
POLITECNICO DI TORINO

MASTER’s Degree in ELECTRONIC ENGINEERING

MASTER’s Degree Thesis

Software development and validation for
imaging RADAR adopting innovative

mmWave FMCW sensor

Supervisor

Prof. RICCARDO MAGGIORA

Candidate

LUCA LOMBARDINI

APRIL 2023

i

Summary

RADAR systems are a class of embedded devices able to carry out complex tasks
and measurements while providing multidimensional performance figures. Their his-
tory dates back to the early Twenties of the 20th century and since then RADARS
have been improved constantly and they also have catalyzed the interests of many
actors. Thus their study and development are a hot topic nowadays because these
systems have gradually permeated various areas of key importance like automotive,
industrial, scientific, defense and safety just to name a few.
Like many other systems, RADARS have seen and still see technological improve-
ments like large-scale integration, better mixed signal and RF techniques, which
have made integrated system-on-chip solutions a quite cheap and attractive solu-
tion while providing good performance in terms of absolute range, velocity, spatial
location and their resolutions.
Together with hardware improvements, the software also must scale in terms of com-
plexity because it has to manage more hardware units and software packages, while
offering more features. Usually these software features are extracted by processing
the raw information gathered by the RADAR and then sent to higher level where
final decisions are taken, whether it is human or another system. Some typical
software feature that all RADARS implement in some way are target tracking and
classification, but many other exist.
Regarding the target tracking feature, its performances are strongly dependent on
the application goals: number, type, material, shape, orientation, velocity, scenery,
etc., of targets must be taken into account. All of these parameters are considered
with respect to the RADAR itself.
An issue which arises is the situation when the RADAR is installed on a moving
host or vehicle. This means that the RADAR reference system is moving and
thus does not coincide with a fixed reference. In this case, the RADAR velocity is
associated to the set of data that it collects, thus introducing a systematic effect
which must be compensated for. A typical use case in which this situation leads to
errors is when the RADAR is deployed in a selective-tracking application, where not
all the collected points must be considered equal but grouped into proper tracks.
A way to extract this information is to analyze and process the data that the

ii

RADAR collects: various possible solutions can be analyzed and a software im-
plementation is explored and presented in this Thesis. The project is developed
around the AWR1843 System on Chip (SoC) by Texas Instruments, which is an
available Radar SoC targeted to automotive applications offering the dual band
operation in either Automotive LRR (Long Range Radar) band (76-77 GHz) or
Automotive SRR (Short Range Radar) band (77-81 GHz).
The project takes as starting point an already developed software infrastructure,
which implements target group tracking, which is modified in order to extract
the RADAR’s Ego Velocity, known as the velocity at which the RADAR itself is
moving inside an environment considered to be static and thus used as the spatial
reference. The Ego Velocity estimation has been designed to be a self-contained
software package written in the C language, with the possibility to be integrated
into different RADAR software stacks and projects. The routine’s development,
testing and validation were performed in close relationship with each other. The
development of a proper estimator function originated as a foundational interpreta-
tion of a research effort made by Kellner et al[1]. This implementation acted as
the starting point, and its testing and validation procedures provided indications
about the result quality and its adherence to the requirements. These indications
were then used in the subsequent development-testing-validation iteration, until
the validation confirmed the suitability of the implementation to be employed
for the intended use case. The test campaign was designed in order to emulate
a real world scenario in which the software routine behavior is checked for bugs
and misunderstood requirements. In order for the tests to provide the highest
amount of useful information, the same set of acquired data have been used across
the various implementations. The data which has been reused for the test and
validation processes has been collected by installing the RADAR on a host car
and then saving the acquisition on a personal computer. This choice allows for a
real case which can be reproduced "in silico", without the need to set up again the
whole testing platform and environment. Furthermore, by having the same set of
data allows for a comparable mean with which is possible to evaluate the results
and performance of the various implementations that have been explored.
The RADAR data have been collected through the SPI serial communication
provided by the AWR1843 SoC, then converted to the Ethernet protocol in order
to let the PC collect it. The RADAR which has been used as testing and validation
platform packs a complex firmware infrastructure in order to overcome the FMCW
chirp parameters’ limitations[1.4]. The frame acquisition is the result of a combina-
tion of two sub-frames. The task of the first sub-frame is to retrieve a large amount
of targets with ambiguous Doppler velocity[1.1.7], while the task of the second is
to use two sets of chirps with different parameters in order to disambiguate the
targets’ group leader (Master) velocity. The Doppler Disambiguation exploits the
different ambiguous velocity obtained with the different chirp parameters by finding

iii

the least common velocity which satisfies the system of congruence constituted
by the Doppler processing of the second sub-frame. Once the Masters’ velocities
are disambiguated, their velocity is associated to the same Master to which it
corresponds in the first sub-frame. In order to optimally test and validate the Ego
Velocity routine, it must be integrated in the RADAR Software Stack. Thus the
acquisition schema must be taken into account. These considerations pertains to
the point in which the routine is integrated (when to execute it) and which data set
is used to compute it (what does it access). In the light of these considerations, the
obtained Ego Velocity is computed after the Doppler Disambiguation and before
the raw measurement point (spherical coordinates) conversion to tracking-suitable
point (Cartesian coordinates). For what regards the accessed data, it uses the
disambiguated velocity of the second sub-frame’s targets. The conversion routine,
executed before the Tracking algorithm, has been adapted to get the Ego Velocity as
input in order to apply corrections and compensation. Once a proper Ego Velocity
estimation has been accomplished, the overall effect on the tracking performance
is compared to that of the previous software version, which assumed zero Ego
Velocity. This check is performed on the Tracks collected on a PC, processed and
graphically displayed using MATLAB.
With respect to the set of tests, the RADAR installed on the host car has captured
different scenarios obtained as a combination of the host car and single target car
movements. The static and dynamic host tests were conducted for the background
scenery, as well as the target opening and closing to the RADAR. Furthermore an
accelerating host car test (with just the background scenery) was acquired, along
with a challenging test case that involved a large number of synthetically added
target cars with equivalent properties. Ultimately the performance between the
implementations are discussed, a solution is suggested as the most appropriate one
and some more approaches are presented. A possible evolution for this routine is the
integration of the host steering direction implementation using the acquired data,
thus implementing also the Direction Estimation together with the Ego Estimation.

Figure 1: RADAR configu-
ration. Figure 2: Example of sam-

pled data.

In figure 2, the red
and purple markers

are static points,
blue and green in

movement, while the
black ones are the

tracks.

iv

Table of Contents

List of Tables viii

List of Figures x

Acronyms xv

1 Introduction to RADAR 1
1.1 Pulsed RADARs . 1

1.1.1 Pulsed RADARs: Range Estimation 2
1.1.2 RADAR Equation . 4
1.1.3 Radar Cross Section . 5
1.1.4 Detectability & Time-Bandwidth Product 6
1.1.5 Azimuth and Elevation Angles 7
1.1.6 Beamforming . 8
1.1.7 Velocity Estimation in Pulsed RADAR 11

1.2 General RADAR Architecture . 13
1.3 Pulse Doppler Processing . 14
1.4 FMCW Imaging RADAR . 16
1.5 MIMO Systems . 20
1.6 Minimum Redundancy . 22
1.7 RANSAC Algorithm . 24

2 The AWR1843 Chip 25
2.1 SoC Architecture . 25

2.1.1 RADAR Subsystem . 26
2.1.2 DSP Sub-System . 28
2.1.3 Master Sub-System . 29

3 Software Design and Development 31
3.1 Software Overview . 31

3.1.1 Acquisition Schema . 32

v

3.1.2 Detection Schema . 32
3.1.3 Disambiguation Schema . 32
3.1.4 Association Schema . 32
3.1.5 Tracking Algorithm . 33

3.2 Tracking Algorithm Issue . 34
3.3 Ego Velocity Estimation Design . 35

3.3.1 Ego Velocity Estimation: Requirements 35
3.3.2 Ego Velocity Estimation: Architecture Overview 36
3.3.3 Ego Velocity Estimation: Technical Overview 37

3.4 Ego Velocity Estimation Development 38
3.4.1 The egoVelocityEstim_dop routine 38
3.4.2 The egoVelocityEstimRANSAC routine 42
3.4.3 The egoVelocityEstimLS routine 46
3.4.4 The egoVelocityEstimLSOW routine 49

4 Software Testing and Validation 52
4.1 Development & Validation Testing Platform 52
4.2 Test Campaign . 55
4.3 Static host, background acquisition 58

4.3.1 Frame 1 . 59
4.3.2 Frame 2 . 60
4.3.3 Frame 3 . 61

4.4 Static host, closing target . 62
4.4.1 Static host, closing target: Track Start 62
4.4.2 Static host, closing target: Track until midway 66
4.4.3 Static host, closing target: Track End 70

4.5 Static host, opening target . 74
4.5.1 Static host, opening target: Track Start 74
4.5.2 Static host, opening target: Track until midway 78
4.5.3 Static host, opening target: Track End 83

4.6 Accelerating host, background acquisition 87
4.6.1 Frame 10 . 88
4.6.2 Frame 11 . 89
4.6.3 Frame 18 . 90
4.6.4 Frame 22 . 91
4.6.5 Frame 26 . 92
4.6.6 Frame 30 . 93
4.6.7 Frame 36 . 94

4.7 Dynamic host, background acquisition 95
4.7.1 Frame 74 . 96
4.7.2 Frame 75 . 97

vi

4.7.3 Frame 76 . 98
4.8 Dynamic host, closing target . 99

4.8.1 Dynamic host, closing target: Track Start 99
4.8.2 Dynamic host, closing target: Track until midway 103
4.8.3 Dynamic host, closing target: Track End 107

4.9 Dynamic host, opening target . 111
4.9.1 Dynamic host, opening target: Track Start 111
4.9.2 Dynamic host, opening target: Track until midway 116
4.9.3 Dynamic host, opening target: Track End 120

4.10 Further Considerations . 124
4.10.1 Modified Frame 135 . 125

5 Conclusions 126

Bibliography 128

vii

List of Tables

4.1 Algorithms numerical voting outcome during frame 1 59
4.2 Algorithms numerical voting outcome during frame 2 60
4.3 Algorithms numerical voting outcome during frame 3 61
4.4 Algorithms numerical voting outcome during frame 53 63
4.5 Algorithms numerical voting outcome during frame 54 64
4.6 Algorithms numerical voting outcome during frame 55 65
4.7 Algorithms numerical voting outcome during frame 107 67
4.8 Algorithms numerical voting outcome during frame 108 68
4.9 Algorithms numerical voting outcome during frame 109 69
4.10 Algorithms numerical voting outcome during frame 140 71
4.11 Algorithms numerical voting outcome during frame 141 72
4.12 Algorithms numerical voting outcome during frame 142 73
4.13 Algorithms numerical voting outcome during frame 57 75
4.14 Algorithms numerical voting outcome during frame 58 76
4.15 Algorithms numerical voting outcome during frame 59 78
4.16 Algorithms numerical voting outcome during frame 108 80
4.17 Algorithms numerical voting outcome during frame 109 81
4.18 Algorithms numerical voting outcome during frame 110 82
4.19 Algorithms numerical voting outcome during frame 158 84
4.20 Algorithms numerical voting outcome during frame 159 85
4.21 Algorithms numerical voting outcome during frame 160 86
4.22 Algorithms numerical voting outcome during frame 10 88
4.23 Algorithms numerical voting outcome during frame 11 89
4.24 Algorithms numerical voting outcome during frame 18 90
4.25 Algorithms numerical voting outcome during frame 22 91
4.26 Algorithms numerical voting outcome during frame 26 92
4.27 Algorithms numerical voting outcome during frame 30 93
4.28 Algorithms numerical voting outcome during frame 36 94
4.29 Algorithms numerical voting outcome during frame 74 96
4.30 Algorithms numerical voting outcome during frame 75 97

viii

4.31 Algorithms numerical voting outcome during frame 76 98
4.32 Algorithms numerical voting outcome during frame 156 100
4.33 Algorithms numerical voting outcome during frame 157 101
4.34 Algorithms numerical voting outcome during frame 158 102
4.35 Algorithms numerical voting outcome during frame 184 104
4.36 Algorithms numerical voting outcome during frame 185 105
4.37 Algorithms numerical voting outcome during frame 186 106
4.38 Algorithms numerical voting outcome during frame 214 108
4.39 Algorithms numerical voting outcome during frame 215 109
4.40 Algorithms numerical voting outcome during frame 216 110
4.41 Algorithms numerical voting outcome during frame 135 112
4.42 Algorithms numerical voting outcome during frame 136 114
4.43 Algorithms numerical voting outcome during frame 137 115
4.44 Algorithms numerical voting outcome during frame 165 117
4.45 Algorithms numerical voting outcome during frame 166 118
4.46 Algorithms numerical voting outcome during frame 167 119
4.47 Algorithms numerical voting outcome during frame 193 121
4.48 Algorithms numerical voting outcome during frame 194 122
4.49 Algorithms numerical voting outcome during frame 195 123
4.50 Algorithms numerical voting outcome during the modified frame 135 125

ix

List of Figures

1 RADAR configuration. iv
2 Example of sampled data. iv

1.1 A Pulsed RADAR’s transmitted and received pulses, in time domain. 2
1.2 Graphical representation of the physical quantities effects on the

transmitted and received powers. 4
1.3 The echo Radiation Pattern of a Corner reflector[4] 6
1.4 Graphical representation of the Angular Resolution of a Single Antenna. 8
1.5 Beamforming shaping effect on the wavefront orientation in a Phased

Array Antenna. This example refers to a six elements antenna array. 9
1.6 Analog Beamforming structure. 9
1.7 Digital Beamforming structure. 10
1.8 RADAR architecture block diagram (Real-Only Mixing). 13
1.9 Coherent RADAR architecture with receiver-only I-Q mixing. . . . 14
1.10 Graphical visualization of the RADAR Cube structure. 15
1.11 Graphical visualization of the Doppler-FFT processing. 15
1.12 Chirp signal representation in time domain.[5] 16
1.13 Chirp signal frequency sweep against its duration time. 17
1.14 Target Range separation in FMCW RADARs. 18
1.15 Phase changing of a small round-trip variation [5] 18
1.16 Graphical visualization of the phase difference between antennas

receiving the same transmitted signal[5] 19
1.17 Graphical representation of the MIMO concept[6]. 21
1.18 Graphical representation of the MIMO Virtual Array composition[6] 21
1.19 Graphical representation of the TDM technique with the transmitted

FMCW chirps[6]. 22
1.20 Graphical visualization of Minimum Redundancy structure applied

to an Antenna Array of four elements. The spacing unit u0 is the
responsible for the Array Phasing. 23

1.21 Example of RANSAC fitting a line[10]. 24

2.1 AWR1843 Functional Block Diagram[11] 26

x

2.2 AWR1843 RF Clock Management[11] 27
2.3 AWR1843 Transmitter Chain[11] 28
2.4 AWR1843 Receiver Chain[11] . 28
2.5 AWR1843 DSP and Master subsystem BUS interfaces[11] 29
2.6 AWR1843 RADAR, DSP and Master subsystem[12] 30

3.1 Initial detection of a Master during frame 53. A master which can
start a track is represented with the red asterisk, the purple circle
are the almost static targets and the red circles are the static targets 33

3.2 Track allocation for the group during frame 54. The leading master
is represented with the blue circle, the track with the black circle
and the sub-frame slaves as green circles 34

3.3 First track update after allocation, during frame 55. The green
circles are the master’s slaves of the 2nd sub-frame 34

3.4 Ego estimation scheduling visualization. 36
3.5 Ego estimation data access visualization. 37
3.6 Visual representation of an algorithm instance’s implementation choice. 38
3.7 Ego estimation "_dop" algorithm flow. 41
3.8 Ego estimation "RANSAC" algorithm flow. 44
3.9 The double linked list elements amount is the same for the target list. 45
3.10 The double linked list element removal consist in pointer switching. 45
3.11 Ego estimation "LS" algorithm flow. 48
3.12 Example of a Range-Doppler map when the Host is moving. 49
3.13 Ego estimation "LSOW" algorithm flow. 51

