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Abstract

Global Navigation Satellite System (GNSS) provides accurate Positioning, Navi-
gation and Timing (PNT) information to the users. Originally, these have been
designed to serve terrestrial users, but in the last years, the interest in the use of
GNSS for autonomous space navigation has significantly increased.

Over the past decades, space missions have leveraged Precise Orbit Determina-
tion (POD), which is the process of accurately estimating and tracking both the
position and velocity of spacecraft along the orbit. This method usually relies on
post-processing computation, based on range and Doppler tracking services offered
by federated networks, such as NASA Deep Space Network (DSN), managed by
the ground segment. On the contrary, exploiting real-time, in-orbit GNSS-based
navigation systems would make the spacecraft more autonomous, reducing the
costs and the effort of ground operations. The use of in-orbit GNSS receivers has
been validated in low orbits, as in Low Earth Orbits (LEOs), up to a distance of
approximately 150.000 km from the Earth’s surface. The use of GNSS in space
applications is hence becoming attractive even for spacecraft navigation at larger
distances, for example, in lunar missions. However, deploying GNSS receivers
to lunar distances is a challenging task due to multiple factors. First of all, the
received signals are characterized by low power levels, especially at altitudes above
the GNSS constellation. In these conditions, the signals transmitted by the main
antenna lobes suffer occultation effects, being received from satellites orbiting on
the opposite side of the Earth. Side lobes, on the other hand, only provide low-
power signals in the spacecraft direction. Besides, signal availability is drastically
impaired by poor geometry, leading to accuracy degradation in the positioning and
navigation solutions. Additionally, GNSS space-born receivers could experience
high relative dynamics with respect to the GNSS satellites, which are responsible
for both Doppler frequency and Doppler rate.

This thesis work aims at studying and implementing techniques to increase the
positioning accuracy and independence of GNSS space-born receivers, to get the
best from a harsh scenario like that of space missions. The targeted strategy involves
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the extension of pre-existent algorithms, like the Extended Kalman Filter (EKF),
introducing external aidings allowing the enhancement of the position estimation
process. In particular, the aiding consists of the expected orbital trajectory that
a spacecraft is planned to follow and it would allow excellent performances the
more the matching between the last estimated position and its ideal correspondent
point onto the aiding trajectory is accurate. However, such matchings are not so
trivial and should be the subject of further studies. In light of this, approximate
matchings have been used to provide quite good performances.

The performance of the proposed methodology called the Trajectory-Aware
Extended Kalman Filter (TA-EKF), is investigated through a dedicated framework
that simulates Earth-Moon Transfer Orbit (MTO) mission scenarios and associated
GNSS measurements. Monte Carlo analyses are utilized to statistically assess the
proposed solution against a standalone EKF architecture.
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Chapter 1

Introduction

The following work was inspired by the Lunar GNSS Receiver Experiment
(LuGRE) project [1]. LuGRE is an upcoming mission that is a joint NASA-
Italian Space Agency flight demonstration payload. The mission consists of several
experiments that will be conducted on the moon. It will launch at the end of 2023
using a Space X Falcon 9 rocket, and the LuGRE receiver and antenna will be
incorporated into the Firefly Blue Ghost 1 lander (Fig. 1.1).

The main goal of LuGRE is to extend GNSS-based navigation to the moon by
setting up a receiver on the moon and analyzing GNSS signals. The mission will
also collect GNSS data in transit and use it to develop GNSS receivers tailored
for use on the moon. The payload consists of a high-gain L-band antenna, a
low-noise amplifier, and a weak-signal GNSS receiver. The receiver will receive
and track GPS L1 C/A and L5 signals, Galileo E1 and E5a signals, and produce
pseudorange, carrier phase, and Doppler measurements. The receiver also has the
capacity to record raw L1 and L5 I/Q baseband samples. LuGRE will perform its
operations on the lunar surface and during transit between Earth and the moon.
The Science Team has identified 10 science investigations and more than a dozen
additional efforts. The preliminary examination of the LuGRE operations shows
high signal visibility throughout the mission and the ability to acquire signals in
post-processing.

This thesis aims to analyze space applications of GNSS, evaluate its critical issues
and provide some tools to try to overcome them by reconstructing an environment
able to simulate GNSS measures to be processed through different navigation filters.
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Introduction

the requirement that the payload do no harm to the host spacecraft. Payload-level success, however, requires meeting all level 
1 science requirements. 
 
The flight payload consists of a weak-signal GNSS receiver, a high-gain L-band antenna, and a low-noise amplifier integrated 
onto the Firefly Blue Ghost lander. The payload will receive and track GPS L1 C/A and L5, and Galileo E1 and E5a signals 
and produce pseudorange, carrier phase, and Doppler measurements. The receiver will perform real-time navigation and 
produce least-squares point solutions and onboard filter solutions. Other telemetry will include number of signals visible and 
tracked, dilution of precision, and carrier-to-noise-density ratio (C/N0). In addition, the receiver has the capability to record 
short spans of raw L1 and L5 I/Q baseband samples, which can then be downlinked and later replayed as input to a ground-
based receiver. LuGRE will operate both in-flight during the spacecraft Earth-Moon transfer and on the lunar surface. 
 
CONCEPT OF OPERATIONS 
 

 
Figure 1. LuGRE Concept of Operations Overview 

The LuGRE mission concept of operations is illustrated in Figure 1. It consists of nine distinct phases as outlined in the 
following sections. 
 
0 Pre-Launch and 1 Launch 
 
The pre-launch phase consists of all activities from delivery of the LuGRE payload to Firefly for integration, through Firefly’s 

integration and test campaign, mission rehearsals, reviews, and delivery to and processing at the launch site, up to initiation of 
the launch countdown. The launch phase consists of the launch countdown and ascent of the launch vehicle, until spacecraft 
separation. The BGM1 lander will launch on a SpaceX Falcon 9 vehicle from Cape Canaveral, Florida, United States. The 
launch period is currently anticipated to open in mid-2023 for landing on the lunar surface by September 2023. The launch 
vehicle will place the spacecraft directly into a series of phasing loops that will be used to align the trajectory with the Moon 
for lunar orbit insertion, allow for spacecraft and payload checkout activities, and support transit-phase payload operations. 
 
2 Payload Commissioning and 3 Transit Operations 
 

Figure 1.1: LuGRE concept of operations.

1.1 GNSS fundamentals
Global Navigation Satellite System (GNSS) refers to a constellation of satellites

providing signals from space that transmit positioning and timing data to GNSS
receivers, providing, by definition, global coverage. The receivers then use this data
to determine location.

The performance of GNSS is assessed using four criteria:

• Accuracy: the difference between a receiver’s measured and real position,
speed or time.

• Integrity: a system’s capacity to provide a threshold of confidence and, in
case of an anomaly in the positioning data, an alarm.

• Continuity: a system’s ability to function without interruption.

• Availability: the percentage of time a signal fulfils the above accuracy,
integrity and continuity criteria.

In general, this performance can be improved by regional Satellite-Based Augmen-
tation Systems (SBASs), such as the European Geostationary Navigation Overlay
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System (EGNOS), which improves the accuracy and reliability of GPS informa-
tion by correcting signal measurement errors by providing information about the
integrity of its signals.

A Global Navigation Satellite System is composed of three major components
or “segments”:

• Space segment: it consists of a constellation of satellites appropriately
arranged to broadcast satellite positioning, timing, and navigation data from
space to GNSS receivers, and provide the desired coverage.

• Control segment: it is a network composed of monitor stations constantly
checking the signal and status of the satellites, master control stations which
analyse the signals and transmit orbit and time corrections to the satellites
through data uploading stations, to adjust the satellites’ orbit parameters and
onboard high-precision clocks when necessary to maintain accuracy.

• User segment: consists of the user equipment allowing to perform signal
reception to determine user position, velocity and time.

There are several GNSSs in operation today, including:

• GPS: the United States Global Positioning System.
GPS is the pioneer in the world of GNSS been operative since 1978 and made
available for global use in 1994.
The invention of GPS was driven by the requirement for a standalone navigation
system for military purposes, with the United States Department of Defence
(DoD) being the first to recognize this need. The system was designed with a
high level of complexity to ensure high accuracy and protect against jamming
and counterfeiting attempts. Eventually, GPS became available to the public.
GPS operates in a frequency band referred to as the L-Band, a portion of the
radio spectrum between 1 and 2 GHz. L-Band was chosen for several reasons,
including:

– Ionospheric delay is more significant at lower frequencies
– Simplification of antenna design
– Minimize the effect that weather has on GPS signal propagation

Currently, with its 31 operative satellites, GPS is considered the most precise
navigation system globally. The newest iteration of GPS satellites utilizes
highly accurate rubidium clocks, which are further synchronized by even more
precise Caesium clocks based on the ground.
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• GLONASS (Globalnaya Navigazionnaya Sputnikovaya Sistema), Russia’s
Global Navigation Satellite System, which is Russia’s version of GPS. Its
development began in 1976 with the Soviet Union. Mainly designed for
Russian areas, when used alone, GLONASS doesn’t provide as strong of
coverage compared to GPS. As of December 2022, 144 GLONASS navigation
satellites have been launched, of which 132 reached the correct orbit and 23
are currently operational.

• Galileo, the European Union’s GNSS. It is Europe’s GNSS system that’s
compatible with GPS and GLONASS. It started providing service in December
2016. As of August 2022, 28 Galileo satellites have been launched, of which 4
In Orbit Validation (IOV) and 24 Full Operational Capability (FOC). The 2
GIOVE prototype vehicles were retired in 2012, 24 satellites are operational, 1
is not available and 3 are currently not usable.

• BeiDou, China’s Navigation Satellite System (BDS). As of January 2022, 44
satellites are operational

• NavIC, India’s Navigation Satellite System with Indian Constellation, whose
constellation consists of 7 satellites.

In addition to these five major GNSS, there are also regional and smaller-scale
systems in operation around the world.

1.1.1 The PVT problem
In principle, GNSS receivers work based on a technique known as Trilateration,

based on measuring distances.
Each satellite broadcasts a signal for the GNSS receiver to pick up at a specific

time and distance, which defines a sphere around the satellite. Where all spheres
“detected” by the receiver intersect determines the position of the user, as depicted
in Figure 1.2.

In general, the positioning problem is stated as a PVT problem, which is one
of the most important issues of satellite-based navigation systems. PVT is an
acronym that stands for Position (Latitude, Longitude, Height), Velocity (North,
East, Up) and precise Time in Universal Time Coordinated (UTC).

GNSS receivers determine the user position, velocity, and precise time by
processing the signals broadcasted by satellites. Since the satellites are always
in motion, the receiver has to continuously acquire and track the signals from
the satellites in view, to compute an uninterrupted solution, as desired in most
applications.

Any navigation solution provided by a GNSS receiver is based on the computation
of its distance to a set of satellites: it consists in measuring the propagation time
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Figure 1.2: GNSS Trilateration: where all spheres
intersect correspond to the user GNSS time and position.

it takes for an incoming signal transmitted by a satellite at a known location to
reach a user receiver at the speed of light, according to local clocks of satellite and
receiver. Multiplying this time interval by the speed of light in the vacuum, the
time difference is transformed into a very rough estimate of the emitter-to-receiver
distance, called Pseudorange. This corresponds to the pseudo-distance from the
receiver antenna to the satellite antenna, including receiver and satellite clock
offsets and other biases, such as atmospheric delays.

For a signal from the satellite (s) the pseudorange P (s)
r can be expressed by

using the signal reception time t(s)
rx |r measured by the receiver clock and the signal

transmission time t
(s)
tx |s measured by the satellite clock as:

P (s)
r = c(t(s)

rx |r − t
(s)
tx |s) (1.1)

where:

t(s)
rx |r = t(s)

rx + ∆tr (1.2)

t
(s)
tx |s = t

(s)
tx + ∆ts (1.3)
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More specifically, not only does the pseudorange equation have to consider the
geometric range ρ(s)

r between satellite and receiver antennas, namely their mutual
geometric distance, but it has also to take into account the receiver and satellite
clock biases ∆tr and ∆ts with respect to the common UTC reference time, the
ionospheric and tropospheric delays I(s)

r and T (s)
r and the measurement error ϵP .

P (s)
r = c[(t(s)

rx + ∆tr) − (t(s)
tx + ∆ts)] + I(s)

r + T (s)
r + ϵP

= c(t(s)
rx − t

(s)
tx ) + c(∆tr − ∆ts) + I(s)

r + T (s)
r + ϵP

= ρ(s)
r + c(∆tr − ∆ts) + I(s)

r + T (s)
r + ϵP

(1.4)

In light of this, many complications arise. The major one is that the receiver
is using its clock to tag the received time, often supplied by a very inexpensive
crystal oscillator. The speed of light is about 3 · 108 meters per second, thus very
small errors in the receiver clock can cause large range errors. This is solved by
including the time bias of the receiver clock in the set of unknowns.

