
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Path planning algorithm for an
autonomous air sanitizing mobile robot in

indoor scenarios

Supervisors

Prof. Marcello CHIABERGE

Dott. Chiara BORETTI

Dott. Andrea EIRALE

Dott. Mauro MARTINI

Candidate

Carlo BARBARA

April 2023

Summary

Robotics is now a well-established but constantly evolving sector which has reached
multiple field ranging from large manipulators for industry applications to smarter
mobile robots for housework that requires greater human interaction capabilities.
An interesting branch in the robotics world is the Service Robotics, whose main
purpose is to help people and improve their quality of life. Mobile robots are widely
used in this area, they have to carry out tasks that require them to navigate in
known and unknown spaces, thus are of paramount importance the abilities to
measure the space around them with different kind of sensors (Lidar, camera, TOF,
. . .) and to try to have a perception of their position in the 3D-space (Odometry).
In the past two years, one of the biggest problems that has involved our society is
Covid-19, a dangerous virus that makes the air its main vector of contagion.

The objective of this thesis work, which is part of a collaboration between the
PIC4SeR (Politecnico di Torino Interdepartmental Center for Service Robotics)
and the Innovation Center of Intesa Sanpaolo, is to develop an autonomous mobile
platform, equipped with CO2 sensor and an air sanitizer, capable of performing
the sanitization of the air in a working environment (offices, meeting rooms, etc.)
to limit the risks of Covid-19 contagious in indoor scenarios.
In details, a simulated environment with different rooms and corridors was created.
Then, after creating a detailed map of the working environment, a path planning
algorithm has been developed using ROS2 and NAV2. This custom algorithm
optimizes the path that the robot has to follow when it moves from one room to
another, but the algorithm selects also the shortest path to perform the sanitization
process of a room. In addition, in the path planning algorithm, the state of charge
of the robot’s battery has been taken into account as well as the possible presence
of closed doors between different rooms. The final goal is to perform a shorter and
better optimized sanitization.

ii

Acknowledgements

ACKNOWLEDGMENTS

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Overview . 1
1.2 Service Robotics . 2
1.3 Indoor navigation . 3

1.3.1 Maps . 3
1.3.2 Path planning . 4
1.3.3 Path following . 5
1.3.4 Perception and Odometry 6

1.4 Air sanitizing robots and related works 7

2 ROS framework and navigation stack 9
2.1 ROS and ROS2 . 9
2.2 Navigation Stack and NAV2 . 12
2.3 Gazebo . 14
2.4 RViz . 14

3 Robot Hardware 16
3.1 KUKA youBot mobile base . 16
3.2 VORTICE VORT ARIASALUS 200 17
3.3 XENSIV PAS CO2 sensor . 18
3.4 RPLIDAR A2 Laser Range Scanner 19
3.5 VL53L5CX Time-of-Flight sensor 20
3.6 Intel RealSense Tracking Camera T265 21
3.7 OAK-D camera . 23

v

4 Environment and sanitation procedure analysis 24
4.1 Points and Exits . 25
4.2 Plant configurations . 25

4.2.1 Single corridor and multiple rooms 26
4.2.2 Communicating rooms . 27
4.2.3 Multiple exits . 28

4.3 Navigation issues . 28
4.3.1 Robot stuck in a room . 29
4.3.2 Battery recharge position unreachable 30

4.4 Sanitation planning . 31
4.4.1 Sanitation schedule . 31

5 Network architecture 33
5.1 Layers . 33

5.1.1 Map . 34
5.1.2 Node graph . 35

5.2 Room class and data structure . 36
5.2.1 Room Points and Exits . 37
5.2.2 Nodes links . 39

5.3 ROS2 Nodes Network and Schedule Node 41
5.4 Sanitation Action Service . 42

5.4.1 CO2 sensor data acquisition 42
5.4.2 Sanit Action Server and fan control 44

5.5 ToF Publisher Node . 45
5.5.1 Data acquisition . 45
5.5.2 Exit-Door minimum distance 46

5.6 Battery Publisher Node . 47

6 Schedule Node algorithm 48
6.1 Navigation phase . 50

6.1.1 Methods and Callbacks . 51
6.2 Door opening check . 52
6.3 Rooms sanitation . 54

6.3.1 Sanitation process . 54
6.4 Battery recharging . 56
6.5 Next destination method . 57
6.6 Next point method . 57
6.7 Compute new path method . 57

vi

7 Simulations and results 58
7.1 CO2 sensor and fun simulation . 58
7.2 ToF sensor simulation . 58
7.3 Battery simulation . 58
7.4 SEGNALI bag file e plotbag.py . 58
7.5 Simulations . 58

7.5.1 Robot-only simulations . 58
7.5.2 Simulation with people . 58

8 Conclusions and further improvements 59

Bibliography 61

vii

List of Tables

5.1 Room class inputs . 37
5.2 Room class parameters . 38
5.3 RoomX Points and Exits data structure 39
5.4 Room0 data structure . 39
5.5 Fan control lows . 45

6.1 Sequence data structure example 49

viii

List of Figures

1.1 (a) COMAU industrial robot in a FCA production line [2] (b) Pepper
humanoid robot from SoftBank Robotics 2

1.2 (a) Service robots used in agriculture (b) Robot for underwater
explorations (c) Robots working in automated warehouse (d) Atlas
anthropomorphic robot from Boston Dynamics 3

1.3 Occupancy grid example . 4
1.4 Nodes graph example . 4
1.5 (a) Visibility graph technique example (b) Potential fields technique

example (c) Cell decomposition technique example 5
1.6 Path following control scheme example with wheels odometry . . . 6
1.7 Example of wheels odometry . 7
1.8 Example of visual odometry . 7
1.9 UVD 360 from UVD Robots . 8

2.1 ROS logo [3] . 9
2.2 nodes and topic example . 11
2.3 service example . 11
2.4 action example . 12
2.5 NAV2 logo . 12
2.6 costmap of the NAV2 turtlebot simulation 13
2.7 Husky robot in a Gazebo simulation 14
2.8 RViz graphic interface representing map and costmap 15

3.1 KUKA youBot base plant and omniwheels 17
3.2 KUKA youBot mobile base . 17
3.3 VORT ARIASALUS 200 . 18
3.4 XENSIV PAS CO2 sensor . 19
3.5 RPLIDAR A2 Laser Range Scanner 20
3.6 RPLIDAR environment scan . 20
3.7 VL53L5CX Time-of-Flight sensor 21
3.8 P-NUCLEO-53L5A1 Proximity Evaluation Board 22

ix

3.9 Intel RealSense Tracking Camera T265 22
3.10 OAK-D camera . 23

4.1 Points and Exits . 25
4.2 Two Rooms equivalent to architectonic rooms 26
4.3 Two Rooms in a single architectonic room 26
4.4 A Room inside another one . 26
4.5 Corridor plant configuration . 27
4.6 Complex plant with communicating rooms 28
4.7 More than one exit between two rooms 29
4.8 Example of navigation warning situation 30
4.9 Robot stuck in one room . 30
4.10 Low battery and battery recharge position not reachable 31

5.1 Layers structure . 34
5.2 Nodes network . 42
5.3 Sanit Action Server . 44
5.4 ToF Publisher Node . 46
5.5 Exit node - door minimum distance computation 47

6.1 Schedule node main method scheme 49
6.2 Functional block scheme example 51
6.3 Navigation phase . 52
6.4 Door opening check phase . 53
6.5 Sanitation procedure example . 55

x

Acronyms

QoS
Quality of Service

SOC
state of charge

ToF
Time of Flight

UV
ultraviolet

AI
Artificial Intelligence

PAS
photoacoustic spectroscopy

FoV
field of view

xii

Chapter 1

Introduction

1.1 Overview

In recent past years the innovation of robotics brings to develop even smarter and
more preforming robots. The aim of robots is to help, or even replace, people in
their hard, risk or/and repetitive jobs, preventing them from overexerting them-
selves and achieving more efficiency and repeatability in work processes.
Also the interaction robots-humans is slightly increased, especially for mobile robots
that manage tasks in public environments and with a large presence of people. With
this new kind of smarter robot become very impotant terms like safety, because
no one should be hurt by these machines, and security, due to the fact that many
robots work in private houses and factories, hospitals or other critical places, for
this reason is fundamental people who do not have the required permissions should
not have access to the control and data of these machines.

There are two macro categories of robots: industrial robots and service robots.
The first type of machines are most used for manufacturing, to handle tasks that
require big efforts like moving heavy loads or apply big forces and torques. They
are usually fixed or only able to move on a track.
The second type of robots are used in a vast number of different fields.complex
scenarios. The complexity of these robot is due to the huge variety of working
scenarios, and to the close contact with humans, situation that occurs in many of
these robot’s tasks [1].

(FONTEhttps : //upload.wikimedia.org/wikipedia/commons/e/ee/PeppertheRobot.jpg)
This master thesis project was born from a collaboration between the Politecnico
di Torino Interdepartmental Center for Service Robotics (PIC4SeR) and the Inno-
vation Center of Intesa Sanpaolo.
The aim of the project is to realize an autonomous mobile service robot that is able

1

Introduction

(a) (b)

Figure 1.1: (a) COMAU industrial robot in a FCA production line [2] (b) Pepper
humanoid robot from SoftBank Robotics

to perform the air sanitation of an indoor environment in total autonomy, even in
presence of people.

1.2 Service Robotics

Service robotics is wide utilized in many fields: agriculture, medicine and health,
space, underwater exploration, and so on. Service robots very often have to
operate in the presence of people, therefore they must be able to autonomous
navigate in an indoor environment, to detect obstacles in their path trough the
usage of multiple sensors and/or cameras, having an idea of its position in the 3D
space and be aware of the possible presence of people in the environment, being
capable of working around them and adjust its task and behaviors based on this,
without interfering or being a danger for people (FONTE https://www.market-
prospects.com/articles/what-is-a-service-robot).

