
POLITECNICO DI TORINO

Master’s Degree in

Computer Engineering – Artificial Intelligence and Data Analytics

A.A. 2022/2023

A Machine Learning-Based Approach for Traversability

Analysis and Path Planning in

Martian Rovers

April 2023

Supervisor: Stesina Fabrizio

Company Mentor: Leuzzi Chiara

Candidate: Gigante Samuele

Abstract

Artificial intelligence is considered one of the major breakthroughs in data analysis and

decision-making of the last decades. It is one of the scientific disciplines that have most

attracted the attention of the public and the scientific community, with applications ranging

from the medical field to cybersecurity. With the advent of Internet-of-Things and the

increasing number of high quality sensors present inside most of market-dominating

smartphones, the need for a class of methods capable of extracting fundamental information

from an unprecedented volume of data was, and still is, very high.

Machine and Deep Learning methods are the main instruments used nowadays to perform

such intricate analyses, allowing to establish relationships between input features and output

predictions in a similar way to the human brain, without requiring extensive training of

human operators to repeat the same analysis on new data.

Interplanetary exploration through autonomous rover systems is a perfect example of a

scientifically challenging task that can greatly benefit from the application of Machine

Learning algorithms within its workflow.

While new solutions are being devised in order to allow humans to travel, land and conduct

scientific research on the Martian soil, Martian rovers represent one of the essential elements

that enable the exploration of the red planet surface. One of the main factors of improvement

for the Martian rover missions is the velocity of exploration, i.e. to move faster while

avoiding obstacles and unstable terrains. To meet this objective, drones and satellites can

provide significant information for the rover navigation in terms of maps definition and

planning of the path.

This mission poses many technical challenges such as autonomous terrain labeling,

traversability analysis and path planning. Solutions for the two latter tasks have been studied

and implemented in this Thesis.

Traversability analysis is the quest of examining the data related to a portion of terrain in

order to establish which parts of it are safe for the rover to traverse, considering different

2

constraints regarding terrain composition, slope percentage and hazard presence, in order to

output a traversability map that can be fed to the planning subsystem.

Path planning, instead, is the task of searching for the optimal sequence of valid

configurations that makes the system reach the goal point, given its current location, a

representation of the environment which includes the hazards (i.e. the result of traversability

mapping) and the heuristic that we want to use to establish what it means for a set of

configurations to be optimal.

Both of these tasks have been performed with a learning-based approach, as the main

assumption behind this work is the fact that machine learning algorithms can be very helpful

to carry out such analyses, that require using vast amounts of data that are difficult and time

consuming for humans to manipulate.

The research regarding traversability mapping was carried out within the SINAV project in

collaboration with Altec S.p.A. and sponsored by the Italian Space Agency, under the

supervision of Chiara Leuzzi, while the path planning part was conducted within the research

environment of the Politecnico di Torino and supervised by Professor Fabrizio Stesina.

3

Table of Contents

ABSTRACT…………………………………………………………………………………..2

TABLE OF CONTENTS……………………………………………………………………4

THESIS STRUCTURE……………………………………………………………………..10

CHAPTER 1: INTRODUCTION………………………………………………………….11

The Sinav Project…………………………………………………………………...11

Robotic Systems Overview…………………………………………………………13

Traversability Analysis Definition…………………………………………………14

Path Planning……………….……………………………………………………….16

Machine Learning Overview……………………………………………………….17

CHAPTER 2: STATE-OF-ARTS…………………………………………………………..22

Traversability Analysis Approaches……………………………………………….22

Traditional Path Planning Algorithms…………………………………………….35

Machine Learning-based Approaches to Path Planning…………………39

CHAPTER 3: METHODOLOGIES………………………………………………………46

Workflow Description………………………………………………………………46

Traversability Analysis Algorithms………………………………………………..48

Neural A* Planning Algorithm…………………………………………………….57

4

CHAPTER 4: RESULTS…………………………………………………………………...61

SINAV Drone Dataset Description…………………………………………………61

Monocular Depth Estimation Results……………………………………………..64

Slope Estimation Results…………………………………………………………...71

Final Traversability Mapping Results…………………………………………….73

Path Planning Results……………………………………………………………...74

CHAPTER 5: CONCLUSIONS…………………………………………………………...79

CHAPTER 6: BIBLIOGRAPHY………………………………………………………….92

5

List Of Figures

Figure 1: Thesis Structure……………………………………………………………11

Figure 2: Reference operational scenario for the SINAV project……………………13

Figure 3: MTTTT schema……………………………………………………………25

Figure 4: U-Net architecture of the original Keras MDE Model…………………….31

Figure 5: Neural A* Approach……………………………………………………….42

Figure 6: Traversability Analysis and Path Planning proposed Methodology……….48

Figure 7: Example of the slope approximation algorithm output……………………56

Figure 8: Three examples from the Motion Planning Dataset……………………….59

Figure 9: Four examples of the Otsu-segmented HIRISE images…………………...61

Figure 10: Example of the output from Keras MDE trained with the original

hyperparameters……………………………………………………………………...65

Figure 11: Learning Curve of Keras MDE trained with original hyperparameters….65

Figure 12: Example of the output from Keras MDE trained with 512x512 input, batch

size=8, learning rate=0.0008…………………………………………………………66

Figure 13: Learning Curve of Keras MDE trained with 512x512 input, batch size=8,

learning rate=0.0008………………………………………………………………….67

Figure 14: Example of the output from Keras MDE trained with 512x512 input, batch

size=8, learning rate=0.0008, 5 encoding/decoding stages…………………………..67

Figure 15: Learning Curve of Keras MDE trained with 512x512 input, batch size=8,

learning rate=0.0008, 5 encoding/decoding stages…………………………………..68

Figure 16: Example of the output from MiDaS with DPT-beit-L512 backbone……..69

Figure 17: Example of the output from MiDaS with DPT-swin2-L384 backbone…..69

6

Figure 18: Examples from the NYU Depth V2 Dataset……………………………...70

Figure 19: Examples from the Kitti Dataset………………………………………….70

Figure 20: Example of the output from the slope derivation method………………..73

Figure 21: Example of the pre-trained Neural A* path planning output on

traversability maps produced on the ground truth depth maps………………………76

Figure 22: Neural A* training metrics trends when using the RMSprop optimizer…76

Figure 23: Neural A* training metrics trends when using the Adam optimizer……..77

Figure 24: Example of the Neural A* output on traversability maps produced with

ground truth depth maps when pre-trained on HIRISE………………………………77

Figure 25: Example of the Neural A* output on traversability maps produced on the

estimated depth maps from MiDaS DPT-Beit-L512 when pre-trained on HIRISE….78

List Of Tables

Table 1: Neural A* Original Quantitative Results…………………………………...46

Table 2: Keras MDE Original Hyperparameters……………………………………..51

Table 3: Keras MDE Original Network Structure……………………………………51

Table 4: Segmentation Masks Description…………………………………………...63

7

Table 5: Monocular Depth Estimation Metrics computed between the output of the

final Keras MDE model, MiDaS DPT-Beit-L512, MiDaS DPT-Swin2-L384 and the

ground truth depth maps……………………………………………………………...71

Table 6: Slope Maps Evaluation Metrics computed on the output of Keras MDE,

MiDaS DPT-Beit-L512, MiDaS DPT-Swin2-L384 and compared with those obtained

from ground truth depth maps………………………………………………………..72

Table 7: Traversability Maps Comparison Metrics computed on the output of Keras

MDE, MiDaS DPT-Beit-L512, MiDaS DPT-Swin2-L384 and compared with those

obtained from ground truth depth maps……………………………………………...74

Table 8: Average Path Planning Metrics for Neural A* trained on HIRISE, tested on

SINAV Traversability Maps………………………………………………………….78

List Of Algorithms

Algorithm 1: Computing the Depth Smoothness Loss……………………………….33

Algorithm 2: Dijkstra’s path search………………………………………………….38

Algorithm 3: Standard A* path search……………………………………………….39

Script A: Keras MDE Data Pipeline…………………………………………………84

Script B: Keras MDE Blocks Implementation……………………………………….86

Script C: Keras MDE Model Definition……………………………………………..88

Script D: Monocular Depth Estimation Metrics Computation……………………….91

Script E: Slope Derivation Method…………………………………………………..92

Script F: Traversability Maps Generation……………………………………………92

8

List Of Equations

Equation 1: General Size-Frequency distribution power law………………………..27

Equation 2: Structural Similarity Index Measure…………………………………….32

Equation 3: Mean Absolute Error……………………………………………………32

Equation 4: Final MiDaS Loss……………………………………………………….35

Equation 5: First component of the final MiDaS loss………………………………..35

Equation 6: Second component of the final MiDaS

loss……………………………..35

Equation 7: Estimated cost for each node in a standard A* algorithm………………38

Equation 8: Delta Threshold Accuracy………………………………………………51

Equation 9: Absolute Relative Difference……………………………………………52

Equation 10: Squared Relative Difference…………………………………………...52

Equation 11: Root Mean Squared Error……………………………………………...52

Equation 12: Root Mean Squared Logarithmic Error………………………………..53

Equation 13: Sobel X-axis component of the gradient approximation………………54

Equation 14: Sobel Y-axis component of the gradient approximation……………….54

Equation 15: Slope derivation from depth map gradient approximation…………….55

9

10

Thesis Structure

This work is organized as follows: in Chapter 1, a concise overview of the SINAV project is

presented, along with a brief introduction to Robotic Systems, Traversability Analysis, Path

Planning and Machine Learning applications within the scope of autonomous rovers

development. In Chapter 2, existing approaches for traversability analysis and path planning

tasks in the context of autonomous driving planetary rovers will be examined. Particular

emphasis will be placed on past attempts that utilized Machine Learning models to enhance

these functions. In Chapter 3, the selected methodologies for traversability estimation and

path planning, based on Machine Learning algorithms, are introduced. Chapter 4 contains a

description of the dataset used to conduct the experiments and thoroughly exposes the results

of the application of the previously described methods. Chapter 5 is dedicated to a brief

comparison of the obtained results with those derived from different studies, a discussion

about the future possibilities for these works, and conclusions. Chapter 6 provides a

comprehensive bibliography.

Figure 1: Thesis Structure

11

1. Introduction

The research presented in this Thesis work was conducted within the scope of the SINAV

project (“Soluzioni Innovative per la Navigazione Autonoma Veloce”), in collaboration with

the Polytechnic of Turin, Altec S.p.A, Aiko S.r.l., Thales Alenia Space Italia S.p.A. and

sponsored by the Italian Space Agency (ASI), and it deals with the issues related to the

application of machine learning algorithms to autonomous planetary rover systems, more

specifically for the definition of traversability maps and, consequently, the implementation of

dynamic path planning strategies.

The aim of the first paragraph of this Chapter is to provide an in-depth explanation of the

SINAV project mission, in order to specify what are its key objectives and which of them

have been addressed by this Thesis work. In the second paragraph, a high-level overview of

robotic systems is presented; this is crucial for the scope of further introducing the

traversability analysis and path planning problems, as an at least basic understanding of how

the different components are correlated is essential. The following two paragraphs deal with

the definition of traversability analysis and path planning tasks in the context of robotic

systems, more specifically for autonomous-driving planetary rovers. Finally, the last

paragraph is dedicated to a brief introduction to Machine Learning algorithms, highlighting

their relevance and potential with respect to the tasks described in the previous sections.

1.1. The SINAV Project

The SINAV project is a major initiative being led by the Italian Space Agency with the aim of

creating a new generation of autonomous planetary exploration rovers. The key objective of

this project is to develop an advanced autonomous navigation system that would allow rovers

to explore planetary surfaces with greater efficiency and effectiveness with respect to the

currently employed planetary rovers. For this purpose, the project involves the development

of advanced technologies and algorithms for visual perception, object recognition,

12

localization and mapping, as well as real-time decision-making and planning. This implies a

high level of interaction among different complex systems, such as the rover, the lander,

drones and satellites; Figure 2 contains a schema that describes a reference operational

sequence, where all the main activities of such components are highlighted (MCC refers to

the Mission Control Centre).

Figure 2: Reference operational scenario for the SINAV project

This Thesis work aims to address the issues related to tasks 5 and 7, that concern the

development of a traversability mapping and path planning algorithm in order to enable the

rover to traverse a region with very limited human interaction, by only using the monocular

pictures of the area that are provided by the drone, together with the data gathered by the

analyses that had been conducted before these steps.

The main source of information that has to be exploited for the purpose of traversability

analysis and path planning within this part of the SINAV project is the data obtained from the

support drone. This device produces images of the environment with a range of about

100-300 m and a 5-50 cm resolution, thus enabling the establishment of a mid-resolution

13

traversability map that will then be fed to the path planning algorithm, which will

subsequently select the optimal route to make the rover reach the goal state. Fellow

researchers that took part in the SINAV project also developed deep learning algorithms in

order to produce terrain labels for drone imagery, segmenting the different areas; this is

another important piece of information that is used as input for the research conducted

throughout this Thesis.

The SINAV project also makes an effort to incorporate Artificial Intelligence and Machine

Learning techniques to enhance the rover's ability to operate in challenging environments

with limited prior knowledge. The same approach has been adopted in this Thesis work, as

every analysis step within the aforementioned tasks exploits Machine Learning models for its

purpose.

This research will now focus on a brief overview of robotic systems. This is done in order to

gain a better understanding of the context in which the traversability analysis and path

planning tasks will be defined, and to consequently establish the appropriate workflow

required to solve these problems using the available data and learning-based algorithms.

1.2. Robotic Systems Overview

In the rest of this work, one shall benefit from the description first formulated by M. W. Otte

[1] of general-purpose hypothetical robotic systems, which can be broken down into four

main subsystems:

● Sensing, subsystem that involves the sensors and algorithms used to detect and

interpret information about the robot's environment;

● Representation, method used to organize the pieces of information coming from the

sensing subsystem, in order to create and maintain a model of the environment that

the robot is operating in;

● Planning, subsystem in charge of deciding what actions have to be taken based on the

information in the representation and the system’s goals;

14

● Actuation, method used by the robot to perform an action on the environment, which

involves controlling the robot's actuators to execute the planned tasks.

These subsystems are interconnected and interdependent, and are essential for enabling a

robotic system to operate autonomously and perform a wide range of tasks. However, as it

will be exposed in the next chapters, this division between subsystems is often not so

clear-cut; indeed, all of the relationships that are present within these components shape the

definition and implementation of the different functions inside the system.

In the context of this study, the most important correlation is the one between representation

and planning, as both traversability analysis and path planning are strongly related to these

two subsystems.

The next section will now focus on the description of these two specific tasks in the context

of autonomous-driving planetary rovers.

1.3. Traversability Analysis Introduction

For autonomous robotic systems, the ability to distinguish between traversable and

untraversable (or hazardous) terrains is fundamental for both system safety and mission

accomplishment.

In order to perform an accurate and safe planning activity, the data obtained by the sensing

subsystem have to be processed and fed in a specific way to the planning algorithms; the

elaborations required for these data depend on the type of data themselves, the specifics of

the planning algorithm, and the kind of information we want to embed in the modeling of the

environment, that primarily have to specify where the rover can or cannot go.

Traversability analysis is the task of gathering information about the hazards, i.e. elements or

parts of the environment that cannot be passed over by the rover, in order to unequivocally

describe their location and size. This, as any other function to be implemented within the

robotic system, can be carried out in many different ways that one may, in the first instance,

divide into the following categories: “static” analysis, “learning-based” analysis, and a

15

mixture of both; the first refers to methods such as thresholding, i.e. choosing a threshold

value for certain features and using those values to discriminate between traversable and

non-traversable regions, and the second alludes to models that use any kind of machine

learning algorithm to develop an implicit method to differentiate the areas as accessible or

not.

While the previously described operation is essential, it is not sufficient to provide the

planning framework the information it needs to pursue the search of a feasible path, as

besides an explicit annotation of obstacles this search also requires a geometric and/or

topological representation of the environment, i.e. a map, whose generation is assigned to the

traversability mapping task, hereby considered as a component of the broader traversability

analysis problem.

The world map should be capable of fully describing the different locations in terms of

traversability, that is the capability of the given robotic system to traverse the region given its

specifics; the process takes, as input, the results of the traversability analysis and outputs the

data structure on which to perform the planning activity.