Hence, there are four unknowns at each time step where a solution is computed:
three for position and one for time. As a consequence, the minimum number of
satellites in view needed for the determination of a solution is four. In addition,
as a result of this formulation, the receiver is able to consistently provide precise
time information. Specifically, the receiver generates a new estimate of GPS time
at each interval, typically occurring once per second.

As mentioned before, the location of the satellites is needed to determine the
PVT. The signal that allows the determination of the precise location, velocity, and
clock state of a satellite is conveyed through the message data. The message data
provides a sequence of parameters that are utilized in an orbit model, allowing for
accurate calculations of the satellite’s position, speed, and time.

In particular, the information is divided into two pieces: the Broadcast Ephemeris
(BCE) and the Almanac.

The BCE provides information on the satellite position and velocity, which
is very accurate and stays that way for a day or so. The information about the
bias of the satellites’ onboard clock is provided too, but, since the atomic clock
of the satellites wanders a few nanoseconds per day, the inaccuracy in the clock
parameters in the BCE is a major error source. It takes a maximum of 3 minutes of
tracking to get the ephemeris from a satellite, so this data repeats every 3 minutes,
and they cannot be used for generating a solution until the BCE is completely
received.

The Almanac is a lower accuracy set of parameters provided for all the satellites
in orbit, to help receivers plan satellite tracking and acquire satellite signals. This
data cycles more slowly and takes 12.5 minutes to repeat. Usually, all satellites
broadcast the same almanac and, among others, there are also the values needed
to convert the GPS Time used by the satellites to UTC.
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The user, by measuring four pseudoranges with respect to four satellites with
known coordinates, can determine four unknowns:

• (xu, yu, zu) User coordinates

• δtu Bias of the user receiver clock w.r.t. the GNSS time scale.

These unknowns can be obtained through a system of four pseudorange equations.



ρ1 =
ñ

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + but

ρ2 =
ñ

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + but

ρ3 =
ñ

(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + but

ρ4 =
ñ

(x4 − xu)2 + (y4 − yu)2 + (z4 − zu)2 + but

(1.5)

where

• ρj: j-th measured pseudorange (pseudo-sphere radius)

• (xj, yj, zj): known j-th satellite coordinates (centre of pseudo-sphere)

• but = c · δtu: range bias in meters due to misalignment of user timescales
(unknown).

The solution of non-linear equations can be simplified considering the large
distance of the satellites with respect to the users. This would allow for reduced
computational complexity.

The equation of the pseudo-sphere can be linearized, thus transforming the
trilateration process in the intersection of the planes tangent to the pseudo-sphere
in the user position. The process of linearization consists in considering the Taylor
expansion of the multidimensional equation truncated at the first order.

Hence, given a user state guess (x̂u, ŷu, ẑu, b̂ut) and computed the associated
approximate pseudorange as:

ρ̂j =
ñ

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 + b̂ut (1.6)

The linearized equation is given by:
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ρj = ρ̂j + . . .

+ ∂ρj

∂xu

-----
xu=x̂u

(xu − x̂u) + . . .

+ ∂ρj

∂yu

-----
yu=ŷu

(yu − ŷu) + . . .

+ ∂ρj

∂zu

-----
zu=ẑu

(zu − ẑu) + . . .

+ ∂ρj

∂but

-----
but=b̂ut

(but − b̂ut)

(1.7)

By rewriting the linearized equation, it can be expressed as a function of the
displacement with respect to the approximation point:

∆ρj = axj
∆xu + ayj

∆yu + azj
∆zu − ∆but (1.8)

where:

∆ρj = ρ̂j − ρj

∆xu = xu − x̂u

∆yu = yu − ŷu

∆zu = zu − ẑu

∆but = but − b̂ut

axj
= xj−x̂u

r̂j

ayj
= yj−ŷu

r̂j

azj
= zj−ẑu

r̂j

r̂j =
ñ

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 (geometrical distance between the
linearization point and the j-th satellite)

The linearized navigation solution can be derived from the linearized model:
∆ρ1 = ax1∆xu + ay1∆yu + az1∆zu − ∆but

∆ρ2 = ax2∆xu + ay2∆yu + az2∆zu − ∆but

∆ρ3 = ax3∆xu + ay3∆yu + az3∆zu − ∆but

∆ρ4 = ax4∆xu + ay4∆yu + az4∆zu − ∆but

(1.9)
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In matricial form:

∆ρ = H∆x (1.10)

∆ρ =


∆ρ1
∆ρ2
∆ρ3
∆ρ4

 (1.11)

H =


ax1 ay1 az1 1
ax2 ay2 az2 1
ax3 ay3 az3 1
ax4 ay4 az4 1

 (1.12)

∆x =


∆xu

∆yu

∆zu

−∆but

 (1.13)

In the case of four satellites, the navigation solution is calculated as:

∆x = H−1∆ρ (1.14)

provided that the geometric matrix of the positioning problem H is non-singular,
namely, invertible.

In general, a larger number of satellites is available, therefore a least square
solution must be used.

∆x = (HT H)−1HT ∆ρ (1.15)
As for the positioning errors, they propagate according to the same model,

namely:

∆ρ + δρ = H(∆x + δx) (1.16)
from which it can be derived:

δx = (HT H)−1HT δρ (1.17)
Equation (1.17) explains the positioning error dependence on the satellite

geometry and the error in pseudorange estimation.
Considering the covariance matrix of the position error δx, the elements on the

diagonal are the variance of the error in the different dimensions (including time),
whereas the off-diagonal terms indicate the level of cross-correlation between the
variables.
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In particular, it can be derived:

cov(δx) = G · σ2
UERE (1.18)

where:

• G = (HT H)−1 = [gij] is the Geometric Factor, such that:

σ2
xu

= g11 · σ2
UERE

σ2
yu

= g22 · σ2
UERE

σ2
zu

= g33 · σ2
UERE

σ2
but

= g44 · σ2
UERE

(1.19)

• σ2
UERE is the variance associated with the pseudorange measurement error

The standard deviation of the positioning error can be obtained as:

σx =
ñ

σ2
xu

+ σ2
yu

+ σ2
zu

+ σ2
but

= GDOP · σUERE (1.20)

where the Geometric Dilution Of Precision (GDOP) is defined as:

GDOP =
√

g11 + g22 + g33 + g44 =
ñ

tr(G) (1.21)

1.2 Space exploration
In recent days, several space agencies are renewing their interest in Lunar

exploration, which involves both the public and private sectors, and will offer new
opportunities for a multitude of disciplines from planetary geology to astronomy
and astrobiology. Of course, this renewing interest aim at the human return to the
Moon, with the goal, among the others, of the creation of lunar bases toward deep
space expeditions like Mars (Fig. 1.3).

This growing trend in the number of missions to the Moon is creating demand
for various research on a system which could increase the robustness of navigation
architectures and improve their autonomous operation capabilities. In the past,
lunar expeditions have almost entirely relied on measurements from Earth and in-
frastructures used in terrestrial missions. The benefits of these relay infrastructures
were also demonstrated by the recent far-side lunar mission, like for example the
landing of the Chinese Chang’E 4 mission (focused on relaying telemetry to the
ground rather than providing an independent orbit determination and navigation
solution). Moreover, GNSSs are currently used in space missions, not only in terms
of navigation sensors but also as science instruments. Although their use has been
generally limited to orbits below the GNSS constellations, recent studies have
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shown that GNSS-based navigation for Geostationary Orbit (GEO) and Highly
Elliptical Orbit (HEO) missions is feasible and with relatively good performances,
demonstrating its applicability to a wide range of space missions. Therefore, these
studies show that GNSS signals from Earth can be received at the Moon’s altitude,
effectively providing support for orbit determination and landing operations on the
near side. However, the Earth-based techniques currently adopted for navigation
with satellites in cislunar space are not able to cover all the needs for future explo-
ration, both in terms of service performance (i.e., need to land within 100 m of a
predetermined location on the lunar surface) and accessibility. These technologies
alone do not support far-side operations (the South Pole and the far side are not
always accessible by Earth-based ground stations) and will not reach the accuracy
required by the Global Exploration Roadmap Critical Technology Needs.

These problems are caused by the critical conditions of the lunar environment,
where the coverage is limited and the signals are weaker. Furthermore, for future
missions, precise data concerning the position of rovers on the Moon’s surface
will become of vital importance, and an autonomous navigation system capable
of real-time absolute positioning on the Moon will be crucial for the future of
lunar exploration. The topic has been widely discussed in the literature since the
1970s when Farquhar described how satellites in Earth-Moon libration points could
be used to support satellite navigation in cislunar space. Other works have gone
further in this argument, assessing different lunar navigation infrastructures based
on Earth-Moon Lagrange point orbiters providing one-way Doppler measurements
together with Earth GPS signals showing results better than 1 km for positioning
and 5 cm/s for velocity in cislunar space. For all these reasons, several space agencies
have proposed dedicated systems to address these problems and provide navigation
services for future lunar missions. The Russian satellite maker, Information Satellite
System (ISS) JSC, proposed a concept that envisions the deployment of a full
constellation of 24 satellites around the Moon between 2036 and 2040; in the
US, Lockheed Martin has proposed Parsec; Japan Aerospace Exploration Agency
(JAXA) has recently launched a study which will consider possible lunar positioning
satellite systems; China recently announced that its space agency China National
Space Administration (CNSA) is planning to set up a satellite constellation around
the Moon to provide navigation services. On top of these initiatives, NASA has
proposed the LunaNet framework to enable interoperability among different lunar
navigation service providers. In this context, the European Space Agency (ESA)
has proposed a concept called Moonlight that aims to provide navigation services
to institutional and commercial lunar missions. The ESA’s vision represented by
the Moonlight initiative is to foster the creation and development of dedicated
lunar navigation services, to be delivered by private partners. These services will
support the next generation of institutional and private lunar exploration missions,
including enhancing the performance of those missions currently under definition
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and creating new possibilities.

CHAPTER 1

Expanding human presence into the Solar System has the unique 
capacity to inspire citizens around the world to create a better future. 

The knowledge and technologies derived 
from this endeavour expand our under-
standing of the Universe, create economic 
opportunities and help address grand chal-
lenges faced here on Earth. A partnership 
between humans and robots is essential to 
the success of this venture. Robotic missions 
accomplish world-class science while also 
serving as our scouts and proxies, venturing 
first into hostile environments to gather criti-
cal information that makes human exploration 
safer. Humans will bring their flexibility, 
adaptability, experience, dexterity, creativity, 
intuition, and the ability to make real time 
decisions to the missions.

The Global Exploration Strategy: the Framework 
for Coordination, released in 2007, presents 
a vision for globally coordinated human and 
robotic space exploration focused on Solar 
System destinations where humans may one 
day live and work. In this global vision, robotic 
missions precede human explorers to the 
Moon, near-Earth asteroids, and Mars in order 
to unveil many of their secrets, characterise 
their environments, and identify risks and 
potential resources. Human exploration then 
follows in a coordinated manner that is afford-
able and sustainable, which both benefits 
and contributes to space agencies around the 
world achieving their goals and objectives.

The ISECG was established in response to 
the Global Exploration Strategy. The Global 
Exploration Roadmap depicted below has 
been developed to aid in turning this vision 
into reality. While not committing individual 
agencies to specific steps and activities, 
the Global Exploration Roadmap serves as 
a reference for generating innovative ideas 
and solutions to address the challenges 
ahead together.

The Global Exploration Roadmap
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Figure 1.3: The Global Exploration Roadmap.

1.2.1 Critical issues of using GNSS in space
Nowadays’ GNSS constellations were designed to provide very qualitative per-

formances on Earth. However, their geometry is not as good when coming to space
applications.

The quality of GNSS positioning, strongly relates to how the satellites used for
solving the PVT are spread around the user receiver. The better their distribution,
the better the positioning accuracy. The geometric dependency of the positioning
precision is expressed by the Equation (1.20). The term σUERE takes into account
all error contributions of the system such as propagation errors and ephemeris
errors, but in the condition in which all the biases were previously compensated.
Going into detail, UERE stands for user equivalent range errors and its standard
deviation is computed, as anticipated before, as the root mean square error of the
ranging errors affecting the user position. It is strongly related to the received signal
power as well, which depends on the distance between transmitter and receiver
antennas, which can not be overlooked in this context.

