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Abstract 

Vehicles are becoming more complex and technically advanced because of the 
automotive industry's ongoing evolution. Modern cars heavily rely on specialized 
computers and embedded systems built for certain tasks that enable a variety of features 
like engine control, powertrain management, advanced driver assistance systems 
(ADAS), and infotainment systems. To ensure safety, performance, and user 
experience, these embedded systems must function with precise nature, resource 
efficiency, and component coordination. Such embedded systems require the use of 
real-time operating systems (RTOS), which offer essential features like task 
scheduling, inter-task communication, memory management, and device drivers to 
provide safe and deterministic operation. 

The scope of this thesis is the implementation and testing of a FW platform, CPU 
independent, based on an embedded Real Time Operating System. The platform will 
be used on the hardware devices designed by the company that implement the 
transmission of operational and diagnostic data of the vehicles using the on-board CAN 
Bus, GPS constellations and mobile internet networks.  
This project was carried out while working on my internship and it was divided on 
three steps:  
1)the installation of FreeRTOS on the development station  
2) the studying of the current FW architecture of the company's Mobile Terminal 
Systems,  
3) writing in 'RTOS oriented' function some of the basic modules of the transceiver: 
management of the RS232 serial, 2G modem and multi-constellation GPS  
4) the implementation of the operation of the Mobile Terminal System with state 
machine using the new modules with tasks, queues, messages and semaphores. 

The thesis will start with an overview of real time operating systems and embedded 
systems in the automotive industry, including their applications, challenges, and trends. 
Next, the fundamental concepts of FreeRTOS, including task scheduling, inter-task 
communication, and memory management, will be discussed in detail.  

We will then delve into the work done on the project, starting by introducing the 
instrumentation used and how they came in hand throughout the entire project. Then 
we will dive into the technical part which is the writing of the firmware for the above-
mentioned modules, GPS, Modem and the serial output. 

Finally, the thesis will conclude with a detailed explanation of the migration from one 
CPU to another and the conclusions reached after hitting our goals.  

The programming world merged with embedded systems is as complex as fascinating. 
I have grown up so much academically on this project and I hope I will be able to 
transmit even a bit of this knowledge to you as well. 
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CHAPTER 1 

 

Theoretical Background 
 

1.1 Real time systems 
 

"Real-time systems (RTS) have been developed and have grown in demand in the 
market especially in industrial environments." [1] 
They are considered to be systems whose behaviour depends on the time elapsed, 
since they start processing data until the outputs are known. Real time operation is 
characterised by the explicit involvement of the dimension time, manifesting itself in 
the fundamental timeliness requirement, which real time systems must fulfil even 
under extreme load conditions, therefore the response time of these systems must be 
predictable and limited. Only fully deterministic system behaviour will ultimately 
enable an effective safety licensing of computers for safety critical applications. 

 

 
Figure 1.1 Real time system scheme  

 

All across our economic, government, military, healthcare, academic, and cultural 
infrastructures, real-time systems are used often and in a wide variety of ways. 
Included are: 

o vehicle systems for automobiles, subways, aircraft, railways, and ships 
o traffic control for highways, airspace, railway tracks, and shipping lanes 
o process control for power plants, chemical plants, and consumer products such as soft 

drinks and beer 
o manufacturing systems with robots 
o telephone, radio, and satellite communications 
o multimedia systems that provide text, graphic, audio, and video interfaces 
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RTS can be divided in a number according to the fulfilment of the time restrictions: 

• Critical real-time systems 
• Non-critical real-time systems 

 

Critical real-time systems 

“Critical RTS are systems whose scheduling deadline must be met every single time.” 

[1] Missing the deadline means the system has failed and there is a possibly of facing 
fatal consequences. These systems also called hard real-time systems. Some 
examples of these are earthquake alerts, military tactical training, kidnapping, and 
rescue systems, etc. 
 
Non-critical real-time systems 
Non-critical RTS are systems on the other hand, can tolerate missing a deadline 
occasionally if an average latency is maintained. The scheduling deadline is 
considered to be more of a goal. A missed deadline from them may lower the quality 
of service provided but is not catastrophic. They are also known as soft real time 
systems.  
 
 
Another classification of real-time systems is given depending on the number of 
processors that are used for the execution of their tasks. Some types of RTS are: 
 
Conventional real-time systems: systems in which a single processor handles all of 
their tasks. 

Distributed real-time systems: systems where the tasks are running on different 
processor. “In addition, these systems can be strongly coupled when processors are 
working with the same operating system.” [1] A few properties of these real-time 
distribution systems are concurrent systems, reagent systems, systems that perform in 
challenging environments (such as those with high temperatures or noise control), 
and systems that are essentially reliable and fault-tolerant. 

 

Efficiency overview 

“Real-time systems are time critical, therefore their implementation efficiency is 
more important than in other systems.” [1] Efficiency can be classified into the 
following groups: power, memory, and processor cycles. This limitation can 
influence everything from the choice of processor to the choice of the programming 
language. One of the main benefits of using a higher-level language is to allow the 
programmer to abstract away implementation details and concentrate on solving the 
problem. This is not always true in the embedded system world. Some higher-level 
languages have instructions that can be an order of magnitude slower than assembly 

https://www.sciencedirect.com/topics/computer-science/classification
https://www.sciencedirect.com/topics/social-sciences/computer-languages
https://www.sciencedirect.com/topics/social-sciences/computer-languages
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language. However, if the right techniques are used, higher level languages can be 
used in real-time systems in an effective way. 
 
 
 
Resource management 
A system is said to operate in real time as long as it completes its time-critical 
processes in a reasonable timeframe which include behavioural or “non-functional” 

requirements for the system that must be objectively quantifiable and measurable. “A 
system is said to be real-time if it contains some model of real-time resource 
management which must be explicitly managed for the purpose of operating in real 
time.” [1] 
The degree to which a system is required to operate in real time cannot necessarily be 
attained solely by hardware over-capacity (such as, high processor performance using 
a faster CPU). To be cost effective, there must exist some form of real-time resource 
management. Systems that must operate in real time consist of both real-time 
resource management and hardware resource capacity and the ones that have 
interactions with physical devices require higher degrees of real-time resource 
management. Many of the embedded computers use very little real-time resource 
management which is usually static and requires analysis of the system prior to it 
being executed in its environment. In a real-time system, physical time is necessary 
for real-time resource management to link the events with their exact moment 
occurrence and also for limiting the amount of time that actions can take, as well as 
for monitoring the costs incurred as processes get developed.  
All real-time systems make trade-offs of scheduling costs vs. performance in order to 
reach an appropriate balance for attaining acceptable timeliness between the real-time 
portion of the scheduling optimization rules and the offline scheduling performance 
evaluation and analysis. 

 

 
Figure 1.2 Shared resource management  
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   1.2  Embedded Systems 
 
 “Real time systems are also classified in two, based on their relationship with the 
environment they’re in reactive and embedded.” [1] 
A reactive real-time system is one that has constant interaction with its environment 
(such as a pilot controlling an aircraft) while an embedded real-time system is used to 
control specialized hardware that is installed within a larger system (such as a 
microprocessor that controls anti-lock brakes in an automobile). 

“An embedded system can be thought of as a computer hardware system having 
software embedded in it.” [2] As the title indicates, the term "embedded" refers to 
something that is joined to another thing. An embedded system can be independent part 
of a large system. It is a system based on microcontrollers or microprocessors which is 
designed to perform a specific task. For example, a fire alarm is an embedded system, 
and its only purpose is to sense only smoke. 

 

An embedded system consists of three elements. 

• Hardware component 
• Application software. 
• Real Time Operating system (RTOS) which we will talk about later. 

 
 
 
 
1.2.1 Characteristics of an Embedded System 
 

• Single-functioned − Embedded systems typically perform repetitively the same 
operation they are specialised in. For example: A calculator always works as a 
calculator. 

• Tightly constrained – The constrains on the embedded systems are very tight. “Its 
implementation features such as the size, power, cost and performance are measured 
through metrics which should be of a size to fit on a single chip, must perform quick 
enough to process the data in real time and consume minimum power to extend the 
battery’s life.” [2] 

• Reactive and Real time − Many embedded systems must continuously react to 
changes happening in their environment and compute specific results in real time 
without any delay. For example let’s consider the insulin pump which is a medical 
device that should continuously monitor the patients’ blood sugar levels and respond 
immediately to the patients change of glucose level by adjusting the insulin dosage 
amount in real time. 
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• Microprocessors based – The system must be based on microprocessors or 
microcontrollers. 

• Memory − Since the system’s software usually embeds in ROM, it must also have a 
memory, therefore it will not need any secondary memories in the computer. 

• Connected − It must have connected peripherals to connect input and output devices. 
• HW-SW systems − An embedded system is made of a combination of HW and SW 

which are used for performance and security and providing more features and 
flexibility respectively. 

 
Figure 1.2.1 Composition of embedded systems [3] 

 

Some of the advantages and disadvantages of an embedded system include: 

Advantages: 
• Low power consumption 
• Low cost 
• Enhanced performance 
• Easily customizable 

 
Disadvantages: 

• High development effort 
• Larger time to market. 

 
 
 
 
1.2.2 Basic Structure of an Embedded System 

The basic structure of an embedded system is reported as below: 
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Figure 1.2.2 Structure of an embedded system 

 

• Sensor − A sensor measure the physical quantity and transforms it into an electrical 
signal which can then be read by an electronic instrument like an A2D Converter then 
stores the measured quantity into the memory. 

• D-A Converter − The digital data fed by the processor is transformed to analog data 
by a digital to analog converter. 

• A-D Converter − The analog signal which is sent by the sensor is transformed into a 
digital signal by an analog to digital converter 

• Actuator − An actuator stores the approved output after comparing the D-A 
Converter's output to the actual (supposed) output that was previously stored in it. 

• Processor & ASICs − The data is processed by the processor in order to measure the 
output and have it stored in the memory. 
 
 
1.2.3 Processors in a System 
“Processor is the main part of an embedded system. It is the basic unit that takes inputs, 
processes the data, and produces an output afterwards. A designer of embedded systems 
must have the knowledge about both microprocessors and microcontrollers.” [2] 

A processor has two essential units: 

• Execution Unit (EU) 
• Program Flow Control Unit (CU) 

 

“The EU has circuits that implement the instructions pertaining to data transfer 
operation and data conversion from one form to another.” [2] It includes the Arithmetic 
and Logical Unit (ALU) and also the circuits that execute instructions for a program 
control task such as interrupt or jump to another set of instructions. 

The CU includes a unit for fetching instructions from the memory. The processor runs 
the cycles of fetch and executes the instructions in the same sequence as they are 
fetched from memory. 
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Types of Processors 

Processors are divided in a few categories shown above, we will describe more in 
details the Microcontroller and the Microprocessor ones. 
• General Purpose Processor (GPP) 
• Microcontroller 
• Media Processor 
• Microprocessor 
• Digital Signal Processor 
• Embedded Processor 
 
 
 
Microprocessor 

A microprocessor is a single VLSI chip which has a CPU. “Additionally, it can also 
have other units such as coaches, floating point processing arithmetic unit, and 
pipelining units that help the instructions being processed faster.” [2] 

Earlier generation microprocessors’ fetch-and-execute cycle was guided by a clock 
frequency whose order was ~1 MHz while nowadays they operate at a clock frequency 
of 2GHz. 

