
POLITECNICO DI TORINO
Master Degree course in Communications and Computer Networks Engineering

Master Degree Thesis

Real-time flow monitoring based on
time-space probabilistic data structures

Supervisor
Prof. Paolo Giaccone

Candidate
Simone Porcino

Academic Year 2022-2023

Acknowledgements

In primis desidero ringraziare il mio relatore Paolo Giaccone che, sin dalla scelta dell’argo-
mento, mi ha guidato costantemente nella stesura dell’elaborato. Non meno importante è
stato l’aiuto di Alessandro Cornacchia, pronto ad assistermi quando ne ho avuto bisogno.
La loro disponibilità ed i loro preziosi suggerimenti sono stati fondamentali per portare
a termine questo lavoro.

Un ringraziamento speciale vorrei dedicarlo alla mia famiglia, fonte essenziale di sup-
porto, forza ed incoraggiamento. Ringrazio in particolar modo i miei genitori, che mi
hanno dato la possibilità di proseguire gli studi a Torino, in un’università prestigiosa
come il Politecnico. Spero di ricambiare i loro sacrifici e l’impegno che hanno dedicato
per farmi diventare quello che sono oggi. Questo traguardo non sarebbe stato possibile
senza di loro, motivo per cui desidero dedicargli questa tesi.

Ci tengo a ringraziare affettuosamente anche la mia fidanzata Valentina, altra fonte
di supporto, forza ed incoraggiamento. Aver remato nella mia stessa direzione è stato
indubbiamente un’altra chiave di questo successo.

Ringrazio anche tutte quelle persone che, con parole e gesti, hanno contribuito a
trasformare preoccupazione e ostacoli in sollievo e agevolazioni.

Un ultimo ringraziamento va a coloro che ho incontrato durante il percorso univer-
sitario, dai colleghi ai coinquilini: ciascuno ha lasciato un segno che porterò per sempre
con me.

i

Abstract

Network monitoring is essential to ensure network performance, integrity and security.
With the advent of Software-Defined Networking (SDN), network monitoring solutions
can be implemented in programmable switches guaranteeing packet processing at link-
rate. However, the limited hardware resources of programmable switches along with the
growth of link rates and simultaneous number of flows make real-time traffic monitoring a
challenge, requiring solutions that are memory efficient and, possibly, perform operations
on a time scale very reduced. To this end, we propose a solution to passively and con-
tinuously monitor the flow round-trip time (RTT) through a probabilistic data structure
composed of a set of Bloom filters that are evenly spaced across time slots over a given
time window, with the aim of optimizing the memory footprint of the Bloom filter array
while still guaranteeing accuracy in RTT measurements. A problem to be addressed is
the management of false positive events typical of the Bloom filter, for which we propose
different search policies to select one Bloom filter among those that return a true answer
after being queried. Another problem concerns the management of the arrival time of the
outgoing packets necessary to estimate the RTT, since it can not be stored within the
Bloom filters. To evaluate such a system, for each search policy, we conducted simulations
using two traffic patterns and several configurations in terms both of memory and time
slot width to individuate the configuration that minimizes the error and guarantees the
best accuracy. We show that the best space-time configuration changes with both the
traffic characteristic and the search policy, but selecting the more recent Bloom filter in
the past always provides the best accuracy, although it may introduce underestimated
RTT samples due to an intrinsic problem of the system itself.

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis structure . 3

2 Theoretical background 5
2.1 Round-trip time (RTT) . 5
2.2 Probabilistic data structures . 7
2.3 Hash function . 9
2.4 Bloom filter . 11

2.4.1 Operations . 11
2.4.2 Performance . 12
2.4.3 Variants and applications . 13

3 Real-time RTT monitoring 15
3.1 System model . 15
3.2 System design . 16

3.2.1 Parameter definition . 17
3.2.2 Reference time of outgoing packets 18
3.2.3 “Candidate” Bloom filter . 20
3.2.4 RTT estimation . 21
3.2.5 Bloom filter reset . 22

3.3 Policies to choose a candidate Bloom filter 22
3.3.1 Known RTT distribution . 22
3.3.2 Unknown RTT distribution . 32

3.4 Comparison with other proposals . 34

4 Methodology and numerical evaluations 41
4.1 Overview of the simulator . 41

4.1.1 Traffic generation . 42
4.1.2 Packets and Bloom filter implementation 43
4.1.3 Parameter setting . 45
4.1.4 Evaluation metric . 46
4.1.5 Statistics collection . 47

4.2 Result analysis . 47

ii

4.2.1 Scalability evaluation . 48
4.2.2 Time-space evaluation . 52
4.2.3 RTT accuracy . 54

5 Conclusion 63
5.1 Future works . 64

Bibliography 65

iii

Chapter 1

Introduction

Network monitoring refers to a set of actions (e.g. measurements, reports, analyses,
etc.) that allow network administrators to assess the network health, which is crucial to
ensure performance, integrity and security. In particular, network administrators must
adopt solutions to proactively monitor the traffic network to identify, isolate and correct
network defects, but also to avoid failures [4], whose consequences could be catastrophic
because they can lead to business disruptions and to loss of reputation, resulting in loss
of customers and revenue [2].

Network monitoring techniques can be active, passive or hybrid. First ones are carried
out on end-hosts that actively send probes over the network, i.e. fictitious packets that
are properly shaped to obtain desired info from the network. Second ones consist of pas-
sively observing traffic passing through a measurement node (either an end-host or, more
frequently, a network device at a vantage point), which is in charge of collecting and pro-
cessing data to estimate network characteristics. Last, hybrid monitoring measurements
are based on the joint use of active and passive measurements.

The main drawback of active measurements is that they are network-invasive be-
cause require the generation of ad-hoc traffic, resulting in performance and management
overheads at network nodes, altering the normal behaviour of the network. In addition,
with active measurement tools it is only possible to collect end-to-end path samples, as
opposed to passive monitors that allows you to observe the whole network traffic pass-
ing through the measurement point [13], providing a more accurate picture of network
performance. On the other hand, passive approaches pays for this higher accuracy in
terms of the volume of data to be collected and processed, requiring more performing de-
vices. Furthermore, since hybrid measurements use both active and passive techniques,
it inherits their pros and cons.

Regardless of the adopted measurement approach, administrators typically monitor
networks with a special focus to Quality of Service (QoS), i.e. a model according to which
the quality of services offered by the network to end users can be classified through some
parameters, such as throughput, packet losses and delay. One possible metric to assess
network performance in terms of delay is the Round-trip time (RTT). Indeed, since it
represents the time that elapses from when a host transmits a packet to when it receives
the related response, if it assumes a high value, it could be a sign of some anomaly within

1

Introduction

the network. For instance, some RTT monitoring use-cases can be [6, 17]:

• detecting network congestion. When traffic crosses a congested path and starts to
degrade network performance, the network can reroute this traffic to an alternate
path which is less congested.

• guaranteeing QoE (Quality of Experience). Some applications such as video stream-
ing and multiplayer cloud-gaming are latency-sensitive. Therefore, monitoring RTT
can help to select an alternate path or server to better accommodate customers’
demand.

• detecting routing attacks. Both BGP routing attacks and IP spoofing exhibit unex-
pected changes in the RTT, as the traffic is rerouted to pass through the malicious
attacker. Hence, RTT can be used to potentially discover these attacks and to block
the affected traffic.

With the advent of Software-Defined Networking (SDN), the way of performing net-
work monitoring has changed. Thanks to its approach, which relies on a logical centralized
control plane which is decoupled from the data plane, the controller collects information
from every forwarding device in order to acquire a global network view, which is essen-
tial to keep it under control and intervene in real-time in case of some event. However,
this decoupling involves a simpler data plane, represented by commodity switches which
are cheaper and have limited amount of resources. The data plane can follow either a
stateless or a stateful approach. In the first case, the switch does not keep any network
state information, restricted only to forward the traffic according to the decisions taken
by the controller. In the second case, some simple processing capabilities (e.g. finite state
machines) are implemented in the switch in order to keep some state information useful
to make decisions on the fly without necessarily going through the controller. Stateless
switches, like OpenFlow, are not suited for monitoring large network data flows [7] be-
cause degrade performance. Their main limitation comes from the fact that all the flows
must be monitored by the controller: the exchange of signaling information between data
and control plane not only introduces some latency but also overloads some network links
and the controller processing (which can in turn affect that of the data plane). Stateful
switches overcome this limitation: not only they allow to balance the amount of process-
ing between data and control plane, but they also improve network reactivity, given that
they enable to take local decisions and to reduce signaling overhead. Stateful switches
are also known as programmable switches because they introduce the possibility to pro-
gram the data plane using an high-level language (e.g. P41) to perform any network
functionality you are interested to. These network applications ranges from traditional
network functions (e.g. switching and routing) to traffic engineering (e.g. load balancing
and QoS), from network monitoring to security domains (e.g. firewalling, network access
control, DoS attack mitigation) [16]. For instance, network operators may be interested
in monitoring flow RTT to trigger some traffic engineering: flows that experience high

1https://p4.org/

2

1.1 – Motivation

RTT values may go through a path with some congested node, therefore you would like
to re-route them in real time along a different path in order to achieve some operational
goal (e.g. QoS, QoE). Such an innovative and flexible technology has found particular
interest in the field of networking, as the implementation of several applications directly
in the switch fabric allows you to promptly react at line-rate packet processing in the
presence of anomalies.

1.1 Motivation
The flexibility of programmable switches comes up against its hardware limitations in
terms of computational and memory resources, whose efficiently use is a challenge for
real-time network monitoring. In fact, today’s networks are characterized by a large
number of simultaneous flows at very high link-rate, therefore real-time traffic monitoring
requires programmable switches that perform operations on a time scale very reduced and,
possibly, with a small amount of memory to store information traffic related to the metric
considered. To this end, programmable switches could be equipped with probabilistic data
structure. Unlike traditional data structures, which always return true answers to queries
about the stored data, probabilistic ones return approximate answers, in the sense that
they can be true with a certain probability they are not. Despite this property, which
involves the introduction of some errors in measurements, probabilistic data structures
have the main benefit of being very performant, requiring low memory footprint and low
query time. There are already solutions that passively and continuously monitor the RTT
of data flows within the network. For instance, those based on Hash tables provide highly
accurate estimates by storing the entire timestamp, thus requiring more memory than
solutions based on Bloom filters. The latter, on the other hand, sacrifice some accuracy
to save memory, as they are implemented by simple bit arrays or counter arrays. In this
thesis work, we propose a solution that aims to passively and continuously monitor the
flow RTT through a probabilistic data structure composed of a set of Bloom filters and to
possibly individuate a trade-off between its accuracy in measuring the RTT samples and
the amount of dedicated memory, by means of simulations of a simple testbed scenario.

1.2 Thesis structure
The remainder of this thesis is organized as follows. First, Chapter 2 provides the main
theoretical concepts necessary for a better understanding of this work, namely the RTT
and the probabilistic data structures, along with a tool they are based on (hash function)
and a specific data structure on which our proposal is based (Bloom filter). In Chapter 3,
we present in detail our idea applied in a specific scenario, explaining the problems that
need to be managed when measuring the flow RTT. We also propose some possible
solutions to them, accompanied by the relative pseudo-codes, in case they should be
used for further analysis or in other contexts. Then, Chapter 4 first presents a quick
overview of the methodology used to evaluate the accuracy of our solution, followed by
the resulting outcomes. Finally, in Chapter 5 we draw our conclusions on the obtained
results and propose some ideas that can be further explored in future works.

3

4

Chapter 2

Theoretical background

This chapter introduces the main pillars that are required for a better understanding
of this work. Therefore, we will first define the RTT along with all the different types
of delays that contribute to it. Next, we will go through probabilistic data structures,
providing both a quick classification of them and a brief description of the main tool they
are based on, namely hash functions. Finally, we will present one of the most popular
probabilistic data structures, i.e. the Bloom filter, which is the main block for building
the data structure on which our proposal is based.

2.1 Round-trip time (RTT)

The round-trip time (or RTT) is the amount of time it takes to transmit a packet from
the source and receive a response from the destination:

RTT = (time when the response is received) - (time when the packet is sent) (2.1)

Behind (2.1) are hidden different types of delays that contribute to RTT, which are
shown in Fig. 2.1 in a point-to-point communication with no networks in between. For
the following definitions, we refer to [14].

Processing delay (tproc) It is the time required by a network node to process a packet.
It is known that network nodes follow a layered protocol architecture (e.g. OSI
model) to communicate with each other: whereas at the sender side the packet is
received from an upper-layer protocol, at the receiver side the packet is received
from a lower-layer protocol. What matters is that each layer introduces a processing
delay to support a specific functionality for the packet, such as framing (or packe-
tization), data compression, encryption/decryption, lookup forwarding tables, and
so on. Processing delay depends on the device processor speed.

Transmission delay (ttx) It is the time that takes the sender to push all the packet’s
bits into the transmission medium. This delay is a function of the packet length L

5

Theoretical background

Figure 2.1: Delay components that contribute to RTT in a point-to-point
communication with no networks in between

(in bits) and the transmission rate R of the medium (in bits per second or bps):

ttx = L

R
(2.2)

Propagation delay (tprop) It is defined as the time elapsed to transmit a bit from the
sender to the receiver. It is given by the ratio between the travelled distance d and
the speed of electromagnetic waves s in the transmission medium:

tprop = d

s
(2.3)

The speed of electromagnetic waves is s = c/n, so it is proportional to the speed
of light in vacuum (c ≃ 3 × 108 m/s) and it is inversely proportional to the index
of refraction of the medium (for instance, both in copper wire and optical fiber
n ≃ 3/2, so s ≃ 2× 108 m/s).

Each delay just discussed probably takes on different values depending on whether
the packet is being transmitted from the source to the recipient (forwarding direction)
or vice-versa (backward direction). Indeed, not only hardware capabilities may differ
between end hosts, but also the size of the data packet is typically different from the size
of the packet carrying the response. If we assume for simplicity that delays are equal
regardless of the direction they refer to, the RTT in a point-to-point communication with
no networks in between is:

RTT = 3× tproc + 2× ttx + 2× tprop (2.4)
Since the processing delay is normally negligible and the transmission delay is incor-

porated in the propagation delay, the round-trip time is often approximate as RTT ≃
2× tprop, although this may be inaccurate.

6

2.2 – Probabilistic data structures

If the communication goes through some network, the RTT estimation becomes more
difficult. Indeed, the physical distance between end-hosts becomes greater, as multiple
links need to be traversed, increasing the propagation delay. Plus, several network nodes
must also be traversed, each of which introduces a processing delay and a certain queue-
ing delay, namely the time a packet needs to wait in a buffer before being processed
and transmitted along the transmission medium. This delay usually refers to switching
fabrics in the network, as they can only process one packet at a time. Indeed, while the
packet at the head of the queue is being processed and transmitted, incoming packets
are stored behind it in the queue. Queueing delay is quite variable because depends on
the queue occupancy of each crossed node, which is in turn influenced by several factors
including the scheduling algorithm adopted, the packet size, the network status and the
user traffic behaviour.

In conclusion, since there are several factors that come into play for the RTT, you
should know that its estimation is not as simple as one might think. Despite this, mea-
suring RTT of data flows is particularly adopted by network operators because estimates
above certain thresholds can signal some anomaly in the network path (e.g. congested
node), which should be properly managed to safeguard the health of the network and the
reputation of the company.

2.2 Probabilistic data structures

In computer science, data are used to describe a reality by means of a digital repre-
sentation. A data structure is an entity used to store, organize and manage a dataset
within a computer’s memory using an appropriate method. Data structures can be clas-
sified according to several criteria, including the space-speed efficiency, i.e. how much
memory it requires to store the elements of the dataset compared with how much time it
takes to perform operations (writing, reading, updating and deleting) on the elements. In
this context, you can distinguish between deterministic data structures and prob-
abilistic data structures: the first ones rely on the concept of key, i.e. an identifier
that uniquely matches one element of the dataset, whereas the seconds ones are based
on different hashing techniques which, exploiting some randomness, may return the same
identifier for different elements of the dataset.