External aidings are fundamental to face the harsh space environment charac-
terized by intrinsic poor geometry and reduced visibility. Furthermore, the relative
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dynamics between the receiver and the transmitters are considerably higher than
the routine values for terrestrial applications. As a consequence, the GNSS space
signals suffer from larger values of Doppler shifts and Doppler rates make the
traditional GNSS receivers unable to correctly perform the acquisition and the
tracking stage. Summing up, assistance information regarding these values must be
provided to the GNSS receiver through a more advanced architecture. An example
of this is the use of an adaptive Orbital Filter (OF) to aid the acquisition and
tracking of very weak signals leading to higher accuracy in the navigation solutions.

1.3 Purpose and Development of the work
Although GNSSs were originally designed for terrestrial users, the space sector

has increasingly adopted GNSS-based navigation systems. Recent advancements in
space-borne receivers have allowed for the expansion of space Positioning, Navigation
and Timing (PNT) applications. However, current Orbit Determination and Time
Synchronization (ODTS) algorithms rely on Direct To Earth (DTE) ranging
capabilities and long-term post-processing solutions, which may not be sufficient
for deep-space exploration. To address this, a customized Extended Kalman Filter
(EKF) architecture called the Trajectory-Aware Extended Kalman Filter (TA-EKF)
has been proposed as OF for GNSS-based navigation to the Moon. This solution
integrates information about the planned mission trajectory to correct the EKF
state-prediction and improve positioning accuracy in the Earth-Moon Transfer
Orbit (MTO) environment. Monte Carlo analyses were used to test the TA-EKF
against a plain EKF architecture. Moreover, it was built a framework able to
simulate a GNSS environment within which test different PVT filters to compare
their performances in space applications.

Chapter 2 presents the principle of working of the three navigation filters for
PVT estimation that will be collated (LMS,EKF and TA-EKF).

In Chapter 3, the simulation framework is presented with all assumption made
to keep the system as simple as qualitatively valid.

Chapter 4 shows the results obtained from experimenting the PVT filters within
the simulation framework, discussing them and proving the framework qualitative
reliability.

Finally, in Chapter 5, the conclusions drawn from this work are reported.
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Chapter 2

PVT Filters

This chapter provides a discussion of some classic and innovative signal-processing
techniques that address positioning and navigation problems. All these methods
are based on the Bayesian estimation theory. Bayesian models allow the inclusion
of prior knowledge about the phenomenon being modelled, handle sequential arrival
of data, and provide online inference.

Despite being Bayesian estimators, they are usually referred to as “filters”. His-
torically, a filter referred to a physical device used to separate unwanted components
from liquid-solid mixtures. Later, the term was applied to analogue circuits that
filtered electronic signals by selectively reducing unwanted frequencies. In the
1930s and 1940s, the concept was expanded to the separation of signals from noise,
characterized by their power spectral densities. Kolmogorov and Wiener used this
statistical characterization to form an optimal estimate of the signal given the sum
of the signal and noise. With the Kalman filter, also called Linear Least Mean
Squares Estimator [2], the term has taken on a broader meaning that goes beyond
the original idea of separating mixture components. It also involves the solution of
an inversion problem, in which the relationship between the measurable variables
and the variables of interest is inverted, with the independent variables estimated
as functions of the dependent (measurable) variables. These variables of interest
can also be dynamic and partially predictable.

2.1 Least Mean Square Filter
The first method for forming an optimal estimate from noisy data is the method

of least squares. Attributed to Carl Friedrich Gauss (1777-1855), but already
discovered and used before him, it was the first formal method dealing with
measurement errors.
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Ideally, in absence of noise, a measurement z can be seen as a trasformation H
applied on the real state vector x:

z1
z2
...

zn

 =


h11 h12 . . . h1m

h21 h12 . . . h1m
... ... . . . ...

hn1 hn2 . . . hnm




x̂1
x̂2
...

x̂n

 (2.1)

or

z = Hx (2.2)

Then, the aim of a Least-Mean-Squares Estimator (LMSE) is minimizing the
“estimated measurement error”, or, equivalently, its square:

ε2(x̂) = |Hx̂ − z|2

=
nØ

i=1
[

mØ
j=1

hijx̂j − zi]2
(2.3)

where x̂ is the state estimate. It is a continuously differentiable function of the
n unknowns x̂1, x̂2, . . . , x̂n.

Consequently it will achieve its minimum value where all its derivatives with
respect to the x̂k are zero. Therefore, there are n such equations of the form:

0 = ∂ε2

∂x̂k

=
nØ

i=1
hik[

mØ
j=1

hijx̂j − zi]

= 2HT [Hx̂ − z]
= 2HT Hx̂ − 2HT z

(2.4)

since:
mØ

j=1
hijx̂j − zi = {Hx̂ − z}i (2.5)

As a result, the Least-Mean-Squares (LMS) solution to the minimization problem
is given by the equation:

x̂ = (HT H)−1HT z (2.6)

G = HT H (2.7)
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provided that the so-called Gramian matrix G (2.7) is non-singular, i.e. invertible.
On the other hand, in general, the more redundant measurements there are, the
more accurate is the estimation.

2.1.1 LMS Position estimation
One possible way to solve for the Position, Velocity and Timing (PVT), is to

use the LMS algorithm, not applied a single time, but iterated in order to provide
a more precise solution: at each iteration, the estimated position is expected to be
closer to the real user location.

For PVT problems, the LMS equation becomes:

∆x̂ = (HT H)−1HT ∆ρ̂ (2.8)

At each iteration, a predicted position-state estimate is used to calculate the
Observation matrix H and solve the LMS equation. The result represents the
increment to the prediction for obtaining the final position-state estimate, which
will be used as prediction at the next iteration.

Algorithm 1 Iterative LMS algorithm.
x̂0

n = [0]
for iteration k do

∆ρ̂k
n = ρ̂k

n − ρn

∆x̂k
n = [(Hk

n)T Hk
n]−1(Hk

n)T ∆ρ̂k
n

x̂k
n = x̂k−1

n + ∆x̂k
n

end for
The estimated position-state is composed of the three position coordinates in

the reference frame and the clock bias term:

x̂k
n = [x̂k

n, ŷk
n, ẑk

n, b̂k
n] (2.9)

The Observation matrix H, is derived as linearisation of the non-linear problem:

Hk
n =


ax,1 ay,1 az,1 1
ax,2 ay,2 az,2 1
ax,3 ay,3 az,3 1
ax,4 ay,4 az,4 1

 (2.10)

Where [ax,j, ay,j, az,j] is the unitary vector steering from the predicted position
x̂k

n to the j-th satellite, whose position is assumed to be known, and that is away
from the prediction by a length r̂j,n.
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r̂j,n =
ñ

(xj,n − x̂k
n)2 + (yj,n − ŷk

n)2 + (zj,n − ẑk
n)2 (2.11)

ax,j = xj,n−x̂k
n

r̂j,n

ay,j = yj,n−ŷk
n

r̂j,n

az,j = zj,n−ẑk
n

r̂j,n

2.1.2 LMS Velocity estimation
As for the estimation of velocity-state, modern receivers rely on Doppler mea-

surements, namely, the frequency shift due to the relative motion of the satellites
with respect to the receiver. The frequency measured by the receiver fR is linked
to the transmitted one fT through the Doppler equation [3]:

fR = fT [1 − 1
c
(vS − v) · rS − r

|rS − r|
] (2.12)

where:

• rS = [xS, yS, zS] is the satellite position vector

• r = [x, y, z] is the receiver position vector (assumed known)

• rS−r
|rS−r| is the unit vector pointing from the receiver to the satellite

The scalar product (vS − v) · rS−r
|rS−r| , represents the projection of the relative

velocity vector on the direction from the receiver to the satellite, namely, the
pseudorange rate.

fR = fT [1 − 1
c
(vS − v) · rS − r

|rS − r|
] (2.13)

The Doppler shift is therefore given by:

fR − fT = −fT

c
(vS − v) · rS − r

|rS − r|
= −fT

c
ρ̇ (2.14)

However, the measured pseudorange rate must take into account the drifts of
the clock in receiver and satellite. Assuming to be able to compensate for the
satellite clock drift, the measured range rate will be:

˜̇ρ = ρ̇ − c ˙δtR (2.15)
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By expanding the scalar product and rearranging the equation:

˜̇ρ − vS · rS − r

|rS − r|
= −v · rS − r

|rS − r|
− c ˙δtR (2.16)

We can define the quantities:

d = |rS − r| (2.17)

ζρ̇ = ˜̇ρ − vS · rS − r

|rS − r|
(2.18)

such that:

ζρ̇ = −v · rS − r

|rS − r|
− c ˙δtR

= x − xS

d
vx + y − yS

d
vy + z − zS

d
vz − c ˙δtR

(2.19)

We now have four unknowns which can be solved by using measurements from
four (at least) satellites, as done before.

ζρ̇ = Hg (2.20)


ζρ̇,1
ζρ̇,2
ζρ̇,3
ζρ̇,4

 =


ax,1 ay,1 az,1 1
ax,2 ay,2 az,2 1
ax,3 ay,3 az,3 1
ax,4 ay,4 az,4 1




vx

vy

vz

−cδ ˙tR

 (2.21)

and the solutions for velocity and time drift are obtained as:

g = H−1ζρ̇ (2.22)

2.1.3 LMS Estimation error
The quality of estimates depends on the satellite geometry as well as on the

error in the pseudorange estimation, as can be derived from Equations (2.8) and
(2.22). The covariance of the LMS solution is defined as:

cov(∆x) = E{(HT H)−1HT ∆ρ∆ρT H(HT H)−1}
= (HT H)−1HT cov(∆ρ)H(HT H)−1

= (HT H)−1cov(∆ρ)
= G · σ2

UERE

(2.23)
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In particular, the standard deviation of the positioning error can be obtained as:

σx =
ñ

σ2
x + σ2

y + σ2
z + σ2

b = GDOP · σ2
UERE (2.24)

The Geometric Dilution Of Precision (GDOP) is defined as:

GDOP =
ñ

tr{G} (2.25)

where:

G = (HT H)−1 (2.26)

It is greater than or equal to 1, depending on the geometry of the visible satellites.
The more the satellites are distributed around the receiver, the smaller the GDOP.
The condition GDOP=1 could be reached if the satellite were distributed in a
tetrahedron around the receiver, which would have to stand at its barycenter.

This dependency (2.24) is a bottleneck for the LMS filter that, despite being
quite good as a first approximation, can not achieve good performance in space
applications. As a matter of fact, the farther the receiver is from Earth, the
worse the distribution of satellites around the receiver itself, and so the larger the
GDOP. In conclusion, the positioning error for an LMS filter in space application
is expected to be very large.

2.2 Kalman Filter
Initially called Linear Least Mean Squares Estimator (LLSME), the Kalman

Filter (KF) minimizes the mean-squared estimation error for a linear stochastic
system using noisy linear sensors. It is also called Linear Quadratic Estimator
(LQE) because it minimizes a quadratic function of estimation error for a linear
dynamic system with white measurement and disturbance noise.

For some applications, it is not possible or desirable to measure every variable
that you want to control, and the KF provides the mathematical framework for
inferring the unmeasured variables from indirect and noisy measurements. The KF
is also used for predicting the likely future courses of dynamic systems that people
are not likely to control such as the trajectories of celestial bodies. It has become a
universal tool for integrating different sensors and/or data collection systems into
an overall optimal solution.

The KF uses a parametric characterization of the probability distribution of its
estimation errors in determining the optimal filtering gains, and these parameters
may be used in assessing its performance as a function of the design parameters of an
estimation system, such as types of sensors to be used, locations and orientations
of the various sensor types w.r.t. the system to be estimated, allowable noise
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2.2 – Kalman Filter

characteristics of the sensors, prefiltering methods for smoothing sensor noise, data
sampling rates for the various sensor types or level of model simplification to reduce
the required level of estimation accuracy.

We use KF to make an educated guess, about what the system is going to do
next in any place where we have uncertain information about some dynamic system.
Its main advantages are:

• it can predict the next state based on the previous only, with no need for data
history

• even with a lot of noise, KF is able to produce good results

• it is computationally very fast, making it well suitable for real-time problems

The Kalman filter is an iterative process divided into two steps:

1) Prediction: the KF predicts the new state from the initial values and then
predicts the uncertainty of the prediction according to the various process
noise present in the system.

2) Update: the KF takes the actual measured values and compares them
to the predicted ones and weighting the choice between the predicted and
the measured quantities, calculating the Kalman Gain. Based upon the
decision made by the Kalman gain the filter calculates the new value and
new uncertainty. This output from the update step is again fed back to
the prediction step and the process continues till the difference between the
predicted value and the measured value tends to converge to zero.

The operating principle of the KF, depicted in Figure 2.1, where:

• F or Φ is the dynamic coefficient matrix of a continuous linear differential
equation defining a dynamic system.
This matrix describes how the system’s state evolves over time. It maps the
state at time t to the state at time t + 1.