 

 
Figure 1.2.3 Schematic arrangement of Microprocessor based system 

 

 

Microcontroller 

A microcontroller is a single-chip VLSI unit (also called microcomputer) which, 
possesses enhanced input/output capability and a number of on-chip functional units, 
although it has limited computational capabilities, 

Microcontrollers are particularly used in embedded systems for real-time control    
applications with on-chip program memory and devices. 
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1.3       Operating Systems 

An operating system (OS) acts as the link between computer hardware and users. Its 
purpose is to perform basic tasks like memory, process and file management, as well 
as handling input and output, and controlling disk drives and printers also known as 
peripheral devices. Some of the most well-known Operating Systems are Linux, 
Windows, VMS, OS/400, AIX, z/OS, etc. In the upcoming chapter we will discuss 
about what Operating system we used in our project and why. 

 

 
Figure 1.3.1 Architecture of an operating system  

 

Amongst operating system's crucial characteristics are we can mention: 

Memory Management which relates to the management of Primary Memory or Main 
Memory. It is a large array of words or bytes where each has its unique address. Main 
memory has a fast storage that can be accessed directly by the CPU and is where the 
program is located if it has to be executed.  

Processor Management which relates to the Operating system decision of the time 
each process stays in the processor. Through the traffic controller the OP keeps track 
of the processor’s status and deallocates it when a process is no longer needed 

Device Management which relates to the OS managing the communication of devices 
via their respective drivers by keeping track of them and deciding which process gets 
the device and for how much time. 
 
File Management which relates to the OS allocating or de allocating the sources and 
deciding who gets them as well as keeping track of the files information, their position, 
status, etc. 
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1.4  Real Time Operating Systems 

Real time embedded systems are common and have real time operating systems as 
their fundamental elements; they are essentially identical to embedded operating 
systems, only differing in a few specific features due to the requirements of the 
project. RTOS is implied in embedded systems that require timing, 

The most important factor is time limitations; if a task is finished after its due date or 
deadline, it will either be useless or have a negative effect on the consumers. 

The real-time operating system's time maintenance component is crucial; tasks are 
identified and prioritized based on their respective deadlines. 

The diagram below shows the elements of a real time embedded system. 

 

 
Figure 1.4.1 Elements of a real time embedded system 

 

A real time operating system has many advantages. They allow more output to come 
from all the resources as they maximize the utilization of a system or device and also 
take way less time for shifting the tasks, while in older systems it used to be around 
10 microseconds, now thy take around 3 microseconds to do so. They are more trust 
worthy as they focus on running the current application and put less importance on 
the ones that are in the queue and are also considered to be error free. Lastly, they 
manage the memory allocation better than the OS. 

While it is true that RTOS have many advantages, they also have some drawbacks 
such as them having more limited tasks running simultaneously as they concentrate 
on very few applications to avoid generating errors. Their algorithms can also be very 
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complicated and hard for the firmware engineers to write on as well as their resources 
can be quite expensive. Lastly, they perform a minimum number of task switching 
therefore they don’t possess good thread priority as well 
  

 

 

1.4.1 RTOS Architectures 

“RTOS architectures are a very important element as they affect the reliability of an 
embedded system and its ability to recover from faults.” [3] There are two RTOS 
architectures: monolithic and microkernel.  

MONOLITHIC RTOS 

Monolithic meaning is “one huge stone.” A monolithic kernel, by definition, executes 
all parts of the operating system in kernel. For instance, the kernel space of a 
monolithic RTOS includes device drivers, file management, networking, and a 
graphics stack while on the other side applications operate in the user space. A single 
programming error in a file system, protocol stack, or driver can cause the system to 
crash, even when running user applications like memory-protected processes for 
example, shield a monolithic kernel from erroneous user code. Moreover, modifying 
the OS and recompiling it, is required for any change to a driver or system file.  “In a 
monolithic Operating System, a single programming error in a file system protocol 
stack or driver can crash the whole system.” [3] 

 

MICROKERNEL RTOS 
A microkernel RTOS is structured with a tiny kernel that provides the most basic and 
essential services such as memory management, process management, and inter-
process communication. It lacks file systems and many other services which are 
usually part of an Operating System. Since for such architecture the modularity is the 
key, the small size comes unavoidably as a side effect. 

 
Figure 1.4.2 Microkernel-based architecture 
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In a microkernel the reliability and security are much more improved as only the core 
RTOS kernel is the one to have access to the entire system. “The microkernel protects 
and allocates memory for other processes and provides task switching.” [3] All other 
components, including drivers and system-level components, are each contained 
within their own isolated process space, which then prevents errors in a single 
component to affect the other parts of the system. Such crashes can be also easily 
found, and the defective component can be quickly restarted while the system is still 
working (hot restart), resulting in a minimal impact on performance. 
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1.5       FreeRTOS 

FreeRTOS is an open source, real-time operating system for microcontrollers and 
microprocessors needed to perform tasks deterministically. It has IoT reference 
immigration and its suitable for over 40 different architectures which were originally 
developed by Richard Barry that makes it simple to deploy, secure, connect, and 
manage small, low-power edge devices. It has a kernel and an expanding collection of 
software libraries appropriate for use in various industry fields and applications. And 
it is the RTOS we chose to work with while developing this project. 

 

 
Figure 1.5 FreeRTOS logo 

 

FreeRTOS is intended to be minimal and clear. To make it simple to port and 
maintain, it is primarily written in the C computer language although when needed, it 
also includes a few assembly language functions, primarily in scheduler routines that 
are specific to a given architecture. Along with mutexes, semaphores, and software 
timers, it offers ways for managing many threads or processes and permits the 
parallel operation of many tasks. FreeRTOS is designed to run on Microcontrollers 
and has a scheduler that divides the time between tasks and ensures that each one has 
enough processing time based on its priority which is assigned by us. Its simple rule 
is that higher priority tasks will receive preferential treatment. The advantage of 
FreeRTOS is that it can be used for boards that have two cpu cores or even just one 
and the scheduler will wrap the switch between tasks giving you the impression that 
things run in parallel. 

FreeRTOS applications are statically allocated, while objects can also be dynamically 
allocated with five schemes of memory management : 

• allocate only. 
• allocate and free with a very simple, fast, algorithm. 

https://en.wikipedia.org/wiki/Memory_management
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• a more complex but fast allocate and free algorithm with memory coalescence; 
• an alternative to the more complex scheme that includes memory coalescence that 

allows a heap to be broken across multiple memory areas. 
• and C library allocate and free with some mutual exclusion protection. 

 

Device drivers, complex memory management, and user accounts are examples of 
more sophisticated features that are normally available in operating systems like 
Linux and Microsoft Windows but are not usually included in RTOS as its 
compactness and execution speed are mainly prioritized. Although it has a command 
line interface and POSIX-like input/output (I/O) architecture, we can best think of 
FreeRTOS as a thread library rather than an operating system. 

“FreeRTOS implements many threads, by having the host program call a thread tick 
method on a regular basis at brief intervals.” [4] By using a round-robin scheduling 
system and based on job priority, the thread tick mechanism alternates between tasks. 
The typical interval is 1 to 10 milliseconds, but this interval is frequently altered to 
suit a particular application. 

 

1.5.1 The Advantages of FreeRTOS 

There are several advantages of FreeRTOS and here we will discuss about some of 
them. Firstly, with its simplicity we can refer to the whole OS as a scheduler for 
threads also known as tasks plus a TCP/IP stack. 

Secondly, as FreeRTOS is a real-time operating system, the system developer may 
guarantee that the processor will handle time-critical events within precisely defined 
response times.  

The work done there is excellent. There are three files that make up the kernel, and 
together they form a great team: Each line of code has been simplified to only what is 
absolutely essential so there isn't much that can go wrong as a result. Also, all of the 
.c files for the entire OS are present in your development tree, making it quite simple 
to understand if you need to dive into the kernel code to fix an issue. 

The size of FreeRTOS is tiny, which pairs perfectly with its simplicity we mentioned 
in the beginning. So many small microprocessors come with just a little amount of 
RAM and flash drive. As FreeRTOS is so small, it can significantly reduce your cost 
of goods. Working on these tiny MCUs is enjoyable when you can save a few bytes 
since there's never enough room. 

FreeRTOS is fully open source as well as widely used. Almost any tiny mainstream 
MCU can run it. That's useful when launching a product since it gives you some 
hardware independence. Developing your code on top of FreeRTOS makes it slightly 
more adaptable, which in turn makes you slightly less dependent on the chip 
manufacturer you have chosen. 

https://en.wikipedia.org/wiki/Coalescence_(computer_science)
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As we mentioned before, “FreeRTOS is supplied as a set of C source files”.[5] Some 
of the source files are common to all ports, while others are specific to a port. All we 
need to do is build the source files as part of the project we-re developing to make the 
FreeRTOS API available to our application. “Each official FreeRTOS port is 
provided with a demo application which is pre-configured to build the correct source 
files, and include the correct header files.” [5] 
A header file called FreeRTOSConfig.h is used to configure FreeRTOS for use in a 
particular application. It includes variables like configUSE PREEMPTION, for 
instance, whose setting determines whether the pre-emptive or cooperative 
scheduling algorithm will be used. 

All the FreeRTOS ports' source code as well as the project files for all its demo 
programs are included in a zip file. 

The c files for the tasks, list, queue, timers, event groups, and c procedure are located 
in the source directory. Each of these C files has features that we will discuss in more 
detail later. 

“To make FreeRTOS as easy to use as possible, these kernel objects are not statically 
allocated at compile-time, but dynamically allocated at run-time.” [5] 
FreeRTOS allocates RAM each time a kernel object is created and frees RAM each 
time a kernel object is deleted. This policy reduces design and planning effort, 
simplifies the API, and minimizes the RAM footprint. 

FreeRTOS has also dynamic and heap memory allocation considered to be part of the 
portable layer. “Heap memory manager is only required if 
configSUPPORT_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h, or if 
configSUPPORT_DYNAMIC_ALLOCATION is left undefined.” [5] 
FreeRTOS provides five example implementations of heap allocation schemes which 
we can choose from, but we can as well provide our own. “The five examples are 
defined in the heap_1.c, heap_2.c, heap_3.c, heap_4.c and heap_5.c source files 
respectively, which are located in the FreeRTOS/Source/portable/MemMang 
directory.” [5] 
In our project we chose heap_4.c which works by subdividing an array which is 
statically declared, and dimensioned by configTOTAL_HEAP_SIZE into smaller 
blocks. Heap 4 implements the first fit technique to combine neighbouring free 
memory blocks into a single larger block when allocating memory. This decreases the 
risk of memory fragmentation and makes it ideal for applications that frequently 
create and release RAM in varying sizes. 
As we've already mentioned, FreeRTOS has methods to handle numerous threads or 
tasks, including mutexes, semaphores, and software timers. We will describe these 
arguments in a more detailed way as they are a crucial part on howe we built our 
project also. 
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1.5.2 Tasks 
A task is an independent thread of execution that can compete with other concurrent 
tasks for processor execution time. As mentioned earlier, developers decompose 
applications into multiple concurrent tasks to optimize the handling of inputs and 
outputs within set time constraints. A task is nothing but a piece of code that is 
schedulable and it implements a specific functionality in the application. It can be 
scheduled periodically or aperiodically and it can only be in one of two states, 
Running or Not Running who on its own is divided into three sub states called 
Suspended, Ready, and Waiting. To create the Task in FreeRTOS xTaskCreate() API 
function is used and its priority is determined from the beginning based on how 
important the task is. The maximum number of priorities that can be used is 
determined by the application-defined configMAX PRIORITIES compile-time 
configuration constant which is found in FreeRTOSConfig.h. The ability to prioritize 
any number of tasks ensures the greatest degree of design flexibility. 