This makes deterministic data structures more accurate than probabilistic data struc-
tures, as operations on the dataset always return an exact answer, at the price of requiring
more memory and therefore being less scalable for some applications. On the other hand,
in some scenarios, probabilistic data structures are preferred over deterministic ones be-
cause possible errors introduced by the returned approximate answers can be suitably
controlled to achieve certain goals, with the main advantage of improving the perfor-
mance in terms of space and speed. Indeed, probabilistic data structures are typically
characterized by low memory requirements, constant query time and high scaling, which
are critical especially for Big Data and for computer networks. In fact, in recent years,
the speed of data transmission has soared, bringing two different challenges which are
interdependent, one related to the packet processing time and another to the memory ac-
cess time. The growth of the data rate implies the decrease of the transmission time, and

7

Theoretical background

so of the processing time. However, the latter can not decrease at will because it strictly
depends on the packet size and on the hardware capability, in particular on the number
of clock cycles a CPU needs to elaborate a packet, which in turn depends on the specific
data structure adopted to store all the packet processing rules. Therefore, to improve
the processing time of a packet, in addition to having high performance hardware, you
should minimize the number of memory accesses by using very efficient data structures
such as the probabilistic ones.

Classification

Probabilistic data structures can be grouped in five categories.

Membership It consists of deciding whether or not an element belongs to a dataset.
There are two definitions of the same problem, which differ on the way they are
solved. The following definitions have been taken by [11].

Given a set of elements S = {s1, ..., sm} on a universe U (i.e. S ⊆ U) and
given some element x ∈ U , determine whether x ∈ S:

• if x ∈ S, return TRUE always;

• if x /∈ S, return FALSE always.

Set membership problem

Since the set membership problem returns always a correct answer, it is solved
using deterministic data structures, requiring a storage equal to m×L, so it grows
proportionally both to the number of elements to store (m) and the average size
of each element (L). Then, depending on the adopted data structure, the problem
is solved with different times, passing from O(m) to O(log m) simply keeping the
dataset sorted in such a way as to perform a binary search, up to O(1) using hash
tables.

Given a set of elements S = {s1, ..., sm} on a universe U (i.e. S ⊆ U) and
given some element x ∈ U , determine whether x ∈ S:

• if x ∈ S, return TRUE always;

• if x /∈ S, return FALSE with high probability.

Approximate set membership problem

By relaxing the original problem, you get the approximate set membership problem,
in which the result is probabilistic and may not give you a correct answer. Indeed,
such a problem includes a particular type of event known as false positive, which
occurs when the algorithm returns “true” even though the considered element does
not belong to the set. Fortunately, this error is compensated by a low memory

8

2.3 – Hash function

requirement which is independent of the average size of the stored elements and
simply grows as Θ(m). The most popular probabilistic data structures that are
used to solve the approximate set membership problem are Bloom filter, Cuckoo
filter and Quotient filter.
The set membership problem and its approximation find use in various applications
of computer networks. For instance, packet processing can involve address lookup
(which output port/interface to send an incoming packet to?), firewalling or in-
trusion detection schemes (which packet to accept or reject?); if instead you focus
on network monitoring, you might be interested in evaluating some performance
metric (e.g. RTT) by identifying packets belonging to the same flow.

Cardinality The problem consists of estimating the number of unique elements in a
dataset (e.g. how many packets per flow). Linear counting, LogLog and Hyper-
LogLog are probabilistic data structures that face the problem.

Frequency It relies on finding the frequency of some element of a dataset (e.g. detecting
the most frequent flows in a data stream). Examples of data structures are count
sketch and count-min sketch.

Rank The problem allows you to find a complete rank of the elements (e.g. estimating
quantiles and percentiles in a data stream using only one pass through the data).
Random sampling, q-digest and t-digest are possible solutions of the problem.

Similarity It is responsible for finding the nearest neighbor for large datasets using
sub-linear in time solutions. Solutions are based on hashing techniques, such as
MinHash and SimHash.

2.3 Hash function
To compactly represent a dataset, probabilistic data structures exploit some randomness
using a hash function, namely a function that converts any input data of arbitrary size to a
fixed-size value. Basically, given the universe set U , regardless of the size of each element,
a hash function h maps that set to a range of integer values n that could represent the
size of the probabilistic data structure you are interested in, i.e.:

h : U → [1, n] (2.5)

Properties

A hash function is deterministic, meaning that for a given input value it must always
generate the same hash value. However, it looks random if the following properties
hold [11]:

• uniform → it is able to distribute all the elements of the universe across the data
structure in a uniform way:

P (h(k) = j) = 1
n

9

Theoretical background

Figure 2.2: Hash function mapping. Figure reproduced from [11]

• independence between two values → if the previous property is satisfied, the prob-
ability that a hash function returns the same value for two different elements is
1/n:

∀k1 /= k2, P (h(k1) = h(k2)) = 1
n

Probability of collision

The term collision refers to when two elements of the universe have the same hash
value. The probability of a hash collision is a generalization of the birthday problem from
mathematics. Therefore, if you consider m elements chosen uniformly at random (with
repetition), from a set of cardinality n (with m < n), the probability p(n) that at least
one pair of equal elements has been chosen (collision) is:

p(n) = 1− e− m(m−1)
2n ≃ 1− e− m2

2n (2.6)

As a consequence, to observe at least one collision with probability p, it holds:

m ≃
√︄

2n log
(︃ 1

1− p

)︃
(2.7)

Furthermore, when n is relatively large (i.e. n → +∞), it can be shown that the
typical number of elements is sharply concentrated around its average:

E[m] =
√︃

π

2 · n ≃ 1.25
√

n (2.8)

Classification

Hash functions can be classified in cryptographic and non-cryptographic, depending on
whether or not they have to provide certain security guarantees. Cryptographic hash
functions are one-way (it is infeasible to generate the original element from its hash
value unless all possible elements are tried), collision resistant (it is very hard to find

10

2.4 – Bloom filter

keys that collide) and use large number of bits to make brute force inversion harder.
Such a complexity makes hash function very robust but also slow. On the other hand,
non-cryptographic hash algorithms offer lower security guarantees in exchange for perfor-
mance improvements [1], mostly focusing on high speed processing and low probability
of collisions. Therefore, as long as you don’t care so much about the security properties
of cryptographic hash functions, the other family of functions is more suitable. That is
the reason why, in the field of computer networking, non-cryptographic hash functions
are more widespread.

2.4 Bloom filter
Bloom filter is a probabilistic data structure based on the approximate set membership,
telling you whether or not an element is inside a set. It is known to answer membership
queries with an efficient use of memory, as it is implemented by a bit array, i.e. an array
that can only store a value of the set {0, 1} in any of its positions. In initialization,
a Bloom filter is an array of n bits set to 0. Then, the probabilistic part comes into
play, as it uses k distinct hash functions for inserting/looking up an item in/from the
array, meaning that a query can turn out a false positive due to probability of collision.
Therefore, let’s delve deeper into these aspects.

2.4.1 Operations

To insert an element x to the set, you need to compute k independent hash values h1(x),
h2(x), · · · , hk(x), which will represent the positions of the array where you need to set
the bit to 1. If an index is already set, nothing further is required.

For looking up an element x (test whether it is in the set), you still need to compute
k hash values to get the positions of the array, but now you need to check the value of the
bit: if any of them is 0, the element is definitely not in the set (there is no way of having
false negative); otherwise (all bits set to 1), the element is probably present. In fact, there
is no way to distinguish whether the element is actually in the set (true) or the bits have
by chance been set to 1 during the insertion of other elements (false positive).

Fig. 2.3 shows an example of Bloom filter with n = 10 and k = 2. At the beginning
the Bloom filter is initialized with all zeros (Fig. 2.3a). After a while the Bloom filter
contains the set {x, y, z} (Fig. 2.3b), where the colored arrows represent the hash values
of each element, namely the positions in the bit array that each element is mapped to.
Finally, Fig. 2.3c shows two different cases of query: the element v is definitely not in the
set {x, y, z} because it hashes to one bit-array position containing 0, whereas w is said
to be an element of the Bloom filter although it represents a false positive, having never
been entered before.

Bloom filter does not support deletion because otherwise you may have false negative,
but this is not admissible. Indeed, deleting an element would imply to set bits from 1
to 0 at the positions generated by k hash functions, which may cause the deletion of
other elements in the set that share the same positions of the bit array. For instance,
suppose that the element w of Fig. 2.3c is inserted in the set, which becomes {x, y, z, w}.
Now, if you suppose that the same element is deleted, the set becomes {x, y, z} but it is

11

Theoretical background

(a) Initialization (b) Insertion (c) Lookup

Figure 2.3: Bloom filter example (n = 10 and k = 2)

compromised. In fact, a probable lookup of the element x or y will return a false negative:
since some of the positions in the array they were mapped to are now 0, the query tells
you that the elements are not in the set even if they are.

2.4.2 Performance

The main drawback of Bloom filters is related to false positive events, whose probability
can be calculated as:

P (FP) =
(︄

1−
(︃

1− 1
n

)︃mk
)︄k

≃
(︂
1− e− mk

n

)︂k
(2.9)

It is a function of the Bloom filter size n, the number of hash functions k and the
number of inserted elements m. Its behaviour is portrayed in Fig. 2.4. You can see that,
apart from when n ≤ m, the function is non-monotone. Intuitively, both few and lot of
hash functions do not allow to distinguish among stored elements, resulting in a higher
probability of false positive. As a consequence, there exists an optimal value of k that
minimizes the probability of false positive, i.e.:

kopt = n

m
ln(2) (2.10)

Hence, using the optimal value of hash functions, it is possible to optimally design
the Bloom filter with a probability of false positive equal to:

P (FP) ≃
(︂
1− e− mk

n

)︂kopt

= (0.6185)
n
m (2.11)

For completeness, if you want a desired false positive probability ϵ, you can derive the
optimal required storage for the Bloom filter from (2.11):

n = m · 1.44 log2

(︃1
ϵ

)︃
bits (2.12)

12

2.4 – Bloom filter

This means that, in order to maintain a constant false positive probability, the Bloom
filter size must be proportionate to the number of inserted elements.

Figure 2.4: Probability of false positive as a function of k, for different values of n.
Figure reproduced from [11]

2.4.3 Variants and applications

It is worth knowing that there are many variants of the Bloom filter with the aim of
improving it by enabling deletion operation and by optimizing space and/or computa-
tional complexity. Since they are out of scope of this work, we only mention a few.
Counting Bloom filter [9] is implemented by an array of counters instead of an array of
bits. Hence, insertion and deletion are performed incrementing and decrementing the k
positions by 1, whereas the lookup is limited to check their values (any counter with 0
results in a false answer, else in a true with a certain probability of false positive). As
in practice the counter consists of 4 or more bits, a counting Bloom filter requires at
least 4 times more space than a standard Bloom filter. Another variant is the Cuckoo
filter [8], which is implemented by a hash table that uses cuckoo hashing to store items’
fingerprint. Thanks to only storing fingerprints and cuckoo hashing, which leads to high
table utilization by solving collisions, Cuckoo filter is typically compact. According to
the same authors, a properly designed Cuckoo filter is more efficient than conventional
Bloom filter for applications that require low false positive rates, particularly for ϵ < 3%.

To conclude, we want to let you know that, in computer networking, Bloom filters are
widely used in different tasks [15], such as monitoring and measurement (as in our case),
packet routing and forwarding, caching of Web servers and storage servers, and so on.

13

14

Chapter 3

Real-time RTT monitoring

This chapter contains the heart of our proposal, describing the goal scenario and the
operating principles of the system. In particular, after the description of the system
model under examination, we will move on to its design, explaining sequentially the
parameters involved, the way in which the system behaves when receiving outgoing and
incoming packets, what are the problems to be faced in the flow RTT measurements and
how they can be addressed, also reporting the relative pseudo-codes in case you want to
use them for further study. Finally, since there is no state of the art for our purpose yet,
we will make a high-level comparison between our solution and the most similar ones
present in the scientific literature.

3.1 System model

For our study, we consider a system where the measurement point is a network device (e.g.
a switch or a router) between source and destination. To measure RTT, the measurement
point tracks packets passing through it in order to individuate the first pair of packets
that share the same flow ID. The system just described is shown in Fig. 3.1.

Figure 3.1: System model

Since flows are typically bidirectional, from now on, regardless of the direction in which
packets are transmitted, we will refer to as outgoing packet and as incoming packet re-
spectively the first packet in the forwarding direction and the first packet in the backward
one, both related to the same flow and observed from the measurement point. Fig. 3.2
shows that, although it is possible to be in two different scenarios, the measurement point
is equally able to measure the flow RTT. Indeed, the latter is always given by the time
difference between incoming and outgoing packets of the considered flow. For example,
if the outgoing packet is observed at time t1 and the incoming packet at time t2, then
RTT = t2−t1. Obviously, RTT measurement is possible if the network device is somehow

15

Real-time RTT monitoring

able to record the time in which each outgoing packet is observed. As already said in
Sec. 1.1, nowadays the number of flows in a network is quite large, so using traditional
data structures would be expensive in terms both of memory and computation. This is
where probabilistic data structures come to the aid, allowing us to adopt a solution that
can answer a query with limited space and time.

(a) Case 1 (b) Case 2

Figure 3.2: RTT representation in the system model (for simplicity, network delays are
not represented)

3.2 System design
To test our solution, we have designed a probabilistic data structure composed of a group
of Bloom filters which are spaced in time. Basically, imagining time as a set of intervals
(or time slots), each of these can be covered by a Bloom filter which is in charge of storing
outgoing packets that arrive within it (Fig. 3.3a). Now, the question that arises is: how
is it possible to cover the time horizon, which is infinite, through a data structure with
finite memory? You have to imagine the data structure circularly, meaning that it has no
real end and it can loop around itself (Fig. 3.3b). The working principle is the same as
the clock: when the time reaches the slot that represents the tail of the data structure,
at the next time slot you will start again from its head.

At this point, another question that can arise is: how much memory does the data
structure need to store an indefinite number of flows over time? Contrary to before,
this is a rather difficult question to answer because there are several factors that come
into play, which intertwine with each other and which affect the accuracy of our final
goal, namely the RTT measurement. The latter can never be a precise measurement, but
rather an approximation, as we are dealing with a probabilistic data structure. Indeed,
once an outgoing packet is stored in a Bloom filter, there is no longer any way of knowing
the exact time it arrived in the system, but only a reference time associated with that

16

3.2 – System design

specific time slot. This obviously will introduce errors when calculating the RTT of each
flow.

Before going into the detailed explanation of the system, we want to emphasize two
points:

• flows are typically bidirectional, but the routing of outgoing and incoming packets
may be asymmetric, meaning that only one of them can follow the path through
the measurement point. In this work we don’t deal with this event, assuming for
simplicity that the routing is always symmetric in such a way that the measurement
point can always observe a pair of outgoing-incoming packets belonging to the same
flow.

• the proposed solution is protocol-agnostic: once defined what is meant by flow,
and therefore the relative flow ID, it can be used in any network regardless of the
adopted protocols. As a consequence, its working principles may be more suitable
for some protocols and less suitable for others. Hence, if you wish to use it for a
specific protocol, its working principles should be revisited accordingly.

The management of asymmetric routing and the definition of protocol-oriented solutions
are left to future work.