• H is the measurement sensitivity/observation matrix, defining the linear
relationship between the state of the dynamic system and measurements that
can be made.
This matrix describes how the system’s state is related to the measurements
that are available. It maps the state at time t to the predicted measurement
at time t + 1.
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• Q is the covariance matrix of process noise in the system state dynamics.
This matrix describes the covariance of the process noise, which is assumed
to be additive and Gaussian. It is used to model the uncertainty in the state
transition equation and is typically estimated from prior knowledge of the
system’s dynamics.

• P is the covariance matrix of state estimation uncertainty.
This matrix describes the uncertainty in the estimated state of the system. It
represents the covariance of the error between the estimated state and the true
state. P is updated iteratively as new measurements become available, and
it converges to the steady-state value that represents the minimum possible
error covariance given the model and measurements.

• R is the covariance matrix of observational measurement uncertainty.
This matrix describes the covariance of the measurement noise, which is
assumed to be additive and Gaussian. It is used to model the uncertainty in
the measurement equation and is typically estimated from calibration or prior
knowledge of the measurement system.

• K is the Kalman gain matrix.
This matrix determines how much weight should be given to the model
prediction versus the measurement data when updating the state estimate.
It is a function of the error covariance matrix (P ), which represents the
uncertainty in the estimate, and the measurement noise covariance matrix
(R), which represents the uncertainty in the measurements.

2.2.1 Linearized Kalman filter
In a standard Kalman filter, it’s assumed that the relationship between the

measurement vector (z) and the state vector (x) is linear. However, this isn’t always
accurate for real-world systems. Some applications processing range measurements
like a Global Navigation Satellite System (GNSS) navigation filter, require a highly
nonlinear measurement model. Furthermore, the system model is also assumed
to be linear in the standard KF (i.e., ẋ is a linear function of x). Closed-loop
correction of the system using the state estimates can often be used to maintain a
linear approximation in the system model. However, it is not always possible to
perform the necessary feedback to the system.

The Extended Kalman Filter (EKF) is a nonlinear version of the KF. The system
matrix F and the measurement matrix H , can be replaced in the state propagation
and update equations by nonlinear functions of the state vector, respectively f(x)
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Figure 2.1: KF block diagram.

and h(x). The process to be estimated and the associated relationship may be
written in the form:

ẋ = f(x, ud, t) + u(t) (2.27)

z = h(x, t) + v(t) (2.28)

where ud is a deterministic forcing function and u and v are white noise processes
with zero cross-correlation. Nonlinearity may enter into the problem either in the
dynamics of the process or in the measurement relationship.

Let us assume that an approximate trajectory x∗(t) may be determined by some
means, let it be the “nominal trajectory” (Fig. 2.2). The actual trajectory may be
written as:

x(t) = x∗(t) + ∆x(t) (2.29)
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Equations (2.27) and (2.28) become:

ẋ∗ + ∆ẋ = f(x∗ + ∆x, ud, t) + u(t) (2.30)

z = h(x∗ + ∆x, t) + v(t) (2.31)

If ∆x is small enough, we can approximate f and h functions with Taylor’s
series expansions, retaining only first-order terms:

ẋ∗ + ∆ẋ ≈ f(x∗, ud, t) +
è

∂f
∂x

é
x=x∗

· ∆x + u(t) (2.32)

z ≈ h(x∗, t) +
è

∂h
∂x

é
x=x∗

· ∆x + v(t) (2.33)

where:

∂f
∂x

=


∂f1
∂x1

∂f1
∂x2

. . .
∂f2
∂x1

∂f2
∂x2

. . .
...

 ; ∂h
∂x

=


∂h1
∂x1

∂h1
∂x2

. . .
∂h2
∂x1

∂h2
∂x2

. . .
...

 (2.34)

Time

Sy
st

em
 s

ta
te




Nominal trajectory 

Actual trajectory 

Figure 2.2: Nominal and actual trajectories for a Linearized KF.

A typical choice is to set:

ẋ∗ = f(x∗, ud, t) (2.35)

Substituting this into Equation (2.32), we obtain the linearized model:

• linearized dynamics
∆ẋ =

è
∂f
∂x

é
x=x∗

· ∆x + u(t) (2.36)
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• linearized measurement equation

[z − h(x∗, t)] =
è

∂h
∂x

é
x=x∗

· ∆x + v(t) (2.37)

Note that the “measurement” in the linear model is the actual measurement
minus that predicted by the nominal trajectory in the absence of noise. Also,
the equivalent F and H matrices are obtained by evaluating the partial derivative
matrices (2.34) along the nominal trajectory.

2.2.2 Extended Kalman Filter
The EKF is similar to a linearized Kalman filter except that the linearization

takes place about the filter’s estimated trajectory rather than a precompiled nominal
trajectory, as depicted in Figure 2.3. That is, the partial derivatives of (2.34) are
evaluated along a trajectory that has been updated with the filter’s estimates.

It should be remembered that the basic state variables in a linearized Kalman
filter are incremental quantities, and not total quantities such as position, velocity,
and so forth.
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Figure 2.3: Estimated and actual trajectories for a Linearized KF.

The basic linearized measurement equation (2.37) can be rewritten as:

z − h(x∗) = H∆x + v (2.38)
Note that this quantity represent the “measurement” presented in the KF, rather

than the total measurement z. Therefore, the (incremental) estimate update at
time tk is:

∆x̂k = ∆x̂−
k + Kk[zk − h(x∗

k)ü ûú ý
Inc. meas

−Hk∆x̂−
k ] (2.39)
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Summing the h(x∗
k) term with Hk∆x̂−

k we obtain the predictive estimate of the
measurement, ẑ−

k .
We can define:

Measurement residual = (zk − ẑ−
k ) (2.40)

Rewriting Equation (2.39) adding x∗
k to both sides:

x∗
k + ∆x̂kü ûú ý

x̂k

= x∗
k + ∆x̂−

kü ûú ý
x̂−

k

+Kk(zk − ẑ−
k ) (2.41)

x̂k = x̂−
k + Kk(zk − ẑ−

k ) (2.42)
Equation (2.42) is the familiar linear estimate update equation written in terms

of total quantities. It simply says that we correct the a-priori estimate by adding
the measurement residual appropriately weighted by the Kalman gain Kk. Note
that after the update is made in the extended Kalman filter, the incremental ∆x̂k is
reduced to zero. Its projection to the next step is then trivial. The only nontrivial
projection is to project x̂k to x̂−

k+1. This will be the solution of the nonlinear
differential Equation (2.27) at t = tk+1, subject to the initial condition x = x̂k at
tk.

Note that the additive white noise forcing function u(t) is zero in the projec-
tion step, but the deterministic ud is included in the f function. Once x̂−

k+1 is
determined, the predictive measurement ẑ−

k+1 can be formed as h(x̂−
k+1), and the

measurement residual at tk+1 is formed as the difference (zk+1 − ẑ−
k+1). The filter

is then ready to go through another recursive loop.

Getting the EKF started

The EKF might diverge when the reference about which the linearization takes
place is poor. The most common situation of this type occurs at the starting point
of the recursive process. Usually, the a-priori information about the true state of
the system is poor. This causes a large error in x̂−

0 , and forces P0 to be large.
Two problems may arise when getting the EKF started:

1. A very large P −
0 combined with low-noise measurements at the first step will

cause the P matrix to “jump” from a very large value to a small value in one
step. In principle, this is permissible. However, this can lead to numerical
problems. A non-positive-definite P matrix at any point in the recursive
process usually leads to divergence.

2. The initial x̂−
0 is presumably the best estimate of x prior to receiving any

measurement information, and thus, it is used as the reference for linearization.
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If the error in x̂−
0 is large, the first-order approximation used in the linearization

will be poor, and divergence may occur, even with perfect arithmetic.

Concerning problem 1, the filter should be designed to preserve symmetry and
the positive definiteness of the P matrix. One way to achieve this is using the
following formulation for Pk:

P̂k = (I − KkHk)P̂ −
k (I − KkHk)T + KkRkKT

k (2.43)

Problem 2 is more subtle than problem 1. Even with perfect arithmetic, poor
linearization can cause a poor x̂−

0 to be updated into an even poorer a posteriori
estimate, which in turn gets projected on ahead, and so forth [2]. For this work,
the initialization was made through the result coming from the LMS solution. The
EKF is described by the following algorithm.

Algorithm 2 EKF algorithm.
for iteration k do

▷ PREDICTION
x̂−

k = Φkx̂+
k−1 + Bkuk ▷ a-priori state

P̂ −
k = ΦkP̂ +

k−1ΦT
k + Qk ▷ covariance matrix of the a-priori state

▷ UPDATE
ỹk = zk − Hkx̂−

k ▷ innovation vector
Kk = P̂ −

k HT
k (HkP̂ −

k HT
k + Rk)−1 ▷ Kalman gain

x̂+
k = x̂−

k + Kkỹk ▷ a-posteriori state
P̂k = (I − KkHk)P̂ −

k (I − KkHk)T + KkRkKT
k ▷ a-posteriori state

▷ covariance matrix
end for

2.2.3 Dynamic model for position states
In the Position-Velocity (PV) model illustrated in Figure 2.4, each spatial

dimension has two degrees of freedom, on of position and the other of velocity.

velocity position

Figure 2.4: PV model.
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The PV dynamic process can be described by:

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8


=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





x1
x2
x3
x4
x5
x6
x7
x8


+



0
0
0
uf

u1
u2
u3
ug


(2.44)

where:

• x1 is the x-component of the position

• x2 is the y-component of the position

• x3 is the z-component of the position

• x4 is the range clock bias error

• x5 is the x-component of the velocity

• x2 is the y-component of the velocity

• x3 is the z-component of the velocity

• x4 is the range clock drift error

• u1, u2, u3 are white noise driving functions with spectral densities Sp

• uf is a white noise driving function with spectral density Sf

• ug is a white noise driving function with spectral density Sg

Being ∆t the temporal step between epochs, the transion matrix can be derived
as:

Φ =



1 0 0 0 ∆t 0 0 0
0 1 0 0 0 ∆t 0 0
0 0 1 0 0 0 ∆t 0
0 0 0 1 0 0 0 ∆t
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(2.45)
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The process noise covariance matrix can be demonstrated to be:

Q =



Sp∆t3

3 0 0 0 Sp∆t2

2 0 0 0
0 Sp∆t3

3 0 0 0 Sp∆t2

2 0 0
0 0 Sp∆t3

3 0 0 0 Sp∆t2

2 0
0 0 0 Sf∆t + Sg∆t3

3 0 0 0 Sg∆t2

2
Sp∆t2

2 0 0 0 Sp∆t 0 0 0
0 Sp∆t2

2 0 0 0 Sp∆t 0 0
0 0 Sp∆t2

2 0 0 0 Sp∆t 0
0 0 0 Sg∆t2

2 0 0 0 Sg∆t


(2.46)

Sf and Sg represent spectral densities associated with clock bias and drift errors
in units of meters. Their measurement units are, respectively, m2/s and m2/s3.

As for Sp, it is the spectral density of the additive white noise associated with
the velocity states, and is measured in m2/s3.

2.2.4 Trajectory-Aware Extended Kalman Filter

The idea behind the Trajectory-Aware Extended Kalman Filter (TA-EKF) is
that of using an aiding trajectory to better predict the next state, making faster
the filter convergence. The aiding trajectory is the ideal path that the receiver is
expected to go through.

At each new iteration, the predicted state is corrected by the estimation error
computed as the difference between the last a-posteriori state and its corresponding
aiding state, coming from the aiding trajectory.

Hence, given an aiding trajectory x̃ such that, x̃k−1 is the aiding state associated
with the filter output x̂+

k−1, for the current epoch k, the predicted state is corrected
by the quantity:

εk−1 = x̂+
k−1 − x̃k−1 (2.47)

Algorithm 3 describes the whole TA-EKF routine.
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Algorithm 3 TA-EKF algorithm.
for iteration k do

εk−1 = x̂+
k−1 − x̃k−1 ▷ last estimate error

▷ PREDICTION
x̂−

k = Φkx̂+
k−1 + Bkuk − εk−1 ▷ a-priori state

P̂ −
k = ΦkP̂ +

k−1ΦT
k + Qk ▷ covariance matrix of the a-priori state

▷ UPDATE
ỹk = zk − Hkx̂−

k ▷ innovation vector
Kk = P̂ −

k HT
k (HkP̂ −

k HT
k + Rk)−1 ▷ Kalman gain

x̂+
k = x̂−

k + Kkỹk ▷ a-posteriori state
P̂k = (I − KkHk)P̂ −

k (I − KkHk)T + KkRkKT
k ▷ a-posteriori state

▷ covariance matrix
end for

2.2.5 Implementing Kalman Filtering
for GNSS Applications

For the PVT problem, the EKF can be implemented so as to work directly with
increments.