 

 
Figure 1.5.1 Valid Task Transitions 

 

Tasks then are scheduled based on their prior assigned priorities. Once the tasks are 
created, they will enter in the ready task list of the freertos and they will be set to run 
in the CPU by the what so called scheduler which is a code that is part of the freertos 
kernel and runs in the privileged mode of the processor.  
Pre-emptive and cooperative scheduling are two different scheduling strategies that 
are present in the freertosaconfig.h file and are both by default set to 1. Pre-emptive 
scheduling will be the main topic of discussion and it can be broadly classified into 
two types: Round Robin pre-emptive scheduling and priority-based scheduling. Since 
the round robin is a cyclic executive, it schedules the jobs without giving them any 
precedence and as a result, equal time frames are allocated to each activity in a 
circular order. The priority of each task determines when and how long it should run 
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under priority-based scheduling. Context switching, which is handled by PendSV 
Handler in FreeRTOS, allows the CPU to move from one job to another as it is being 
executed. 

 

 

1.5.3 Queues 

A queue is a data structure that can hold a finite number of fixed sized data. They are 
used as first in first out buffers where data is written to the end of the queue and 
removed from the front of the queue. The queue is used for two main operations: 
enqueue, which means adding data to the queue, and dequeue, which means removing 
or deleting data from the queue. The length of the queue and the number of bites each 
item of the queue takes are the two arguments that the xQueueCreate API uses to 
create the queue in FreeRTOS. The queue create API, like other APIs, dynamically 
constructs a queue in the ram memory's heap space. Any task or ISR that is aware of 
the existence of queues can access them as independent objects. “Any number of 
tasks can write to the same queue, and any number of tasks can read from the same 
queue.” [5]  In practice it is very common for a queue to have multiple writers, but 
much less common for a queue to have multiple readers. 

A task is able to define a "block" time when attempting to read from a queue and if 
the queue is empty at a certain point, the task will remain in the Blocked state while it 
waits for data to become available again. When another task or interrupt adds data to 
the queue, the task that is in the Blocked state and waiting for it to become accessible 
from a queue is automatically switched to the Ready state. 
“The task will also be moved automatically from the Blocked state to the Ready state 
if the specified block time expires before data becomes available.” [5]  Queues have 
multiple readers, so more than one task can be blocked on it while waiting for data 
and in such cases only one task with the highest priority will be unblocked when data 
becomes available. If it happens that the blocked tasks have the same priority, then 
the one that has been waiting for the longest time will be unblocked. 

 
Figure 1.5.2 Example of queue management 
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A task can also specify a block time when writing to a queue. Queues can have 
multiple writers, so it is possible for a full queue to have more than one task blocked 
on it waiting to complete a send operation. In this is the case just like we stated 
previously only one task with the highest priority will be unblocked when space on 
the queue becomes available. If they all have equal priority, then the task that has 
been waiting for the longest time will be unblocked. 

 

 

1.5.4 Timers 

Software timers are used to a function-s execution at a set time in the future, or 
periodically with a predetermined frequency. “The function executed by the software 
timer is called the software timer’s call-back function.” [5]  The FreeRTOS kernel 
implements the software timers and manages their operation. They do not depend on 
hardware support and are not associated to hardware timers or hardware counters. 
FreeRTOS software timers do not use any processing time until a software timer call-
back function is really being executed and its use is optional. 

 

1.5.5 Semaphores and mutexes 

As we have mentioned before, FreeRTOS provides semaphores and mutex events 
which are used for task synchronization such as a task waiting in the blocked state for 
an event to happen, and unblocked the task when a particular event has taken place. 
To communicate event occurrence to tasks we use event groups which allow 
synchronization of a task more than one event. In addition, we can use them to 
unblock multiple tasks that are waiting for the event to happen.  
 

 
Figure 1.5.3 Semaphore handling example 

 

“A semaphore is a kernel object that one or more threads of execution can acquire or 
release for the purpose of synchronisation or mutual exclusion.” [6] “Mutexes 
are binary semaphores that include a priority inheritance mechanism.” [7] The 

https://microcontrollerslab.com/freertos-binary-semaphore-tasks-interrupt-synchronization-u-arduino/
https://microcontrollerslab.com/arduino-freertos-mutex-tutorial-priority-inversion-priority-inheritance/
https://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
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difference between the two is that we can use binary semaphores for implementing 
synchronisation between tasks or between tasks and an interrupt, while mutexes are 
better used to implement simple mutual exclusion.  
“Mutexes also allow a block time to be specified which indicates the maximum 
number of 'ticks' that a task should wait to enter the Blocked state when attempting to 
'take' a mutex if it is not immediately available.” [7] If a high priority task blocks 
while attempting to get a mutex that could be held by a lower priority task, then the 
priority of the task holding the token is temporarily raised to that of the blocking task 
which is also called priority inheritance.  

A single semaphore can be obtained a finite number of times by the tasks depending 
on how it is firstly initialized  
There are two types of semaphores which are mainly used in RTOS: binary 
semaphore and counting semaphore: 
Binary semaphore works on only two values 1 or 0, where 1 implies that the 
semaphore is available and the 0 that it is not available. Binary semaphores are used 
for synchronization between two tasks or a task and interrupts well as for mutual 
exclusion. 
On the other hand in counting semaphore you can set the semaphore value more than 
1 and each time a task acquires the semaphore the number assigned to it decreases by 
1 and each time it releases it the semaphore’s number increases by one. Counting 
semaphores are usually used for counting events or for resource management.  

 

1.5.6 Events 

“Event groups are another feature of FreeRTOS that allow events to be 
communicated to tasks.” [5]They allow the task to wait in the Blocked state for a 
combination of one of more events to occur and unblocks them when the event takes 
place which makes them useful for synchronizing multiple tasks as well as 
broadcasting events to more than one taskEvent.  

Event Flag vs Event Group 
An event ‘flag’ is a Boolean (1 or 0) value which is used to indicate if an event has 
taken place. “The state of an event flag is stored in a single bit, while the state of all 
the event flags in an event group in a single variable.” [5]The state of each event flag 
in an event group is represented by a single bit in a variable of type EventBits_t which 
has made the event flags to be also known as event ‘bits’. If a bit is set to 1 in the 

EventBits_t variable, then the event represented by that bit has taken place and vice 
versa. 

 
Figure 1.5.4 An event group containing 24-event bits, only three of which are in use. 
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CHAPTER 2 

 

Environmental Analysis 
 

 

2.1      Software Tools 

2.1.1 Linux 

Linux is a Unix-like, open source and community-developed operating system (OS) 
for computers, servers, mainframes, mobile and embedded devices. It is one of the 
most used operating systems as it is supported on almost all common computer 
systems, including x86, ARM, and SPARC. 

 
Figure 2.1.1 Linux Logo 

Every Linux OS version controls hardware resources, runs and processes programs, 
and offers a user interface in some capacity. There is a Linux version accessible for 
almost any task thanks to the large developer community and a variety of 
distributions making it prevalent in many areas of computing. 

The Linux operating system is widely used and supports an extensive variety of use 
cases. These are some applications that work with it:  

Server OS for shared servers of any kind, including web servers, database servers, 
file servers, email servers, etc. 

• Desktop operating systems for personal productivity computing.  
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• Embedded device or appliance operating systems for systems with a minimal demand 
for processing capacity. Household appliances, vehicle entertainment systems, and 
network file system goods all utilize Linux as their embedded operating system. 

• Software development OS for commercial software development.  

• Cloud OS for cloud instances.  

Linux offers many advantages to users from which we can list: 

• Open-source software - The GNU GPL open-source software license governs the 
distribution of the Linux kernel. The majority of the releases come with hundreds of 
programs and multiple choices in almost every area. In order to support their 
hardware, many of the distributions also include proprietary software, such as device 
drivers from manufacturers. 

• Licence fees - Linux does not have any sort of licence fees, different from the other 
commonly used OS such as Windows and Apple MacOS, making many IT 
Organisations save by moving their software servers from a commercial OS to Linux. 
Even though the support system provided by them comes with the fee, it is still more 
affordable than the above-mentioned OS. 

Reliability - Linux is viewed as a reliable operating system which receives regular 
security updates. It can handle unexpected input and software failures and is also 
regarded as stable making it able to operate under almost any circumstance. 

• Backward compatibility - Linux and other open-source software are periodically 
updated for security and functional fixes while being able to maintain their 
fundamental functionality. Making their configurations and shell scripts to continue 
functioning as-is even after implementing software upgrades. Linux and open-source 
software typically don't change their modes of operation with new releases, unlike 
commercial software manufacturers who release new versions of their OSes along 
with new ways to work. 

• Variety of choices - Linux can be optimizable between a variety of distributions and 
different options for compiling and running it on any hardware device. 

 

One of the most commonly used Linux workstation platforms is Ubuntu desktop 
thanks to its ease of use, and it is also the distribution we had installed on our pc to 
develop the project. “Ubuntu Core sets the standard for tiny, transactional systems for 
highly secure connected devices.” [8]Ubuntu Server is the reference operating system 
for the OpenStack project, and a hugely popular guest OS on AWS, Azure and 
Google Cloud. It relies on the architecture of Linux to communicate with a 
computer's hardware so that software can work properly.  
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2.1.2 Visual Studio Code 

In order to develop the entire code for our project we needed a code editor, so we 
chose to work with Visual Studio Code. 

Visual Studio Code is a streamlined code editor with support for development 
operations like debugging and task running, used with a variety coding languages 
such as C, C++, Java, Python, it provides the tools a developer needs for a quick 
code-build-debug cycle while the more complex workflows are carried on fuller 
featured IDEs, such as Visual Studio IDE. 

 

 
Figure 2.1.2 Visual Studio Code Logo 

It is very versatile as it allows users to open one or more directories, which can then 
be saved in workspaces for future reuse.  

Visual Studio Code has a source control built-in feature with a dedicated tab inside of 
the menu bar where you can access its settings and view changes done on the current 
project the user is working on. It can also be used in any platform and for any given 
coding language as it allows the user to set the code page in which the active 
document is saved, the newline character, and the programming language of the 
active document. 

 

 2.1.3   C Programming Language 

C is a procedural programming language initially developed by Dennis Ritchie in the 
year 1972 mainly as a system programming language to write an operating system. 
From its most important features we can mention are the low-level memory access, a 
simple set of keywords, and a clean style making it suitable for programming an 
operating system or compiler development.  

It is to no surprise why we chose to work with C in our project as it is the most 
suitable one when it comes to Embedded Systems. Despite being invented more than 
30 years ago, when it comes to Embedded Systems, there is no other programming 

https://en.wikipedia.org/wiki/Source_control
https://en.wikipedia.org/wiki/Code_page
https://en.wikipedia.org/wiki/Newline
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language which even comes close to C. Let us try to understand the reasons behind 
why C is the most preferred language for embedded systems: 

It is Processor independent: C language is machine independent which means it is 
not specific to any system making it able to work on different hardware 
configuration. We can compile and execute a C program written for one hardware in 
another one with almost no change and if there is one required, it is related to the OS 
specific functions and system calls. While writing a program in C, user doesn’t have 

to know the underlying hardware specific details of the machine, since the compiler 
takes care of it. When a C program is compiled for a particular hardware, respective 
assembly code is generated which is then linked with static and dynamic libraries to 
provide an executable file.  

Its Portability is also another important feature of C as the code developed can be 
compiled in other platforms with few changes. It is also efficient, easy to understand, 
maintain and debug.  

Performance 

C code gets compiled into raw binary executable which can be directly loaded into 
memory and executed. It provides optimized machine instructions for the given input, 
which increases the performance of the embedded system. Most of the high-level 
languages rely on libraries, hence they require more memory which is a major 
challenge in embedded systems, but C on the other hand does not. 

Memory management 

As we mentioned before, C provides direct memory control without having to give up 
on the benefits of other high-level languages. We can directly enter in the memory 
with the help of pointers and perform various operations using them and also allocate 
it dynamically or statically depending on whether the memory requirement is known 
or not.  
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2.2 Instrumentation used 

In the previous chapter we discussed about the SW tools we used to develop our 
project, now we will focus on the hardware ones. An Oscilloscope, DC Power supply, 
JTag as well as the main component the CPU with the GD32F305 microcontroller. 
We will focus separately on each to give you a general explanation about their 
functionalities and their use in our project. 