Traversability maps can take many forms, from the very simple (and commonly used) binary

matrix representation of the environment, which just tells us if an area is navigable or not, to

a very complex data structure that is able to give profound insights about the region that is

being examined. This choice mainly depends on the path planning algorithm’s requirements,

based on the type of operations it carries out.

In general, environmental models are usually referred to as state space when discussing a

discrete model of the world, and as configuration space (C-space) for continuous models [1];

these are basically a set of all possible configurations of the robot. Within these spaces, it is

possible to further define the free space, which is the set of all the robot’s arrangements that

avoid collision with obstacles, and its complement, the obstacle space, which usually also

includes the regions that are forbidden (for example, the regions outside a specific area).

Target space, instead, is a subset of the free space that we set as the goal configuration for the

robot’s mission.

16

The part of the SINAV project dedicated to traversability mapping aims to output a binary

traversability matrix starting from a single RGB image of the terrain, taking into

consideration the factors introduced in Chapter 2.1 that represent the limitations of the rover’s

navigability; it’s important to acknowledge that this is a highly complex task, and the

techniques adopted in this work were intended to approximate, with as much detail as these

methods can provide, the results that are typically achieved through the use of more complex

and comprehensive techniques, which also rely on a wide range of sensors that are not

utilized in this study.

1.4. Path Planning

Path planning is a critical component of many robotics and autonomous systems, and is

essential to achieve safe and efficient navigation in complex environments. This section

provides a formal problem statement for the path planning task. It is important to specify that

path planning and path searching are two related concepts, but although the terms have been

used interchangeably in many contexts and the same will be done in this work, it’s worth

mentioning this distinction in the first introduction of these problems, in order to avoid

confusion later on.

Within a graph representation of the state space, path searching is a well-studied

computational problem defined as the task of identifying a sequence of nodes that connects

the start and goal nodes while trying to minimize certain metrics, such as the distance

traveled or the time spent traveling from the starting node to the final one. Path planning,

instead, involves not only finding the optimal path between two points but also considering

other factors, such as the definition of the start and goal states, the robot’s dynamics

limitations and the presence of hazards. For the sake of readability, in this work all the

problems related to the organization and analysis of the environmental data for the final

purpose of defining a traversability map, that also takes into account the navigation system’s

technical constraints, are considered part of the traversability analysis task; instead, the

problem of finding a specific path between the starting position and the goal state is referred

to as path planning; while it’s already been said that the latter definition is more formally

17

representative of the path searching task then the path planning one, throughout this work the

two terms are used as synonyms, in accordance to what the Neural A* researchers did in their

paper [2], because the distinction does not have practical implications for this Thesis

purposes.

As in the case of traversability analysis, there is no standard way to perform path planning

within a robotic system, nor within a planetary rover system, because many factors have to be

considered when approaching this kind of issue. One of the most important aspects of this

problem is the type of representation that is used, i.e. the pieces of information it is granted

access to and their organization; in the case of graph-searching algorithms, the world is

described through a set of vertices and edges, where a vertex represents a given pose of the

robot and an edge represents a connection between two states, i.e. an action.

Every graph-search algorithm assumes the existence of V, E, vstart,vgoal,which are, respectively,

the set of all vertices, the set of all edges, the starting position and the target position; in

general, these algorithms do not require for the graphs to be directed or undirected, so, using

the approximation of an undirected edge as a couple of opposite-pointing directed edges, it is

assumed that all edges are directed. A node is considered unexpanded, at the time of a

specific algorithm’s step, if it still hasn’t been reached by the searching algorithm; if it has

been reached but at least one of its neighbors have not, it’s said to be open; if the node has

been reached and the same can be said about its neighbors, it’s then said to be expanded.

During the path searching procedure, the open-list contains all the nodes that are open at a

certain step. The search is considered as successfully terminated if the goal node is expanded,

and it’s said to be unsuccessfully terminated if the open list is empty but the goal node is not

expanded.

1.5 Machine Learning Overview

Machine learning algorithms have revolutionized the field of artificial intelligence, enabling

computers to learn from data and make predictions or decisions based on that learning. These

algorithms are often broadly classified into five categories, based on the type of training data

available and the type of feedback they receive from the environment: supervised learning,

18

unsupervised learning, self-supervised learning, semi-supervised learning, and reinforcement

learning. A short introduction to each of these techniques is now presented, in order to then

provide a more detailed description of the basic mechanisms employed in the approach that

has been mainly utilized within this work.

Supervised learning [3] is among the most common forms of machine learning, drawing

inspiration from the way human beings gain information from their experiences in order to

make predictions in new and unknown situations. In supervised learning, the algorithm is

trained on a labeled dataset, where the correct output is already known. During training, the

algorithm learns to map inputs to outputs by adjusting its parameters based on the difference

between its predictions and the true output. The trained model can then be applied to make

predictions on unseen data. The main issue regarding these algorithms is due to the lack of

annotated datasets, whose absence or scarcity can greatly impact the results of said methods.

Unsupervised learning [4], on the other hand, involves training an algorithm on an unlabeled

dataset. The models in question try to identify patterns and structures in the data without any

explicit feedback from the environment; they are often used for tasks such as clustering,

dimensionality reduction and anomaly detection, and their main limitations derive from the

difficult interpretation of the results, as the quantitative and qualitative evaluation of the

output is not always straightforward.

Self-supervised learning [5] methods actually belong to the class of unsupervised learning;

they differ from the latter as they involve using a proxy task to create labels from the data

itself, whereas unsupervised learning does not use any explicit labels. These algorithms are

trained to predict some aspect of the input data, such as predicting the next frame in a video,

filling in missing parts of an image, or predicting the context of a word in a sentence. These

predictions serve as labels for the data, which can then be used to train the model in a

supervised manner. The new representations that are learned by these models are usually

exploited in downstream tasks, in cases where transfer learning is adopted.

Semi-supervised learning [6] is a combination of supervised and unsupervised learning. In

semi-supervised learning, the algorithm is trained on a partially labeled dataset, where only a

subset of the data has labels available. The algorithm tries to use these labeled data to learn

the structure of the data, in order to then apply this knowledge to the unlabeled data.

19

Finally, reinforcement learning [7] is a type of learning where the agent (i.e. an entity that

interacts with its surroundings) learns to make decisions based on rewards or punishments it

receives from the environment. The algorithm tries to maximize its reward over time by

learning to take actions that lead to positive outcomes, and avoiding actions that induce

negative outcomes. Reinforcement learning is often used in robotics, game theory, and other

applications that require optimal decision making in complex environments.

Overall, the choice of which type of machine learning algorithm to use depends on the nature

of the task at hand, the type and abundance of data that are available, and the resources and

constraints of the specific application.

In the rest of this work, the emphasis will be mainly on supervised approaches, so a deeper

explanation of these models’ basic components and their meanings is now proposed.

Supervised learning models can be described in terms of:

● Input data: this is the labeled data on which the model is trained. It consists of a set of

features or attributes that describe the characteristics of each example in the dataset

from which the algorithm can learn to make predictions.

● Output data: this is the set of values that the model is trained to finally predict. It

typically consists of target values, i.e. labels or numbers, that correspond to the input

data.

● Model architecture: This refers to the specific type of model that is being used for the

task, such as a decision tree, support vector machine or neural network. The

architecture determines the type of mathematical functions that the model can learn.

Later in this paragraph, a more in-depth description of the neural networks

architectures’ components can be found.

● Loss function: This is a mathematical function that measures the difference between

the predicted output and the actual output for a given input example. The goal of the

model is to minimize this function, which is achieved by adjusting the model's

parameters during training.

20

● Optimization algorithm: This is an algorithm that is used to minimize the loss

function by adjusting the model's parameters during training. Examples of

optimization algorithms include gradient descent and stochastic gradient descent.

As this Thesis work relies on neural networks models for the most part, a more specific

dissertation on such models and their architecture is now submitted.

Neural networks are generally composed by a series of interconnected layers of nodes, each

of which performs a linear transformation followed by a non-linear activation function. The

input layer is the first one of the network, as it receives the raw input data, while the output

layer is the last and produces the final output; between the input and output layers there are

typically many hidden ones, each of which performs a non-linear transformation on its input.

Generally, each node in a layer is connected to every node in the previous one, and these

connections are represented by weights that also reflect its strength. During the training

process, the network learns to adjust these weights in order to minimize a loss function,

which measures the difference between the network's output and the expected one. The

backpropagation algorithm is typically used to update the weights in the network during

training; it computes the gradients of the loss function with respect to the weights, and then

uses these gradients to update the weights in the opposite direction of the gradient. This

process is repeated iteratively until the network's performance on the training data reaches an

acceptable level.

Different types of hidden layers can be used in a neural network, each with its own specific

function. The most common types include fully connected layers, convolutional layers, and

recurrent layers. Fully connected layers connect every neuron in the current layer to those of

the previous ones, serving as a way to extract higher-level features from the input data; care

must be taken in order to avoid overfitting, as fully connected layers can easily lead to a large

number of learnable parameters. Convolutional layers are used for image and video

processing, and are designed to identify local patterns in the input data; they are mainly

described in terms of:

● kernel size, where each kernel (or filter) corresponds to a feature map in the output;

21

● stride, that represents the step size of the kernel as it moves across the input data, with

higher values being used to reduce the dimensions of the output feature map;

● padding, which is a technique used to preserve the spatial dimensions of the feature

map by adding zeros to the edges of the input data;

● activation function, which introduces non-linearity into the output and it’s

fundamental when trying to learn complex behaviors and patterns within the input

data.

Batch normalization layers, instead, are used to improve the training speed and stability by

normalizing the output of a previous layer; these were introduced in 2015 by [8], and

basically, for each dimension of the output, they subtract the mean and divide by the standard

deviation of the activations in the mini-batch, in order to center the distribution of the output

around zero and scale it to have unit variance, and finally apply shift and scale to the data to

bring them in a more useful range. This technique has shown great success in improving the

performance and stability of different neural networks by reducing the internal covariate

shift, and is widely used in many state-of-the-art models, as those introduced in Chapter 2

and furtherly employed inside the workflow described in Chapter 3.

22

2. State-of-the-Arts

This Chapter presents some of the most notable approaches and algorithms that have been

adopted for the tasks of traversability analysis and path planning in the literature, whose

insights have been fundamental in the research conducted in this Thesis work.

The research regarding traversability analysis, at first, focused on finding an approach that

had already been used in the context of autonomous driving martian rovers, in order to define

the main elements that can affect the capability of a rover to traverse a given area;

subsequently, another effort has been done to analyze the methods currently used for the

purpose of obtaining data related to the aforementioned elements, as the mission required an

end-to-end model capable of obtaining a traversability map starting from the monocular

images collected from the drone, in conjunction with the terrain labels that were produced

through algorithms developed by other researchers in preceding stages.

For path planning, instead, the literature work firstly concentrated upon the traditional path

searching algorithms, in order to find out what were the classical approaches to this problem

and their limitations; lastly, learning-based algorithms have been examined, for the purpose

of understanding how these methods could benefit the path planning task and also which of

them could be useful for the objectives of this Thesis.

2.1 Traversability Analysis Approaches

In this paragraph, an effort is made toward the definition of the state-of-art techniques

employed for traversability assessment and traversability maps definition. It is although

dutiful to state that no such thing as a “standard” way to perform these analyses exist, as these

problems and their solutions greatly depend on the kind of systems that are involved and on

the type of data one has access to. For this reason, the first part of the literature study

conducted for this work concerned the establishment of a precise workflow that had to be

followed in order to obtain a reliable traversability map, starting from the data that were

23

available; consequently, the study [9] is hereby presented, which was lead by the Jet

Propulsion Laboratory researchers and had a starting point that was similar to the SINAV

project problem statement, as will be furtherly discussed in the next sections. However, the

specific methods employed in their study to obtain the data required for traversability

mapping fairly differ from those used in this Thesis work; if the first part of the literature

study focused on understanding what kind of data are needed to estimate the traversability of

an area, the second part focuses on the tools that can be used in order to obtain those data.

For the Mars 2020 mission, which was part of NASAs Mars Exploration Program, in [9] the

researchers addressed the challenge of selecting the best candidate landing site, out of eight

proposals, in terms of:

● Safety of the landing procedure;

● Possibility of exploring two scientifically diverse Regions of Interest, within 1.25

Mars years (i.e. 836 sols, Martian days), starting from the landing site;

● Traversing time and distance optimality;

The eight possible landing spots are very different with respect to both the ROIs that lay near

them and engineering viability. In order to estimate mission design and rover capabilities

prior to a detailed analysis of each landing site, the chosen method involves the exploitation

of a baseline reference scenario. Such scenario foresees the rover traversing 6 km to get from

the landing site to the first ROI; then, another 1.5 km will be traversed within the ROI to

collect 10 samples for a (notional) later sample return mission; the rover will then traverse 6

km to reach the second ROI, where it will finally traverse 1.5 km to collect other 10 samples.

To address this issue, which also includes multi-ROI planning, the researchers conducted

their analyses using the very popular HiRISE dataset, composed by images taken by Mars

Reconnaissance Orbiter with 0.3 meter/pixel resolution; they developed a set of automated

traversability analysis methods called Mars 2020 Traversability Tools (MTTTT), which are

schematized in Figure 3.

24

Figure 3: MTTTT schema

Researchers state that the MTTTT includes the following:

● Automated terrain classifier, which assigns a label to each pixel of an HiRISE image

based on the type of terrain it classifies;

● DEM generation algorithm, which produces a Digital Elevation Model through stereo

processing, in order to then derive a slope map;

● Automated rock detection, which performs rocks segmentation based on a fracture

and fragmentation algorithm, in order to then output a Cumulative Fractional Area

(CFA) map;

● SILT, which is a labeling tool used to collect manually-generated information about

hazards near the ROIs;

● Mobility Model, which is a cost function for route planning and takes as input terrain

type map, slope map, CFA map and hazard map and outputs the cost map. It is split

25

between a binary model and a continuous-valued model, the first is used for

distance-minimal planning and simply sets thresholds for both CFA and slope to

understand if an area is traversable or not, the other is used for time-optimal planning

and maps both the values about CFA and slope to the expected rover traversability

speed;

● Multi-ROI Route Planning, which outputs a route in order for the rover to visit the

selected ROIs, minimizing the distance traversed or the time consumed.

For the purpose of this Thesis, which corresponds to the traversability estimation and

mapping task of the SINAV project, we shall focus mainly on the DEM generation algorithm,

the automated rock detection algorithm and the binary Mobility Model.

The DEM generation algorithm is based on stereo imagery taken by the HiRISE camera on

the MRO spacecraft, and includes the following processing steps:

● Stereo correlation between HiRISE image pairs;

● Triangulation for correlated pixels in order to generate a point cloud in a martian

coordinate frame;

● Ortho-projection of the point cloud into a DEM;

Within the actual HiRISE products, one can also find a satisfying amount of

already-generated Digital Terrain Models (DTMs) examples, which can be treated in the

same way with respect to the DEMs (these two types of data are, in fact, considered as

equivalent from now on) in order to extract the values that we can use to compute

information regarding slope, i.e. slope maps; this is crucial for traversability assessment, as it

is fair to say that the slope of an area is one of the factors that have the most impact on the

viability of that area for a planetary rover.

26

The steps required by the DEM generation algorithm described above, however, are all

time-consuming and also require a certain degree of familiarity with this type of processing,

which is not trivial; both constraints led to the conclusion that a learning-based model that

could be able to approximate a DEM, given as input a simple RGB or grayscale image, would

be the best choice in order to avoid the technical difficulties that come with a “static”

non-learning-based analysis, and also could greatly serve the purpose of showing how

machine learning models could be useful for such missions.