4.1 The RADAR platform’s hardware (inside view). 53
4.2 The RADAR platform’s hardware (outside view). 53
4.3 RADAR mounting layout on the host car. 54
4.4 Aerial view of the environment scenery. 54
4.5 RADAR orientation on the host car. 55
4.6 Context representation with Environment, Host and Target interaction. 55
4.7 The acquired data is collected on a PC. 56
4.8 Example of acquired data. In this frame all information is plotted. . 56
4.9 Static host and closing target acquisition. 57
4.10 Static host and opening target acquisition. 57
4.11 Algorithms graphical voting outcome during frame 1 59
4.12 Input target cloud to the algorithms during frame 1 59
4.13 Algorithms graphical voting outcome during frame 2 60
4.14 Input target cloud to the algorithms during frame 2 60
4.15 Algorithms graphical voting outcome during frame 3 61
4.16 Input target cloud to the algorithms during frame 3 61

xi

4.17 Algorithms graphical voting outcome during frame 53 63
4.18 Input target cloud to the algorithms during frame 53 63
4.19 Algorithms graphical voting outcome during frame 54 64
4.20 Input target cloud to the algorithms during frame 54 64
4.21 Algorithms graphical voting outcome during frame 55 65
4.22 Input target cloud to the algorithms during frame 55 65
4.23 Algorithms graphical voting outcome during frame 107 67
4.24 Input target cloud to the algorithms during frame 107 67
4.25 Algorithms graphical voting outcome during frame 108 68
4.26 Input target cloud to the algorithms during frame 108 68
4.27 Algorithms graphical voting outcome during frame 109 69
4.28 Input target cloud to the algorithms during frame 109 69
4.29 Algorithms graphical voting outcome during frame 140 71
4.30 Input target cloud to the algorithms during frame 140 71
4.31 Algorithms graphical voting outcome during frame 141 72
4.32 Input target cloud to the algorithms during frame 141 72
4.33 Algorithms graphical voting outcome during frame 142 73
4.34 Input target cloud to the algorithms during frame 142 73
4.35 Algorithms graphical voting outcome during frame 57 75
4.36 Input target cloud to the algorithms during frame 57 75
4.37 Algorithms graphical voting outcome during frame 58 76
4.38 Input target cloud to the algorithms during frame 58 77
4.39 Algorithms graphical voting outcome during frame 59 77
4.40 Input target cloud to the algorithms during frame 59 78
4.41 Algorithms graphical voting outcome during frame 108 80
4.42 Input target cloud to the algorithms during frame 108 80
4.43 Algorithms graphical voting outcome during frame 109 81
4.44 Input target cloud to the algorithms during frame 109 81
4.45 Algorithms graphical voting outcome during frame 110 82
4.46 Input target cloud to the algorithms during frame 110 82
4.47 Algorithms graphical voting outcome during frame 158 84
4.48 Input target cloud to the algorithms during frame 158 84
4.49 Algorithms graphical voting outcome during frame 159 85
4.50 Input target cloud to the algorithms during frame 159 85
4.51 Algorithms graphical voting outcome during frame 160 86
4.52 Input target cloud to the algorithms during frame 160 86
4.53 Algorithms graphical voting outcome during frame 10 88
4.54 Input target cloud to the algorithms during frame 10 88
4.55 Algorithms graphical voting outcome during frame 11 89
4.56 Input target cloud to the algorithms during frame 11 89
4.57 Algorithms graphical voting outcome during frame 18 90

xii

4.58 Input target cloud to the algorithms during frame 18 90
4.59 Algorithms graphical voting outcome during frame 22 91
4.60 Input target cloud to the algorithms during frame 22 91
4.61 Algorithms graphical voting outcome during frame 26 92
4.62 Input target cloud to the algorithms during frame 26 92
4.63 Algorithms graphical voting outcome during frame 30 93
4.64 Input target cloud to the algorithms during frame 30 93
4.65 Algorithms graphical voting outcome during frame 36 94
4.66 Input target cloud to the algorithms during frame 36 94
4.67 Algorithms graphical voting outcome during frame 74 96
4.68 Input target cloud to the algorithms during frame 74 96
4.69 Algorithms graphical voting outcome during frame 75 97
4.70 Input target cloud to the algorithms during frame 75 97
4.71 Algorithms graphical voting outcome during frame 76 98
4.72 Input target cloud to the algorithms during frame 76 98
4.73 Algorithms graphical voting outcome during frame 156 100
4.74 Input target cloud to the algorithms during frame 156 100
4.75 Algorithms graphical voting outcome during frame 157 101
4.76 Input target cloud to the algorithms during frame 157 101
4.77 Algorithms graphical voting outcome during frame 158 102
4.78 Input target cloud to the algorithms during frame 158 102
4.79 Algorithms graphical voting outcome during frame 184 104
4.80 Input target cloud to the algorithms during frame 184 104
4.81 Algorithms graphical voting outcome during frame 185 105
4.82 Input target cloud to the algorithms during frame 185 105
4.83 Algorithms graphical voting outcome during frame 186 106
4.84 Input target cloud to the algorithms during frame 186 106
4.85 Algorithms graphical voting outcome during frame 214 108
4.86 Input target cloud to the algorithms during frame 214 108
4.87 Algorithms graphical voting outcome during frame 215 109
4.88 Input target cloud to the algorithms during frame 215 109
4.89 Algorithms graphical voting outcome during frame 216 110
4.90 Input target cloud to the algorithms during frame 216 110
4.91 Algorithms graphical voting outcome during frame 135 112
4.92 Input target cloud to the algorithms during frame 135 113
4.93 Algorithms graphical voting outcome during frame 136 113
4.94 Input target cloud to the algorithms during frame 136 114
4.95 Algorithms graphical voting outcome during frame 137 115
4.96 Input target cloud to the algorithms during frame 137 115
4.97 Algorithms graphical voting outcome during frame 165 117
4.98 Input target cloud to the algorithms during frame 165 117

xiii

4.99 Algorithms graphical voting outcome during frame 166 118
4.100Input target cloud to the algorithms during frame 166 118
4.101Algorithms graphical voting outcome during frame 167 119
4.102Input target cloud to the algorithms during frame 167 119
4.103Algorithms graphical voting outcome during frame 193 121
4.104Input target cloud to the algorithms during frame 193 121
4.105Algorithms graphical voting outcome during frame 194 122
4.106Input target cloud to the algorithms during frame 194 122
4.107Algorithms graphical voting outcome during frame 195 123
4.108Input target cloud to the algorithms during frame 195 123
4.109Algorithms graphical voting outcome during the modified frame 135 125

xiv

Acronyms

ADC
Analog-to-Digital Converter

AoA
Angle of Arrival

ARM
Advanced Risc Machine

BPM
Binary Phase Modulation

CFAR
Constant False Alarm Rate

CFM
Carrier Frequency Multiplexing

CPU
Central Processing Unit

DSP
Digital Signal Processor

EDMA
Enhanced Direct Memory Access

EM
Electro-Magnetic

xv

FFT
Fast Fourier Transform

FMCW
Frequency-Modulated Continuous Wave

FOV
Field of View

IEEE
Institute of Electrical and Electronics Engineers

IF
Intermediate Frequency

LNA
Low Noise Amplifier

LO
Local Oscillator

MIMO
Multiple Input Multiple Output

MMWAVE
millimiter wave

PA
power amplifier

PC
Personal Computer

PLL
Phase Locked Loop

PRF
Pulse Repetition Frequency

xvi

PRI
Pulse Repetition Interval

RANSAC
Random Sample Consensus

RCS
Radar Cross Section

RF
Radio-Frequency

RX
Receiver

SoC
System on Chip

SPI
Serial Peripheral Interface

TDM
Time Division Multiplexing

TI
Texas Instruments

TX
Transmitter

xvii

Chapter 1

Introduction to RADAR

This chapter presents the RADAR as a technology, thus exploring the theoretical
background and details on which these devices are based in order to perform their
duties.
The RADAR word is the acronym used as an abbreviation for the sentence "RAdio
Detection and Ranging". This acronym refers to systems which employ electromag-
netic waves in order to detect the return echo of objects which are displaced in
an environment. Some initial attempts to implement a similar technology dates
back to the early 20th century, while its most notable adoption of these systems
arose during the World War II period. Back then RADARs where in charge of
the detection of enemy airplanes and warships. Since then RADARs have evolved,
leading to improved accuracy and performance. The technological improvements
allowed for this technology to also permeate other fields, being adopted also for
civil applications other than the initial military ones.
Besides their evolution, the same basic concepts still hold true nowadays, while
more advanced techniques have been gradually adopted.

1.1 Pulsed RADARs
For a classic Pulsed RADAR[2], an electromagnetic pulse of duration τ [s] is
generated by a driver electronic circuit and transmitted through a transmitting
antenna. This antenna is orientated in the direction on which the detection must be
performed. A receiver electronic circuit is employed for the detection. This receiver
circuit can use the same transmitting antenna or a different one. After some signal
conditioning and processing, it is able to detect the return echoes produced by the
transmitted pulse which bounced on any reflecting target if present. If the pulse is
transmitted periodically with a period of T [s], the latter time interval is called
Pulse Repetition Interval (PRI). In figure 1.1 this timing schema is presented.

1

Introduction to RADAR

Figure 1.1: A Pulsed RADAR’s transmitted and received pulses, in time domain.

By analyzing the return echoes, a RADAR system is able to detect targets and to
perform various kind of measurements on them. Possible measurement of a target
may include Range, Doppler Shift, Azimuth angle position, Elevation angle position
and many more.

1.1.1 Pulsed RADARs: Range Estimation
The Range[2] is known as the distance at which a target is located with respect to
the RADAR. The time difference between the transmitted pulse and the received
echo from a target is proportional to the target’s distance. The proportion between
this two quantities is the pulse’s propagation velocity in the medium in which it is
travelling. In a free space medium, like air, the pulse propagates as the speed of
light, whose value is approximated to c = 3×108 [m/s] and assumed to be constant.
The time difference between the transmitted pulse and its received echo, identified
as ∆t, can be used to calculate the target’s Range as:

R = c× ∆t
2 [m] (1.1)

The Range Resolution[2] is defined as the minimum distance between two different
targets that makes said targets be distinguished by the RADAR as two different
ones. Thus, in a pulsed RADAR the minimum detectable distance is dominated by
the pulse duration:

∆R = c× τ

2 [m] (1.2)

The Maximum Unambiguous Range[2] is the maximum Range after which a target’s
return echo is ambiguous with respect to the transmitted pulses. This situation is
caused by echoes of previous pulses that return during the PRI of another pulse.
Thus the Maximum Unambiguous Range is tightly related to the PRI as:

2

Introduction to RADAR

Rmax = c× PRI

2 [m] (1.3)

Once defined the Maximum Unambiguous Range, known also as Maximum Range,
and the Range Resolution, it is possible to identify the Range Bin[2], which indicates
how many different ranges a RADAR can detect. It can be expressed as:

M = Rmax −Rmin

∆R (1.4)

This indicates that a RADAR is able to detect two different targets if those are
located on different Range Bins. Thus, in order to detect two different targets
at the same bin, the RADAR must increase its Range Resolution or use different
techniques.

The Range Resolution is a quantity which can be analyzed in terms of frequency
content. The transmitted rectangular pulse signal has a duration τ and it can be
modeled in the time domain as:

x(t) =
0 if |t| > τ/2
A if |t| ≤ τ/2

The frequency content of the rectangular pulse is the sync function, whose band-
width is given as:

B = 1
τ

51
s

6
(1.5)

The result above states that in order to increase the Range Resolution of a pulsed
RADAR, a shorter pulse is needed. But shorter pulses increase the bandwidth
usage. Furthermore using shorter pulses leads to lesser transmitted energy during
the pulse, for a given peak transmitted power (Pt). Also the average transmitted
power (Pavg) decreases. The average power scales with the Duty Cycle:

Pavg = dc × Pt [W] (1.6)

Where the Duty Cycle is expressed as:

dc = τ

PRI
(1.7)

A way to increase the transmitted energy is to increase the peak transmitted power,
but this solution this solution is only theoretically valid. In fact is impossible to
safely operate a system with extreme peak powers delivered in very short times.

3

Introduction to RADAR

1.1.2 RADAR Equation
The RADAR equation[2] is a mathematical model which describes the relationship
between the various physical quantities that are involved during the transmitted
signal propagation to the target and its echo return. The returned echo results
greatly attenuated with respect to the power levels of the transmitted signal.
The received power depends on:

• the transmitted power (Pt)

• the RADAR antenna gain (G)

• the given target’s Radar Cross Section (σ)

• the antenna’s effective aperture (Ae)

• the distance between the RADAR and a given target

Neglecting the noise contribution, this mathematical model can be described with
the following formula:

Pr = PtGσAe
(4πR2)2 [W] (1.8)

The reason for which the formula 1.8 is inversely proportional to (4πR2)2 is that
as can be seen in figure 1.2, the electromagnetic wave propagation can be modeled
as a spherical wavefront. Thus the power density is spread across the spherical
surface both during the signal transmission and during the echo reception.

Figure 1.2: Graphical representation of the physical quantities effects on the
transmitted and received powers.

In case the noise has also to be taken into account, the formula 1.8 can be adapted
to a Signal-to-Noise Ratio expression by modeling the noise as an equivalent thermal
noise (kBwT). Furthermore also the losses (L) can be taken into account. These
losses can group together many terms which originate from various sources such as
Signal Processing losses, microwave losses and waveguide losses, but many more

4

Introduction to RADAR

can be considered. Some losses have also a dependency on the signal frequency,
thus making the mathematical model even more complex. Thus the Signal-to-Noise
Ratio of the returned echo can be expressed as:

S

N
= PtGσAe

(4πR2)2kTBwL
(1.9)

1.1.3 Radar Cross Section

The Radar Cross Section[2] is a parameter of key importance for RADAR systems.
The Radar Cross Section parameter contains the information about the target’s
physical characteristics and modeling all of those is a complex task. A common
definition relies on the target’s equivalent area computation, which can be obtained
as "the ratio of the power scattered from an object in units of power per solid angle
(steradian) normalized to the plane wave illumination in units of power per unit
area"[3]. Thus this parameter can be obtained as:

σ =
4π reflected power directed to the receiver

solid angle

incident power density on the object [m2] (1.10)

The RCS models how an illuminated object reflects back the incident electro-
magnetic wave’s energy towards the RADAR, thus giving information about the
echo strength. This parameter ultimately depends on the object’s material, its
size, its orientation with respect to the incident power, the electromagnetic wave’s
polarization, the signal frequency (etc).

Corner Reflectors are artificial targets used for test and calibration processes of
RADARs. These particular test targets are built using highly reflective materials
and adopting particular shapes in order to provide the desired directivity. A typical
Corner Reflector can be realized with metal sheets jointed in a trihedral angle
structure. This particular shape grants an almost constant response for each angle
in the range −60° to 60° as shown in figure 1.3.

σcorner = 4πAe2

λ2 [m2] (1.11)

5

Introduction to RADAR

Figure 1.3: The echo Radiation Pattern of a Corner reflector[4]

1.1.4 Detectability & Time-Bandwidth Product
The Detectability of a target depends on the received echo energy with respect to the
noise energy. This means that a target detection can be improved by maximizing
the instantaneous peak-signal-to-mean-noise power (Rf).

Rf = |s0(t)|2max
N

(1.12)

Maximizing this quantity means to apply to the received echo the optimal filter.
The optimal filter is the matched filter, which has a frequency response which is
the complex conjugate of the transmitted signal. If this processing is applied, the
SNR is maximized to 2E

N0
.

Pulsed RADARs have a bandwidth usage which depends on the transmitted pulse
duration, thus the time-bandwidth product is limited to 1.

Bτ = 1 (1.13)

If the matched filter processing is adopted, the Detectability can be improved by two
means: eiterh improving the SNR figure or increase the Time-Bandwidth Product.
The former leads to largely increased system cost, while the latter increases the
processing cost. This statement is supported by the result obtained in (1.17). The
noise energy entering the RADAR system is

Ni = N0

2 B [J] (1.14)

The received echo energy is:
Pi = E

τ
[J] (1.15)

6

Introduction to RADAR

The SNR can be computed as:

(SNR)i = Pi
Ni

= 2E
N0Bτ

(1.16)

As mentioned above, the Detectability is maximized when Rf is maximized. Thus
the expression of the SNR performance against the Rf leads to:

Rf

(SNR)i
= Bτ (1.17)

1.1.5 Azimuth and Elevation Angles
RADAR systems are able to detect the Angle of Arrival (AoA), but in order to com-
pute it, more complex architectures must be adopted. A possible implementation
is the adoption of mechanically steered antenna, thus changing the antenna beam
orientation in order to scan for targets in the desired direction. This implementation
requires expensive mechanical components for the waveguide joints.
The same task can be performed by adopting a different approach based on signal
phase shift and the adoption of antenna arrays. The beamforming technique fo-
cuses on the phase modulation during the signals’ transmission, while the MIMO
technique focuses on the phase of the received signals. These techniques can be
used both alone or concurrently.

1.1.5.1 Angular Resolution of a Single Antenna

The Angular Resolution of a single antenna can be approximated, in Far Field
Conditions, as a dependency between the transmitted signal’s wavelength (λ) and
the antenna’s dimensions (d). This means that the RADAR is able to detect two
targets position as different only if their angular difference is larger than the angle
θS, as modeled in 1.18.

Angular Resolution = θS = λ

d
[rad] (1.18)

The Angular Resolution model thus improves at higher frequency and with larger
antennas. The Angular Resolution can be also translated into the Cross-Range
Resolution, which is the spatial resolution orthogonal to the radial Range. Thus it
depends on the actual Range at which the detection is performed, as modeled in
1.19.

Cross-Range Resolution = r · θS = r · λ
d

[m] (1.19)

In figure 1.4, a representation of these quantities is provided.

7

Introduction to RADAR

Figure 1.4: Graphical representation of the Angular Resolution of a Single
Antenna.

A possible way to increase the Angular Resolution is to adopt an Antenna Array
schema, which provides also the possibility to implement more complex techniques
like Beamforming.

1.1.6 Beamforming

The Beamforming is a technique used to change the equivalent radiation pattern of
an antenna array by changing the phase on each antenna element. This operation
can be performed both on transmission and reception of signals and also adopting
Analog or Digital techniques. The array driven in this way takes the name of
Phased Array Antenna. This technique is based on each signal’s interference, which
result in an equivalent wavefront orientated towards the direction proportional to
the applied phase, as modeled with the formula 1.20.

∆ϕ(ψi) = sin(ψi)2π
d

λ
[rad] (1.20)

When the phase shift ∆ϕ(ψi) is applied with a proper integer multiple to each
antenna, the Phased Array Antenna produces a wavefront which is orientated
towards the ψi angle direction, as can be seen in figure 1.5.

8

Introduction to RADAR

Figure 1.5: Beamforming shaping effect on the wavefront orientation in a Phased
Array Antenna. This example refers to a six elements antenna array.