 

2.2.1 Oscilloscope 
“An oscilloscope is a type of electronic test instrument that graphically displays 
varying electrical voltages as a two-dimensional plot of one or more signals as a 
function of time.” [9] It is the most popular and available MCU debug tool for the 
embedded developer as it captures repetitive analog signals as well as the repetitive 
MCU I/O digital signals. Today’s MCU has a significant number of pins, busses, and 

I/O, that require a high-channel-count measurement system with sufficient memory 
for real-time debugging. In Embedded systems different types of examination 
examinations are performed such as the one of baud rate, output level status and the 
wait time. “Its main purpose is to show repetitive or single waveforms on the screen 
which are hard to be perceived by the human eye”[9] which  can then be analysed for 
properties such as amplitude, frequency, rise time, etc. In the past such properties 
would require measures to be done manually against the scales built into the screen of 
the instrument bun nowadays modern digital instruments are able to calculate and 
display these properties directly.   

 

 
Figure 2.2.1 Oscilloscope RIGOL DS1104Z 

 

“Oscilloscopes are used in different fields such as engineering, science, automotive 
industry and are divided in general-purpose instruments which are used for 
maintenance of electronic equipment, and special-purpose oscilloscopes  that can be 
used to analyse an automotive ignition system or to display the waveform of the 

https://en.wikipedia.org/wiki/Electronic_test_instrument
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Rise_time
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heartbeat as an electrocardiogram, for example.” [9] In our project we used the 
RIGOL DS1104Z Oscilloscope 

2.2.2 DC Power Supply 

Embedded systems that require a significant amount of processing power and that 
need to interface with analog components require important embedded system power 
supply guidelines in order to ensure power and signal integrity.  

An embedded system consists of many different peripherals that can operate from a 
wide range of power supply. So, to power the entire system, multiple DC-DC voltage 
converters are used. 

 
Figure 2.2.2 DC Power supply 

 

A DC power supply also known as a “bench power supply” is a power supply that 
gives direct current (DC) voltage to power a device from the AC power supply of the 
outlet.  

For example, household power outlets in Japan are provided with 100V AC, but 
minute voltage fluctuations actually occur due to losses during the power supply and 
changes in power consumption of devices connected to the same power source. 

Fluctuations in the voltage supplied to home appliances with relatively simple 
structures, such as vacuum cleaners and fans, do not pose much of a problem. 
However, for precision devices such as electronic equipment, a slight change in 
voltage can cause malfunction. 

A DC stabilized power supply is also used to convert AC power to DC since this last 
one is required to run electronic devices Stabilized DC power supplies are divided 
into two types depending on the output method: constant voltage power supplies and 
constant current power supplies. In constant-voltage power supplies, the output 

https://en.wikipedia.org/wiki/Electrocardiogram


 

31 
 

voltage is controlled so that it remains constant even if the power supply load 
changes. On the other hand, constant-current power supplies are controlled so that the 
output current remains constant. 

2.2.3 JTag Connector 

Joint Test Action Group, also known as JTAG, is the common name for IEEE 
standard 1149.1. This standard defines a particular method for testing board-level 
interconnects, which is also called Boundary Scan. In short, JTAG was created as a 
way to test for common problems, but lately has become a way of configuring 
devices. The JTAG hardware interprets information from five different signals: TDI 
(Test Data In), TDO (Test Data Out), TMS (Test Mode Select), TCK (Test Clock), 
and TRST (Test Report-optional). 

“The primary advantage of boundary-scan technology is the ability to observe data at 
the device inputs and control the data at the outputs independently of the application 
logic.” [10] Simple tests can find manufacturing defects such as unconnected pins, a 
missing device, an incorrect or rotated device on a circuit board, and even a failed or 
dead device 

 
Figure 2.2.3 JTag Connector 

“JTAG allows device programmer hardware to transfer data into internal non-volatile 
device memory (e.g. CPLDs).” [11] Some device programmers serve a double 
purpose for programming as well as debugging the device. In the case of FPGAs, 
volatile memory devices can also be programmed via the JTAG port, normally during 
development work. In addition, internal monitoring capabilities (temperature, voltage 
and current) may be accessible via the JTAG port. 

As a practical matter, when developing an embedded system, emulating the 
instruction store is the fastest way to implement the "debug cycle" (edit, compile, 
download, test, and debug). This is because the in-circuit emulator simulating an 
instruction store can be updated very quickly from the development host via, say, 
USB. Using a serial UART port and bootloader to upload firmware to Flash makes 
this debug cycle quite slow and possibly expensive in terms of tools; installing 

https://en.wikipedia.org/wiki/Programmer_(hardware)
https://en.wikipedia.org/wiki/Complex_programmable_logic_device
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firmware into Flash (or SRAM instead of Flash) via JTAG is an intermediate solution 
between these extremes. 

One basic way to debug software is to present a single threaded model, where the 
debugger periodically stops execution of the program and examines its state as 
exposed by register contents and memory (including peripheral controller registers). 
When interesting program events approach, a person may want to single step 
instructions (or lines of source code) to watch how a particular misbehaviour 
happens. 

So, for example a JTAG host might HALT the core, entering Debug Mode, and then 
read CPU registers using ITR and DCC. After saving processor state, it could write 
those registers with whatever values it needs, then execute arbitrary algorithms on the 
CPU, accessing memory and peripherals to help characterize the system state. After 
the debugger performs those operations, the state may be restored, and execution 
continued using the RESTART instruction. 

Debug mode is also entered asynchronously by the debug module triggering a 
watchpoint or breakpoint, or by issuing a BKPT (breakpoint) instruction from the 
software being debugged. When it is not being used for instruction tracing, the ETM 
can also trigger entry to debug mode; it supports complex triggers sensitive to state 
and history, as well as the simple address comparisons exposed by the debug module. 
Asynchronous transitions to debug mode are detected by polling the DSCR register. 
This is how single stepping is implemented: HALT the core, set a temporary 
breakpoint at the next instruction or next high-level statement, RESTART, poll 
DSCR until you detect asynchronous entry to debug state, remove that temporary 
breakpoint, repeat. 

 

 

2.2.4 Microcontroller 

The microcontroller used on our project is the GD32F305xx device which belongs to 
the mainstream line of GD32 MCU Family. “It is a new 32-bit general-purpose 
microcontroller based on the Arm® Cortex® -M4 RISC core whose features 
implement a full set of DSP instructions to address digital signal control markets that 
demand an efficient, easy-to-use blend of control and signal processing capabilities.” 

[12] It also provides a Memory Protection Unit (MPU) and powerful trace technology 
for enhanced application security and advanced debug support. The GD32F305xx 
device provides up to 1024KB on-chip Flash memory and 96KB SRAM memory. An 
extensive range of enhanced I/Os and peripherals connected to two APB buses.  

The devices offer up to two 12-bit 2.6 MSPS ADCs, two 12-bit DACs, up to ten 
general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, 
as well as standard and advanced communication interfaces: up to three SPIs, two 
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I2Cs, three USARTs and two UARTs, two I2Ss, two CANs and a USBFS. The 
device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C 
temperature range. Several power saving modes provide the flexibility for maximum 
optimization between wakeup latency and power consumption, an especially 
important consideration in low power applications. The above features make 
GD32F305xx devices suitable for a wide range of interconnection and advanced 
applications, especially in areas such as industrial control, consumer and handheld 
equipment, communication networks, embedded modules, human machine interface, 
security and alarm systems, graphic display, automotive navigation, IoT and so on. 

 
Figure 2.2.4 Microcontroller GD32F305 
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CHAPTER 3 

 

GPS Task 
 

We will now get more technical with our work and focus on each module of the CPU 
separately to give you a very thorough and detailed explanation on what the work 
consisted on.  

We will start with the GPS Module which was the first module we worked on that 
also gave us the bases and a general idea on how to divide the project later. 

Global Positioning System (GPS) is a technology that uses signals from GPS 
satellites to determine the location of a device on the Earth's surface. GPS can be 
implemented on a microcontroller using a GPS module. 

A GPS module consists of a GPS receiver and an antenna. The GPS receiver receives 
signals from GPS satellites and uses the information contained in those signals to 
determine the device's location, velocity, and time. The GPS receiver then sends this 
information to the microcontroller through a serial communication interface such as 
UART. 

The microcontroller can then process the GPS data and perform various tasks based 
on the device's location, such as navigation, tracking, and mapping. It can also be 
used in conjunction with other sensors, such as accelerometers, to provide more 
accurate and comprehensive information about the device's position and movement. 

 

 
Figure 3 Uart with data bus 

As we mentioned previously, to establish the communication between the 
microcontroller and the GPS Receiver we need to use the UART interface. 
“By definition, UART is a hardware communication protocol that uses asynchronous 
serial communication with configurable speed.”[13] Asynchronous means there is no 
clock signal to synchronize the output bits from the transmitting device going to the 
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receiving end. 
The interface of a UART device is done by the two signals named: 

• Transmitter (Tx) 
• Receiver (Rx) 

The main purpose of a transmitter and receiver line for each device is to transmit and 
receive serial data intended for serial communication. Uart is connected to a 
controlling data bus that sends data in parallel form. From this, the data will be 
transmitted on the transmission line(wire) serially, bit by bit to the receiving UART. 
To establish this communication in our project we created a function called 
v_UART_GPS_Handler 

 

 

3.1 UART GPS Handler 

This part of the code defines an ISR that is triggered when data is received by one of 
four UART peripherals. The function retrieves the received data, sends it to a queue, 
and sets a bit in an event group. If any of these operations cause a higher-priority task 
to become ready to run, the function sets a flag to indicate that a task switch should 
occur. 

The function begins by initializing a flag variable called lHigherPriorityTaskWoken 
to pdFALSE which is later used to determine whether a higher-priority task has 
become ready to run during the execution of the ISR and needs to be woken up. 

The second variable, send, is used to store data that is received by the UART 
peripheral while the third one called error_code, is used to store the value of the 
Interrupt Identification Register (IIR) for the UART peripheral that corresponds to the 
vUART_GPS variable. The switch statement is used to We then determine which 
UART peripheral should be read based on the value of vUART_GPS by using the 
switch statement. Depending on its value the function reads the Interrupt 
Identification Register (IIR) of one of four UART peripherals, each identified by a 
number from 0 to 3. 

We then enter an if loop to check whether the value of IIR is indicating that data has 
been received by the UART. If yes, then the data is retrieved by calling the 
vGetChar() function and storing the data in the variable send. 

The function then sends the received data to a FreeRTOS queue called 
QUEUE_GPS_RX which was created previously by using the 
xQueueSendFromISR() which is a function used to send data from an Interrupt 
Service Routine(ISR) to a FreeRTOS Queue. If sending the data to the queue causes a 
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higher-priority task to become ready to run, the lHigherPriorityTaskWoken 
variable is set to pdTRUE. 

“Finally, the function calls “xEventGroupSetBitsFromISR(),which is a version 
of xEventGroupSetBits() that can be called from an interrupt service routine 
(ISR).”[14] It means that setting bits in an event group will automatically unblock 
tasks that are blocked waiting for the bits. “Setting bits in an event group is not a 
deterministic operation” [5] because there are an unknown number of tasks that may 
be waiting for the bit or bits being set. FreeRTOS does not allow non-deterministic 
operations to be performed in interrupts or from critical sections. Therefore 
xEventGroupSetBitFromISR() sends a message to the RTOS daemon task to have the 
set operation performed in the context of the daemon task - where a scheduler lock is 
used in place of a critical section. 

