
POLITECNICO DI TORINO
Master Degree in Communications and Computer

Networks Engineering

Master Thesis

An Asynchronous Framework to Mitigate
the Network Impact on Federated

Learning

Supervisors
Prof. Claudio Ettore Casetti
Prof. Paolo Giaccone
Ph.D. Alessandro Cornacchia
Ph.D. Riccardo Rusca

Candidate
Anna Origlia

April 2023

Abstract

Federated learning is a technique which has been introduced to evolve machine learning
and to provide a distributed learning structure more suited to be applied to complex
environments such as IoT or privacy-preserving applications. The federated aggregation
process is controlled by a parameter server, but, differently from centralised ML, an
additional on-site step of local training is added in the devices; in this way, data is not
disclosed and the communication overhead reduces significantly.

Because of its distributed nature, FL faces a highly heterogeneous environment; clients
differ in computational capabilities (especially considering IoT devices), datasets distri-
butions (data is generated or collected on the device, and this may bias or pollute the
population), reliability (clients may drop out mid-run). In addition, the network plays
an important role in the client-server communication, as it affects the total time needed
by a client’s update to reach the server. In synchronous FL, slow clients become the
bottleneck of the whole process.

In this work, we address the effect that the network bandwidth and latency have
on FL rounds and we propose a new framework for coping with it: our system archi-
tecture is composed by a centralised server, a pool of available clients and a number
of mediators that act as the middle-man between clients and server, coordinating their
communication. The mediators are positioned on the cloud edge, so to reduce as much as
possible the clients’ updates transmission latency; also, we consider that the bandwidth
and delay between the mediators and the server is fixed and known. Mediators can run
a request-acknowledgement procedure with each client before sending the round training
instructions: this procedure is used to estimate each client’s network conditions and to
modify its behaviour to compensate for the network delay. The proposed framework uses
an asynchronous configuration: the aggregation strategy is an asynchronous version of
FedAvg, with the advantage of being tolerant to stragglers; stragglers updates are scaled
based on their staleness degree and then included by the server.

Acknowledgements

I would like to warmly thank my supervisors, Claudio Ettore Casetti and Paolo Giaccone,
for their support, effort and patience. I am thankful to Riccardo Rusca and Alessandro
Cornacchia for their precious encouragement, help and support.

My heartfelt gratitude goes also to my family and my friends.

2

Contents

List of Figures 5

List of Tables 7

1 Introduction 11

2 Background: federated learning 15
2.1 Introduction on machine learning . 15

2.1.1 Centralised machine learning . 18
2.1.2 Distributed on-site learning . 20
2.1.3 Split learning . 20

2.2 Federated learning: state-of-the-art . 20
2.2.1 Available resources and open problems 21
2.2.2 Related works . 27

3 Framework model 29
3.1 Network effect on federated learning . 29
3.2 Model description . 31

3.2.1 FedAvg strategy and client selection characteristics 31
3.2.2 Introducing tolerance to stragglers: asyncFedAvg strategy 32
3.2.3 A new player: the mediator . 34
3.2.4 Final model architecture . 37

4 System components 39
4.1 Flower framework . 39

4.1.1 Framework modifications to the Flower implementation 41
4.2 Integration (Docker) . 42
4.3 OMNeT++/INET frameworks . 43

4.3.1 OMNeT++ . 43
4.3.2 INET . 44
4.3.3 Network setup . 44

4.4 Connecting the dots . 46

3

5 Experimental evaluation 51
5.1 System validation . 51

5.1.1 Docker validation . 51
5.1.2 OMNeT++/INET validation . 52

5.2 Experimental evaluation . 57
5.2.1 Synchronous vs. asynchronous FL architectures 57
5.2.2 Effect of the position of the mediator in the network 65
5.2.3 Ack procedure and complete heterogeneous scenario 67

6 Conclusion 73
6.1 Future directions . 74

Bibliography 75

4

List of Figures

2.1 Schematic of the perceptron. 16
2.2 Schematic of a deep neural network: the nodes are the perceptrons depicted

in fig. 2.1. n indicates the number of hidden layers. 17
2.3 Centralised machine learning. 18
2.4 Distributed on-site learning. 18
2.5 Split learning. 18
2.6 Federated learning (star topology). 18
2.7 Schematic of centralised ML (fig. 2.3), distributed on-site learning (fig. 2.4),

split learning (fig. 2.5) and federated learning (fig. 2.6) in their most com-
mon configuration. 18

2.8 Mesh topology . 22
2.9 Star topology . 22
2.10 Schematic of the mesh and star topologies for FL applications. 22
2.11 FL round with synchronous communication: two results are needed to

close a round in this example. Detail of a straggler participant. 23
2.12 FL round with asynchronous communication. Detail of a straggler partic-

ipant. 24
2.13 Astraea [1] definition of asynchronous round. 25

3.1 Computational capabilities versus communication time for a pool of six
clients. 30

3.2 Schematic of the double-layer architecture. 31
3.3 Example of an asynchronous round. The server selects 2 clients, therefore

it expects 2 fresh updates; however, it still waits for the timeout to expire
before closing the round, even if it receives them beforehand. 33

3.4 Schematic of the five stages that compose a training round in our frame-
work architecture. 35

3.5 Schematic of the request-ack procedure between mediator and clients. . . 37

4.1 Schematic of the message exchange between the server S and its pool of
clients. 41

4.2 Schematic of the OMNeT++/INET network setup in the simplest case of
one client, one mediator and the server, complete with the Docker contain-
ers and the veth pairs. 45

5

4.3 Schematic of the veth interfaces: details of the MTU values and the TCP
checksum offloading. 46

4.4 Schematic of the framework components. 47

5.1 Example of container CPU usage during the client training phase with
maximum CPU limit set to 2, 1 and 0.5 CPUs. 52

5.2 Single-router network setup. 53
5.3 Two-routers network setup: details of the channel bandwidth B and delay. 53
5.4 Measured vs. configured OMNeT++/INET link bandwidth between two

routers. Details of the CPU usage when the emulator saturates; the blue
line is the graph bisector. 54

5.5 OMNeT++/INET configured delay vs. measured average RTT: the red
line indicates the bisector, that is, the theoretical values if the simulator
did not introduce additional delays. 55

5.6 Average delay introduced by OMNeT++/INET, computed as the mea-
sured RTT subtracted by the nominal RTT. 56

5.7 Coefficient of variation (CV) of the average delay introduced by OM-
NeT++/INET in fig. 5.6. 56

5.8 Mean and CV of the delay introduced by OMNeT++/INET. 56
5.9 Network and computational conditions of the 6-client synchronous simu-

lation setup: case of symmetric network. 59
5.10 Network and computational conditions of the 6-client asynchronous simu-

lation setup: case of symmetric network. 59
5.11 Network and computational conditions of the 6-client synchronous simu-

lation setup: case of asymmetric network. Two clients have links with a
reduced bandwidth, 20 times smaller than the other clients. 60

5.12 Network and computational conditions of the 6-client asynchronous simu-
lation setup: case of asymmetric network. Two clients have links with a
reduced bandwidth, 20 times smaller than the other clients. 61

5.13 Accuracy and loss for the 6-client setup with symmetric network conditions
and IID data distribution. 62

5.14 Accuracy and loss for the 6-client setup with asymmetric network condi-
tions and IID data distribution. 62

5.15 Accuracy and loss for the 6-client setup with symmetric network conditions
and non-IID data distribution. 64

5.16 Accuracy and loss for the 6-client setup with asymmetric network condi-
tions and non-IID data distribution. 65

5.17 Network and computational conditions of a 6-client asynchronous non-IID
simulation setup: symmetric network, adjustable link-server link bandwidth. 66

5.18 Accuracy and loss for the 10-client setup with symmetric network condi-
tions and non-IID data distribution. 67

5.19 Accuracy and loss for the 10-client setup with symmetric network condi-
tions and non-IID data distribution. 69

5.20 Accuracy and loss for the 10-client setup with symmetric network condi-
tions and non-IID data distribution. 71

6

List of Tables

5.1 Results of ping and iperf3 between two containers (host0 and host1) with
a single-router network. The bandwidth measure is the average of 10 tests
run in the same conditions. 53

5.2 Server and clients settings for the synchronous FL simulation with the
MNIST dataset. 58

5.3 Server, mediators and clients settings for the asynchronous FL simulation
with the MNIST dataset. The total number of clients is 6 (three clients
for each mediator, two mediators in total). 58

5.4 Server and clients settings for the synchronous FL simulation with the
MNIST dataset and non-IID data distribution. 63

5.5 Server, mediators and clients settings for the asynchronous FL simulation
with the MNIST dataset and non-IID data distribution. The total number
of clients is 6 (three clients for each mediator, two mediators in total). . . 63

5.6 Server and clients settings for the complete scenario synchronous FL sim-
ulation with network delays. 68

5.7 Server, mediators and clients settings for the complete scenario asyn-
chronous FL simulation with network delays. The total number of clients
is 10 (five clients for each mediator, two mediators in total). 68

5.8 Server and clients settings for the complete scenario synchronous FL sim-
ulation with network delays and uneven clients computational capabilities. 69

5.9 Server, mediators and clients settings for the complete scenario asyn-
chronous FL simulation with network delays and uneven clients compu-
tational capabilities. The total number of clients is 10 (five clients for each
mediator, two mediators in total). 70

5.10 Network and computational conditions of the 10 simulated clients in the
complete scenario: these settings provide the environmental heterogene-
ity. The setup is valid both for the synchronous and the asynchronous
simulations; in our double-layer framework, clients 1 to 5 are assigned to
mediator 1 and clients 6 to 10 are assigned to mediator 2. 70

7

8

Acronyms

asyncFedAvg asynchronous Federated Averaging.