(FONTE IMMAGINE a https://www.cyberweld.co.uk/robots-in-agriculture-
and-farming) (FONTE IMMAGINE b https://www.hydro-international.com/content/news/underwater-
robot-helps-complete-scientic-survey-of-maldives-waters) (FONTE IMMAGINE
c https://viterbischool.usc.edu/news/2021/03/how-robots-stay-on-track-in-giant-
automated-warehouses/) (FONTE IMMAGINE d https://www.bostondynamics.com/atlas)

2

Introduction

(a) (b)

(c) (d)

Figure 1.2: (a) Service robots used in agriculture (b) Robot for underwater
explorations (c) Robots working in automated warehouse (d) Atlas anthropomorphic
robot from Boston Dynamics

1.3 Indoor navigation
In the majority of cases, robots have to navigate in an environment to complete
their tasks. Navigation is a real complex feature for a robot, because it is made
itself by many other sub-problems like maps and environment representa-
tion, planning techniques and odometry and perception. Solving these
problems is equivalent to answer questions like: where am I? Where are other
objects respect my position? How can I reach that certain position? (FONTE
http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/pro/pro10-b5-navigazionerobot.pdf)

1.3.1 Maps
Maps are the representation of the real world in a logical domain. There are two
main types of maps:

• geometric maps are based on an absolute reference frame and respect envi-
ronment’s dimensions and coordinates in this frame. The most used are the
occupancy grid (MORE OF THIS IN NAV2 CHAPTER) and the geometric
description (FONTE IMMAGINE https://www.semanticscholar.org/paper/A-
random-finite-set-approach-for-dynamic-occupancy-Nuss/10bdf1a15b6c95f031038314ef63c2cbe771d9fb)

3

Introduction

Figure 1.3: Occupancy grid example

• topological maps represent the key points of the environment on the ba-
sis of the relations between them and their functionalities. An example is
the node graph. (FONTE IMMAGINE https://cs.slu.edu/ esposito/teach-

Figure 1.4: Nodes graph example

ing/1080/webscience/graphs.html)

1.3.2 Path planning
Path planning is fundamental to compute the path the robot must follow to reach a
final goal position. There are many path planning algorithms, both for geometrical
and topological maps.
For the first type of maps, a very common strategy is the one called roadmap, that
consists in the connection of some points of the map creating a network. Based on
the roadmap, the visibility graph is a technique that uses a graph that connects the
robot starting position, the goal position and all the obstacles vertices. The final
path is computed retrieving the shortest path that connects the starting position

4

Introduction

to the final one without crossing the obstacles’ polygons.
Other methods not based on the roadmap, but pretty similar, are the cell decom-
position and the potential fields method, that is the one used in the ROS costmap.
(MORE OF THIS LATER IN CHAPTER...) For topological maps, the path plan-
ning algorithms are similar to the previous, but in this case the map itself is the graph
from which the path is computed. The algorithm that is implemented also in this
thesis work is the Dijkstra algorithm (MORE OF THIS IN CHAPTER...). (FONTE

(a) (b)

(c)

Figure 1.5: (a) Visibility graph technique example (b) Potential fields technique
example (c) Cell decomposition technique example

IMMAGINE a https : //www.researchgate.net/figure/V isibility−Graph−the−
dashed − lines − represent − candidate − paths − for − the − vehicle − and −
thef ig2325371124) (FONTE IMMAGINE b https://www.semanticscholar.org/paper/Exact-
cell-decomposition-of-arrangements-used-for-Sleumer-Tschichold-G(FONTE IM-
MAGINE c https://medium.com/@rymshasiddiqui/path-planning-using-potential-
field-algorithm-a30ad12bdb08)

1.3.3 Path following
After the path planning algorithm computes points where the robot should pass,
then the path following technique is responsible for the trajectory planning and
the motion control: the first phase computes the trajectories in the reference
frame that connects two points of the planned path, than the motion control,
through automatic control and inverse cinematic techniques, computes the voltages
required from the motors to follow the desired velocities and accelerations to be

5

Introduction

able to correctly follow the reference trajectories.

Figure 1.6: Path following control scheme example with wheels odometry

The path following depends from robots’ characteristics, for example wheels type
and configurations that determine the movements that the robot can perform, i.e.
the trajectories that it is able to follow.

1.3.4 Perception and Odometry

Perception is performed by sensors, they collect different kind of data from the
environment in order to detect the different objects the robot can meet during the
navigation.
Sensors like the encoders are proprioceptive sensors, they measure robot’s propri-
eties, in this case wheel angular position and velocity.
LiDAR or camera instead, are exteroceptive sensors, retrieving information from
the space around the robot.
With both these type of sensors is possible to have an idea of the robot position in the
environment: integrating the measured speed movements (odometry, a possible
source of error is the wheel slip), or detecting recognizable objects with a camera and
analyzing how their positions change in time (visual odometry, camera image dis-
tortion can bring errors). (FONTEhttps : //cgi.csc.liv.ac.uk/ trp/COMP329f iles/COMP329−
2017−Lecture6b.pdf) (FONTEhttps : //en.wikipedia.org/wiki/V isualodometry)

6

Introduction

Figure 1.7: Example of wheels odometry

Figure 1.8: Example of visual odometry

(FONTE IMMAGINE ODOMETRY https://hackaday.io/project/158496-imcoders/log/147068-
robot-odometry) (FONTE IMMAGINE VISUAL ODOMETRY è LA STESSA
DEL PARAGRAFO)

1.4 Air sanitizing robots and related works
Robots for sanitation and disinfection already exist and are widely used in some
hospital environments to ensure a safe environment for patients without exposing
people to any risk.
In Slovenia, two hospitals uses robots, equipped whit UV lights, whose purpose is
to sterilize the hospital. (FONTE https://www.intelligentcitieschallenge.eu/covid-
19-good-practices/disinfection-robots-hospitals)

(FONTE IMMAGINE https://www.healthcareitnews.com/news/emea/dubai-
health-authority-deploys-robots-disinfect-facilities) After the 2020 COVID-19 pan-
demic crisis, the development of this type of robot had a sharp peak, to make not
only hospital and healthcare environments safe, but also normal offices, schools

7

Introduction

and other workplaces.

Figure 1.9: UVD 360 from UVD Robots

There is also a project for an autonomous indoor cleaning robot, that perform
the sanitation of the air with a HEPA air filtration system and in addition a UV-C
light, taking the air from the side of the robot and expelling it from the top to
obtain a better distribution of the sanitized air flux. Then, knowing the air flow
rate of the robot and the dimension of the environment, an AI algorithm assign a
working area to each of the operating robot tacking into account the time elapsed
since the area’s last sanitation [sanitationrobot].
With this thesis project instead, the intention is to have one or more robot that
perform a smart sanitation, measuring the CO2 quantity in the air in one or more
points of a room, and perform the sanitation if the measure is higher than a certain
threshold level. Following this methodology the air sanitation, that is an expensive
operation in terms of battery power, will be performed only when needed.

Why CO2? Because COVID-19 is a very contagious virus and its transport vector are
very small liquid particles that people can spread in the air coughing, sneezing, speak-
ing, or simply speaking (FONTEhttps : //www.who.int/emergencies/diseases/novel−
coronavirus−2019/question−and−answers−hub/q−a−detail/coronavirus−
disease − covid − 19 − how − is − it − transmitted?gclid = Cj0KCQjww4 −
hBhCtARIsAC9gR3Y rnra0AlUhaDA7K4WkmKrkj7CV pca7URaM9WUKlSCo49KIlqCGY 2IaAlTDEALwwcB).
During these actions, people also emit CO2 into the air, so there is a probabilistic
match between the relative quantity of CO2 and fluid particles that may contain
COVID-19 virus.

8

Chapter 2

ROS framework and
navigation stack

2.1 ROS and ROS2
ROS (Robot Operating System) is an open source software for the management of
robotics tools, components and interfaces, developed by Willow Garage in 2007.
Whit ROS is simple to put in communication the different parts that make up
a robot, like actuators, sensors and control units, and this greatly facilitates the
development of applications for robots.
(FONTE IMMAGINE e non https://www.ros.org/) (FONTEhttps : //it.wikipedia.org/wiki/RobotOperatingSystem)

Figure 2.1: ROS logo [3]

Despite being innovative and useful, however, ROS did not satisfy many market
demands, among which the most important were real-time operations, safety and
security. To meet these requests, ROS2 was developed, his alpha version was
created in 2015 and the first official release was published in 2018. ROS2 was
created to enhance the features that made ROS so widely used, and to fill the gaps
with customers demands, for these reasons there are some main differences between
the two versions.
The main differences are the master node that in ROS is required before running
any other node because it is like a server for them but in ROS2 is not needed

9

ROS framework and navigation stack

because every node has the ability to discover the others in the network. A great
improvement in terms of compatibility and simplification in programming is the
insertion of a new library sub-layer, the rcl base library, on which the client libraries
like rclcpp, rclpy, rcljava and others, are then built, that instead in ROS those
libraries are completely independent and features developed for one library is not
compatible with the others.
Another great innovation is the implementation of lifecycle nodes: this new type
of nodes are a 4-states machine able to decouple every node phase (setup, run...)
from the others. Further useful items are launch files that let to launch more
nodes at the same time, setting parameters and other options, and the introduction
of the QoS to make nodes’ communications more reliable.
All these new features contribute to make ROS2 a simpler and more inclusive tool.
(FONTE https://roboticsbackend.com/ros1-vs-ros2-practical-overview/)

The most important elements of the ROS2 network are:

• nodes: principal part of ROS nodes are the all different processes used for
every part of the robot. For example there is a ROS node for processing the
measures of a sensor, or another one that is used to control motors actuators,
a node for algorithm implementation that performs computation. Every ROS
node is able to send and receive messages to and from other nodes. In this
way is possible for example for a sensor node to sends measurements to a
control unit node that then sends commands to an actuator nodes.