This function sets a specific bit (GPS_BIT_0) in an event group called 
xEventGroupGPS which was previously created. If this operation causes a higher-
priority task to become available, the lHigherPriorityTaskWoken variable is set to 
pdTRUE. 

The function ends by calling portEND_SWITCHING_ISR(), which is a macro used 
to indicate that a task switch should be performed if the lHigherPriorityTaskWoken 
variable is pdTRUE. 

 

 
Figure 3.1 Code snippet 

 

https://www.freertos.org/xEventGroupSetBits.html
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  3.2 GPS Pin Init 

The second thing we worked on while building the GPS Module was the GPS Init 
function. This part initializes the GPS device by configuring its pins, turning it on, 
initializing the UART interface, and configuring the device to output a PPS signal, so 
in other words it will configurate the PIOs to turn the GPS on.  

We started by checking the MTS-2046 datasheet to know the pin number for turning 
on the GPS and the PPS* signal. Essentially the PPS signal also known as Pulse Per 
Second is generated by the GPS receiver to be used for the synchronization between 
separate stations in the communications system or the measurement system. It 
normally stays on stage ‘1’ and goes to ‘0’ every second to signalise the drop of the 

second. 

 After checking the pins directions and functions we go the datasheet of the 
microcontroller. The pins signal is as a “general-purpose input/output also known as 
GPIO is on an integrated circuit or electronic circuit board which may be used as an 
input or output, or both, and is controllable by software” [15]. GPIOs have no 
predefined purpose and are unused by default. If used, the purpose and behaviour of a 
GPIO is defined and implemented by the designer of higher assembly-level circuitry: 
the circuit board designer in the case of integrated circuit GPIOs, or system integrator 
in the case of board-level GPIOs. 

We start by working on the G_FON Signal and initially we should set pin 1.0 as 
GPIO.The value of its function is 00 so we go to the Pinsel3 section in the table to 
check the pins whose function is equal to zero. The bits of pin 01 are two,0 and 1. As 
stated on the table, we need the two bits to be equal to 00. We start by using 2 bits 
equal to 11 and we express them in the decimal form which is equal to 3. We shift it 
to 0 bits by using the ‘<<’ operator which significantly means that we are shifting the 

0 bits of 3 to the left.  So, we go from …00000011 to …11000000. We then perform 

the Bitwise complement Operation through the xor denoted by (~), which is a unitary 
operator, meaning that will work only on one operand, and it will change the 1s to 0 
and the 0s to 1. So, the value we had …11000000 will shift to …00111111. 
After setting pin 1.0 as GPIO we then worked on setting it as an output as its 
direction stated on the table. We do this by using the vGPIO1-> vFIODIR |= to set the 
direction of the pin.  

We then move forward to the PPS signal and set the pin 1.18 as GPIO in the same 
way we did with pin 1.0. Finally, we turn the GPS on by using the vFIOCLR function 
to clear the bits.  
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Figure 3.2 GPIO register map (local bus accessible registers - enhanced GPIO features) from the LPC17xx 

Family_UserManual_1008 

 

We then initialize the UART (serial communication interface) to enable the 
communication with the GPS device by using the SerialInitWthInterrupt function. 
It has three arguments: vUART_GPS, which specifies the UART module to use; 
vUART_GPS_BAUDRATE, which specifies the baud rate of the communication; 
and vUART_GPS_PRIORITY, which specifies the priority of the UART interrupt. 

Then we create a task called vTaskDelay which blocks the other tasks for a specific 
period of time, in our case it waits for 300 milliseconds before continuing execution.  

By using the vPutString we then send the NMEA string to the GPS device using the 
UART interface. NMEA stands for National Marine Electronics Association, and an 
NMEA string refers to a data sentence that conforms to the NMEA standard. It is 
widely used in the marine industry surveying, aviation, and agriculture, where 
accurate positioning and navigation are essential. 

The NMEA standard specifies a communication protocol for marine electronics such 
as GPS receivers, sonar, and autopilots, among others. The string contains 
information about a particular aspect of the navigation system, such as the GPS 
position, speed, depth, and course.  Each NMEA sentence begins with a dollar sign 
"$" and ends with a checksum and is made up of alphanumeric characters. It also has 
a unique identifier known as a "talker ID" that indicates the type of device sending 
the sentence.  
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Lastly we raise a flag called initGPSReady to indicate that GPS initialization has 
been completed. 

 

 
Figure 3.2.1 Example of NMEA String  

 

 

 

 

 

 

 

3.3 GPS Task function 

Afterwards we started with the most demanding part of the GPS Module, which is 
writing the function of the GPS Task. We started from the template of the LPC13xx 
project and continued modifying it. As stated before, through the code already written 
it was not able to make the communication between the tasks and specifically the gps 
task was not able to receive the messages through queues but only one character at a 
time. So, we started by creating an algorithm map which consisted in 2 queues 
through which the NMEA would send its string with the information from the gps. 
The NMEA code was already written by the firmware engineer of the company, so 
we had to take care only for the GPS Task part. After creating the Algorithm Map, we 
translated it in C code.  

First, we introduced 2 strings called str_1 and str_2 with length equal to 256 which 
was defined in the beginning of the GPSTask file. These strings are going to store 
the NMEA message. Then if a character is received, the code checks if it is the ASCII 
character '$' and  sets the variable char_count to zero, toggles the use_string2 
variable (which determines which buffer to write incoming characters to), and sets the 
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store_string variable to true. This indicates that the GPS module is starting to send a 
new message, so the program should start storing the incoming characters in a buffer. 

If the received character is not '$', the code checks if it is not a carriage return (\r) or a 
line feed (\n) and if it is not, and if the store_string variable is true, it stores the 
character in the appropriate buffer (either str_1 or str_2, depending on the value of 
use_string2) and increments the char_count variable. 

Since we are using two strings, we used a Boolean variable called use_string2 
initially equal to true. This means that if the Boolean variable was true, string 2 was 
going to be used to store the NMEA message, otherwise if string 2 was full, the 
Boolean variable would be false therefore string 1 was going to be used. The 
characters coming from the GPS are represented with gps_char. Moving forward we 
call the function GPSInit which was described in the previous paragraph and through 
printf we print a statement which will let us know that the task of GPS is being 
initialised.  

Finally, the program repeats the loop and waits for the next character to be received 
on the queue.  

 

 
Figure 3.3.1 Code snippet 

 

So far, we have implemented the GPS task on its own and its whole function is to 
display the two strings in the terminal. The purpose of this entire project however is 
to make the GPS Module communicate with the Console. Therefore we will go back 
to the GPS_Task and modify it. 

Inter task communication is done by the help of queues, semaphores and mutexes 
which we explained in the first chapter. To manage these features of FreeRTOS the 
Events will come in hand. The purpose of an event in FreeRTOS is to allow tasks to 
communicate and synchronize with each other based on the occurrence of a specific 
condition or event. Events can be used to signal when a resource is available, a 
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specific action has been taken, or when a task has completed its execution. They are 
an essential mechanism for task synchronization, allowing tasks to wait for specific 
events to occur before proceeding with their execution. This helps to ensure that tasks 
are executed in a coordinated and controlled manner, preventing race conditions, 
deadlocks, and other synchronization problems. 

We start with the same variable declarations as we previously did, including the two 
strings to store NMEA messages from the GPS, and then initialize the GPS module. 
We then call the event that will enable the communication between the GPS and 
Console through the "xEventGroupWaitBits()" function  which waits for one or more 
bits to be set in a given event group ("xEventGroupGPS"), and the specific bits to 
wait for are defined by the "GPS_BIT_0 | MESSAGE_BIT_1" argument. The third 
argument, "pdFALSE", indicates whether all or any of the bits specified in the second 
argument must be set before the function returns. In this case, only one of the bits 
needs to be set for the function to return. The fourth argument, "pdFALSE", specifies 
whether the bits that caused the function to return should be cleared automatically or 
not. Finally, the last argument "xTicksToWait" specifies the maximum amount of 
time the function should wait for the bits to be set before returning.  

We then enter the main loop, where we wait for two possible events using an event 
group: either a GPS character is received, or a message is sent to the GPS task. If a 
GPS character is received, the character is processed to form an NMEA message and 
stored in one of the two message strings, depending on which string was used last. If 
a message is received, the task sends the message to the console task and sets a flag in 
the console event group. 

In the first case “if( uxBits & GPS_BIT_0 )” we check if a specific bit (GPS_BIT_0) 
is set in a variable called uxBits. If the bit is set, it means that there is new data 
available from the GPS module and the code should proceed to read a character from 
the GPS module. 
We then clear the GPS_BIT_0 bit  by using the xEventGroupClearBits function in an 
event group called xEventGroupGPS, indicating that the data has been read. 
Then we enter a loop that reads characters by using the xQueueReceive() function 
from a queue called QUEUE_GPS_RX which was defined previously. The read 
character is then stored in a variable called gps_char, the remaining part of this 
process is the same as the one we describer previously when the GPS task whole 
function was to display the two strings in the terminal. 

 

 
Figure 3.3.2 Output shown on the Command Prompt 
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In the second case “if( uxBits & MESSAGE_BIT_1 )”  we check if the 
MESSAGE_BIT_1 is set in a variable called uxBits. This means that a message has 
been received in a queue called QMsgGPS. The code then will retrieve the message 
from the QMsgGPS queue using the xQueueReceive() function which is then printed 
to the console using the printf() function. Before printing the message, we take a 
binary semaphore called serialSemaphore. As we have mentioned previously a 
semaphore is a synchronization mechanism that allows multiple tasks to access a 
shared resource (in this case, the console or serial port) in a mutually exclusive way. 
The (TickType_t)TICKWAIT_SEMA argument specifies a maximum amount of time 
(in system ticks) to wait if the semaphore is not available.  
After printing the message we release the serialSemaphore allowing other tasks to 
access the console. 

 

 
Figure 3.3.3 Code snippet 

 

We then check whether a flag we have mentioned previously called use_string2 is 
true or false. If yes, the code sends the message to another queue called 
QMsgConsole using the xQueueSend() function. If instead use_string2 is true, the 
message is sent to a different queue, QMsgConsole, while using the same function. 
After the message is sent to the appropriate queue, another bit is set, 
MESSAGE_BIT_2, in a different event group called xEventGroupCONSOLE using 
the xEventGroupSetBits() function. We will discuss about this in detail on the next 
chapter. 

 

 
Figure 3.3.4 Code snippet 
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If uxBits is equal to 0, a message is printed to the console indicating that no message 
or character has been received. The code first takes the serialSemaphore to ensure 
that it has exclusive access to the console. It then prints a debug message to the 
console using the printf function. Finally, the code releases the serialSemaphore 
using the xSemaphoreGive function to allow other tasks to access the console. 
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CHAPTER 4 

 

Serial Task 
 
We will now move to another part of the project which is the Console Module. 
In the previous chapter we worked on the GPS Module and its purpose was to 
establish a communication with the Console. Based on the work done on the GPS 
Module we will continue to work on the Console. 
 

4.1 UART Console Handler Function 

Just like for the GPS the first thing we do is establish the Console UART Interrupt by 
creating a function called vUART_CONSOLE_Handler() which will handle the 
interrupt that is triggered when data is received on a UART channel. Its logic is that 
new data is received, it checks whether it indicates the start of a debug mode. If the 
debug mode is not active, it will send the received data to a console receive queue and 
set an event group bit to notify other tasks that new data is available. Otherwise, if 
debug mode is active, it will simply ignore the received data. 