Regarding the automated rock detection algorithm, researchers used the method first

described by Golombek et al. [2] that is based on a fracture and fragmentation theory; this

algorithm consists in the usage of a static image processing technique in order to enhance the

contrast of the areas recognized as shadow, and then using the sun incidence inclination to

derive rock height and width based on the shadow’s dimensions. Having access to such

pieces of information enabled the researchers to use statistical exponential models to then

estimate the size-frequency distribution of rocks. This method’s ultimate purpose is obtaining

the Cumulative Fractional Area (CFA) values, from which to elaborate a CFA map, which is

a measure of rock abundance and it is of great interest for the objective of traversability

assessment. These values are derived from the general size-frequency distribution power law:

𝐹
𝑘
(𝐷) = 𝑘𝑒−𝑞(𝑘)𝐷

Equation 1: General Size-Frequency distribution power law

is the area populated by rocks with a diameter at least equal to , is the rock𝐹
𝑘
(𝐷) 𝐷 𝐷

diameter (they considered only rocks with a diameter within 1.5m and 2.5m), is a𝑞(𝑘)

function that controls the decay speed with respect to an increasing diameter, is the fraction𝑘

of total area covered by all rocks, which is basically the CFA or rock-abundancy score they

want to estimate.

The same considerations made regarding the DEM generation algorithm can be made on their

automated rock detection algorithm, as also this approach is both time-consuming and

technically challenging, for someone who is not familiar with fracture and fragmentation

27

algorithms and geological analysis, so other options have been considered for the purpose of

this study within the SINAV project mission and will be furtherly described in the next

Chapters.

Their binary Mobility Model finally uses terrain slope, CFA values and terrain type to

establish a (binary) traversability map, that basically tells if an area is either traversable or

hazardous by setting a different threshold for both CFA values and slopes for each terrain

type, then checking that the thresholds are respected for both parameters.

This study shows how, in order to establish the traversability of a given area, the main

variables that have to be taken into consideration are the slope of the area and its CFA score;

in this Thesis work, the methods used to obtain such data fairly differ from those adopted by

the JPL researchers, as an effort has been made in order to use learning-based models to

avoid the tedious, geology-related and time-consuming analyses that are normally required

for deriving these data.

Given that one of the objectives of the SINAV project was to establish a traversability map

starting from a monocular RGB image of the Martian terrain, in order to derive an

approximation of the slope of the area it was necessary to first obtain information about the

depth of the scene; this task is generally referred to as depth estimation, and in the case of a

single RGB image as input it’s called monocular depth estimation.

For generic depth estimation tasks, a wide body of literature [10] [11] [12] dating back to the

1970s focused on developing algorithms to extract depth information from stereo image

pairs, basically attempting to mimic the way the human brain perceives depths by exploiting

the differences between what is seen by the left eye and what is seen by the right one. This

process is called stereopsis, and in stereo vision algorithms it is usually implemented by using

two (or more) cameras to capture different viewpoints of a scene, in order to then compare

them and extract depth information.

The step required to obtain the information regarding the slope of the scene for traversability

mapping in this Thesis work, instead, deals with the inference of depth information from a

single RGB image of the simulated Martian terrain taken from the drone, so it falls within the

28

category of monocular depth estimation. It should be noted that this is actually an ill-posed

problem, as the goal to recover the 3D geometry of a scene from a single 2D image is

inherently ambiguous and under-constrained, because given a monocular picture of an area

there could be different possible depth maps capable of explaining the observed image.

Nonetheless, many studies addressing this topic, in an attempt to estimate with acceptable

precision the depth information, can be found in literature, and some remarkable approaches

are hereby introduced, including the two methods that have been most useful for the research

presented in this Thesis work.

The standard (i.e. non-learning based) methods used for monocular depth estimation mainly

rely on one of the three oldest approaches, or on improved versions of the latter:

● “Shape from shading” [13], where the intensity of the image is used to estimate the

surface normals of the object or scene, which can then be used to compute the depth

of the surface points.

● “Depth from Defocus” [14] , which uses the blur (i.e. the loss of sharpness or detail)

of the image, caused by the distance of the surrounding area from the point of focus,

to estimate the depth of the scene.

● “Depth from Motion” [15], that leverages on the presence of moving objects within

the scene to derive the distance of the points from the camera.

Even though during the years these models have been refined and enhanced, certain

limitations regarding these methods still endure and consequently paved the way for

learning-based approaches, that are nowadays the most frequently adopted tools for such

analysis. These constraints include, but are not limited to, the assumptions that the surface of

the object or the scene is Lambertian (i.e. the surface reflects light equally in all directions),

either the camera or the scene have to be stationary, certain parameters have to be known

precisely, and the results are very sensitive of different lighting and noise conditions.

Machine learning models effectively try to tackle these limitations, often producing better

results while still being less time consuming, as they can learn to leverage large amounts of

29

data to infer the depth information by capturing complex and non-linear relationships

between image features and depth cues. For these reasons, two very different machine

learning models have been applied and compared on the available dataset for the objective of

estimating the depth of the scene, in order to then evaluate the results and finally proceed

with the next steps required for traversability mapping.

In the first stage of the research, the focus has been laid on a lightweight model that could be

trained and fine-tuned on the dataset that was available of simulated martian terrain images;

while selecting the following algorithm, the main criteria that have been taken into account

are the availability of computational resources, the quality and quantity of training data, and

whether or not the model had already obtained reasonable results when tested on relatively

small (~10^3 samples) datasets.

The model in question is the official implementation of Monocular Depth Estimation from

the Keras.io “Computer Vision Examples” [16], that yielded acceptable results when trained

on a dataset with the same order of magnitude as ours and contains 2 million learnable

parameters, so it was actually suitable for our system.

This algorithm uses a U-Net [17] architecture with batch normalization and additive skip

connections; more specifically, the encoder-decoder architecture of this model is composed of

three main blocks:

● Downscale block, which consists of two convolutional layers with leaky ReLU

activation and batch normalization, followed by max pooling; this is used for feature

extraction.

● Bottleneck block, that presents two convolutional layers with leaky ReLU activation;

this component outputs the feature maps with the same size as the input, and is used

as a bridge between the downscale and the upscale blocks;

● Upscale block, which is composed of an upsampling layer, a concatenation with skip

connections between the feature maps from the encoder and the current layer's feature

30

maps, two convolutional layers with batch normalization and leaky ReLU activation.

This finally outputs the depth estimations.

Figure 4 depicts the model architecture. This encoder-decoder structure is very popular in the

field of computer vision, as the symmetrical nature of the architecture allows it to capture

multi-scale information and details at different levels of abstraction; the encoder part uses

convolutional layers to reduce the spatial resolution of the input while increasing the number

of feature maps (i.e. channels), in order to serve as a high-level feature extractor; the

bottleneck layer further reduces the dimensionality of the input while maintaining the channel

size, helping to capture the most important features in a compact representation; the decoder

part, instead, uses transposed convolutions in order to upsample the feature maps while

reducing their channel dimensionality. The skip connections between the encoder and the

decoder try to preserve the fine-grained details of the input and to reduce the vanishing

gradient problem during training.

Figure 4: U-Net architecture of the original Keras MDE Model

In this model, the loss is computed as a weighted sum between three functions:

● Structural similarity index(SSIM).

● L1-loss.

● Depth smoothness loss.

31

The first term measures the perceptual difference between two images, with values between

-1 (perfectly dissimilar) and 1 (same images); this metric gives profound insights on the

degree of similarity between the ground truth depth map and the one predicted by the model,

as it is also scale and shift invariant (i.e. it does not take into consideration different uniform

scales and translations of the data for the purpose of measuring their similarities). Its

mathematical definition can be found in Equation 2.

Equation 2: Structural Similarity Index Measure1

The second term of the loss is the mean absolute error, which measures the average absolute

difference between the corresponding pixels of the two depth maps. The MAE gives an

indication of how different the two images are in terms of their actual pixel values, with

lower values indicating better agreement between the images; it should be noted that the

MAE does not take into account any perceptual differences between the images, such as

changes in contrast or brightness, and for this reason it should not be the main criteria to

evaluate how similar two generic images are, but in the case of monocular depth estimation

for autonomous vehicles even small differences between the estimated value and the real one

can have significant impact. Equation 3 contains the formula used for this purpose.

Equation 3: Mean Absolute Error

The third is the sum of the averaged gradients of the estimated depth maps, in order to

encourage the "smoothness" of the prediction. Algorithm 1 contains the steps used to

calculate said element, using the Tensorflow library.

1 Here, μ refers to the average of the image, σ² refers to the standard deviation, c₁ and c₂ are two
variables that are used to stabilize the division with weak denominator and are computed as c₁=(k₁L)²
c₂=(k₂L)², where k₁=0.01, k₂=0.03, L=dynamic range of the pixel values.

32

dy_true, dx_true = tf.image.image_gradients(target)

dy_pred, dx_pred = tf.image.image_gradients(pred)

weights_x = tf.exp(tf.reduce_mean(tf.abs(dx_true)))

weights_y = tf.exp(tf.reduce_mean(tf.abs(dy_true)))

Depth smoothness

smoothness_x = dx_pred * weights_x

smoothness_y = dy_pred * weights_y

depth_smoothness_loss = tf.reduce_mean(abs(smoothness_x)) +

tf.reduce_mean(abs(smoothness_y))

Algorithm 1: Computing the Depth Smoothness Loss

This firstly involves the computation of the gradients of both the ground truth and the

estimated depth maps in x and y directions, then it calculates the weights for the x and y

gradients using the exponential of the mean absolute value of the corresponding gradients in

the ground truth depth map, afterwards the depth smoothness components are derived by the

element-wise product between the predicted gradient and its component’s weights, so finally

the loss is computed as the sum of the absolute values of the depth smoothness terms in the x

and y directions.

Originally, the weight of these components inside the overall training loss was, respectively,

of 0.85, 0.1 and 0.9, meaning that the authors valued the prediction smoothness and its visual

resemblance to the ground truth as more important with respect to the point-wise depth loss.

Other important hyperparameters such as the resized input dimensions, learning rate, the

number of epochs and the batch size are further discussed in Chapter 3, where it will also be

shown how these have been changed in an attempt to better fit our case-study. It should be

taken into consideration, in fact, that these parameters and the weights of the terms inside of

the loss function have been adopted while training the model on the DIODE [18] dataset

validation set (a subset of the original dataset, which originally contained more than 25000

33

images), exploiting 1402 examples of both indoor and outdoor images with a ground truth

depth precision of ±1 mm, with a maximum range of 350 m and a minimum range of 0.6 m.

Another state-of-the-art algorithm that caught our attention when approaching the monocular

depth estimation task is MiDaS [19] (Mixed Dense and Sparse), and it achieved

state-of-the-art performance on a variety of popular benchmarks such as KITTI [20] and

Make3D [21] datasets.

The researchers that developed this model highlight the need for large and diverse training

sets in order to obtain satisfying results for the task of monocular depth estimation. In their

paper, their initial assumption is that a model trained on such a rich dataset with an

appropriate training loss is capable of delivering state-of-the-art results even on unseen

environments; they proved this intuition using what they refer to as “zero-shot cross dataset

transfer”, a protocol that basically consists in testing the model as-is on a completely new

dataset after an extensive training procedure on a variety of mixed datasets.

They trained different backbones on a fusion of 12 different datasets, identifying three main

challenges that had to be solved as to establish a robust training procedure to handle such

diversity of data:

● different representations of depth (direct or inverse)

● scale ambiguity

● shift ambiguity

Scale and shift ambiguity are two common issues encountered in the task of monocular depth

estimation; even if the relative distance between objects in the scene can be estimated

accurately, it’s impossible to determine the actual distance from the camera, as also adding a

constant to all the values of a depth map would result in a shifted depth map that would look

identical to the original one, so the results of these methods are often scaled and shifted

arbitrarily.

They addressed all of these through the choice of applying the inverse depth representation,

as it is generally more robust to depth outliers, and the definition of a final loss function that

is actually scale and shift-invariant, i.e. it’s insensitive to different depth scales and shifts.

34

The final loss formulation is shown in Equation 4, where is the training set size, is𝑁
𝑙

α

empirically set to 0.5, and are, respectively, the scaled and shifted versions of the𝑑 , 𝑑
𝑠

predicted and ground truth depth values.

Equation 4: Final MiDaS Loss

The overall loss is computed as the weighted sum of two terms for all the samples in the

training set: the first is a robust loss, denoted by , that measures the mean absolute𝐿
𝑠𝑠𝑖𝑡𝑟𝑖𝑚

error between the scaled and translated versions of the ground truth and predicted depth

values, whose particularity is that it doesn’t consider the 20% largest residuals to mitigate the

influence of outliers in the training process, as it’s shown in Equation 5;

Equation 5: First component of the final MiDaS loss2

the second term is the regularization loss, denoted by , which penalizes large changes in𝐿
𝑟𝑒𝑔

depth values and encourages smoothness in the predicted depth map. The formula is shown in

Equation 6, where and denotes the difference between the two maps at scale𝑅
𝑖

= 𝑑 − 𝑑
𝑠

𝑅𝑘

k (here, K is set to 4, halving the image resolution at each step).

Equation 6: Second component of the final MiDaS loss

2 Here, M is the number of pixels in each image, U=0.8M, and j is an index that enables the tuples of ground
truth depth values and predicted ones to be accessed sequentially, ordered in a way that at j=0 there is the couple
with the least mae score and at j=M there’s the highest one.

35

The two pre-trained models that have been used for the experiments later presented in

Chapter 3 are indicated as “DPT_BEiT_large_512” and “DPT_swin2_large_384”.

"DPT" stands for Dense Prediction Transformers [22], which is a class of models that were

first adopted for natural language processing but are now being used for computer vision

tasks; these are capable of producing dense outputs thanks to their architecture, which is

based on transformer layers, and unlike traditional CNNs (that rely on pooling operations for

reducing spatial resolution) they preserve the spatial dimension throughout the network,

thanks to the usage of multi-scale feature extractors and dense candidate networks.

“DPT_Beit_L512” is a pre-trained variant of the DPT architecture that uses the BEiT

backbone (Bidirectional Encoder Representation from Image Transformers) [23]. The latter

uses a masked image modeling task to perform self-supervised pre-training of the vision

transformer, tokenizing the input and randomly masking certain patches to be fed to the

transformer; in this way, the model learns to recover the missing information and improves its

ability to perceive visual features. This is the model with the largest number of parameters

(345M) that has been used in the original MiDaS research, which also yielded the best results

in terms of improvement from the pre-existing backbones.

“DPT_Swin2_L384” is still another pretrained version of the DPT architecture, which

employs the Swin V2 [24] backbone; this network has 213M learnable parameters and shares

with the BEiT model the usage of self-supervised pre-training to reduce the need of vast

labeled images, and also applies self-attention mechanisms for visual tasks, but their main

difference lays in the way the input is processed: in the Swin2 transformer, the input is

divided into non-overlapping patches, and self-attention is performed within each patch,

which means that each patch attends only to the other patches within its local neighborhood;

in BEiT, to compute the self-attention for each token, all the other tokens in the sequence are

considered. This means that the computational complexity of the mechanism arises, but it is

more capable of capturing long-range dependencies and contextual information.

The size of the input images taken by the models are always reshaped to a 512x512 pixels

resolution. In their paper, the authors of the MiDaS model show that their algorithm not only

surpassed many state-of-the-art models for monocular depth estimation without any

36

fine-tuning on the benchmark datasets, but also that performing the fine-tuning on such

datasets didn’t yield any significant improvement, as the mixed-dataset training procedure

produced very stable models that are greatly capable of generalizing the learned features.

Further explanation regarding the way these algorithms have been employed and tested inside

the proposed pipeline of this work can be found in Chapter 3.

2.2 Traditional Path Planning Algorithms

A non-comprehensive list of the most popular path planning algorithms is now presented,

more specifically of standard best-first algorithms as they have laid the foundation for the

methods implemented and tested in this work, along with some considerations on the

proposed methods.

In some cases, nodes or edges can be associated with a cost that represents the importance of

a given node or edge within the path-search; trying to grow the search-tree in order to

optimize the total cost of the computed path is considered as a best-first search. The method

that has been adopted for this Thesis work and will later be presented is based on this type of

searching algorithm. Dijkstra’s algorithm [23] is one of the first and most popular optimal

best-first searching algorithms that have been formulated. It assumes that the distance for𝑑
𝑖,𝑗

all edges is known; the cost for a node is the minimum distance that is required to reach𝑒
𝑖,𝑗

𝑐
𝑖

the goal for a given node ; the cost for the goal node is , while for all the other𝑣
𝑖

𝑐
𝑔𝑜𝑎𝑙

= 0

nodes in the search it is calculated as . Algorithm 2 displays the𝑐
𝑖,𝑗

= 𝑚𝑖𝑛
𝑗
 𝑑

𝑖,𝑗
+ 𝑐

𝑗

pseudo-code for the Dijkstra’s algorithm3.