(a) Linear representation (b) Circular representation

Figure 3.3: Matching probabilistic data structure over time

3.2.1 Parameter definition

The system makes use of a probabilistic data structure composed of b Bloom filters. Let
N be the available amount of memory, then each Bloom filter will have a size of:

n = N

b
[bit] (3.1)

Moreover, each Bloom filter covers an interval of ∆ seconds and is temporally identified
through a tag:

BFi = i ·∆ with i ∈ [0, b− 1] (3.2)

17

Real-time RTT monitoring

It is important to remember that, over time, there is always a 1 : 1 mapping between
time slots and Bloom filters, as we are dealing with a circular probabilistic data structure.
Therefore, when an outgoing packet enters the system, it must be stored in the Bloom
filter which is covering the current time slot at that instant. Then, it is necessary to
establish how long the system can wait to observe a response of the packet just stored.
We denote with tmax the maximum amount of time that can elapse to receive a response
of an outgoing packet before the system is no longer able to compute a RTT for them.
This parameter is crucial for the system design because it determines, along with b, the
duration of both the time slot ∆ and the time window T covered by the entire data
structure, calculated respectively as:

∆ = tmax

b− 1 [sec] (3.3)

T = tmax + ∆ [sec] (3.4)

The reason why the system has been designed with a time window T which is ∆
seconds wider than tmax will be explained in Sec. 3.2.5.

Table 3.1 summarizes all these parameters, while Fig. 3.4 portrays the system as it
was designed. The following sections, instead, are dedicated to describe in detail the
behaviour of the system and how its accuracy in measuring the RTT would be affected
by the parameter setting.

Parameter Description

N Data structure memory
b Number of Bloom filters
n Memory per Bloom filter

BFi Identifier tag of the i-th Bloom filter
∆ Time slot width
T Time window of the entire data structure

tmax Maximum threshold to compute RTT

Table 3.1: System parameters

3.2.2 Reference time of outgoing packets

Bloom filter identification

When an outgoing packet enters the system, it is necessary to identify the tag of the
Bloom filter in which to store it, which as we know is associated with a time slot. In
particular, it is the time slot within which the packet is observed in the system.

Let tout be the timestamp of the outgoing packet, i.e. the time at which it enters the
system, and let toutcirc be the time instant of the outgoing packet taking into account the
circularity of the data structure (for simplicity, we rename it circular time). The latter
is obtained as follows:

18

3.2 – System design

Figure 3.4: Reference of designed system

toutcirc = tout mod T (3.5)

where mod is the modulo operator, which returns the remainder of the division be-
tween two numbers, particularly useful for considering the “wrap-around” property typ-
ical of circular problems.

Then, to identify the slot where the packet fell in, and therefore the tag of the Bloom
filter where you will need to store it, you would follow function 1. Basically, for every
time slot of the window T , you check whether or not the circular time falls inside it,
stopping as soon as the condition is satisfied.

Function 1 Identify Bloom filter tag
Input:
· b := number of Bloom filters;
· ∆ := time slot width;
· tarrcirc := circular arrival time of the considered packet (it can be either

outgoing or incoming);
Output:
· BFi := BF tag associated to the time slot in which the considered packet

is observed.

1: function get_BF_tag(b, ∆, tarrcirc)
2: for i = 0, . . . , b− 1 do
3: if (tarrcirc ≥ i ·∆) and (tarrcirc < (i + 1) ·∆) then
4: BFi ← i ·∆
5: return BFi

19

Real-time RTT monitoring

Reference time

Once the Bloom filter tag has been identified, the process for storing a packet within it is
the one discussed in Sec. 2.4.1, where the input of the hash function is represented by the
flow ID of the considered packet. Since the information you can store for every outgoing
packet is simply the collection of bits that must be set to 1 in correspondence of the BF
indexes that are returned by the hash values, any information about the exact instant it
arrived in the system is lost. That is where the first issue arises: when an incoming packet
will enter the system and look for the BF in which the associated outgoing packet was
stored, which time instant of that slot do you should consider to compute the RTT? You
have to make a design choice: for each time slot, you must properly choose a reference
time which will represent the hypothetical arrival time of every outgoing packet. Let’s
indicate with tref i

the reference time of the i-th slot, with i ∈ [0, b − 1]. Then, a trivial
choice is to set tref i

to the intermediate value of the considered time slot, i.e.:

tref i
= i ·∆ + (i + 1) ·∆

2 (3.6)

From this equation, you can guess that ∆ is a key parameter of the system. Intuitively,
you would like to have ∆ as small as possible in order to limit the distance between the
real arrival time of outgoing packets in the system considering its circularity (toutcirc)
and their hypothetical arrival time (tref i

), which would translate in a more accurate
estimation of the RTT. However, the counterpart of this choice is that, for the same
amount of memory N of the data structure, to cover the same time window T with such
a high granularity of time slots, you will have many Bloom filters with poor memory n
which, as we know from Sec. 2.4.2, implies a high probability of false positive. This is
also confirmed by looking at (3.1) and (3.3): both n and ∆ are inversely proportional to
the number of Bloom filters b but, while in the second case this is a benefit, making the
system potentially more accurate, in the first case it is not, increasing the false positive
events from which the Bloom filter suffers. In short, you can control the accuracy of the
system in evaluating the RTT by trading time slot width and Bloom filter memory, which
from now on we will call time-space trade-off.

Now that we have consolidated how the system works with outgoing packets, we move
to the next phase, which is related to incoming packets.

3.2.3 “Candidate” Bloom filter

When a incoming packet enters the system, it must not be stored in the data structure,
unlike an outgoing packet. Instead, since packets that belong to the same flow share the
same flow ID, and so the same hash values, you have to use them to perform a lookup
in every Bloom filter of the data structure in order to individuate the one in which its
related outgoing packet may have been stored. Note that we used the modal verb “may”
in the previous sentence because the lookup operation in a Bloom filter can return a
true answer even if it is wrong, due to the false positive event that characterizes the
approximate set membership problem (see Sec. 2.4.1). Hence, we introduce the concept
of candidate, which represents each Bloom filter that returns a true answer as a result of
a lookup operation. Obviously, since there is no way to know which candidate represents

20

3.2 – System design

the Bloom filter where the outgoing packet was actually stored, you should select one
of them to estimate the RTT. At this point, it starts to become more apparent how the
space-time trade-off previously defined is crucial: a high time granularity is synonymous
with better RTT estimations but also with higher probability of false positive, which
implies a greater number of candidates and a higher probability of selecting the wrong
Bloom filter (and vice-versa). And that’s where a new problem comes into play: how do
you choose among candidate Bloom filters while minimizing the RTT error? Again, this
problem is not trivial. We though some possible solutions, which are shared in Sec. 3.3
and which were used to evaluate the accuracy of the RTT estimation under a specific
system setting (discussion in Sec. 4.2.3).

3.2.4 RTT estimation

Regardless of the algorithm which is used to select a candidate Bloom filter, the way
of measuring the flow RTT in the system just described is the same. Similarly to what
was done with the outgoing packets, we indicate with tin and tincirc the timestamp and
the circular time of the incoming packet, respectively. Also, let BFout be the tag of the
Bloom filter that has been chosen among candidates, and let BFin be the Bloom filter
tag associated with the time slot where the incoming packet is observed in the system.
Then, the RTT of j-th flow is estimated as follows:

RTTˆ
j =

{︄
(tinj − trefj

) mod T if BFoutj /= BFinj

tincircj
− t̂refj

otherwise (3.7)

Let’s discuss the reason why there are two cases to distinguish. Basically, to get the
flow RTT when outgoing packet and incoming packet enter the system at different time
slots (i.e. BFout /= BFin), you need to exploit the circularity of the data structure after
subtracting the reference time of the outgoing packet from the timestamp of the incoming
packet. However, the same principle is not always valid in the other case because it may
violate the sequence in which outgoing and incoming packets should enter the system.
Indeed, since we are considering the intermediate value of the slot as reference time of the
outgoing packet, this assumes that the incoming packet can enter the system only after
that time reference and by the end of the time slot under consideration, otherwise it is
as if we were considering the outgoing packet in the future with respect to its incoming
packet, which is impossible. Hence, a possible solution is to redefine the reference time
of the outgoing packet, which we indicate with t̂refj

to distinguish it from the other case,
again for j-th flow. So, we define it as the intermediate value between the left boundary
of the time slot in question and the circular time of the incoming packet, i.e.:

t̂refj
=

BFoutj + tincircj

2 (3.8)

In such a way, the new reference time of the outgoing packet is surely earlier than the
time in which the incoming packet enters the system. Then, since both packets belong
to the same time slot, their RTT can be estimated simply as the difference between the
circular time of the incoming packet and the reference time of the outgoing packet just
defined.

21

Real-time RTT monitoring

Finally, we would like to say that there is also another case in which the reference time
should be managed properly, namely when the incoming packet arrives in the second half
of the time slot and the chosen candidate is at the other extreme of the window T . In such
a case, taking the intermediate value of that time slot will return a RTTˆ

j > tmax, which
is inadmissible according to our design. To deal with this, the reference time should be
set as the intermediate value of the residual time of the candidate time slot, i.e. the time
that goes from tincircj

− tmax up to the right boundary of the slot. This case has not been
covered in our work.

3.2.5 Bloom filter reset

As the amount of memory is finite while outgoing packets can enter the system without
any time limit, it follows that the number of bits set to 1 of the various Bloom filters
potentially tend to increase over time. To control this undesired event, which directly
affects the probability of false positive when searching for candidates, each Bloom filter
must be reset periodically to erase its content. Obviously, this should be done without
jeopardising the possibility of computing flow RTT of already stored outgoing packets.
This is the reason why the system has been designed by covering a time window T with
a margin of one time slot with respect to the maximum amount of time that can elapse
between a pair of outgoing-incoming packets belonging to the same flow(tmax), as you
can see by looking at (3.4) and Fig. 3.4. Hence, given a Bloom filter with tag BFi, the
time in which it should be reset is given by:

tresetBFi
= w · T + BFi with i ∈ [0, b− 1], w ∈ N+

In short, according to our system design, the reset period of each BF corresponds
to the time window T of the data structure. This allows flow RTT estimation for any
outgoing packet already stored in the system, provided that its response arrives within
tmax seconds. In fact, for each outgoing packet, you are guaranteeing that tmax seconds
will have to elapse, from the moment it entered the system until it is deleted by the BF
where it is stored.

3.3 Policies to choose a candidate Bloom filter

In this section we provide some possible solutions that can be used to choose among
candidate Bloom filters, distinguishing between the case where the RTT distribution is
known and the case it is not. Indeed, since the RTT can be modelled as a random variable,
the knowledge of its statistical description can be exploited to increase the probability
of choosing the true candidate, i.e. the one in which the outgoing packet related to the
incoming packet under examination is actually stored.

3.3.1 Known RTT distribution

Let X be the random variable associated to the flow RTT, we denote its probability
density function (shortened to PDF) as fX(t) and its cumulative distribution function

22

3.3 – Policies to choose a candidate Bloom filter

(shortened to CDF) as FX(t). From probability theory, there exists a relationship between
PDF and CDF, i.e.:

fX(t) = d

dt
FX(t) ↔ FX(t) =

∫︂ t

−∞
fX(y)dy

It means that, from the knowledge of one function, it is pretty straightforward to
derive the other. Thus, assuming you know either the PDF or the CDF, this can be
leveraged to do a clever search among candidates.

Because of its unpredictable nature, we can image the RTT to be described by a
skewed distribution. This is actually confirmed by some sources [3, 5], reporting how
TCP flows over the Internet are characterized by RTT measurements which, on average,
are settles on low values. Such a type of behaviour is described by right skewed dis-
tributions, so-called because they have long tail on the right side of their peak (mode),
meaning that most of the observations are concentrated on the left side, leaving on the
other extreme only few observations, which are therefore relatively infrequent. Obvi-
ously, whichever skewed distribution is considered, its support must be truncated and
upper bounded by tmax to comply with our system design, i.e. it must hold X ∈ [0, tmax].
In the following, we provide further information on how to use the knowledge of the RTT
distribution in our system, assuming to know its CDF.

When an incoming packet enters the system, you need to look backwards in time to
select a Bloom filter among the candidates. To adapt this characteristic of the system
to FX(t), it is sufficient to assume the time when the incoming packet enters the system
as the lower extreme of the distribution (i.e. FX(t = tin) = 0) and to flip the latter
horizontally, in such a way that its upper extreme is tmax seconds in the past with
respect to that instant. Fig. 3.6 allows you to visualize how the mapping between the
RTT distribution and the time window system takes place, assuming for simplicity that
you have a uniform CDF with support in [0, tmax], reported in Fig. 3.5. Not only that,
but from Fig. 3.6 you can also appreciate how the distribution is split into as many bins
as the number of Bloom filters composing the data structure. It is the case to state a
rightful premise, namely that not always a bin matches a whole time slot. Indeed, if you
take a screenshot of the system at the instant an incoming packet arrives (i.e. at tin) and
you look back in time as already explained, the bin associated with that time slot will
cover the interval (0, t1] - where t1 = tincirc − BFin and represents the left boundary of
the time slot where the incoming packet is observed -, which is for sure smaller than ∆
seconds. Plus, since the support of the RTT distribution is finite over (0, tmax] while the
time window system T is ∆ seconds wider than that, also the bin associated to the oldest
time slot of the current window will be smaller than ∆, covering the interval (tb−1, tmax],
where tb−1 = tmax− (∆− tincirc) and represents the residual part of the RTT distribution
support. All the intermediate bins, instead, completely match the relative time slot of
the time window system.

Having said that, we believe that knowing the RTT distribution can also be useful to
cleverly set the reference time of the outgoing packet within a time slot. In fact, defining
as gX(t) the probability density function of the random variable X truncated over the
support (ti, ti+1] representing the i-th bin - i.e.

23

Real-time RTT monitoring

0 t1 t2 tb 2 tb 1 tmax

RTT [sec]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Original

0t1t2tb 2tb 1tmax

RTT [sec]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Reversing x-axis

Figure 3.5: CDF of the uniform random variable RTT with support [0, tmax]

Figure 3.6: Mapping support of uniform RTT distribution in time window system

gX(t) = fX(t|ti < X ≤ ti+1) = fX · I({ti < X ≤ ti+1})
FX(ti+1)− FX(ti)

- instead of considering the intermediate value of the time slot (as in (3.6)), it is
reasonable to set the reference time as the expected valued of the random variable X
conditioned to the new support, i.e.:

trefi
= E[X|ti < X ≤ ti+1] =

∫︁ ti+1
ti

y · gX(y)dy

FX(ti+1)− FX(ti)
(3.9)

Function 2 shows how the mean of the random variable X defined over a generic
support (ta, tb] can be computed in terms of pseudo-code.

Finally, for our purpose we can exploit the knowledge of the RTT distribution either
in terms of binning (i.e. probability associated within each bin) or in terms of central

24

3.3 – Policies to choose a candidate Bloom filter

tendency parameters (e.g. median or mean). We therefore propose three solutions: one
based on the binning, one on the median, and another on the mean.

Function 2 Get the expectation of the r.v. X over the truncated support (ta, tb]
Input:
· t := x coordinates of the CDF describing the r.v. X;
· FX := y coordinates of the CDF describing the r.v. X;
· ta := lower limit of the truncated distribution;
· tb := upper limit of the truncated distribution;

Output:
· mean_trunc_pdf := expectation of the distribution truncated over the

support (ta, tb].