 

 
Figure 4.1 Code snippet 

 

We will break down the function to explain more in detail how the code works. 
The function starts by declaring as variable which is used to track whether or not a 
higher-priority task has been woken by this function "lHigherPriorityTaskWoken" 
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and initializing it to "pdFALSE". We then declare the variables send and error_code 
which are used to store the character that is received from the UART channel and 
read the interrupt identification register for the UART channel respectively. 
The function then reads the interrupt identification register (vIIR) of the UART 
channel specified by vUART_CONSOLE which contains information about the type 
of interrupt that triggered the handler function. 
If the 4th bit (bit 2) of the interrupt identification register is set, it means that there is 
new data available to read from the UART channel. The function reads the data using 
the "SerialGetChar()" function and stores it in the "send" variable. 
Then the code checks whether debugActive is not set, and sends the received data to 
the console receive queue using xQueueSendFromISR() and also sets an event 
group bit using xEventGroupSetBitsFromISR. 
If instead debugActive is set, it means that the system is currently in debug mode and 
normal data should not be sent to the console receive queue. 

If the 4th bit of error_code is not set, it means that there is no new data available to 
read from the UART channel. In this case, the code simply reads a character from the 
UART channel using SerialGetChar() and stores it in the send variable. 

 

 4.2 Serial Task Function 

 In the previous chapter we established the communication between the GPS and the    
console, from the GPS Side. Now we will continue working on it from the Console  
side. 

We start by creating a function called vSerialTask, and then we declare the variable 
uxBits, which is used to store the event bits returned from the xEventGroupWaitBits() 
function. We then declare the variable xTicksToWait, which is used to set the 
maximum number of ticks to wait before timing out, in our case is 5000 milliseconds. 

The function then checks if two queues, QUEUE_CONSOLE_RX and 
QUEUE_CONSOLE_TX, are not null. If either of these queues are null, the function 
will print a message indicating that the Serial Task has been deleted and call 
vTaskDelete() to delete the task, otherwise the function will print a message 
indicating that the Serial Task has been initialized and proceed to the main loop of 
the task. 

We enter the main loop of the function by using the FreeRTOS API function 
xEventGroupWaitBits to wait for specific bits to be set in the event group called 
xEventGroupCONSOLE. The second parameter passed to the function is a bitmask 
of the bits being waited for, which in this case is the logical OR of two bit values: 
CONSOLE_BIT_0 and MESSAGE_BIT_2. The third and fourth parameters are 
both set to pdFALSE. The third parameter specifies whether all bits in the bitmask 
should be set (pdTRUE) or any of the bits (pdFALSE) before the wait is considered 
successful while the fourth parameter specifies whether the function should clear the 
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bits in the event group that were waited for (pdTRUE) or not (pdFALSE).The last 
parameter passed to the function is xTicksToWait, which is the amount of time the 
function should wait for the bits to be set before timing out.  

Moving forward, there are two possible events that can take place, either the Console 
sends a message, or otherwise it receives one. 

In the first case “if( uxBits & CONSOLE_BIT_0 )” the event is set when a 
character is received from the serial console. The code block checks whether the 
CONSOLE_BIT_0 bit is set in uxBits. If so, the bit is then cleared in the 
xEventGroupCONSOLE event group. 
Then it reads the characters from the QUEUE_CONSOLE_RX queue by using a while 
loop which will continue to run as long as xQueueReceive returns pdPASS which 
indicates that a character was successfully read from the queue. 

We then print a message to the console with the received character (c) and the last 
character that was received (last_char) and make sure to check that the received 
character is not equal to the end-of-file character (EOF). 
 

Moving forward, once the character is received the code checks whether it is equal to 
‘8' with the previous character being 'P' or 'p' and that the debug mode is not already 
active. This is done because the command “P8” or “p8” is set to be the one that 

activates the debug mode. If the conditions in the previous line are met, a semaphore 
named debugSemaphore is given and the last_char variable is set to a space character. 
We will discuss later what happens when we enter the debug mode and what is its 
purpose. 

 
Figure 4.2.1 Output shown on the Command Prompt 

 

If the character instead is “G” or “g” the code then sets the first character of the 
command array to 'G' and sends a message to the queue named QMsgGPS and sets 
the MESSAGE_BIT_1 bit of the event group named xEventGroupGPS. 
Now we are starting to establish the communication between the GPS and the 
console. Once the Console send the character to the GPS Module, it will reply back 
by sending the NMEA String containing the coordinates data. 
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Figure 4.2.2 Output shown on the Command Prompt 

 

 

 

Lastly if the character received is “M” or “m” the code will set the first character of 
the command array to 'M' and send a message to a queue named QMsgMODEM, and 
sets the MESSAGE_BIT_3 bit of an event group named xEventGroupMODEM. We 
will discuss in the upcoming chapter, where we talk about the Modem Module and its 
purpose more thoroughly about the purpose of part of the code. 

 
Figure 4.2.3 Output shown on the Command Prompt 

 

In the second case if(  uxBits & MESSAGE_BIT_2  ) the event is set when a 
message is received from another task and sent to the QMsgConsole queue. 
The code attempts to receive a message from the QMsgConsole queue using the 
xQueueReceive function. If the message is received within 10 ticks (as specified by 
the (TickType_t)10 argument), the code will proceed to acquire a lock on the 
serialSemaphore semaphore using xSemaphoreTake which is done to ensure that 
no other task or thread can access the serial port while the current task is using it. 
Once the semaphore is acquired, the code prints the received message to the serial 
port using printf. The message is printed in hexadecimal format using the %08x 
format specifier, and the actual message string is cast to a char* type. After printing, 
the semaphore is then released using xSemaphoreGive and the MESSAGE_BIT_2 
bit is cleared in the xEventGroupCONSOLE event group using the 
xEventGroupClearBits function. 

 

Finally, if no bits are set in the uxBits variable, the console task waits for the 
specified time period and then prints a message indicating that no message or 
character was received. 
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Figure 4.2.4 Output shown on the Command Prompt 

 

 

 

 

4.3 VCOM_getChar Function 

As we have previously mentioned, in an embedded system, it is common to use 
queues to communicate between different tasks or interrupts. A queue is a data 
structure that allows multiple tasks or interrupts to add data to it and multiple tasks or 
interrupts to receive data from it. When a task or interrupt wants to send data to 
another task or interrupt, it simply adds the data to the queue. When a task or 
interrupt wants to receive data, it waits for the data to become available in the queue. 

In order to read single characters from the queue we create a function called getChar 
whose purpose is to read a single character from a queue called 
QUEUE_CONSOLE_RX. When a character is available, the function retrieves it 
from the queue and returns it as an integer. 

 

 
Figure 4.3 Code snippet 

 

We then use the portMAX_DELAY parameter in the xQueueReceive () function to 
indicate that the function should block indefinitely until a character is received from 
the queue. This means that the function will wait until a character is available before 
returning, which could cause the task or interrupt that is calling this function to block 
indefinitely if there are no characters being sent to the queue. 

Therefore, when using a blocking function like xQueueReceive() with an indefinite 
delay, it is important to make sure that data is being sent to the queue as expected and 
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that the queue has enough space to store the data. If the queue is full and cannot 
accept any more data, then the xQueueReceive() function will not be able to receive 
any data, and the task or interrupt that is calling this function will block indefinitely. 
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CHAPTER 5 

 

Modem Task 
 
The last module we worked on was the Modem. The purpose of a modem on a 
microcontroller is to enable the microcontroller to communicate over a network or 
other communication channel that requires modulation and demodulation of data 
signals. It also allows a microcontroller to send and receive data over a 
communication channel that uses analog signals, such as telephone lines or radio 
frequency channels. The modem modulates digital data into an analog signal that can 
be transmitted over the communication channel and demodulates received analog 
signals back into digital data that the microcontroller can process. 

Modems are often used in applications that require remote monitoring and control, 
such as industrial automation, security systems, and remote data acquisition. By using 
a modem, a microcontroller can communicate over long distances and across 
different types of communication networks, such as the public switched telephone 
network (PSTN) or the internet. 

In addition, modems on microcontrollers can support different communication 
protocols, such as dial-up, cellular, or satellite communications, making them 
versatile and adaptable to various communication requirements. 

 
Figure 5.1 Example of a GSM Modem Interface with a Microcontroller 

 

A modem is typically implemented on a microcontroller by connecting a hardware 
modem chip to the microcontroller's serial port or universal asynchronous receiver-
transmitter (UART) interface. The modem chip typically contains the necessary 
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analog-to-digital (ADC) and digital-to-analog (DAC) converters, as well as the signal 
processing circuitry needed to modulate and demodulate data signals. 

To use a modem chip with a microcontroller, the microcontroller sends data to the 
modem chip over its UART interface. The modem chip then modulates the data into a 
suitable analog signal that can be transmitted over a communication channel, such as 
a phone line or radio frequency channel. When receiving data, the modem chip 
demodulates the analog signal and sends the resulting digital data to the 
microcontroller. 

The microcontroller can then process the received data and send responses back to the 
modem chip for transmission. In addition, the microcontroller can also control the 
modem chip by sending commands and configuration settings over the UART 
interface. To establish this communication in our project we created a function called 
v_UART_Modem_Handler. 

 

 

5.1 Uart Modem Handler Function 

The purpose of this code is to handle incoming data from a UART module and store 
it in a queue for further processing. The code is an ISR that is triggered when data is 
received by one of four UART peripherals. The function retrieves the received data, 
sends it to a queue, and sets a bit in an event group. If any of these operations cause a 
higher-priority task to become ready to run, the function will then set a flag to 
indicate that a task switch should occur. 
A switch statement is used to determine which UART module (0-3) triggered the 
interrupt. Depending on the value of vUART_MODEM which is a variable set on 
another part of the code, the corresponding UART module's vIIR (Interrupt 
Identification Register) value is assigned to error_code which indicates the cause of 
the interrupt. 
The code will then check if bit 2 (represented by the bitmask 0x4) which is used to 
indicate if there is data available to be read from the UART's receive buffer of 
error_code is set.  

 

 
Figure 5.1.1 Code snippet 
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The xQueueSendFromISR function is then called to add the received character to a 
queue called QUEUE_MODEM_RX. The &send argument will pass a pointer to 
the send variable so that its value can be copied to the queue. The 
&lHigherPriorityTaskWoken argument is then used to pass a pointer to the 
lHigherPriorityTaskWoken variable, which will be set to pdTRUE if a higher 
priority task needs to be woken up. 

If a debug mode is active the code will check if the received data is in hexadecimal 
format. Otherwise it will check if the received character is a newline (\n) character. If 
it is, the dataReady variable will be incremented. 
If instead the debug is not active the xEventGroupSetBitsFromISR function will be 
called, to notify the modem that the Bit was increased. 

The function ends by calling the interrupt service routine (ISR) and telling it to  
perform any necessary context switching through the lHigherPriorityTaskWoken 
variable if a higher priority task needs to be woken up.  

 

  5.2 ModemInitPPP Function 

The ModemInitPPP function was already written by one of my colleagues therefore 
we will not get very much into details on it however we will break it down briefly to 
give an insight on its purpose. 

The function initializes a modem for a Point-to-Point Protocol (PPP) connection. PPP 
is a protocol used to establish a direct connection between two nodes in a network, 
such as a modem and a server. 
It was first proposed as a standard by the Internet Engineering Task Force (IETF) in 
1989 and became a working standard in 1994. The IETF specification for PPP is RFC 
1661. PPP is a protocol most widely used by Internet service providers (ISPs) to 
enable dial-up connections to the Internet. It facilitates the transmission of data 
packets between point to point links.  
PPP uses Link Control Protocol (LCP) to establish a session between a user’s 

computer and an ISP. LCP is responsible for determining if the link is acceptable for 
data transmission. LCP packets are exchanged between multiple network points to 
determine link characteristics including device identity, packet size, and configuration 
errors. 
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Figure 5.2 Established IP over PPP Links 

 

Going back to the code, as we said, it initializes a modem for a PPP connection by 
checking the SIM card status, modem status, and signal quality before connecting to 
the GPRS network and checking the connection status. It starts by printing a status 
message to indicate the progress of the modem initialization process. 
Then through a function called ModemSendCommand() we pass a command to the 
modem accompanied by a Boolean value which indicates whether the response needs 
to be show on the screen or not. 