• messages: nodes exchange messages between them to communicate. There
are standard messages like Int16, Float64, and so on, or it is possible to create
custom messages with more fields of different datatype.

• topic: ROS topics use a publisher/subscriber communication protocol, so any
node can publish on a topic and the other nodes can receive that message
subscribing to that topic. It is a many to many communication. A topic can re-
ceive/send only messages of the same type, this type is defined when the topic is
declared in nodes’ code. (FONTEhttps : //docs.ros.org/en/foxy/images/Topic−
MultiplePublisherandMultipleSubscriber.gif)

• services: services uses a request/reply communication protocol. Topics
allow a continuous communication between nodes, services instead provide
data only when a client sends a request. Service clients can be more than
one, but there is only one service server for a service. (FONTEhttps :
//docs.ros.org/en/foxy/images/Service−MultipleServiceClient.gif)

• actions: ROS2 actions are a type of communication designed for long running
tasks. It is a mix of service and topic communications, the first one is used for

10

ROS framework and navigation stack

Figure 2.2: nodes and topic example

Figure 2.3: service example

the goal service where the client node send the goal and the server one acknowl-
edges it, then through the feedback topic the server node updates the client
on the status of the task, in the end the server sends the final result using the
result service. (FONTEhttps : //docs.ros.org/en/foxy/images/Action −
SingleActionClient.gif)

11

ROS framework and navigation stack

Figure 2.4: action example

2.2 Navigation Stack and NAV2
ROS Navigation stack is a group of ROS packages made to simplify robot navigation
tasks. For navigation is intended the management of all the nodes responsible for
the odometry and motion control, so the robot can reach a position goal from its
starting position. Of course this is a tool available only for mobile robots.
The evolved version of Navigation Sack, based on ROS2, is NAV2. (FONTEhttps :

Figure 2.5: NAV2 logo

//navigation.ros.org/static/nav2logo.png)
NAV2 uses the new communication innovation of ROS2, the action services. As
said before, action services are designed for long time tasks, and navigation is one

12

ROS framework and navigation stack

of these, because it is an operation that depending from velocity limitations and
map dimensions, could keep the robot busy for a time interval long enough to need
feedback on the operation and eventually also to cancel the goal.
For robot navigation is widely used the Behaviour Tree concept that consists in
tree structures of tasks which can be reused for different contests and this allows to
manage a vast spectrum of robot cases that would otherwise be very difficult and
complex using a state machine that would present an excessive number of states
and transitions.
NAV2 uses different action server nodes to manage all navigation tasks like the
planner, responsible for the computation of the path based on the received goal,
the controller, that basically has the task of following up the trajectory computed
by the planner. (FONTE https://navigation.ros.org/concepts/index.htmlconcepts)

The concept of costmap is very important in the navigation context. It is a
representation of the environment in a 2D grid of cells. Each cells contains a value
that represents the occupancy probability, using this cells the planner is able to
compute the path with the minimum "cost".

Figure 2.6: costmap of the NAV2 turtlebot simulation

The global costmap is derived directly from the map file and it covers all the
map extension, the local costmap instead has a shorter coverage and it is derived
from robot’s sensors like LiDAR and camera.

13

ROS framework and navigation stack

2.3 Gazebo
Gazebo is a 3D simulation environment optimized for robotics simulation with
apposite libraries and tools for sensors simulation and actuators control. It allows
to easily creates robots mechanical components, building models and other objects,
and simulate their kinematics and dynamics with a discreet level of precision
(FONTEhttps : //en.wikipedia.org/wiki/Gazebosimulator). (FONTE IMMAG-

Figure 2.7: Husky robot in a Gazebo simulation

INE https://www.clearpathrobotics.com/assets/guides/noetic/ros/Drive

2.4 RViz
RViz (ROS Visualization) is a graphic interface that allows to show on screen all
the information contained into different topics, and its especially used to represent
the content of navigation topic, like map information, all the different layers of
global and local costmaps, goal pose, computed path to follow, all the reference
frames (absolute and relative), LiDAR and other sensor measurements and so
on. (FONTE IMMAGINE http://www.xaxxon.com/documentation/view/oculus-
prime-ros-tutorial-navigation-using-rviz)

14

ROS framework and navigation stack

Figure 2.8: RViz graphic interface representing map and costmap

15

Chapter 3

Robot Hardware

The path planning algorithm of this thesis project was developed on the bases of a
robot prototype developed in PIC4SeR, that consists of a set of various components
and sensors that let the robot performs all the different functions needed during its
tasks.
The sanitation of an indoor environment requires mobility and odometry capabilities
for navigation, a device able to filter ans sanitize the air, camera for perception and
object detection, and a sensor able to detect also transparent obstacles. Everything
it will be manage from a PC mounted directly on the robot and equipped with
Ubuntu OS and ROS2.

3.1 KUKA youBot mobile base

KUKA youBot mobile base is responsible for the movement of the robot and
contains also the embedded PC. It is a differential mobile robot provided of four
motor-encoders connected to four omniwheels.
Thanks to these particular wheels, the robot can perform also a translation on
the lateral direction enhancing the robot’s mobility and this is a very important
feature for a mobile robot operating in a human environment.

(KUKA youBot Datasheet: http : //www.youbot−store.com/wiki/index.php/Y ouBotDetailedSpecifications)
(IMMAGINE 3D https : //www.researchgate.net/figure/Y oubot−from−Kuka−
It−provides−unconstrained−planar−movement−with−use−of−mecanum−
wheelsf ig2316366419)

16

Robot Hardware

Figure 3.1: KUKA youBot base plant and omniwheels

Figure 3.2: KUKA youBot mobile base

3.2 VORTICE VORT ARIASALUS 200

The component used for the air sanitation and purification task is the VORT
ARIASALUS 200, by VORTICE. It is mounted on the top of the KUKA youBot
base and it is the largest, heaviest and most energy consuming component of the

17

Robot Hardware

prototype.
It has a 5-layer filter unit:

• plastic resin dust filer

• ISO COARSE 90% (G4)

• EPA E11 filter

• anti-TVOC filter

• photocatalysis device
The firsts layers retains all the air impurities while the last component is the one
able to eliminate bacteria and virus, in particular SARS-CoV-2. This technology,
combained with a periodic air exchange, guarantees a high level of cleanliness and air
healthiness. (FONTE https://www.vortice.it/it/trattamento-aria/depuratori/centralizzati/25044)
It has three different velocity level for the

Figure 3.3: VORT ARIASALUS 200

3.3 XENSIV PAS CO2 sensor
Due to the high consuming sanitation device, it is not possible to continuously
performing the air sanitation procedure while the robot is moving (it would add

18

Robot Hardware

also the motor-encoders consumption), otherwise robot’s autonomy would be too
short. It is more efficient to sanitize only when needed, according to measurements
of the level of present in the air.
For this reason a specific sensor is required. XENSIV™ PAS CO2 sensor from
Infineon Technologies is a very compact sensor whit a high measurement accuracy.
One of his potential applications is air quality monitoring ventilation control,
that is exactly the scope of this sensor for this project. (FONTE e Datasheet
https://www.infineon.com/cms/en/product/sensor/co2-sensors/pasco2v01/)

Figure 3.4: XENSIV PAS CO2 sensor

3.4 RPLIDAR A2 Laser Range Scanner

RPLIDAR A2 Laser Range Scanner, produced by Slamtec,is a 360 LiDAR sensor
that uses infrared laser light to get a 3D with a maximum range of 16 m and
performs 8000 samples per time with a 10 Hz frequency. These specifics allows a
precise detection of obstacles and walls during the robot navigation, and simplifies
also the creation of the environment’s map reducing the required robot’s movements
thanks to the wide range of the laser scanning.

(FONTEIMMAGINESCANEPAGINASENSOREhttps : //www.slamtec.com/en/Lidar/A2)
(FONTEIMMAGINESENSOREhttps : //my.cytron.io/c−sensor/c−laser−
range− finder/p− rplidar − a2m8− the− thinest− lidar)

19

Robot Hardware

Figure 3.5: RPLIDAR A2 Laser Range Scanner

Figure 3.6: RPLIDAR environment scan

3.5 VL53L5CX Time-of-Flight sensor

LiDAR sensor is a very useful tool for obstacle detection thank to its wide range
and precision. But it useless in the case obstacles are made of a translucent material
because laser light beams pass through the obstacle.

20

Robot Hardware

In these cases a Time of Flight sensor is more useful. VL53L5CX sensor (pro-
duced by STMicroelectronics) performs an 8x8 multizone ranging (64 acquisi-
tions per measurement) with a FoV of 65°diagonal square and a maximum
detection range of 400 cm. ToF sensor is mounted on a P-NUCLEO-53L5A1
equipped with a ArduinoUnoR3 board. (FONTE VL53L5CX E IMMAGINE
https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx) (FONTE P-
NUCLEO-53L5A1, IMMAGINE DAL DATASHEET https://ie.rs-online.com/web/p/sensor-
development-tools/2300082)

Figure 3.7: VL53L5CX Time-of-Flight sensor

3.6 Intel RealSense Tracking Camera T265

Is a small and low power consumption camera design for tracking, equipped with a
V-SLAM algorithm (Simultaneous Localization and Mapping) that using camera
vision and inertial measurements is able to track an unknown environment with
high precision.
In this thesis project this camera is used for the visual odometry of the robot.
(FONTE https://www.intelrealsense.com/tracking-camera-t265/)

21

Robot Hardware

Figure 3.8: P-NUCLEO-53L5A1 Proximity Evaluation Board

Figure 3.9: Intel RealSense Tracking Camera T265

22

Robot Hardware

3.7 OAK-D camera
Luxonis OAK-D is made of three sensors: two grayscale cameras on both sides, and a
color camera in the center. It has embedded AI algorithm to perform 2D and 3D ob-
ject tracking using the grayscale cameras, and object detection with the color one in
the center. This camera is used for the social navigation of the robot (not developed
in this thesis work). (FONTE https://shop.luxonis.com/collections/usb/products/oak-
d)

Figure 3.10: OAK-D camera

23

Chapter 4

Environment and sanitation
procedure analysis

The first step for a path planning algorithm development is focusing on where
robot will move around, in particular, the plant of the environment, how different
rooms are linked between theme, the presence of doors and other obstacles in the
path, and the material they are made of.