1: function get_mean_trunc_pdf(t, FX , ta, tb)
2: /* Initialization. */
3: trunc_t← new array ▷ x coordinates of truncated func. → t ∈ (ta, tb]
4: trunc_FX ← new array ▷ y coordinates of truncated CDF
5: trunc_fX ← new array ▷ y coordinates of truncated PDF
6: arr_temp← new array ▷ Temporary array

7: /* Use some interpolation method to derive the probability that X is
smaller or equal than ta and tb. */

8: prob_a← interpolate t_a with the function FX(t) ▷ P (X ≤ ta)
9: prob_b← interpolate t_b with the function FX(t) ▷ P (X ≤ tb)

10: /* Compute the probability that X is within (ta, tb]. */
11: prob_bin← prob_b− prob_a ▷ P (ta < X ≤ tb)

12: /* Compute the truncated arrays of t and FX over the interval (ta, tb]. */
13: trunc_t← use some method to get evenly spaced numbers in (ta, tb]
14: trunc_FX ← interpolate any value of trunc_t with the function FX(t)

15: /* Compute the truncated array of the PDF. */
16: insert 0 into trunc_fX

17: for i = 1, . . . , length of trunc_FX do
18: pi ← trunc_FX [i]− trunc_FX [i− 1]
19: insert pi into trunc_fX

20: /* At this point, we need to get the expectation of the truncated func-
tion over (ta, tb]. The analytical formula (3.9) can be split into 3
steps: (1) product between items in the same positions of trunc_t
and trunc_fX ; (2) sum the items of the array obtained from the
previous step; (3) divide the value obtained from the previous step
by the probability within (ta, tb]. */

25

Real-time RTT monitoring

21: for i = 0, . . . , length of trunc_fX do ▷ Step (1)
22: product← trunc_t[i] ∗ trunc_fX [i]
23: insert product into arr_temp

24: numerator_value← sum items of arr_temp ▷ Step (2)

25: mean_trunc_pdf ← numerator_value/prob_bin ▷ Step (3)

26: return mean_trunc_pdf

Search most likely candidate

Every time an incoming packet enters the system, the procedure consists first in mapping
the distribution with the system in order to derive the bins and the probability density
in each of them (pseudo-code in Function 3), and then in using this information to search
for a candidate starting from the most likely bin to the least likely one (pseudo-code in
Function 1). To better understand both the procedure and its implementation by pseudo-
codes, you can consider Fig. 3.7a as example. It represents a snapshot of the system with
8 Bloom filters at the instant time an incoming packet enters the system, which is assumed
to be at almost tree-quarters of a generic time slot. Focusing on the distribution, you
can see how the area within each bin has different shades of the same color to indicate
different probability densities: the brighter the color, the higher the probability density
within the bin. In fact, since the distribution is uniform, the probability density is equal
and maximum within each bin of width ∆, whereas it is smaller within the first and the
last bin, as both are narrower than ∆. As a consequence, for candidate selection, we will
first look for Bloom filters associated with bins having indexes ind ∈ {1, 2, 3, 4, 5, 6} - in
this case the order does not matter because all of them have the same probability -, then
for Bloom filter associated with bin 0 and finally for the one with bin 7. Obviously, it is
not necessary to visit all the BFs, but to stop as soon as the first candidate is found.

Search candidate around median (or mean)

The procedure we propose is the same irrespective of using the median or the mean,
therefore we explain it considering one of them. Let tmed be the median value of the
distribution. To exploit it in the system, you need to go back tmed seconds with respect
to the circular time of the incoming packet, i.e. tx = tincirc − tmed, and to identify
the Bloom filter tag associated with the time slot that includes tx. Indeed, since the
Bloom filter just identified is located at the median of the distribution with respect to
the considered incoming packet, it is reasonable to take it as reference to start selecting
a candidate. Therefore, the idea we propose is the following: if the reference Bloom filter
just individuated is a candidate, you select it and stop the search immediately; otherwise
you start looking for a candidate by jumping from one side to the other around the
reference, stopping as soon as the first candidate is found. Note that when the reference
Bloom filter is not a candidate, since we are dealing with right-skewed distributions, the

26

3.3 – Policies to choose a candidate Bloom filter

(a) Most likely bin (b) Search around median

Figure 3.7: Example of policies applied to a system with b = 8 and RTT uniformly
distributed in [0, tmax], assuming that the incoming packet arrives at almost 3/4 of a

time slot

number of BFs to visit from the reference BF to the BF where the incoming packet is
observed is smaller than the number of BFs to visit in the opposite side. Therefore, we
need to split the search around the reference BF into two phases:

1. you need to check in pairs the BFs next to the reference one which have the same
distance from it and to stop when the pair that includes the BF associated with
the incoming packet is reached;

2. if no candidate was found in the previous phase, you need to check all the remaining
BFs in increasing order of distances from the reference one.

Again, taking Fig. 3.7b as an example can help to understand. Hence, once the incoming
packet enters the system, you individuate the bin which includes the median value of
the distribution. In our case, it is located in bin 3, which means that the Bloom filter
associated with it is taken as reference. Then, you have to check if it is a candidate: if it
is, you can stop right away; otherwise you have to start a search around it considering the
two phases described above. Indeed, even if the uniform distribution has null skewness,
the number of BFs that should be visited after bin index 3 are 3 in one way and 4 in the
other way, i.e. bin indexes are {2, 1, 0} and {4, 5, 6, 7} respectively. Thus, the two phases
consists in searching for a candidate as follows:

1. 3 pairs of BFs having the same distance from the reference one can be distinguished,
i.e. BFs associated with bin indexes {2, 4} at distance 1, {1, 5} at distance 2 and
{0, 6} at distance 3. Therefore, the algorithm consists in searching for a candidate
according to the following order of bin indexes: {2, 4, 1, 5, 0, 6}.

2. if no one of the previous BFs was a candidate, there is only one BF left to check,
i.e. the one associated with bin index 7 at distance 4.

27

Real-time RTT monitoring

The implementation in pseudo-code is reported in Algorithm 2.

Function 3 Get list of bins to visit in descending order of probability
Input:
· b := number of Bloom filters;
· ∆ := time slot width;
· tmax := maximum RTT threshold;
· tincirc := circular arrival time of incoming packet;
· t := x coordinates of RTT distribution;
· FX := y coordinates of RTT CDF;

Output:
· array_ind_bins := array of bins sorted by descending probability.

1: function get_bins_to_visit(b, ∆, tmax, tincirc , t, FX)
2: /* Initialization. */
3: t_bins← new array ▷ x coordinates of bins → t ∈ [0, tmax]
4: F_bins← new array ▷ y coordinates of bins → CDF ∈ [0, 1]
5: f_bins← new array ▷ y coordinates of bins → PDF
6: sort_f_bins← new array ▷ Prob. density associated with each bin,

sorted in descending order of prob. per bin
7: array_ind_bins← new array ▷ Bin indexes in descending order of prob.

8: /* Compute time coordinates of bins, taking into account that the first
and the last bins have different width with respect to others. */

9: for i = 0, . . . , b− 1 do
10: if (tincirc ≥ i ·∆) and (tincirc < (i + 1) ·∆) then
11: t1 ← tincirc − (i ·∆) ▷ First bin = (0, t1]
12: insert t1 into t_bins
13: break
14: for i = 1, . . . , b− 2 do
15: t1+i ← t1 + (i ·∆) ▷ Intermediate bins = (ti, t1+i]
16: insert t1+i into t_bins
17: insert tmax into t_bins ▷ Last bin = (tb−1, tmax]

18: /* Use some interpolation method to derive the probability that the
RTT is smaller or equal than each time coordinate within t_bins. */

19: F_bins← interpolate t_bins with the function FX(t)

20: /* Compute the probability density inside each bin. */
21: p0 ← F_bins[0] ▷ First bin
22: insert p0 into f_bins
23: for i = 1, . . . , b− 1 do
24: pi ← F_bins[i]− F_bins[i− 1] ▷ Residual bins
25: insert pi into f_bins

28

3.3 – Policies to choose a candidate Bloom filter

26: /* Get the list of bin indexes sorted in descending order of probability. */
27: sort_f_bins← sort f_bins in descending order
28: for each p ∈ sort_f_bins do
29: ind_bin← array index of p associated with f_bins
30: insert ind_bin into array_ind_bins

31: return array_ind_bins

Algorithm 1 Search most likely candidate
Input:
· b := number of Bloom filters;
· ∆ := time slot width;
· tmax := maximum RTT threshold;
· tincirc := circular arrival time of incoming packet;
· t := x coordinates of RTT distribution;
· FX := y coordinates of RTT CDF;
· BFin := Bloom filter tag where incoming packet is observed;
· array_BF_tags := array containing all the Bloom filter tags;
· array_candidates := array containing only candidate Bloom filter tags.

Output:
· BFout := Bloom filter tag where the outgoing packet is supposed to be

stored.

1: /* Initialization. */
2: ind_BFin ← BFin/∆
3: is_found← False
4: array_ind_bins← get_bins_to_visit(b, ∆, tmax, tincirc , t, FX)

5: /* Search most likely candidate. */
6: for each ind_bin ∈ array_ind_bins do
7: ind_BF_to_check ← (ind_BFin − ind_bin) modulo b
8: tag_BF_to_check ← array_BF_tags[ind_BF_to_check]
9: for each tag_BF_candidate ∈ array_candidates do

10: if tag_BF_to_check == tag_BF_candidate then
11: BFout ← tag_BF_candidate
12: is_found← True
13: break
14: if is_found == True then
15: break

16: return BFout

29

Real-time RTT monitoring

Algorithm 2 Search candidate around median
Input:
· b := number of Bloom filters;
· ∆ := time slot width;
· tincirc := circular arrival time of incoming packet;
· tmed := median value of the distribution;
· BFin := Bloom filter tag where incoming packet is observed;
· array_BF_tags := array containing all the Bloom filter tags;
· array_candidates := array containing only candidate Bloom filter tags.

Output:
· BFout := Bloom filter tag where the outgoing packet is supposed to be

stored.

1: /* Initialization. */
2: is_found← False ▷ Boolean variable

3: /* Get time associated to the median of the distribution with respect to
the circular time of the current incoming packet. Then get the BF tag
associated with the time slot which includes that time. */

4: tx ← tincirc − tmed ▷ Median time wrt tincirc

5: BFmed ← get_BF_tag(b, ∆, tx) ▷ Tag

6: /* Check whether BFmed is a candidate. */
7: for each tag_BF_candidate ∈ array_candidates do
8: if BFmed == tag_BF_candidate then
9: BFout ← tag_BF_candidate

10: is_found← True
11: break

12: /* If BFmed is not a candidate, we need to start checking among the
remaining BFs, performing a search around it through two phases:
(1) Check in pairs the BFs next to the reference one which have the
same distance from it. If no one of them is a candidate, you still need
to stop this type of search when the pair that includes the BF associated
with the incoming packet is reached. (2) Check all the remaining BFs
in increasing order of distances from the reference one. */

30

3.3 – Policies to choose a candidate Bloom filter

13: /* Phase 1 */
14: if is_found == False then
15: /* Before checking in pairs the BFs next to the reference one which

have the same distance from it, we need to find the stopping con-
dition of this type of search, which is given by the number of BFs
that separate BFmed from BFout. */

16: BFin ← get_BF_tag(b, ∆, tincirc) ▷ BF tag of time slot including tin

17: ind_BFin ← BFin/∆ ▷ Index associated to BFin

18: ind_BFmed ← BFmed/∆ ▷ Index associated to BFmed

19: num_BFs_shift← (ind_BFin − ind_BFmed) modulo b ▷ Stop cond.

20: /* At this point we can start searching a candidate looking at BFs in
pairs next to the reference. */

21: if num_BFs_shift! = 0 then
22: for i = 0, . . . , num_BFs_shift− 1 do
23: /* Focus on the BF to the right of the median one (i.e. closer

to tincirc) */
24: ind_right_BF ← (ind_BFmed + (i + 1)) modulo b ▷ Index
25: tag_right_BF ← array_BF_tags[ind_right_BF] ▷ Tag
26: /* Now, check whether tag_right_BF is a candidate. */
27: for each tag_BF_candidate ∈ array_candidates do
28: if tag_right_BF == tag_BF_candidate then
29: BFout ← tag_BF_candidate
30: is_found← True
31: break

32: /* If tag_right_BF is not a candidate, we turn our attention
on the BF to the left of the median one (i.e. farther from
tincirc) */

33: if is_found == False then
34: ind_left_BF ← (ind_BFmed − (i + 1)) modulo b ▷ Index
35: tag_left_BF ← array_BF_tags[ind_left_BF] ▷ Tag
36: /* Check whether tag_left_BF is a candidate. */
37: for each tag_BF_candidate ∈ array_candidates do
38: if tag_left_BF == tag_BF_candidate then
39: BFout ← tag_BF_candidate
40: is_found← True
41: break

42: /* If a candidate has been found, the current loop for can be
terminated. */

43: if is_found == True then
44: break

31

Real-time RTT monitoring

45: /* Phase 2: if you enter the next if statement, it means that no candidate
was found in the previous phase. */

46: if is_found == False then
47: for i = 0, · · · , b− (2 ∗ num_BFs_shift + 1) do
48: /* Focus on the BF to the left of the median one (i.e. farther from

tincirc), next to all BFs already visited. */
49: ind_left_BF ← (ind_BFmed−num_BFs_shift− (i+1)) modulo

b ▷ Index
50: tag_left_BF ← array_BF_tags[ind_left_BF] ▷ Tag

51: /* Check whether tag_left_BF is a candidate. */
52: for each tag_BF_candidate ∈ array_candidates do
53: if tag_left_BF == tag_BF_candidate then
54: BFout ← tag_BF_candidate
55: is_found← True
56: break

57: /* If a candidate has been found, the current loop for can be ter-
minated. */

58: if is_found == True then
59: break

60: return BFout

3.3.2 Unknown RTT distribution

In the following we will propose some candidate selection algorithms that can be applied
in any circumstance, especially when the RTT distribution is unknown.

Search closest candidate

Given the list of candidates, when a incoming packet enters the system, the idea is to
compute the time distance between the BF tag associated with the time slot where the
incoming packet is observed and the BF tag of each candidate. The candidate that returns
the smallest time difference will be considered as the closest one. Algorithm 3 shows the
implementation in the form of pseudo-code.

32

3.3 – Policies to choose a candidate Bloom filter

Algorithm 3 Search closest candidate
Input:
· T := time window system;
· BFin := Bloom filter tag where incoming packet is observed;
· array_candidates := array containing only candidate Bloom filter tags.

Output:
· BFout := Bloom filter tag where the outgoing packet is supposed to be

stored.

1: /* Initialization. */
2: temp_array ← new array

3: /* Compute time distance between time slot where incoming packet is
observed and time slot associated with each candidate BF. */

4: for each tag_BF_candidate ∈ array_candidates do
5: time_dist← (BFin − tag_BF_candidate) modulo T
6: insert time_dist into temp_array

7: /* Take the closest candidate, i.e. the one that returned the smallest time
difference. */

8: ind_clos_BF ← array index of the smallest value in temp_array
9: BFout ← array_candidates[ind_clos_BF]

10: return BFout

Search farthest candidate

It works similarly to the closest policy, with the only difference that, after computing the
time distance between the BF tag associated with the time slot where the incoming packet
is observed and the BF tag of each candidate, the chosen candidate will be the one that
returned the largest time difference. Hence, the pseudo-code, reported in Algorithm 4,
changes from that of the closest policy only for lines 8 and 9.

33

Real-time RTT monitoring

Algorithm 4 Search farthest candidate
Input:
· T := time window system;
· BFin := Bloom filter tag where incoming packet is observed;
· array_candidates := array containing only candidate Bloom filter tags.

Output:
· BFout := Bloom filter tag where the outgoing packet is supposed to be

stored.

1: /* Initialization. */
2: temp_array ← new array

3: /* Compute time distance between time slot where incoming packet is
observed and time slot associated with each candidate BF. */

4: for each tag_BF_candidate ∈ array_candidates do
5: time_dist← (BFin − tag_BF_candidate) modulo T
6: insert time_dist into temp_array

7: /* Take the farthest candidate, i.e. the one that returned the largest time
difference. */

8: ind_far_BF ← array index of the highest value in temp_array
9: BFout ← array_candidates[ind_far_BF]

10: return BFout

Take random candidate

In this case there is no criterion, in the sense that a candidate is selected at random from
the list of candidates. Thus, it would have been superfluous to report the pseudo-code.