The “update” function puts in the open-list, which is implemented as a priority heap, with𝑣
𝑖

the priority value of ; this is done only if isn’t already inside the open-list. In the opposite𝑐
𝑖

𝑣
𝑖

case, the algorithm updates position in the heap depending on its new priority value . In𝑣
𝑖

𝑐
𝑖

3 In this case, the search is performed in the backwards direction, i.e. from the goal node to the starting node;
this is done in order to easily derive the resulting path by following the tree generated by the back-pointers.

37

this way, the search-tree is reordered every time a cheaper path to the goal is found, thanks to

a newly expanded node.

Require: , , ,𝐺 𝐸 𝑉
𝑠𝑡𝑎𝑟𝑡

𝑉
𝑔𝑜𝑎𝑙

for all ∈ do𝑣
𝑔𝑜𝑎𝑙

 𝑉
𝑔𝑜𝑎𝑙

insert(,0,open-list)𝑣
𝑔𝑜𝑎𝑙

while the open-list is not empty do

= get-best(open-list)𝑣
𝑗

if ∈ then𝑣
𝑗

𝑉
𝑠𝑡𝑎𝑟𝑡

return SUCCESS

for all such that ∈ do𝑣
𝑖

𝑒
𝑖,𝑗

 𝐸

if is unexpanded or > then𝑣
𝑖

𝑐
𝑖

𝑑
𝑖,𝑗

 + 𝑐
𝑗

𝑐
𝑖
 = 𝑑

𝑖,𝑗
 + 𝑐

𝑗

update(, ,open-list)𝑣
𝑖

𝑐
𝑖

set back-pointer from to𝑣
𝑖

𝑣
𝑗

return FAILURE

Algorithm 2: Dijkstra’s path search

Dijkstra’s algorithm is indeed optimal with respect to cost and complete for finite graphs.

In cases where the cost of traveling between two nodes is not defined, a heuristic function

can provide an estimate of such cost; for two nodes and , it is denoted as .𝑣
𝑖

𝑣
𝑗

ℎ
𝑖,𝑗

is instead the estimated cost of traveling from to . The A* search algorithm [4]ℎ
𝑠𝑡𝑎𝑟𝑡,𝑗

𝑣
𝑠𝑡𝑎𝑟𝑡

𝑣
𝑗

performs a best-first search through the following definition of the cost for a node :𝑣
𝑖

𝑐
𝑖
 = ℎ

𝑠𝑡𝑎𝑟𝑡,𝑖
+ 𝑑

𝑖,𝑔𝑜𝑎𝑙
= ℎ

𝑠𝑡𝑎𝑟𝑡,𝑖
+ 𝑚𝑖𝑛

𝑗
(𝑑

𝑖,𝑗
+ 𝑑

𝑗,𝑔𝑜𝑎𝑙
)

Equation 7: Estimated cost for each node in a standard A* algorithm

here is a neighbor of . The pseudo-code for this algorithm is shown in Algorithm 3.𝑣
𝑗

𝑣
𝑖

38

Require: , , ,𝐺 𝐸 𝑉
𝑠𝑡𝑎𝑟𝑡

𝑉
𝑔𝑜𝑎𝑙

for all ∈ do𝑣
𝑔𝑜𝑎𝑙

 𝑉
𝑔𝑜𝑎𝑙

insert(,0,open-list)𝑣
𝑔𝑜𝑎𝑙

while the open-list is not empty do

= get-best(open-list)𝑣
𝑗

if ∈ then𝑣
𝑗

𝑉
𝑠𝑡𝑎𝑟𝑡

return SUCCESS

for all such that ∈ do𝑣
𝑖

𝑒
𝑖,𝑗

 𝐸

if is unexpanded or then𝑣
𝑖

𝑑
𝑖,𝑔𝑜𝑎𝑙

> 𝑑
𝑖,𝑗

 + 𝑑
𝑗,𝑔𝑜𝑎𝑙

𝑑
𝑖,𝑔𝑜𝑎𝑙

 = 𝑑
𝑖,𝑗

 + 𝑑
𝑗,𝑔𝑜𝑎𝑙

update(, ,open-list)𝑣
𝑖

𝑐
𝑖

set back-pointer from to𝑣
𝑖

𝑣
𝑗

return FAILURE

Algorithm 3: Standard A* path search

The optimality of the path found through the A* algorithm, with respect to cost, is guaranteed

under the assumption that . In this case, the heuristic is called admissible. Theℎ
𝑖,𝑗

≤ 𝑑
𝑖,𝑗

reason for this behavior is that the algorithm will always find a less expensive path through a

node in the open-list, granted that the heuristic does never overestimate the true cost. In the

opposite case, possibly better paths could not be explored and the least expensive path could

not be found. It’s worth noticing that if for all the nodes in the graph, A* degeneratesℎ
𝑖,𝑗

= 0

into Dijkstra’s algorithm. In the context of mobile rovers, where the representation of the

environment is an occupancy grid, the -norm (Euclidean distance) of the grid centers is𝐿2

considered an admissible heuristic.

Over the last decades, several variants of the A* path searching algorithm have been

implemented and applied to many different use-cases, each with its own strengths and

weaknesses; some of the most common variants are:

39

● Weighted A* , that allows to “tune” the algorithm to prioritize either the heuristic or

the actual cost to reach the node, depending on the specific application;

● Bidirectional A*, that simultaneously searches forward from the start node and

backward from the goal node. BIDA* can be more efficient than regular A* because

it reduces the search space by limiting the number of nodes that need to be explored;

● Anytime Repairing A*: Anytime Repairing A* is a variant of A* that works by

gradually increasing the search space, while being able to return a solution at any

time. This makes ARA* useful for applications where the optimal solution is not

required immediately, but it is important to continue searching for a better solution as

more time becomes available.

Overall, the different variants of A* offer various trade-offs between speed, memory usage,

and accuracy, and the choice of the algorithm strongly depends on the specific needs of the

application.

2.2.1 Learning-Based Approaches to Path Planning

The idea of applying machine learning to path planning comes from the desire to improve the

performance and adaptability of traditional path planning algorithms. These traditional

algorithms, such as A*, rely on predefined maps and require significant computational

resources to find optimal paths in complex environments.

Machine learning approaches to path planning, on the other hand, have the potential to learn

from experience and adapt to changing environments, making them more efficient and

effective in many applications. Machine learning models can also handle high-dimensional

state spaces, noisy sensor data, and uncertain environments, which can be challenging for

traditional path planning algorithms.

40

One of the earliest examples of a learning-based approach to path planning was in the field of

robotics. In the 1990s [24] researchers began using reinforcement learning to train robots to

navigate complex environments. It is recalled from Chapter1 that reinforcement learning is a

type of machine learning that involves an agent learning from interactions with an

environment through what could be (improperly) referred to as a trial and error approach.

More recently, deep learning approaches, such as neural networks, have been used to learn

mappings between sensory inputs and control outputs in robotics. For example, convolutional

neural networks have been used to learn obstacle avoidance behaviors in robots [25], while

recurrent neural networks have been used to learn navigation policies [26].

In addition to robotics, machine learning approaches to path planning have also been applied

in other fields, such as autonomous vehicles, video games, and virtual reality. The potential

for learning-based approaches to improve path planning, in such diverse applications, has led

to significant research in this area, and the development of new algorithms and techniques for

applying machine learning to path planning is an ever-growing area of research.

In [2], researchers present an innovative method for learning heuristics for the A* algorithm

using neural networks. As a matter of fact, the quality of the heuristic function plays a critical

role in the performance of the A* algorithm, but designing a good heuristic function can be a

difficult and time-consuming task. In the context of the Neural A* algorithm, learning an

optimal heuristic means that the algorithm is trained to approximate the actual cost of

reaching the goal from any given state as accurately as possible, using a neural network. The

learned heuristic is then used by the A* algorithm to guide its search and improve its

efficiency.

When the Neural A* algorithm is trained on a certain dataset, the heuristic function is

optimized to fit the data and to generalize to new unseen data with a similar composition.

Once the training is complete, the learned heuristic function is fixed4 and can be used to solve

new instances of the same problem; this fixed heuristic is represented by the learned weights

and biases of the neural network, typically stored in a matrix or tensor, so during the testing

4 Here, the “fixed” term actually refers to the weights and biases of the learned neural network model, that
obviously do not change during the inference phase.

41

phase the input data are passed through the network in order to produce the heuristic value for

each state, in order to then use it in as it’s done in a basic A* search.

By implementing this procedure, the Neural A* algorithm is able to obtain better search

efficiency than traditional A* algorithms, which use handcrafted heuristics. The learned

heuristics can be generalizable to new data and can improve the performance of the A*

algorithm on unseen data, as long as the new data is similar to the ones on which the heuristic

was trained. Otherwise, the learned heuristic may not perform as well and may need to be

retrained or adjusted based on the new dataset.

In the Neural A* paper, the authors utilized a 2D grid map as the environmental

representation. The grid map serves as a discretized representation of the environment, with

each cell in the map representing a specific location and labeled either as traversable or

non-traversable. This representation is a commonly used and intuitive method of representing

the environment for path planning problems.

Figure 5: Neural A* Approach

The basic functioning of this algorithm can be seen in Figure 5, which mainly consists of an

encoder that produces the “guidance maps” and a differentiable A* module. The input is a

path planning problem instance which is fed to the encoder, that furtherly produces a 2D

heatmap, also called guidance map, which represents the environment and the goal location.

This guidance map is a grid of values where each of them represents the predicted cost-to-go

from that grid location to the goal location; this can be interpreted as a measure of how

42

"desirable" each location is, in terms of proximity to the goal. The 2D heatmap is then used

as a heuristic function in the A* algorithm to guide the search processes, as it is recalled that

the heuristic function is indeed an estimate of the cost to traverse from a given node to the

goal, which can be used to prioritize the nodes to be explored by the A* algorithm. The

differentiable A* module performs a point-to-point shortest path search using the guidance

map and outputs a search history and a resulting path; the search history is a sequence of

guidance maps that are produced during the initial search process. The resulting path, instead,

is just a sequence of states that represent the path from the start to the goal location. To train

the encoder, a mean squared error (MSE) loss is computed between the search history and the

ground-truth path, i.e. the path obtained with the standard A* searching procedure, which is

back-propagated through the differentiable A* module to update the encoder parameters.

The authors use a generic Convolutional Neural Network (CNN) to learn the heuristic

function in their neural network implementation. The CNN design comprises multiple

convolutional layers, succeeded by max-pooling layers, and subsequently a few fully

connected layers. The architecture takes inspiration from the U-Net design.

The researchers used three different datasets to train and evaluate their algorithm: the MP

dataset, the tiled MP dataset and the CSM dataset. The first refers to a set of 46 real-world

maps taken from Google Maps and OpenStreetMap, covering a range of urban, suburban, and

rural areas; the tiled MP dataset is a version of the MP dataset in which the maps are divided

into tiles of fixed size, to enable efficient processing of large maps; the CSM dataset, instead,

is composed by simulated maps, designed to test the algorithm's performance under varying

degrees of noise, as well as its ability to generalize to new environment.

The RMSProp optimizer has been adopted for the optimization procedure; it’s a variation of

the standard stochastic gradient descent (SGD) algorithm that adjusts the learning rate for

each weight in the network, based on the root mean square of the gradients, which helps to

control the step size during training and converge faster. This algorithm also uses a moving

average of the squared gradients to adjust the learning rate over time, making it more

adaptable to different types of problems and reducing the likelihood of oscillations during

training.

43

The metrics that have been employed for the evaluation of the Neural A* algorithm

performance with respect to the standard A* algorithm are:

● Path optimality ratio (Opt), which represents the percentage of predicted paths that

match the shortest path, for each given environmental map;

● Reduction ratio of node explorations (Exp), which measures, in percentage, the

amount of search steps reduced by the model, compared to the standard A* path

search;

● Harmonic mean (Hmean) between Opt and Exp, which highlights to what degree their

trade-off has been improved by the model.

Table 1 shows a quantitative comparison between the results obtained through Neural A* and

those derived by the best-first search (BF), weighted A* (WA*), SAIL, SAIL-SL and

Blackbox-Differentiation A* (BB-A*) algorithms, which also have the guarantee of planning

success by design, on three different publicly available motion planning datasets, specifically

Motion Planning (MP) Dataset [27], Tiled MP Dataset [2] (which is the authors’ extension of

the MP dataset with more complex and diverse obstacle structures), and City/Street Map

(CSM) Dataset [28].

In summary, the results show that Neural A* algorithm performed better than baseline

methods for both path optimality ratio (Opt) and harmonic mean (Hmean), and improved the

trade-off between path optimality and search efficiency. Although SAIL and SAIL-SL

sometimes performed better, they came with lower optimality ratios, especially for larger and

more complex maps. BB-A* had higher Hmean scores than SAIL/SAIL-SL but obtained far

worse results compared to Neural A*. The comparison between Neural A* and BB-A* also

highlights the effectiveness of the differentiable A* module, which provides richer

information of internal steps necessary to effectively analyze causal relationships between

individual node selections and results. This information is, in fact, black-boxed in BB-A*. It

is also important to notice that classical heuristic planners, such as BF and WA*, often

performed better than other learning-based algorithms.

44

These results finally show that the effectiveness of this approach over state-of-the-art learning

based planners is undeniable, and also classify this method as the most interesting for our

path planning purpose.

Table 1: Neural A* quantitative results5

5 The best results are annotated in bold; Opt scores for Neural A* on all the three different datasets
are, on average, 16.5% better than those obtained by other learning based path planning algorithms.

45

3. Methodologies

This Chapter is committed to a detailed description and explanation of the workflow that has

been established, and the algorithms that have been employed, for the quests of traversability

analysis and path planning within the context of the SINAV project. It should once again be

noted that the aim of this study was not the implementation of a new machine learning model

capable of extracting optimal paths, nor even traversability maps, starting from a single

monocular picture of the martian terrain, but rather to explore and compare the advantages

that could derive from the application of different machine learning algorithms for extracting

the data that are necessary to perform the aforementioned tasks, along with presenting an

improvement attempt of the chosen neural network architectures and a new pipeline for the

tasks that have been addressed in this work.

Paragraph 3.1 contains the details of the overall workflow, that, as far as the writer’s aware,

represents the first approach to traversability mapping and path planning in Martian rovers

that employs computer vision algorithms and learning-based path searching models, having

the potential to encourage novel studies in this research area; Paragraph 3.2 deals with

traversability analysis and mapping, analyzing the data required for such a mission, and

explaining the motivations behind the different approaches that have been tested; Paragraph

3.3 presents the methodology used to integrate the chosen path planning algorithm inside the

system, and how the tests regarding this part have been conducted.

3.1 Workflow Description

As described in section 2.1, the research regarding traversability analysis and mapping within

the SINAV project aims at developing an end-to-end algorithm that is capable of taking, as

input, the pictures of the environment taken by the drone at different lighting and height

conditions, along with the segmentation masks produced by a previous processing step, and

outputting the corresponding binary traversability map; the latter is a boolean matrix, of the

same size of the input image, where to each pixel is assigned a value of 1 if the corresponding

part of the terrain is safe for the rover to travel, and 0 if it is not. It’s worth noting that the

46

segmentation masks are assumed to be already available for the analysis conducted in this

Thesis, as the reference operational scenario doesn’t require this traversability mapping and

path planning system to be also capable of performing such analysis, therefore this objective

does not fall within the scope of this research.

The produced traversability map has then to be fed to the path planning algorithm, that

leveraging a state-of-art learning-based approach is able to estimate the best path between the

emulated starting point and goal point in a more efficient way with respect to standard path

searching techniques.

Figure 6: Traversability Analysis and Path Planning proposed Methodology

In Figure 6, a visual representation of the workflow that has been followed for the

traversability map estimation, and its application to the planning subsystem, is proposed.

The next paragraphs will now delve into the details of the processing pipeline.