The materials play a very important role because in many cases robots use LiDAR
sensor to detect obstacles around them, but if for example doors are made in glass,
just like the case of this thesis work, LiDAR cannot see it (difficult also with a
camera), so the robot does not know if there is an obstacle in front of it or not.
On the contrary, a sensor that could detect transparent obstacles is the Time Of
Flight sensor, but the range of its measures is more limited, and for this reason the
navigation of the robot from the current position to the destination room must be
split into more intermediate destinations that coincide with the exits/entrances of
the room where a door could prevent the passage.

The aim of the robot is to sanitize the air in the different rooms of the envi-
ronment. To optimize this task, it was tried to carry out the sanitation by making
the robot move in different points of the room, measuring the quantity of CO2 in
the air and activating the fan of the sanitation device at different speeds based
on those measurements. This technique could help to perform a more efficient
sanitation of the environment, spending more resources where more needed.

24

Environment and sanitation procedure analysis

4.1 Points and Exits
To manage this two main features of the robot’s path planning two types of goal
pose are considered:

• Sanit Points (in short Points): these points are the goal poses of the path
planning algorithm. They are used to move the robot in one room in order
to perform the sanitation process in more than one spot to ensure a more
homogeneous air sanitation. In the algorithm these points are also responsible
for the selection of the destination room that has to be sanitized;

• Exits: intermediate goal poses that are in the proximity of an exit from one
room to another one. Exits are always present in pairs distributed in two
adjacent rooms that can communicate between them.
If there are two rooms, A and B, the notation for the Exits is: Exit A.B to
indicate the exit from room A to room B, and Exit B.A for the opposite. Exit
points number is equal to the double of the number of accesses between rooms.

Figure 4.1: Points and Exits

4.2 Plant configurations
To explain better the logic and the ideas behind this path planning algorithm it
is needed to introduce the concept of Room. In this thesis context, the meaning
of Room is similar to the architectural one but does not coincide with it. It is a
logical space in the working environment in which the robot has to complete a task.

25

Environment and sanitation procedure analysis

Rooms aren’t necessarily separated by walls, more Rooms can coexist in the same
room of a plant, or one Room can be inside another one.

Figure 4.2: Two Rooms
equivalent to architectonic
rooms

Figure 4.3: Two Rooms
in a single architectonic
room

Figure 4.4: A
Room inside another
one

4.2.1 Single corridor and multiple rooms
The first idea of a map was a big corridor (Room 0) in which is located the spot
for the battery recharging and has no Sanit Points inside.
Room 0 is connected to all the other rooms by only one access and these rooms
don’t communicates directly between them, so there are two Exits for each room
(Room 0 to Room X and Room X to Room 0).
This kind of plant is the simplest, as every time a room needs to be sanitized the
planning is a fixed pattern (assuming battery recharging is not needed):

1. Navigate to the Exit 0.X

2. Check if the door is open

3. If open:

a. Enter the Room X and perform sanitation
b. Navigate to the Exit X.0
c. Check if the door is open

• Enter the Room 0

4. Go to the next exit

26

Environment and sanitation procedure analysis

(SOSTITUIRE L’ELENCO CON L’IMMAGINE DEL FLOWCHART)

In this case, if a door is closed, only two cases are possible:

• robot is blocked in one room and has to wait for the door to be open again;

• robot is in the corridor and skip to the next room;

Having to manage only this two cases is very simple from the logical point of view
but it is not enough when the plant’s shape become a little bit more complex.

Figure 4.5: Corridor plant configuration

4.2.2 Communicating rooms
If in the plants there are some rooms that can communicate directly with others
in addiction to Room 0, or that can communicate with other rooms but not with
Room 0, the planning became more complex.

Is possible to notice that with this configuration, to reach the destination room,
the robot may pass through other intermediate rooms without sanitize them, and
the possible paths to reach the destination can be many.
In addiction if a door is closed doesn’t prevent the robot to reach the destination
because another path could be available, due to this it will become necessary to
recompute the path including the information about the status of that closed door.

A possible solution to solve this problem is using a node graph that represents

27

Environment and sanitation procedure analysis

Figure 4.6: Complex plant with communicating rooms

the Points-Exits network and the Dijkstra algorithm to compute the shortest path
from the start node to the destination node.

4.2.3 Multiple exits
In some plants could append that between two room there be more than one exit.
In this case occurs to use a variable as an exit index that identifies uniquely the
exit.
Therefore, if between Room A and Room B there are n exits, there will be 2n
exit poses, so Exits will become vectors: Exit A.B(i) and Exit B.A(i), where
i ∈ N : i ∈ [0, n− 1], is the exit index.

4.3 Navigation issues
In the most general plant type, with many rooms connected between them, eventu-
ally by more than one door, three main problems can arise which can interrupt the
working schedule of the robot:

• one navigation warning case: this situation is verified when all the remain-
ing not yet sanitized rooms are not reachable from the current robot position.
It will try to reach these rooms for a maximum number of attempts, once

28

Environment and sanitation procedure analysis

Figure 4.7: More than one exit between two rooms

this is exceeded, the robot will return to the charging station and then the
sanitation schedule will be restarted. It is not a critical situation because the
robot can still reach other rooms and the recharging position.

• two navigation alarms cases: these are the only two navigation cases in
which the robot cannot proceed with his tasks:

1. robot is stuck in a room: robot cannot reach any other destination
because it is closed inside one room and cannot exit from any of the doors.
This navigation alarm includes also the warning situation.

2. the battery recharge position is not reachable: the robot needs to
recharge its battery because the SOC is below a certain threshold but the
pose where robot can recharge is not reachable.

In any other case, is possible to skip the current destination, trying to reach it
again in another instant, an proceeding with the next one.

4.3.1 Robot stuck in a room
This situation is verified when a robot has ended a task in one room (battery
recharging or air sanitation) and when the algorithm computes the next destination
room, none of them is reachable.
More precisely this issue comes out when any point outside the room where the
robot is located, is not reachable due to the combination of closed and open doors.
Anyway, it does not represents a critical problem because robot can wait until a
door of the room will be again open

29

Environment and sanitation procedure analysis

Figure 4.8: Example of navigation warning situation

Figure 4.9: Robot stuck in one room

4.3.2 Battery recharge position unreachable
When the battery voltage goes under a certain threshold level, the path planning
algorithm sets as next destination the recharging battery pose.
When this situation occurs but the destination is not reachable, it is the most

30

Environment and sanitation procedure analysis

dangerous navigation issue because the robot could shout down and it will not be
able to move anymore, being also an obstacle for people in the office.

Figure 4.10: Low battery and battery recharge position not reachable

4.4 Sanitation planning
Regarding the sanitation task of the robot, it was said before that the aim of
this process is to sanitize a room by filtering and purifying the air in one or more
points, based on the size of the room and how much people use it. In the actual
version of the algorithm, the Sanit Points of the rooms that have to be sanitized
are predefined, but also other smarter methods for automatic Points selection could
be implemented (MORE OF THIS IN FURTHER IMPROVEMENTS).

4.4.1 Sanitation schedule
When the robot enters in a room for the sanitation procedure, it has to move on
each Sanit Point. Once it reaches one of them, it measures the CO2 level in that
point and, if needed, turn on the fan to a velocity level based on the measure
and keeps it until a new CO2 measure is below a certain level (SEE FURTHER
IMPROVEMENTS). This task will go on until all the Points are sanitized (SEE
CHAPTER 6.3) or when the robot continues to read high CO2 quantities but
reaches the maximum number of sanitation cycles of the room and it has to attempt

31

Environment and sanitation procedure analysis

the procedure again in another moment.
It may happen that a rooms takes a lot of attempts to be sanitized, so there will
be also a maximum number of attempts for which a room can be selected from the
algorithm as the next destination.

32

Chapter 5

Network architecture

5.1 Layers
The path planning algorithm architecture is composed by two main layers:

• Path planning algorithm: developed in this thesis work, that manages all
robot’s behaviours and tasks and select all the destination and intermediate
poses that the robot must reach using a node graph.

• NAV2 Navigator Server: used for the navigation inside the environment,
taking in input the Schedule Node goal pose and monitoring the navigation
and providing feedback, using a known map of the environment.

The path planning algorithm select the destination of the robot based on its
current task and status, and then computes the path to reach it, creating a sequence
of poses that the robot must follow.
It performs all this computations using a node graph built on the basis of the
environment map.

The NAV2 Navigation Server is responsible for moving the robot inside a known
map, using the behavior tree "NavigateToPose" that uses two action servers: "Com-
putePathToPose" and "FollowPath".
The first one compute the list of poses that let reach the destination trough the
shortest path (similarly to what the path algorithm does), getting as input the
starting and the destination pose of the robot. In this case there is a set of destina-
tion nodes that is provided by the path planning algorithm.
The second is responsible for the navigation from one pose to the next in the list
previously computed, checking if the pose is correctly reached, and for the motion
control of the robot.
Both this action server are dynamic because the path can be changed if some

33

Network architecture

Figure 5.1: Layers structure

obstacle is detected during the navigation.