The first command, "AT+CPIN?" checks if the SIM card requires a PIN.  
The second command, "AT+COPS?", checks the status of the modem.  
The third command, "AT+CSQ=?", checks the signal quality of the modem.  
Finally, the fourth command, "AT+CGDCONT=1,\"IP\",\"shared.tids.tim.it\"", 
connects the modem to the GPRS network and after, the function prints the current 
connection status by sending the command "AT+CGDCONT?" to the modem. 

 

5.3 ModemInit Function 

The Modem Initialization, just like for the GPS is done by configuring the necessary 
pins and performing a startup sequence. 
Just like for the GPS module, we started by checking the MTS – 2046 datasheet to 
know the pin numbers we need to work on and their direction to establish the network 
connection, such as a cellular connection, which can be used to transmit data or make 
voice calls. 

We will repeat the same process we did for the GPS Initialisation. We start by 
configuring the first pin as Gpio. After having checked the Pinsel3 section in the table 
to know the pins function, we express them in decimal form and then shift the pin to 
the right number of bits needed by using the ‘<<’ operator. Finally, we perform the 
Bitwise complement Operation through the xor denoted by (~), which is a unitary 
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operator, meaning that will work only on one operand, and it will change the 1s to 0 
and the 0s to 1.  

After setting pin 1.19 as GPIO we then worked on setting it as an output SOFT ON as 
its direction stated on the table. We do this by using the vGPIO1-> vFIODIR |= to set 
the direction of the pin. Finally, we set it as an Open Drain through the “vPINCON-
>vPINMODE_OD1 |=” operation. 

We perform the same operation to set the pin 2.6 as Gpio then we clear the bit 6 of 
the FIODIR register on port 2, which sets pin 2.6 as an input pin which  is used to 
detect when the modem is receiving an incoming call or message, also known as the 
RING Signal. 

Lastly, after setting the pin 1.10 which is used to send a "modem wake-up" signal to 
the modem, necessary after the modem has been in a low-power state, as GPIO, we 
set its direction as an output through the FIODIR Operation. 

After we have configured the various pins, we move forward on checking whether the 
Modem is awake and if so we turn it off by clearing one of the pins. 
A delay of 100ms is introduced through vTaskDelay to give the modem time to 
initialize before any commands are sent to it. 

We end this function by setting an initReady flag to 1 to indicate that the modem has 
been initialized and is ready to use. 

 

 

5.4 ModemInitLCP Function 

Moving forward we define a function called ModemInitLCP() whose purpose is to 
that initialize the Link Control Protocol (LCP) for a modem. The LCP is a protocol 
used in Point-to-Point Protocol (PPP) to establish, configure, and test the data-link 
connection between two communication endpoints. “It also imparts negotiation for 
set up of options and use of features by the two endpoints of the links.”[16] When 
PPP tries to communicate, it sends out LCP packets prior to the establishment of 
connections over the point – to – point link who then check the communication line to 
ascertain whether it can sustain the data volume at the required speed. Accordingly, it 
agrees upon the size of the data frame. It also identifies the linked peer and detects 
configuration errors. If the LCP accepts the link, it establishes and configures the link 
so that communication can proceed. If the LCP concludes that the link is not working 
properly, it terminates the link. 
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Figure 5.4 PPP Link Control Protocol (LCP) Message Exchanges 

 

We start the function by declaring two variables flagReceived and pos which are 
both initialized to zero. They are used to keep track of how many LCP flags have 
been received and the position in the LCPData buffer where the received data will be 
stored, respectfully. 
We then check if there is any data available in the QUEUE_MODEM_RX queue 
using the xQueueReceive() function. If yes, one byte of data will be read and stored in 
the temp variable which is then stored in the LCPData buffer at position pos whose 
value is then incremented. 
Moving forward we check whether the byte that was just read is an LCP flag 
(PPP_LCP_FLAG) and if so the flagReceived counter is incremented. 
Then though a for loop we go through each byte of data that were received and stored 
in the LCPData buffer one at a time, and then send them to a serial port. 

 

  

5.5 ModemTask Function 

In the previous chapter we established the communication between the Console and 
the Modem, from the Console Side. Now we will continue working on it from the 
Modem side. 

 We start by creating a function called vModemTask whose purpose is to receive 
data from the modem, parse the data, and send the data to the console task. 
The function is made to communicate with the modem and receive messages from it. 
It uses an event group to keep track of when characters are received from the modem, 
and a queue to store those characters until they can be processed. When a new 
message is received (indicated by the '+' character), the code stores the following 
characters in a message string buffer until the end of the message is reached 
(indicated by a carriage return or line feed character). The code then processes the 
message and prepares to receive the next one. 
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Firstly we initialise some variables to such as, modem_char which is the character 
coming from the modem, mchar_count is a counter for the number of characters 
received from the modem, store_mstring is a flag that enables writing a string. 
We then define an event bit mask using the FreeRTOS xEventGroupWaitBits() 
function which waits for one or more bits to be set in the xEventGroupMODEM 
event group with a timeout of 5000 milliseconds. 
Then we call the ModemInit() function to initialize the modem and print a message 
to let the user know that the Modem task is starting. 

We then set an event group using the xEventGroupWaitBits() function, which takes 
several parameters. The first parameter xEventGroupMODEM handles the event 
group being used. To indicate the specific bits that need to be set in the event group 
for the function to return we use two bit masks called MODEM_BIT_0 and 
MESSAGE_BIT_3.  
In order to avoid waiting for all the bits to be set pdFALSE is passed as the third 
parameter which indicates that any of the specified bits being set will cause the 
function to return.  
The fourth parameter is also pdFALSE and it indicates that the bits will be cleared 
automatically once the function returns. Lastly we decide on the maximum amount of 
time that the function will wait for the specified bits to be set before timing out and 
returning. 

 
Figure 5.5.1 Code snippet 

 
Just like for the previous modules, the task will wait for two different events: 
MODEM_BIT_0 and MESSAGE_BIT_3. MODEM_BIT_0 indicates that a 
character has been received from the modem, and MESSAGE_BIT_3 indicates that 
a message has been received from the console. 

In the first case “if( uxBits & MODEM_BIT_0 )”, the event is set when a character 
is received from the modem. If the MODEM_BIT_0 flag is set, we clear the flag 
using the xEventGroupClearBits function which is used to clear one or more bits in 
an event group.  
We then enter a while loop that reads the characters from the queue we have called 
QUEUE_MODEM_RX. This is done by using the xQueueReceive function which 
reads a character from the queue and stores it in the modem_char variable we 
mentioned previously. The xQueueReceive is a FreeRTOS function which takes 
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three arguments: the queue to read from (QUEUE_MODEM_RX), a pointer to the 
variable where the read data will be stored (&modem_char), and the amount of time 
to wait for data if the queue is empty (10 ticks in our case). We check that the data 
was successfully read from the queue using the pdPASS value. 

So far, we have worked on enabling the task to read a character from the queue. We 
will then check whether the character read from the modem is the “+” sign which 

signifies that we are in the beginning of a string. If so, we will set the mchar_count 
variable to 0 to indicate that a new message is being received and the store_mstring 
variable to true to indicate that the characters that follow should be stored in the string 
pointer buffer. Finally, we add the “+” character to the message buffer to keep track 

of the current position in the buffer. 
We also check whether the character coming is a carriage return or line feed character 
(\r or \n) and if not we proceed on adding the character to the message pointer buffer 
to keep track of the current position in the buffer. 
On the other hand, if the character read from the modem is actually a carriage return 
or line feed character (\r or \n) and mchar_count is greater than 0 which indicates that 
some characters have been stored in the message buffer the message is terminated by 
adding a null terminator (\0) to the end of the message buffer. 

 

In the second case “if( uxBits & MESSAGE_BIT_3 )”, the event is set when a 
message has been received by the modem so the task will read the message from the 
QMsgMODEM queue  and store it in the message variable. The function waits up to 
10 ticks for a message to be available in the queue. We then take a semaphore called 
serialSemaphore which as we have stated before it is used to prevent multiple tasks 
from accessing the console output at the same time and then we print the value of the 
message variable as both a hexadecimal value and a string to the console using 
printf() and then give the serialSemaphore semaphore back to the system. 

 

 
Figure 5.5.2 Output shown on the Command Prompt 

 

We then create an integer pointer pstrm that points to the memory address of the 
str_m.message string and the send its value to the QMsgConsole queue, which is 
used by another task to receive messages. We again take the serialSemaphore 
semaphore and print the value of str_m.message to the console and then give it back 
to the system. 
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Finally, we check if none of the bits in the uxBits variable are set. If so we assume 
that either a message or a character is expected to be received from the modem. 

 

 
Figure 5.5.3 Output shown on the Command Prompt 

 

 

In this case we will send the "ATE0;+CSQ\r" string to the modem via the vPutString 
function using the vUART_MODEM UART port. This will disable the echoing of 
characters on the modem and retrieve the signal quality value of the network. 

A message is also printed to the console using to indicate that no message or 
character has been received from the modem.  

 

 
Figure 5.5.4 Code snippet 

 

 

5.6  ModemSendCommand Function 

This purpose of this next function is to send a command to the modem, wait for a 
response, and then print the response to the console for debugging or monitoring 
purposes. The function takes two arguments: a character pointer "command" that 
represents the command string to be sent to the modem, and an integer "muxTrue" 
that indicates whether the command requires a multiplexing command to be sent after 
it. The "vPutString" function is used to send the command string to the modem with 
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the UART port "vUART_MODEM". If "muxTrue" is true, two extra characters, '\r' 
and '\n', are also sent to terminate the command. The function then delays the task for 
500 milliseconds using "vTaskDelay" to give the modem time to process the 
command.  
After that, we  use the "vGetString" function to read the modem's response to the 
command into the "receive" character array. It will continue reading the characters 
from the UART buffer until a newline character is encountered or the buffer is full. 

Finally, the modem's response is printed to the console using "printf". There is 
another delay of 1000 milliseconds using the FreeRTOS function vTaskDelay to 
allow time for the response to be printed to the console before the function returns. 

 

 

5.7 Modem Debug Command Function 

The last function introduced in this chapter is called ModemSendDebugCommand 
and its purpose is to send debug commands to the modem and receive a response 
from it. The communication with the modem is done by using a UART interface to 
waiting for a response using a timeout mechanism. Once the response is received, it is 
then printed to the console. 
The function starts by taking two arguments, a pointer to a character array command 
and an integer muxTrue. The command argument contains the debug command to 
be sent to the modem while the muxTrue argument is a flag that indicates whether 
the command is being sent over a multiplexer, which is a device that enables multiple 
signals to be transmitted over a single channel. The multiplexer, shortened to “MUX” 

or “MPX”, is a combinational logic circuit designed to switch one of several input 
lines through to a single common output line by the application of a control signal. 
They operate like very fast acting multiple position rotary switches connecting or 
controlling multiple input lines called “channels” one at a time to the output. They 
can be either digital circuits made from high speed logic gates used to switch digital 
or binary data or they can be analogue types using transistors, MOSFET’s or relays to 

switch one of the voltage or current inputs through to a single output. 