1.1.6.1 Analog Beamforming

The Analog Beamforming consist in applying an analog phase shift on the signals
whether on the transmitter, the receiver or both. This technique allows to shape
the antenna array’s Main Lobe to be oriented in the desired angular orientation.
In figure 1.6, a possible block schema is presented.

Figure 1.6: Analog Beamforming structure.

In order to adopt this technique, a Phase Shifter is required on each channel. Thus
the Analog Beamforming technique has the inconvenience of having an higher
cost and susceptibility to noise and non-idealities, which are introduced by the
additional Phase Shifters.

9

Introduction to RADAR

1.1.6.2 Digital Beamforming

The Digital Beamforming consist in applying a phase shift during the Signal
Processing of the RADAR. This processing technique does not require the adoption
of analog phase shifters, thus leading also to better SNR figures and reduced
hardware cost. The signal echoes are received by all the receiving channels at
the same time, sampled and then store in memory. Then a phase shift can be
introduced by numerical means, thus providing the RADAR the capability of
scanning in each Angle Bin by applying a different phase shift, without the need
to perform a different data acquisition on the receiving antennas. This procedure
is also referred as "Electronic Beam Steering".

Figure 1.7: Digital Beamforming structure.

The ADC sampled data is processed with the weighing phases in what is referred
as Angular Compression. The Angular Compression consist in applying to each
sampled channel data (s⃗rc) the proper phase shift, thus obtaining the Angular
Compressed Signal (src,ac) as shown below:

src,ac = s⃗rc
T · b⃗(ψi) (1.21)

The phase shift vector is obtained by adopting the expression 1.20 with the proper
antenna index as phase multiplicity factor. This results in multiplying to the
sampled data (s⃗rc) the vector 1.22 to each antenna coordinate.

b⃗(ψi) =



ej0·∆ϕ(ψi)

ej1·∆ϕ(ψi)

ej2·∆ϕ(ψi)

.

.

.
ej(N−1)·∆ϕ(ψi)


(1.22)

For what regards the Angular Resolution, it can be computed as the first null of
the Angular Compressed Signal. Thus the first null ψfn is obtained as follows:

10

Introduction to RADAR

sin(ψfn) = 1
N d

λ

(1.23)

When the adopted Antenna Array has an half-wavelength distance between each
element, the Field of View is maximized. The resulting FoV is from −90° to 90°
and has no ambiguity. Furthermore the first null ψfn computation reduces to just
a dependence on the amount of Antenna Elements N , as shown below:

sin(ψfn) = 2
N

(1.24)

The importance of the amount of Antenna Elements N is directly related to the
Angular Resolution, meaning that having a smaller First Null Beamwidth makes
the RADAR able to detect more targets per Range Bin. The larger the amount of
Antenna Elements, better the Angular Resolution. Recalling the Angular Resolution,
different targets must dwell in different Angular Bins, so up to N targets can be
successfully identified in each Range Bin.

1.1.7 Velocity Estimation in Pulsed RADAR
RADAR system can measure a target’s velocity by means of the Doppler Frequency
Shift[2]. This velocity affects the transmitted signal by modulating its frequency.
This effect occurs due to the time compression of the reflected signal that occurs
when it hits on a moving target. The time compression alteration of the signal in
the time domain results in a frequency shift in the frequency domain. A transmitted
signal as

x(t) = y(t) · cos(ω0t) (1.25)

is received as
xr(t) = y(γt− Ψ0) · cos(γω0t− Ψ0) (1.26)

where γ is
γ = 2v

c
(1.27)

The received signal represented in the frequency domain is

Xr(ω) = 1
2γ (Y (ω

γ
− ω0) + Y (ω

γ
+ ω0)) (1.28)

As can be noted, the time compression factor γ modulates the frequency. This is
equivalent to a frequency shift by the amount fd.

fd = 2v
c
f0 = 2v

λ
[Hz] (1.29)

11

Introduction to RADAR

This phenomenon allows to also determine when a target is approaching (closing
target), in which case the shift is positive and thus the frequency increases. If
instead a target is leaving (opening target), the shift is negative and thus the
frequency decreases. Each velocity measured with the Doppler shift is relative with
respect to the RADAR.
Another way to consider the Doppler Frequency Shift is by its effect on the signal
phase. The target space variation due to its velocity makes the echo signal phase
change at a faster (if closing, slower if opening) rate than the transmitted signal.
Thus the frequency shift can also be expressed as:

fd = 1
2π

dΦ
dt

= 1
2π

4π
λ

dR

dt
−→ fd = 2 · v

λ
[Hz] (1.30)

The RADAR acquires information about this shift at each PRI, thus it samples
the Doppler frequency shift at a sampling rate of PRF (1

PRI
). This fact limits the

maximum velocity that the RADAR can acquire without ambiguity at velocities
whose Doppler shift not exceeds the half of PRF.

vmax = λ · PRF
4

5
m

s

6
(1.31)

In case targets with velocities which are faster than the maximum are not correctly
recognized, and thus are Ambiguous. An ambiguous velocity is under-sampled
by the RADAR and thus results in a velocity lesser than the real one. In order
to overcome the ambiguities, an higher PRF or more complex Processing must
be adopted. Recalling the Maximum Range, an higher PRF leads to a reduced
Maximum Range.
The Velocity Resolution instead is achieved with the amount of samples collected.

∆fd = 1
N · PRI

[Hz] −→ ∆v = λ

2 ·N · PRI

5
m

s

6
(1.32)

12

Introduction to RADAR

1.2 General RADAR Architecture
The essential architectures used in RADAR systems are outlined in this proposed
section, which includes an examination of the devices involved and their roles within
this type of electronic system. Modern applications are shifting towards a fully
integrated RADAR system within a System on a Chip (SoC), which incorporates
all the necessary hardware units to carry out its measurement tasks. The proposed
figure 1.8 displays the block diagram of the primary architecture for a pulse RADAR
without compression.

Figure 1.8: RADAR architecture block diagram (Real-Only Mixing).

As can be seen in figure 1.8, within the RADAR architecture the signal flow can be
subdivided in two main section: the transmitter chain and the receiver chain. The
former is responsible for the generation of the signal to be transmitted, and thus
propagated in the environment through the antenna, while the latter is responsible
for collection of the echoes scattered back to the antenna.
In the proposed architecture, the transmitter and receiver chains share the same
antenna, thus a circuit separator (like the Duplexer) is needed. The Protection
Switch avoids the strong power leakages and reflections that may occur on the
antenna’s end during the signal transmission, that may enter in the receiver chain
and damage it. In case the RADAR adopts different antennas for the transmission
and reception, the two chains are fully separated.
The receiver chain is connected to the antenna through the Protection Switch
during the echo reception. After that, the Low Noise Amplifier is employed in
order to restore the echo signal’s power level before mixing it. The Mixer is used
in order to down-convert the echo signal since usually the transmitted signal is

13

Introduction to RADAR

up-converted during its generation. After mixing the echo signal with the Local
Oscillator (LO), the obtained Intermediate Frequency (IF) is amplified by the IF
Amplifier in order to restore the signal levels for the downstream blocks. Nowadays
the Detector block is avoided, since modern RADARs perform the detection and
all the other processing in the Digital Domain. Thus, ADCs ad DSPs are needed
in order to perform the required Signal Processing.

1.3 Pulse Doppler Processing
In order to correctly perform Doppler processing, the RADAR must adopt a
Coherent mixing. The Coherent mixing employs the same Local Oscillator which
is fed to the Mixer. This allows to keep phase coherence between the transmitted
signal and the received echo. In figure 1.9, a Coherent architecture example is
presented.

Figure 1.9: Coherent RADAR architecture with receiver-only I-Q mixing.

The adoption of an I-Q structure allows to relax the ADC performance, thus
needing an ADC with a sampling frequency just as the highest frequency content
of the IF. Instead twice the hardware and more complex processing is needed.

Since now the RADAR also collects the information about the Doppler shift as a
set of echoes which are used to sample it, the collected data can be organized in a
2-D matrix.
The Range samples obtained directly from the ADC constitute the Fast Time

14

Introduction to RADAR

coordinate, while the set of sampled echoes (for each Range Bin) constitutes the
Slow Time coordinate.
If the RADAR also adopts an Antenna Array architecture with separated receiving
chain, it can also collect the 2-D data matrix for each antenna channel. This
collected data structure is now 3-D, having added the Antenna coordinate. This
structure is known as RADAR Cube and can be visualized as the one presented in
figure 1.10.

Figure 1.10: Graphical visualization of the RADAR Cube structure.

Whenever a full frame data is acquired, consisting of Range and Doppler samples,
the Doppler Processing is applied. While the Range Compression can be performed
when acquiring the data from the ADCs and transfering it on the fast time
coordinate, the Doppler Processing on the slow time coordinate must be performed
after the full frame has been acquired. This computation result in the Range-
Doppler Map extraction.
This map exhibits peaks where a target is located, both on the Range and Doppler
coordinates. An example for this process is provided in figure 1.11.

Figure 1.11: Graphical visualization of the Doppler-FFT processing.

15

Introduction to RADAR

If multiple receiving channels are adopted, a further processing step is needed
in order to compute also the Angle Processing (Azimuth and Elevation). Range
Compression processing depends on the RADAR technique adopted. Digitally mod-
ulated RADARs adopt a correlation processing step, while the FMCW RADARs
adopt an FFT on the fast time coordinate for the same Range Compression. The
Doppler Processing instead always requires the FFT on the slow time coordinate.
For what regards the Angle Processing, also in this case the complex FFT can be
adopted in order to retrieve the phase information.

1.4 FMCW Imaging RADAR

The FMCW RADAR[2][5] is a particular type of RADAR that exploit a frequency
modulated transmitted signal for its task. The adoption of this technology allows
to increase the signal’s Bandwidth while using a longer transmission time.
This solution provides at the same time both the required Range Resolution,
bounded to the signal bandwidth, and improve the Detectability with the larger
transmitted energy (1.1.4).

The FMCW RADAR increases the bandwidth by adoptiong a chirp signal, which
is an oscillating signal whose frequency is linearly swept from a minimum to a
maximum. Its mathematical model is provided in figure 1.12.

Figure 1.12: Chirp signal representation in time domain.[5]

The rate at which the frequency is swept is referred to as µ and can be modeled as
shown in figure 1.13. The Tc term refers to the chirp duration.

16

Introduction to RADAR

Figure 1.13: Chirp signal frequency sweep against its duration time.

In FMCW RADARs, the compression gain is thus increased by the frequency sweep
and the chirp duration, as modeled in (1.33).

compression gain = B · Tc (1.33)

A key feature of the FMCW ’s receiving chain is that the usage of a mixer allows
to obtain a relationship with the Range as a frequency beat at IF (fIF), whose
frequency is proportional to the target’s Range through the received echo time
delay. Thus its optimal response can be obtained applying an FFT on the fast
time coordinate. The relationship between the returned echo’s time delay and its
Range is proportional to the FMCW parameters as modeled in (1.34).

R = c · fIF
2 · µ

[m] (1.34)

Thus the Maximum Range depends on the FMCW parameters as modeled in
(1.34). The restraining parameter regards the data acquisition for the IF, thus
means that the ADC performance is the limiting factor for the Maximum Range.
The k parameter depends on the actual receiving chain technology: k = 2 for a
Real-part-only chain, k = 1 for a I-Q chain. In the former case the ADC must
satisfy the Sampling Theorem, thus sampling at least twice the IF bandwidth. The
latter does not have to thanks to the Real and Imaginary components which carry
both magnitude and phase information.

Rmax = c · fADC
2k · µ

[m] (1.35)

For what regards the Range Resolution, it depends only on the transmitted signal’s
swept bandwidth.

∆R = c

2 ·B
[m] (1.36)

17

Introduction to RADAR

In order to correctly separate two targets, those must be separated in the IF in
terms of their beatings. Two targets’ beating difference must be larger than the
inverse of the chirp’s duration. This is due to the fact that very close targets’
echo have almost null time difference, thus the minimum frequency difference is
dominated by the chirp duration. A graphical representation can be seen in figure
1.14.

∆f = 1
Tc

(1.37)

Figure 1.14: Target Range separation in FMCW RADARs.

The Doppler shift of a target can be acquired in way which resembles the case of
the Pulsed RADAR. A set of chirps is transmitted and their echoes are collected
and then processed. The Doppler effect induced by the targets act on the chirp
signal phase, as shown in figure 1.15.

Figure 1.15: Phase changing of a small round-trip variation [5]

Thus the phase shift can be retrieved as (1.38):

v = c · ∆ϕ
4π · Tc · f0

5
m

s

6
(1.38)

18

Introduction to RADAR

In order to correctly determine the Doppler, the Sample Theorem must be respected,
thus the Doppler-induced phase shift must not change more than π [rad] between
the chirp observations. Thus this constraints the Maximum Velocity to (1.39):

vmax = c

4 · Tc · f0

5
m

s

6
(1.39)

When not respected, the acquired velocity results in an ambiguous velocity. For
what regards the Velocity Resolution, it results in an approach which resembles
the Pulsed RADAR. Thus the chirps are used to sample the phase shift with N
samples and this leads to the following formula (1.40):

∆ϕ = 2π
N

[rad] (1.40)

Since N chirp signals are sent in order to sample the phase variation, the required
time to complete the acquisition is (1.41):

Tf = N · Tc [s] (1.41)

According to the FFT characteristics, the FFT Accuracy depends on the observation
time, which ultimately leads to the Velocity Resolution as (1.42):

∆v = c

2 · Tf · f0

5
m

s

6
(1.42)

In cases where multiple targets dwell the same Range and Doppler Bins, a further
coordinate is needed. The most widely adopted coordinate for this purpose is the
Angle. This concept can be applied to both Azimuth and Elevation angles. With
this processing it is possible to determine the Angle of Arrival (AoA) of a target’s
echo. In order to acquire this information, more receiving chains are needed.

Figure 1.16: Graphical visualization of the phase difference between antennas
receiving the same transmitted signal[5]

19

Introduction to RADAR

The AoA information of a target is contained in the phase difference between the
receiving antennas. This phase difference is caused by the spacing d between the
receiving antenna elements. The relationship with the AoA θ can be expressed as
(1.43):

∆ϕ = 2π · d · sin(θ)
λ

[rad] (1.43)

Thus the AoA can be obtained as (1.44):

θ = sin−1
A
λ · ∆ϕ
2π · d

B
[rad] (1.44)

For small angles the formula (1.44) can be approximated to a linear model, but
inaccuracy occurs for large angles. Also for this data ambiguities can occur. This
happens when the phase difference between neighboring antennas is larger than π
[rad]. Thus the target’s Maximum AoA can be obtained as (1.45).

θ = sin−1
A
λ

2d

B
[rad] (1.45)

Considering the equation (1.44), its domain is [−π
2 , π

2] [rad]. Thus it is possible
to detect angles in that range, but only under the condition that the Field of
View (FoV) is maximized. This condition verifies when the antenna spacing is
half-wavelength.

d = λ

2 [m] (1.46)

For what regards the Angle Resolution it depends upon the number or receiving
antennas. When the FoV is maximized and the AoA can be approximated to 0, it
assumes the provided form (1.47).

∆θ = 2
N

[rad] (1.47)

1.5 MIMO Systems
The MIMO[6] technique is a telecommunication technology which improves the
performance of a Radio-Frequency system given the same amount of antennas. It
makes use of multiple antennas during the transmission and reception.
In order to achieve this result, the multiple transmitting antennas are exploited.
The signal of each antenna is collected separately by all the receiving antennas and
then combined together. This solution exploits the different transmitting antenna
position, thus more phase information is collected sequentially.

20

Introduction to RADAR

Figure 1.17: Graphical representation of the MIMO concept[6].

Figure 1.18: Graphical representation of the MIMO Virtual Array composition[6]

The combination of the data collected by the receiving antennas constitutes what
is referred to as Virtual Array, which is equivalent to an Antenna Array with a
larger amount of elements. The equivalent length of the Virtual Array (1.48) is the
product of the antenna elements for the transmission (NTX) and for the reception
(NRX).

NVirtual Array = NTX ·NRX (1.48)

In order to not overlap any of the Virtual Array’s elements, the distance in between
the transmitting antennas must be as much as the distance between the first
receiving antenna and the last, as noted in figure 1.17.
Furthermore in order to unequivocally collect each transmitted signal, those must
be made orthogonal to each other. In order to establish the orthogonality of the
transmitted signals, different techniques can be adopted: Time Division Multiplex-
ing (TDM), Carrier Frequency Multiplexing (CFM) and Code Division Multiplexing,
often performed with Binary Phase Modulation (BPM).
The TDM technique consist in transmitting the signals in different time slots, while

21

Introduction to RADAR

the CFM sends them on different carrier frequencies and the BPM sends them
with a different phase-modulated code.

Figure 1.19: Graphical representation of the TDM technique with the transmitted
FMCW chirps[6].

1.6 Minimum Redundancy

The Minimum Redundancy is a concept which refers to the efficient usage of the
resources by avoiding redundancy and duplicates of a certain set. This concept
pertains to a large number of fields, but in this specific context it refers to the
possibility of reducing the amount of antennas without losses about the angle
information.
The Minimum Redundancy Linear Array[7] is a type of Antenna Array whose
elements are placed in a particular space arrangement. The receiving antennas
adopt a spacial arrangement with unequal distance between the elements of the
array. This configuration avoids the redundancies, thus providing the possibility to
rearrange the redundant antennas. By doing so it is possible to increase the array
length, thus improving its performance.
An Antenna Array composed by N elements can be arranged in order to obtain an
equivalent linear array of NMR elements (1.49).

NMR = 1
2N(N − 1) (1.49)

The Minimum Redundancy concept applied to four receiving antennas leads to the
arrangement shown in figure 1.20. The Virtual Array is obtained after the correct
phase processing is applied in order to extract the antennas which are missing.