3.4 Comparison with other proposals

Network monitoring covers a large research area, therefore it is possible to find a plethora
of related works. In this section we report some of them that have dealt with traffic mon-
itoring using time-dependent metrics. In the end, we will make a qualitative comparison
between our idea and the discussed proposals, since there was no way to validate them
quantitatively.

ALE (Approximate Latency Estimator)

Gangam et al. [10] proposed ALE, a method for estimating the latency of TCP flows in
terms of RTT in real-time. The implementation consists in discretizing the past time
with intervals of length w = wi − wi+1 over a sliding window W = w0 − wn, meaning
that w = w0 −w1 always represents the most recently elapsed interval. The i-th interval

34

3.4 – Comparison with other proposals

(also called bucket Bi) is associated with a Counting Bloom Filter (CBF). ALE also uses
an additional CBF out of the sliding window to hold the state of the current present (it
is indicated simply as B). Then, every w seconds, the content of each CBF is moved to
the CBF in the bucket on the left, i.e. to its older neighbor, which implies to discard the
content of the oldest CBF, since it falls off the sliding window; meanwhile, the bucket
holding the present state is reset. Moreover, the hypothetical arrival time of a flow is
considered at the middle of the bucket but, to avoid of keeping track of each of the
interval boundaries, ALE uses a single reference time tALE that points to the end of
the sliding window (i.e. corresponds to w0) and which is incremented by w after every
w seconds. Therefore, an entry stored in Bi, would have arrived in the time interval
[tALE − w · i, tALE − w(i + 1)]. Fig. 3.8a shows the system just described through an
example of insertion when an outgoing packet arrives (upper half) and of lookup when
an ACK arrives (lower half). The insertion is performed by hashing both flow ID and
expected ACK number (which is one more than the last sequence number in the packet
being processed) and incrementing the appropriate counters. For the lookup you need to
look backwards in buckets (including B) and find the first bucket where the corresponding
segment was recorded. In general, when a match is located in Bi, the appropriate counters
are decremented and the RTT is calculated as t− tALE + (2i + 1) ·w/2, where t indicates
the arrival time of the ACK in the system. Similarly to our solution, the sliding window
W should be set to best fit the RTT distribution, in order to collect most of the RTT
samples, as well as the interval width w determines the accuracy of the estimate.

(a) Uniform intervals (ALE-U) (b) Exponential intervals (ALE-E)

Figure 3.8: ALE. Figures reproduced from [10]

The same authors also proposed a variation of ALE with the aim of covering the same
window span W with a smaller number of CBFs, considering intervals with amplitude
that increases exponentially as you move into the past. To differentiate the two imple-
mentations, ALE-U indicates the one that uses buckets of uniform size, while ALE-E the
one that uses buckets of exponential size. ALE-E follows the same general idea of moving
contents of CBF to its older neighbor, but now this does not involve all buckets simul-
taneously, rather the content of each bucket is shifted according to an exponential time.

35

Real-time RTT monitoring

In general, since the i-th interval has size 2iw, bucket Bi is shifted into Bi+1 every 2iw
seconds. Moreover, when bucket Bi is shifted, its content is merged with the content of
bucket Bi+1 by adding up the corresponding counters, resulting in bitmaps that get more
“crowded” and prone to false positives. This is illustrated in Fig. 3.8b. It is immediately
evident how ALE-E provides a relative accuracy: estimation of longer latency samples
are more inaccurate with respect to smaller latency samples. However, the other side of
the coin is the reduced amount of memory needed to cover the same window W , since
now the number of required buckets is only 1 + ⌊log2(W/w)⌋.

Dart (Data-plane Actionable Round-trip Times)

Sengupta et al. [17] presented Dart, a system that continuously monitor RTTs of TCP
flows in real-time. It uses a pipeline of two hash tables to achieve two goals: (1) track
packets that can lead to useful RTT samples, since packet retransmissions and packet
reordering can lead to RTT ambiguities; (2) identify the synergy between per-flow and
per-packet state for efficient memory utilization, since packets that never receive a match-
ing ACK and packets with large RTTs are expensive to keep in memory.

The first hash table is named Range Tracker (RT) table. It stores per-flow state in
the form of hashed flow ID and measurement range, respectively as key and value. The
range is nothing but a sequence number range (in terms of bytes) that can potentially
produce correct RTT samples. It is individuated imaging the flow sequence number space
divided into three components: bytes already ACKed, bytes in-flight (i.e. transmitted
but not ACKed), bytes not seen yet. Then, the measurement range is [maximum byte
ACKed, maximum byte transmitted]. In this way, if SEQ packets appear in order, the
right extreme of the range is moved forward; similarly, if ACK packets arrive in increasing
order, the left extreme of the range is moved forward. If instead there are ambiguities,
retransmissions are detected when a data packet arrives with bytes smaller than the
maximum byte transmitted, while reordering is detected when an ACK packet arrives
with bytes smaller than the maximum byte ACKed. When at least one of the ambiguities
occurs, the measurement range becomes affected, therefore it is collapsed moving the left
extreme to the right one, becoming [maximum byte affected, maximum byte transmitted]
(note that even though the two extremes have different notations, their values are equal
to the highest byte transmitted). After the collapse, the measurement range updates
regularly, as explained above, which means that in general it is [maximum byte ACKed
OR affected, maximum byte transmitted]. This mechanism allows to avoid taking RTT
samples of flows affected by ambiguities and to ensure collecting only valid samples.

Hence, when a data packet arrives, it is first stored in the RT table, either updating or
collapsing the measurement range depending on which case it falls. Then, if the packet is
valid, it goes through the second hash table, which is named Packet Tracker (PT). In this
case, the key is represented by the hash value of the flow ID combined with the expected
ACK, while the value is the associated timestamp. Finally, when an ACK comes back, the
corresponding RTT sample is calculated subtracting its timestamp from the timestamp
recorded in the entry of the PT table.

In addition, Dart tries to improve memory efficiency by handling unmatched entries
that can come from cumulative ACKs and packets with large RTTs. The idea is to

36

3.4 – Comparison with other proposals

distinguish between the two cases, evicting unmatched entries related to cumulative ACKs
(these packets will most likely not receive any ACK), but keeping for a longer time those
that may result in large RTTs. To do that, Dart employs a lazy eviction strategy that
relies on a recirculation for a second chance: lazy because the process is triggered only by
a hash collision in the PT table, and “second chance” because packets that actually have
large RTTs have a second chance to live in the PT table. Basically, every time a new data
packet collide with an entry already stored in the PT table, the new entry gets inserted,
the old entry is evicted, and its associated packet is sent back to the ingress pipeline to
check against the RT table whether it has become stale. If the associated measurement
range has been incremented with respect to that packet, then the packet is considered
stale and is dropped; otherwise the packet is treated as if it were new, repeating the
above process. Finally, to prevent infinite eviction loops, Dart compares the new entry
with the currently evicted entry before trying re-insertion and sets a maximum number
of recirculations per SEQ packet.

Fig. 3.9 illustrates the working of Dart through an example. Firstly, the new packet
for flow F2 arrives with expected ACK 500 at time t = 80 (event 1) and, since it is
valid, the associated measurement range is updated from [300, 400] to [300, 500] (event
2). Then, when the corresponding packet record with key (F2, 500) and timestamp value
80 arrives at the PT table, it collides with an existing entry (F3, 600, t = 40) (event 3):
the new entry gets stored (event 4) while the old entry is recirculated to the RT table for
revalidation (event 5).

Figure 3.9: Working of Dart. Figure reproduced from [17]

Other proposals

BLOOMTIME [15] is a method to monitor time-dependent metrics of network traffic
using basic Bloom filters. Its architecture is similar to that of ALE-U, except for the
bucket which holds the state of the current present: instead of using an additional bucket,
BLOOMTIME directly stores it into the first (and most recent) bucket of the sliding
window. Then, every w seconds, the content of each bucket is moved to its older neighbor,
the content of the first bucket is reset, and the content of the last one is discarded.
Being implemented with basic Bloom filters, BLOOMTIME does not support deletion in
exchange for a smaller memory footprint.

DDBF (Double Deletion Bloom Filter) [12] is an extension of the original Bloom filter
designed for flow RTT measurements. It consists of extending each cell of the Bloom filter

37

Real-time RTT monitoring

from one bit to st bits to record the SYN arrival time plus sc bit to count the number
of stored SYN packets. In this way, on the arrival of a SYN packet, its timestamp will
overwrite the content of each hashed cell and the appropriate counter will be increased by
1. Then, at the arrival of an ACK packet, records can be deleted in two ways according to
the difference between its arrival time tsak and the oldest timestamp tts in the hashed cells:
if it is less than a given time span vt, it is considered as the RTT of the flow, therefore
all the corresponding cells are decremented by 1 (explicit deletion); otherwise the ACK
is discarded and only the cells with timestamp greater than tsak − vt are decremented by
1 (implicit deletion). This double-deletion mechanism enables to efficiently delete out-
of-data records. The time span vt should be set in order to observe most of the normal
RTT samples. Moreover, DDBF provides more accurate estimations of RTT samples at
the price of more memory: accuracy and space efficiency can be balanced by properly
setting st and sc.

Chen et al. [6] proposed an algorithm based on multi-stage hash table that passively
and continuously monitors the RTT of TCP traffic. The main limit of a single stage is
that each packet has only one chance to be inserted into the table, being discarded if it
collides with an entry already stored and not expired yet (only if the entry is older than
a given threshold T_Expire is overwritten). A multi-stage hash table overcomes this
limit, giving each packet as many chances as the number of stages to be stored. Each
stage is essentially a hash table that stores the hashing of the flow ID combined with the
expected ACK (obtained summing the SEQ number with the payload size) as the key,
and the timestamp as the value. Note that, to reduce the impact of hash collision, each
stage uses a different hash function to calculate the location where storing the record.
Hence, every time an outgoing TCP packet arrives, it is stored in the first feasible hash
table, checking through the different stages. For instance, if the insertion attempt fails
for the first stage (the intended location is already occupied by an entry that has not yet
expired), you try again the insertion in the following stages until you find one admissible
location. If instead all locations are occupied and unexpired, the considered packet will
not be recorded. Then, for each incoming TCP packet, the same hash-based addresses are
used to look up every stage until a match is found. If this occurs, you compute the RTT
sample subtracting the timestamp of the current packet from the timestamp recorded
in entry of the hash table, also deleting the record from it; otherwise no RTT sample is
produced.

Performance comparison

Since authors used different notations to describe their own proposal, we rename the
involved parameters with a unique notation in order to make a more natural comparison
among them.

For algorithms that relies on the discretization of time, we denote by b the number
of data structures associated with intervals of uniform size and be the number of data
structures associated with intervals of exponential size. Remember that, to cover the
same sliding window W and assuming that the smallest interval has width w, then be =
⌊log2(W/w)⌋ < b = W/w. Also, ALE needs an additional CBF out of the sliding window
to hold the state of the current present. Furthermore, for hash table based solutions, b

38

3.4 – Comparison with other proposals

indicates the number of stages it is split into.
Then, we denote by n the number of cells/counters per data structure, sc the number

of bits per cell/counter, st the number of bits to store a timestamp, sf the number of bits
to store a fingerprint, smr the number of bits to store the measurement range. Finally, k
indicates the number of hash functions.

For better guidance through the parameters, you should know as follows: sc = 4 bit
allows to keep the probability of overflow low for practical values of n [9]; st ∈ {20, 32}
bit to have a microsecond and a nanosecond timestamp precision, respectively; sf is set
according to the hash probability you would like (more bits to reduce it).

A qualitative comparison among the discussed proposals can be appreciated looking
at Table 3.2. For simplicity, it is assumed that RT and PT tables of Dart have the same
number of buckets and are not spread over multiple stages. The table confirms that to
achieve high accuracy levels along with low time complexities, it is required more space.
Therefore, if you are willing to tolerate some inaccuracy for the RTT estimations and to
accept higher time complexities, then you could opt for some solution that relies on Bloom
filters or derivatives. Moreover, although it is not reported in the table, you should be
aware that, with respect to our solution, BLOOMTIME and ALE require an additional
time complexity due to shifting buckets every w seconds.

Proposal Estimation Memory [bit] Insertion Lookup Deletion

Our Approx. b · n O(k) O(k · b) No
BLOOMTIME [15] Approx. b · n O(k) O(k · b) No

ALE-E [10] Approx. (1 + be) · n · sc O(k) O(k · be) O(k · be)
ALE-U [10] Approx. (1 + b) · n · sc O(k) O(k · b) O(k · b)
DDBF [12] Exact (st + sc) · n O(k) O(k) O(k)

Chen et al. [6] Exact (sf + st) · b · n O(b) O(b) O(b)
Dart [17] Exact (2sf + smr + st) · n O(1) O(1) O(1)

Table 3.2: Comparison of different solutions (time complexities in the average case)

39

40

Chapter 4

Methodology and numerical
evaluations

The goal of the following chapter is to test and validate the idea introduced in the previous
chapter to passively and continuously monitor the flow RTT. Hence, in Sec. 4.1 we will
present our methodology, providing an overview of the simulator implemented in Python.
Subsequently, in Sec. 4.2 we will go through the analysis of different results: starting from
an evaluation of the scalability of the system, we will move on to its performance when
varying the amount of memory and the time slot width, up to the real flow RTT accuracy
it can provide.

4.1 Overview of the simulator

For our analysis, we employed a discrete-event simulator built on Python1, a high-level
programming language that, among its many uses, includes system testing. In a discrete-
event simulation it is crucial to identify events and time steps in order to represent the
system only at specific instants of time. Therefore, time advances through discrete steps,
at which an event will change the system state.

We used the event scheduling approach to model our discrete simulator. It relies
on a data structure called event list, which includes all events whose execution time is
already known. In our model, the arrival of both outgoing packets and incoming packets
represents an event. Therefore, any time a packet is generated according with some
distribution (see Sec. 4.1.1), it must be scheduled in the system by adding the sample
value drawn by the distribution to the current simulation time. The scheduled time is
also called timestamp and represents the time when an event must be simulated in the
system. Actually, it is also useful to implement the event list by a priority queue, as it
allows us to store events in ascending timestamp order. Finally, as a timestamp refers
to the time of a simulated environment, it does not have any correlation with the real
time. As a consequence, the virtual time advances through the timestamp of the last

1https://www.python.org/

41

Methodology and numerical evaluations

event popped from the priority queue.

4.1.1 Traffic generation

When you want to analyse a network system, whether it is already existing or not, the
choice of the traffic model to use plays a fundamental role. This is because network traffic
represents the input to the system, so its mathematical description will impact the final
results.

Most traffic models are open-loop, this means that the traffic is simply generated by a
source but, since our system also expects the response from the destination, a closed-loop
model would be more appropriate. However, closed-loop models are difficult to setup and
manage, as they also require the implementation of a window protocol. To make this
easier, we considered the traffic generation as the cascade of two open-loop models: the
generation of an outgoing packet also triggers the generation of the associated incoming
packet. Essentially, if you suppose to be at the simulation time tnow and an outgoing
packet of flow j is generated with a sample time tx drawn from some distribution, you
schedule it with the timestamp toutj = tnow +tx but meanwhile you generate and schedule
its incoming packet accordingly. For instance, if the distribution draws a sample time ty

for the incoming packet, it is scheduled at tinj = toutj + ty.
As regards the mathematical representation of the traffic, it is harder than it sounds

because its generation is very diverse, by varying with the type of network, services
and user behaviour. Since in general not all the traffic can be represented by an exact
mathematical model, input traffic is often defined through a general description which
should be conveniently set up in such a way to generate data that complies with traffic
requirements. In the following, we discuss the two open-loop models used for our system.

Generation model for outgoing packets

The generation of outgoing packets was modelled according to a Poisson process with
intensity λ. This allows us to generate events which are independent of each other (mem-
oryless property) and with a constant average inter-arrival time equal to 1/λ.

