopt a comprehensive set of metrics to provide a more complete picture of the
performance of zero-cost proxies in identifying accurate and efficient models. This
will allow researchers to assess the practical usefulness of the identified models and
better understand the trade-offs between model accuracy and efficiency.
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Conclusion

This thesis explores the rapidly-evolving field of Automated Machine Learning
(AutoML) and Neural Architecture Search (NAS), two groundbreaking technologies
that are driving a huge change in the field of machine learning. By conducting
a thorough analysis and evaluation, this thesis brings attention to the significant
potential of these tools also highlighting some of the critical challenges associated
with Neural Architecture Search (NAS), particularly the considerable computational
burden involved in finding and training the optimal neural network architectures.
Furthermore, this thesis also explores the potential of Zero-cost (ZC) proxies in the
context of AutoML and NAS, showing how they can be leveraged to reduce the
computational costs and enhance the efficiency of the search for optimal machine
learning models.

The Zero-cost proxies provide a way to estimate the performance of a candidate
architecture without actually training and evaluating the model on the dataset.
ZC proxies are usually simpler and faster than computing the actual performance
metric of interest, and they can be used to quickly filter out candidate neural
network architectures that are likely to perform poorly on the dataset.

The main contribution of this thesis is the creation of a new Hybrid Zero-cost
proxy capable of outperforming current ZC proxies. The Hybrid Zero-cost proxy is
obtained by combining the benefits of the two categories of ZC : Data-Independent
(DI) and Data-Dependent (DD). Specifically, the Hybrid ZC proxy is created
through a weighted sum of LogSynflow [1], which is the best performing ZC proxy
DI, and Nwot [2] , which is the best performing ZC proxy DD. The performance of
all model experiments was evaluated using three datasets: CIFAR10, CIFAR100,
and ImageNet16-120, which are contained within the Nas-Bench-201 [22] benchmark.
The results demonstrate a significant improvement in both the Kendall-Tau, about
7%, and Spearman, about 5 %, correlation values across all datasets compared to
the most effective ZC proxies previously proposed, namely LogSynflow and Nwot.
Moreover, the proposed Hybrid Zero-cost proxy has been demonstrated to possess
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the capability of identifying a superior performing model, with significantly higher
accuracy, compared to the ones identified by the existing LogSynflow and Naswot
ZC proxies.

This thesis presents several notable contributions, including the development of
a novel Hybrid ZC proxy for identifying high-performing machine learning models.
However, due to the constraints of time and computational resources, there are
some limitations that should be addressed in future researches. Future studies
could aim to increase the cross-sectional applicability of the Hybrid ZC proxy
by conducting tests on different set of benchmarks and datasets. Additionally,
incorporating the proposed ZC proxy into an AutoML pipeline could reveal its
efficacy in more complex applications. Finally, to provide a rigorous foundation for
the effectiveness of this measure, it would be valuable to develop a mathematical
theory to support the Hybrid ZC proxy. This would allow for a deeper understanding
of the underlying principles and help to optimize its implementation. Overall, the
results and implications of this thesis are promising and offer significant potential
for advancing the field of Automated Machine Learning and Neural Architecture
Search.
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