22

Introduction to RADAR

Figure 1.20: Graphical visualization of Minimum Redundancy structure applied
to an Antenna Array of four elements. The spacing unit u0 is the responsible for
the Array Phasing.

The Minimum Redundancy Linear Array concept can be exploited also in MIMO
configurations, while providing better main-lobe interference rejection at a cost of
a negligible side-lobe interference rejection’s degradation[8].

23

Introduction to RADAR

1.7 RANSAC Algorithm
RANSAC [9] is a statistical algorithm commonly adopted in computer vision and
image analysis. It is an iterative algorithm which estimates the parameters of a
mathematical model from a set of observed data points that contains both inliers
and outliers. The former are considered to be the correct points used to fit the
model, while the latter are considered to be the points affected by gross errors and
thus should not be used for the model fitting purposes. The RANSAC algorithm
is able to filter out the outliers by iteratively taking a random chosen subset of
points from the main data set. This set is then used to fit the mathematical model
to the data subset, and then verifying its adequacy in terms of error with respect
to the remaining data points. This process ends when the best fit is found or the
limit of attempts is reached.

Figure 1.21: Example of RANSAC fitting a line[10].

24

Chapter 2

The AWR1843 Chip

This chapter presents the SoC system on which the software has been tested
and validated. The routine has been designed in order to abstract the Hardware
architecture in order to be more flexible, but considerations on the Hardware
are still needed for its integration in the Radar Software Stack for Testing and
Validation purposes. Thus the SoC structure is presented.

2.1 SoC Architecture
The AWR1843 SoC is a single-chip Radar solution which implements most of the
Radar hardware on the same chip. It implements the Radio-frequency front-end,
the signal processing module with a dedicated C674x DSP and a general-purpose
Cortex-R4F Core.
These units can be analyzed in their respective Macro-Block context. As can be
seen in figure 2.1, three main functional blocks can be identified:

• RADAR Subsystem which contains the RF Front-end and the Radio Processor

• DSP Subsystem which contains the DSP

• Master Subsystem which contains the Cortex-R4F Core

As can be seen in figure 2.1, the only missing Hardware part on this specific chip is
the Antenna Array. Other chips also implements Antenna on Package solutions.

The AWR1843 chip is an Automotive Radar chip which complies to the latest
regulations for Automotive Radars. It can operate in the frequency range 76-81 GHz,
which enables it to be employed for Short-Range Radars (SRR) and Long-Range
Radars (LRR). The former have the operating bandwidth 76-77 GHz, the latter
the 77-81 GHz.

25

The AWR1843 Chip

Figure 2.1: AWR1843 Functional Block Diagram[11]

2.1.1 RADAR Subsystem

The RADAR Subsystem is the chip’s subsystem where the RF Front-end and the
Radio Processor are contained. As can be seen in figure 2.1, the RF Front-end
contains the Analog portion of the Radar transmitting and receiving chain. In this
structure the SoC packs the three transmission chains and the four transmission
chains. This schema allows the Radar using this chip to operate in a MIMO
configuration.
This subsystem exposes an API used to let the Master Subsystem configure and
manage it.

2.1.1.1 Frequency Synthesizer

The frequency synthesizer is used by the RF Front-end to generate the FMCW
chirp. In order to do so, it takes the input clock reference and, by means of a
Clean-Up PLL, it filters the external clock. This filtered clock is also used to provide
the SoC clock signal. The Timing Engine is used to drive the RF Synthesizer which
generates the Local Oscillator reference for both the Transmitter and Receiver.
The Timing Engine also provides the synchronization signals, such asr the receivers’
ADCs controls and transmitters’ phase modulation. In figure 2.2 the block diagram
shows the internal structure:

26

The AWR1843 Chip

Figure 2.2: AWR1843 RF Clock Management[11]

2.1.1.2 Transmitter Chain

The transmitter chain is the block which is used as antenna driver. It takes the
Local Oscillator signal and increases its power through the usage of a set of RF
Power Amplifiers. This chain has also the possibility to introduce a configurable
phase modulation to the Local Oscillator signal before increasing its power. The
RF Power Amplifiers are then interfaced to the SoC output pins. A total of three
transmitter chains are available on this SoC. In figure 2.3 the block diagram shows
the internal structure:

27

The AWR1843 Chip

Figure 2.3: AWR1843 Transmitter Chain[11]

2.1.1.3 Receiver Chain

The receiver chain is the block which is used to acquire the data from the receiver
antenna. It takes the RF signal from its channel’s antenna, it amplifies that signal
by using a Low Noise Amplifier and then it performs I/Q Mixing. Each I/Q
channel has its IF filtered and sampled with its respective ADC. After the ADC
acquisition, the data is decimated, corrected and then saved into its respective
buffer. In figure 2.4 the block diagram shows the internal structure:

Figure 2.4: AWR1843 Receiver Chain[11]

2.1.2 DSP Sub-System
The AWR1843 SoC integrates in its architecture a DSP which belongs to the Texas
Instrument’s family of C674x DSPs. This DSP has a VLIW micro-architecture,
with both Fixed Point and Floating Point capabilities. It runs at 600 MHz and has

28

The AWR1843 Chip

two independent data paths which leads to a total of six ALUs and two Multipliers,
with the capability to fetch up to eight instructions per cycles. In order to satisfy the
performance requirements for this hardware unit, a multi-level RAM architecture is
employed, where the farthest and largest level is shared with the Master Sub-System.
Thus a complex BUS architecture has been adopted, as can be seen in figure 2.5:

Figure 2.5: AWR1843 DSP and Master subsystem BUS interfaces[11]

2.1.2.1 Extended Direct Memory Access Unit

The EDMA is the hardware unit which is used to move data between peripherals in
order to relieve the DSP, and possibly also the Cortex-R4F Core, from the heavy
task of moving data. In this way it is possible to invest the computational time in
a more efficient way. This means that data can be transferred while performing
other calculations. It can be used in a Radar Software Stack in order to move the
data from the ADC buffers into the RAM memory for later calculations, while
calculating a previously transferred ADC buffer content.

2.1.3 Master Sub-System
The AWR1843 SoC integrates in its architecture a programmable Cortex-R4F Core
which its main role is to manage the SoC and the chip’s interfaces to the external
world. It requires lesser performance than the DSP, thus it is clocked at 200 MHz
and it accesses directly the 1 MB main memory in a single-level schema. The main
memory is shared with the DSP Subsystem. For what regards the peripheral access
it adopts a peripherals memory mapping schema, like a micro-controller. In order

29

The AWR1843 Chip

to let the Cortex-R4F Core to manage the whole SoC ’s hardware resources, a
complex BUS architecture has been adopted, as it is shown in figure 2.6:

Figure 2.6: AWR1843 RADAR, DSP and Master subsystem[12]

As can be seen in figure 2.6, this SoC integrates a lot of peripherals, Hardware
Accelerators and controllers. This is justified by the fact that Radar systems are
a class of systems which have to manage a lot of data while performing heavy
computation. Furthermore also the peripherals must be managed together with
all the other hardware resources. Thus all this architectural complexity aims to
drastically increase the performance capabilities of the AWR1843 RADAR SoC.

30

Chapter 3

Software Design and
Development

This chapter presents the process flow which has been adopted in order to design
and develop the Ego Velocity estimation routine, taking into account various
Software evaluation figures during the whole process. The design takes into account
how a Radar collects the data to be processed, with particular care on how the
system used as test-bench was designed. Starting from those considerations, the
routine has been made more general and independent from the platform which
adopts it. The design and development are then followed by the Technical Overview
specific to egoVelocityEstimLSOW, after which the most appropriate changes to
the initial Software implementation has been made, until a satisfactory result has
been obtained. Thus, this Design and Development process is strongly driven by
the results.

3.1 Software Overview
The Radar Software Stack which has been used as development platform is Radar
system for a car lamp, for which a research effort has been already done. It
provides an advanced Radar processing environment, exploiting multiple sub-frames
and chirp parameters in order to increase the maximum unambiguous Doppler
velocity, perform Doppler-Phase compensation needed by the TDM technique, while
exploiting a minimum redundancy MIMO array to increase angular resolution.
Thus, it provides an interesting processing context to be adapted in order to make
that system able to extract the Radar Ego Velocity, without the need for a third-
party system to inform it.
The main issue which involves the Ego Velocity is its effect on the Tracking
Algorithm, which is discussed in section "Tracking Algorithm Issue".

31

Software Design and Development

3.1.1 Acquisition Schema
The RADAR Subsystem sends, during an acquisition sub-frame, a set of chirp
signals over its transmitting chain in a time-division channel multiplexing schema.
This allows the receiving chain to collect simultaneously a chirp on all the receiving
antennas. The DSP Sub-System is in charge of processing the raw data acquired by
the receiving chain. Double-buffering is exploited in order to have enough time to
process a chirp Range-FFT on Fast Time coordinate, while receiving the next one.
Once all the chirps of a sub-frame have been collected, it is possible to perform the
Doppler-FFT on the Slow Time coordinate. After this step the velocity is known,
but not yet disambiguated.

3.1.2 Detection Schema
The actual detection of targets is performed in three steps: first the detection is
performed using the Range coordinate, then a later detection using the Doppler
coordinate and finally on the Azimuth coordinate. This is achieved by performing
a CFAR on each coordinate used to separate the measured points.

3.1.3 Disambiguation Schema
The velocity disambiguation is performed after its dedicated sub-frames collection.
Thus by applying the "Chinese Remainder Theorem" it is possible to determine
the velocity of a given point because it has different ambiguous values for each
chirp profile. For this sub-frame a single transmitting antenna is used in order
to avoid the phase error introduced by the time-division multiplexing of a full
MIMO array. In case it is possible to find a common multiple within a reasonable
velocity tentative span, the velocities are disambiguated. Thus it is also possible to
compensate the Doppler-induced phase error on all the receiving antennas of the
previous frame.

3.1.4 Association Schema
The association between the targets of different sub-frames is performed in terms
of velocity and minimum distance. During the MIMO sub-frame acquisition, the
points corresponding to a peak in the detection are defined as the master of that
group, while the other nearby points which have simply crossed the CFAR threshold
are classified as their closest master’s slaves. Then, once the velocity has been
disambiguated for each master in the dedicated sub-frame, it is associated to its
corresponding master from the MIMO sub-frame by assigning the disambiguated
velocity to all of its group’s points.

32

Software Design and Development

3.1.5 Tracking Algorithm

The tracking algorithm is in charge of combining a sequence of targets observations
into the most appropriate set of tracks. So it is possible to monitor targets evolution
across multiple physical dimensions like time, position, velocity, but others exist.
The tracking algorithm needs a sufficiently large set of measurement points in order
to have reliable result and performance. Thus, it is important to have a large set,
but even more important that those points’ measure is accurate in order to have
an accurate tracker behavior. This is why the TDM Doppler-Phase error must be
compensated, so the spatial position is not affected by this error.
This particular Tracker is implemented using a Kalman filter on the measured
point group. It associates a moving group of points to the closest track in terms of
distance and updates the next prediction. If instead no close tracks are present
a new one is pre-allocated, ready to receive the later observations . A track is
instead freed if the tracked Target disappears, which means it either reached a
region outside the field of view or it stopped.
The following frames are the ones presented as the snapshot for the "Static host,
closing target: Track Start", in which a track allocation can be seen. Due to the
SPI data-rate limit, the shown targets are the one for the second subframe, used
for the "Disambiguation" and for the "Ego Estimation". Only the static points, the
masters and ??? can be seen. The amount of targets in the MIMO sub-frame is too
large to be transferred, thus the grouping effect of the Tracking algorithm cannot
be displayed.

Figure 3.1: Initial detection of a Master during frame 53. A master which can
start a track is represented with the red asterisk, the purple circle are the almost
static targets and the red circles are the static targets

33

Software Design and Development

Figure 3.2: Track allocation for the group during frame 54. The leading master is
represented with the blue circle, the track with the black circle and the sub-frame
slaves as green circles

Figure 3.3: First track update after allocation, during frame 55. The green circles
are the master’s slaves of the 2nd sub-frame

3.2 Tracking Algorithm Issue
The tracking algorithm is thus used to track and log the evolution of moving targets.
If the Radar itself is moving because it is mounted on a moving host, also the
static targets are now moving. This largely increase the computation and memory
resources needed in order to process all the moving targets, whether being true
targets or the scenery. In order to overcome this situation, the tracker needs a
system far more performing than needed or to process lesser points, thus reducing
the tracking capabilities. The optimal solution is to have the largest set of points

34

Software Design and Development

and just process the real targets. This solution can only be implemented if the host
velocity is known. Once said velocity is known, the points which have the same
velocity as the Ego Velocity can be ignored by the tracking algorithm.

3.3 Ego Velocity Estimation Design
The routine which is in charge of estimating the Radar’s Ego Velocity has been
designed and developed in order to be interfaced with an already-working software
stack. The way this estimation routine has been designed is to be flexible enough
so that the usage in this specific stack does not limit its fields of employment, but
rather present a possible application in situations where the other Radar Routines
already exist, thus being already verified and validated. So this routine simply
extends a Radar Software Stack.
This routine’s design takes inspiration on the previous work of Dominik Kellner,
Michael Barjenbruch, Jens Klappstein, Jürgen Dickmann and Klaus Dietmayer. As
shown in their article[1] various possibilities have been explored, but the actual
proposed solution is the application of a RANSAC algorithm. The RANSAC
algorithm is used to fit a model for a set of data. This is its most common usage,
as proposed in the work of Martin A. Fischler and Robert C. Bolles. The authors
propose this algorithm in an article[9], where it is used to fit a model from a set of
data in order to solve a Location Determination Problem. By applying the concepts
behind RANSAC, this algorithm can be adopted for different purposes.
By analyzing both these works, the algorithm can be reduced to an estimator
function which extracts the statistical Mode of a set of values. From this perspective,
four possible estimator function implementations have been derived from the original
concept and presented in the section "Ego Velocity Estimation Development".
Starting from an initial implementation, all the later ones have been developed
as an evolution of that, as a consequence of analysis which involves the quality
of results, computational cost, memory footprint and timing constraints. Each
test and result evaluation have been analyzed and are presented in section "Test
Campaign".

3.3.1 Ego Velocity Estimation: Requirements
This Software routine performs the Radar’s Ego Velocity Estimation. This estima-
tion is based on the detected targets’ characteristics. Thus this function needs a
cloud of measured targets.
For what concerns the targets, those must have the following physical dimension
fields:

• Radial Velocity (represented as a single-precision floating point number)

35

Software Design and Development

• Spatial Position (a set of Cartesian coordinates where all its members are
represented as Qx fixed point number)

Furthermore, in order to also match the flexibility goals introduced in the "Ego
Velocity Estimation Design" section, the routine implementations have been de-
signed considering that the cloud of measured target data has its memory layout
provided "as is" by the already existing Radar Software Stack. Thus the Ego
Velocity Estimation must satisfy the following requirements, in order to meet the
desired level of flexibility and scalability:

• use an abstraction layer in order to access targets’ data fields

• the actual algorithm implementation can be chosen at compile time for each
call

This set of Requirements is then translated into an implementation, whose
architecture is discussed in Ego Velocity Estimation: Architecture Overview.

3.3.2 Ego Velocity Estimation: Architecture Overview
The routine is organized as a self-contained procedure. This is achieved by encap-
sulating its code in a new function, then ensuring that the input data accesses are
not destructive and that the output data is written only once. Thus this means
that each implementation accesses the cloud of target points only to read them
and only after the Ego Velocity has been estimated, it is written into a dedicated
data structure.
This data access schema ensures that this routine can be optionally integrated and
scheduled into any Radar Software Stack.

Figure 3.4: Ego estimation scheduling visualization.

In order to achieve the flexibility and scalability goals, the abstraction layer is
used inside the Ego Velocity estimation routine as the only way to read-access
external data. Thus the routine is able to access the target physical dimension
fields regardless of the actual target data layout. This layer makes possible the

36

Software Design and Development

data retrieving from various list of suitable points, whether from a raw Radar
Cube, a list of points or even post-processed targets. These data access methods
are provided in their dedicated library. Furthermore, this interfacing library can
be overridden at compile time so that the Ego Estimation can be integrated into
other projects without the need to actually modify the interface library content or
even the routine’s code. This design choice provides also an increased portability
to other Radar Software Stacks.

Figure 3.5: Ego estimation data access visualization.

The usage of said layer allows also an homogeneous input data access for the
algorithm, without the need to copy said data into a different data structure or
even to change the routine’s code-base whenever a different data representation is
used. In this way, lesser memory and lesser code edits are needed.

3.3.3 Ego Velocity Estimation: Technical Overview

The Ego Velocity routine is present in various versions, but all have the same
exposed API entry-point. This Entry Point is provided as a C macro. Its first
argument specifies the actual implementation to use for that algorithm instance,
while the others are just the arguments for the estimator algorithm itself. This is
possible due to the fact that every implementation has been designed to have an
homogeneous interface, thus having the same set of arguments and using the same
names and symbols. This API relationship with respect to its possible implementa-
tion can be seen as the one proposed in figure 3.6.

37

Software Design and Development

Figure 3.6: Visual representation of an algorithm instance’s implementation
choice.

The abstraction layer consist in a set of C macros that describe how to access a
single target’s field, given the target’s memory address. A set of macros is provided
in a dedicated library, where the methods used to access the target’s velocity and
Cartesian position coordinates can be found.