In a certain sense the path planning algorithm and NAV2 ComputePathToPose
work in the same manner but the first operates on a higher level, basing his compu-
tations on the node graph, instead the second works on a lower level basing directly
on the costmaps.

5.1.1 Map
The map is a fundamental components for the navigation. It consists of two files:

1. yaml file: contains different map information:

• image: is the path to the pmg file.

34

Network architecture

• resolution: indicates the resolution of the map [meters/pixel].
• origin: used to locate the map respect to a fixed 2D reference frame,

providing x, y and yaw of the lower-left pixel of the map respect to that
frame.

• free thresh: is the threshold level that determines if a pixel should be
considered completely free or not. If the occupancy probability of a pixel
is less than this threshold it will be considered as free.

• negate: flag that inverts the gray scale evaluation of occupancy probability.

2. pmg file: this file contains an image in gray scale(white for completely free
pixels, black for completely occupied pixels, and grey for unknown). Every
pixel’s gray scale level indicates the occupancy probability (or free probability
if negate is equal to 1) of that pixel.

(INSERIRE IMMAGINE DEL FILE PMG) (FONTE: https : //wiki.ros.org/mapserverY AMLformat)

Based on these files, NAV2 Navigation Server is able to derive the global costmap
for navigation.

5.1.2 Node graph
In order to respect the navigations features expressed in the previous chapter
(INSERIRE RIFERIMENTO AL CAPITOLO 4.1), a topological map, in particular
a node graph, has been implemented, containing three different types of nodes:
Battery node, Points nodes, Exit nodes.

Battery node

This one is the only node present in the Room 0, that is a fictitious Room inside
the Room 1. The battery recharging node represent the starting pose of the robot,
that is also the origin of map’s reference system.
There are two conditions for the robot to return to this node once it has started:

• robot ended the sanitation schedule and has to wait to restart it again.

• the battery SOC is below the limit threshold and it is necessary to recharge.

Once on this node, the battery recharging process starts and the robot restarts
again his schedule when the battery SOC is higher than a full charge threshold.
The links rule for this node is only one:

1) the battery recharging node must be linked to all nodes of Room 1.

(IMMAGINE BATTERY NODE E COLLEGAMENTI)

35

Network architecture

Point nodes

These nodes represent the Points of the map in the node graph. They are located
in each room that must be sanitized and their number is variable from one room
to another. Point nodes are used to select the final destination of the robot, in a
first moment to choose which is the next room to sanitize, and then, during the
sanitation process, to select the next Point in the room where measure the CO2
level and, if needed, turn on the fan.
The links rule for this type of nodes is:

1) each Point node must be connected to all the other nodes of the same room
(also to the battery recharging node in the case of Room 1).

This rule is needed for the room sanitation, in order to move the robot from one
Point to the others, and let the robot moving to the exit of the next room of
the path at the end of the sanitation process. (IMMAGINE POINT NODE E
COLLEGAMENTI)

Exit nodes

Due to the need of perform a measure with a ToF sensor on the door position.
The links rules for this type of nodes are:

1) each Exit node must be connected to all the other nodes of the same room (also
to the Battery node in the case of Room 1).

2) each Exit node must be connected to the corresponding Exit node of the adjacent
room.

The first rule is to allow the robot to move towards a Point in order to start the
sanitation process if the room is the one to be sanitize. Or, if not, the robot
can go from an Exit to the next one continuing its path. The second one let the
robot moving between two different rooms, and make possible simulating the door
closure by cutting the link between the two Exits. (IMMAGINE EXIT NODE E
COLLEGAMENTI)

5.2 Room class and data structure
In order to pass the goal pose to NAV2, the Schedule Node must be provided with
a data structure containing all the useful information about the different rooms of
the environment and the coordinates of the map’s points of interest (Points and
Exits).

36

Network architecture

A data structure is implemented in a Python class called "Room", to keep track
of room state variables and collect pose coordinates and quaternion of Points and
Exits. An object of this class is created for each Room on the map and than, a
unique Room list rooms is created, which contains all the Room objects.

inputs list data type
height float16
length float16
width float16

num people uint8
num points uint8

max sanit tries uint8
max attempts uint8

priority float16
num rooms uint8

Table 5.1: Room class inputs

5.2.1 Room Points and Exits
It has already been discussed what Points and Exits are and their importance
path planning and robot navigation. These nodes, in addition to having a logical
meaning for the algorithm, must be located in precise points within the map in
order to be sent to the robot as destination goals. The generic data structure of a
Room that contains Points and Exits coordinates and quaternion parameters are
the Room class parameters x, y, z, q0, q1, q2, q3 . Each of these parameters is
implemented as a float16 list of lists, as can be seen from Table 5.3. In the first
sub-list of each list are contained the pose coordinates of the Points of the room.
After this one there are other num rooms− 1 lists, one for each Room of the map.
These lists contain the pose parameters of the Exits between the RoomX and all
the others. Obviously in every i-th struct, the Exit i.i field is left empty.

For algorithm implementation, Room0 was meant to be a fictitious Room in-
side Room1 (no Exit nodes for Room0) in which it is located only the Battery
Recharge node. For this reason the Points fields of the Room0 coordinates data
structure contain only one element, and all the Exit fields are empty (5.4).
With this data structure implementation, taking into consideration the struct of a

generic Roomi, to access a coordinates parameter, the y for example, of the Exit
i.j(k) between the Roomi and another generic Roomj, the command to use will
be rooms[i].y[j][k] ,

37

Network architecture

variable list data type description
height float16 room height
length float16 room length
width float16 room width

num people uint8 number of people inside the room
doar flag bool 0: door is closed

1: door is open
num points uint8 number of Sanit Points oh the room

x float16[] x coordinate list of room’s Points & Exits
y float16[] y coordinate list of room’s Points & Exits
z float16[] z coordinate list of room’s Points & Exits
q0 float16[] quaternion q0 list of room’s Points & Exits
q1 float16[] quaternion q1 list of room’s Points & Exits
q2 float16[] quaternion q2 list of room’s Points & Exits
q3 float16[] quaternion q3 list of room’s Points & Exits

points sanit flag bool[] flag list for sanitation tracking
points order uint8[] list of the Points in order of sanitation

0: not entered in the room
room sanit flag uint8 1: room non successfully sanitized

2: room successfully sanitized
attempts uint8 attempts performed to sanitize the room

max attempts uint8 maximum attempts to sanitize the room
sanit tries counter uint8 counter for room sanitation cycles tried

max sanit tries uint8 max room sanitation cycles for attempt
priority float16 default priority in destination selection

reachable flag bool 0: room not reachable
1: room reachable

Table 5.2: Room class parameters

Due to the path planning algorithm structure (node graph - NAV2 navigation), it
could happen that based on the map rooms shape, node graph links and NAV2
computed path may not coincide because NAV2 computes always the shortest path
to connect current position and goal, without being aware of the possible presence
of doors along the route.
For this reason can be useful to divide an area in two or more Rooms instead of
one, using their fictitious and coincident Exit nodes as intermediate destinations of
the entire path (MORE OF THIS IN FURTHER IMPROVEMENTS, LA PARTE
DOVE SI PARLA DELLA MODIFICA ALLA COSTMAP INVECE DI USARE

38

Network architecture

Points Exit X.1 . . . Exit X.m
x [x0, . . ., xp] [x0, . . ., xe1] . . . [x0, . . ., xem]
y [y0, . . ., yp] [y0, . . ., ye1] . . . [y0, . . ., yem]
z [z0, . . ., zp] [z0, . . ., ze1] . . . [z0, . . ., zem]
q0 [q0,0, . . ., q0,p] [q0,0, . . ., q0,e1] . . . [q0,0, . . ., q0,em]
q1 [q1,0, . . ., q1,p] [q1,0, . . ., q1,e1] . . . [q1,0, . . ., q1,em]
q2 [q2,0, . . ., q2,p] [q2,0, . . ., q2,e1] . . . [q2,0, . . ., q2,em]
q3 [q3,0, . . ., q3,p] [q3,0, . . ., q3,e1] . . . [q3,0, . . ., q3,em]

Table 5.3: RoomX Points and Exits data structure

Points Exit X.1 . . . Exit X.m
x [xbr] [] . . . []
y [ybr] [] . . . []
z [zbr] [] . . . []
q0 [q0,br] [] . . . []
q1 [q1,br] [] . . . []
q2 [q2,br] [] . . . []
q3 [q3,br] [] . . . []

Table 5.4: Room0 data structure

IL GRAFO). (INSERIRE IMMAGINI DI ESEMPIO)

5.2.2 Nodes links
In order to know how Points and Exits nodes are linked in a room and between
different rooms, a n×n matrix has been implemented, where n is the total number
of nodes of the graph. Calling this matrix W , it is made by the sum of two matrices:

W = A + E (5.1)

In A matrix, each element aij indicates the distance between the i-th and the j-th
nodes belonging to the same Room, where i is the row index and j the column
one. If two nodes are not linked, the correspondent matrix element is equal to 0.
Also all the elements on the main diagonal of the matrix are set to 0 because each
aij with i = j is the link from the i-th node to itself.
If there is no difference in the direction of travel of the link between one node and
another, it means that:

aij = aji , i, j ∈ N : i, j ∈ [0, n], i /= j

39

Network architecture

In other words, with these conditions the matrix becomes a symmetric one.
Then, analyzing more in deep how nodes are linked, the first rule of all nodes says
that all nodes of the same Room are linked together (also the Battery recharge
node in case of Room0 and Room1), this leads to the fact that Matrix A is split into
m = num rooms− 1 (-1 because Room0 becomes an additional node in Room1)
square symmetric sub-matrices Ai (i ∈ N : i ∈ [1, m]) and their dimension ni is
given by the sum of Points and Exits of the room (+1 in the case of Room1). These
sub-matrices have all the elements on the main diagonal equal to 0.