Generation model for incoming packets

The model to generate incoming packets must describe the flow RTT. At the beginning we
used the uniform distribution to test the system with a smooth traffic. Later, we also used
some distribution to test the system with a traffic more in line with reality, namely that
takes into account all the aspects involved in a packet transmission over a real network (see
Sec. 2.1). For this purpose, there are several empirical distributions that can be drawn
from the literature, such as [3,5]. We tested our system with the distribution of Aikat et
al., derived by RTT samples empirically collected from over 1 million TCP connections
and reported in Fig. 4.1a. Obviously, being an empirical distribution, it is not available
in any Python library. Hence, to generate samples from that distribution, we used the
CDF inversion technique. As it requires the mathematical knowledge of the empirical
distribution FX(t), we picked some coordinates from Fig. 4.1a to approximately derive
it. Picked values are reported in Fig. 4.1 and was used to approximately reconstruct the

42

4.1 – Overview of the simulator

original empirical CDF (Fig. 4.1b). At this point, the inverse CDF technique consists
of generating a value u = U ∼ (0, 1) and to find the corresponding sample tk of the
empirical CDF such that the condition FX(tk−1) < u ≤ FX(tk) is satisfied. To be noticed
that the support of the empirical RTT distribution is [0, 10], meaning that tmax = 10
seconds, which is fundamental to properly set other system parameters, as we know from
Sec. 3.2.1.

(a) Original. Figure reproduced from [3] (b) Approximated

Figure 4.1: Empirical CDF

X [ms] 1 2 4 8 10 20 40 80 100
FX(t) 0.005 0.009 0.012 0.015 0.019 0.056 0.2 0.345 0.438

X [ms] 200 400 800 1000 2000 4000 8000 10000
FX(t) 0.664 0.881 0.923 0.939 0.971 0.992 0.997 1

Table 4.1: Empirical CDF

4.1.2 Packets and Bloom filter implementation

Firstly, we used Python’s built-in list data structure for packet implementation. In par-
ticular, for each generated packet, it was sufficient to create a list of type [flow ID,
timestamp, bool], where:

• flow ID represents the flow identifier, in whatever form it is defined. Since flows are
typically bidirectional, it is the same for both the outgoing packet and the associated
incoming packet. Furthermore, since it is taken as input of the hash functions, we
set it as an integer that is increased by one unit each time an outgoing packet is
generated. Obviously, this is just a simplification.

• timestamp is the time when the packet must be simulated in the system. It is
obtained as explained in Sec. 4.1.1.

43

Methodology and numerical evaluations

• bool is a boolean variable that allows to distinguish between outgoing packet and
incoming packet of the same flow.

Regarding the entire data structure composed of Bloom filters, it was implemented
with the dictionary data structure built into Python. It stores data in {key : value} pairs,
which fits well with the probabilistic data structure we have defined. Indeed, the keys of
the dictionary were set according to BF tags and each key was associated as value with
the relative Bloom filter, each implemented by using the bitarray object of the bitarray2

Python library. When a packet needs to be simulated, we compute kopt hash functions to
hash the associated flow ID and get kopt Bloom filter positions, which are used for insertion
or for lookup operations according to whether the packet is outgoing or incoming: in the
first case it is necessary to mark the bits in the positions of the Bloom filter which is
covering the interval which includes the timestamp of the considered outgoing packet;
in the second case it is necessary to check the values of the bits in the positions of each
Bloom filter to identify the candidates associated with the considered incoming packet. If
the lookup of a specific Bloom filter returns a True answer, the associated tag (dictionary
key) is inserted into a list that collects all the candidates of the current flow, which is
later used for selecting a candidate (according to some algorithm proposed in Sec. 3.3)
and calculating accordingly the flow RTT.

Also, the bitarray object provides the count() method, which was used to get the
amount of bits set to 1 within the Bloom filter (i.e. n1) before being reset and to empir-
ically calculate its probability of false positive as follows:

P (FP)emp =
(︃

n1
n

)︃kopt

(4.1)

Generating kopt hash functions

For generating hashes, we used the MD5 algorithm available in the Python hashlib mod-
ule3. It takes a bytes-like object as input and outputs a 128 bit hash value (also called
digest). Although MD5 is a cryptographic hash function, it has been found to suffer from
vulnerabilities, so nowadays it is mainly used for non-cryptographic purposes due to its
speed in calculating hashes.

In our system, after encoding the flow ID using encode(“utf-8”), we send it to md5() to
generate a MD5 hash object. Then, for generating kopt independent hashes, we exploit the
update() method of the hash object. Basically, each time the method is called, the digest
is updated simply concatenating the new string. To perform this operation repeatedly,
we enter a for loop where, at each iteration, the MD5 hash objected is updated with
the encoded version of the current loop counter i. For instance, if flowID = 5 and the
loop counter i = 0, then the new MD5 object will be computed on the encoded string
50; at the next iteration, since the loop counter becomes i = 1, the MD5 objected will
be updated through the encoded string 501; and so on. Obviously, after each update of

2https://pypi.org/project/bitarray/
3https://docs.python.org/3.11/library/hashlib.html

44

4.1 – Overview of the simulator

the MD5 hash object, this must be first converted to hexadecimal format and then to
integer, from which the remainder must be calculated via the modulo operation to obtain
a position of the Bloom filter in the range [0, n− 1].

4.1.3 Parameter setting

Packet generation

The first parameter to setup is certainly the intensity rate of the Poisson process, as
it represents the rate according with are generated packets. We initially simulated the
system with different rates, i.e. λ ∈ {500, 1000, 2000} packets/second, and with a rather
large time granularity variation, i.e. b ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}. This
helped us to verify how much the system scales under ideal conditions, namely when, for
each flow, it is possible to identify only the real Bloom filter where the outgoing packet
was stored. This condition was simulated by considering a relatively large amount of
memory N .

It turned out that a good value of λ to evaluate system performance is 1000 pkts/sec.
Although a detailed explanation is given in Sec. 4.2.1, we can summarize saying that a
low intensity combined with a system made up of many Bloom filters involves a waste of
memory resources, while an increase of the intensity does not allow them to be exploited
to the fullest, but rather it leads to a higher probability of false positive per Bloom filter.

System configuration

As we are dealing with a time-based system, the setting of λ has a strong impact on
its behaviour. Indeed, it determines the average number of flows E[m] observed in each
time slot, whose width ∆ will in turn impact on a series of parameters that depend on
each other, namely the optimal number of hash functions kopt, the average occupancy (in
terms of bits set to 1) per Bloom filter E[n1] and its probability of false positive P (FP):

E[m] = λ ·∆ [pkts] (4.2)

kopt = n

E[m] ln(2) (4.3)

E[n1] = n− E[n0] = n− n · e− E[m]·kopt
n [bits] (4.4)

P (FP) = (0.6185)
n

E[m] (4.5)

We denoted with n0 and n1 the number of bits respectively equal to 0 and 1 of the
Bloom filter. Moreover, the expression of E[n0] - which represents the expected number
of bit set to 0 inside a Bloom filter - within (4.4) was derived from Appendix A of [18].

As you can see from (4.2), once the intensity rate λ is fixed, the average number
of flows per time slot depends on ∆. Hence, to simulate the behaviour of the system
in various contexts, measuring the corresponding performance and accuracy, we run out
one simulation for each combination of ∆ and N . In particular, to evaluate system
performance when λ = 1000 pkts/sec, we considered:

45

Methodology and numerical evaluations

b ∈ {4, 8, 16, 32, 64, 128, 256, 512}
N ∈ {214, 215, 216, 217, 218, 219, 220} [bit]

We always considered a data structure with a power of 2 memory, varying from
214 ≃ 16 kbit to 220 ≃ 1 Mbit. As a consequence, to perfectly distribute the total amount
of memory between Bloom filters, it would make sense to have an even number of them.
This premise allows us to explain why the minimum number of Bloom filters simulated is
4: starting from a smaller number (i.e. b = 2) would imply ∆ = tmax, so an insignificant
system for our aim. Similarly, an amount of memory smaller than N = 214 bit would
imply less than 1 hash function per flow, which would once again be meaningless.

Looking at the other extreme, a further increase in memory does not bring any benefit,
since simulations showed that system performance for N = 220 bit is already optimal,
in the sense that it guarantees at most one candidate per flow. Furthermore, a greater
thinning of time does nothing but increasing the probability of false positive per Bloom
filter, worsening system performance especially for low values of memory N .

Simulation length

Finally, we need to establish the simulation time tsim. It was tuned according with
the maximum threshold to compute the RTT tmax, which should be set according to
the support of the distribution used for generating incoming packets. Therefore, we
always set tmax = 10 seconds, referring so to the upper extreme of the empirical RTT
distribution of Fig. 4.1b even when the uniform one is used. Note that this implies to
have a uniform distribution with the same support as the empirical one. This is done in
order to fairly compare the system when it is tested by using different RTT distributions.
As a consequence, we set tsim = 10 · tmax = 100 seconds because we though it might be
sufficient to observe the system in a steady state for a relatively long time. In fact, with
this setting, after an initial transient phase of T seconds, the system will enter its steady
state which will last for the remaining tsim − T ≃ 90 seconds.

For the sake of completeness, but without any impact on what has been already
explained, from the intensity rate λ and the simulation time tsim you can derive the
average total number of flows E[M] injected in the system, i.e. E[M] = λ · tsim = 105.

4.1.4 Evaluation metric

We evaluate RTT accuracy on the basis of the Average Absolute Error (AAE) and of the
Average Relative Error (ARE):

AAE = 1
M

M∑︂
i=1

AEi = 1
M

M∑︂
i=1
|RTTˆ

i −RTTi| [sec] (4.6)

ARE = 1
M

M∑︂
i=1

REi = 1
M

M∑︂
i=1

AEi

RTTi
(4.7)

46

4.2 – Result analysis

where:

RTTi = tini − touti [sec] (4.8)

RTTˆ
i =

{︄
(3.7) if RTT distribution is unknown
(3.9) otherwise (4.9)

Basically, the AAE is defined as the sum of the absolute error of i-th flow (AEi) -
each given by the absolute difference between the estimated value (RTTˆ

i) and the true
one (RTTi) - divided by all observed flows. Similarly, the ARE is defined as the sum of
the relative error of i-th flow (REi) - each given by the absolute errors (AEi) divided by
the true value (RTTi) - all averaged over the observed flows.

Remember that the accuracy of the estimated value RTTˆ
i depends both on the time

slot width ∆ (the shorter it is, the higher the error) and on whether or not the selected
candidate Bloom filter is the true one. Moreover, note that when the RTT distribution
is known, RTTˆ

i corresponds exactly to the reference time of (3.9) because the latter is
calculated assuming tini as the lower extreme of the distribution, as explained in Sec. 3.3.1.

4.1.5 Statistics collection

Once the simulation is run, we started collecting statistics only after the end of the
transient phase, i.e. after the first T seconds, since it is the time necessary to insert flows
in every Bloom filter of the system at least once. Furthermore, apart from collecting
per-flow RTT metrics, we also collected statistics related to each Bloom filter, in order
to evaluate system performance. In particular, before resetting each Bloom filter, we
stored its context in terms of occupancy (number of injected flows and number of bits
set to 1) and probability of false positive. Once the simulation was completed, for each
system configuration and for each statistic, we calculated its overall average through two
phases: firstly, we obtained the average associated with each Bloom filter, averaging the
values stored before each reset for the entire duration of the simulation; secondly, the
average values of the previous step were in turn averaged to obtain the overall average
of the considered statistic. For the sake of completeness, we also tried to obtain the
overall average through an alternative procedure, again made up of two phases: we first
averaged the values stored before each reset of every Bloom filter in each time window
T , and finally we averaged those values. It turned out that both procedures lead to the
same results.

4.2 Result analysis

Before discussing the accuracy of the system in evaluating the flow RTT, it was appropri-
ate to perform a preliminary simulation which led us to reasonably set the parameters for
our objective. It allowed us to see how scalable the system is in terms of flows, necessary
to select a single arrival rate and to reduce the range of N and ∆ with which to test
the system in the subsequent phases. Actually, the two preliminary phases also revealed
some unexpected aspects of the system itself.

47

Methodology and numerical evaluations

4.2.1 Scalability evaluation

The first step concerns the test of the system against different intensity rates in terms of
flows injected per second, in order to see how much it scales. This is accomplished by
imposing regular traffic on the system - namely generating incoming packets according
to a uniform distribution - and using an amount of memory large enough to guarantee
a single candidate per flow - namely the Bloom filter where the outgoing packet was
actually stored - even with a high time granularity. After several tries, it was found
that the minimum amount of memory to satisfy our requirements is N = 220 bit (1
Mbit), as you can see looking at Fig. 4.2e. Fig. 4.2 groups all the statistics of the system
obtained by using an amount of memory equal to 1 Mbit and by varying intensity rates,
i.e. λ ∈ {500, 1000, 2000} pkts/sec. Apart from the average number of candidates, for all
the other statistics both empirical and analytical results are reported, in order to verify
whether the system complies with the theory.

Firstly, the analytical optimal number of hash functions to minimize the probability
of false positive - reported in (4.3) - must be rounded to the nearest integer. Furthermore,
developing the equation, it becomes:

kopt = round
[︃

n

E[m] ln(2)
]︃

= round
[︄

N
b

λ ·∆ ln(2)
]︄

= round
[︄

N
b

λ · tmax
b−1

ln(2)
]︄

= round

⎡⎢⎢⎢⎣N

λ
· (b− 1)

b⏞ ⏟⏟ ⏞
[0.75,0.99]

· ln(2)
tmax⏞ ⏟⏟ ⏞
0.069

⎤⎥⎥⎥⎦ (4.10)

The trend of the curves in Fig. 4.2a is in line with (4.10), since the optimal number of
hash functions is inversely proportional to the arrival rate. Once the latter is fixed, since
both N and tmax are given, the optimal number of hashes per flow is almost constant,
except when the time granularity is thick, as the ratio (b − 1)/b progressively decreases
with it, until it becomes 0.75 when b is minimum.

Secondly, Fig. 4.2b confirms (4.2), according with the average number of flows per
Bloom filter linearly increase with the arrival rate. At the same time, once the latter
is fixed, flows stored in each Bloom filter decrease as the time granularity of the system
becomes thinner. Surprisingly, the same cannot be said for the average occupancy per
Bloom filter. In fact, although it is always decreasing with the growth of the time gran-
ularity, it does not vary with the intensity rate of the Poisson process. This behaviour
can be explained by analysing (4.4). At first glance, it would seem to depend on the
Bloom filter size, the average number of flows per Bloom filter and the optimal number
of hash functions used to store them. However, substituting the expression of kopt of (4.3)
into (4.4), we obtain:

48

4.2 – Result analysis

E[n1] = n− n · e
−✘✘E[m]

◁n
· ◁n✘✘E[m] ln(2)

= n− n · e−ln(2)

= n− n · 1
2 = n

2 = N

2 · b (4.11)

This result is very interesting. It tells us that, by using the optimal number of hash
functions per flow, the average occupancy of the Bloom filter is always equal to half of
its memory, regardless of how many items you store inside it. But not only that: since
n = N/b and b = 2x - with x ∈ [2, 11] -, once the amount of memory N is fixed, the
average occupancy per Bloom filter is inversely proportional to 2x+1.