3.4 Ego Velocity Estimation Development
The development of a proper Ego Velocity Estimation routine started from an
initial and straight-forward approach towards its implementation. After the routine
has been implemented, it has been tested and validated. Whenever the result were
not satisfactory, the routine underwent to another development stage iteration.
This development iterations have been done until a stable, reliable and performing
algorithm has been found. Due to this iterative approach, a total of four Ego
Velocity estimation algorithm versions have been implemented. The result-driven
iterative nature of this process introduces a new set of requirements to each new
implementation. All of the implementations can be recognized because they have
the same radix name and differ by the suffix, which hints about their actual
algorithm. Since the Radar measures all the points using its bore-sight as the
reference axis, all the algorithms consider also the Radar ’s host direction and
project all the points’ velocity to this axis during the respective evaluation step.

3.4.1 The egoVelocityEstim_dop routine
This Ego Velocity Estimation routine was the first approach towards the problem.
It is implemented as a voting algorithm which bases its vote on the amount of
occurrences among the measured points.

38

Software Design and Development

This algorithm’s concept is backed by the statistics of a Radar acquired frame:
every frame consist of a set of targets inside a crowded cloud of points, which most
of them belongs to the environment.
This means that the set of target points is lesser than the scenery points and
these latter ones exhibit a velocity which is like the Host’s velocity, but projected
along their position. Thus this means that the Mode is the statistical parameter
which better represents the points belonging to the environment. Furthermore, the
projection of all the points back to the Host direction is necessary because along
that axis resides the Ego Velocity.

Since this routine is a specific implementation of the egoVelocityEstim estimation
algorithm, it inherits the requirements laid out in "Ego Velocity Estimation: Re-
quirements" while introducing a new set which is tightly related to this particular
algorithm implementation.
For what regards the actual algorithm implementation for this routine, it is laid
out in the "Technical Overview specific to egoVelocityEstim_dop" section below.

3.4.1.1 Requirements specific to egoVelocityEstim_dop

This routine has been developed in order to vote as the Ego Velocity the one which
occurs the most in a given frame.
The reliability of this algorithm strongly depends on the statistics of a given
acquired frame, which is later discussed in the "Further Considerations" section.
The obtained result states that this implementation is not suitable for target-dense
scenarios or environments with targets which produce largely-sparse return echos,
which can shadow the Clutter.

3.4.1.2 Technical Overview specific to egoVelocityEstim_dop

The algorithm is structured in order to log the amount of points, from the given
list, which have a certain velocity. This goal is achieved by logging a new record
whenever a not yet recorded velocity has been found, and by incrementing the
respective velocity’s occurrence counter whenever a previously recorded one is
found. Then it ultimately reports the velocity which has the highest count in its
associated occurrence counter.
Due to the structure of this algorithm, the computational cost and the memory
accesses scale as O(n2). The required temporary memory scales instead as O(n).
Another nice feature is that the loop kernel is rather small, compared to the other
implementations, with few and simple calculations. Furthermore it also has a more
consistent timing and performance since it always use all the given targets.
Thus these characteristics can be resumed as follows:

39

Software Design and Development

PROs

+ Small loop kernel with few simple
instructions allows for fast iteration
execution

+ More deterministic algorithm behav-
ior

+ More consistent timing performance

CONs

- Large computational and memory
access cost model

- Multi-modal point sets can cause
mis-evaluation

- Target-dense environments make
the Mode shift

In figure 3.7, the graphical representation of the algorithm flow is provided.

40

Software Design and Development

Figure 3.7: Ego estimation "_dop" algorithm flow.

41

Software Design and Development

3.4.2 The egoVelocityEstimRANSAC routine
This routine follows more closely the implementation proposed in the article[1].
This Ego Velocity Estimation routine is implemented as a voting algorithm which
bases its vote on the amount of error of a given point with respect to the set
of points. The RANSAC algorithm bases its effectiveness to the statistics of a
distribution of points. It is done by taking a sample made as a subset of points
randomly picked from the larger set. This new set can still be meaningful if the
points of the smaller one are taken randomly from the larger one.
By doing so, the smaller set has a certain probability of having its Mean velocity
converge to the Mode of the larger set. In order to increase that probability, the
estimation is performed more than once, finally picking the Mean velocity of the
subset that produced the smallest error. This implementation has been developed
in order to mitigate the target shadowing which affects the "egoVelocityEstim_dop"
implementation, while trying to reduce the computational cost model.

Since also this routine is a specific implementation of the egoVelocityEstim estima-
tion algorithm, it inherits the requirements laid out in "Ego Velocity Estimation:
Requirements" while introducing a new set which is tightly related to this particular
algorithm implementation.
For what regards the actual algorithm implementation for this routine, it is laid out
in the "Technical Overview specific to egoVelocityEstimRANSAC" section below.

3.4.2.1 Requirements specific to egoVelocityEstimRANSAC

This routine has been developed in order to vote as the Ego Velocity the one which
best fits the distribution of a subset of points, taken randomly from a larger set.
This algorithm relies to the fact that most of the points are inliers, which means
that they belong to the scenery, being the scenery the most populated group of
points. Thus, the sub-set has a high probability of being largely composed by
inliers. For what concerns the fitting, the proposed fitting is a uni-dimensional
least square error on the points’ velocity, which leans towards the distribution’s
Mean velocity. The estimation is reliable if the subset of points is largely populated
by inliers, hence the Mean value leans towards the Mode of the point gathering.
This constraint limits its flexibility because the actual performance depends on the
pseudo-random number generator and on the points’ distribution characteristics.

3.4.2.2 Technical Overview specific to egoVelocityEstimRANSAC

The algorithm is structured in order to pick a random set of points from the given
list of targets. Then, it proceeds to evaluate which one of these selected points
has the least velocity distance with respect to the others. Many attempts are

42

Software Design and Development

performed by trying to take a different set of points for the sub-set. The point
which accumulated the least amount of error has then its velocity reported as the
chosen one.
Due to the structure of this algorithm, the computational cost and the memory
accesses scale as O(m ∗ k2), where m is the total amount of RANSAC trials and k
is the amount of points which are picked for the sub-set. The required temporary
memory scales instead as O(k).
While this implementation relies on a loop kernel which is not so large, it packs a
more complex calculation than the "egoVelocityEstim_dop" implementation. Fur-
thermore this algorithm has the potential of substantially cut down the actual
number of iterations due to its heuristic approach on a reduce set of data. However
it has timing issues due to the random number generation.
The random number generation has no guarantee that it won’t ever generate a
number for a point which was already taken, thus forcing it to try to generate
another one. The extreme case is that the random number generator will generate
an infinite sequence of numbers which index to already chosen points. Furthermore,
the larger the amount of points for the subset, the higher the probability to select
an already chosen point.
This result in a Real-Time error, which means that the Radar fails to end all the
frame processing during the time slot which is allocated for this purpose.
Thus these characteristics can be resumed as follows:

PROs

+ Total number of iterations can be
optimally cut down

+ Computational and memory access
cost model lesser than O(n2)

CONs

- Not consistent timing performance
with possibility of timing failure

- Subsets can be composed all by
nearby outliers

- Target-dense environments increase
the probability to pick outliers

In figure 3.8, the graphical representation of the algorithm flow is provided.

43

Software Design and Development

Figure 3.8: Ego estimation "RANSAC" algorithm flow.

44

Software Design and Development

3.4.2.3 Random Number Generation mitigation for the egoVelocityEs-
timRANSAC

The issues about the random number generation which were addressed during the
"Technical Overview specific to egoVelocityEstimRANSAC" section, hints that the
actual targets access schema can be re-arranged in order to mitigate the possibility
of picking an already chosen point. In order to remove this possibility, a temporary
data structure must be introduced. This data structure consist in a tracker array
made by an empty double-linked list element. This double linked list has an amount
of elements equal to the amount of targets. Thus this array has as an address offset
correspondence with the array of targets.
Then whenever a target has to be selected, the obtained random number is used to
unroll the same amount of elements in the double linked list. Once reached that
number, the double-linked-list element’s address is used to calculate the equivalent
offset for the target list. After picking that target, the taken element from the
double-linked-list is removed by making its respective previous element’s next
pointer take its next pointer, while its respective next element’s previous pointer
take its previous pointer.
The following figures 3.9 and 3.10 shows the structure usage:

Figure 3.9: The double linked list
elements amount is the same for the
target list.

Figure 3.10: The double linked list
element removal consist in pointer
switching.

While this mitigation avoids the consecutive selection of an already picked point,
it drastically increases the amount of memory accesses. This solution provides a
memory access cost for each target which is linear with respect to their position in
the list. Thus, the last target results in a worst case access time which scales as
O(n). In order to reduce the cost, lesser RANSAC attempts must be performed,
thus reducing the estimation quality of this algorithm.
Furthermore, this mitigation also increases the temporary memory footprint as
O(n).

45

Software Design and Development

3.4.3 The egoVelocityEstimLS routine
This Ego Velocity Estimation routine is implemented as a voting algorithm which
bases its vote con the amount of error of a given point with respect to all the others.
The used estimator is the error, like the RANSAC case, but it is performed on all
the set’s points. This algorithm relies on the statistic relationship between the Mean
and Mode: the more a distribution is concentrated, the more the two parameters
tend to assume the same value. This implementation has been developed in order
to mitigate the unreliability of the RANSAC algorithm which depends on the
random-number-generator performance.

Since also this routine is a specific implementation of the egoVelocityEstim estima-
tion algorithm, it inherits the requirements laid out in "Ego Velocity Estimation:
Requirements" while introducing a new set which is tightly related to this particular
algorithm implementation.
For what regards the actual algorithm implementation for this routine, it is laid
out in the "Technical Overview specific to egoVelocityEstimLS" section below.

3.4.3.1 Requirements specific to egoVelocityEstimLS

This routine has been developed in order to vote as the Ego Velocity the velocity of
the point which exhibits the least velocity error with respect to all the other points,
thus pointing to the distribution’s Mean velocity. The estimation is reliable if the
set of points is outstandingly aggregated around the Mode. This tight limitation
drastically reduce its field of employment.

3.4.3.2 Technical Overview specific to egoVelocityEstimLS

The algorithm is structured in order to calculate the error for each point. It does so
by picking a new reference point and accumulating the squared velocity difference
with respect to all the others, until all the points have been used as reference. Then
it proceeds to evaluate which of the points has the least accumulated error, in
which case its velocity is reported as the Ego Velocity.
Due to the structure of this algorithm, the computational cost and the memory
accesses scale as O(n2). The required temporary memory scales instead as O(1).
While this implementation relies on a loop kernel which is not so large compared to
"egoVelocityEstim_dop", it still packs a more complex calculation. This algorithm
actually has a more consistent timing and performance since it always use all the
given targets. Nevertheless it exhibits an estimation error due to its implementa-
tion.
The fact that this algorithm votes the point’s velocity which is the closest to the
Mean velocity, means that it has an intrinsic tendency to wrong estimations. Thus

46

Software Design and Development

it is less robust with respect to the other implementations for what concerns the
targets’ statistics, Multi-path reflections and velocity disambiguation errors. Thus
these characteristics can be resumed as follows:

PROs

+ Reasonable size loop kernel

+ More deterministic algorithm behav-
ior

+ More consistent timing performance

+ Lesser temporary memory footprint

CONs

- Large computational and memory
access cost model

- Estimation errors occur even with
few targets

In figure 3.11, the graphical representation of the algorithm flow is provided.

47

Software Design and Development

Figure 3.11: Ego estimation "LS" algorithm flow.

48

Software Design and Development

3.4.4 The egoVelocityEstimLSOW routine
This routine has been developed after some considerations about the other ones that
have been previously developed. It is introduced in order to extract a dispersion
indication, given the limited set of statistical information about the set of targets.
This Ego Velocity Estimation routine is implemented as a voting algorithm which
bases its vote on the amount of error of a given point with respect to all the others
and weighted by their squared occurrences in the set. This algorithm relies on the
statistics of a distribution of points: the proposed estimator combines the error
and occurrences properties in order to have an indication of that class of velocity’s
dispersion with respect to the other ones.
This algorithm relies on the Clutter return echo properties. As can be seen
in the proposed Range-Doppler Map in figure 3.12, the Clutter return echo is
usually the strongest, the broadest and the most spread along all the Range bins.
This means that the Clutter echo is quite condensed around a certain Doppler
index. This implementation has been developed in order to mitigate the bias of
"egoVelocityEstimLS" towards the Mean velocity.

Figure 3.12: Example of a Range-Doppler map when the Host is moving.

Since also this routine is a specific implementation of the egoVelocityEstim estima-
tion algorithm, it inherits the requirements laid out in "Ego Velocity Estimation:
Requirements". For this implementation, no particular requirement is needed.
For what regards the actual algorithm implementation for this routine, it is laid

49

Software Design and Development

out in the "Technical Overview specific to egoVelocityEstimLSOW" section below.

3.4.4.1 Technical Overview specific to egoVelocityEstimLSOW

The algorithm is structured in the same way as the "egoVelocityEstimLS". The key
difference with respect to that implementation is that the error for a given point’s
velocity is averaged by the amount of its occurrences. Furthermore this routine
adopts the pre-computation of the velocity projection over the Host axis. The
previous "egoVelocityEstimLS" algorithm instead projected the velocities in the
loop kernel, thus scaling as O(n2). The point which accumulated the least amount
of averaged error has its velocity ultimately reported as the Ego Velocity.
Due to the nature of this algorithm, the computational cost and memory accesses
scale as O(n2). The required temporary memory scales instead as O(n). While
this implementation relies on a compact loop kernel, it performs a quite complex
calculation, but thanks to the mentioned pre-computation, the computation cost
has been cut down by a scale of O(n), while the temporary memory footprint
increased by the same factor of O(n).
Thus these characteristics can be resumed as follows:

PROs

+ More deterministic algorithm behav-
ior

+ More consistent timing performance

+ Improved robustness against targets’
distribution

CONs

- Large computational and memory
access cost model

- Estimation errors occur even with
few targets

- Largest loop kernel among all the
implementations

In figure 3.13, the graphical representation of the algorithm flow is provided.

50

Software Design and Development

Figure 3.13: Ego estimation "LSOW" algorithm flow.

51

Chapter 4

Software Testing and
Validation

This chapter presents the sets of tests which have been performed on the various
estimations’ implementation in order to evaluate their respective result quality and
performance. The test were used as a feedback mechanism during the development
for each routine, mainly for debug purposes. When a routine version reaches a
point where can be considered reasonably stable, with respect to software bugs, a
test campaign is performed in order to validate it. The Validation process consist in
documenting whether the Software meets the specification and requirements which
were used to design it. The fact that the Software behavior has correspondence
with its documented intent, means that it fulfills its intended purpose and thus it
is a valid implementation.

4.1 Development & Validation Testing Platform
The Validation process consist of a set of tests performed on a testing platform in
a context which must resemble as much as possible the one for which a product is
intended to work during its regular usage. The egoVelocityEstim routine has been
designed in order to be interfaced to various possible scenarios, but in order to be
validated it must be tested on different testing platforms and their environments.
Each one of those must emulate their specific use case for which this Software
routine has been integrated. Considering that the development platform is given,
namely the one presented in the "Software Overview" section, it is also adopted as
the Validation Testing Platform.
Regarding the RADAR development platform’s hardware is presented in figure 4.1.
The RADAR hardware was designed in order to be integrated inside a car lamp, as
can be seen on figure 4.2.

52

Software Testing and Validation

Figure 4.1: The RADAR platform’s hardware (inside view).

Figure 4.2: The RADAR platform’s hardware (outside view).

For what concern the actual test, since the adopted RADAR is tailored to au-
tomotive applications, it has been tested in the Real-World by mounting it in a
car which has been driven in a suitable environment scenery while the RADAR

53

Software Testing and Validation

acquired the data.
The aim of the setup, shown in figure 4.3, was to emulate a realistic case which
involves cars and a urban scenery, whose arrangement is shown in figure 4.4.

Figure 4.3: RADAR mounting layout on the host car.

Figure 4.4: Aerial view of the environment scenery.

The Radar is mounted on the rear-left side of the car. It looks behind with an
inclination of 35° with respect to the car’s movement axis. A visual representation
of the mounting configuration can be seen in figures 4.5.
The chosen scenery is a parking lot where rows of parked vehicles can be found
on each side and a building can be found on one of the two sides of the road.
The chosen target is a car which has been driven around in opening, closing and
stationary movements.

54

Software Testing and Validation

Figure 4.5: RADAR orientation on
the host car.

Figure 4.6: Context representation
with Environment, Host and Target
interaction.

4.2 Test Campaign
The test campaign is a crucial aspect during a product validation process. It must
tailor the requirements for which the product was designed and has to deal with
the fact that some intrinsic limitation are present due to the nature itself of the
environmental factors and technological capabilities of the product itself.
The employed Radar platform has an intrinsic limit on the amount of data that
can be transferred during its regular operation. This is caused by the fact that the
data transfer is performed on an SPI interface which sends data to a computer.
This constraints the amount of data that can be transferred to the data-transfer
rate times the frame acquisition time. If not respected, a transfer of large amounts
of data causes a synchronization signalling miss in timing terms, thus triggering a
system-level Real-Time Error which blocks the Radar.

In order to have a comparable metric between all the algorithm’s implementations,
all the algorithms should run using the same set of data as input. This means to
run all the algorithms on the Radar on the same frame’s data. But unfortunately
this solution cannot be adopted due to the same timing issues because the Radar
fails the same synchronization mechanism as above.

Taking into account these timing issues, the test campaign has been performed for
a single egoVelocityEstim routine, then the data accessed by the algorithm is saved
on a computer. The saved data is later loaded into the Radar during each algorithm

55

Software Testing and Validation

test. This testing schema emulates a Real-Time test of all the egoVelocityEstim
running sequentially on the same set of data.