DNN Deep Neural Network.

FedAvg Federated Averaging.

FL Federated Learning.

IID Independent and Identically Distributed.

IoT Internet-of-Things.

ML Machine Learning.

NN Neural Network.

RTT Round Trip Time.

SGD Stochastic Gradient Algorithm.

9

10

Chapter 1

Introduction

Machine learning is a computer science field that deals with programming softwares which
are able to learn from experience by training models on a real-world dataset. Thanks to
its ability to adapt to different scenarios, machine learning is employed in the most diverse
areas: from social media recommendation engines to self-driving cars, health and care,
speech recognition, finance, just to mention a few. In recent years, ML research started
to move towards a distributed environment and to explore solutions to train models by
exploiting multiple devices and their heterogeneous data: the explosion of the Internet-
of-Things market made it the favourite candidate application scenario for distributed
machine learning, or federated learning.

Internet-of-Things (IoT) technology represents a complex system composed by a huge
number of devices, each able to retrieve and elaborate data; these devices are intercon-
nected through the internet and able to exchange information between them. Lately,
onboard computational capabilities have increased considerably while maintaining a low
cost, making the IoT devices suitable to perform complex tasks like federated learning
training.

Federated learning is a machine learning technique where multiple devices collaborate
to train a shared machine learning model. Differently from centralised ML, this technique
does not need to collect in a single entity the datasets owned by the devices to be used
in the model training, but devices are deputed to perform the training step themselves
and just send their local model parameters: in this way, data disclosure is not necessary
(preserving data privacy) and the communication overhead is reduced. However, FL
presents new challenges with respect to centralised ML, as it involves multiple devices
with heterogeneous resources and the communication through a network.

In a synchronous FL architecture, a round ends when the server collects all the results
from the selected participants: each round completion time is ruled by the slowest client,
which becomes the bottleneck. The client slowness may be due to the poor computa-
tional capacity of the device, to a poor network connection, or to a combination of both.
In this work, we focus on the network delay and bandwidth effect on the server-client
communication and the impact this has on a FL round.

11

Introduction

In order to counteract the network variability, we adopted an asynchronous model:
the server sets a round timeout and clients who cannot be compliant with it are considered
stragglers. The second step was to adapt the FedAvg aggregation strategy in order to
provide tolerance towards stragglers: updates that are able to reach the server in a later
round are still included in the aggregation, and their weight is scaled proportionally to
their degree of staleness.

We also modified the classic centralised FL structure by adding an additional player:
the mediator. A number of mediators is inserted between the server and the clients
and they coordinate the communication between the two parties. The mediators are
positioned on the cloud edge, so to reduce as much as possible the clients’ updates trans-
mission latency; also, we consider that the bandwidth and delay between the mediators
and the server is fixed and known.

To directly address the network delay, a request-acknowledge procedure is imple-
mented between mediators and clients. After selecting a client, the mediator sends a
request frame to the client, and the client replies with an ack frame: the RTT time is
measured and, based on this knowledge, the mediator modifies the client instructions to
control its behaviour and make it compliant with respect to the timeout.

The proposed framework was implemented by integrating Docker [2], Flower [3] and
OMNeT++/INET [4] [5] as main components; the platform was then experimentally
evaluated against a synchronous FL setup with FedAvg aggregation strategy.

The rest of this work is organised as follows.
Chapter 2 introduces the main characteristics of machine learning and shows the

most relevant solutions that have been proposed in literature to move the process from a
centralised approach towards a distributed one.

The chapter then describes in greater detail the characteristics of the federated learn-
ing approach to machine learning, its resources and the open problems it offers. We
present the main state-of-the-art solutions that have been proposed in the literature,
analysing the network topology, the synchronism of the architecture, the aggregation
scaling rules and the FL frameworks. Finally, we review the main papers which have
been the starting point for this work.

In chapter 3, we explain the network impact issue of federated learning, which is
the main focus of this work: network delays and small bandwidths may lengthen the
duration of a round. We then delineate our model architecture, along with the related
design choices. We brought two main contributions with our system: we firstly modified
the classic FL structure by introducing a new system component, the mediator, which
is an additional intelligent piece inserted in between the server and the clients. The
mediator behaviour can be completely controlled by the server or it can have perform
independent decisions on how to handle the clients connected to it; in our framework, we
implemented an ack procedure between mediators and clients to estimate and compensate
the link delay. We also built asyncFedAvg, an asynchronous aggregation strategy able to
cope with stragglers.

Chapter 4 describes how the system model was implemented in an experimental en-
vironment using three main components. We started from the Flower federated learning

12

Introduction

library and we customised it to implement our structure. We encapsulated the FL work-
ers inside Docker containers to control the network connectivity and the CPU usage. We
eventually connected the workers to a network emulator based on the OMNeT++/INET
library so to obtain a flexible network topology.

In chapter 5, we analysed the single framework components and their performances in
isolation, to find the experimental limitations. We then describe the experimental setup
of the simulations and we show and comment the results. We performed three kinds
of simulations: we firstly compared the synchronous and the double-layer asynchronous
architectures (without the ack procedure); next, we evaluated the influence of the position
of the mediator in the edge-cloud continuum on the FL process; the last experiment was
to evaluate the complete framework with the ack procedure in a heterogeneous scenario,
providing both network and computational capability variability.

In conclusion, chapter 6 summarises the main results of this work and presents some
possible future directions.

13

14

Chapter 2

Background: federated learning

This chapter briefly introduces the core aspects of machine learning in section 2.1, dis-
cussing the directions taken in literature to move from centralised ML towards distributed
computing. It then focuses on the explanation of the federated learning approach on
machine learning in section 2.2, considering its strengths and weaknesses (described in
section 2.2.1) and then presenting the main characteristics of the process. In conclusion,
the chapter ends with a brief description of the papers which have been our main starting
points (section 2.2.2).

2.1 Introduction on machine learning
Differently from traditional computer programming, where a set of rules specifies the
behaviour of the software, machine learning is generally known as the practice of letting
a software learn from experience and execute an assignment without explicitly defining
its actions beforehand [6]. ML is able to perform this complex action by carrying out data
analysis on a real-world dataset and learning to forecast patterns by building a prediction
model: this model is considered the final product of the process and, once trained, is aimed
at autonomously making classifications or predictions on unknown data.

Thanks to its ability to adapt to different scenarios, ML is employed in the most
diverse fields: from social media recommendation engines to self-driving cars, health and
care, speech recognition, finance, just to mention a few.

The function of machine learning worldwide has become more and more important
in the last years, and literature is copious. A number of algorithms has been proposed
and is commonly used in ML, depending on the nature of the problem to solve and on its
complexity: in this work, we chose to use a deep neural network because of its easy-to-
understand underlying concepts and the straightforward deployment. The next section
is dedicated to explaining its characteristics.

15

Background: federated learning

Deep Neural Networks

A neural network aims at artificially imitating the way the human brain works by using a
mathematical model that simulates the interconnections between neurons. The nodes in
the model are called perceptrons and their aggregated form is called network layer. The
structure of a perceptron is shown in fig. 2.1 and its operation consists of two steps:

1. weighted sum: weights are necessary to determine and assign the importance of
the connection with another perceptron with respect to the other connections. The
output of this first step is defined by the equation

z =
n∑︂

j=1
ij · wj (2.1)

where ij is the j-th input, wj is its weight and n is the total number of inputs
belonging to the perceptron.

2. activation function: the activation function is an output-limited function that
takes the general form o = f(z + bias) and modifies the result of the weighted sum
z, forcing it to be within a specified range of values. Many activation functions with
different shapes have been developed to provide varied behaviours. Apart from the
shape, activation functions have another characteristic parameter called bias, which
is responsible for dynamically shifting the function on the x-axis during training.