47

3.2 Traversability Analysis Algorithms

In order to take into account both the terrain inclination and the presence of hazards, the

proposed method first derives the slope map and the terrain hazard map from the two main

sources of information that are available, and then merges them using a multi-channel

threshold.

A slope map is a topographic representation of an area that shows the degree of steepness or

slope of the terrain. In the rest of this work, it will be intended as a two dimensional map that

assigns a numerical value to each point or pixel in the map, representing the angle (either in

degrees or radians) or percentage of the slope at that location. The terrain-based hazard map,

instead, in this context is defined as a binary matrix with the same size of the input image of

the terrain, where each pixel has value 0 if the corresponding area does contain any type of

terrain that is not traversable regardless of the slope value (i.e. the segmentation mask of that

pixel assigns it to the “big rock” or to the “sand” category) and value 1 otherwise.

It’s worth mentioning that the slope of each object or area of a single scene is not actually

computed by the method established in this study, as this term implies that it exists a

mathematically accurate procedure for deriving the slope of all the objects and locations

within an area starting from just one picture of it, and to the best of our knowledge this is not

the case; it’s fair to say, instead, that the slope map is estimated through a sequence of

approximation steps, where each of them inevitably implies a certain loss in terms of

accuracy. An entire field of study is dedicated to edge detection, which is the challenging task

of identifying the boundaries between objects or regions of an image, whose techniques

typically involve the use of filters or operators that highlight the areas of the image with the

greatest change in intensity or gradient, or either utilize supervised learning models to

classify the pixels of unseen images with respect to the presence of edges.

Taking into consideration the fact that there were no available “ground truth” data regarding

the presence of edges inside the terrain pictures, along with the fact that there is an enormous

difference between knowing that in a certain section of the image an edge is present and

being able to assess the degree of such edge (as it’s a whole other issue in itself), an

approximating workflow has been followed in this Thesis work in order to estimate the actual

48

degree of steepness of the scene, starting from a single RGB picture of the terrain with

1000x1000 resolution, and will hereby be described in its completeness.

The first, and most critical, step that is needed to reach this objective is monocular depth

estimation. This task has been already introduced in Chapter 2.1, along with two particular

state-of-art methods (the official Keras.io Monocular Depth Estimation model, hereby

referred to as Keras MDE, and the MiDaS model), whose applications rely on two completely

different approaches: Keras MDE is a lightweight model, so a decision has been made to train

the model from scratch and to finetune it on our dataset; the MiDaS model, instead, has been

tested directly on our dataset using the two best-performing pretrained backbones

(DPT-Swin2-L384 and DPT-Beit-L512) without any finetuning, complying with the zero-shot

cross dataset transfer approach, as expressed by the researchers in their paper. The

assumption made in the first stages of this work was that, even if the latter approach has

yielded astonishing results in literature studies, our input data have been simulated by fellow

students with limited expertise in hyper-realistic 3D rendering, and they present many

differences (mainly in terms of simulated camera position, ground truth depth accuracy, and

diversity of the depicted environments) with respect to real-world data that are present inside

of most of the datasets used for monocular depth estimation, thus presenting a big limitation

for the final accuracy that could be obtained by these models. At the same time, also when

fine-tuning a classic monocular depth estimation model based on a U-Net architecture such as

the Keras MDE, there are different issues that should be taken into account, such as the lower

amount of training data and the computational resources available for the fine-tuning process.

The results shown in Chapter 4 explore and finally verify such speculations.

For the application of the Keras MDE algorithm on our data collection, different adjustments

have been done on the model, that regard both the way the input data were fed to the

architecture and the structure of the architecture itself. The data pipeline from the original

implementation was built taking the DIODE evaluation dataset and preparing a Panda’s

dataframe on it, with batches of size 32 that contain the images and their respective depth

maps after resizing them to 256x256; the initial resizing, along with other hyperparameters

such as the number and dimension of the encoder and decoder layers, led us to think that the

performance of the original model could not be satisfying after training it on our data, that

have a almost four times bigger resolution and a fairly less accurate ground truth depth

49

precision. The results obtained after the first training and validation experiment, conducted

with a random split of 2:1 training to validation ratio of the SINAV drone dataset (which has

been kept consistent for all the experiments that have been executed), will be presented in the

next Chapter and furtherly confirm the aforementioned hypothesis.

The most important original hyperparameters are shown in Table 2, while Table 3 contains a

basic schema of the original neural network architecture.

Parameter Value

Resized Input Dimensions Height=256, Width=256

Learning Rate 0.0002

Epochs 30

Batch Size 32

Table 2: Keras MDE Original Hyperparameters

Layer Type Input Size Connected To

Input (32, 256, 256, 3) DownscaleBlock_0

DownscaleBlock_0 (32, 256, 256, 3) DownscaleBlock_1

DownscaleBlock_1 (32, 128, 128, 16) DownscaleBlock_2

DownscaleBlock_2 (32, 64, 64, 32) DownscaleBlock_3

DownscaleBlock_3 (32, 32, 32, 64) BottleNeckBlock

BottleNeckBlock (32, 16, 16, 128) UpscaleBlock_0

UpscaleBlock_0 (32, 16, 16, 256) UpscaleBlock_1

UpscaleBlock_1 (32, 32, 32, 128) UpscaleBlock_2

UpscaleBlock_2 (32, 64, 64, 64) UpscaleBlock_3

UpscaleBlock_3 (32, 128, 128, 32) Conv_Layer

Conv_Layer (32, 256, 256, 16) Output

Output (32, 256, 256, 1) –

Table 3: Keras MDE Original Network Structure

50

For the reasons previously mentioned, several trials have been carried out on this first

monocular depth estimation algorithm, which at first focused on varying the initial resizing to

512x512 using bicubic interpolation, to avoid depth accuracy loss, and then on changing the

architecture by adding two blocks on different positions of the encoder and decoder layers, as

the loss behavior when training the model using the original architecture showed fair signs of

possible improvement; this has been done in order to complicate the network structure,

hoping to obtain a more accurate hierarchical feature extraction and an increased

representational power.

The MiDaS algorithm, instead, has been directly applied to our data in order to test its

generalization abilities and overall accuracy on new (i.e. never before used in the training

stage by the algorithm) datasets.

It’s important to notice that the steps explained hereafter have been conducted, considering

them as starting points, on the outputs produced by the inference of the MiDaS model (with

both the backbones that have been evaluated) and the Keras MDE algorithm (using the

best-performing model after the fine-tuning procedure); the output of the inference of these

models have indeed been stored with the intention of later evaluating their performance on a

rather large amount of examples.

In testing these two approaches and conducting the relative evaluation experiments, six

different metrics, that were introduced for the validation of monocular depth estimation

models in the study [29], have been taken into consideration:

● Delta threshold accuracy (a1, a2, a3), that measures the percentage of predicted depth

values that are within a certain threshold of the ground truth depth values; three

different thresholds are typically used in this context: , andδ
1

= 1. 25 δ
2

= 1. 252

;δ
3

= 1. 253

Equation 8: Delta Threshold Accuracy

51

● Absolute relative difference (Abs_Rel), which computes the absolute difference

between the predicted and ground truth depth values, normalized by the ground truth

depth value, giving an overall measure of how well the algorithm is able to estimate

the depth of the scene, without considering the sign of the difference;

Equation 9: Absolute Relative Difference

● Squared relative difference (Sq_Rel), whereas instead of taking the absolute value of

the difference between predicted depth and the ground truth values as in the absolute

relative difference, it squares it, basically giving more weight to larger errors in order

to penalize models that make occasional large mistakes;

Equation 10: Squared Relative Difference

● Root mean squared error (RMSE), which takes the root mean squared difference

between the depth values in order to measure the average error that can be expected

from the model;

Equation 11: Root Mean Squared Error

● Root mean squared logarithmic error (RMSLE), that is similar to the previous metric,

but takes the logarithm of the depth values before the computation; this helps to

52

account for the fact that depth values are typically distributed logarithmically, rather

than linearly;

Equation 12: Root Mean Squared Logarithmic Error

● Structural similarity index (SSIM), which is a measure of the similarity between the

predicted and ground truth depth maps; it provides a measure of how well the

algorithm is able to preserve the structural information in the scene.

Equation 2: Structural Similarity Index

Besides the application and comparison of these monocular depth estimation algorithms, the

research regarding traversability estimation and mapping required to use the predicted depth

maps to extract the information about the slope of the terrain. This has been done following

the standard terrain analysis theory by [30], which states that, taking as input an elevation

matrix, the slope information can be obtained by applying a first-order discrete differentiation

operator, such as the Sobel-Feldman operator (hereby referred to simply as Sobel operator or

Sobel filter) [31], and then using the arctangent of the gradient magnitude of the two axial

components.

The OpenCV-Python library offers a built-in Sobel filter implementation that, for each point

in the original image, returns an approximation of the gradient vector components of the

image intensity function. It shall be noted that such image intensity function can be derived,

on a digital image, only by assuming that there is an underlying differentiable intensity

function which is continuous, and the actual digital image represents the sampled version,

53

thus its derivatives can be virtually approximated in every point of the figure at a sufficient

degree of accuracy.

It’s important to take into consideration the fact that spatial filters (such as Sobel, Scharr,

Laplacian and Canny filters) are often used to approximate the image gradients starting from

the original picture in order to perform edge detection, but in this case they are actually

unable to give insights with respect to the actual steepness of the terrain present inside the

image; using them in this context basically gives indication on the extent and direction of the

change in intensity across neighboring pixels. On the other hand, assuming that each pixel

contains information about the (real or predicted) distance between the objects present in the

scene and the camera that captured the scene, the gradients of the intensity of each pixel

represent the change in depthness, thus giving indication of the terrain slope.

The Sobel filter employs intensity values in a 3x3 region around each point to perform such

gradient approximation, using the formulation shown in Equation 13 and 14, and we further

use the resulting components to derive the slope approximation for each pixel of the depth

map as in Equation 15. A visual example of the output of these processing steps can be seen

in Figure 7.

Equation 13: Sobel X-axis component of the gradient approximation6

Equation 14: Sobel Y-axis component of the gradient approximation

6 Here, “I” represents the input digital image, which in our case corresponds to the terrain depth map,
either estimated from the monocular depth estimation model or the ground truth one.

54

Equation 15: Slope derivation from depth map gradient approximation

Figure 7: Example of the slope approximation algorithm output7

After having extensively tested both the MiDaS and the Keras models for monocular depth

estimation, and once applied the slope derivation algorithm described above on the estimated

depth maps, a comparison between the approximated slope maps and those derived using the

ground truth depth maps has been conducted in order to validate the previous results; this is

not only crucial for the sake of correctness and rigor, but it is also of significant importance in

the context of this research, as it is possible for a model to perform worse in predicting the

depth of a scene but perform better in predicting the slope, even if the slope is computed from

the estimated depth map. This could be the case if the model is better at preserving relative

depth differences between different regions of the image, rather than absolute depth values.

For example, if a scene presents a flat surface and a sharp incline, a model that is better at

preserving relative depth differences will be able to predict the sharp incline accurately, even

if it underestimates the absolute depth; this is because the slope is a function of the gradient

of the depth map, which is more sensitive to relative depth differences than absolute depth

values.

7 Respectively, the output is produced using the ground truth depth map, the MiDaS with dpt_swin2_L384
predicted depth map, and the MiDaS with dpt_beit_L512 predicted depth map

55

The comparison between the approximated slope maps obtained using the ground truth depth

maps and the estimated depth maps, for all the variants of the MiDaS and Keras models,

mainly looks at a portion of the metrics already employed for the evaluation of the monocular

depth estimation task; in particular, the metrics taken into consideration are once again:

delta threshold accuracy (a1, a2, a3), root mean squared error (RMSE), and root mean

squared logarithmic error (RMSLE).

The absolute relative difference and squared relative difference metrics could not be applied

in this case, as the terms that are in the denominator of both Equation 9 and 10 represent the

values of the ground truth slope map, which very often turn out to be zero, and so the

resulting metrics tend to huge values even when trying to mask those zeros by adding a small

constant, therefore are considered as not significant in our considerations.

Once derived, the slope maps have been processed in order to set the pixels with a steepness

that surpasses the threshold of 20° as non-traversable. This is once again an approximation,

because the slopes that a Martian rover can or cannot traverse in a real-case scenario are

defined only after a comprehensive analysis of the mission objectives, the rover’s wheel

design and suspension system, its weight, its center of gravity and the specific characteristics

of the soil that is analyzed. These are all out of the scope of this research, as here the

objective was giving a first hint for selecting the possible areas that respect the minimum

requirements for traversability, and will be further inspected using other techniques

throughout the remaining steps of the SINAV project.

The final step of the traversability analysis algorithm was the usage of terrain segmentation

masks in order to obtain the final binary traversability map. This step basically consists in

merging the two pieces of information that are available at this point (i.e. the thresholded

slope map and the map composed of terrain segmentation masks), that are both encoded as

binary matrices of the same size. The segmentation masks contain only four possible values,

as it will be shown hereafter in Chapter 4, that represent the only four macro-categories of

terrain types that have been segmented in the previous steps: big rock, bedrock, sand, soil.

For the safety of the rover, given that the data that are available for our analysis are far from

being comprehensive of the wide range of possible environmental conditions, the areas

labeled as “big rock” and “sand” have been set as not traversable by default. Then, a

56

straightforward “logical-and” operation has been applied to these two resulting binary

matrices, thus obtaining the final traversability maps. This has been applied to the slope maps

obtained using the ground truth depth maps, the ones obtained through MiDaS backbones

DPT-swin2-L384 and DPT-beit-L512, and the ones obtained using the best performing

variant of the Keras MDE model.

The final validation step that has been performed regards the differences between these final

traversability maps, setting the ones obtained starting by the ground truth depth maps as

benchmark.

The quantitative analysis of these methods can be found in the next Chapter.

3.3 Neural A* Algorithm

In order to fulfill the need for an end-to-end procedure that is capable of taking the

aforementioned input data, performing the traversability analysis, obtaining a 2D binary grid

representation of the environment based on the approximated rover navigation capabilities,

and finally predicting an optimal path from the starting point and the end goal, the Neural A*

has been applied to the output of the traversability mapping algorithms; this was also done for

the purpose of employing once again Machine Learning algorithms inside the overall pipeline

of the study, comparing the results of this method to those of a classic path searching

algorithm to evaluate the potential of learning-based approaches in another passage of the

workflow.

The first step that has been done in this direction is the evaluation of the pre-trained Neural

A* algorithm on the SINAV drone dataset; the best performing model from literature has

been trained on a collection of 3200 grid-world environments with distinctive obstacle

shapes, as reported in Chapter 2.2.1; these input images (also referred to as “mazes”) have

been resized to 64x64 pixels in order to complete the whole experiment in a reasonable time.

The dataset they used, Tiled MP Dataset, has been obtained using data augmentation

techniques (for example, random tiling of four original maps) on the Motion Planning Dataset

(MP Dataset); three examples of the latter can be found in Figure 8. At first sight, it’s easy to

determine that such shapes have been useful in order to teach the basic functioning of A*

57

path searching to the model in simple scenarios, but this does not necessarily imply that the

behavior of the model when evaluated on a very different dataset, such as the SINAV drone

dataset, could be able to reach the performance of the standard A* algorithm, let alone

surpassing it.

Figure 8: Three examples from the Motion Planning Dataset

The results of the first batch of experiments conducted with the original pre-trained model,

employing the RMSprop optimizer with a learning rate of 0.001 for 40 epochs on the Tiled

MP Dataset and tested on the traversability maps obtained from the SINAV drone dataset,

were fairly disappointing and will be reported in the next Chapter. Once again, this was

expected, as even though for a matter of execution times, and to avoid “out of memory”

exceptions, the input traversability maps have been resized from 1000x1000 to 256x256

using bicubic interpolation, the difference between the training mazes’ size (64x64) and our

resized traversability maps, along with their varying complexities, had already raised

concerns towards this zero-shot approach.