Figure 4.7: The acquired data is
collected on a PC.

Figure 4.8: Example of acquired
data. In this frame all information is
plotted.

The set of tests are performed considering possible scenarios with respect to
the single target in the scenery, as presented in "Development & Validation Testing
Platform". These tests are obtained as a permutation of situations with the target
which is either missing, approaching or leaving and the host, which is either still or
moving. This permutations result in the following testing context:

• static host background acquisition

• static host closing target acquisition

• static host opening target acquisition

• accelerating host background acquisition

• dynamic host background acquisition

• dynamic host closing target acquisition

• dynamic host opening target acquisition

56

Software Testing and Validation

Figure 4.9: Static host and closing target acquisition.

Figure 4.10: Static host and opening target acquisition.

All the Host and Target motions have been performed in a straight line. Fur-
thermore, the acceleration test with a target is avoided due to difficulties in
synchronization between the drivers of the two cars.

57

Software Testing and Validation

4.3 Static host, background acquisition
For this acquisition the Host car was parked on the Host’s left side of the road,
with the Radar looking behind. For the sake of readability, a snapshot of just three
consecutive frames are presented. As can be seen in both figure 4.11 and table 4.1,
all the implementations conform to estimating the Host velocity as 0 km h−1 (the
same applies for the pair of figure 4.13 with table 4.2 and figure 4.15 with table
4.3).

By observing this snapshot, all the Ego Estimation algorithms allow for the Tracking
algorithm to behave like no estimation algorithm was applied to the original Radar
Software Stack. This is the intended behavior when no Target is present and the
Host is stationary.

58

Software Testing and Validation

4.3.1 Frame 1

Figure 4.11: Algorithms graphical voting outcome during frame 1

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 14 1.9727 2.5042 1.358

0 24 1.5168 2.0696 0.68939
2.1669 11 2.0519 2.5748 1.5334

Table 4.1: Algorithms numerical voting outcome during frame 1

Figure 4.12: Input target cloud to the algorithms during frame 1

59

Software Testing and Validation

4.3.2 Frame 2

Figure 4.13: Algorithms graphical voting outcome during frame 2

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 12 2.0866 2.5229 1.4437

0 27 1.3706 2.0334 0.60202
2.1669 11 1.8178 2.5467 1.5053

Table 4.2: Algorithms numerical voting outcome during frame 2

Figure 4.14: Input target cloud to the algorithms during frame 2

60

Software Testing and Validation

4.3.3 Frame 3

Figure 4.15: Algorithms graphical voting outcome during frame 3

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 15 1.8758 2.5105 1.3344

0 25 1.1488 2.0866 0.68869
2.1669 11 1.9727 2.6011 1.5597

Table 4.3: Algorithms numerical voting outcome during frame 3

Figure 4.16: Input target cloud to the algorithms during frame 3

61

Software Testing and Validation

4.4 Static host, closing target
For this acquisition the Host car was still parked on the Host’s left side of the road,
with the Radar looking behind. Since now there is an incoming Target from afar,
three snapshots are taken for three situations:

• when the Radar started a track on the Target which started moving in a
contour region of the field of view

• when the Target is at a medium distance

• when the Radar built the last tracks before releasing them because the Target
is out of sight after the overtake of the Host

The Target car used in this test has been driven towards the Host car at about
30 km h−1.
The reason for the fact that this snapshot shows a frame numbering that doesn’t
start from one is that it has been extracted from the same acquisition used for
"Static host, background acquisition". During that acquisition the Target car was
later let in the field of view of the Radar.

4.4.1 Static host, closing target: Track Start
The allocation of a track for a closing target can be seen in the frames proposed in
the figures 4.18, 4.20 and 4.22. The estimation of the "LS" algorithm is the one
which is affected by an error during frame 54, as can be seen in figure 4.19 and in
table 4.5. This same phenomenon happens also on frame 55.

By observing this snapshot, the Tracking unit correctly starts a track on a moving
Target when no Ego Velocity estimation error occurs. The tracker behavior is like
intended when a Target appears and the Host is stationary.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity.

62

Software Testing and Validation

4.4.1.1 Frame 53

Figure 4.17: Algorithms graphical voting outcome during frame 53

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 12 1.9727 2.5042 1.425

0 32 1.2737 1.9939 0.48873
2.1669 9 1.9727 2.5748 1.6205

Table 4.4: Algorithms numerical voting outcome during frame 53

Figure 4.18: Input target cloud to the algorithms during frame 53

63

Software Testing and Validation

4.4.1.2 Frame 54

Figure 4.19: Algorithms graphical voting outcome during frame 54

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-26.0023 1 - 4.5364 4.5364
-2.16686 15 1.8758 2.9639 1.7878

0 23 1.5748 2.9072 1.5455
2.16686 13 2.1768 3.0731 1.9591

Table 4.5: Algorithms numerical voting outcome during frame 54

Figure 4.20: Input target cloud to the algorithms during frame 54

64

Software Testing and Validation

4.4.1.3 Frame 55

Figure 4.21: Algorithms graphical voting outcome during frame 55

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-26.0023 4 - 4.5422 3.9401
-2.16686 17 2.0866 3.4183 2.1878

0 22 1.5168 3.4541 2.1117
2.16686 13 2.0141 3.5559 2.4419

Table 4.6: Algorithms numerical voting outcome during frame 55

Figure 4.22: Input target cloud to the algorithms during frame 55

65

Software Testing and Validation

4.4.2 Static host, closing target: Track until midway
The snapshot frames proposed in the figures 4.24, 4.26 and 4.28, present the track
for the target which started in the "Static host, closing target: Track Start" section.
In this case it is presented when the targets has reached the midway between the
position from which the track started and to which the track is released. The
estimation error this time affects the whole snapshot, but still only for the "LS"
implementation.
By observing this snapshot, the Tracking unit correctly keeps track on a moving
Target when no Ego Velocity estimation error occurs. The tracker behavior is like
intended when a tracked Target is already present and the Host is stationary.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity, where
the impact of the Target is not negligible because its large velocity made the Mean
velocity shift away from the Mode.

66

Software Testing and Validation

4.4.2.1 Frame 107

Figure 4.23: Algorithms graphical voting outcome during frame 107

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-28.1691 11 4.1726 4.6768 3.6354
-2.16686 16 3.1672 3.8944 2.6903

0 30 3.2132 3.9479 2.4708
2.16686 14 3.3 4.0238 2.8777

Table 4.7: Algorithms numerical voting outcome during frame 107

Figure 4.24: Input target cloud to the algorithms during frame 107

67

Software Testing and Validation

4.4.2.2 Frame 108

Figure 4.25: Algorithms graphical voting outcome during frame 108

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-28.1691 5 - 4.6651 3.9662
-2.16686 11 1.9021 3.5764 2.535

0 35 1.4498 3.6102 2.0661
2.16686 12 2.1902 3.6966 2.6174

Table 4.8: Algorithms numerical voting outcome during frame 108

Figure 4.26: Input target cloud to the algorithms during frame 108

68

Software Testing and Validation

4.4.2.3 Frame 109

Figure 4.27: Algorithms graphical voting outcome during frame 109

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-26.0023 9 - 4.5585 3.6042
-2.16686 12 2.1341 3.7406 2.6614

0 27 1.4498 3.7929 2.3615
2.16686 14 1.9939 3.8747 2.7286

Table 4.9: Algorithms numerical voting outcome during frame 109

Figure 4.28: Input target cloud to the algorithms during frame 109

69

Software Testing and Validation

4.4.3 Static host, closing target: Track End
The release of the target can be seen in the frames proposed in the figures 4.30,
4.32 and 4.34. The release occurs because the target has escaped the field of view
of the Radar, thus the Track resources can be released for later assignment to new
tracks. In these frames the estimation error affects both the "LS" and "RANSAC "
implementations.

By observing this snapshot, the Tracking unit correctly releases the track on a
Target when it is no longer in the field of view. The Ego Velocity estimation routine
has no effect on a Track which is released for the reason mentioned above. The
tracker behavior is like intended when a previously tracked Target escapes the field
of view and the Host is stationary.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity, where
the impact of the Target is not negligible because its large velocity made the Mean
velocity shift away from the Mode.
The "RANSAC " implementation has subsequently chosen a subset of points from
the cloud of targets whose Mean velocity was different than the Mode. Thus the
"RANSAC " implementation voted the subset’s point whose velocity was the closest
to the subset’s Mean velocity.

70

Software Testing and Validation

4.4.3.1 Frame 140

Figure 4.29: Algorithms graphical voting outcome during frame 140

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-30.336 1 - 4.7778 4.7778
-28.1691 14 4.2345 4.7123 3.5661
-26.0023 3 4.1644 4.6429 4.1658
-2.16686 19 3.2897 4.0913 2.8125

0 36 3.3438 4.1522 2.5959
2.16686 11 3.4313 4.2265 3.1851

Table 4.10: Algorithms numerical voting outcome during frame 140

Figure 4.30: Input target cloud to the algorithms during frame 140

71

Software Testing and Validation

4.4.3.2 Frame 141

Figure 4.31: Algorithms graphical voting outcome during frame 141

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-30.336 6 4.3535 4.8405 4.0624
-28.1691 11 4.288 4.7759 3.7345
-26.0023 3 4.2181 4.7077 4.2306
-2.16686 15 3.4366 4.1582 2.9821

0 45 3.4932 4.2154 2.5621
2.16686 15 3.5758 4.2863 3.1103

Table 4.11: Algorithms numerical voting outcome during frame 141

Figure 4.32: Input target cloud to the algorithms during frame 141

72

Software Testing and Validation

4.4.3.3 Frame 142

Figure 4.33: Algorithms graphical voting outcome during frame 142

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-32.5028 1 - 4.8162 4.8162
-30.336 23 4.3215 4.755 3.3933
-28.1691 12 4.2582 4.6918 3.6126
-2.16686 15 3.7224 4.4435 3.2675

0 27 3.7765 4.5038 3.0725
2.16686 19 3.8419 4.5676 3.2889

Table 4.12: Algorithms numerical voting outcome during frame 142

Figure 4.34: Input target cloud to the algorithms during frame 142

73

Software Testing and Validation

4.5 Static host, opening target
For this acquisition the Host car was still parked on the Host’s left side of the road,
with the Radar looking behind. Since now there is a Target entering the field of
view from the Host’s right side of the road, three snapshots are taken for three
situations:

• when the Radar started a track on the Target because it entered the field of
view

• when the Target is at a medium distance

• when the Radar built the last tracks before releasing them because the Target
crossed the Maximum Range and thus it is out of sight

The Target car used in this test has been driven away from the Host car at about
30 km h−1.

4.5.1 Static host, opening target: Track Start
The allocation of a track for an opening target can be seen in the frames proposed
in the figures 4.36, 4.38 and 4.40. Both the estimation of the "LS" and "RANSAC "
algorithms are affected by an error during all the frames presented for this snapshot.

By observing this snapshot, the Tracking unit correctly starts a track on a moving
Target when no Ego Velocity estimation error occurs. The tracker behavior is like
intended when a Target enters the field of view and the Host is stationary.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity, where
the impact of the Target is not negligible because its large velocity made the Mean
velocity shift away from the Mode.
The "RANSAC " implementation has subsequently chosen a subset of points from
the cloud of targets whose Mean velocity was different than the Mode. Thus the
"RANSAC " implementation voted the subset’s point whose velocity was the closest
to the subset’s Mean velocity.

74

Software Testing and Validation

4.5.1.1 Frame 57

Figure 4.35: Algorithms graphical voting outcome during frame 57

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.16686 6 3.156 3.9606 3.1824

0 29 3.0591 3.8785 2.4161
2.16686 8 3.0081 3.8131 2.91
23.8354 9 3.931 4.3864 3.4322
28.1691 3 - 4.5329 4.0558

Table 4.13: Algorithms numerical voting outcome during frame 57

Figure 4.36: Input target cloud to the algorithms during frame 57

75

Software Testing and Validation

4.5.1.2 Frame 58

Figure 4.37: Algorithms graphical voting outcome during frame 58

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.16686 10 3.9087 4.5714 3.5714

0 27 3.8434 4.519 3.0876
2.16686 11 3.7822 4.4698 3.4284
23.8354 9 3.9435 4.5169 3.5627
28.1691 6 4.0762 4.6233 3.8452
30.336 2 4.1402 4.6779 4.3768
34.6697 2 4.2611 4.7852 4.4842
36.8366 1 - 4.8371 4.8371
39.0034 1 4.3718 4.8874 4.8874
43.3371 1 - 4.9829 4.9829
45.504 1 - 5.0281 5.0281
47.6708 2 - 5.0717 4.7706
54.1714 1 - 5.1929 5.1929
67.1725 1 - 5.3996 5.3996

Table 4.14: Algorithms numerical voting outcome during frame 58

76

Software Testing and Validation

Figure 4.38: Input target cloud to the algorithms during frame 58

4.5.1.3 Frame 59

Figure 4.39: Algorithms graphical voting outcome during frame 59

77

Software Testing and Validation

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-49.8377 1 - 5.5604 5.5604
-2.16686 9 4.0975 4.8363 3.8821

0 25 4.0533 4.8007 3.4027
2.16686 10 4.0129 4.767 3.767
23.8354 1 - 4.6951 4.6951
26.0023 15 4.11 4.7201 3.544
41.1703 1 - 4.9659 4.9659
62.8388 9 4.8198 5.3193 4.3651
65.0057 3 - 5.3504 4.8732

Table 4.15: Algorithms numerical voting outcome during frame 59

Figure 4.40: Input target cloud to the algorithms during frame 59

4.5.2 Static host, opening target: Track until midway
The snapshot frames proposed in the figures 4.42, 4.44 and 4.46, present the track
for the target which started in the "Static host, opening target: Track Start" section.
In this case it is presented when the targets has reached the midway between the
position from which the track started and to which the track is released. The esti-
mation error this time affects the both the "LS" and "RANSAC " implementations,
and it happened during two frames as can be seen on figure 4.41 and 4.45.

By observing this snapshot, the Tracking unit correctly keeps keeps track on a
moving Target when no Ego Velocity estimation error occurs. The tracker behavior
is like intended when a tracked Target is already present and the Host is stationary.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity, where
the impact of the Target is not negligible because its large velocity made the Mean
velocity shift away from the Mode.

78

Software Testing and Validation

The "RANSAC " implementation has subsequently chosen a subset of points from
the cloud of targets whose Mean velocity was different than the Mode. Thus the
"RANSAC " implementation voted the subset’s point whose velocity was the closest
to the subset’s Mean velocity.

79

Software Testing and Validation

4.5.2.1 Frame 108

Figure 4.41: Algorithms graphical voting outcome during frame 108

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.16686 17 3.0409 4.0219 2.7915

0 24 2.9221 3.9484 2.5681
2.16686 15 2.8812 3.8959 2.7198
28.1691 11 4.1616 4.6516 3.6102

Table 4.16: Algorithms numerical voting outcome during frame 108

Figure 4.42: Input target cloud to the algorithms during frame 108

80

Software Testing and Validation

4.5.2.2 Frame 109

Figure 4.43: Algorithms graphical voting outcome during frame 109

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.16686 14 2.2157 3.8894 2.7433

0 31 1.7856 3.8112 2.3199
2.16686 13 2.163 3.7647 2.6508
28.1691 8 - 4.6653 3.7622

Table 4.17: Algorithms numerical voting outcome during frame 109

Figure 4.44: Input target cloud to the algorithms during frame 109

81

Software Testing and Validation

4.5.2.3 Frame 110

Figure 4.45: Algorithms graphical voting outcome during frame 110

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.16686 13 3.0427 3.836 2.7221

0 24 2.9245 3.7552 2.375
2.16686 16 2.8731 3.7067 2.5026
28.1691 7 4.1073 4.6214 3.7763

Table 4.18: Algorithms numerical voting outcome during frame 110

Figure 4.46: Input target cloud to the algorithms during frame 110

82

Software Testing and Validation

4.5.3 Static host, opening target: Track End
The release of the target can be seen in the frames proposed in the figures 4.48, 4.50
and 4.52. The release occurs because the target has escaped the field of view of the
Radar beyond the Maximum Range, thus the Track resources can be released for
later assignment to new tracks. In these frames all the implementations conform
to estimating the Host velocity as 0 km h−1.

By observing this snapshot, the Tracking unit correctly releases the track on a
Target when it is no longer in the field of view. The Ego Velocity estimation routine
has no effect on a Track which is released for the reason mentioned above. The
tracker behavior is like intended when a previously tracked Target escapes the field
of view and the Host is stationary.

83

Software Testing and Validation

4.5.3.1 Frame 158

Figure 4.47: Algorithms graphical voting outcome during frame 158

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.16686 10 2.0334 3.298 2.298

0 33 1.4498 3.1644 1.6459
2.16686 13 2.0334 3.17 2.056
26.0023 2 - 4.5756 4.2745

Table 4.19: Algorithms numerical voting outcome during frame 158

Figure 4.48: Input target cloud to the algorithms during frame 158

84

Software Testing and Validation

4.5.3.2 Frame 159

Figure 4.49: Algorithms graphical voting outcome during frame 159

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 19 1.8178 2.6307 1.3519

0 23 1.5748 2.228 0.86623
2.1669 17 2.2514 2.6673 1.4368

Table 4.20: Algorithms numerical voting outcome during frame 159

Figure 4.50: Input target cloud to the algorithms during frame 159

85

Software Testing and Validation

4.5.3.3 Frame 160

Figure 4.51: Algorithms graphical voting outcome during frame 160

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 12 1.9504 2.457 1.3778

0 29 1.2737 1.9727 0.51029
2.1669 8 1.9504 2.5582 1.6551

Table 4.21: Algorithms numerical voting outcome during frame 160

Figure 4.52: Input target cloud to the algorithms during frame 160

86

Software Testing and Validation

4.6 Accelerating host, background acquisition
For this acquisition the Host car was driven from an initial standstill start, up to
about 10 km h−1. The car was uniformly accelerated as far as possible. The Host
car moved along a straight line, in the middle of the roadway. The proposed set
of frames is taken at every linear velocity increase corresponding to a resolution
step. The following frames show that all the algorithm implementations conform
to estimating the same Host velocity during each frame. Thus all the explored
implementations can sustain a velocity change on the Host.