Figure 2.1. Schematic of the perceptron.

16

2.1 – Introduction on machine learning

The structure of an artificial neural network consists of an input layer, a number of
hidden layers and an output layer (fig. 2.2): if the amount of hidden layer (n in the
figure) is greater than 3, the network is called deep neural network (DNN). Each layer
is composed by many perceptrons, whose inputs are interconnected with the previous
layer outputs, and whose outputs represent the inputs of the next layer. Generally, the
perceptrons belonging to the same layer behave in the same way, which means they have
the same activation function.

Figure 2.2. Schematic of a deep neural network: the nodes are the perceptrons depicted in fig. 2.1.
n indicates the number of hidden layers.

The weights and biases previously described represent the network parameters that
define a trained model. Backpropagation is a method of adjusting and fine-tuning these
parameters. The training happens at first by processing the dataset forwards in the
network, that is, from the input layer across the hidden layers to the output layer. In
general, at the beginning, the weights are randomly chosen and the biases are null. After
each iteration (epoch), the difference between the actual output and the desired output is
computed: this error measure is used to revisit and recompute all the weights and biases
in the network in the backwards direction, that is, from the output layer towards the
input one. The objective of this phase is to reduce the error in the next epochs. At the
end of the learning process, thanks to backpropagation the network parameters will be
trained and the final model will have reached the desired value of accuracy (the fraction
of overall correct predictions)1.

1Accuracy is not the only metric that can be used to evaluate a model: other metrics exist in literature
and they should be chosen in relation to the classification problem under analysis.

17

Background: federated learning

Because of the challenges that ML poses when applied to IoT or privacy-preserving
scenarios, different approaches are required to better adapt the learning to these dis-
tributed environments. The new methods should be communication-efficient, computa-
tionally conservative and they should also provide tolerance towards delays and unstable
connections, in addition to being privacy compliant: to achieve this, the idea is to move
the training closer to the data. The literature has proposed several solutions to bridge
the gap between centralised ML and distributed ML: the main techniques, described in
the next sections, are distributed on-site learning, split learning and federated learning.
Figure 2.7 shows a synthetic schematic of these strategies.

Figure 2.3. Centralised machine learning. Figure 2.4. Distributed on-site learning.

Figure 2.5. Split learning.
Figure 2.6. Federated learning (star topology).

Figure 2.7. Schematic of centralised ML (fig. 2.3), distributed on-site learning (fig. 2.4), split
learning (fig. 2.5) and federated learning (fig. 2.6) in their most common configuration.

2.1.1 Centralised machine learning

In the classic schematic of centralised machine learning, the involved devices generate
their datasets and send them towards a high performance server; the server uses the
obtained data to build the final model, which is subsequently sold as a service (fig. 2.3).

ML techniques can have either a supervised or an unsupervised paradigm. Supervised

18

2.1 – Introduction on machine learning

learning builds the prediction model based on both an input dataset and known responses
to the data (output): in other words, it is able to measure the difference between the
model output and the desired model output, which is then used to correct and adjust the
model parameters. This approach can use classification techniques, where data is split into
categories, or regression techniques, where the response is in a continuous range. On the
other hand, unsupervised learning only uses unlabeled input data to draw its prediction
model without referencing the desired output: here, the human classification of data is
not necessary. The most used unsupervised technique is the clustering one, which is able
to autonomously find hidden patterns in the data by grouping it into bundles.

In addition to supervised and unsupervised learning, a third paradigm of ML, called
reinforcement learning, uses unlabelled data to achieve the goal of maximizing some form
of reward, learning through trial and error. It can be used in a real-time fashion as it does
not need to rely on a fixed set of static data, and it does not need human supervision.
Each decision is either rewarded, if it corresponds to a desired behaviour, or punished
with a penalty, if it corresponds to a negative behaviour. Neural networks, described in a
previous section, can be used with supervised, unsupervised and reinforcement learning
paradigms, which makes them very flexible.

The main advantage of centralised ML is the possibility to use a powerful server which
is omniscient with respect to the overall training dataset. The server can exploit all the
available data, without having to choose blindly between subsets of it; outliers may be
easier to identify and remove with such a visibility. Also, the server does not suffer from
low computational capacity and battery consumption issues typical of IoT devices. Once
the server has collected all data, the network variability does not come into play anymore
and there is no additional communication overhead.

A ML server needs to have powerful equipment to achieve competitive performances:
fast CPUs and GPUs are necessary, along with a large system memory to store the great
amount of training data. To avoid the need to design and build on-premises workstations,
there are many solutions to obtain machine learning in the cloud. This helps to reduce the
deployment costs by scaling the ML projects as they go from a laboratory environment
into production. Also, cloud ML providers offer pre-packaged distributions that do not
require previous expertise in the artificial intelligence field.

There are also some downsides tied to the centralised-server ML approach, in partic-
ular:

• data privacy is at risk and users may be reluctant to participate in the process;

• the data communication overhead is high because the data volume may be large;

• the latency may be high, as the data may cross the globe before reaching the server.
This makes centralised ML unsuitable for latency-constrained applications, typical
for the mobile devices.

In order to reduce latency and communication cost, edge computing has been introduced,
which moves the server closer to the edge in the edge-cloud continuum and consequently
closer to the clients, too. However, to better address and solve these problems, especially
data privacy, another approach has been introduced: the distributed learning.

19

Background: federated learning

2.1.2 Distributed on-site learning

The first evolution of ML, the so-called distributed on-site learning [7], moves some of the
intelligence of the system inside the devices: a pre-trained or general model is shared by
the server and it is then customised internally by the clients by using their own training
datasets (fig. 2.4).

One of the disadvantages of distributed on-site learning is that knowledge is not shared
across different devices and the final model may be biased due to small or incomplete
local datasets. However, data privacy is clearly preserved, and there is virtually no
communication overhead because there are no client-server messages (except for the initial
model download).

2.1.3 Split learning

Split learning is a hybrid approach, collocated in between centralised machine learning
and edge computing: this technique proposes to divide (split) the DNN models into head
and tail parts [8] [9]; the computationally weaker device performs the initial calculations
based on its data, then the results are sent to the more powerful edge server, which
executes the remaining computations (fig. 2.5). In this way, the overall computational
load is better distributed between clients and server.

Only the intermediate model parameters are transmitted over the network, which
reduces the communication time, in comparison with the time needed to send over the
whole dataset. To further reduce the communication time, split computing literature has
also been oriented to produce task-oriented compression schemes for these intermediate
updates.

The decision of where to split the network introduces a tradeoff between performance
(model accuracy) and the size of the intermediate model parameters, which is proportional
to the communication time: depending on the design of the DNN, the initial layers may
amplify the size of the parameters; the model may also branch to produce intermediate
results for later layers, increasing the number of parameters to be sent.

2.2 Federated learning: state-of-the-art

Federated learning is a process which has been recently introduced to evolve machine
learning and bypass some of the problems it involves: it can be considered as privacy-
preserving, decentralised machine learning in a collaborative environment [10]. As in
centralised ML, the aggregation process is usually controlled by a parameter server, but
now an additional step of local training is added in the devices. In this way, data is not
sent over and the communication overhead reduces significantly.

The general idea behind federated learning is that the participant clients are non-
trusting and do not disclose their own datasets. They train the global model on their
local data and just sent the model parameter updates over the network; these parameters
will then be aggregated to update the global model. This process will be repeated until
some predefined metric is achieved (e.g., a certain level of accuracy is obtained).

20

2.2 – Federated learning: state-of-the-art

Because of its distinctive features, federated learning is particularly indicated for
IoT networks [11], as it can provide data privacy enhancement, low-latency network
communication (with respect to centralised machine learning), and a higher learning
quality. Another benefit of using FL in an IoT scenario is that real-time learning can be
achieved: models are continuously refined with local data, which is a far more responsive
technique than centralised ML. This work is targeted towards IoT applications (which
introduce distinctive restrictions on the devices capabilities) and also towards mobile edge
computing.

The main aspects of a FL system are introduced in the next section.

2.2.1 Available resources and open problems

Due to the dynamic nature of the environment where federated learning is applied, the
available resources are afflicted by an unpredictable quality which makes the coordination
of the learning process challenging. Also, FL shows different weaknesses with respect to
centralised machine learning, and they need to be properly tackled not to impact the
final model KPIs [12].

The main variables involved in FL are briefly described in the following:

• clients’ capabilities: the devices usually have different capacities in terms of storage,
computation and battery; the available CPU that each device devotes to FL may
vary a lot depending on the time of day, current usage of the device, etc.