For this reason, another attempt has been taken in order to train and fine-tune the algorithm

on a bigger, more complex and more overall fitting to our study dataset, which is the HIRISE

(High Resolution Imaging Science Experiment) dataset. As anticipated in Chapter 2, this is a

collection of high-resolution images of the Martian surface, taken by Mars Reconnaissance

Orbiter's HIRISE camera. Each image is captured at a resolution of up to 25 centimeters per

pixel, which is much higher than any other camera currently in orbit around Mars, covering

58

an area of up to 6 square kilometers. HIRISE is considered to be the largest annotated dataset

of Martian areas available in literature, with version 3.2 containing 64,947 landmark images.

Unfortunately, no literature studies ever focused on the generation of traversability maps

starting from this huge collection of Martian images, which we believe could be a great

further application of the methodology presented in this paper in order to benefit the scientific

community. Consequently, the binary Otsu [33] thresholding method has been applied to a

subset of this dataset (as this was the same technique used to preprocess the images that were

fed to the Neural A* algorithm in the training stage), which basically separates the input

image into two clusters based on pixel intensities; given that the pictures are always taken

with the orbiter’s camera facing down towards the terrain, the pixel values in the image

represent the brightness or intensity of light reflected from the terrain in the direction of the

camera. This implies that when applying the binary Otsu threshold, whose objective is

finding the threshold that maximizes the variance between the two regions such that the

separation is optimal, the method returns a binary map of the original image that segments the

areas with highest variance in terms of light reflection, which is an indicator of many terrain

properties, such as texture, composition and geometry. Four examples of this processing can

be seen in Figure 98.

It’s crucial to consider that this is not an accurate way to perform traversability mapping on

such a dataset, and it is in general a very faulty way to do the same on any dataset that is not

composed of binary images, as the information that can be acquired employing this method

clearly does not represent, nor even approximate, the actual capability of a rover system to

navigate the terrains present inside the images. However, this has been done in this step of the

research only in order to provide training mazes to the Neural A* algorithm that are far more

chaotic with respect to the datasets utilized in the original paper implementation, and that also

present an image size which is the same as the target one for the path planning experiment.

8 These are of size 64x64, but the actual images that have been used for the training are of size 256x256.

59

Figure 9: Four examples of the Otsu-segmented HIRISE images

After training the path planning algorithm on 2,400 HIRISE images that have been

preprocessed as mentioned before, with the RMSprop optimizer and a learning rate of 0.001

for 40 epochs, the results when evaluating the model were encouraging, but still left room for

improvement. For this reason, another trial was conducted employing the Adam optimizer,

again with a learning rate of 0.001 for 40 epochs, gaining a small improvement. Both

experiments, and the further tests that have been executed, relied on a basic CNN encoder

architecture composed of 2D convolutional layers with kernel size=3, stride=1, padding=1,

followed by batch normalization and ReLU activation function.

Finally, the Neural A* algorithm that was trained on the HIRISE dataset was tested on the

traversability maps that have been derived from the SINAV drone dataset, i.e. on the binary

navigation maps obtained from the ground truth depth maps, from the two MiDaS backbones

and from the best-performing Keras MDE model. The quantitative results will be presented in

the following Chapter.

60

4. Results

In this Chapter, a complete overview of the tests that have been used to compare the different

algorithms employed both for traversability mapping and path planning, along with a visual

and quantitative comparison of their results, is presented. A brief description of the SINAV

drone dataset is now brought to the attention of the readers, which has been employed for all

of the tests conducted in this work.

4.1 SINAV Drone Dataset Description

For any supervised machine learning algorithm, regardless of the objective task, the need for

large, diverse and accurate datasets is essential. These shall provide many examples for the

model to learn from, in order to help reducing the effects of biases and outliers, and prevent

overfitting. The lack of training data represented a challenging issue that had to be dealt with

in the first stages of the SINAV project, as no labeled dataset was available for our means at

all. For the tests and evaluations that will be presented in this Chapter, a wide number of

pictures of martian terrains, taken by the drone that is expected to support rover navigation

within a range of 100-300 m as shown in the reference operational scenario, had to be

collected and labeled (i.e. accurate depth values shall be available for each terrain image), in

order to first estimate the traversability maps, and then finally perform path planning.

This has been addressed by the fellow researchers that took part in the project, and were

responsible for data generation and formatting, using the Unity® Engine [34]. This is a

leading platform for 3D scene simulation, that provides a rendering pipeline which allows to

create realistic and high-quality visuals, with features such as real-time global illumination,

dynamic shadows, and post-processing effects. Such an instrument has been fundamental for

the aim of the project, as fellow developers were able to use it to produce a dataset of 1008

terrain images, along with their corresponding ground truth depth maps and segmentation

masks.

61

The dataset, that from now on will be referred to as “SINAV drone dataset” for a matter of

clarity and simplicity, contains the following:

● RGB_Images, a folder containing 1008 RGB pictures of simulated terrains, saved as

.jpg files;

● Depth_Maps, which contains the respective 1008 ground truth values of depthness9

for each terrain image, ranging from 0 to 255 and saved as .jpg files in grayscale; this

information can be obtained directly from the Unity® software.

● Segmentation_Masks, which contains the respective 1008 ground truth segmentation

masks for each terrain image. These are also saved as .jpg files and can be interpreted

by following the schema reported in Table 4.

Terrain Type Color RGB Value Description

Soil Red [254, 0, 0] Soil that is similar to gravel, used as a base on
which to add other types of classes.

Big Rocks Yellow [241,226,171] Rocks that are too big, dangerous, or in
general an obstacle for the rover to cross.

Bedrock Pink [255, 177, 173] Type of terrain consisting of rock that is
slightly exposed from the ground, a rover can

generally pass over it or cross it.

Sand Brown [152, 62, 0] Sandy deposits that are hazardous for the
rover to cross due to wheel slippage.

Table 4: Segmentation Masks Description

Additionally, each file has some metadata associated, regarding the ID of the scene, the

altitude of the drone at the time of the shooting, the lighting condition and others, that are

crucial for the analyses conducted in this research, and can be accessed by using the filename

which is formatted as follows:

9 In the drone dataset, the direct depth representation has been adopted, i.e. the values of depth maps directly
represent the distance from the camera.

62

Example: N_005_000071_999_1675353701_0000_1_20.jpg

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Image type:

● N—> RGB image

● D—> Depth Map

● U—> Segmentation Mask

(2) Dataset version (in this study, the dataset number 6 is used);

(3) File number in the sequence;

(4*10) Indication of exposure, brightness, etc.;

(5*) Time-stamp (date-time);

(6) Scene ID (sequential number);

(7*) Lighting condition: 0 –> Zenith - 1 –> Low West - 2 –> Low East - 3 –> High East;

(8) Height in Unity units (to convert to meters, it needs to be multiplied by a 0.25 factor).

The pictures of martian terrains present inside this dataset were captured from a simulated

camera positioned at different heights, ranging from 5 to 15m above the ground, and pointing

directly downward, resulting in a perpendicular perspective. This is a notable aspect of the

data that are available for this study, as the main difference with respect to the datasets

regularly used for monocular depth estimation tasks lays in the fact that the latter are usually

populated by pictures taken from a frontal perspective [20], given that one of the most

important use case scenario for monocular depth estimation models is autonomous driving

vehicles. This difference induced the author of this research to speculate that the pretrained

models from literature would not be able to infer the depth predictions on our dataset in an

accurate way. This assumption will be further investigated in this Chapter.

10 The elements marked with an asterisk were needed for other analyses that fall out of the scope of this
research, and thus have not been employed for the means of our work.

63

4.2 Monocular Depth Estimation Results

The first task that has been carried out for traversability analysis was monocular depth

estimation, in order to extract the depth information from the original RGB images. For this

objective, the first model that was tested is referred to as Keras MDE, which has been

initially trained and evaluated on the SINAV drone dataset using the original parameters that

are reported in Table 2. An example of the output of this algorithm is shown in Figure 10,

where the first image is the original RGB input, the second one is the ground truth depth map

(objects in blue are nearer to the camera, in dark red are farther11), the third one is the

predicted depth map12, and the resulting training and validation losses are shown in Figure 11.

Figure 10: Example of the output from Keras MDE trained with the original hyperparameters

Figure 11: Learning Curve of Keras MDE trained with the original hyperparameters

12 It’s important to notice that this order has been kept consistent when showing the resulting depth maps, for
both Keras MDE and MiDaS models: the first image always shows the RGB picture of the terrain, the second
one shows the ground truth depth map and the third one is the estimated depth map.

11 The depth values have been visualized using a “jet” colormap, but they are actually stored in grayscale.

64

Seeing the behavior of the training loss and the resulting output, it was clear that some

fine-tuning was required for improving the performance of the algorithm. A step in this

direction implied, in the first place, changing the initial resizing that is applied to the input

RGB images and ground truth depth maps, as a resolution of 256x256 was deemed as too

lossy in terms of detail and accuracy; given that the U-Net model relies on encoder-decoder

architecture to capture both low-level and high-level features in the input image, if the input

image has been excessively downsized, the encoder may not be able to capture all of the

necessary features. Unfortunately, changing this parameter led to “Out of Memory”

exceptions when repeating the experiment, given that a 2x increase of the input RGB images

and depth maps size causes a quadratic increase in memory usage and computational time

needed for the training, so it was decided to respectively adjust the batch size to 8, from the

original value of 32, to avoid excessive memory consumption; simultaneously, the learning

rate has been increased from 0.0002 to 0.0008, in order to maintain the same overall update

step-size in the weight space, which is important for ensuring that the training process

remains stable and efficient. An example of the output, and of the overall training loss trend,

which already represent an improvement from the first experiment, are shown in Figure 12

and 13.

Figure 12: Example of the output from Keras MDE trained with 512x512 input, batch size=8,

learning rate=0.0008

65

Figure 13: Learning Curve of Keras MDE trained with 512x512 input, batch size=8, learning rate=0.0008

After this experiment gained significant improvements in terms of prediction accuracy, the

last trial that has been conducted consisted in the insertion of a DownscaleBlock and an

UpscaleBlock in position 3 of the corresponding encoder/decoder structure, passing from 4

downsampling and upsampling stages to 5; this was done hoping that the increased model

capacity would then be reflected in the results, and it was actually proven by the overall trend

of the training. Figure 14 contains an example of the output predictions, and Figure 15 shows

the training and evaluation losses.

Figure 14: Example of the output from Keras MDE trained with 512x512 input, batch size=8,

learning rate=0.0008, 5 encoding/decoding stages

66

Figure 15: Learning Curve of Keras MDE trained with 512x512 input, batch size=8, learning

rate=0.0008, 5 encoding/decoding stages

The results obtained with this model were promising, but for the task of monocular depth

estimation another interesting approach that has been investigated is the one proposed in the

MiDaS paper, where researchers state that their method outperformed other state-of-the-art

algorithms that required fine-tuning on each dataset separately, showing that their model is

able to generalize the features learnt during the comprehensive training stage to unseen

scenes without the need to modify the algorithm.

Figures 16 and 17 show some examples of the inference of this model, with the two different

backbones that produced the best results on the other benchmark datasets that the researchers

used for their tests, on the SINAV drone dataset. These still follow the same convention as

Figures 10, 12 and 14, whereas the first column shows the original pictures of the terrain (this

time using a “winter” colormap), the second column contains the ground truth depth maps

and the third one shows the predicted depth maps.

67

Figure 16: Example of the output from MiDaS with DPT-beit-L512 backbone

Figure 17: Example of the output from MiDaS with DPT-swin2-L384 backbone

68

Even if at first sight these results could seem ordinary and overall not a great advancement

with respect to those obtained with the Keras MDE algorithm, it’s crucial to keep into

consideration that these are obtained from just a single inference of a model that was trained

on a multitude of images and depth maps which are very different with respect to our digital

dataset, mainly in terms of depth accuracy, camera angle, environment complexity and

lighting conditions, given also the fact that most of the datasets that the algorithm has been

pre-trained on are from real-world scenarios.

Many of the datasets that have been used for the original training were also focused on indoor

scenes and street-view environments, as it’s shown in Figure 18 and 19 that contain some

examples of the NYU Depth V2 [35] and Kitti [36] datasets, that are two of the most

important benchmark datasets for monocular depth estimation.

Figure 18: Examples from the NYU Depth V2 Dataset

Figure 19: Examples from the Kitti Dataset

69

In order to finally verify which of the proposed methods yielded the best results in terms of

similarity to the ground truth depth maps, the metrics introduced in the previous Chapter

(Equations 2, 8-12) have been calculated on the inference of each model on the entire SINAV

drone dataset.

The results, shown in Table 5, compare the estimated depth maps from the two MiDaS

backbones and the final Keras MDE model (i.e. the one with additional downsampling and

upsampling layers) with the ground truth.

Model δ₁↑ δ₂↑ δ₃↑ Abs_Rel ↓ Sq_Rel ↓ RMSE ↓ RMSLE ↓ SSIM ↑

Keras
MDE 0.212 0.498 0.713 1.767 1.169 10.248 0.105 0.804

MiDaS
(Beit) 0.423 0.627 0.732 1.585 1.151 10.240 0.305 0.802

MiDaS
(Swin2) 0.434 0.654 0.748 1.644 1.144 10.241 0.296 0.793

Table 5: Monocular Depth Estimation Metrics computed between the output of the final Keras MDE

model, MiDaS DPT-Beit-L512, MiDaS DPT-Swin2-L384 and the ground truth depth maps

These results show that the performance of these three models on the SINAV drone dataset is

overall similar, with Keras MDE performing slightly worse with respect to the other two, and

the MiDaS model with DPT-Swin2-L384 backbone is the one that obtained the best scores

(that are in bold) on a higher number of metrics out of them; it should be noted that the only

metrics which were actually designed specifically for evaluating monocular depth estimation

models are the delta thresholds metrics, and it is thus expected that the model that obtained

the best results on these metrics is the one that will further outperform the other two in the

next tests, that will be focused on slope estimation and the derivation of traversability maps

starting from the output of the analysis step that has now been evaluated.

70

4.3 Slope Estimation Results

As anticipated in the previous Chapter, the following steps are indeed implemented taking the

estimated depth maps produced by these three models as input, and the comparison between

the three will be carried along on each of the later steps, as it should not be taken as granted

that the outputs produced by a model that yielded better results for depth estimation will still

derive slope maps that are more accurate with respect to those obtained starting from the

output of other models.

After applying the slope derivation algorithm described in Chapter 3, the metrics listed in

Table 6 have been evaluated to compare the approximated slope maps produced on the output

of monocular depth estimation models with the ones derived from the ground truth depth

maps.

Depth Maps δ₁↑ δ₂↑ δ₃↑ RMSE ↓ RMSLE ↓

Keras MDE 0.337 0.533 0.712 25.662 0.578

MiDaS (Beit) 0.703 0.792 0.848 15.580 0.240

MiDaS (Swin2) 0.647 0.738 0.787 16.574 0.264

Table 6: Slope Maps Evaluation Metrics computed on the output of Keras MDE, MiDaS DPT-Beit-L512,

MiDaS DPT-Swin2-L384 and compared with those obtained from ground truth depth maps

In contrast with the previous results, that established MiDaS DPT-Swin2-L384 as the model

that gained the best overall performance for monocular depth estimation and thus gave hints

that the depth maps it produced were more alike to ground truth ones, these metrics show

how the other backbone better preserved the relative depth differences between different

regions of the image, which in our case study is far more important with respect to the

accuracy in predicting absolute depth values. These results are in line with those present

inside of the extensive experiments reported in [19], that qualify MiDaS DPT-Beit-L512 as

the most powerful pre-trained model for monocular depth estimation, and further highlight

71

the need for new metrics that are capable of establishing the quality of the depth predictions

not only in terms of absolute values but also relative differences.

Figure 20 shows an example of slope maps derived from ground truth depth maps

(upper-left), from MiDaS DPT-Beit-L512 (upper-right), from MiDaS DPT-Swin2-L384

(lower-left) and Keras MDE (lower-right).

Figure 20: Example of the output from the slope derivation method

72

4.4 Final Traversability Mapping Results

The last evaluation step for traversability analysis and mapping was focused on the

comparison of the final traversability maps, obtained with the methodology described in

Chapter 3, in order to establish which monocular depth estimation model performed better in

the inference of depth information and in preserving the relative depth differences within

their estimation, specifically on the regions classified as “soil” or “bedrock”.