By observing this snapshot, all the Ego Estimation algorithms behave like no
estimation algorithm was applied to the original Radar Software Stack, like intended
when no Target is present and the Host is accelerating. Furthermore, now the
Tracking unit does not allocate any track when the Host is moving, even in case of
a uniform acceleration.

87

Software Testing and Validation

4.6.1 Frame 10

Figure 4.53: Algorithms graphical voting outcome during frame 10

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-2.1669 22 2.1768 2.7755 1.433

0 43 1.4498 2.3051 0.67166
2.1669 21 2.1768 2.7889 1.4667

Table 4.22: Algorithms numerical voting outcome during frame 10

Figure 4.54: Input target cloud to the algorithms during frame 10

88

Software Testing and Validation

4.6.2 Frame 11

Figure 4.55: Algorithms graphical voting outcome during frame 11

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
0 18 2.1341 2.7361 1.4808

2.1669 48 1.5748 2.2157 0.53449
4.3337 17 2.2399 2.7508 1.5204

Table 4.23: Algorithms numerical voting outcome during frame 11

Figure 4.56: Input target cloud to the algorithms during frame 11

89

Software Testing and Validation

4.6.3 Frame 18

Figure 4.57: Algorithms graphical voting outcome during frame 18

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
0 23 2.7922 3.2571 1.8954

2.1669 20 2.2949 2.83 1.529
4.3337 53 1.9727 2.7822 1.058
6.5006 17 2.4912 3.2031 1.9727

Table 4.24: Algorithms numerical voting outcome during frame 18

Figure 4.58: Input target cloud to the algorithms during frame 18

90

Software Testing and Validation

4.6.4 Frame 22

Figure 4.59: Algorithms graphical voting outcome during frame 22

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
4.3337 18 2.4275 3.0081 1.7528
6.5006 53 1.7856 2.4425 0.71824
8.6674 41 2.2399 2.7686 1.1558

Table 4.25: Algorithms numerical voting outcome during frame 22

Figure 4.60: Input target cloud to the algorithms during frame 22

91

Software Testing and Validation

4.6.5 Frame 26

Figure 4.61: Algorithms graphical voting outcome during frame 26

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
6.50057 38 2.3344 2.9683 1.3885
8.66742 90 1.7856 2.4846 0.53033
10.8343 27 2.5409 3.0555 1.6241

Table 4.26: Algorithms numerical voting outcome during frame 26

Figure 4.62: Input target cloud to the algorithms during frame 26

92

Software Testing and Validation

4.6.6 Frame 30

Figure 4.63: Algorithms graphical voting outcome during frame 30

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
8.66742 38 2.4778 3 1.4203
10.8343 85 1.8478 2.5168 0.58734
13.0011 32 2.4498 3.0464 1.5413

Table 4.27: Algorithms numerical voting outcome during frame 30

Figure 4.64: Input target cloud to the algorithms during frame 30

93

Software Testing and Validation

4.6.7 Frame 36

Figure 4.65: Algorithms graphical voting outcome during frame 36

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
8.66742 12 2.9435 3.7297 2.6505
10.8343 28 2.4912 3.499 2.0519
13.0011 74 2.2157 3.3732 1.504
15.168 34 2.6448 3.4751 1.9436
21.6686 2 - 4.126 3.825
54.1714 1 - 5.4094 5.4094

Table 4.28: Algorithms numerical voting outcome during frame 36

Figure 4.66: Input target cloud to the algorithms during frame 36

94

Software Testing and Validation

4.7 Dynamic host, background acquisition
For this acquisition the Host car was driven on a straight line along the Host’s left
side of the road, keeping the velocity as constant as possible. The Host car was
driven in the roadway scenery at about 10 km h−1. The following frames show that
all the implementation conform to estimating the same Host velocity, except the
"LS" implementation during frame 76. This discrepancy in shown in both figure
4.71 and table 4.31.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended when no Ego Velocity estimation error occurs.
The desired behavior is that the Tracking unit won’t start tracks on the moving
Targets which belong to the scenery. Thus the absence of tracks when no Target is
present and the Host is moving demonstrates that it works properly.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity.

95

Software Testing and Validation

4.7.1 Frame 74

Figure 4.67: Algorithms graphical voting outcome during frame 74

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
8.66742 19 2.2627 2.8239 1.5452
10.8343 42 1.7131 2.3151 0.69186
13.0011 25 2.2157 2.7435 1.3456

Table 4.29: Algorithms numerical voting outcome during frame 74

Figure 4.68: Input target cloud to the algorithms during frame 74

96

Software Testing and Validation

4.7.2 Frame 75

Figure 4.69: Algorithms graphical voting outcome during frame 75

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-49.8377 1 - 5.7325 5.7325
2.16686 7 3.6756 4.2657 3.4206
10.8343 31 2.535 3.7079 2.2165
13.0011 71 2.3619 3.7039 1.8526
15.168 30 2.7091 3.801 2.3239

Table 4.30: Algorithms numerical voting outcome during frame 75

Figure 4.70: Input target cloud to the algorithms during frame 75

97

Software Testing and Validation

4.7.3 Frame 76

Figure 4.71: Algorithms graphical voting outcome during frame 76

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-36.8366 1 - 5.5349 5.5349
-26.0023 2 - 5.3203 5.0192
6.50057 4 3.1915 3.9853 3.3833
8.66742 2 - 3.8524 3.5513
10.8343 39 2.3051 3.7717 2.1806
13.0011 67 2.1188 3.7816 1.9555
15.168 28 2.6673 3.8766 2.4294

Table 4.31: Algorithms numerical voting outcome during frame 76

Figure 4.72: Input target cloud to the algorithms during frame 76

98

Software Testing and Validation

4.8 Dynamic host, closing target

For this acquisition the Host car was driven on a straight line along the Host’s left
side of the road, keeping the velocity as constant as possible. The Host car was
driven in the roadway scenery at about 10 km h−1. The incoming Target car was
driven from a distance lesser than the Maximum Range due to the roadway length.
The Target car approached at an higher velocity than the Host one in order to exit
the Radar field of view during the overtake. Thus three snapshots are taken for
three situations:

• when the Radar started a track on the Target which started moving from its
start position inside the field of view

• when the Target is at a medium distance (with respect to the one occurred
when the track started)

• when the Radar built the last tracks before releasing them because the Target
is out of sight after the overtake of the Host

The Target car used in this test has been driven towards the Host car from a
standstill start to about 30 km h−1.

4.8.1 Dynamic host, closing target: Track Start

The allocation of a track for a closing target can be seen in the frames proposed in
the figures 4.74, 4.76 and 4.78. The estimation of the "LS" algorithm is the one
which is affected by an error during all the proposed frames, as can be seen in
figure 4.73, 4.75, 4.77 and their respective tables 4.32, 4.33 and 4.34.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended when no Ego Velocity estimation error occurs.
The desired behavior is that the Tracking unit correctly starts a track on a moving
Target when the Host is moving, but only tracks the ones which do not belong to
the scenery. Thus the presence of a track only on a true Target demonstrates that
it works properly.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity.

99

Software Testing and Validation

4.8.1.1 Frame 156

Figure 4.73: Algorithms graphical voting outcome during frame 156

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-13.0011 6 4.565 5.0735 4.2953

0 11 3.9757 4.4857 3.4443
10.8343 40 3.0765 3.7744 2.1724
13.0011 86 3.0482 3.8004 1.8659
15.168 45 3.1954 3.9267 2.2735

Table 4.32: Algorithms numerical voting outcome during frame 156

Figure 4.74: Input target cloud to the algorithms during frame 156

100

Software Testing and Validation

4.8.1.2 Frame 157

Figure 4.75: Algorithms graphical voting outcome during frame 157

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-15.168 8 - 5.1638 4.2607

0 13 3.9895 4.5269 3.4129
10.8343 42 2.8865 3.955 2.3317
13.0011 86 2.802 3.984 2.0496
15.168 47 3.0219 4.0833 2.4112
39.0034 1 - 5.208 5.208

Table 4.33: Algorithms numerical voting outcome during frame 157

Figure 4.76: Input target cloud to the algorithms during frame 157

101

Software Testing and Validation

4.8.1.3 Frame 158

Figure 4.77: Algorithms graphical voting outcome during frame 158

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-15.168 6 - 4.9508 4.1726

0 18 3.7197 4.2126 2.9573
8.66742 32 2.676 3.749 2.2439
10.8343 65 2.529 3.81 1.997
13.0011 29 2.7955 3.94 2.4776

Table 4.34: Algorithms numerical voting outcome during frame 158

Figure 4.78: Input target cloud to the algorithms during frame 158

102

Software Testing and Validation

4.8.2 Dynamic host, closing target: Track until midway
The snapshot frames proposed in the figures 4.80, 4.82 and 4.84, present the track
for the target which started in the "Dynamic host, closing target: Track Start" sec-
tion. In this case it is presented when the targets has reached the midway between
the position from which the track started and to which the track is released. For
this acquired snapshot, all the algorithm implementations conform to estimating
the same Host velocity during each frame.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended. The desired behavior is that the Tracking unit
correctly keep the track on a moving Target when the Host is moving, but only
tracks the ones which do not belong to the scenery. Thus the presence of a track
only on a true Target demonstrates that it works properly.

103

Software Testing and Validation

4.8.2.1 Frame 184

Figure 4.79: Algorithms graphical voting outcome during frame 184

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-26.0023 9 4.875 5.3874 4.4331
6.50057 1 - 4.2446 4.2446
10.8343 35 3.2726 4.1472 2.6031
13.0011 86 3.2549 4.165 2.2305
15.168 32 3.341 4.2247 2.7195
23.8354 2 - 4.6136 4.3126
26.0023 2 4.0495 4.7082 4.4072

Table 4.35: Algorithms numerical voting outcome during frame 184

Figure 4.80: Input target cloud to the algorithms during frame 184

104

Software Testing and Validation

4.8.2.2 Frame 185

Figure 4.81: Algorithms graphical voting outcome during frame 185

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-26.0023 10 4.7783 5.2906 4.2906
8.66742 33 3.4183 4.1091 2.5906
10.8343 90 3.4447 4.1407 2.1865
13.0011 22 3.5302 4.211 2.8686

Table 4.36: Algorithms numerical voting outcome during frame 185

Figure 4.82: Input target cloud to the algorithms during frame 185

105

Software Testing and Validation

4.8.2.3 Frame 186

Figure 4.83: Algorithms graphical voting outcome during frame 186

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-26.0023 5 - 5.4087 4.7097
6.50057 1 - 4.1711 4.1711
8.66742 45 2.5582 4.0988 2.4456
10.8343 83 2.0866 4.0796 2.1605
13.0011 47 2.6011 4.1204 2.4483
26.0023 1 - 4.7526 4.7526
58.5051 2 - 5.6407 5.3396

Table 4.37: Algorithms numerical voting outcome during frame 186

Figure 4.84: Input target cloud to the algorithms during frame 186

106

Software Testing and Validation

4.8.3 Dynamic host, closing target: Track End
The release of the target can be seen in the frames proposed in the figures 4.86,
4.88, 4.90 and their tables (4.38, 4.39, 4.40). The release occurs because the target
has escaped the field of view of the Radar, thus the Track resources can be released
for later assignment to new tracks. During this snapshot acquisition, the "LS"
algorithm exhibits an estimation error during all the frames. Also the "RANSAC "
algorithm was affected by an estimation error, but only during frames 215 and 216.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended when no Ego Velocity estimation error occurs.
The desired behavior is that the Tracking unit correctly releases a track on a Target
when the Host is moving. This situation occurs when the Target either exits the
field of view or it stops, thus becoming a scenery point.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed
to the velocity which was the closest to the targets distribution Mean velocity.
The "RANSAC " implementation has subsequently chosen a subset of points from
the cloud of targets whose Mean velocity was different than the Mode. Thus the
"RANSAC " implementation voted the subset’s point whose velocity was the closest
to the subset’s Mean velocity.

107

Software Testing and Validation

4.8.3.1 Frame 214

Figure 4.85: Algorithms graphical voting outcome during frame 214

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-10.8343 2 - 4.8936 4.5925
-8.66742 16 4.3439 4.8106 3.6065
-6.50057 6 - 4.7206 3.9425
10.8343 29 3.0482 3.9916 2.5292
13.0011 73 3.018 4.0502 2.1869
15.168 34 3.1517 4.1507 2.6192

Table 4.38: Algorithms numerical voting outcome during frame 214

Figure 4.86: Input target cloud to the algorithms during frame 214

108

Software Testing and Validation

4.8.3.2 Frame 215

Figure 4.87: Algorithms graphical voting outcome during frame 215

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-8.66742 2 - 4.8373 4.5363
-6.50057 29 4.2634 4.7457 3.2833
10.8343 37 3.1795 4.0225 2.4543
13.0011 69 3.217 4.0908 2.2519
15.168 39 3.3583 4.1979 2.6068

Table 4.39: Algorithms numerical voting outcome during frame 215

Figure 4.88: Input target cloud to the algorithms during frame 215

109

Software Testing and Validation

4.8.3.3 Frame 216

Figure 4.89: Algorithms graphical voting outcome during frame 216

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-19.5017 11 4.6778 5.1763 4.1349
-17.3348 1 4.6167 5.1152 5.1152
-13.0011 1 - 4.9809 4.9809
-6.50057 11 4.2354 4.7426 3.7012
10.8343 38 3.4655 4.1958 2.616
13.0011 73 3.5118 4.2485 2.3851
15.168 30 3.6072 4.3282 2.8511

Table 4.40: Algorithms numerical voting outcome during frame 216

Figure 4.90: Input target cloud to the algorithms during frame 216

110

Software Testing and Validation

4.9 Dynamic host, opening target
For this acquisition the Host car was driven on a straight line along the Host’s left
side of the road, keeping the velocity as constant as possible. The Host car was
driven in the roadway scenery at about 10 km h−1. The incoming Target car was
driven from a close distance, entering the Radar field of view from the right side
of the Host car. The Target was then driven until it reached a distance of about
60 m, which approaches the Maximum Range. A total of three snapshots are taken
for the following three situations.

• when the Radar started a track on the Target which entered the field of view

• when the Target is at a medium distance (with respect to the one occurred
when the track started)

• when the Radar built the last tracks due to the Target reaching the wanted
point

The Target car used in this test has been driven away from the Host car at about
30 km h−1.

4.9.1 Dynamic host, opening target: Track Start
The allocation of a track for an opening target can be seen in the frames proposed
in the figures 4.92, 4.94 and 4.96. The estimation of the "LS" and "RANSAC "
algorithms are affected by an error during all the first two proposed frames, as can
be seen in figure 4.91, 4.93, and their respective tables 4.41, 4.42.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended when no Ego Velocity estimation error occurs.
The desired behavior is that the Tracking unit correctly starts a track on a moving
Target which enters the field of view when the Host is moving, but only tracks the
ones which do not belong to the scenery. Thus the presence of a track only on a
true Target demonstrates that it works properly.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed
to the velocity which was the closest to the targets distribution Mean velocity.
The "RANSAC " implementation has subsequently chosen a subset of points from
the cloud of targets whose Mean velocity was different than the Mode. Thus the
"RANSAC " implementation voted the subset’s point whose velocity was the closest
to the subset’s Mean velocity.

111

Software Testing and Validation

4.9.1.1 Frame 135

Figure 4.91: Algorithms graphical voting outcome during frame 135

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
0 3 - 4.9164 4.4392

10.8343 25 3.827 4.523 3.1251
13.0011 55 3.738 4.4463 2.7059
15.168 28 3.669 4.3804 2.9333
34.6697 21 4.2381 4.7403 3.418
36.8366 5 4.3204 4.8182 4.1193
39.0034 18 4.3973 4.8926 3.6373
41.1703 1 4.4692 4.9631 4.9631
52.0045 1 - 5.2619 5.2619

Table 4.41: Algorithms numerical voting outcome during frame 135

112

Software Testing and Validation

Figure 4.92: Input target cloud to the algorithms during frame 135

4.9.1.2 Frame 136

Figure 4.93: Algorithms graphical voting outcome during frame 136

113

Software Testing and Validation

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
-49.8377 1 - 5.9621 5.9621
10.8343 43 3.7083 4.5014 2.8679
13.0011 90 3.6245 4.4414 2.4872
15.168 32 3.5897 4.4054 2.9003
19.5017 9 3.6953 4.427 3.4728
21.6686 2 - 4.4803 4.1793
32.5028 4 4.3408 4.8816 4.2796
34.6697 4 4.4273 4.9591 4.3571
36.8366 1 - 5.0326 5.0326
45.504 6 4.7745 5.2875 4.5093
47.6708 8 4.831 5.3426 4.4395
49.8377 1 - 5.3949 5.3949
52.0045 1 - 5.4445 5.4445

Table 4.42: Algorithms numerical voting outcome during frame 136

Figure 4.94: Input target cloud to the algorithms during frame 136

114

Software Testing and Validation

4.9.1.3 Frame 137

Figure 4.95: Algorithms graphical voting outcome during frame 137

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
13.0011 38 2.5525 3.3698 1.79
15.168 75 1.9269 3.128 1.253
17.3348 32 2.3877 3.2503 1.7451
21.6686 6 - 3.8428 3.0647
34.6697 2 - 4.7558 4.4548

Table 4.43: Algorithms numerical voting outcome during frame 137

Figure 4.96: Input target cloud to the algorithms during frame 137

115

Software Testing and Validation

4.9.2 Dynamic host, opening target: Track until midway
The snapshot frames proposed in the figures 4.98, 4.100 and 4.102, present the
track for the target which started in the "Dynamic host, opening target: Track
Start" section. In this case it is presented when the targets has reached the midway
between the position from which the track started and to which the track is released.
For this acquired snapshot only the "LS" algorithm implementation is affected by
an error during frame 165, as can be seen in figure 4.97 and its respective table
4.44. Beside that, all the algorithm implementations conform to estimating the
same Host velocity.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended. The desired behavior is that the Tracking unit
correctly keep the track on a moving Target when the Host is moving, but only
tracks the ones which do not belong to the scenery. Thus the presence of a track
only on a true Target demonstrates that it works properly.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed to
the velocity which was the closest to the targets distribution Mean velocity, where
the impact of the Target is not negligible because its large velocity made the Mean
velocity shift away from the Mode.