• clients’ datasets: the datasets are generated and collected locally by the devices,
therefore they could be non-IID and affected by noise, outliers, etc. The global
data distributions may therefore be unbalanced and biased. However, a unique and
divergent dataset is very valuable for the global model accuracy.

• clients’ reliability: the devices’ connection to the server should be considered unreli-
able, as they could drop out of a round mid-run due to energy or network limitations
(batteries may run out, mobile devices may fall out of the coverage range).

• network characteristics: the network can be either wireless, wired, mobile, ad hoc or
it can be a sensor network, each with their own peculiarities; network bandwidth and
delay may not be deterministic, but vary across devices and time. Environmental
characteristics will therefore cast a different shape on the round computation time,
in addition to the effect brought about by client heterogeneity.

• communication cost: network connections are metered, and, for this reason and
considering that the number of participants may be huge, it is important to limit
the number of message exchanges.

• vulnerabilities: a cooperative model like the federated learning process may be
subject to security risks on multiple fronts; clients may be passively malicious and
listen in to "steal" model updates, or actively malicious by poisoning either the
dataset or the model update.

21

Background: federated learning

To address these new challenges, many aspects of FL have been analysed: the lit-
erature has been focusing mainly on the network configuration, the synchronous/asyn-
chronous behaviour of the learning, the learning strategies and the client selection. The
most relevant FL architecture categories are described in the next sections.

Network topology

There are two main network topologies that have been explored in federated learning
literature:

• mesh topology: in this configuration, there is no central coordination unit and
devices are connected with peer-to-peer links, as shown in fig. 2.8. Each round,
every client performs its local training (client selection is not enforced) and the
global update is obtained by collecting the neighbouring model parameters.

• star topology: a centralised server is connected to a pool of available clients (shown
in fig. 2.9). The server acts as a controller by selecting which devices will participate
in a round and coordinates both the communication and the aggregation processes.
In this architecture, the server supervises and manages the behaviour of the clients.

Figure 2.8. Mesh topology Figure 2.9. Star topology

Figure 2.10. Schematic of the mesh and star topologies for FL applications.

In the following, we will focus on the star topology configuration, which is the most
used one in literature because of the significant system control capability it can provide.

Synchronous versus asynchronous architectures

A typical FL run consists of a series of federated rounds; each of them involves a training
phase, during which the on-device training is performed on the selected clients, alternated

22

2.2 – Federated learning: state-of-the-art

with the central aggregation phase, where the updates are collected and aggregated by
the server. A federated round may then end with the current model federated evalua-
tion phase: another subset of selected clients receives and evaluates the current model
parameters and the evaluation metrics are again collected by the server.

A federated round is characterised by a timeout set by the server: this timeout repre-
sents the system time unit and it can be considered either a hard or soft limit for updates
to be received, based on the system synchronism. With respect to the server timeout, a
straggler can be defined as a client which was selected for a training round, but missed
the round timeout and the server could not receive its update in time to aggregate it.
Different solutions have been proposed in FL literature with respect to timeouts and
stragglers, in particular:

• synchronous training round: in a synchronous round, shown in fig. 2.11, the server
selects K participants out of the pool of available clients and collects their results:
the round ends when the last update is collected. As a worst case, the server sets a
timeout T: if less than K devices have committed their results before T expires, the
round fails and is rescheduled. In this scenario, the presence of stragglers impacts
the training round tragically, since they may cause the round to fail; also, stale
updates are wasted even if they reach the server. To counteract stragglers, the
usual solution is to overcommit the number of participants by a certain percentage
(typically, the 30% of the target K), so not to depend too much on the crashed or
slow devices by selecting additional backup workers.

Figure 2.11. FL round with synchronous communication: two results are needed to close a round
in this example. Detail of a straggler participant.

23

Background: federated learning

• asynchronous training round: asynchronous communication is similar to the syn-
chronous one, as in both of them the server sets the round timeout, but the two
differ in the way straggler updates are treated. Figure 2.12 shows the same scenario
as in the synchronous case, but now the stale update from client 2 is kept in mem-
ory and aggregated in the second round. Asynchronous aggregation, however, must
take into consideration the staleness degree of the updates: different aggregation
strategies have been proposed in literature to take care of this staleness issue.

Figure 2.12. FL round with asynchronous communication. Detail of a straggler participant.

24

2.2 – Federated learning: state-of-the-art

• asynchronous training round (Astraea definition): there exists an additional defini-
tion of asynchronous training round provided by Astraea [1]. This paper proposes
a sequential round training, where one selected client provides its model parame-
ters, which are updated inside the centralised controller (the mediator acts as the
server in this case, but does not perform any aggregation); the controller then se-
lects the next client, which will perform the training on these intermediate model
updates, and so on (see fig. 2.13). However, this solution does not exploit parallel
computation on multiple devices.

Figure 2.13. Astraea [1] definition of asynchronous round.

In general, both synchronous and asynchronous approaches are used in FL. Syn-
chronous schemes are simpler to analyse and the updates are always serially equivalent;
also, they provide better protection from privacy-related attacks. However, they waste
stale updates which are still able to reach the server and may contain valuable informa-
tion. Asynchronous communication is useful in highly heterogeneous scenarios, where the
probability of stragglers cannot be neglected, but it implies troubles regarding privacy
and scalability.

In the asynchronous architecture, stale updates are built on an older version of the
current model and their weight in comparison to up-to-date results should be modified
accordingly. The asynchronous aggregation techniques usually rely on bounded-delay
assumptions to limit the degree of staleness. The following list presents the state-of-the-
art scaling rules (which measure the importance of an update based on its staleness and
possibly other parameters) that have been proposed in the FL literature:

25

Background: federated learning

• SSGD: stalenes-aware SGD algorithm, a modified version of the classic SGD typi-
cally used in machine learning. The stale updates and the up-to-date ones have the
same weight2.

wS = 1 (2.2)

where wS is the straggler’s weight.

• DynSGD [13]: the stale updates’ weight decreases proportionally to their degree
of staleness.

wS = 1
τS + 1 (2.3)

where τS is the number of round timeouts that the client has missed before providing
its update (id est, the number of staleness rounds).

• AdaSGD [14]: the stale updates’ weight decreases exponentially with respect to
their degree of staleness, but they are enhanced if they contain relevant information.

wS = e−(τS+1) + boosting (2.4)

where the exponential term is the staleness-aware dampening factor and the boost-
ing is computed as boosting = 1

sim(xS) , based on a similarity function which gives
an indication of the data novelty of the client.

• RELAY [15]: the scaling rule of DynSGD is riproposed, together with an expo-
nential enhancement factor. A tunable parameter β is responsible for tuning the
weight of the stale updates, balancing the dampening with the boosting.

wS = (1 − β) 1
τS + 1 + β(1 − e− ΛS

Λmax) (2.5)

where the boosting factor is based on the term ΛS (the deviation of the stale update
from the average of the fresh updates), divided by the maximum deviation from all
the stale results, Λmax. If an update is very different from the average, with this
scaling rule its weight increases even if its staleness is high.

Federated learning frameworks

Many FL frameworks have been proposed, both for research and real deployment pur-
poses. A concise description of the most relevant ones follows:

• Flower [3]: Flower is an open-source platform-independent framework which is par-
ticularly relevant for its attribute of easy customisation with respect to all aspects of
federated learning: the implementation of client/server behaviour, the exchanged
messages, the learning strategies and even the whole system architecture can be
modified and shaped using Flower to explore new FL scenarios.

2The assumption is that the up-to-date parameters have weight 1.

26

2.2 – Federated learning: state-of-the-art

• IBMFL [16]: IBMFL is a black-box Python framework realised by IBM. Here,
only the dataset and the neural network model are customisable. IBMFL provides
a fast start-up time for real application deployment and also an straightforward
experimental environment to test ML models in a federated setting.

• FLSlim [17]: FLSim is a standalone library supported by Facebook research that
provides high-level API calls to manage the FL process; it is scalable and open-
source, therefore also simple to customise. It is written using the PyTorch library,
which denotes an object-oriented approach.

It is worth noting that all the presented frameworks adopt the centralised FL archi-
tecture with the star topology.

2.2.2 Related works

The following list presents the most relevant ideas introduced in the papers that have
been the main starting point for this work.

• Oort [18]: Oort is an informed participant selection framework that preferentially
selects learners with a higher utility. Utility is defined as the combination of statis-
tical utility (measured using the training loss as a proxy, to favour valuable clients)
and system utility (measured as a function of the completion time, to favour fast
clients). Oort also uses a pacer algorithm that can trade a longer round duration
to include unexplored or slow learners, when required for statistical efficiency.
The chosen evaluation metric is time-to-accuracy, that is total completion time with
respect to final model accuracy, and the selection algorithm selected for comparison
is the random selection. Some of the downsides of Oort are the need for an accurate
estimation of the clients’ utility and the lack of data diversity.