Another interesting result comes from the average probability of false positive. Look-
ing at Fig. 4.2d, you can see how empirical curves - obtained through (4.1) - are not
consistent with analytical ones - obtained through (4.5) -, assuming a non monotonic
behaviour which becomes more marked with the reduction of the intensity rate. This is
due to the correlation between the process of arrival flows and the time granularity of the
system. Indeed, although the Poisson process guarantees on average an inter-arrival time
equal to 1/λ, its infinitesimal definition states that the probability of an event in a small
time interval is proportional to its length. Therefore, since an increase in the number
of Bloom filters results in a reduction of the time slot duration ∆, the probability of
observing flows within it is consequently reduced, especially by decreasing the intensity
rate. This phenomenon, along with variable hash collisions, results in having Bloom fil-
ters that are not loaded uniformly. As a consequence, the overall average probability of
false positive is biased, being more sensitive to extreme values relative to the more loaded
Bloom filters. Nevertheless, as it possible to see from Fig. 4.3, the empirical curves never
exceed those relating to their upper limit, which are computed by imaging that all flows
within a time window T are always stored inside a single BF, i.e.:

P (FP)UB = (0.6185)
n

λ·T

Returning to the Poisson process property, it can be appreciated looking at Fig. 4.4,
which portrays the Bloom filter contexts during the entire simulation. In particular, it
refers to the third Bloom filter of the data structure (BF tag = 2 ·∆) under different time
granularities. Firstly, you can see how the reset described in Sec. 3.2.5 works. Once the
transient phase is over, the BF is first reset and then starts storing flows for the following
∆ seconds. Subsequently, its context is frozen for the next T seconds, at which time the
procedure just described is repeated until the end of the simulation. And secondly, you
can see how, between the various time windows, the load of the Bloom filter becomes
increasingly unbalanced as the time granularity increases. The apex is reached when ∆
is minimum, since there are some time windows during which no flows are stored in the
Bloom filter - i.e. time windows [40, 50], [60, 70] and [90, 100] seconds -, resulting in a
waste of memory resources for the system.

In the light of what has been observed, we can state that, in general, the system is
not suitable when the time is too finely fragmented due to an increase in the probability

49

Methodology and numerical evaluations

4 8 16 32 64 128 256 512 1024 2048
b

102

3 × 101

4 × 101

6 × 101k

 [pkts/sec]
Analytical
Empirical

500 1000 2000

(a) Optimal number of hash functions per flow

4 8 16 32 64 128 256 512 1024 2048
b

101

102

103

E[
m

]

 [pkts/sec]
Analytical
Empirical

500 1000 2000

(b) Average number of flows per BF

4 8 16 32 64 128 256 512 1024 2048
b

29

211

213

215

217

E[
n

]
 [pkts/sec]

Analytical
Empirical

500 1000 2000

(c) Average occupancy per BF

4 8 16 32 64 128 256 512 1024 2048
b

10 41

10 36

10 31

10 26

10 21

10 16

10 11

10 6

E[
P(

FP
)]

 [pkts/sec]
Analytical
Empirical

500 1000 2000

(d) Average probability of false positive per BF

4 8 16 32 64 128 256 512 1024 2048
b

100

1.0002 × 100

1.0004 × 100

1.0006 × 100

1.0008 × 100

E[
Nu

m
be

r o
f c

an
di

da
te

 B
Fs

]

 = 500
 = 1000
 = 2000

(e) Average number of candidates per flow

Figure 4.2: System statistics when N = 220 bit and λ ∈ {500, 1000, 2000} pkts/sec.

50

4.2 – Result analysis

4 8 16 32 64 128 256 512 1024 2048
b

10 40

10 34

10 28

10 22

10 16

10 10

10 4

102

E[
P(

FP
)]

 [pkts/sec]
Upper bound
Analytical
Empirical

500 1000 2000

Figure 4.3: Average probability of false positive per BF: analytical upper bound
(dotted lines) vs analytical average (dashed lines) vs empirical average (solid lines)

0 10 20 30 40 50 60 70 80 90 100
Time [sec]

100

101

102

103

m

 = 3.333
 = 1.429
 = 0.667
 = 0.323
 = 0.159
 = 0.079
 = 0.039
 = 0.02
 = 0.01
 = 0.005

(a) Number of flows

0 10 20 30 40 50 60 70 80 90 100
Time [sec]

28

210

212

214

216

n

 = 3.333
 = 1.429
 = 0.667
 = 0.323
 = 0.159
 = 0.079
 = 0.039
 = 0.02
 = 0.01
 = 0.005

(b) Number of bits set to 1

Figure 4.4: Occupancy over time of BF with tag = 2 ·∆, when N = 220 bit and
λ = 500 pkts/sec

51

Methodology and numerical evaluations

of false positive per Bloom filter, to which is added a waste of memory when flows enter
the system with a low intensity. However, avoiding working under the above conditions,
the system can be considered to be scalable, as it can track up to 2000 pkts/sec with only
1 Mbit of memory, providing a relatively small probability of false positive per BF.

4.2.2 Time-space evaluation

Next, we started to evaluate the system by playing with different combinations of time-
space setting. Since the results above analysed refer to a system with a memory sufficient
to guarantee at most one candidate per flow, we expect that as memory decreases, the
system may be affected with an increase in the probability of false positives and can-
didates per flow. Therefore we believe that λ = 1000 pkt/sec could be the right com-
promise to test the system not only in terms of performance based on the time-space
variation, but also in the next phase, in which it will be evaluated in terms of accuracy
in measuring the flow RTT. Furthermore, on the basis of what said in Sec. 4.1.3, we
have narrowed the range of time-space values to b ∈ {4, 8, 16, 32, 64, 128, 256, 512} and
N ∈ {214, 215, 216, 217, 218, 219, 220} bit, respectively. The obtained results are grouped in
Fig. 4.5.

Starting from the optimal number of hash functions (Fig. 4.5a), the obtained curves
are a further confirmation of (4.10). Indeed, since now λ is given while N varies, kopt

grows linearly with the latter. Furthermore, it is still true that, for the same value of N ,
it decreases slightly as the time granularity becomes thicker.

Let’s move on the average results related per Bloom filter (Fig. 4.5b to 4.5d). Firstly,
the average number of flows injected into each BF does not vary with the amount of
memory N , but only depends on the time granularity of the system, as confirmed by (4.2).
Secondly, the average number of bits equal to 1 are directly proportional to N and
inversely proportional to b, perfectly in agreement with (4.11). By the same equation,
once N is fixed, the average occupancy halves every time the number of Bloom filters
doubles. As regards the probability of false positives, it emerges once again that the
empirical results are not always consistent with the analytical ones: they are pretty
consistent for N ≤ 217, then they differ progressively as both memory and number of
Bloom filter increase, assuming a non-monotonic trend. This is due to the fact that the
optimal number of hashes and the relative collision probability are proportional to the
amount of memory which, in addition to the correlation between the Poisson process and
the time granularity of the system (explained above), results in having unbalanced Bloom
filters and therefore more skewed probability of false positives. It is also interesting to
notice that, in those cases, it is possible to individuate the optimal number of Bloom
filter to use in order to minimize the probability.

Finally, Fig. 4.5e shows the average number of candidates per flow. Essentially, the
smaller the memory footprint, the more candidates there are due to a higher probability
of false positive per Bloom filter. It is worth noting that, for the least available memory,
the number of candidates is nearly half of the available number of Bloom filters, therefore
we expect it to return the worst accuracy for RTT measurements. On the other hand,
since an increase in memory implies a reduction in candidates, we expect lower RTT
measurement errors.

52

4.2 – Result analysis

4 8 16 32 64 128 256 512
b

100

101

k

N [bit]
Analytical
Empirical

214 215 216 217 218 219 220

(a) Optimal number of hash functions per flow

4 8 16 32 64 128 256 512
b

102

103

E[
m

]

N [bit]
Analytical
Empirical

214 215 216 217 218 219 220

(b) Average number of flows per BF

4 8 16 32 64 128 256 512
b

25

27

29

211

213

215

217

E[
n

]
N [bit]
Analytical
Empirical

214 215 216 217 218 219 220

(c) Average occupancy per BF

4 8 16 32 64 128 256 512
b

10 20

10 17

10 14

10 11

10 8

10 5

10 2

E[
P(

FP
)]

N [bit]
Analytical
Empirical

214 215 216 217 218 219 220

(d) Average probability of false positive per BF

4 8 16 32 64 128 256 512
b

100

101

102

E[
Nu

m
be

r o
f c

an
di

da
te

 B
Fs

]

N = 214 bit
N = 215 bit
N = 216 bit
N = 217 bit
N = 218 bit
N = 219 bit
N = 220 bit

(e) Average number of candidates per flow

Figure 4.5: System statistics with time-space variability: N = {214, 215, · · · , 220} bit
and b = {22, 23, · · · , 29}

53

Methodology and numerical evaluations

4.2.3 RTT accuracy

To evaluate the RTT measurement accuracy, each configuration system was run 10 times
using different seeds to test the system with different populations of timestamps. In the
end, we calculated the confidence interval at the 95% confidence level, by exploiting the
Python’s SciPy library to compute Student’s t distribution4 values. This procedure was
repeated twice, once generating incoming packets with the uniform distribution, another
with the empirical distribution of Fig. 4.1b.

Furthermore, for each system configuration, the flow RTT was calculated choosing
a candidate according to each policy explained in Sec. 3.3 in order to establish which
one provides the best accuracy. Obviously, to have a yardstick of comparison, we also
estimated the flow RTT taking the real Bloom filter where the associated outgoing packet
was actually stored. It essentially represents the systematic error of the system.

In the following, we report a comparison of flow RTT obtained using the uniform and
the empirical distribution, both in terms of AAE and ARE. Note that, to avoid having
graphs that are particularly full of curves and difficult to read, we have restricted the
comparison to 3 intermediate memory values, i.e. N ∈ {215, 217, 219} bit. We excluded
the two extremes of the original range of N because of what we have seen in the previous
subsections: for N = 214 bit, the system suffers from a high probability of false positive,
making it difficult to apply in real applications; for N = 220 bit, the system performs
optimally. Last remark: for each error metric, the y-axis of the different graphs was set
with the same coordinate limits for a better comparison.

Absolute average errors (AAE)

Let’s start the discussion from Fig. 4.6a, which shows the absolute errors when you always
know (ideally) which BF actually contains the outgoing packet of the considered flow.
The first observation is that, when using the uniform distribution, the average error is ∆

4 ,
regardless of the memory footprint. Indeed, since the uniform distribution is symmetric,
its skewness is null, therefore the hypothetical arrival time of outgoing packets is supposed
to be at half of the time slot. As a consequence, the RTT measure is ∆

2 if the outgoing
packet arrives at one of the time slot borders and it is 0 if it arrives exactly in the middle
of it. By averaging these two cases, the error is exactly ∆

4 . This result is also confirmed
by ALE-U [10]. Instead, the absolute errors obtained with the empirical distribution are
less than ∆

4 for thick time granularity, due to a reference time that varies according to
the truncated distribution relative to each flow to fit with the asymmetrical nature of the
distribution itself. For instance, for b = 4, the empirical distribution provides on average
an error smaller than 580 ms with respect to the uniform one. However, this effect is
mitigated as the time granularity becomes finer. Not surprisingly, regardless of the RTT
distribution, the accuracy is improved by increasing the number of Bloom filters, since
the time slots become thinner.

By analysing the results obtained selecting a candidate with the exploitation of statis-
tical properties of the distribution (Fig. 4.6b to 4.6d), there are no significant differences

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html

54

4.2 – Result analysis

in the use of one policy rather than another, except when using the search around mean
policy which, for N ∈ {215, 217} bits and a finer time granularity system, gives slightly
worse error if RTT samples are drawn by the empirical distribution. However, regardless
of the policy adopted, the key point is that, given the amount of memory, the empirical
distribution guarantees a smaller absolute error. Another interesting aspect is that curves
for N = 217 bit are non-monotonic, meaning that you can individuate the minimum num-
ber of Bloom filters that minimizes the average error. In particular, the RTT measured
with the empirical distribution deviates almost 35 ms from the true value when using 128
Bloom filters, while it deviates roughly 190 ms with 32 Bloom filters and uniform traffic.
If instead you want to even reduce the discrepancy of the measurement from the true
value, you need to increase the amount of memory (e.g. N = 219 bits) and to distribute
it among a number of Bloom filters that varies according to the RTT distribution (e.g.
b ≥ 64 for empirical samples).

Let’s move on to the policies that can be used in all circumstances (Fig. 4.6e to 4.6g).
It is worth noting that generally, if the RTT is uniform, the average error does not suffer
from the policy you adopt and from the amount of memory you use. The only exception
is N = 215 bit: choosing at random among a large set of candidates typically leads to
a slightly minor error. Instead, for RTT modelled according to real traffic, choosing
the candidate closest in the recent past always yields smaller errors, due to the right-
skewness characteristic of the distribution. Suffice is to say that 44% of the RTT samples
are lower than 100 ms, which becomes lower than 400 ms by doubling the frequency of
observation of the samples, while only 0.06% of them are in the range [1, 10] seconds.
As a consequence, the selection of the farthest candidate implies greater errors, while a
random selection provides intermediate errors. Finally, we are surprised that the average
errors obtained with the search closest policy follow the ones obtained with the search
most likely and the search around median policies, even here except for the uniform case
with N = 215 bit, in which they are slightly higher. However, for a natural comparison
between policies, and therefore to establish which supplies the best accuracy, we need to
analyse the relative errors.

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]

N [bit]
Uniform
Empirical

215 217 219

(a) Take true BF

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]

N [bit]
Uniform
Empirical

215 217 219

(b) Search most likely BF

55

Methodology and numerical evaluations

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]

N [bit]
Uniform
Empirical

215 217 219

(c) Search BF around median

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]

N [bit]
Uniform
Empirical

215 217 219

(d) Search BF around mean

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]

N [bit]
Uniform
Empirical

215 217 219

(e) Search closest BF

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]
N [bit]
Uniform
Empirical

215 217 219

(f) Search farthest BF

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

AA
E

[s
ec

]

N [bit]
Uniform
Empirical

215 217 219

(g) Take random BF

Figure 4.6: Average absolute error with confidence intervals at the 95% confidence level

56

4.2 – Result analysis

Average relative errors (ARE)

In this last section, we identify the best policy that guarantees the best RTT sample
accuracy.

Results are grouped in Fig. 4.7. First off all, what immediately catches the eye is the
instability of the system against uniform RTTs, confirmed by large confidence intervals
for each configuration and for each policy adopted to select a candidate. This behaviour
is dictated by a larger variance of the uniform distribution over the support considered,
which reflects on a higher standard error of the sample means. Despite this, analysing
the results obtained in the ideal case (Fig. 4.7a), the accuracy results better with the
uniform population. Intuitively, this should be traced back to the characteristics of the
two distributions. Indeed, based on the definition of ARE in (4.7), we would expect that
the relative error of each flow is greater for empirical samples, since the true RTT value
is on average 11.7 times smaller than that of the uniform case (i.e. E[X]emp = 0.427
sec; E[X]unif = 5 sec). Therefore, being the true RTT value in the denominator of the
formula, this will lead to a higher ARE.

Secondly, it is not surprising that more memory availability implies better accuracy,
regardless of the RTT distribution and how a candidate is chosen. Indeed, looking at
curves obtained with N = 219 bit, since the number of candidates is essentially reduced to
one, the accuracy only depends on the time granularity of the system. Given to assure this
point, what instead is really interesting is the outcome of the closest policy (Fig. 4.7e),
whose accuracy exceeds that of any other policy. To justify this, we further analysed
the results of our simulations, identifying another metric of comparison. We define the
Average Percentage of Failure (APF) as the sum of the ratio between the number of flows
for which a policy chooses a wrong candidate (Mw) and the total number of observed
flows (M), all averaged over the number of times the simulation was run (Nsim):

APF = 1
Nsim

Nsim∑︂
i=1

Mw

M

Results are illustrated in Fig. 4.8 and show that the general trend is a function that
increases with the number of candidates. Notably, for the same amount of memory
N and the same RTT distribution, the behaviour of the search most likely and search
closest policies exhibits no significant differences (Fig. 4.8a vs Fig. 4.8d), confirming they
are the most precise policies in finding the true BF. This result is understandable for the
empirical RTT distribution, as its probability density is mostly concentrated around the
left tail, meaning that searching in increasing order of probability associated with each
BF typically degenerates in searching the BF in the more recent past, especially when the
number of candidates is reduced. With the increase of the latter, instead, the policy that
searches for the most likely BF becomes progressively more precise than the closest one,
thanks to the exploitation of statistical properties. This is why, if you carefully compare
the two, the search most likely policy significantly outperforms the other when going from
b = 256 to b = 512 for N = 215 bits, decreasing by about 4.7%. Plus, being the empirical
distribution right-skewed, searching a candidate around the median is more appropriate
than searching around the mean, as you can see by comparing Fig. 4.8b to Fig. 4.8c. In
fact, the median is much less sensitive to extreme values than the mean, which instead

57

Methodology and numerical evaluations

is more biased towards the right tail because of them. As a consequence, selecting the
oldest candidate in the past turns out to be the worst option (Fig. 4.8e), followed by a
random selection (Fig. 4.8f).