First of all, an initial prediction is obtained by applying the linearized model,
correcting the current position estimate by its drift estimate (no further forcing
functions are considered in input):

x̂−
k = Φx̂+

k−1 (2.48)

For n visible satellites, the Observation matrix H is then defined as linearization
about this approximation point:

Uk =


ax,1 ay,1 az,1 1
ax,2 ay,2 az,2 1
ax,3 ay,3 az,3 1
. . . . . . . . . . . .
ax,n ay,n az,n 1

 (2.49)

Where [ax,j, ay,j, az,j] is the unitary vector steering from the predicted position
x̂−

k to the j-th satellite, whose position is assumed to be known, and that is away
from the prediction by a length r̂j.

r̂j =
ñ

(xj − x̂−
k )2 + (yj − ŷ−

k )2 + (zj − ẑ−
k )2 (2.50)
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ax,j = xj−x̂−
k

r̂j

ay,j = yj−ŷ−
k

r̂j

az,j = zj−ẑ−
k

r̂j

Hk =
C
Uk 0
0 Uk

D
(2.51)

Concerning the measurement residual, it is computed as the difference between
the current measurements zk (pseudoranges and pseudorange rates corrected by the
estimated bias and drift, respectively) and the nominal measurements calculated
with respect to the predicted state ẑ−

k .

Measurement residual = (zk − ẑ−
k ) (2.52)

where:
ẑ−

k =
C
ρ̂
ˆ̇ρ

D
(2.53)

ρ̂ =



ñ
∆x2

1 + ∆y2
1 + ∆z2

1ñ
∆x2

2 + ∆y2
2 + ∆z2

2
. . .ñ

∆x2
3 + ∆y2

3 + ∆z2
3

 =


r̂1
r̂2
. . .
r̂n

 (2.54)

ˆ̇ρ =


(∆vx,1∆x1 + ∆vy,1∆y1 + ∆vz,1∆z1)/r̂1
(∆vx,2∆x2 + ∆vy,2∆y2 + ∆vz,2∆z2)/r̂2

. . .
(∆vx,n∆xn + ∆vy,n∆yn + ∆vz,n∆zn)/r̂n

 (2.55)

where:

∆vx,j = vx,j − v̂−
x,k (2.56)

∆vy,j = vy,j − v̂−
y,k (2.57)

∆vz,j = vz,j − v̂−
z,k (2.58)

It is important to note that the observation noise covariance matrix R can be
defined differently depending on the specific scenario being tested. For instance, in
a terrestrial setting, the weight assigned to a given satellite will be determined by
its elevation. However, in a space scenario, such as the one that will be discussed
later, the concept of “elevation” is not relevant, and therefore, the criteria used to
weigh satellite data will be based on received power.
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Once the matrices have been defined, the filter can compute the state increment.
In particular, the filter is forced in a manner that results in a state prediction equal
to zero for the EKF (which assumes no increment relative to the prediction) or to
the correction factor εk−1 for the TA-EKF. The KF routine subsequently updates
the predicted state, which is added to the total state prediction x̂−

k to update it.

2.2.6 Trajectory-Aware EKF validation testing
The algorithm has been validated by testing it in a terrestrial scenario. Given a

ground-truth trajectory, the EKF and TA-EKF filters have been tested on it to
compare their performance in a “simple” terrestrial case.

Figure 2.5 illustrates the ground-truth trajectory and the trajectory estimated
employing the TA-EKF. Except for an initial manoeuvring phase, where the
dynamics of the receiver were rather messy to be suitably linearized, after this, the
filter seems to behave very well.

Figure 2.5: Samarcanda dataset. Comparison between
the ground-truth trajectory and the estimated one.

For this setting, the observation noise covariance matrix is defined by Equation
(2.59), assuming a pseudorange variance of σ2

ρ = 400 m2 and a pseudorange rate
variance of σ2

ρ̇ = 3 m2/s2.

R = I2N ◦ (ruT ) (2.59)

The operator (◦) represents the Hadamard product used to define R as a diagonal
matrix.
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In particular:

• N is the number of visible satellites

• I2N is the identity matrix of size 2N × 2N

• u = [1, . . . ,1] of size 1 × 2N

• r = {ri} of size 1 × 2N

Equation (2.60) describes the models used for the noise variance of satellite
pseudorange (1 ≤ i ≤ N) and pseudorange rate (N + 1 ≤ i ≤ 2N).

ri =
σ2

ρ/θel,i, if i ≤ N

σ2
ρ̇/θel,i, otherwise

(2.60)

As for the TA-EKF, it was assumed to have an ideal tool for matching the last
PVT estimate to the last true state. Figures 2.6a and 2.6b show a single-realization
comparison of the described Kalman filters performance in terms of Empirical
Cumulative Distribution Function (ECDF) of the positioning error, summarized in
Table 2.1.

Although a single realization can not be considered from a statistical point of
view, it is clear that the TA-EKF has great potential, provided that the aiding
state is chosen as close as possible to the last true state.

(a) (b)

Figure 2.6: ECDF for the positioning error in ECEF-coordinates and
Positioning error at 25-th, 50-th, 75-th and 95-th percentiles.

Comparison between plain EKF and TA-EKF filters.
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Navigation Filter Error Percentile (m)
25-th 50-th 75-th 100-th

Plain EKF 1.43 1.99 3.45 3.82
TA-EKF 0.05 0.07 0.08 0.11

Table 2.1: Positioning error (m) for plain EKF and TA-EKF
considering 2000 epochs at 10 Hz.

2.2.7 Choosing the aiding
In principle, the TA-EKF approach would allow a very fast convergence of the

filter, even in bad noise conditions, provided it has the best matching between the
last PVT estimate and the ground-truth trajectory. Anyway, it is not so trivial
to match the last state estimate with its associated aiding state belonging to the
aiding trajectory.

Assuming that the aiding trajectory perfectly describes the state evolution in
time, even with different sample rates, one could calculate the aiding state by
interpolating available data, taking into account the elapsed time and receiver
motion anomalies that might cause slowdowns and accelerations. The more precise
the aiding, the faster will be convergence, therefore further studies should be carried
out on this topic.

2.3 Comments on navigation filters
An LMS filter is an algorithm that iteratively adjusts its parameters to minimize

the mean squared residuals (difference between nominal measurements calculated
from the solution and input measurements). In contrast, a KF is a state-space
model that estimates the state of a system based on noisy input measurements, a
measurement function and a model of the system dynamics.

LMS filter has some advantages over KFs, such as simplicity of implementation
and ease of tuning. However, it assumes all measurement variances are equal
(although Weighted Least Mean Square (WLMS) can be used when this is not the
case) and no correlation between the measurements.

Kalman filters are often preferred in many applications because they use a
model-based approach that allows for incorporating prior knowledge of the system
dynamics and incorporating constraints on the system behaviour. This makes them
more accurate and robust than LMS filter, especially when the system dynamics
are complex. However, KF also requires more computational resources and a more
sophisticated system model, which may not be feasible in some applications.
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Chapter 3

Simulation framework

Space exploration has always been a topic of fascination for humans. With the
advancements in technology, it has become possible to send spacecraft beyond
Earth’s atmosphere and explore other celestial bodies such as the Moon. However,
space exploration comes with its challenges, including the harsh space environment
and the need for precise navigation and control systems.

This chapter presents a custom software simulator that emulates the environment
of the Global Navigation Satellite System (GNSS) signal that is experienced along
the Earth-Moon Transfer Orbit (MTO). In particular, this includes the generation
of an Earth-Centered Earth-Fixed (ECEF) environment in which Earth, Moon
and Sun are simulated together with Global Positioning System (GPS) and Galileo
satellite constellations. The software has been tailored and customized to suit the
unique requirements of this specific study.

Then, an MTO navigation is recreated, starting from a ground-truth trajectory,
and the GNSS observables that a receiver on board would obtain are generated.
Once recreated the environment, different navigation filters have been tested to
compare their performances in position estimation.

3.1 Environment background

The whole environment is generated according to the ECEF reference frame,
also called geocentric coordinate system. It describes the system assuming that
Earth is placed at the origin of a Cartesian frame and is still. The motion of objects
belonging to the system and moving in it is modelled according to this assumption.
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Earth

The Earth is modelled as a sphere of radius:

RE = 6371 km (3.1)

that will often be used as a “measurement unit” to describe the distance of objects.
According to the ECEF reference frame, illustrated in Figure 3.1), the z-axis
coincides with the line joining the North and South poles, with positive values
increasing northward, whereas the x-y plane represents the equatorial plane. In
particular, the x-axis passes through the origin, with positive values increasing
toward the prime meridian, whereas the y-axis, as part of the right-handed reference
system, is defined accordingly.

Figure 3.1: ECEF reference frame and Earth representation.

Sun and Moon

Similarly, Sun and Moon are defined as spheres of radii, respectively:

Rsun = 696340 km (3.2)

Rmoon = 1737.4 km (3.3)

Their positions, given a certain date, are obtained thanks to the MATLAB
built-in function planetEphemeris, which returns the coordinates of a celestial body
with respect to a given reference, that, for an ECEF system, is represented by the
Earth.
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3.2 Receiver
The receiver has been modelled according to the receiver that will be carried

by the Lunar GNSS Receiver Experiment (LuGRE) experiment [1]. LuGRE is a
NASA-Italian Space Agency project to demonstrate multi-GNSS based navigation
and timing in cislunar space and on the Moon using the Firefly Blue Ghost Mission
1 lunar lander. The goal is to receive GPS and Galileo signals on the Moon and to
use the data to support the development of GNSS receivers for lunar use.

The LuGRE receiver is designed to collect and process cislunar GPS and Galileo
L1/E1 and L5/E5a signals as weak as 20 dB-Hz using high-performance tracking,
processing, and navigation algorithms.

3.2.1 Receiver antenna pattern
According to the LuGRE model, the receiver Radio-Frequency (RF) chain

consists of a low noise amplifier, filter, and a high-gain antenna with a measured
peak boresight gain of 16 dBi at the L1 frequency and the pattern represented in
Figure 3.2. The receiver antenna is designed to point toward the ECEF frame’s
origin with a radial pointing error of approximately one degree. However, the
simulation framework does not consider any pointing errors due to a lack of mission
documentation about the error itself.

(a) (b)

Figure 3.2: LuGRE receiver antenna pattern 2D (a) and 3D (b)
representation. Constant for every azimuthal angle.
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3.2.2 Receiver clock model

The GNSS receiver clock introduces a timing error that translates into a ranging
error which equally affects measurements made to all satellites. This error is
generally time-varying and is referred to as user clock bias.

If the satellite measurements are made simultaneously, this receiver clock error
is the same on all the measurements. Due to this commonality, the clock error has
no effect on positioning accuracy if there are enough satellites to solve for it and so
is not included as a source of positioning error. Even so, there are advantages to
properly modelling the receiver clock.

A suitable clock model that makes good sense intuitively is a two-state random
process model. It simply says that we expect both the oscillator frequency and
phase to randomly walk over reasonable spans of time.

From [2], it can be found that:

E[x2
p(∆t)] = Sf∆t + Sg∆t3

3 (3.4)

E[x2
f (∆t)] = Sg∆t (3.5)

Notice that, in this case, Sf and Sg represent spectral densities for the white
noise driving functions associated with clock bias and drift in unit of seconds.
Therefore, their measurement units are, respectively, s and 1/s. When used with
clock error in units of meters, like in Equation 2.46, the values must be multiplied
by c2.

The white noise driving functions associated with the clock phase and frequency
errors are determined from the Hadamard variance that characterizes the receiver
clock [4]. It was modelled so as to best represent the Voltage Controlled Temperature
Compensated Crystal Oscillator (VCTCXO) clock on board the LuGRE receiver
[1]. From the experimental plots of the VCTCXO error variances, a parametrc
function has been deduced according to the Hadamard variance model:

σ2 = 10
3 q0∆t−2 + q1∆t−1 + 1

6q2∆t + 11
120q3∆t3 (3.6)

Figure 3.3 reports three Hadamard deviation plots for three oscillator models:
the pseudo-VCTCXO model, similar to the one used in [1], an Magnetospheric
MultiScale Ultra Stable Oscillator (MMS USO) and a more stable commercial
atomic clock, namely the Spectratime Rubidium Atomic Frequency Standard
(RAFS). Their parameters are reported in Table 3.1
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Timing Standard q0 q1 q2 q3
MMS USO 0 1.2 × 10−22 1.58 × 10−26 1 × 10−38

RAFS 0 3.7 × 10−24 1.87 × 10−33 7.56 × 10−59

pseudo-VCTCXO 0 4 × 10−23 1 × 10−20 1 × 10−28

Table 3.1: Hadamard variance parameters.