Given that traversability maps are represented in the form of binary matrices, the metrics

taken into consideration for this analysis are accuracy, precision, recall and F1-score, that are

commonly employed for the evaluation of classification algorithms, as it basically can be

addressed as such (with pixels labeled as 1 considered positives, i.e. traversable, and those

labeled as 0 negative, i.e. untraversable); these scores are contained in Table 7.

Depth Maps Average Accuracy
(%)

Average Precision
(%)

Average Recall
(%)

Average F1-Score
(%)

Keras MDE 68.73 78.36 58.59 66.78

MiDaS (Beit) 80.12 91.68 77.42 83.94

MiDaS (Swin2) 79.43 91.57 74.66 82.25

Table 7: Traversability Maps Comparison Metrics computed on the output of Keras MDE, MiDaS

DPT-Beit-L512, MiDaS DPT-Swin2-L384 and compared with those obtained from ground truth depth maps

From these final tests that have been conducted on the output of the traversability mapping

algorithm, it’s fair to say that the Keras MDE model should have been further fine-tuned on

the dataset in order to obtain better results, as the ones deriving from its application are by far

the worst between those obtained using the other models that have been taken in

consideration; even after varying the input shapes and making the overall encoder-decoder

architecture deeper, it seems that for this model the improvement of monocular depth

estimation metrics (that were actually pretty close to the first metrics collected for the MiDaS

algorithm, as it’s shown in the first section of this Chapter) just wasn’t enough for the later

73

steps that have been conducted, and even changing the overall architecture of the network

might have been necessary in cases where no pre-trained model was available. It is

hypothesized that also providing the model with data that are of the same resolution with

respect to the original RGB images would further result in better performances, but this was

not a suitable solution in this case as the computational overload would have caused (as it

already did when using a bigger batch size) the complete failure of the experiment.

Between the two variants of pre-trained MiDaS models, the one employing a Swin v2

architecture was the one that obtained better results in terms of delta threshold metrics for the

task of monocular depth estimation, thus initially giving insights that the outputs produced by

its inference were the overall best starting points for the remaining steps; instead, the tests

presented above show the importance of preserving relative depth differences along the

different sections of the images, especially for the objective of this study, as the pre-trained

model based on the Beit architecture was able to provide estimated depth maps that served

better our purpose of approximating both ground truth slope and traversability maps.

4.5 Path Planning Results

The results regarding the path planning task are now presented. In this Thesis work, at first,

the focus was laid on fine-tuning the Neural A* model on the HIRISE dataset, as shown in

Chapter 3, in a way that the algorithm could better fit the complex traversability maps that

have been determined in the previous steps. Indeed, when trying to directly infer the

pre-trained version of the Neural A* (which was trained on the Tiled-MP dataset) the

algorithm was not capable to find any optimal path, resulting in a Opt score of 0 for all the

tests conducted on the maps derived either from ground truth depth maps, from depth maps

produced by Keras MDE and from those produced by the two variants of MiDaS; however,

the fact that the Exp metric was not overall equal to 0 shows the generalization capabilities

and robustness of this algorithm, as can bee seen in the example shown in Figure 24, where

the Exp value was 0.291.

74

Figure 21: Example of the pre-trained Neural A* path planning output on traversability maps produced on the

ground truth depth maps

The fine-tuning procedure conducted on the mock-up version of the HIRISE traversability

maps, that are actually unreliable for the reasons discussed in Chapter 3 but served this

research anyway as they enabled the training on a very complex environment, successfully

produced better overall predicted paths. Figures 22 and 23 show the overall trend of the Opt,

Exp and Hmean metrics during the training procedure, using both the RMSprop optimizer

and the Adam optimizer for 40 epochs, with a learning rate of 0.001.

Figure 22: Neural A* training metrics trends when using the RMSprop optimizer

75

Figure 23: Neural A* training metrics trends when using the Adam optimizer

Even if the overall improvement was relatively minor, the version that was pre-trained using

the Adam optimizer was further employed in order to test the algorithm on the traversability

maps from the SINAV drone dataset, both ground truth and estimated.

Figures 24 and 25 respectively show some of the outputs from the path planning inference on

the traversability maps obtained from ground truth depth values and those obtained using the

depth predictions from the MiDaS model with DPT-Beit-L512 backbone; Table 8 contains

the average values of Opt, Exp, and Hmean metrics that have been collected when testing the

algorithm on a subset (258 examples for each class) of the traversability maps obtained

starting from ground truth depth maps and from the other three estimated depth maps.

Figure 24: Example of the Neural A* output on traversability maps produced with ground truth depth maps
when pre-trained on HIRISE

76

Figure 25: Example of the Neural A* output on traversability maps produced on the estimated depth maps from

MiDaS DPT-Beit-L512 when pre-trained on HIRISE

Traversability Maps
Based On Average Opt ↑ Average Exp ↑ Average Hmean ↑

Ground Truth 46.7 54.6 50.3

Keras MDE 68.5 42.8 52.7

MiDaS
DPT-Swin2-L384 23.1 39.8 29.2

MiDaS
DPT-Beit-L512 29.4 50.2 37.1

Table 8: Average Path Planning Metrics for NeuralA* trained on HIRISE, tested on SINAV traversability maps

Finally, the last results highlight how the learning-based path planner was able to outperform

the vanilla A* algorithm, on average, by 46.9% in terms of node exploration ratio in the

traversability maps that have been tested, and it also found optimal paths in approximately

77

41.9% of the test cases; one should be aware that, when looking at these metrics, they’re not

related in any way to the accuracy of the predicted traversability maps on which the path

estimation is performed, as the maps are merely taken as input, and obviously the planning is

conducted in the same way regardless of how similar they are to the ground truth

traversability map.

78

5. Conclusions

The objective of this Thesis was the definition of a methodology that incorporated

data-driven Traversability Analysis and Path Planning algorithms for the purpose of enabling

autonomous and efficient navigation for a Martian rover. This quest implied facing multiple

constraints and difficulties, such as the scarce availability of training data, their suboptimal

quality, poor computational resources and many others, that have been specified in the

previous sections; nonetheless, the final results presented in Chapter 4 show how the

proposed implementation of the above tasks gained satisfactory outcomes, both in terms of

traversability maps estimation and path searching.

For the first part of this research, the insights gained from literature review highlighted the

necessity of information regarding terrain steepness and hazard presence for the scope of

defining a rover’s navigation maps, and further motivated the investigation and appliance of

methods that are capable of extracting the slope information from the simulated terrain

pictures that were available; although ambitious, this problem has been approached by first

extracting the depth values from the monocular images of the digital scenarios, through a

class of Machine Learning models employed for what is referred to as “monocular depth

estimation”, then approximating the steepness values using a first-order discrete

differentiation operator, better known as the Sobel filter, and finally using the arctangent of

the gradient magnitude of the two axial components to obtain the slope estimates. This

enabled to use a simple threshold for choosing which angles were or were not traversable by

the rover; after this procedure, the algorithm merges the segmentation masks that have been

filtered based on the presence of dangerous terrain types with the resulting thresholded slope

maps from the previous step, thus producing the final predicted traversability maps.

Specifically, two completely opposite supervised-learning approaches have been tested for

monocular depth estimation: the first relied on a lightweight encoder-decoder architecture,

i.e. the Keras MDE algorithm based on U-Net, that has been fine-tuned on the SINAV drone

dataset; the other was based on the usage of a very deep pre-trained model from literature, the

MiDaS model, that was directly tested on our dataset without any fine-tuning, using the two

best-performing backbones that were trained on a collection of 12 different datasets, which

79

additionally exploited a robust training procedure that was specifically developed in order to

make the model as capable of generalization as possible.

It was difficult to make an a-priori assumption of which model between the two could obtain

better results at the beginning, given the multiple complex factors involved, but the initial

hypothesis was that a model fine-tuned on the target dataset would obtain better results with

respect to one that is tested on such data with a zero-shot approach, given the fact that besides

the proven validity and robustness of the second algorithm, the SINAV drone dataset was still

very different from the datasets used for the second model pre-training procedure. The

resulting metrics, that compare the output of the Keras MDE algorithm and the two MiDaS

models with ground truth depth maps, show how even in cases where the first reaches an

almost-optimal behavior during training it still does not outperform the second approach

during the testing phase, further confirming the strength of the MiDaS model. It’s worth

noticing that the fine-tuned model yielded better SSIM and RMSLE scores overall, but this

can be explained by taking into consideration that SSIM was also one of the three weighted

components of the loss that the algorithm minimizes, and RMSLE is purely representative of

large discrepancies between predicted and ground truth values, but cannot be used as a

reliable indicator of the overall performance. Moreover, between the two pre-trained versions

of MiDaS, the one that employed a smaller backbone (based on Swin v2 transformers)

initially seemed to produce overall better results, even if the two performances were rather

similar. Further research shall be conducted in order to estimate the impact of different

network architectures and loss weighting on the performance of the Keras MDE algorithm, as

it is believed that even after fine-tuning the model was still too weak in order to compete with

the other models from MiDaS.

The metrics computed on the approximated slope maps, which are derived using the

estimated depth maps from the previous step and that also represent a crucial point of this

research, emphasize that for the final scope of this work it is more important for a model to

preserve relative depth differences across different areas of the same image, with respect to

accurately predicting absolute depth values; this is clearly due to the fact that slope is indeed

a function of the gradient of the depth map. The slope maps computed using the output from

the heaviest pre-trained MiDaS variant, based on Beit architecture, surprisingly and

consistently outperformed the slope maps derived from the other two MDE models outputs,

80

in terms of similarity with slope maps computed from ground truth depth values. The model

that employs the Beit architecture, indeed, showed a similar capacity with respect to the one

using the Swin v2 backbone at estimating absolute depth values, but its better ability to

preserve such relative depth differences is proven by these results. An interesting

investigation could be performed by confronting the results of this slope derivation algorithm

with ground truth slope data, that were unfortunately not available in our context.

Regarding the evaluation of the final traversability maps, the standard binary classification

metrics that have been calculated further confirm that the MiDaS model with Beit backbone

is the one that best fit our case-study, and that additional care has to be taken when

pre-training lightweight models such as the Keras MDE algorithm for tasks that require

low-grained features to be accurately predicted. It’s also important to notice that the slope

threshold, which was used to segment traversable and non-traversable areas with respect to

the steepness of the terrain, has been chosen without the necessary validation that should

derive from multiple analyses that take into consideration complex real-world constraints that

fall outside of the scope of this research, as is expected in the context of planetary rovers, and

clearly represents an important element whose impact on the overall research has to be

further evaluated in the future.

For what concerns the path planning procedure, in this research extensive experiments have

been conducted in order to first test the pre-trained version of the Neural A* model on the

traversability maps produced from both the depth values that have been estimated (using the

aforementioned three monocular depth estimation models that have been investigated) and

the ground truth depth maps, and then evaluate its performance when the training is repeated

on a simplistic approximation of HIRISE traversability maps, still testing it on the same

traversability maps as in the first case. The approximated HIRISE navigability maps,

although completely unreliable in real-case scenarios for the reasons shown in Chapter 3,

successfully enabled the model to learn the right path-searching behavior in complex

environments, as shown by the results contained in Table 8; said results are not so far from

the state-of-art outcomes that the Neural A* developers obtained when training and testing

the algorithm on two different splits of the Tiled MP Dataset. It is indeed important to notice

that, instead, in this research the training and testing phases were conducted on two separate

and quite different data collections.

81

Besides the fact that our test cases were not large enough to shape comprehensive final

considerations about the model, and taking into account the imprecise nature of the training

data, it can be noted how the traversability maps produced from the output of the Keras MDE

model were those on which the planner functioned the best overall, and the hypothesis that

has been made is that this can be due to the randomness of the relative estimated depth maps;

the differentiable A* module that is employed in this algorithm is, indeed, very useful in

complex environments, enabling the model to learn from its mistakes when the goal is

difficult to find, and this could also be the reason why it also performs well when using the

maps derived from ground truth depth values, that overall tend to be more tortuous with

respect to those estimated by the MiDaS algorithm. This difference in depth map complexity

is quite certainly caused by the total absence of training in the zero-shot approach, as the

pretrained models are very deep and thus learn to generalize complex features and details in a

smoother way than they are actually observed in ground truth examples. Further research

shall be conducted in order to validate such hypotheses.

Although the study could have benefitted from additional tests employing the traversability

maps estimated with the algorithms shown in the first part of this Thesis for both the training

and evaluation stages of the Neural A* algorithm, limitations in terms of time and

computational resources prevented us from conducting a more comprehensive analysis in this

area, which is thus left for future research.

Ultimately, it’s dutiful to state that, to the best of the writer’s knowledge, the workflow

proposed in this Thesis work represents the first attempt to incorporate computer vision and

learning-based path planning models for the purposes of traversability mapping and path

planning in Martian rovers, thus having the potential to inspire new research activities in this

field.

82

Appendix

Script A: Keras MDE Data Pipeline13

class DataGenerator(tf.keras.utils.Sequence):

def __init__(self, data, batch_size=6, dim=(1000, 1000), n_channels=3,

shuffle=True, output_filename=False):

"""

Initialization

"""

self.data = data

self.indices = self.data.index.tolist()

self.dim = dim

self.n_channels = n_channels

self.batch_size = batch_size

self.shuffle = shuffle

self.min_depth = 0.1

self.output_filename = output_filename

self.on_epoch_end()

def __len__(self):

return int(np.ceil(len(self.data) / self.batch_size))

def __getitem__(self, index):

if (index + 1) * self.batch_size > len(self.indices):

self.batch_size = len(self.indices) - index * self.batch_size

Generate one batch of data

Generate indices of the batch

index = self.indices[index * self.batch_size : (index + 1) *

self.batch_size]

Find list of IDs

batch = [self.indices[k] for k in index]

x, y, image_names = self.data_generation(batch)

if (not self.output_filename):

return x, y

else:

return x, y, image_names

13 Most of this code is taken from the official implementation presented in [16], a decision has been made to
report it here as the main changes that have been made during and after the fine-tuning procedure would have
not been readable in the form of simple snippets taken out of context.