In the light of what we have just said, we can now move on to explain why selecting
the closest candidate provides a better RTT accuracy than selecting the most likely one.
It was found that the system suffers from a border effect, which can be defined as follows
(note that, for convenience, we will use as subscripts pol1 and pol2 to refer to results
obtained by two different policies):

IF:

1. outgoing packet and incoming packet of the same flow arrive in two
adjacents time slots

2. BFs associated to those time slots are both candidates and are chosen
by two different policies

3. RTTˆ
pol1 < RTTˆ

pol2

THEN: the BF that minimizes the error is the one chosen by policy 1,
regardless whether it is true, i.e. REpol1 < REpol2

Border effect

In other words, when the true BF precedes another candidate (false positive) which
is the most recent in the past with respect to the incoming packet, it is chosen by the
closest policy (i.e. policy 1) by leading to underestimate the error if the real arrival time
of the outgoing packet is closer to the reference time of the wrong candidate rather than
to the one of the true BF. By analysing one simulation instance in the worst case in
terms of number of candidates per flow, i.e. when the system is deployed with N = 215

bit, it turned out that the search closest policy is more affected by the border effect
than the search most likely one. In particular, by adopting the search closest policy, we
observed that the number of flows affected by this effect progressively reduces when the
system goes from being composed of 4 to 512 Bloom filters and the RTT samples are
uniformly distributed, whereas it follows an opposite trend when they are drawn from
an empirical distribution. However, in this thesis work we have not further explored this
aspect, therefore we cannot justify this trend.

In addition to this phenomenon, we also observed that the search most likely policy
produces a set of outliers which becomes progressively larger with respect to that of the
search closest policy as the time granularity becomes thinner, especially for uniform RTT
samples. These types of events lead to an increase in the ARE of the search most likely
policy with respect to that of the search closest one. Also in this case, the reason for this
behavior has not been studied in this thesis work.

Therefore, if on the one hand the precision between the two policies in finding the true
BF can be considered nearly comparable, on the other hand the closest policy provides a
better RTT accuracy because of the two aforementioned phenomena.

58

4.2 – Result analysis

Now that you are aware of the altered accuracy of the search closest policy, deflated
by underestimated RTT samples, we can quantify how far it deviates from the accuracy of
the search most likely policy, focusing on the most relevant points (Fig. 4.7b vs Fig. 4.7e).
For empirical distribution, the curves for N = 217 bit follow the same path till b = 128,
then the ARE of the search most likely policy increases, deviating from the search closest
one by a factor of 1.49 when b = 512. As regards the curves for N = 215 bit, the first sign
of weakness begins to appear with b = 16; for b ≥ 128 the two policies provide almost
parallel curves, but the best gain is obtained when b = 256, with a factor of 1.93. Plus,
it can be seen that both policies give a little nod of best accuracy when using b = 128
(most likely) and b = 256 (closest).

Moving on to the results obtained with the uniform distribution, you can see that
choosing the closest candidate gives a non-monotonic ARE for N ∈ {215, 217} bit, op-
timizing the accuracy respectively for b ∈ {32, 128}, while choosing the most likely one
does the same only for N = 217 bit and b = 16 but loosing in accuracy by a factor of 1.74
if you take the same system configuration and you adopt the closest policy. Furthermore,
for b ∈ {8, 16, 32}, the closest policy is able to provide the best accuracy by using only
N = 217 bit.

Other interesting points derive from the direct comparison between the two distri-
butions for the same policy, as it is possible to identify some points in which the ARE
obtained with one distribution exceeds that obtained with the other. In particular, when
the closest candidate is chosen, the empirical ARE becomes smaller than the uniform one
for N = 215 bit and b ≥ 64 (the best gain is when b = 256 with a factor of 1.74), but
also for N = 217 bit and b = 512 by a factor of 2.82. Similarly, if you search for the
most likely BF, the accuracy obtained with empirical samples becomes better than the
accuracy obtained with uniform ones for N = 217 bit and b ≥ 64 (the best gain is when
b = 512 with a factor of 34.85).

Finally, we believe it is superfluous to discuss the results of other policies, given that
they perform worse. They are reported just for a matter of completeness.

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(a) Take true BF

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(b) Search most likely BF

59

Methodology and numerical evaluations

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(c) Search BF around median

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(d) Search BF around mean

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(e) Search closest BF

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(f) Search farthest BF

4 8 16 32 64 128 256 512
b

10 2

10 1

100

101

102

AR
E

N [bit]
Uniform
Empirical

215 217 219

(g) Take random BF

Figure 4.7: Average relative error with confidence intervals at the 95% confidence level

60

4.2 – Result analysis

4 8 16 32 64 128 256 512
b

0

20

40

60

80

100

AP
F

N [bit]
Uniform
Empirical

215 217 219

(a) Search most likely BF

4 8 16 32 64 128 256 512
b

0

20

40

60

80

100

AP
F

N [bit]
Uniform
Empirical

215 217 219

(b) Search BF around median

4 8 16 32 64 128 256 512
b

0

20

40

60

80

100

AP
F

N [bit]
Uniform
Empirical

215 217 219

(c) Search BF around mean

4 8 16 32 64 128 256 512
b

0

20

40

60

80

100

AP
F

N [bit]
Uniform
Empirical

215 217 219

(d) Search closest BF

4 8 16 32 64 128 256 512
b

0

20

40

60

80

100

AP
F

N [bit]
Uniform
Empirical

215 217 219

(e) Search farthest BF

4 8 16 32 64 128 256 512
b

0

20

40

60

80

100

AP
F

N [bit]
Uniform
Empirical

215 217 219

(f) Take random BF

Figure 4.8: Average percentage of failure with confidence intervals at the 95%
confidence level

61

62

Chapter 5

Conclusion

The advent of SDN has introduced the possibility of implementing real-time network
monitoring solutions by exploiting data-plane programmable switches. However, the
main challenges arise from the limited resources of programmable switches, which are
facing with processing and storing of a huge number of simultaneous flows at the link-rate
of today’s networks. To this end, equipping programmable switches with probabilistic
data structures could be one possible solution, as they typically require low memory and
reduced computational time.

In this thesis work we proposed a solution for passively monitoring flow RTT using
an array of Bloom filters evenly spaced across time slots over a given time window.
Although the conditions in which the system was tested were rather stringent, assuming
flows always passing through the measurement point and ignoring aspects related to
network protocols, the solution showed good potential.

First of all, it was observed that the solution is relatively scalable. If the arrival rate
of the packets at the measurement node is too low, it is essential that the system does
not have a too fine time granularity to fully exploit the available memory. At the same
time, the arrival rate must not be particularly excessive because otherwise we could run
into Bloom filters with a high probability of false positives.

Secondly, it was observed that, by fixing the arrival rate, distributing a greater amount
of memory to a given number of Bloom filters results in a decrease in false positive events,
and therefore in a decrease in the number of candidates to choose for the calculation of
the flow RTT.

To identify the average error introduced by the system and evaluate its accuracy in
calculating the RTT, for each search policy, we conducted simulations with several space-
time configurations and two RTT distributions, on the basis of which we set the reference
arrival time of outgoing packets within a time slot. We demonstrated that the systematic
error is on average 4 times smaller than the time slot width when the reference time
of the outgoing packet corresponds to its intermediate value, but it can be reduced by
setting the reference time on the fly according to the arrival time of the incoming packet
and the RTT distribution. Moreover, the best time-space configuration that minimizes
the average absolute error is dictated by both the traffic pattern and the search policy.
For instance, adopting either one of the policies based on statistical properties or the

63

Conclusion

search closest policy, the system can minimize the absolute error distributing 217 bit
among 128 Bloom filters if the RTT samples follow an empirical distribution. However,
selecting the most recent candidate in the past turns out to be the best in terms of
accuracy regardless of the traffic pattern, although this result is affected by a border
effect from which the system suffers, which may introduce underestimated RTT samples.
For example, subjecting the system to an empirically derived RTT distribution and using
the search closest policy, you can guarantee the same accuracy of the ideal case using
only 215 bit, provided that the time configuration is set with at most 32 Bloom filters;
to further improve the accuracy without deviating from the ideal case, the system needs
more memory and finer time granularity, such as 217 bit distributed among 128 Bloom
filters or 219 bit among a number of Bloom filters equal or greater than 256.

5.1 Future works
The solution we proposed is in a primitive state, as it was tested through a simulation
methodology under stringent hypotheses that neglected some typical characteristics of
networks, such as asymmetric routing and protocols. It also showed some signs of weak-
ness, including the border effect and some outliers produced in case the search most likely
policy is adopted. Therefore, in the future, these aspects might be investigated further
before implementing the solution in a programmable switch and evaluating it in a real
packet network.

Furthermore, the proposed solution is versatile and applicable in different use cases.
For instance, it might be used to measure any time-dependent metric in the field of
network monitoring or for smart mobility applications (e.g. tracking the movements of
smart devices through sensors distributed over a geographical area to achieve a specific
road traffic target).

64

Bibliography

[1] Cryptographic and non-cryptographic hash functions. URL: https://dadario.
com.br/cryptographic-and-non-cryptographic-hash-functions/.

[2] What is network monitoring? URL: https://www.ibm.com/topics/
network-monitoring.

[3] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variability in tcp
round-trip times. In Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, IMC ’03, page 279–284, New York, NY, USA, 2003. Association for
Computing Machinery. doi:10.1145/948205.948241.

[4] Jawad Alkenani and Khulood Nassar. Network monitoring measurements for quality
of service: A review. Iraqi Journal for Electrical and Electronic Engineering, 18:33–
42, 12 2022. doi:10.37917/ijeee.18.2.5.

[5] Mark Allman. A web server’s view of the transport layer. SIGCOMM Comput.
Commun. Rev., 30(5):10–20, oct 2000. doi:10.1145/505672.505674.

[6] Xiaoqi Chen, Hyojoon Kim, Javed Aman, Willie Chang, Mack Lee, and Jennifer
Rexford. Measuring tcp round-trip time in the data plane. pages 35–41, 08 2020.
doi:10.1145/3405669.3405823.

[7] Damu Ding, Marco Savi, Federico Pederzolli, and Domenico Siracusa. Design and
development of network monitoring strategies in p4-enabled programmable switches.
In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
page 1–6. IEEE Press, 2022. doi:10.1109/NOMS54207.2022.9789848.

[8] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM In-
ternational on Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’14, page 75–88, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2674005.2674994.

[9] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: A scal-
able wide-area web cache sharing protocol. In Proceedings of the ACM SIGCOMM
’98 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’98, page 254–265, New York, NY, USA, 1998.
Association for Computing Machinery. doi:10.1145/285237.285287.

[10] Sriharsha Gangam, Jaideep Chandrashekar, Italo Cunha, and Jim Kurose. Esti-
mating tcp latency approximately with passive measurements. volume 7799, pages
83–93, 03 2013. doi:10.1007/978-3-642-36516-4_9.

[11] Paolo Giaccone. Efficient data structures for high speed packet processing,
November 2020. https://www.telematica.polito.it/app/uploads/2018/07/

65

https://dadario.com.br/cryptographic-and-non-cryptographic-hash-functions/
https://dadario.com.br/cryptographic-and-non-cryptographic-hash-functions/
https://www.ibm.com/topics/network-monitoring
https://www.ibm.com/topics/network-monitoring
https://doi.org/10.1145/948205.948241
https://doi.org/10.37917/ijeee.18.2.5
https://doi.org/10.1145/505672.505674
https://doi.org/10.1145/3405669.3405823
https://doi.org/10.1109/NOMS54207.2022.9789848
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/285237.285287
https://doi.org/10.1007/978-3-642-36516-4_9
https://www.telematica.polito.it/app/uploads/2018/07/probabilistic-data.pdf
https://www.telematica.polito.it/app/uploads/2018/07/probabilistic-data.pdf

Bibliography

probabilistic-data.pdf.
[12] Xinjie Guan, Xili Wan, Ryoichi Kawahara, and Hiroshi Saito. An online framework

for flow round trip time measurement. In Proceedings of the 2013 25th International
Teletraffic Congress (ITC), pages 1–4, 2013. doi:10.1109/ITC.2013.6662968.

[13] Hao Jiang and Constantinos Dovrolis. Passive estimation of tcp round-trip times.
SIGCOMM Comput. Commun. Rev., 32(3):75–88, jul 2002. doi:10.1145/571697.
571725.

[14] Ivan Marsic. Computer Networks: Performance and Quality of Service. Rutgers
University, 2013.

[15] Racyus Pacífico, Lucas Bragança, Gerferson Coelho, Pablo Silva, Alex Borges, Mar-
cos Vieira, Ítalo Cunha, Luiz Vieira, and José Miranda Nacif. Bloomtime: space-
efficient stateful tracking of time-dependent network performance metrics. Telecom-
munication Systems, 74, 06 2020. doi:10.1007/s11235-020-00653-1.

[16] Davide Sanvito. Traffic Management in Networks with Programmable Data Planes,
pages 13–23. Springer International Publishing, Cham, 2021. doi:10.1007/
978-3-030-62476-7_2.

[17] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. Continuous in-network
round-trip time monitoring. pages 473–485, 08 2022. doi:10.1145/3544216.
3544222.

[18] Kyu-Young Whang, Brad Vander Zanden, and Howard Taylor. A linear-time prob-
abilistic counting algorithm for database applications. ACM Trans. Database Syst.,
15:208–229, 06 1990. doi:10.1145/78922.78925.

66

https://www.telematica.polito.it/app/uploads/2018/07/probabilistic-data.pdf
https://www.telematica.polito.it/app/uploads/2018/07/probabilistic-data.pdf
https://www.telematica.polito.it/app/uploads/2018/07/probabilistic-data.pdf
https://doi.org/10.1109/ITC.2013.6662968
https://doi.org/10.1145/571697.571725
https://doi.org/10.1145/571697.571725
https://doi.org/10.1007/s11235-020-00653-1
https://doi.org/10.1007/978-3-030-62476-7_2
https://doi.org/10.1007/978-3-030-62476-7_2
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/3544216.3544222
https://doi.org/10.1145/78922.78925

	Introduction
	Motivation
	Thesis structure

	Theoretical background
	Round-trip time (RTT)
	Probabilistic data structures
	Hash function
	Bloom filter
	Operations
	Performance
	Variants and applications

	Real-time RTT monitoring
	System model
	System design
	Parameter definition
	Reference time of outgoing packets
	``Candidate'' Bloom filter
	RTT estimation
	Bloom filter reset

	Policies to choose a candidate Bloom filter
	Known RTT distribution
	Unknown RTT distribution

	Comparison with other proposals

	Methodology and numerical evaluations
	Overview of the simulator
	Traffic generation
	Packets and Bloom filter implementation
	Parameter setting
	Evaluation metric
	Statistics collection

	Result analysis
	Scalability evaluation
	Time-space evaluation
	RTT accuracy

	Conclusion
	Future works

	Bibliography