Figure 3.3: Hadamard deviation plots of three sample oscillators reported in
Table 3.1.

Considering Equations (3.4) and (3.6), and comparing the terms of similar order
in ∆t, it holds:

Sf∆t + Sg∆t3

3 ∼ 1
6q2∆t + 11

120q3∆t3 (3.7)

from which:

Sf ∼ 1
6q2 (3.8)

Sg ∼ 11
40q3 (3.9)
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From [2], the average rms value of the clock phase error is given by Eq. (3.10).

x̄p,rms =
ó

Sf

∆t
+ Sg∆t

3 [s] (3.10)

As for the clock drift, the rms drift error variance can be approximated to

σ2
xf (∆t) = Sg

∆t
(3.11)

Finally, the overall bias term, in meters, is generated as

b = [x̄p,rms + N (0, σ2
xf (∆t))] · c [m] (3.12)

where c stands for the speed of light.

c = 299792458 m/s (3.13)

3.2.3 Receiver trajectory
Concerning the ground-truth trajectory, it was provided as a sample trajectory

that a spacecraft would go through in a journey to the Moon. It contained Earth-
Centered Inertial (ECI) J2000 three-dimensional coordinates and velocities, with
their associated timestamps. The sample period was of one minute.

To make the trajectory more suitable for simulation purposes, once converted
to the ECEF frame, as shown in Figure 3.4, it was interpolated with the spline
method to keep its nonlinear dynamicity and achieve a sampling period of one
second.

Figure 3.4: Trajectory overview according to the ECEF reference frame with
a temporal resolution of 15 minutes between subsequent points.
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3.3 GNSS Satellites
Each satellite antenna is oriented according to a relative reference system.

However, no unique convention for the labelling of individual spacecraft axes
exists. Conversely, distinct frame orientations have been adopted for the various
constellations and types of spacecraft depending on the manufacturer’s heritage
and preference [5].

To avoid a multitude of attitude descriptions differing only by a permutation of
axes, the International GNSS Service (IGS) has adopted a common Body-Fixed
(BF) reference, depicted in Figure 3.5:

• the +zIGS-axis is the principal body axis closest to the antenna boresight
direction (i.e., the direction of the maximum beam intensity).

• the yIGS-axis is parallel to the rotation axis of the solar panels. The positive
yIGS-direction is defined through the corresponding xIGS-axis orientation.

• the +xIGS-axis is chosen such that the +xIGS-panel is permanently sunlit
during nominal yaw-steering, while the −xIGS-panel remains dark at all times.

Figure 3.5: Station vehicle IGS reference system
with sun and probe (receiver) steering vectors.

As for the origin of each satellite local reference frame, it is located at the centre
of mass of its corresponding body, which corresponds to its position.

Two constellations have been considered for this framework: GPS and Galileo.
Given the large availability of GPS official documentation provided by Lockheed
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Martin, GPS antennas were more straightforward to model. On the other hand,
there are no publicly available antenna patterns for Galileo, therefore, some simpli-
fications needed to be made for it.

Three models are considered for GPS: IIR, IIR-M and IIF. The body-fixed
coordinate system of the IIF satellites coincides with the IGS convention, whereas
for IIR and IIR-M models, the xBF and yBF axes have the same direction but
opposite signs with respect to the IGS reference frame.

Concerning Galileo satellites, the BF coordinate system is assumed to coincide
with the IGS convention.

All the BF references are summarized in Table 3.2.

xBF yBF BF

GPS IIR −xIGS −yIGS zIGS

GPS IIR-M −xIGS −yIGS zIGS

GPS IIF xIGS yIGS zIGS

Galileo ESA/ESOC xIGS yIGS zIGS

Table 3.2: Satellite antenna body-fixed coordinate system.

3.3.1 GPS constellation
For the GPS constellation, 27 satellites have been generated through the MAT-

LAB built-in function gnssconstellation, which produces 27 satellite positions and
velocities for a given date and time. The order in which the satellites are generated
follows the references in [6], which are reported in Table 3.3.

Antenna patterns

GPS publicly released detailed antenna patterns for satellite models IIR and
IIR-M. For the Block IIF satellites (built by Boeing) there have not been released
similar data. Logically, the antenna patterns used for IIF Block should be at least
as good as the improved antenna pattern, so its pattern is built as the average of
all improved antenna patterns [7].

Table 3.3 indicates all matched information related to the ordered satellites
provided by MATLAB.

Being the GPS antenna patterns provided by NASA in terms of Directivity, to
convert to Gain values, they need to be corrected by the Gain Correction Factor
(GCF) provided in [8]. For IIF models, an average GCF of 1 dB is assumed. Figures
3.6, 3.7 and 3.8 depict the GPS satellite antenna Gain patterns that have been
reconstructed for the simulation framework.
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(a) (b)

Figure 3.6: GPS IIR model antenna pattern 2D (a) and 3D (b)
representation. Azimuthal angle cuts every 10 degrees.

(a) (b)

Figure 3.7: GPS IIR-M model antenna pattern 2D (a) and 3D (b)
representation. Azimuthal angle cuts every 10 degrees.

(a) (b)

Figure 3.8: GPS IIF model antenna pattern 2D (a) and 3D (b)
representation. Azimuthal angle cuts every 10 degrees.
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SV no. Slot ID Model SVN GCF
1 A1 IIF 65 1
2 A2 IIR-M 52 1.2
3 A3 IIF 64 1
4 A4 IIR-M 48 1.4
5 B1F IIF 71 1
6 B1A IIR 56 0.7
7 B2 IIF 62 1
8 B3 IIR 44 1.1
9 B4 IIR-M 58 1.3
10 C1 IIR-M 57 1.3
11 C2 IIF 66 1
12 C3 IIF 72 1
13 C4 IIR-M 53 1.4
14 D1 IIR 61 1.2
15 D2F IIR 46 1
16 D2A IIF 63 1
17 D3 IIR 45 1.1
18 D4 IIF 67 1
19 E1 IIF 69 1
20 E2 IIF 73 1
21 E3 IIR-M 50 1.3
22 E4 IIR 51 0.7
23 F1 IIF 70 1
24 F2F IIR 41 0.9
25 F2A IIR-M 55 1.3
26 F3 IIF 68 1
27 F4 IIR 60 1.3

Table 3.3: Data associated with the GPS-constellation list
generated by the framework.

3.3.2 Galileo constellation

Unlike GPS, MATLAB does not provide any direct tool for generating Galileo
satellite positions and velocities. However, a Simulink model can be built, to
simulate Galileo orbits extrapolating satellite positions and velocities at a given
date, similarly to what was done for GPS [9].
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Antenna patterns

Concerning Galileo satellites’ antenna radiation patterns, the details of which
are kept confidential, unofficial Effective Isotropic Radiated Power (EIRP) values
have been assumed for main and side lobes as derived by the European Space
Operations Center (ESOC) to enable preliminary scientific investigations in support
of the PROBA-3 mission [10].

It consists in an oversimplified stair steps pattern, represented in Figure 3.9,
that approximates the average behaviour of the Galileo constellation, albeit it will
lead to sharp variations in the satellite visibility.

(a) (b)

Figure 3.9: Galileo ESA/ESOC model antenna pattern 2D (a) and 3D (b)
representation. Constant for every azimuthal angle.

3.3.3 Geometric and Radiometric visibility

Given a satellite and the receiver states, two types of visibility are defined:

• Geometric visibility: is a measure of the instantaneous availability of a
direct Line-Of-Sight (LOS) between the spacecraft and the satellite vehicle
antenna pattern, for which a 90◦ off-boresight angle mask is adopted. If so,
then the satellite can be considered geometrically visible. It can be negatively
impacted when the satellite-spacecraft baseline exceeds an off-boresight angle
of 90 degrees from the nadir pointing direction, or as a result of occultation
effects that occur due to the presence of the Earth or the Moon, as illustrated
in Figure 3.10.
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Figure 3.10: SV geometric visibility example
with Earth occultation angles and distances.

Two occultation angles are defined for Earth and Moon:

αe = arctan(RE/des) (3.14)

αm = arctan(Rmoon/des) (3.15)

where des and dms are the distances of Earth and Moon from the station
vehicle.

des =
ñ

(xe − xsv)2 + (ye − ysv)2 + (ze − zsv)2 (3.16)

dms =
ñ

(xm − xsv)2 + (ym − ysv)2 + (zm − zsv)2 (3.17)

Earth occultation occurs when the angle Earth-SV-Receiver βesr is smaller
than αe and the Receiver is not between Earth and the satellite (under the
Terrestrial Service Volume (TSV)).

βesr ≤ αeo ∩ dsr ≥ des cos αeo (3.18)
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Similarly, there is Moon occultation when the Moon stands between the
receiver and the satellite, and the angle Moon-Receiver-SV βmrs is smaller
than αm.

βmsr ≤ αmo ∩ dsr ≥ dms cos αmo (3.19)

where dsr is the Euclidean distance between the satellite and the receiver.

• Radiometric visibility: depends on the received signal-to-noise ratio associ-
ated with the selected satellite. In particular, for a passband signal, we usually
refer to the Carrier-to-Noise power density Ratio (CNR or C/N0) [11]. If it is
above a certain threshold, then the satellite can be considered radiometrically
visible or RF-visible. Note that geometric visibility is a necessary but not
sufficient condition for radiometric visibility to occur.
The link budget for the C/N0 of a communication link between the receiver
and a given satellite is defined as in [1].

C/N0 = PT + GT (ϕ, θ) − 20 log(4πd

λL1
) − GR(ϕ, θ) − Lpol − 10 log(kTsys) − Rloss

(3.20)
where the parameters included in Table 3.4 were considered.

Receive Side Transmit Side
Parameter Value Parameter Value

System Implementation Losses 0.9 dB GPS Block IIR 17.3 dBW(Rloss) (PT )
System Temperature 162 K GPS Block IIR-M 18.8 dBW(Tsys) (PT )
Polarization Losses 1 dB GPS Block IIF 16.2 dBW(Lpol) (PT )

Receive Antenna Gain 16 dB Galileo 11 dBW(GR(peak)) (PT + GT (peak))

Table 3.4: Link budget parameters.
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Figure 3.11 shows a realization sample of the framework. The program gener-
ates a scenario for all GPS and Galileo satellites based on a given date and the
spacecraft’s position. Moreover, it identifies the RF-visible satellites by highlighting
their antenna patterns, given a Radiometric visibility threshold. For each satellite,
a set of arrows pointing towards the sun and towards the spacecraft can optionally
be shown.

Figure 3.11: Simulation framework example.
Satellites showing their antenna patterns are RF-visible.

3.4 Observables generation
In the case of radiometric visibility, the receiver can “measure” the observables

from the radionavigation signal. In practice, for this framework, the observables
are simulated with noise to form the measurements the receiver would get as input
to the navigation filter.

Pseudorange

The Pseudorange is defined as the difference between the time of reception
(expressed in the time frame of the receiver) and the time of transmission (expressed
in the time frame of the satellite) of a distinct satellite signal, expressed in meters.
This corresponds to the distance from the receiver antenna to the satellite antenna,
including receiver and satellite clock offsets and other biases, such as atmospheric
delays.

For a signal from the satellite (s), the pseudorange P (s)
r can be expressed by

using the signal reception time t(s)
rx |r measured by the receiver clock and the signal

transmission time t
(s)
tx |s measured by the satellite clock as:
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P (s)
r = c(t(s)

rx |r − t
(s)
tx |s) (3.21)

where:

t(s)
rx |r = t(s)

rx + ∆tr (3.22)

t
(s)
tx |s = t

(s)
tx + ∆ts (3.23)

More specifically, not only does the pseudorange equation have to consider the
geometric range ρ(s)

r between satellite and receiver antennas, namely their mutual
geometric distance, but it has also to take into account the receiver and satellite
clock biases ∆tr and ∆ts with respect to the common Universal Time Coordinated
(UTC) reference time, the ionospheric and tropospheric delays I(s)

r and T (s)
r and

the measurement error ϵP .

P (s)
r = c[(t(s)

rx + ∆tr) − (t(s)
tx + ∆ts)] + I(s)

r + T (s)
r + ϵP

= c(t(s)
rx − t

(s)
tx ) + c(∆tr − ∆ts) + I(s)

r + T (s)
r + ϵP

= ρ(s)
r + c(∆tr − ∆ts) + I(s)

r + T (s)
r + ϵP

(3.24)

Although the signals coming from geometrically visible satellites might cross
a significant portion of the atmosphere, the framework neglects the errors due
to Ionosphere I(s)

r and Troposphere T (s)
r , as an implementation choice to simplify

the modelling of the system and because they are not significant for the study
carried out in the thesis. Moreover, the bias term due to the satellite clock offset is
assumed to be corrected, as it can be usually done from GPS/Galileo base station
information.