A =



è
A1

é
0n1×n2 . . . 0n1×nm−1 0n1×nm

0n2×n1
è
A2

é
. . . 0n2×nm−1 0n2×nm

...
0nm−1×n1 0nm−1×n2 . . .

è
Am−1

é
0nm−1×nm

0nm×n1 0nm×n2 . . . 0nm×nm−1
è
Am

é


(5.2)

Ai =


0 ai1,2 . . . ai1,ni

ai2,1 0 . . . ai2,n1...
aini,1 aini,2 . . . 0

 (5.3)

The elements of matrix E instead are the distances between the relative Exits of
communicating rooms. In particular, two generic elements, eij and eji, symmet-
rical with respect to the main diagonal of the , is equal to dij if i-th and j-th are
Exit A.B(k) and Exit B.A(k) nodes (in other words i and j are associated to same
exit between two Rooms). Otherwise eij = eji = 0. It is possible to notice that
also this matrix is symmetrical (Ei.j = ET

j.i) and presents only elements equal to 0
on the main diagonal.

E =



0n1×n1
è
E1.2

é
. . .

è
E1.m−1

é è
E1.m

éè
E2.1

é
0n2×n2 . . .

è
E2.m−1

é è
E2.m

é
...è

Em−1.1
é è

Em−1.2
é

. . . 0nm−1×nm−1
è
Em−1.m

éè
Em.1

é è
Em.2

é
. . .

è
Em.m−1

é
0nm×nm


(5.4)

Also matrix W , that is the sum of matrices A and E, is a symmetric matrix with
all 0 on the main diagonal.

In the code, W takes the name weights , and is actually provided as input to

40

Network architecture

the path planning algorithm, with the map and Points and Exits poses. In the case
of the simulations that will be shown later, distance dij between two nodes i and j,
are computed summing their coordinates absolute differences in the map reference
frame:

dij = |(xi − xj)|+ |(yi − yj)| (5.5)

This is due to the possible presence of walls and other fixed obstacles that prevent
the robot from proceeding in a straight line between two points, so the distance
between them will not simply be the minimum one. But also the method presented
in equation 5.5 does not work in general, because if fore example two nodes are
linked by a ’S’ shape corridor the distance between them will be composed by the
sum of each linear segment (MORE OF THIS IN FURTHER IMPROVEMENTS).

More information are provided by four lists:

• room_id : the i-th element of this list is the Room in which is contained the
i-th node.

• exit_id : the i-th element of this list is the Room that the i-th Exit node
points to. If the a node is not an Exit, his correspondent value in this list is
-1.

• index : this list is used to assign an index to a Room points and to eventual
multiple Exits between two Rooms, differentiating Points and Exits because
Points indexes are listed from 0 to num points-1, instead Exits indexes goes
from -1 to -num exits.

• links : the i-th element of this list is 1 for Exit nodes that has a door, 2
for Exit nodes that has not a door (it is possible to avoid the checking door
procedure with the ToF sensor), and 0 if a node it is not an Exit.

5.3 ROS2 Nodes Network and Schedule Node
The Schedule Node is the main ROS2 node of the entire network. It is the behaviour
tree of the algorithm, where path is computed, and that handles door checking and
sanitation procedures. It takes information from the ToF Publisher Node to know
if a door is open or closed and in this last case recumpute the path. It can also
communicate with the Sanit Action Server, because the Sanit Action Client is the
Schedule Node itself, getting data from the CO2 measures and, thanks to them,
the sanitation scheduling is computed.
Schedule node is also responsible for all robot movements, in fact it sends the
destination coordinates to the NAV2 Navigation Server and gets feedback from it.

41

Network architecture

Figure 5.2: Nodes network

5.4 Sanitation Action Service
The Sanit Action Server is the network component responsible for handling the
sanitation task. This server communicates with the Arduino Uno board attathed
to the CO2 sensor by serial port, and also with the Sanit Action Client that is
the Schedule Node, communicating with a custom Action Service, providing to it
feedback measurements anf final sanitation results.

5.4.1 CO2 sensor data acquisition
TheCO2 measurements are performed by the CO2 sensor mounted on an Arduino
Uno board that communicates with the Sanit Action Server through serial port.
The simplified algorithm of the Arduino code of this sensor is implemented in
Algorithm 1.

-if (serial.read() == 10):

42

Network architecture

Algorithm 1 Algorithm implemented in the loop section of the Arduino code of
the CO2 sensor.

1: if co2_lvl >= 1000 then
2: if co2_lvl < 1250 then
3: fan_lvl = 15
4: else
5: if co2_lvl < 1500 then
6: fan_lvl = 16
7: else
8: if co2_lvl >= 1500 then
9: fan_lvl = 17 serial.print(-fan_lvl)

10: while (co2_lvl >=1000):
11: co2_lvl = co2_reading()
12: serial.print(co2_lvl)
13: sanit_need_flag = 1 else: sanit_need_flag = 0
14: serial.print(sanit_need_flag)
15: reading ← serial.read()
16: if reading == "" then
17: procedure Adam(α, β1, β2, f, θ0)
18: ▷ α is the stepsize
19: ▷ β1, β2 ∈ [0, 1) are the exponential decay rates for the

moment estimates
20: ▷ f (θ) is the objective function to optimize
21: ▷ θ0 is the initial vector of parameters which will be opti-

mized
22: ▷ Initialization
23: m0 ← 0 ▷ First moment estimate vector set to 0
24: v0 ← 0 ▷ Second moment estimate vector set to 0
25: t← 0 ▷ Timestep set to 0
26: ▷ Execution
27: while θt not converged do
28: t← t + 1 ▷ Update timestep
29: ▷ Gradients are computed w.r.t the parameters to

optimize
30: ▷ using the value of the objective function
31: ▷ at the previous timestep
32: gt ← ∇θf (θt−1)
33: ▷ Update of first-moment and second-moment esti-

mates using
34: ▷ previous value and new gradients, biased
35: mt ← β1 ·mt−1 + (1− β1) · gt

36: vt ← β2 · vt−1 + (1− β2) · g2
t

37: ▷ Bias-correction of estimates
38: m̂t ←

mt

1− βt
1

39: v̂t ←
vt

1− βt
2

40: θt ← θt−1 − α · m̂t√
v̂t + ϵ

▷ Update parameters
41: end while
42: return θt ▷ Optimized parameters are returned
43: end procedure

43

Network architecture

Figure 5.3: Sanit Action Server

- co2_lvl = co2_reading()
- serial.print(co2_lvl)
- if co2_lvl >= 1000):
- if (co2_lvl co2 < 1250):
- fan_lvl = 15
- elif (co2_lvl < 1500)
- fan_lvl = 16
- elif co2_lvl >= 1500:
- fan_lvl = 17
- serial.print(-fan_lvl)
- while (co2_lvl >=1000):
- co2_lvl = co2_reading()
- serial.print(co2_lvl)
- sanit_need_flag = 1 -else: - sanit_need_flag = 0 -serial.print(sanit_need_flag)

5.4.2 Sanit Action Server and fan control
For the sanitation task a custom ROS2 Action Service was created. This custom
Action has the three fields:

• goal: int32 start , is the threshold relative CO2 level in the air in ppm (part
per million) sent by the Sanit Action Client. When a sanitation process is
started, it end when the sensor read a measurement below that threshold.
On the current code this threshold is equal to 1000ppm, because is the value
of CO2 relative quantity in an occupied indoor environment above which air
begins to be unpleasant for people and breathing it for prolonged periods can

44

Network architecture

cause problems (FONTE https://www.kane.co.uk/knowledge-centre/what-
are-safe-levels-of-co-and-co2-in-rooms).

• result: result field contains two int32 variables. The first is sanit_need_flag
(can also be a bool variable) is a flag that inform if the sanitation process
required the fun intervention (flag equal to 1), or the CO2 level was already
under the threshold and sanitation was not required (flag equal to 0). The
second is final_measure , the final measurement of the CO2, under the goal
threshold.

• feedback: int32 start , are the different measures performed by the sensor
and send from the server to the client.

From the serial port, the Sanit Action Server node receives also the fan speed
commands, that it forwards through the /action_topic , to the pic4serial node,
implemented in PIC4SeR, that handles fan commands and other functionalities.

first measurement fan speed level sanit_need_flag
x < threshold 1 0 0

threshold 1 ≤ x ≤ threshold 2 1 1
threshold 2 < x ≤ threshold 3 2 1

x > threshold 3 3 1

Table 5.5: Fan control lows

5.5 ToF Publisher Node
Information from the ToF sensor are provided by a publisher node called ToF
Publisher, that communicates with the Schedule Node by an int64[] data type
topic /tof_topic . This node communicate with the sensor through serial port
connection with an Arduino board.

5.5.1 Data acquisition
For each sensor acquisition, the node takes 64 values one by one from the serial
communication. After 64 values the node know that a measurement has ended and
start a data processing procedure. The 64 values are inserted in a 8×8 array matrix.
Then in the ToF Publisher Node the average of these 64 elements is computed for
four successive group of measurements, and for these for avarages is compute again
the avarage and the maximum difference between this values. If certain thresholds
are respected on the final average and on the maximum difference, the door will be
considered opened.