 
Figure 5.7.1 Code snippet 
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The function first initializes a timer and a character array receive, which will be used 
to store the response from the modem and then sets a global variable dataReady to 0. 
Afterwards it prints the command to the console and sends the command to the 
modem using the vPutString function. If the muxTrue is true, the function also 
sends a carriage return and line feed character to the modem using the vPutChar 
function. 
Moving forward the function enters a loop that checks the dataReady variable to see 
if any data has been received  and waits for a response from the modem. If no data 
has been received and the timer has not yet reached a predefined timeout value 
(TIME_OUT_VALUE), the loop will continue to wait for data. If data is received or 
the timer exceeds the timeout value, the loop then exits. 
If the data is received within the timeout period, the response from the modem is read 
into the receive array using the vGetString function, and the response is printed to 
the console otherwise if the timeout period was exceeded and no data was received, 
the function prints the message "Time out" to the console. 

 
Figure 5.7.2 Single line Multiplexer Connection 
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CHAPTER 6 

 

Migrating from the LPC17xx to the 
GD32F305 microcontroller  
 
As it was mentioned in the beginning of this project, the scope was to write the 
firmware for a GD32F305 Microcontroller. We stared from the LPC17XX as the 
project had already stared before I joined the company for the internship, so we 
decided it was for the best to continue the project where it was left, then after 
implementing all the modules we would migrate the project from one microcontroller 
to the other.  

The scope was not only migrating to the previously mentioned microcontroller, but 
also to separate the specific code needed for a specific microcontroller to the general 
one. This way in the future we would be able to change the microcontroller to another 
one and focus on some very few specific changes to be made, instead of having to 
start writing the firmware from the scratch. 

So the next step to be done was to group all the functions that were written to match 
the specifications of a certain microcontroller in one .C file that we called 
“Subfunctions”. 

 

 
Figure 6 GD32F305 Microcontroller 
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6.1 CPU_SerialInit 

In the previous chapters we explained thoroughly how we established the UART 
Communication between the Modules we worked on and the microcontroller. When 
we migrated from LPC17XX to GD32F305 we decided to rewrite these functions 
based on the pre-defined functions which are part of the firmware written by the 
developers of the GigaDevice Semiconductor Inc.  

We start by defining a function we named "CPU_SerialInit" that is going to be used 
to initialize and configure the different UART devices for serial communication on a 
microcontroller. The function takes two parameters, the first one is an integer that 
specifies the UART device to be initialized, and the second one is the baud rate to be 
used for serial communication. We then use a switch statement to select the 
appropriate UART device based on the input parameter. There are three possible 
cases: USART0, USART1, and UART4 used for the GPS, Modem and the Console.ù 

 

 
Figure 6.1 Code snippet 

 

For each case of the UART device we enable the peripheral clock and configure the 
GPIO pins for the UART transmission with the specified settings: alternate function 
push-pull mode, 50MHz output speed, and the selected pin. We then use the  
"usart_transmit_config" and "usart_receive_config" functions to enable the USART 
transmitter and receiver for the selected UART device, respectively. This is done to 
enable the specified USART peripheral to transmit and receive data over the serial 
interface. 
We repeat the same process for the other two UART Cases and then finally, the 
"usart_baudrate_set" function is used to set the baud rate for the selected UART 
device which determines the rate at which data is transmitted over the serial interface 
and must be set to the same value on both the transmitting and receiving devices. 
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6.2 CPU_UartIntInit Function 

In order for the microcontroller to efficiently receive data from the above-mentioned 
devices and also allow it to process and respond to it in a timely manner, we created 
another function called CPU_UartInit. The purpose of this function is to enable 
USART interrupts for each specified UART module and establish the communication 
with the GPS, modem, and console, which are sending and receiving data in a serial 
format. 

By using the usart_interrupt_enable function which is part of the already written 
firmware for the microcontroller we enable the USART interrupts for the specified 
UART modules and allow the interrupt to be triggered when the receive buffer is not 
empty. This means that the UART will generate an interrupt whenever a new byte is 
received and stored in the receive buffer. 

 

 
Figure 6.2 Code snippet 

 

 

6.3 Vuart HANDLER Functions 

As we have mentioned in the previous chapters , for each device we need to set up the 
interrupt service routine (ISR) for the UART Handlers. The ISR on its own is a 
function that is automatically executed when an interrupt is generated and whose 
purpose is to handle incoming data on the UART interface, which is typically used 
for serial communication. 

The Uart Handler functions for each device are the same as the ones we mentioned in 
the previous chapter, they were just moved in the Subfunctions file as they were 
specifically made for the modules that belong to the microcontroller we were working 
on. 
The only difference is that they are introduced inside an if loop “if(RESET != 
usart_interrupt_flag_get(vUART_GPS, USART_INT_FLAG_RBNE))” where 
we check if the is data available in the receive buffer of the UART module by using 
the usart_interrupt_flag_get function and execute the block if there is any data 
available 
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6.4 SerialGetChar Function 

In order to provide a simple interface for retrieving characters from the console 
UART we create a function called SerialGetChar whose purpose is to return a 
character received on the console UART. 
Inside we call the vGetChar function and pass the vUART_CONSOLE variable, 
which is a pointer to the UART Peripheral, responsible for receiving and sending 
data, as an argument. 

 

6.5 vGetChar Function 

The purpose of this next function it to read a single character from any of the UART 
peripherals. We start by defining the function which we named vGetChar(). 
Essentially what the function will do is take an integer from the UART as an input 
and return a single character from it. 

Inside we call a function named usart_data_receive() which is part of the pre-
defined functions of the GD32F305 firmware library which interacts with the 
hardware of the microcontroller and passes the UART integer as an argument. 

 

 
Figure 6.5 Code snippet 

 

 

6.6 SerialPutChar Function 

In the previous chapters we have mentioned how we have established the 
communication between the three modules, where messages and characters are 
exchanged back and forward between them. We have talked about how we have sent 
specific characters to the Uart Console and it would return back another character as 
an input. This is all done by the function we have called SerialPutChar() 

Inside of it we call the function named vPutChar() which we will explan more in 
detail afterwards, where we pass a character called c  as an argument and to specify 
the UART Console peripheral we use the vUART_CONSOLE variable 
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The vPutChar() function will return a character value indicating whether the 
character was successfully transmitted over the UART.  

 

 

6.7 vPutChar Function 

As we mentioned before in the previous paragraph, we use the function vPutChar to 
return a character value indicating whether the character was successfully transmitted 
over the UART. 

Inside the function we firstly call the usart_data_transmit() which is a function 
from the GD32F305 Firmware Library whose purpose is to pass the c character and 
the UART integer as an argument. 

 

 
Figure 6.7 Code snippet 

 

Next, we enter a while loop to wait for the transmit buffer to be empty before 
continuing to execute the rest of the code. Inside this loop we call the 
usart_flag_get() function to check whether the transmit buffer is empty in order to 
ensure that the character is transmitted before the function returns. 

 

6.8 ModemInit Function 

In the previous chapter we initialized the modem by configuring the necessary pins 
and setting them as GPIOs and deciding their directions through different operations 
such as PINCON, FIODIR, etc. 
As we mentioned before, the microcontroller contains a firmware library where 
hundreds of important functions are written, including the ones that helped us 
initialize the Modem module and the GPS one as we will see in the next paragraph. 
 

We start by defining a function named ModemInit() as we did previously. Inside we 
configure the two Modem Signals we got from the company’s datasheet as GPIO pins 

by using the gpio_init function which is part of the firmware library for the 
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microcontroller. Inside the function we declare its arguments, starting by the 
gpio_periph , the signals direction and mode as an output in open-drain mode and an 
output in push-pull mode respectively. 

We then check whether the modem is on by using the GPIO_ISTAT() macro to 
verify the status of the pin, and if not we turn it on by using the GPIO_BC() macro 
on the pin. To give the modem the necessary time to wake up we use the 
vTaskDelay() for 100ms. 
If instead we want to turn the modem off we use the GPIO_BOP() macro to toggle 
the state of the pin. 

We wait again for 300 milliseconds using the vTaskDelay() function and then set a 
flag called initReady to 1 to indicate that the modem has been initialized. 

 

 

6.9 GPSInit Function 

The GPS Module initialization is done following the same procedure as we did for 
the Modem. In essence we configure its power state and send a command to set it up 
in the following way. 

Firstly, we turn the GPS on by using the (GPIO_BC(GPIOB) = GPIO_PIN_0;) 
command. We checked the signals’ function and direction on the Datasheet of the 

company as we did previously for the Modem. 

By using the gpio_init function we then configure the pin as an output with push-pull 
mode and a speed of 50MHz (gpio_init(GPIOB, GPIO_MODE_OUT_PP, 
GPIO_OSPEED_50MHZ,GPIO_PIN_0);). 

We then delay the function for 300 Ms to give time to the GPS module to power up 
and get stabilized. 

Finally we send to the GPS Module a command which sets up the GPS module to 
output GPRMC and GPGGA sentences at a rate of 1Hz in order to have it configured. 
Afterwards we set the flag tio1 to indicate that the initialization has been completed. 

 
Figure 6.9 Snippet from the command prompt when the CPU is running. 
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CHAPTER 7 

 

Conclusions 
 
Embedded systems play a crucial role in various industries. In order to guarantee 
reliable performance, they must be capable of providing multitasking, real-time 
processing, and seamless module integration. In this thesis, we focused on developing 
firmware for embedded systems using FreeRTOS, an open-source real-time operating 
system. We started from an already existing project with an ideal to make it CPU 
independent. We worked on the GPS, Modem and Console module and were able to 
establish the communication between them. We were able to migrate the project from 
one CPU to another all thanks to RTOS and as a result of our research done 
throughout this entire project, we have drawn several conclusions. 

Firstly, we found that FreeRTOS provides an efficient and practical approach to 
firmware development in embedded systems. Thanks to the management features of 
FreeRTOS, we were able to provide efficient multitasking, making it possible to 
execute multiple tasks with different priorities simultaneously. This aided the 
integration of modules such as GPS, modem, and serial output, resulting in better 
performance and reliability. The handling of communication protocols and data 
exchange between modules was also made easier thanks to FreeRTOS, contributing 
to the overall efficiency of the embedded system. 

Secondly, we found that FreeRTOS enabled the development of real-time capabilities 
in the embedded system. The scheduling and prioritization features of FreeRTOS 
ensured timely and deterministic execution of critical tasks, such as communication 
with the GPS and modem modules. This provided the system to be more safe and 
reliable, making it suitable for time-critical applications where deadlines must 
absolutely be met.  

As we just mentioned the reliable features of FreeRTOS, such as memory protection 
and error handling, helped in isolating and mitigating software faults which increased 
the stability and resilience of the system against unexpected events or failures. The 
error handling capabilities of FreeRTOS allowed the system to recover from errors, 
preventing it from crashing or responding in an unintended behaviour. 

Lastly, our findings suggest several future directions for research and development in 
the field of embedded systems and RTOS. For instance, further optimization of power 
consumption could be explored, considering the increasing demand for energy-
efficient embedded systems in various applications. Additionally, the integration of 
additional modules or sensors, implementation of advanced communication 
protocols, or application of real-time scheduling algorithms could be investigated to 
further improve system performance. The potential for customization and 
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extensibility offered by FreeRTOS makes it a viable platform for future innovation in 
the field of embedded systems. 

In conclusion, our thesis enhances how effective FreeRTOS can be when it comes to 
firmware development in embedded systems. The use of FreeRTOS enabled efficient 
firmware development, demonstrated portability and scalability, provided real-time 
capabilities, enhanced system reliability, and opened up possibilities for future 
research and development. The findings from this thesis will contribute to the 
companies continuity on this project and pave the way for an overall migration to 
Real Time Operating Systems. The use of FreeRTOS as an RTOS for firmware 
development in embedded systems holds promise for addressing the challenges 
associated with developing reliable and efficient embedded systems in various 
domains. 
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