• SAFA [19]: SAFA is a semi-asynchronous protocol that enables updates from strag-
gling participants. It flips the participant selection process of FedAvg strategy
(see section 3.2.1 for more details on this strategy): training is run on all learners,
and a round is ended when a pre-set percentage of them returns their updates (pro-
cess called post-training client selection, combined afterwards with discriminative
aggregation). Participants are allowed to report after the round deadline and their
updates are cached and applied in a later round; however, SAFA only tolerates
updates from learners that are within a bounded staleness threshold. Therefore,
the round duration is reduced by only waiting for a fraction of the participants,
while the cache ensures that the computational effort of straggling participants is
not entirely wasted and is still able to boost the statistical efficiency.
The evaluation metric is time-to-accuracy; FedAvg, FedCS [20] and fully local train-
ing are the benchmark strategies for comparison. The main disadvantages of SAFA
are the huge waste of resources as the number of total clients increases, and the
bias introduced in the client selection due to the divergence between speed and
importance (in terms of valuable local data) of the learners.

27

Background: federated learning

• RELAY [15]: RELAY proposes to maximise the system resource efficiency in
terms of cumulative hours spent in training. It is based on intelligent participant
selection: the participants target becomes adaptive, that means that the default
number of polled clients may vary based on the stragglers behaviour during a round;
also, least available prioritisation is applied to boost data diversity, where learners
availability is defined as when a device is connected to a charger, idle and using
an unmetered network (availability is usually limited in time). In addition to this
client selection algorithm, RELAY proposes a staleness-aware aggregation, a stale
synchronous version of the FedAvg aggregation strategy combined with a scaling
factor to properly weigh stale updates based on their similarity to the model.
The comparison metrics are the training performance in non-IID settings in terms of
cumulative resource usage and model accuracy. Some of the weaknesses of RELAY
may be that the learners are supposed to periodically train their future availability
model and to estimate their remaining training time when they become stragglers.

• FLEET [14]: FLEET enables stale updates robustness by introducing AdaSGD,
an ad hoc version of the classic Stochastic Gradient Algorithm, which adopts a
dampening factor on out-of-date results to give them a smaller weight as their
staleness increases. This has the advantage of not discarding updates that exceed
the staleness threshold. However, the AdaSGD protocol is not directly compatible
with the traditional FL settings such as FedAvg.
The metrics for comparison of AdaSGD are DynSGD [13], the staleness-aware
SGD (SSGD) and the staleness-unaware SGD (FedAvg). One of the downsides
of AdaSGD is that the clients have to send their data distribution beforehand,
that may affect privacy. Also, differently from FedAvg, FLEET synchronises model
gradients after every single mini-batch.

• Astraea [1]: Astraea is the first paper to propose a different system architecture for
FL. In between the clients and the server, a number of mediators is added, which
have the role of moderating the client-server communication. Before the FL starts,
a scheduling phase is performed, where the clients’ assignment to the mediators is
balanced based on their data distribution: the objective of this is to ensure that
each mediator is provided with a diverse pool of client datasets, as unbiased and
representative as possible.
In this framework, the server supports a global model with synchronous updates
from the mediators, while the mediators support asynchronous updates from their
connected clients. Astraea also proposes an initial rebalancing phase where data
augmentation is performed on clients.
The experimental comparison of Astraea is done with the FedAvg strategy. One of
the disadvantages of this approach is that the rebalancing and scheduling phases
require additional time to be performed if the data distribution rapidly changes;
also, clients may be unwilling to share their data distribution with the server.

28

Chapter 3

Framework model

This chapter is dedicated to presenting the network impact issue on federated learning
in section 3.1, which is the main problem we address in this work, and to describing the
system we developed to counteract this issue in section 3.2.

Our main contributions are an asynchronous model tolerant to stragglers, described
in section 3.2.2, and the addition of the mediators in the client - server architecture,
described in section 3.2.3. Section 3.2.4 explains how our complete federated learning
model turns out to be.

3.1 Network effect on federated learning
One of the fundamental aspects of federated learning is that the workers communicate
through a complex network, which may have different characteristics and properties. The
network plays an important role in the process, since it dynamically affects the system
timing.

In this section, we will consider a synchronous architecture with a star topology as
our baseline. A FL round ends when the server collects all the results from the K selected
participants. In this configuration, each round completion time is ruled by the slowest
client: the slowness may be due to the poor computational capacity of the device, to the
network delay, or to a combination of both. The slowest selected client sets the round
duration as well and represents the round bottleneck.

Figure 3.1 shows an example of a pool of six available clients with different hardware
and network characteristics; the y-axis represents the total time needed by a client to
compute and send back the model parameters. Instead of random client selection, assume
that the server is omniscient and has perfect knowledge about the training speed of the
clients, and it will use this knowledge for an informed client selection; also, suppose that
the server needs three participants out of six available clients to complete a FL round.

29

Framework model

By looking at the computational capabilities only, the server would choose the fastest
clients so to reduce as much as possible the training round duration, and the choice
would be 2, 3 and 6; however, even in this ideal scenario, the network effect would
impair the round duration, since the best network conditions are held by clients 1, 3 and
4. Considering both the computational and transmission times, the joint overall lowest
round duration is achieved by selecting clients 3, 4 and 6, which would be the optimal
choice.

Figure 3.1. Computational capabilities versus communication time for a pool of six clients.

When talking about synchronous FL, causes for troubles due to the network effect
include the fact that the network uplink/downlink bandwidth for each client may vary in
time, or be statically allocated; network delays also play an important role in the server-
client communication. Issues arise when the delay is combined with the slower training
participants, that consequently become the round bottlenecks.

From our research, in the literature the network problem in FL has not been directly
addressed. The main focus of this work is to consider and investigate the effect of the
network bandwidth and delay on a FL round and to try and develop a model which
compensates for it in an efficient way, so to reduce its impact on the computation time
of the whole learning process.

30

3.2 – Model description

3.2 Model description

As explained in the previous section, the synchronous FL architecture is afflicted by the
bottleneck of the slowest client. In order to try and bypass this problem, we propose
a completely asynchronous architecture which is governed by the server timeout as the
system time measure, and client updates who miss the timeout can still be incorporated
in the model aggregation. Also, we propose a new structure, shown in fig. 3.2: a number
of components named mediators is added between the clients and the centralised server,
whose purpose is to mediate the communication between server and clients by reducing
the overall time each update needs to reach the FL infrastructure.

Figure 3.2. Schematic of the double-layer architecture.

3.2.1 FedAvg strategy and client selection characteristics

One of the first FL aggregation strategies proposed in literature is the FedAvg strat-
egy [21]: it is often used in practical applications and it represents a classical comparison
benchmark for presenting new strategies. FedAvg involves a first local SGD1 training
step on the data owned by the devices, and a later centralised aggregation step which
happens inside the server; this aggregation consists of a weighted average of the local
models. FedAvg works very well in IID scenarios, but is less performant in a heteroge-
neous environment, when devices generate non-IID data distributions. This strategy is

1SGD (Stochastic Gradient Descent) is an optimisation method that aims at finding a local minimum
of a function by computing an estimate of its gradient. It can be used to train a model and has become
very popular in machine learning as it is a cost-efficient approach, when applied to large scale learning
problems.

31

Framework model

synchronous: a round closes until all chosen devices (or a percentage of the total number
of participants) have returned their results.

Client selection characteristics

In general, the client selection algorithm is not part of the aggregation strategy, as they
happen in two different moments of the FL process: aggregation strategies can be com-
bined with different client selection techniques.

FedAvg operates with a ahead-of-training selection: the client selection happens before
the training starts, and the fit instructions are sent only to the chosen participants. The
success of a round, however, depends on the availability of the chosen participants, which
are unreliable and may crash mid-run: a usual technique is to overcommit the number
of clients with respect to the number of needed results, so to statically compensate for
crashed/delayed clients. Other approaches, like [19], flip the two FL steps: local training
is run on all clients and the selection is applied a posteriori on the returned results. The
obvious disadvantage of this method is the waste of resources, as a portion of the results
are not aggregated in the final model.

Focusing on the ahead-of-training selection, which is the most explored in literature,
there are many possible alternatives: however, an obvious limit of many selection algo-
rithms is that they require some prior knowledge on the clients’ characteristics, which is a
data privacy weakness; another frequent feature is that they may infer clients’ data qual-
ity, but this usually introduces biases in the selection. Random selection, instead, has the
dual advantage of being fair and not requiring any extra information on the participants.
This passive selection algorithm is the most used and also the simplest one.