Therefore the pseudorange measurement is simply generated as:

P (s)
r = ρ(s)

r + c∆tr + ϵP (3.25)

The term c∆tr is the receiver clock bias, expressed in meters, which is simulated
according to Equation (3.12), whereas ϵP is the pseudorange measurement noise
modelled by Fig. 3.12a.

Pseudorange rate

The Pseudorange rate, as mentioned in the previous chapter, can be considered
as the projection of the relative velocity vector on the direction from the receiver
to the satellite:

∆P (s)
r = (vs − vr) · rs − rr

|rs − rr|
(3.26)
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Doppler shift

From Equation (2.14), the Doppler shift is obtained as:

fD = −fL1

c
∆P (s)

r (3.27)

To obtain the Doppler shift measurement, Equation (3.27) has still to be noise-
stained with a white noise modelled by Fig. 3.12b.

Doppler rate

The Doppler rate is simply simulated as the time derivative of the Doppler shift:

∂fD

∂t
= ∆fk

D = fk
D − fk−1

D

tk − tk−1
(3.28)

3.4.1 Measurement noise

Similarly to what is done in LuGRE analysis [1], measurement noise is modelled
as a function of the received C/N0, which is applied as White Gaussian Noise
(WGN). In particular, the standard deviation of the noise is modelled according to
the curves presented in the paper and visually reconstructed.

Starting from a general parametric exponential function (Eq. 3.29), the noise
standard deviation models for the pseudorange (Fig. 3.12a) and the Doppler shift
(Fig. 3.12b) have been reconstructed according to the parameters reported in Table
3.5 to best resemble the curves presented in [1].

f(x) = a · b(x−x0) + c (3.29)

1σ noise model a b c x0
Pseudorange 26.7000 1.125 0 15
Doppler Shift 0.0325 1.350 0.0125 15

Table 3.5: 1-σ noise model parameters.
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(a) (b)

Figure 3.12: 1-σ noise model for Pseudorange (a)
and Doppler shift (b) measurement noise.

As explained in [1], the constant offset in the Doppler noise model, represents
the proportion of the total noise due to the clock instability, where the clock is
assumed to be modelled similarly to the one of this simulation framework.

3.5 Navigation filters
The generated observables are then ready to be processed by one of the three

different navigation filters to simulate the position estimation:

• Least Mean Square filter

• Extended Kalman Filter

• Trajectory-Aware Extended Kalman Filter

The generated measurements are input into these filters, and the PVT solution is
computed.

Note that EKF and TA-EKF need to be initialized, therefore the LMS filter
is used to make a first position estimate for the first ten epochs. This estimate
is then used in Kalman filters which are expected to give better performances
than the LMS. Furthermore, some filter matrices may need fine-tuning of their
parameters to get optimal performances, and this tuning might change depending
on the geometry of the problem.

The LMS filter is configured with a number of iterations equal to 20, so to have a
reliably precise estimation. Please, notice that the LMS filter is used only as a first
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reference, therefore its analysis was not thorough. To make a fairer comparison,
as a first enhancement, a Weighted Least Mean Square (WLMS) could be used,
where the weighted matrix depends on the signal strength, as the Observation
noise covariance matrix does in the Kalman filters. Then a memory of the last
state could be introduced in the system to help the convergence and improve the
accuracy.

As for the Kalman filters, they both were initialized through the LMS filter. In
particular, a “conservative” amount of ten LMS solutions is considered for the first
ten epochs, but it can be decreased at will, letting Kalman filter work since the
second epoch. Coming to the KF architecture, the state noise covariance matrix
Q, is defined as in 2.46 where the acceleration noise power spectral density Sp is
set to 50 m2/s3 for the plain Extended Kalman Filter (EKF) and 2 m2/s3 for the
Trajectory-Aware Extended Kalman Filter (TA-EKF).

As for the state error covariance matrix P , it is initialized assuming an indepen-
dent uncertainty of 10 meters per dimension, which converted to covariance matrix
became:

P =



100 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0
0 0 100 0 0 0 0 0
0 0 0 100 0 0 0 0
0 0 0 0 200 0 0 0
0 0 0 0 0 200 0 0
0 0 0 0 0 0 200 0
0 0 0 0 0 0 0 200


(3.30)

Notice that a doubled uncertainty characterizes the velocity components of the
state as they result from a difference between two random variables.

Finally, the observation noise covariance matrix R is defined by weighting the
measurements by their associated received power. In particular, the following
model was adopted:

R = I2N ◦ (ruT ) (3.31)

The operator (◦) represents the Hadamard product used to define R as a diagonal
matrix.

In particular:

• N is the number of RF-visible satellites

• I2N is the identity matrix of size 2N × 2N

• u = [1, . . . ,1] of size 1 × 2N
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• r = {ri} of size 1 × 2N

Equation 3.32 describes the models used for the noise variance of satellite
pseudorange (1 ≤ i ≤ N) and pseudorange rate (N + 1 ≤ i ≤ 2N), according
to the general model, presented in [12], and with parameters adapted to the
space context.

ri =
1 + 2812 · 10

−C/N0
10 , if i ≤ N

10−4 + 52 · 10
−C/N0

10 , otherwise
(3.32)

The TA-EKF requires a matching strategy to identify the corresponding state to
the last PVT estimate in the expected orbital trajectory used for assistance. This
process can be difficult due to various factors affecting the matching algorithm.
However, in our specific scenario, the aiding trajectory is identical to the ground-
truth trajectory, meaning that there is a straightforward one-to-one correspondence
between the trajectory samples and PVT estimates.

In general, the aiding trajectory differs from the ground-truth trajectory, al-
though it is expected to closely resemble it. Therefore, the framework assumes no
knowledge of the aiding trajectory. At each epoch k, the framework selects the
expected trajectory state for the k-th epoch (x∗

k) as a starting point to locate the
corresponding aiding state for the next filter iteration. The corresponding aiding
state (x̃k) is then determined by calculating the average of its surrounding states.

Given a radius r:

x̃k = E{x∗
i }, ∀i ∈ {k − r, k − r + 1, . . . , k + r} (3.33)

A radius of four samples has been selected arbitrarily for this orbital trajectory.
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Chapter 4

Simulation results

The outcomes obtained through the employment of the simulation framework
previously illustrated are presented in this chapter. Firstly, the reliability of the
simulation tool is scrutinized to lend support to the performance comparison of the
distinct algorithms that require testing. Following that, an extensive evaluation of
the simulation scenario is conducted to attain a comprehensive understanding of
the positioning problem and forecast the anticipated performances of the diverse
algorithms. Finally, in the contest of LuGRE mission, an in-depth examination of
a mission point is carried out using a highly precise and dependable Montecarlo
simulation, and the final results are extrapolated to compare the various navigation
filters.

4.1 Mission overview

The mission is characterized by a realistic Earth-Moon Transfer Orbit (MTO),
expressed according to the ECEF reference frame. Its features are represented in
terms of distance from Earth in Figure 4.1a and of x,y and z components of the
vehicle velocity in Figure 4.1b).

As illustrated in the figures, the spacecraft trajectory is characterized by three
phasing loops. Phasing loops are a series of manoeuvres that a spacecraft performs
to adjust its trajectory and match the orbit of another celestial body, such as the
Moon ([13],[14] and [15]). These manoeuvres are critical for spacecraft that are
travelling to the Moon because they allow the spacecraft to time its arrival at the
Moon so that it can enter into orbit around it.
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(a) (b)

Figure 4.1: Mission Orbit Radius (a) and Velocity (b)
as function of elapsed time.

The phasing loops technique involves using the gravitational pull of the Moon
to adjust the spacecraft’s trajectory. The spacecraft will perform a series of small
engine burns at strategic points in its trajectory, which will adjust its speed and
direction. By carefully timing these burns, the spacecraft can use the Moon’s
gravity to “slingshot” it into the correct orbit. The spacecraft typically follows
a trajectory that takes it around the Earth and then out toward the Moon. As
the spacecraft approaches the Moon, it will perform a series of engine burns to
adjust its speed and direction. These burns will gradually adjust the spacecraft’s
trajectory until it matches the Moon’s orbit. Once the spacecraft is in the correct
position, it can perform a final engine burn to enter into orbit around the Moon.

Phasing loops are a common technique used by spacecraft travelling to the
Moon because they are an efficient way to adjust the spacecraft’s trajectory using
minimal fuel. They require careful planning and execution, but they are critical for
ensuring that the spacecraft arrives at the Moon at the right time and in the right
orbit.
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Figure 4.2: NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)
phasing loops. WMAP orbits around Earth waiting for the moon to move into

the right position. This is about a three week process.

Consequently, Doppler shift and Doppler rate are generated along the mission.
For example, for satellite GPS SVN56, the measurements follow the trends shown
in Figures 4.3a and 4.3b. In general, a GNSS Station Vehicle (SV) is not seam-
lessly visible, therefore its associated quantities are exploited only in the case of
radiometric visibility.

Notice that Doppler measurements strongly relate to the relative speed of the SV
with respect to the receiver. A clear example of this can be observed by comparing
the Doppler rate 4.3b with the receiver velocity 4.1b: an abrupt acceleration of the
receiver corresponds to a sharp variation in the Doppler frequency.

(a) (b)

Figure 4.3: Doppler shift (a) and Doppler rate (b) for GPS station vehicle
SVN56 as function of the mission elapsed time.
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4.1.1 GNSS satellite distribution
GPS and Galileo station vehicles are simulated according to their expected orbit

progression, and their geometry is analyzed for the PVT evaluation.

Radiometric visibility

Figures 4.4a,4.4b,4.5a and 4.5b depict the expected GPS-only, Galileo-only,
and combined GPS/Galileo radiometric visibility throughout the elliptical phasing
orbits and low lunar orbits of the transit phase as a function of distance from the
Earth (a) and of mission time (b). In these figures, the dots represent the number
of RF-visible GNSS satellites every 15 minutes throughout the trajectory, while the
triangles represent a moving average of the number of RF-visible GNSS satellites.

On average, Galileo shows a lower availability in MTOs mainly due to its lower
transmit power with respect to GPS satellites (Table 3.4). Moreover, the Galileo
satellite visibility trend presents a sharp drop-off in the number of visible satellites
due to the conservatism of the Galileo EIRP pattern discussed in 3.3.2.

(a) (b)

Figure 4.4: Radiometric visibility (C/N0 ≥ 20 dB − Hz)
as function of mission distance (a) and elapsed time (b).

Beyond the mean expected visibility, fewer or more satellites may be intermit-
tently visible. For example, at 50 RE altitude, 6 GNSS satellites are visible on
average when using a 23 dB-Hz threshold (Fig. 4.5a), but that instantaneous
number may be as high as 11 or as low as 0.

Figures 4.4a and 4.4b show visibility trends for an assumed nominal C/N0
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(a) (b)

Figure 4.5: Radiometric visibility (C/N0 ≥ 23 dB − Hz)
as function of mission distance (a) and elapsed time (b).

threshold of 20 dB-Hz, while Figures 4.5a and 4.5b show the same trend for an
assumed C/N0 threshold of 23 dB-Hz to account for a 3 dB link margin. It is
expected that the actual visibility observed during the flight is likely to fall within
the range represented by these two sets of information, being the declared receiver
sensitivity of 20 dB-Hz. The primary difference between the two thresholds is that
a higher threshold removes an average of 1-2 satellites, with a much earlier drop-off
in Galileo visibility (at 45 RE vs. at 30 RE, respectively).

These results are in line with those obtained in [1], so it can be assumed that the
assumptions made in the simulation environment are valid to exploit the simulation
environment for obtaining significant analysis.

Geometric arrangement

The geometric arrangement of the satellites is crucial for an accurate solution to
the PVT problem and it can be analyzed by looking at the GDOP which reflects
the impact of the geometry in position estimation accuracy (Figs. 4.6a and 4.6b).

As expected, the farther the spacecraft with respect to the Earth, the worse the
GDOP. This is immediate to see if you think that when you are close to the Earth,
you need to have a large angle of view to visualize all RF-visible satellites; on the
contrary, when you are far from Earth, whatever satellites are distributed, they
will always be concentrated in a tight angle of view. Therefore, GDOP typically
has a value that increases with distance.
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(a) (b)

Figure 4.6: Least Square GDOP and reciprocal condition of Gramian matrix
as function of mission distance (a) and elapsed time (b).