83

def on_epoch_end(self):

"""

Updates indexes after each epoch

"""

self.index = np.arange(len(self.indices))

if self.shuffle == True:

np.random.shuffle(self.index)

def load(self, image_path, depth_map):

"""Load input and target image."""

image_ = cv2.imread(image_path)

image_ = cv2.cvtColor(image_, cv2.COLOR_BGR2RGB)

image_ = cv2.resize(image_, self.dim)

image_ = tf.image.convert_image_dtype(image_, tf.float32)

depth_map = cv2.imread(depth_map, cv2.IMREAD_GRAYSCALE).squeeze()

max_depth = min(300, np.percentile(depth_map, 99))

depth_map = np.clip(depth_map, self.min_depth, max_depth)

depth_map = np.log(depth_map)

depth_map = np.clip(depth_map, 0.1, np.log(max_depth))

depth_map = cv2.resize(depth_map, self.dim)

depth_map = np.expand_dims(depth_map, axis=2)

depth_map = tf.image.convert_image_dtype(depth_map, tf.float32)

return image_, depth_map

def data_generation(self, batch):

x = np.empty((self.batch_size, *self.dim, self.n_channels))

y = np.empty((self.batch_size, *self.dim, 1))

image_namelist = []

for i, batch_id in enumerate(batch):

x[i,], y[i,] = self.load(

self.data["image"][batch_id],

self.data["depth"][batch_id],

)

image_namelist.append(self.data["image"][batch_id])

return x, y, image_namelist

84

Script B: Keras MDE Blocks Implementation

class DownscaleBlock(layers.Layer):

def __init__(

self, filters, kernel_size=(3, 3), padding="same", strides=1, **kwargs

):

super().__init__(**kwargs)

self.convA = layers.Conv2D(filters, kernel_size, strides, padding)

self.convB = layers.Conv2D(filters, kernel_size, strides, padding)

self.reluA = layers.LeakyReLU(alpha=0.2)

self.reluB = layers.LeakyReLU(alpha=0.2)

self.bn2a = tf.keras.layers.BatchNormalization()

self.bn2b = tf.keras.layers.BatchNormalization()

self.pool = layers.MaxPool2D((2, 2), (2, 2))

def call(self, input_tensor):

d = self.convA(input_tensor)

x = self.bn2a(d)

x = self.reluA(x)

x = self.convB(x)

x = self.bn2b(x)

x = self.reluB(x)

x += d

p = self.pool(x)

return x, p

class UpscaleBlock(layers.Layer):

def __init__(

self, filters, kernel_size=(3, 3), padding="same", strides=1, **kwargs

):

super().__init__(**kwargs)

self.us = layers.UpSampling2D((2, 2))

self.convA = layers.Conv2D(filters, kernel_size, strides, padding)

self.convB = layers.Conv2D(filters, kernel_size, strides, padding)

self.reluA = layers.LeakyReLU(alpha=0.2)

self.reluB = layers.LeakyReLU(alpha=0.2)

self.bn2a = tf.keras.layers.BatchNormalization()

85

self.bn2b = tf.keras.layers.BatchNormalization()

self.conc = layers.Concatenate()

def call(self, x, skip):

x = self.us(x)

concat = self.conc([x, skip])

x = self.convA(concat)

x = self.bn2a(x)

x = self.reluA(x)

x = self.convB(x)

x = self.bn2b(x)

x = self.reluB(x)

return x

class BottleNeckBlock(layers.Layer):

def __init__(

self, filters, kernel_size=(3, 3), padding="same", strides=1, **kwargs

):

super().__init__(**kwargs)

self.convA = layers.Conv2D(filters, kernel_size, strides, padding)

self.convB = layers.Conv2D(filters, kernel_size, strides, padding)

self.reluA = layers.LeakyReLU(alpha=0.2)

self.reluB = layers.LeakyReLU(alpha=0.2)

def call(self, x):

x = self.convA(x)

x = self.reluA(x)

x = self.convB(x)

x = self.reluB(x)

return x

86

Script C: Keras MDE Model Definition

import keras.backend as K

HEIGHT = 512

WIDTH = 512

LR = 0.0008

EPOCHS = 30

BATCH_SIZE = 8

class DepthEstimationModel(tf.keras.Model):

def __init__(self):

super().__init__()

self.ssim_loss_weight = 0.85

self.l1_loss_weight = 0.1

self.edge_loss_weight = 0.9

self.loss_metric = tf.keras.metrics.Mean(name="loss")

self.rmse_metric =

tf.keras.metrics.RootMeanSquaredError(name='root_mean_squared_error')

self.mae_metric = tf.keras.metrics.MeanAbsoluteError(name='mae')

f = [16, 32, 64, 128, 128, 256]

self.downscale_blocks = [

DownscaleBlock(f[0]),

DownscaleBlock(f[1]),

DownscaleBlock(f[2]),

DownscaleBlock(f[3]),

DownscaleBlock(f[4])

]

self.bottle_neck_block = BottleNeckBlock(f[5])

self.upscale_blocks = [

UpscaleBlock(f[4]),

UpscaleBlock(f[3]),

UpscaleBlock(f[2]),

UpscaleBlock(f[1]),

UpscaleBlock(f[0]),

]

self.conv_layer = layers.Conv2D(1, (1, 1), padding="same",

activation="tanh")

87

def calculate_mae(self, y_true, y_pred):

mae = tf.keras.losses.mean_absolute_error(y_true, y_pred)

return mae

def calculate_rmse(self, target, pred):

return K.sqrt(K.mean(K.square(target - pred)))

def calculate_loss(self, target, pred):

Edges

dy_true, dx_true = tf.image.image_gradients(target)

dy_pred, dx_pred = tf.image.image_gradients(pred)

weights_x = tf.exp(tf.reduce_mean(tf.abs(dx_true)))

weights_y = tf.exp(tf.reduce_mean(tf.abs(dy_true)))

Depth smoothness

smoothness_x = dx_pred * weights_x

smoothness_y = dy_pred * weights_y

depth_smoothness_loss = tf.reduce_mean(abs(smoothness_x)) +

tf.reduce_mean(

abs(smoothness_y)

)

Structural similarity (SSIM) index

ssim_loss = tf.reduce_mean(

1

- tf.image.ssim(

target, pred, max_val=WIDTH, filter_size=7, k1=0.01 ** 2,

k2=0.03 ** 2

)

)

Point-wise depth

l1_loss = tf.reduce_mean(tf.abs(target - pred))

loss = (

(self.ssim_loss_weight * ssim_loss)

+ (self.l1_loss_weight * l1_loss)

+ (self.edge_loss_weight * depth_smoothness_loss)

)

return loss

88

@property

def metrics(self):

return [self.loss_metric, self.rmse_metric, self.mae_metric]

def train_step(self, batch_data):

input, target = batch_data

with tf.GradientTape() as tape:

pred = self(input, training=True)

loss = self.calculate_loss(target, pred)

gradients = tape.gradient(loss, self.trainable_variables)

self.optimizer.apply_gradients(zip(gradients,

self.trainable_variables))

self.loss_metric.update_state(loss)

self.rmse_metric.update_state(target, pred)

self.mae_metric.update_state(target, pred)

return {

m.name: m.result() for m in self.metrics

}

def test_step(self, batch_data):

input, target = batch_data

pred = self(input, training=False)

loss = self.calculate_loss(target, pred)

self.loss_metric.update_state(loss)

self.rmse_metric.update_state(target, pred)

self.mae_metric.update_state(target, pred)

return {

m.name: m.result() for m in self.metrics

}

def call(self, x):

c1, p1 = self.downscale_blocks[0](x)

c2, p2 = self.downscale_blocks[1](p1)

c3, p3 = self.downscale_blocks[2](p2)

89

c4, p4 = self.downscale_blocks[3](p3)

c5, p5 = self.downscale_blocks[4](p4)

bn = self.bottle_neck_block(p5)

u1 = self.upscale_blocks[0](bn, c5)

u2 = self.upscale_blocks[1](u1, c4)

u3 = self.upscale_blocks[2](u2, c3)

u4 = self.upscale_blocks[3](u3, c2)

u5 = self.upscale_blocks[4](u4, c1)

return self.conv_layer(u5)

Script D: Monocular Depth Estimation Metrics Computation

def compute_metrics(depth_true, depth_pred, threshold=1.25):

depth_true=depth_true.astype("float32")

depth_pred=depth_pred.astype("float32")

depth_true[depth_true == 0] = 1e-7

depth_pred[depth_pred == 0] = 1e-7

abs_rel = np.mean(np.abs(depth_true - depth_pred) / depth_true)

sq_rel = np.mean(np.abs(depth_true - depth_pred) ** 2 / depth_true)

rmse = np.sqrt(np.mean((depth_true - depth_pred) ** 2))

log_rmse = np.sqrt(np.mean((np.log10(depth_true) - np.log10(depth_pred))

** 2))

max_ratio = np.maximum(depth_true / depth_pred, depth_pred / depth_true)

a1 = np.mean(max_ratio < threshold)

a2 = np.mean(max_ratio < threshold ** 2)

a3 = np.mean(max_ratio < threshold ** 3)

ssim_val = ssim(depth_true, depth_pred, data_range=255)

return [[a1, a2, a3], abs_rel, sq_rel, rmse, log_rmse, ssim_val]

90

Script E: Slope Derivation Method

def derive_slope(input_depth):

grad_x = cv2.Sobel(input_depth, cv2.CV_64F, 1, 0, ksize=3, scale=1,

delta=0, borderType=cv2.BORDER_DEFAULT)

grad_y = cv2.Sobel(input_depth, cv2.CV_64F, 0, 1, ksize=3, scale=1,

delta=0, borderType=cv2.BORDER_DEFAULT)

abs_grad_x = cv2.convertScaleAbs(grad_x)

abs_grad_y = cv2.convertScaleAbs(grad_y)

grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)

slope = np.degrees(np.arctan(grad))

return slope

Script F: Traversability Maps Generation

def mask_terrain_type(segmented_img, bigrock_mask, sand_mask):

bigrock_mask and sand_mask are numpy arrays that contain the RGB values

of the respective terrain type inside of the segmentation files

filtered_bigrock = (segmented_img[:,:]!=bigrock_mask)

masked_bigrock = filtered_bigrock.sum(axis=2).astype(bool)

filtered_sand = (segmented_img[:,:]!=sand_mask)

masked_sand = filtered_sand.sum(axis=2).astype(bool)

return np.logical_and(masked_bigrock, masked_sand)

def traversability_maps_generation(slope_maps, segmentation_masks,

slope_threshold, output_folder):

we generate and save all the output traversability maps based on the

input slope maps, slope threshold and segmentation masks.

it is assumed that the slope maps files and segmentation masks files

have already been sorted accordingly

i=0

for slopefile, segfile in tqdm(zip(slope_maps, segmentation_masks)):

#segmentation masks are saved as pickle files

with open(segfile, "rb") as segmentation_m:

91

seg_masks = pickle.load(segmentation_m)

filtered_segmasks = mask_terrain_type(seg_masks, bigrock, sand)

slope_file = cv2.imread(slopefile, cv2.IMREAD_GRAYSCALE)

thresholded_slopefile = np.where(slope_file<=slope_threshold,

True, False)

trav_map = np.logical_and(filtered_segmasks,

thresholded_slopefile)

#we save traversability maps as .npz files

output_path = output_folder+f"_{i}"

np.savez(output_path)

i += 1

92

6. Bibliography

[1] Otte, Michael W.. “A Survey of Machine Learning Approaches to Robotic
Path-Planning.” (2009)

[2] Ryo Yonetani*, Tatsunori Taniai*, Mohammadamin Barekatain, Mai Nishimura,
Asako Kanezaki, "Path Planning using Neural A* Search", ICML (2021)

[3] Rosenblatt, F. “The perceptron: A probabilistic model for information storage and
organization in the brain”, Psychological Review, 65(6), 386-408 (1958)

[4] Kohonen, T, “Self-Organizing Systems of Incoherent Light Sources: Applications
to the Formation of Visual Maps and Receptor Fields”, Biological Cybernetics, 43(1),
59-69 (1982)

[5] Zisserman, A., & Freeman, W. T, “Unsupervised Learning of Visual
Representations using Videos”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2021)

[6] Zhu, X., & Goldberg, A. “Introduction to semi-supervised learning”, Synthesis
Lectures on Artificial Intelligence and Machine Learning, 3(1), 1-13 (2009)

[7] Watkins, C. J. C. H., “Learning from Delayed Rewards” (Ph.D. thesis). King’s
College, Cambridge, UK (1989)

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual
Learning for Image Recognition." In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016)

[9] M. Ono, B. Rothrock, E. Almeida, A. Ansar, R. Otero, A. Huertas, M. Heverly
“Data-driven surface traversability analysis for Mars 2020 landing site selection”,
2016 IEEE Aerospace Conference, (2016)

[10] Marr, D., & Poggio, T., “Cooperative computation of stereo disparity”, Science,
194(4262), 283-287, (1976)

[11] Fischler, M. A., & Bolles, R. C. “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography”,
Communications of the ACM, 24(6), 381-395, (1981)

93

[12] Nishihara, H. K., & Rosenfeld, A, “A pyramid approach to stereo vision.
Computer Graphics and Image Processing”, 19(4), 369-395. (1982)

[13] Horn, B. K. P. “Shape from shading: A method for obtaining the shape of a
smooth opaque object from one view”. Proceedings of the IEEE, 58(6), 1144-1155
(1970)

[14] Nayar, S. K. “Shape from focus”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(8), 779-791 (1991)

[15] Barron, J. T., Fleet, D. J., & Beauchemin, S. S. “Performance of optical flow
techniques”. International Journal of Computer Vision, 12(1), 43-77, (1994)

[16] Victor Basu,
https://github.com/keras-team/keras-io/blob/master/examples/vision/depth_estimation.
py, (2021)

[17] O Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image
Segmentation”, (2015)

[18] Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo, Haochen Wang,
Matthew R Walter, et al. “Diode: A dense indoor and outdoor depth dataset”. arXiv
preprint arXiv:1908.00463, (2019)

[19] Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen
Koltun, "Towards Robust Monocular Depth Estimation: Mixing Datasets for
Zero-Shot Cross-Dataset Transfer", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol.44 n. 3, https://github.com/isl-org/MiDaS, (2022)

[20] Geiger, A., Lenz, P., & Urtasun, R. “Are we ready for autonomous driving? The
KITTI vision benchmark suite”, In Conference on Computer Vision and Pattern
Recognition (CVPR), (2012)

[21] Saxena, A., Sun, M., & Ng, A. “Make3D: Learning 3D scene structure from a
single still image”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(5), 824-840, (2009)

[22] René Ranftl, Alexey Bochkovskiy, Vladlen Koltun, “Vision Transformers for
Dense Prediction”. (2021)

94

[23] H. Bao, L. Dong, S. Piao, F. Wei, “BEiT: BERT Pre-Training of Image
Transformers”, (2022)

[24] Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong,
F. Wei, B. Guo, Swin Transformer V2: Scaling Up Capacity and Resolution, (2021)

[23] Dijkstra, E. W, “A note on two problems in connexion with graphs”, Numerische
Mathematik, 1(1), 269–271, (1959)

[24] Kaelbling, L. P., Littman, M. L., & Moore, A. W. “Reinforcement learning: A
survey”. Journal of artificial intelligence research, 4, 237-285, (1996)

[25] Sergey Levine et al., "End-to-End Training of Deep Visuomotor Policies",
(2016)

[26] Volodymyr Mnih et al., "Learning to Navigate in Complex Environments",
(2016)

[27] Bhardwaj, M., Choudhury, S., and Scherer, S., “Learning heuristic search via
imitation”. In Proceedings of the Conference on Robot Learning (CoRL), (2017)

[28] Sturtevant, N. Benchmarks for grid-based pathfinding. IEEE Transactions on
Computational Intelligence and AI in Game, 4(2):144 – 148, (2012)

[29] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image
using a multi-scale deep network,” CoRR, vol.abs/1406.2283, (2014)

[30] Burrough, P.A. ”Principles of Geographic Information Systems for Land
Resource Assessment.” Monographs on Soil and Resources Survey No. 12, Oxford
Science Publications, New York, (1986)

[31] Irwin Sobel, “History and Definition of the Sobel Operator”, (2014)

[32] Kiri L. Wagstaff, You Lu, Alice Stanboli, Kevin Grimes, Thamme Gowda, and
Jordan Padams. "Deep Mars: CNN Classification of Mars Imagery for the PDS
Imaging Atlas." Proceedings of the Thirtieth Annual Conference on Innovative
Applications of Artificial Intelligence, 10.5281/zenodo.1048301, (2018)

95

[33] Otsu, Nobuyuki. "A threshold selection method from gray-level histograms."
IEEE Transactions on Systems, Man, and Cybernetics 9.1, (1979)

[34] https://unity.com/

[35] C. Couprie, C. Farabet, L. Najman, Y. LeCun, “Indoor Semantic Segmentation
using depth information”, (2013)

[36] J. Hurig, N. Schneider, L. Schneider, U. Franke, T. Brox, A. Geiger, “Sparsity
Invariant CNNs”, International Conference on 3D Vision (3DV),
www.cvlibs.net/datasets/KITTI, (2017)

96

Acknowledgements

I would like to express my gratitude towards Professor Fabrizio Stesina and my Company

Mentor Chiara Leuzzi for giving me the opportunity to partake in such an exciting project.

Their supportive guidance and commitment to my development have been instrumental for

the success of this research, as well as helping me grow both professionally and personally.

To all of the Altec team, thank you for making me feel a very little part of the innovation and

excellence that you daily create with your hard work; even if mostly behind a monitor, your

support really has been crucial and I’m nothing but thankful for your time.

To my mother, Daniela, my father, Sandro, my aunts Enza and Annamaria, my brother

Matteo and my grandmother Lucia, no acknowledgment paragraph could ever fully express

the depth of my gratitude for your unwavering love, support, and encouragement. I simply

want you to know that I aspire, one day, to become a person as compassionate, caring, and

wise as each of you.

To my girlfriend, I am thankful for your love and patience throughout this process, you have

been a vital source of motivation and inspiration every single day.

To all the friends in Lecce, and to those I met in Turin, I will never forget the time we spent

together and how you made this path lighter and joyful.

And, finally, to the Polytechnic of Turin: although challenging at times, this journey provided

me with education and experiences that will doubtlessly serve me in my future endeavors,

and for that, I am truly thankful.

97