3.2.2 Introducing tolerance to stragglers: asyncFedAvg strategy

Starting from the baseline provided by the synchronous strategy FedAvg, we build an
asynchronous strategy, named asyncFedAvg, able to consider and properly treat strag-
glers. The idea behind an asynchronous strategy is that the server sets a timeout T to
the FL round: when the timeout expires, the server closes the round and aggregates the
results received up to that point. Stale updates that arrive after the timeout are stored
in memory and aggregated in the next round.

In principle, an asynchronous FL round could end when all selected K participants
send back their results, exactly as in a synchronous FL architecture, meaning that the
server could end the round even before T has expired; however, we choose not to stop
rounds earlier than T so to be fair towards straggler devices from earlier rounds. The
only case where a round is closed earlier is if all straggler and fresh updates have been
received before T. Figure 3.3 shows an example of how an asynchronous round works
in our architecture. The server chooses two clients among a pool of three total clients;
the results from the current participants are received before the timeout has expired.
However, the server still awaits for T to elapse: in this way, the update from the straggling
client 2 can be aggregated in the current round and not in the next one, where it would
have been penalised with a smaller weight due to its higher staleness degree.

32

3.2 – Model description

Figure 3.3. Example of an asynchronous round. The server selects 2 clients, therefore it expects
2 fresh updates; however, it still waits for the timeout to expire before closing the round, even if
it receives them beforehand.

By applying asyncFedAvg to federated learning, the maximum duration of the FL
process depends just on the round timeout T, therefore it can be considered as constant
and limited; the system is no longer sensitive to straggler clients. Nevertheless, the macro-
parameter T should be set large enough so that, on average, at each round enough clients
are able to send their results to the server in time to be aggregated: it is important not
to only aggregate together stale updates in a round, but to combine them with fresh ones
as well. The reason is that fresh updates incorporate the current model, while stale ones
are based on an older version of the learning model, and aggregating only stale updates
could compromise the final model.

In addition to the upper limit on the training time, our asynchronous strategy also
introduces another advantage: if the timeout is configured properly, there is no need
to overcommit the number of participants. Overcommissioning is usually performed in
synchronous FL to cope with either straggler and crashed clients: our framework is robust
to them and does not need to waste more client resources than what is strictly needed.

The aggregation of the returned results in asyncFedAvg is the same weighted average
proposed by FedAvg; here, however, clients’ staleness needs to be taken into account.
This is done by the aggregation scaling rule, applied before the aggregation step. The
next section explains the reasons behind the choice of the scaling rule we selected for
asyncFedAvg.

33

Framework model

Chosen aggregation scaling rule

Among the aggregation scaling rules proposed in literature (described in section 2.2.1),
we chose to adopt the DynSGD rule [13]:

wS = 1
τS + 1 (3.1)

which scales updates based on their staleness. We did not choose the SSGD rule because,
with identical weights, a straggler would not be penalised with respect to on-time clients;
we excluded AdaSGD [14] and Relay [15] scaling rules because we did not want to bias the
strategy evaluation. Our only focus is on the update staleness, not on its uniqueness. As
a future addition, more sophisticated rules that take into account the update’s similarity
with the current parameters can be incorporated in our model.

3.2.3 A new player: the mediator

The mediator is the new system component introduced in our architecture. Its purpose is
to ease the communication between clients and server. We suppose that it is collocated in
the cloud edge, where the network delays between devices and mediators can be considered
small and constant; on the other hand, we can suppose that the end-to-end bandwidth
and delay between a mediator and the server are fixed and known.

Figure fig. 3.4 shows a schematic of the constituent stages of a FL training round with
our framework architecture. The server S selects the mediators involved in the round, in
principle all of them, except stragglers from previous rounds; then it sends the current
model parameters and the training instructions to each selected mediator Mj 1 . Also, S
sets the round timeout T, which is sent to the mediators as well. Mj updates its internal
model and selects the round participants by applying its client selection algorithm; it
subsequently forwards the instructions to the chosen clients 2 . Every chosen client
Ci runs the training on its local data and sends back the results to Mj 3 . Once T
has expired, Mj collects the on-time results and aggregates them 4 ; the result of this
first aggregation is sent back to S. The server awaits for the timeout to expire plus an
additional time (named server tolerance) needed to take into account the mediator-server
delay, after which it collects the received results and aggregates them to produce the new
current model 5 .

34

3.2 – Model description

Figure 3.4. Schematic of the five stages that compose a training round in our framework archi-
tecture.

Apart from client selection and aggregation, the mediator is a transparent component
as it simply forwards instructions and results between server and clients. In the proposed
framework, the only "intelligent" decision a mediator takes is the client selection, but this
could be delegated to the server as well, so that the mediator behaviour shifts completely
under the control of the server. Two important factors are offered with the introduction
of the mediators in the FL architecture:

• clients are brought nearer to the FL infrastructure, therefore communication delays
can be significantly reduced. This opens new possibilities towards better exploiting
clients’ resources by taking advantage of their network characteristics.

• the intermediate aggregation step saves communication resources: instead of having
K model parameters2 travelling from clients to the server, only the N intermediate
model parameters need to traverse the network3. This is a significant boost with
respect to classical FL, as model parameters can have big dimensions and they
waste time and network resources to be transmitted.

The idea of introducing mediators in the FL architecture is not completely new, as it
was already proposed by Astraea [1]. However, in their architecture, the mediators are

2K is the number of total selected clients.
3N is the number of mediators. In the worst case, N ≤ K, but we can usually suppose that N ≪ K.

35

Framework model

deputed to reschedule and balance training based on clients’ data distributions to achieve
a partial equilibrium in the aggregated model. Also, their mediators are virtual entities
that can be destroyed and recreated at each training round by the server. Instead, we
propose mediators that are physically located elsewhere with respect to the server (e.g.,
they can be edge servers), and they control the behaviour of the connected clients: there
is no possibility of client exchange between mediators, as they may belong to different
part of the network.

The request-acknowledge procedure with early-exiting

In order to directly tackle the network delay problem, we set up a request-acknowledge
procedure similar to a handshake between the mediators and the clients. At the beginning
of each round, the mediator randomly selects the new participants; before sending the fit
instructions, it sends an empty message (the "request") and the clients immediately replies
with another empty message (the "acknowledge"). On the basis of the measured RTT
(the time that elapses between sending the request and receiving the ack), the mediator
computes an ad hoc timeout for each client; the clients then receive the fit instructions
complete with their ad hoc timeout. They apply early-exiting: they can decide whether
to complete the total number of epochs or to finish early and send ahead of time so to
compensate for their network delay and be compliant with the mediator timeout.

Figure 3.5 shows a schematic of the ack procedure. Clients reply almost immediately
with the ack, as soon as they receive the request message (the light blue processing time
is only symbolic). Client 1 and client 3 are compliant with the round timeout: however,
since their network delay conditions are different, their processing time varies as well.
Client 2, instead, decides to become a straggler and ignores the timeout.

36

3.2 – Model description

Figure 3.5. Schematic of the request-ack procedure between mediator and clients.

The ack procedure involves a macro parameter called γ which indicates a threshold
on the difference between the current client model accuracy and the last epoch model
accuracy. If the difference is greater than the threshold, the client considers its training
worthwhile and conscientiously decides to become a straggler. In our framework, γ is
a fixed value equal for all clients; however, this parameter could be controlled by the
server/mediators and it could also be customised for each client.

3.2.4 Final model architecture

We have built a new system architecture composed by server, mediators and clients; we
also have an asynchronous strategy that properly takes into account stragglers. Contrary
to [1], we choose to make our model asynchronous in all its communicating parts. The
asyncFedAvg strategy is used by server and mediators alike: the server becomes tolerant
towards straggler mediators and, at the same time, the mediators become tolerant to-
wards straggler clients. Together with the asynchronous strategy asyncFedAvg, we choose
to apply the random client selection algorithm, not to bias the model by additionally re-
quiring or measuring clients’ characteristics.

In this asynchronous scenario, a FL round is governed by a timeout set by the server.
The mediators are not autonomous in the choice of their round timeout: instead, they
receive a customised timeout from the server. Because of our previous assumption that
the mediator-server delay and bandwidth are known and fixed, the server can take into
account the time needed by mediators to send their intermediate results.

To additionally counteract the network variability, we can turn on the ack procedure;
based on their custom timeout, clients can decide to stop training earlier and send the

37

Framework model

results back without completing all the epochs, being in this way compliant with the
mediator round timeout.