4.1.2 Expected GNSS performances
The GDOP behaviour allows us to foresee what positioning performances to

expect, given the standard deviation of the positioning error defined by 1.20.

Figure 4.7 qualitatively represents how the error is expected to increase for a
PVT EKF solution, the farther the spaceship gets from the Earth.

In particular, the position estimation uncertainty out of the EKF is depicted
through an error covariance ellipsoid generated every time a position estimation
is carried out, that is for this example, every 15 minutes. It is centred on the
estimated position and is characterized by three axes a, b and c generated starting
from the position estimation error covariance matrix. Its eigenvectors define the
main directions of the 3-dimensional error ellipsoid and the eigenvalues are the
squares of the semi-axes [16].

For the Kalman Filters (KFs), the error covariance matrix is given as an outcome.
Albeit it is defined as an 8 × 8 matrix, a 3 × 3 sub-matrix corresponding to the
position states can be considered.
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Figure 4.7: Error covariance ellipsoids from EKF results
and covariance anomalies due to bad geometry.

This representation highlights how geometry affects positioning uncertainty.
A general increasing trend can be observed for the ellipsoid sizes the larger the
distance from Earth. Furthermore, a peculiarity of the GNSS geometric problem is
pointed out: major uncertainties mainly affect the direction which the signals come
from. However, there can occur cases in which other directions are affected by very
large uncertainties as well: we will refer to these epochs as “covariance anomalies”
or, simply, “anomalies”.

The cause of covariance anomalies can be found both in the distribution of the
satellites, in terms of GDOP and visibility, and in the dynamics of the receiver.
From Figure 4.8, it can be seen that the largest anomalies correspond to the points
in which the GDOP has a sudden variation towards greater values, i.e. the points
in which the geometry of the problem suddenly gets much worse. Furthermore, the
size of the ellipsoids also depends on the number of RF-visible satellites. Clearly,
the larger the distance from Earth, the fewer satellites are visible and the higher
the likelihood of a bad satellite geometric distribution leading to high GDOP and
increasing as a consequence the estimation uncertainty.

However, there is no unequivocal link between the two conditions, particularly
thanks to the use of Kalman Filters. Indeed, Kalman filters include further
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(a)

(b) (c)

Figure 4.8: GDOP (a), Satellite Visibility (b) and
Receiver Dynamics (c) at covariance ellipsoid epochs.

information like the system dynamics and the expected trajectory. In light of
this, other minor anomalies may occur when the dynamics of the receiver are
characterized by nonlinearities not well described by the linear model used in the
KFs.

4.2 Case study: LuGRE planned mission period

In order to evaluate the effectiveness of the proposed TA-EKF architecture,
a specific portion of the mission trajectory was identified that is relevant to the
scientific objectives of the mission. Notice that a 3 dB link margin is considered
for Radiometric visibility, which is assumed verified with a CNR above 23 dB-Hz.

The planning schedule of payload operations for LuGRE [17] is taken as reference.
Figure 4.9 depicts the plan in distance from the Earth. Yellow circles represent the
location of manoeuvers, whereas brown dots represent a baseline set of 15 planned
1-hour periods where LuGRE will be oriented to the Earth for data collection.
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Figure 4.9: LuGRE Operations Schedule During Transit.

In particular, the second planned mission point is selected within a 2-hour
neighbourhood (Fig. 4.10) to better analyze filters convergence.

Particular attention is paid to a segment where the y-component of the velocity
exhibits a slight nonlinearity, shown in Figure 4.10, which is anticipated to slightly
negatively impact the algorithm outcome.

(a) (b)

Figure 4.10: Mission point 2: Orbit Radius (a) and Velocity (b)
as function of mission elapsed time.
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Figure 4.11: Mission segment analyzed velocity states.

A pictorial overview of the analyzed mission segment is provided in Figure 4.12,
and the system state is represented in terms of visibility and geometric arrangement
quality in Figures 4.13 and 4.14, respectively. It can be deduced that this mission
point is quite favourable to GNSS receivers to work with acceptable performances.

Finally, observables, such as pseudorange and Doppler measurements, are sim-
ulated according to the models described in the previous chapter for the current
mission segment. Figure 4.15 shows an example of Doppler measurements with
respect to the GPS satellite SVN56.

Figure 4.12: Mission segment framework realization.
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(a) (b)

Figure 4.13: Mission segment satellite Radiometric visibility
(C/N0 ≥ 23 dB − Hz)

as function of mission distance (a) and elapsed time (b).

(a) (b)

Figure 4.14: Least Square GDOP and reciprocal condition of Gramian matrix
as function of the mission segment distance (a) and elapsed time (b).
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(a) (b)

Figure 4.15: Doppler shift (a) and Doppler rate (b) for GPS station vehicle
SVN56 as function of the mission segment elapsed time. Note that the station
vehicle SVN56 gets out of radiometric visibility after 4490 seconds since the

mission segment started.

4.2.1 Navigation filters comparison
To make a more statistical description of the outcomes, the results come from

a series of Monte Carlo simulations. For timing reasons, the test could not run
many simulations, therefore 100 Monte Carlo realizations have been carried out.
Although they are not sufficient to statistically evaluate the proposed solution, they
show interesting results that should be furtherly examined.

The navigation filter performances are expressed in terms of the experimental
cumulative distribution function of the positioning error.

As can be observed from the following figures, the Least-Mean-Squares (LMS)
solution can not guarantee good performance in space applications, mainly because
of the bad geometry that Navigation Systems provide in such contests.

Standard EKF allows an increment in precision, that can be further enhanced
with the aided version proposed in this work (the TA-EKF), gaining a total of
almost one order of magnitude in accuracy.

The global comparison of the three filters under test is represented in Figure
4.16a.

In particular, the focus is on the difference between the standalone EKF and
the custom Trajectory-Aware version.

Table 4.1 provides a summary of the cumulative statistics at various percentiles as
illustrated in Figure 4.16b. The accuracy of the TA-EKF architecture is significantly
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(a) (b)

Figure 4.16: Empirical Cumulative Distribution Function (ECDF)
for the positioning error in ECEF-coordinates for LMS, plain EKF and

TA-EKF filters (a) and cumulative error comparison for EKF and TA-EKF (b).

better than that of a plain EKF. For example, at the 95th percentile, the accuracy
improvement reaches 87.7%. This is due to the introduction of aiding information,
such as the expected MTO trajectory, which enables the navigation filter to
counteract the degrading effects of the poor geometry conditions experienced
during the MTO. These results were obtained despite the use of a simplified model
to characterize the process dynamics between discrete-time filter iterations.

Navigation Filter Error Percentile (m)
25th 50th 75th 95th

Plain EKF 8.16 12.91 22.38 88.88
TA-EKF 1.91 2.85 4.34 10.93

Table 4.1: Positioning error for plain EKF and TA-EKF
considering 7200 epochs at 1 Hz.

Concerning the Kalman filter Error Covariance Matrix (ECM) convergence, the
two filters have similar performances. The following figures show the behaviour of
the A-Posteriori ECM in terms of position, velocity, bias and drift error.

The high dynamics of the spacecraft require the adoption of a constant velocity
approximation (i.e., high acceleration noise), which affects the process state estimate
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and covariance estimate. However, the introduction of an aiding state in the
proposed TA-EKF improves model linearization and leads to enhanced state
estimates. Consequently, the convergence pattern of estimation error covariance
statistics (Fig. 4.17) improves, namely, the estimation uncertainty decreases.

(a) (b)

(c) (d)

Figure 4.17: Time-series of the 1σ-dispersion of the navigation filter
estimates for the Position (a), Velocity (b), Clock Bias (c) and

Clock Drift (d) states. Comparison between plain EKF and TA-EKF.

Consequently, the two Kalman filters show similar trends also for the error
covariance ellipsoids. Figure 4.18 depicts the error covariance ellipsoids generated
for the Kalman filters in the analyzed mission segment. Observations similar to
the general case can be made.

However, it is worth noting that even with slight nonlinearities in the velocity
state, the linearization process allows good performances thanks to the reasonably
fine granularity of 1 second.
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Figure 4.18: Mission point error covariance ellipsoids overview.

Finally, Figures 4.19a and 4.19b show, respectively, the positioning error time
series for the plain EKF and the TA-EKF, with the 100 Monte Carlo realizations
overlapped. As it was intended and as it is shown, the aided version of the Extended
Kalman Filter boosts the filter convergence and reduces the positioning error.

(a) (b)

Figure 4.19: Time series of the positioning error of 100 Monte Carlo
realizations. Comparison between plain EKF (a) and TA-EKF (b).

A slight hump can be observed in the position estimate error curves around
epoch 4500 which might be ascribed to a lack of linearity in the spacecraft trajectory.
However, further investigations ought to be carried out.

Notice that the LuGRE plan calls for mission segments that are only one hour
long. Analyzing only 3600 iterations of the filters it can be seen that the convergence
of the error covariance matrix is still in a transitory phase (Fig. 4.17) and, for
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this particular case, the convergence is hampered by a worsening in the geometry
of the problem, as highlighted by Figure 4.20. It depicts the convergence of the
square root of diagonal terms of the (a-posteriori) covariance matrix P , namely
the standard deviations associated with the state estimation uncertainty, for the
TA-EKF. Moreover, critical points in terms of model linearization are avoided (Fig.
4.11). Anyway, the performances in terms of error in the position estimation are
expected to be almost identical.

(a) (b)

(c) (d)

Figure 4.20: Convergence of standard deviation of state estimation
uncertainty from KF compared to GDOP.
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(e) (f)

(g) (h)

Figure 4.20: Convergence of standard deviation of state estimation
uncertainty from KF compared to GDOP.
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Chapter 5

Conclusions

The new space era is expected to revolutionize our approaches to space explo-
ration, space communications, Earth observation, and many other space-related
applications. However, current systems for navigation, guidance, and control of
space missions typically require a reliable interaction of space and ground segments
that subtends a non-negligible effort and poor spacecraft autonomy.

In the early phases of such a new era, dedicated space navigation systems are
going to be designed and tested (e.g. LunaNet) while transient technologies shall
support the missions. GNSS, originally designed to provide accurate Positioning,
Navigation, and Timing (PNT) information to terrestrial users, is expected to be
exploited for autonomous space navigation by leveraging the same multi-lateration
principle that allows terrestrial users to estimate their Position, Velocity and Timing
(PVT).

Indeed, Global Navigation Satellite System (GNSS) receivers in space, already
validated in Low Earth Orbit (LEO), are now becoming attractive even for spacecraft
navigation at larger distances, for example, in lunar missions. Exploiting GNSS
as a navigation system for spacecraft approaching the Moon would ease several
mission tasks. Relying on in-orbit GNSS-based navigation systems would make
the spacecraft more autonomous and would reduce the costs and the efforts of
federated networks, such as NASA’s Deep Space Network (DSN) and the European
Space Tracking Estrack network, providing tracking services. Additionally, it would
pave the way to a planned space station in lunar orbit and future colonization of
the Moon and then of Mars.

Nevertheless, these altitudes represent a challenging environment, characterized
by high Doppler frequency and very weak signals reception, compromising the
performance of actual GNSS receivers, which were not designed for non-terrestrial
navigation.

This thesis introduces a customized filter, the Trajectory-Aware Extended
Kalman Filter (TA-EKF), tailored to GNSS navigation throughout Earth-Moon
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Transfer Orbits (MTOs). The proposed methodology demonstrates that the integra-
tion of aiding information, such as the expected orbital trajectory, can improve filter
convergence and lead to highly accurate positioning solutions. This technology is
especially important for non-terrestrial applications where GNSS signal availability
can be significantly impaired at high altitudes, preventing the necessary accuracy
for orbit determination algorithms. Through a dedicated framework simulating
MTO mission scenarios and associated GNSS measurements, the performance of the
proposed methodology was investigated using Monte Carlo analyses, which statisti-
cally assessed TA-EKF effectiveness against a standalone Extended Kalman Filter
(EKF) architecture. Ultimately, the TA-EKF represents a significant advancement
in the filtering-based estimation of PVT and serves as a valuable tool for achieving
cis-lunar and lunar volume exploration using space-borne GNSS receivers. Using a
dedicated simulation framework, the current study showcases the application of
the TA-EKF to mitigate the negative impact of poor GNSS visibility conditions
across MTOs. The TA-EKF leverages the trajectory data of a sample MTO to
enhance the EKF prediction stage, resulting in approximately 88% improvement
in position estimate accuracy at the 95th percentile, under favorable conditions.
Additionally, the TA-EKF displays faster convergence than its unaided counterpart
in both position and velocity states. Future research endeavors will quantify the
effects on state estimation accuracy when inaccurate trajectory aidings are applied
to the TA-EKF.
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