116

Software Testing and Validation

4.9.2.1 Frame 165

Figure 4.97: Algorithms graphical voting outcome during frame 165

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
10.8343 40 3.1094 3.8905 2.2884
13.0011 102 2.9412 3.7516 1.743
15.168 46 3.0101 3.7327 2.07
32.5028 12 4.3524 4.8539 3.7748
39.0034 1 - 5.105 5.105

Table 4.44: Algorithms numerical voting outcome during frame 165

Figure 4.98: Input target cloud to the algorithms during frame 165

117

Software Testing and Validation

4.9.2.2 Frame 166

Figure 4.99: Algorithms graphical voting outcome during frame 166

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
0 15 4.0338 4.5625 3.3864

8.66742 7 3.3926 3.9815 3.1364
10.8343 32 3.2243 3.8541 2.3489
13.0011 80 3.1459 3.8081 1.905
15.168 40 3.2145 3.8709 2.2688
32.5028 9 4.3453 4.8881 3.9339

Table 4.45: Algorithms numerical voting outcome during frame 166

Figure 4.100: Input target cloud to the algorithms during frame 166

118

Software Testing and Validation

4.9.2.3 Frame 167

Figure 4.101: Algorithms graphical voting outcome during frame 167

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
4.33371 7 3.6916 4.3048 3.4597
6.50057 1 - 4.1488 4.1488
13.0011 26 2.6494 3.5753 2.1603
15.168 70 2.4977 3.4724 1.6273
17.3348 31 2.7616 3.5438 2.0525
32.5028 6 - 4.6463 3.8681

Table 4.46: Algorithms numerical voting outcome during frame 167

Figure 4.102: Input target cloud to the algorithms during frame 167

119

Software Testing and Validation

4.9.3 Dynamic host, opening target: Track End
The release of the target can be seen in the frames proposed in the figures 4.104,
4.106 and 4.108. The release occurs because the target has reached the point of
interest, which this time was before the Maximum Range of the Radar, thus the
Track resources can be released for later assignment to new tracks. In these frames
all the implementations conform to estimating the Host velocity as 13 km h−1.

By observing this snapshot, the Ego Estimation algorithms allow for the Tracking
algorithm to behave like intended when no Ego Velocity estimation error occurs.
The desired behavior is that the Tracking unit correctly releases a track on a Target
when the Host is moving. This situation occurs when the Target either exits the
field of view or it stops, thus becoming a scenery point.

For what regards the Ego Velocity estimation error, the "LS" algorithm pointed
to the velocity which was the closest to the targets distribution Mean velocity.
The "RANSAC " implementation has subsequently chosen a subset of points from
the cloud of targets whose Mean velocity was different than the Mode. Thus the
"RANSAC " implementation voted the subset’s point whose velocity was the closest
to the subset’s Mean velocity.

The proposed snapshot also shows a real issue that might affect the Tracking unit.
As can be seen in frame 193, in figure 4.104, another track started while the Target
was travelling to the destination. This track was caused by multipath reflections
between the Target and the environment, thus resulting in a point which shows
a different position and velocity than the Target that originated that. A positive
note on that is that the Track only happened for a handful of frames and then
released.

120

Software Testing and Validation

4.9.3.1 Frame 193

Figure 4.103: Algorithms graphical voting outcome during frame 193

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
10.8343 50 2.5042 3.2351 1.5362
13.0011 94 2.0334 2.9365 0.96335
15.168 36 2.6161 3.2351 1.6788
28.1691 2 - 4.6308 4.3298

Table 4.47: Algorithms numerical voting outcome during frame 193

Figure 4.104: Input target cloud to the algorithms during frame 193

121

Software Testing and Validation

4.9.3.2 Frame 194

Figure 4.105: Algorithms graphical voting outcome during frame 194

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
10.8343 41 2.5525 3.3574 1.7446
13.0011 97 2.1341 3.0464 1.0596
15.168 49 2.6539 3.2387 1.5485
28.1691 3 - 4.6327 4.1555

Table 4.48: Algorithms numerical voting outcome during frame 194

Figure 4.106: Input target cloud to the algorithms during frame 194

122

Software Testing and Validation

4.9.3.3 Frame 195

Figure 4.107: Algorithms graphical voting outcome during frame 195

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
10.8343 43 2.4275 3.0501 1.4166
13.0011 95 1.8478 2.5693 0.59156
15.168 36 2.5582 3.0982 1.5419

Table 4.49: Algorithms numerical voting outcome during frame 195

Figure 4.108: Input target cloud to the algorithms during frame 195

123

Software Testing and Validation

4.10 Further Considerations
Once the "Test Campaign" has been successfully performed, it can be observed
that the "LS" and "RANSAC " implementations often have a divergent outcome
with respect to the other two implementations. For what regards the other two,
the "_dop" and "LSOW " implementations, they never fail to estimate a different
Ego Velocity with each other.
This outcome derives from the fact that the targets never reach the amount of
occurrences of the Clutter targets. If instead a large amount of opening targets are
travelling at the same velocity, this situation could lead to a wrong Ego Velocity
estimation from the "_dop" implementation.
In order to validate this statement, an alteration of the acquired data can be
performed, since the test were not designed to include another set of moving
targets.
In order to do so the frame 135, which was used for the "Dynamic host, opening
target: Track Start" section, has been modified. A group of targets has been
artificially introduced at 52.00 km h−1 in order to have the total occurrences for
that group to be 56, thus being larger than the 55 occurrences of 13.00 km h−1.
Furthermore, a velocity spread around those targets have also been introduced.
After that, the Radar has been run with this artificially modified input set.
As can be seen in both figure 4.109 and table 4.50, now the "_dop" implementation
now estimates the Ego Velocity with a wrong outcome.
The reason for the "LSOW " to correctly estimate the Ego Velocity is due to
the nature of the algorithm itself that uses as estimator function the amount of
error averaged by the number of occurrences. This particular estimator gives an
information about a measurement point’s dispersion with respect to the others.

124

Software Testing and Validation

4.10.1 Modified Frame 135

Figure 4.109: Algorithms graphical voting outcome during the modified frame
135

Velocity [km/h] Occurrences RANSAC Error (log) LS Error (log) LSOW Error (log)
0 3 - 5.5196 5.0424

10.8343 25 4.8042 5.2763 3.8783
13.0011 55 4.7508 5.2242 3.4838
15.168 28 4.696 5.1719 3.7247
34.6697 21 4.3285 4.9169 3.5947
36.8366 5 4.336 4.9392 4.2403
39.0034 18 4.357 4.9715 3.7162
41.1703 1 - 5.0115 5.0115
49.8377 20 4.5876 5.2101 3.9091
52.0045 56 4.6434 5.2623 3.5141
54.1714 17 4.699 5.3139 4.0834

Table 4.50: Algorithms numerical voting outcome during the modified frame 135

125

Chapter 5

Conclusions

The Target Tracking is one of the main functionality that a Radar performs
during its regular operations, allowing for the detected targets to be observed
and analyzed over time. This is done by collecting a given target observations
in terms of the different physical dimensions that a Radar can measure. This
collected data is then grouped into the most appropriate tracks. Tracks are software
objects which identify a specific target, together with its measured information.
After each collection, the tracks are updated with the new observations. The
Tracking algorithm requires hardware resources during its execution, namely the
CPU for the tracks’ processing and the RAM memory in which the tracks are
stored. In applications where Radars are mounted on a Host which is moving in
an environment, all the measured points which belong to the latter move at the
Host velocity. This condition greatly increases the demand of resources by the
Tracking algorithm, which attempts to process all the moving targets for tracks to
be processed. This situation leads to unnecessary hardware resources usage, which
leads to Timing issues and ultimately in execution halt due to internal service misses.
The Ego Velocity Estimation is proposed as a possible software algorithm which
adds the capability to extract the Host velocity from a given Radar ’s acquisition
frame. This solution enables the possibility of using the same Tracking algorithm
without the latter to be adapted for a moving Host scenario. Starting from this
solution, a set of implementation have been discussed and presented in this thesis.
Once a set of Requirements have been designed considering the final product’s
desired qualities, a first implementation have been developed, then tested and
validated. Whenever the test outcome was not compliant to the requirements,
the requirements are updated with the additional information gathered after the
test. Thus the same process is repeated in an iterative way. The development
process consist in finding a proper algorithm which can satisfy the given set of
requirements and then implement it using the C programming language. The
testing and validation process follows the development process and aims to verify

126

Conclusions

that the behavior of the developed routine complies to the requirements. In this
thesis the research of a suitable software routine for the Ego Velocity Estimation has
led to four possible implementations. The routine "egoVelocityEstim_dop" is the
one which searches the Mode of the targets distribution by logging the occurrences
of each target velocity. Its test proved to be reliable in application scenarios where
the Host is moving in an environments with an amount of targets’ Outliers that do
not exceed the scenery’s Inliers. The routine "egoVelocityEstimRANSAC " is the
one which computes the closest velocity to the Mean velocity of a subset of targets
which are randomly extracted from the acquired set. This routine implements
the solution proposed in [1]. Its test proved this routine to be mildly reliable in
the same application scenario of "egoVelocityEstim_dop", where the unreliability
comes from the random number generator and the statistics of the targets in a
given acquired frame. This mild unreliability makes the Radar misinterpret which
targets are really moving, thus introducing tracking errors and even Real-Time
service missing. Thus this routine is not suitable for this particular Radar platform
on which the CPU and memory resources are already limited by the complexity
of its acquisition schema. So, the limited resources also constrains the allowed
Ego Velocity estimation errors. The routine "egoVelocityEstimLS" is the one which
computes the closest velocity to the Mean velocity of the acquired set. It is the
extreme case of the "egoVelocityEstimRANSAC ", where a single RANSAC attempt
is performed using all the acquired targets. Its test proved this routine to be mostly
unreliable in the same application scenario of "egoVelocityEstim_dop", where the
unreliability comes from the fact that Mode and Mean overlap only for specific
distributions. Thus this routine is not suitable for the moving Host application
scenario. The routine "egoVelocityEstimLSOW " is the one which computes the
velocity which has the least dispersion across the Field of View. Its test proved this
routine to be reliable in the same application scenario of "egoVelocityEstim_dop"
and outclass the latter in cases where the amount of targets are larger than the
Clutter occurrences. This routine achieves this result due to the Clutter statistics,
which gathers around a Doppler bin and is spread on all the Range bins. The
proposed implementations are just some possible ways to implement the Ego
Velocity Estimation, which attempts to converge to a lightweight software solution.
A different approach could be the adoption of Image Processing and Machine
Learning algorithms that can extract the required information using a high level
approach towards the acquired data. These algorithms demands more resources
than the one provided by the AWR1843 chip, which is adopted by the Radar
platform used for the Testing and Validation of the routine.

127

Bibliography

[1] Michael Barjenbruch Dominik Kellner, Jürgen Dickmann Jens Klappstein,
and Klaus Dietmayer. «Instantaneous ego-motion estimation using Doppler
radar». In: "16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013)". 2013, pp. 870–872. doi: 10.1109/ITSC.2013.6728341
(cit. on pp. iii, 35, 42, 127).

[2] Merrill I. Skolnik. Introduction to radar systems. New York (State): McGraw-
Hill, 1962 (cit. on pp. 1–5, 11, 16).

[3] «"IEEE Recommended Practice for Radar Cross-Section Test Procedures"». In:
IEEE Std 1502-2007 (2007), pp. 1–70. doi: 10.1109/IEEESTD.2007.4301372
(cit. on p. 5).

[4] L. Nicolaescu and T. Oroian. «Radar cross section». In: "5th International
Conference on Telecommunications in Modern Satellite, Cable and Broad-
casting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517)".
Vol. 1. 2001, 65–68 vol.1. doi: 10.1109/TELSKS.2001.954850 (cit. on p. 6).

[5] Cesar Iovescu and Sandeep Rao. The fundamentals of millimeter wave radar
sensors. Tech. rep. SPYY005A. MA: Texas Instruments: Texas Instruments,
July 2020 (cit. on pp. 16, 18, 19).

[6] Sandeep Rao. MIMO Radar. Tech. rep. SWRA554A. MA: Texas Instruments:
Texas Instruments, May 2017 (cit. on pp. 20–22).

[7] A. Moffet. «Minimum-redundancy linear arrays». In: IEEE Transactions on
Antennas and Propagation 16.2 (1968), pp. 172–175. doi: 10.1109/TAP.1968.
1139138 (cit. on p. 22).

[8] Chun-Yang Chen and P. P. Vaidyanathan. «Minimum redundancy MIMO
radars». In: "2008 IEEE International Symposium on Circuits and Systems
(ISCAS)". 2008, pp. 45–48. doi: 10.1109/ISCAS.2008.4541350 (cit. on
p. 23).

128

https://doi.org/10.1109/ITSC.2013.6728341
https://doi.org/10.1109/IEEESTD.2007.4301372
https://doi.org/10.1109/TELSKS.2001.954850
https://doi.org/10.1109/TAP.1968.1139138
https://doi.org/10.1109/TAP.1968.1139138
https://doi.org/10.1109/ISCAS.2008.4541350

BIBLIOGRAPHY

[9] Robert C. Bolles Martin A. Fischler. «"Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-
phy"». In: Communications of the ACM. Vol. 24. 6. 1981, pp. 382–384. doi:
10.1145/358669.358692 (cit. on pp. 24, 35).

[10] Msm Wikimedia Commons. Fitted line with RANSAC; outliers have no
influence on the result. url: https://commons.wikimedia.org/w/index.
php?curid=2071406 (cit. on p. 24).

[11] AWR1843 Single-Chip 77- to 79-GHz FMCW Radar Sensor. Dallas, Texas:
Texas Instruments (cit. on pp. 26–29).

[12] AWR18xx/16xx/14xx/68xx Technical Reference Manual. Dallas, Texas: Texas
Instruments (cit. on p. 30).

129

https://doi.org/10.1145/358669.358692
https://commons.wikimedia.org/w/index.php?curid=2071406
https://commons.wikimedia.org/w/index.php?curid=2071406

	List of Tables
	List of Figures
	Acronyms
	Introduction to RADAR
	Pulsed RADARs
	Pulsed RADARs: Range Estimation
	RADAR Equation
	Radar Cross Section
	Detectability & Time-Bandwidth Product
	Azimuth and Elevation Angles
	Beamforming
	Velocity Estimation in Pulsed RADAR

	General RADAR Architecture
	Pulse Doppler Processing
	FMCW Imaging RADAR
	MIMO Systems
	Minimum Redundancy
	RANSAC Algorithm

	The AWR1843 Chip
	SoC Architecture
	RADAR Subsystem
	DSP Sub-System
	Master Sub-System

	Software Design and Development
	Software Overview
	Acquisition Schema
	Detection Schema
	Disambiguation Schema
	Association Schema
	Tracking Algorithm

	Tracking Algorithm Issue
	Ego Velocity Estimation Design
	Ego Velocity Estimation: Requirements
	Ego Velocity Estimation: Architecture Overview
	Ego Velocity Estimation: Technical Overview

	Ego Velocity Estimation Development
	The egoVelocityEstim_dop routine
	The egoVelocityEstimRANSAC routine
	The egoVelocityEstimLS routine
	The egoVelocityEstimLSOW routine

	Software Testing and Validation
	Development & Validation Testing Platform
	Test Campaign
	Static host, background acquisition
	Frame 1
	Frame 2
	Frame 3

	Static host, closing target
	Static host, closing target: Track Start
	Static host, closing target: Track until midway
	Static host, closing target: Track End

	Static host, opening target
	Static host, opening target: Track Start
	Static host, opening target: Track until midway
	Static host, opening target: Track End

	Accelerating host, background acquisition
	Frame 10
	Frame 11
	Frame 18
	Frame 22
	Frame 26
	Frame 30
	Frame 36

	Dynamic host, background acquisition
	Frame 74
	Frame 75
	Frame 76

	Dynamic host, closing target
	Dynamic host, closing target: Track Start
	Dynamic host, closing target: Track until midway
	Dynamic host, closing target: Track End

	Dynamic host, opening target
	Dynamic host, opening target: Track Start
	Dynamic host, opening target: Track until midway
	Dynamic host, opening target: Track End

	Further Considerations
	Modified Frame 135

	Conclusions
	Bibliography