The mediators: future directions

In our architecture, the mediator is almost transparent and does not include any in-
telligent feature. However, this is a versatile structure easy to be upgraded to future
innovations, for example:

• a more elaborate dialogue between mediators and server can be put in place; for
example, an ad hoc procedure can be established between them to estimate the link
delay and bandwidth.

• the server can delegate more than one round to the mediators: in this scenario, the
mediators will become responsible of the management of these rounds, taking on
and partially substituting the role of the server. In this case, the mediator could
also choose when to send an update on the basis of some accuracy metric to be
checked at each round, to reduce even more the consumed network resources.

• the mediators could collect statistics about their pool of clients (e.g., data distri-
bution and volume). This could be used to perform an informed client selection
algorithm and the privacy risk would be reduced: clients’ private information would
only reach an edge server where the mediator is and not traverse an entire network
to reach the central server.

38

Chapter 4

System components

This chapter focuses on the description of the platforms utilised to implement our frame-
work. The three main components, Flower, Docker and OMNeT++/INET, are described
in section 4.1, section 4.2 and section 4.3, respectively. Section 4.4 shows how all these
pieces are eventually connected to one another to assemble the experimental platform of
this work.

4.1 Flower framework
Flower [3] is an open-source platform-independent framework and was chosen in this
project for its attribute of easy customisation: thanks to Flower, the whole system archi-
tecture, including the implementation of client/server behaviour, the exchanged messages
and the learning strategies, were modified according to our theoretical system model de-
scribed in chapter 3.

Between its many qualities, Flower is client-agnostic, meaning that the server does
not care about the nature of its workers, and this allows to simulate a heterogeneous
environment. Also, the aggregation strategy (the federated averaging algorithm used to
aggregate the model parameters from the clients in a FL round) can be fully customised.

Flower provides the underlying structure to build a federated learning architecture
(in particular, the message passing mechanism between workers, which uses gRPC and
Google protocol buffers, is particularly interesting); workers behaviour (both clients and
server), instead, can be defined by specifying the dataset, the learning model and other
custom functionalities to be incorporated in the FL process.

Two additional tools are used on top of Flower on the client side in order to train
models:

• TensorFlow: TensorFlow [22] is an open-source end-to-end machine learning plat-
form; it offers multiple deployment and scaling options, along with differentiated
levels of abstraction, for building and training models. It also supplies high perfor-
mance and speed.

• Keras: Keras [23] is a deep learning API Python library which runs on top of
TensorFlow. It is high-level and flexible, therefore it provides the right level of

39

System components

abstraction from the complexity of deep learning needed for a simple deploy of a
complex neural network.

In the original Flower implementation, the FL process is governed by the server, which
is in charge of selecting and sending orders to the clients. It uses three main instruction
messages:

• get parameters: initial message sent to a random client to obtain the current local
model parameters.

• fit instructions: this message contains the current model parameters and the in-
structions to let the selected client carry out the training of the model on the local
data; the updated model will then be answered back.

• evaluate instructions: this message contains the current model parameters and the
instructions to let the selected client carry out the evaluation of the model on the
local data; the results of the evaluation, i.e. loss and other accuracy metrics, will
then be answered back.

Figure 4.1 shows the dynamics of the message exchange between the server S and
its pool of available clients: in step 1, the server asks for the initial model parameters
(answered back by a randomly chosen client in step 2). Then the FL rounds start: in step
3, the server sends the fit instructions to the participants, which send back the results
in step 4. Step 5 represents the central aggregation of all the received results to build
the federated model. In step 6, the server transmits the instructions for the evaluating
phase, to validate the global model accuracy; the evaluation metrics are sent back in step
7. Steps 3 to 7 are repeated until the model reaches the target evaluation metric.

40

4.1 – Flower framework

Figure 4.1. Schematic of the message exchange between the server S and its pool of clients.

4.1.1 Framework modifications to the Flower implementation

In the original Flower synchronous implementation [24] [25], the client process is es-
sentially an infinite event loop, which listens for instructions messages from the server,
executes them and sends back the proper answer, and then starts listening again for new
instructions; the server, instead, sends instruction messages, then awaits until it receives
results or failures from clients.

The first step of our implementation was to make the server asynchronous to obtain
an asynchronous FL structure: this was done by modifying the thread generation in the
server code and by adding proper data structures and functions able to handle on-time
and stale results and straggler threads. This also implied the introduction of the timeout,
not present in the original synchronous implementation.

The FedAvg strategy was then modified to work in this asynchronous system, and the
DynSGD rule was added to the aggregation phase: in this way, using the Flower library
we implemented our asyncFedAvg strategy presented in section 3.2.2.

The mediator, whose behaviour is described in section 3.2.3, was built on top of the
pre-existing components: as it needed to behave in part as a client (in relationship with
the server) and in part as a server (in relationship with the clients), it shares elements
from both the implementations. Like the original Flower client, the mediator too is an
infinite event loop: when it receives instructions from the server, it switches from client
mode to server mode, and forwards the fit instructions to client and starts waiting for
feedbacks from them. Once the timeout has expired, the mediator sends the aggregated
results and switches back to client mode, awaiting for the next round instructions.

41

System components

To implement the ack procedure, new messages are introduced in the Flower protocol:
the request message, to which the client answers with an acknowledge message. To be
conservative and not waste time and resources, the messages are empty messages which
only contain a client ID; therefore, their size is tiny with respect to the parameters and
the RTT becomes small as well.

From packet captures, we estimated the ack/request messages size to 1.0381 kbit and
the parameters/instructions messages to 600 kbit each. The following code shows how
the custom timeout is computed.

1 RTT = AckRxTime - RequestTxTime # [s]
2 # bitrate of the channel between mediator and client: estimatedBitRate = packet size / RTT,
3 # where packet size is the measured size of the ack procedure messages (1.0381 kbit)
4 estimatedBitRate = 1.0381 / RTT # [kbps]
5 # 600 kbit is the measured instructions size
6 instructionsTxTime = 600 / estimatedBitRate # [s]
7 # 600 kbit is the measured parameters size
8 parametersTxTime = 600 / estimatedBitRate # [s]
9

10 # compute custom timeout to cope with transmission delays
11 custom_timeout = nominal_timeout - instructionsTxTime - parametersTxTime # [s]

The parameter γ (the threshold to decide whether to accomplish the training or to
perform early-exiting) is checked at the end of every batch. The snippet below is the
code of the callback function that is called at the batch end:

1 def on_batch_end(self, batch):
2 if time() >= start_time + timeout and current_accuracy - last_accuracy < gamma:
3 self.model.stop_training = True

The client compares the current execution time: if it is greater than the timeout, it
may be time to send, and a further check on γ is performed. If the current value of
accuracy is greater than the previous epoch accuracy by a factor of γ, the training can be
considered worthwhile and the client decides to conscientiously become a straggler and
ignore the timeout.

4.2 Integration (Docker)

Docker is a platform used to create, organise and run applications [2]. The running
applications are called containers: these isolated containers are independent from each
other and also from their environment and they are built starting from a Docker image.
The image is built from a file called Dockerfile, which invokes all the command line
instructions needed to set it up. The image contains a description of the container

42

4.3 – OMNeT++/INET frameworks

characteristics and single containers may be customised starting from the same image by
passing different parameters to it.

Containers are more lightweight and efficient with respect to virtual machines because
they share the OS kernel belonging to the underlying machine that hosts them. This
allows a quick development and deployment of many instances on top of the same host.

In order to provide the federated learning workers with properly simulated networking
connections, in this work we chose to exploit Docker isolation by encapsulating every
participant inside a Docker container. Each worker type (client, server, mediator, see
chapter 3) is built using a specific Docker image, which also includes the Flower library
that was customised for this work. Once started, all the containers that host the workers
are completely isolated. The networking is added in a later step and it includes only
two routes: the default gateway towards the Internet (to download necessary models or
datasets, used only before the true FL process starts) and one connection towards the
network emulator provided by OMNeT++/INET (explained in detail in section 4.3). All
the routing decisions happen inside the network emulator.

In addition to providing isolation, a Docker container also has other advantages, one
of them being the possibility to manage the amount of available CPU that can be assigned
to it. This means that a container can be limited in accessing the host machine’s CPU
clock cycles, providing us with the control on the container computing speed. This is
especially useful in our framework to control the computational capacity of each worker
to explore different scenarios. Another advantage of using Docker is data persistency: it is
possible to exchange data between the host filesystem and the containers to preserve the
results once the container is terminated. In this work we used volumes, dedicated storage
spaces that can only be created and managed by Docker, to achieve data persistency.

4.3 OMNeT++/INET frameworks

The software used to simulate the network is described in section 4.3.1 and section 4.3.2.
Section 4.3.3 presents the experimental setup of the network.