45

Network architecture

Figure 5.4: ToF Publisher Node

5.5.2 Exit-Door minimum distance

The task of checking the opening of the doors needs some considerations. Due to
NAV2 tolerances in considering a goal pose successfully reached, 0.25m for the
position part of the goal and 0.25rad for the orientation one, it must be computed
a maximum distance where the Exit node can be located respect the door position.
In any case this distance must be less than 4m that is the sensor maximum mea-
surement range.
These tolerances create a triangular tolerance area and to be sure that the ToF
measurement range is completely on the door surface, the base of this triangular
shape must be contained inside the door horizontal extension. To compute the
minimum distance from the Exit node and the corresponding door, we can imagine
a reference system with origin in the Exit node, with the y axis contained in the
ground plane and the x axis perpendicular to the door plane and contained in
the plane, perpendicular to the ground plane, that divide in two halves the door
(Figure 5.5).
The intersection between the x axis and the door is the point M(xm,0), L and L′

are the two extremes of the door (LL′ is the door width, LM = ML′). The origin
of the reference frame is also he center C(0,0) of the circumference of radius R equal
to the positional tolerance of NAV2. The reference orientation of the Exit node
has the same direction of the x axis. The ToF direction during the measurement
can be misaligned of an angle β equal to angular tolerance of NAV2.

If the purpose is to obtain that the entire measure range of the ToF is projected on
the door surface, the worst case is when the robot position (assuming that the ToF

46

Network architecture

Figure 5.5: Exit node - door minimum distance computation

sensor position coincides with the robot center) is on the tolerance circumference
and the angular error is the maximum one. The biggest error is obtained when
the robot is on the tangent point between the tolerance circumference and the
maximum misalignment tolerance direction (circumference of center C and radius
R and segment PA, where P is the tangent point). From this position the external
margin of the ToF sensor measurement has an ulterior angle drift of α that is half
the measurement angle range width.
More details about the computations inside the Appendix (RIFERIMENTO ALLA
APPENDIX)

5.6 Battery Publisher Node
(IMMAGINE ROS NETWORK CON FOCUS SU BATTERY NODE) This node
is not been already implemented, but is very similar to the ToF Publisher Node,
the only difference will be the source for the battery voltage measures that very
probably will not be provided through serial port but another source.
Then the Battery Publisher Node will publish the measurements on the /battery_topic ,
from where the Schedule Node can read them.

47

Chapter 6

Schedule Node algorithm

The Schedule Node is the main node of the network. Inside it there are all the
fundamental logics for navigation and robot tasks management. It works as a
four-states machine that handles all the different situation the robot can faces
during his operating time. Inside the Schedule node is declared the Room python
class for data structure, and a lot of variables, flags and methods.
The main method, called main_program_callback is the responsible for the states
switching using a status flag variable for each state. These state are Navigation
management state, Door management state, Sanitation management state and
Battery management state. It also provides the destination node coordinates to the
NAV2 Navigation Server. For this purpose there are four indices variable:

• current_room : is the variable that keeps track of the current room in which
the robot is.

• next_room : this variable contains the room in which is located the next node
in the schedule that the robot must reach.

• j : used to choose the sub-list in the parameters lists, so to differentiate the
nodes set (Points, Exit X.1, Exit X.2, ..., Exit X.m). j must be 0 if the next
node is a Point or, it is a Exit, it must be equal to the Room number of the
one that communicates with the current Room X through that door. For
example if the next node of the path is the Exit 2.3 and the current Room is
Room2, j must be equal to 3.

• k : used to choose the node inside the j-th sub-list. This variable allows to
choose the desired node inside the Points group, or if an Exit has more nodes,
also the correct Exit nodes.

When a new destination room is found, a new sequence struct is computed. This
data struct contains the list of rooms from which the robot need to pass to reach

48

Schedule Node algorithm

Figure 6.1: Schedule node main method scheme

the destination. An example of the sequence struct is provided in Table 6.1.
The selection of the temporary destination is made using the i index variable,

room_id exit_id index node number
2 0 1 12
3 2 1 15
4 3 0 19

Table 6.1: Sequence data structure example

that starts from the value len(sequence)-1 and decrement by 1 every time a mid
destination is reached and there are not closed doors along the path. Referring to
the example in Table 6.1, the struct is read by the bottom to the top, in this case
the first node where the robot must go is the the node 19, the Exit 4.3(0) node.
The next one is node 15, Exit 3.2(1) node (the 1 in the parenthesis means that
there are more entrances between the two rooms and the algorithm chooses the

49

Schedule Node algorithm

one with index 1). The last node is the destination of the path, it is the Point(1)
in Room2, and once there the robot will start the sanitation procedure. It possible
to notice that the first row of sequence will always contains a Point (or Battery
recharge node), because only Points can be a destination for the path, in fact the
exit_id of this row will be always 0 because it as a Point, not an Exit. All the
others rows contain an Exit nodes of passage rooms.

Each state function block has the same structure divided in two main parts,
each part is triggered by a flag (flag1 for the first part, and flag2 for the second
one):

1. this part of the block set flag1 equal to 1 in order to prevent the contin-
uation of the execution of main_program_callback, allowing the execution
of the associated callback. This part also sets the flag2 to 0, so when the
main_program_callback will be executed again, a repetition of the callback
function is avoided until it is needed again.
Once the callback is executed, after its functional part, it sets again to 0
the flag1, so when main_program_callback is performed another time, the
algorithm proceeds with the next part of the functional block.

2. if flag1 is equal to 0, the second part of the block is executed. Inside this
part, tacking as input the results provided by the callback (information about
the door opening for the Door management state, or if the navigation is
successfully ended or not for the Navigation management state, and so on...),
the functional block performs its operations. At the end of this part, flag2 is
again initialized to 1 and flag1 to 0, allowing the functional block to execute
the callback again.

At the end of the main_program_callback, if everything worked as intended and
no critical navigation situation arises, there the computation of indices variables
new values that has to communicated to NAV2 to follow the computed path.

6.1 Navigation phase
The tasks of this functional block are sending the pose coordinates of the destination
node to NAV2 and monitoring feedback from the Navigation Server in order to
understand if the navigation succeeded or failed. flag1 and flag2 of this block are
in_nav_flag and task_compl_flag . task_compl_flag is set again to 1 when the

main_program_callback reaches its end. This is due to the fact that a navigation
should be performed only when the robot task on the current node is ended.

50

Schedule Node algorithm

Figure 6.2: Functional block scheme example

At the end of the navigation phase, there is a dedicated section for the updating of
the room variables current_room and next_room.

6.1.1 Methods and Callbacks
The method responsible for sending the coordinates is reach_a_pose . Inside this
function the coord variable is defined, of type PoseStamped , and its parameters x,
y, and the others are filled with the command coord.x = rooms[next_room].x[j][k] ,
coord.y = rooms[next_room].y[j][k] , ..., then the coord avriable is sent as goal to
NAV2. After this, the two flags are setted as in Figure 6.3.

Then, when the in_nav_flag is on, the nav_feedback_callback , triggered by the
/odom topic, checks from the robot_navigator method (deveolped in PIC4SeR)
the navigation status (succedeed, failed, unknown) provided from the NAV2 Navi-
gation Server. Every time that navigation fails, the goal is sent another time, until

51

Schedule Node algorithm

Figure 6.3: Navigation phase

the nevigation result is "succedeed".

It could happen that a goal is aborted by an intrinsic error of NAV2 and it
is impossible to go on with navigation. For this reason another timer callback has
been created, nav_timeout_callback , that every time it is executed, is in_nav_flag
is on, increments a counter. When the counter reaches its maximum value the
callback cancels the current goal and sends a new copy of the goal.

6.2 Door opening check
The Door opening check section of the algorithm has the task to execute the
tof_callback in order to get the ToF sensor measure and understand if the door in
front of the robot is open or not. To enter this section of the main_program_callback
the following condition must be respected: j > 0, that means the robot is actually
on an Exit node. Also the this block has the usual structure, but in this case, the
first part of the block could be skipped if the connection between the two Exit
nodes is without a door (Figure 6.4), because in that case there is no need to
measure a distance.

After retrieving the information of the door opening, there are two possibilities:

52

Schedule Node algorithm

Figure 6.4: Door opening check phase

• door is closed: the current path has cannot be followed so it is necessary to
recompute the path to the destination room. In this case, in a copy of the
weights matrix, updated_weights , used for Dijkstra algorithm computations
(VEDERE SOTTOCAPITOLO DEL new_next_dest_meth), the wij and wji

elements (i and j are the nodes of the relative closed door) are substituted
with 0 interrupting the connection between the two nodes, so the algorithm
can recompute the path knowing that in that point the nodes network is
interrupted.

• door is open: the navigation continues normally, the i index of the sequence
struct is decremented by 1 and the i-th node of the sequence is passed as new
destination to NAV2. Also in this case could be necessary to recompute the
path because if the battery needs to be recharged (battery SOC < threshold),
but without updating links on the updated_weights matrix.

After a while, substituted link must be set to the original value contained in weights,

53

Schedule Node algorithm

otherwise the robot will never pass again from that door. To do this another timer
callback was implemented. The weights_update_callback uses a weights_counter
matrix, that has the same dimension of weights and updated_weights, but inside
have all zeros. When a link is canceled in updated_weights, the correspondent
element in weights_counter is set to a max counter number. Every time the
weights_update_callback is executed, counters different from 0 are decremented until
they return to 0. When this happen, the correspondent elements of updated_weights
are restored to the original values of the weights matrix and algorithm can use
that link again for the path computation. (IMMAGINE MATRICI weight update
e counter)

6.3 Rooms sanitation
This section of the algorithm has to handle all sanitation tasks: CO2 measurements
and eventual fan activation for sanitation. Also this block is implemented with the
same structure of the others, even if is not strictly requested because the Action
Service communication already has a protocol where client and server wait for the
responds without going on with the script.

6.3.1 Sanitation process
. When the robot arrive on the node indicated in the first row of sequence struct,
current_room > 0 and j = 0 conditions are respected, so the algorithm knows that
a sanitation procedure has to start (the first condition is needed to differentiate
the sanitation procedure to the battery recharge one, performed in Room0). For
the sanitation task, the following Room class parameters and variables are needed:

• Room parameter points_sanit_flag : a list of dimension equal to the Room
num_points. Each list element represents the sanitation condition of the respec-
tive Point. When the robot is on the Point node a, after the sanitation process,
the correspondent points_sanit_falg[a] is set to 1. If the sanit_return_code of
the Sanit Action Client is equal to 1, the points_sanit_falg of the next Points
in the order of sanitation is set to 0 so in that node, sanitation process must
be executed another time if not did already.

• Room parameter points_order : this list has the same dimension of textit-
points_sanit_falg of the same Room. In this list is saved the sanitation order
of the Points, in order to know when a new sanitation cycle is starting.

• variable w : w is the index that starts from 0 every time a sanitation process
begins and is incremented by 1 after each node sanitation, until it reaches the
Room num_points value and restarts from 0. When during the sanitation, the

54

Schedule Node algorithm

robot goes on a Point node a for the first time, the points_order [a] becomes
equal to w.

• Room parameter sanit_tries_counter : if the room sanitation does not ends
when w becomes again 0 (the sanitation process is restarting from the first
Point), the sanit_tries_counter of the room is incremented by 1.

• Room parameter attempts : when the sanit_tries_counter reaches the
max_sanit_tries of the Room, the sanitation is aborted and the attempts
parameter of the Room is increased by 1. The attempts value is increased also
when the Room is selected as destination but it is not reachable.

A Room sanitation is definitely ended when all the points_sanit_flag of the Room
are equal to 1 (success case), ore when Room attempts reaches the max_attempts
value (failure case).

Figure 6.5: Sanitation procedure example

A sanitation process example is shown in Figure 6.5: a Room with three Points is
in the sanitation process. The numbers inside the circular blocks are the Points
indexes, numbers inside square blocks are the points_order, and in the square
brackets are represented the points_sanit_flag.

55

Schedule Node algorithm

The list of variables and parameters values at the starting time instant is the
following:

• num_poits = 3

• points_sanit_flag = [1,0,1]

• points_order = [2,0,1]

• sanit_tries_counter = 1

• w = 1

The robot is on Point 1, and had already completed the sanitation process. Then
the robot select as next destination Point 2 (the nearest Point with sanit flag equal
to 0).
The actual situation is the one represented in the left part of the image. The CO2
measurement is performed and an air sanitation is required.
Now points_sanit_flag = [1,1,0] and w becomes 2.

Robot then move in Point 0, the last Point in the sanification order. This scenario
can evolve into three situations, the first represented in the top right corner of the
image, the other two in the bottom right one:

1) CO2 measurement is below 1000 ppm, so points_sanit_flag become [1,1,1],
all the sanit flags are equal to 1 and the sanitation ends with success.

2) CO2 measurement is grater or equal to 1000 ppm, points_sanit_flag be-
come [0,1,1], w = 3 that is equal to num_points so it restart from 0 and of
consequence sanit_tries_counter = 2:

2.a) if sanit_tries_counter = max_sanit_tries, the sanitation process is
aborted.

2.b) if sanit_tries_counter < max_sanit_tries, a new sanitation cycle starts.

6.4 Battery recharging
When a sanitation schedule is ended or when the battery must to be recharged, the
robot destination is the Battery Recharge Node in Room0. Th functional block
that handles this situation is the Battery recharging phase.
To enter this state functional block, current_room and j must both be equal to 0.

56

Schedule Node algorithm

6.5 Next destination method

6.6 Next point method

6.7 Compute new path method

57

Chapter 7

Simulations and results

7.1 CO2 sensor and fun simulation

7.2 ToF sensor simulation

7.3 Battery simulation

7.4 SEGNALI bag file e plotbag.py

7.5 Simulations
7.5.1 Robot-only simulations
Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

Simulation 6

Simulation 7

7.5.2 Simulation with people

58

Chapter 8

Conclusions and further
improvements

• SENSORI E CAMERE ALL’INTERNO DELLE STANZE –> MIGLIORE
PLANNING

• Con monitoraggio interno alla stanza si può anche settare un diverso livello
di priorità in base al numero di persone all’interno, e alle loro azioni: tosse,
starnuti, ecc...

• SENSORI SULLE PORTE (PORTE IN VETRO –> DA CAMERA è DIFFI-
CILE CAPIRE SE SONO APERTE O CHIUSE)

• Non bisognerebbe più modificare il grafo (o la costmap) temporanamente, ma
si sa esattamente quando la porta è aperta o chiusa

• NUOVA SANIFICA A TEMPO INVECE CHE MONITORANDO IL LIV-
ELLO DI CO2 (CAUSA CHE QUEL PURIFICATORE NON RIDUCE CO2)

• RETE NEURALE PER ACQUISIZIONE STANZE E RILEVAMENTO AU-
TOMATICO DEI POINTS PER LA SANIFICA

• LUNGHEZZE DEI LINK DEL GRAFO CALCOLATE AUTOMATICA-
MENTE CON ComputePathToFollow

• ABBANDONO DEL GRAFO E MODIFICA COSTMAP

• COLLEZIONAMENTO DI DATI PER CAMBIARE LA PRIORITà E ALTRI
PARAMETRI DELLE STANZE IN BASE AI DATI RACCOLTI. ESEMPI:
se una stanza è quasi sempre chiusa o inutilizzata (con monitoraggio interno)
la sua priorità si abbasserà rispetto alle altre. Oppure se una stanza raramente

59

Conclusions and further improvements

si riesce a sanificare a prima botta si possono aumentare man mano i suoi cicli
di sanifica e i tentativi massimi di sanifica, o se una stanza è ha dei livelli di
CO2 quasi sempre alti o ci sono spesso molte persone all’inerno (monitoraggio
interno) la sua priorità sarà più alta.

• IMPLEMENTARE CHE SE BATTERIA SCARICA, PER CAMBIARE DES-
TINAZIONE NON BISOGNA ASPETTARE DI ARRIVARE AL PROSSIMO
GOAL MA SI INTERROMPE LA NAVIGAZIONE IN QUALSIASI MO-
MENTO E SI RICALCOLA PER ANDARE A RICARICARE

• STIME CONSUMO BATTERIA IN FUNZIONE DI f(USO MOTORI, USO
VENTILATORE) (CHE POI DIVENTANO DUE FUNZIONI SEPARATE
f(MOTORI) E f(BATTERIA), PERCHè MOVIMENTO E SANIFICA NON
AVVENGONO MAI INSIEME) PER POTER IMPLEMENTARE UNA GES-
TIONE DELLA BATTERIA INTELLIGENTE, CHE IN BASE AL LIVELLO
VEDE QUALI STANZE PUò ANDARE A SANIFICARE E QUALI NO.

• MODIFICA DI DIJKSTRA IN MODO CHE A PARITÀ DI DISTANZA DA
PERCORRERE VENGA SCELTO IL PATH CON IL MINOR NUMERO DI
ACCESSI CON PORTA

60

Bibliography

[1] stockfeel. «What Is a Service Robot? Practice the vision of intelligent service
application». In: MARKET PROSPECTS (2022). url: https://www.market-
prospects.com/articles/what-is-a-service-robot/ (cit. on p. 1).

[2] Piero Formica. «Human Manufacturing, l’unisono di Comau che fa parlare agli
operatori la lingua dell’automazione». In: INDUSTRIA ITALIANA (2020).
url: https://www.industriaitaliana.it/comau-robotica-automazione-
human-manufacturing-horizon-2020-fca/ (cit. on p. 2).

[3] ROS - Robot Operating System. ROS.org. url: https://www.ros.org/ (cit.
on p. 9).

61

https://www.market-prospects.com/articles/what-is-a-service-robot/
https://www.market-prospects.com/articles/what-is-a-service-robot/
https://www.industriaitaliana.it/comau-robotica-automazione-human-manufacturing-horizon-2020-fca/
https://www.industriaitaliana.it/comau-robotica-automazione-human-manufacturing-horizon-2020-fca/
https://www.ros.org/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview
	Service Robotics
	Indoor navigation
	Maps
	Path planning
	Path following
	Perception and Odometry

	Air sanitizing robots and related works

	ROS framework and navigation stack
	ROS and ROS2
	Navigation Stack and NAV2
	Gazebo
	RViz

	Robot Hardware
	KUKA youBot mobile base
	VORTICE VORT ARIASALUS 200
	XENSIV PAS CO2 sensor
	RPLIDAR A2 Laser Range Scanner
	VL53L5CX Time-of-Flight sensor
	Intel RealSense Tracking Camera T265
	OAK-D camera

	Environment and sanitation procedure analysis
	Points and Exits
	Plant configurations
	Single corridor and multiple rooms
	Communicating rooms
	Multiple exits

	Navigation issues
	Robot stuck in a room
	Battery recharge position unreachable

	Sanitation planning
	Sanitation schedule

	Network architecture
	Layers
	Map
	Node graph

	Room class and data structure
	Room Points and Exits
	Nodes links

	ROS2 Nodes Network and Schedule Node
	Sanitation Action Service
	CO2 sensor data acquisition
	Sanit Action Server and fan control

	ToF Publisher Node
	Data acquisition
	Exit-Door minimum distance

	Battery Publisher Node

	Schedule Node algorithm
	Navigation phase
	Methods and Callbacks

	Door opening check
	Rooms sanitation
	Sanitation process

	Battery recharging
	Next destination method
	Next point method
	Compute new path method

	Simulations and results
	CO2 sensor and fun simulation
	ToF sensor simulation
	Battery simulation
	SEGNALI bag file e plotbag.py
	Simulations
	Robot-only simulations
	Simulation with people

	Conclusions and further improvements
	Bibliography