4.3.1 OMNeT++

OMNeT++ is the discrete event simulator chosen to emulate the network and its effect. It
is a public-source C++ simulation library and framework [4], whose main characteristics
are:

• component-based architecture: base modules are the main building blocks, providing
reusability; they are programmed in C++.

• modularity: modules can be recombined and assembled using the NED high-level
topology description language, to make the model flexible.

• extensibility: base modules can be extended and customised to obtain the desired
behaviour.

43

System components

OMNeT++ modules communicate thanks to a message-passing mechanism, which
makes the framework suitable to build network simulators. In this work, on top of
OMNeT++, we chose the INET framework as the standard protocol model library, de-
scribed in the next section.

4.3.2 INET

INET is an open-source OMNeT++ model suite for wired, wireless and mobile net-
works [5]. This library allows to combine common networking devices to develop and
simulate a communication network with the protocols from the Internet stack and the
link layer protocols.

In order to carry out experiments in different environmental conditions, the simulated
network has been designed to have configurable parameters, so that the bandwidth and
delay of the channel between each worker and its end-point (either the server or a medi-
ator) can be controlled. To achieve this, two routers are inserted between each worker:
OMNeT++/INET makes it possible to design the point-to-point link that connects them,
specifying datarate, propagation delay, bit error rate, packet error rate, etc.

The most important OMNeT++/INET feature used in this work is the network em-
ulation support: this allows to perform real-time tests integrating real-world hosts (the
Docker containers described in section 4.2) with a simulated network environment.

4.3.3 Network setup

In our framework, each Docker container is associated with a veth device that provides the
connection towards OMNeT++/INET, as described later on in the next section. Inside
the network emulator, there is a router for each container: these routers are necessary to
connect the clients with the mediators, and the mediators with the server. The simulated
links between routers can be customised with the desired bandwidth and delay values1.

Figure 4.2 shows the network setup in the most simplified case. The clients, the
mediator and the server each have their own veth pair towards the network emulator;
inside it, they are connected to their router and the links between routers are customised
point-to-point connections. Every router has only one Ethernet connection towards the
outside; in addition to this connection, the server router has an extra link towards every
mediator; the mediator routers have one connection towards the server and also one
towards each client connected to them. Client routers only have two links, the Ethernet
one and the point-to-point link towards their mediator.

1The veth pairs cannot be controlled in terms of bandwidth and delay, therefore they are not adequate
to connect the containers by themselves alone - hence the need for the network emulator.

44

4.3 – OMNeT++/INET frameworks

Figure 4.2. Schematic of the OMNeT++/INET network setup in the simplest case of one client,
one mediator and the server, complete with the Docker containers and the veth pairs.

Veth pairs

Veth devices are virtual Ethernet Linux devices [26], created as interconnected pairs so
to connect isolated namespaces or, in this case, Docker containers. In a veth pair, each
end of the virtual cable has a virtual NIC, a network adapter used to increase the overall
performance by relieve the operating system from some computing tasks.

From the experimental evaluation of the platform, we discovered that some parameters
need to be adjusted in order to have the veth pairs properly working in our framework.
In particular:

• TCP checksum offload: the TCP checksum computation is cumbersome and
requires many CPU cycles, therefore it is often offloaded to the NICs. The TCP
checksum offload happens before the transmission onto the network and upon the
reception from the network for validation purposes (that is, at either end of a
veth pair). However, it may happen that a virtual NIC will omit the checksum
computation as an optimisation, with the assumption that it will be calculated later
on by the host kernel: in the case of packets never leaving the same virtual machine,
this optimisation causes a known bug due to the veth source code implementation
and the packets become corrupted.
Analysing packet captures, we experimentally verified the bug in the ip_summed
field of the packet header. To solve this issue, the TX TCP checksum offload-
ing needs to be disabled only on the container-side interfaces to make the OM-
NeT++/INET emulation work correctly.

45

System components

• MTU values: the MTU (Maximum Transmission Unit, the maximum size of
the protocol data unit) value is set to the standard value of 1500 bytes on the
simulated network veth interface, while it is set to 1496 bytes on the container
interface (see fig. 4.3). The 4 bytes difference between the two interfaces is needed
to prevent datagram fragmentation or packet discards within the network emulation:
as a matter of fact, by analysing packet captures inside and outside the simulated
network we observed that 4 bytes were added by OMNeT++/INET to each packet.
Nevertheless, inside the network emulator all interfaces have the MTU value set to
1500 bytes.

Figure 4.3 shows a diagram of the veth interfaces, also depicting their MTU value
and the TCP checksum offloading: veth1 and veth0 represent the chosen nomenclature
for the container-side interface and the network-side interface, respectively.

Figure 4.3. Schematic of the veth interfaces: details of the MTU values and the TCP checksum
offloading.

4.4 Connecting the dots
The three key components of this work, Docker, Flower and OMNeT++/INET, all have
one quality in common: since they are open-source platforms, they can be customised at
will to fit the needs of those who used them. In particular, Flower offered the possibility
of shaping the learning process; by combining the Docker container parameter of the
CPU limit with the OMNeT++/INET configurable delays and bandwidths, we obtained
a fully customisable emulation environment.

46

4.4 – Connecting the dots

Figure 4.4. Schematic of the framework components.

To set up a simulation, we first build the workers’ Docker images that encapsulate
their custom behaviour, including the dataset, the neural network model and the modified
version of the Flower library. Isolated Docker containers are set up from these images:
the connections towards OMNeT++/INET and the internet are put in place later on by
connecting veth pairs to them. Once the networking is ready, the last step is to start the
OMNeT++/INET simulation, through which the workers will be able to communicate.

Below, the code to set up a simulation, taking as an example a generic worker. The
worker can either be server, mediators or clients.

47

System components

1 #!/bin/bash
2 sudo docker run -d --cpus=2 --name=worker --net=none --volume=/home/log:/log doc-worker
3

4 # create veth interfaces
5 # create veth pair and connect it to container
6 sudo ip link add veth0 type veth peer name veth1
7 sudo ip link set veth1 netns $(docker-pid worker)
8 # create veth pair for internet connectivity and connect it to container
9 sudo ip link add vethNs type veth peer name vethDefault

10 sudo ip link set vethNs netns $(docker-pid worker)
11

12 # bring up veth interfaces
13 sudo nsenter -t $(docker-pid worker) -n ip link set veth1 up
14 sudo nsenter -t $(docker-pid worker) -n ip link set vethNs up
15 sudo ip link set veth0 up
16 sudo ip link set vethDefault up
17

18 # assign IP addresses to interfaces
19 sudo nsenter -t $(docker-pid worker) -n ip addr add 192.168.0.1/24 dev veth1
20 sudo nsenter -t $(docker-pid worker) -n ip addr add 192.168.10.2/24 dev vethNs
21 sudo ip addr add 192.168.10.1/24 dev vethDefault
22

23 # disable TCP checksum offloading
24 sudo nsenter -t $(docker-pid worker) -n ethtool -K veth1 tx off
25

26 # set MTU value
27 sudo ifconfig veth0 mtu 1500
28 sudo nsenter -t $(docker-pid worker) -n ifconfig veth1 mtu 1496
29

30 # connect namespaces to the internet
31 sudo iptables -A FORWARD -o vethDefault -i ens3 -j ACCEPT
32 sudo iptables -A FORWARD -i vethDefault -o ens3 -j ACCEPT
33 sudo iptables -t nat -A POSTROUTING -s 192.168.10.2/24 -o ens3 -j MASQUERADE
34

35 # add default gateways (towards the internet-connected device)
36 sudo nsenter -t $(docker-pid worker) -n ip route add default via 192.168.10.1
37

38 # add routes (towards OMNeT++/INET)
39 sudo nsenter -t $(docker-pid worker) -n ip route add 192.168.1.0/24 dev veth1
40

41 # start the simulation
42 inet -u Cmdenv

48

4.4 – Connecting the dots

In line 2, the worker container is created from the doc-worker image. The docker run
command provides several useful options, in particular, the number of CPUs available
to the container (--cpus=2) and the volume to be used to store files for data persis-
tency (--volume=/home/log:/log). The --net=none option isolates the container from the
outside: the connectivity will be provided later on with the veth pairs.

In lines 6-7 and 9-10, two veth pairs are created and connected to the container: they
are used to connect the worker to the network emulator and to internet. The interfaces
are then brought up in lines 13-16, and IP addresses (in this case, /24 private subnets) are
assigned to them in lines 19-21. Lines 24, 27 and 28 set the transmission TCP checksum
offloading off on the veth1 interface and the MTU values to 1500B and 1496B on veth0
and veth1 respectively, for reasons better explained in the subsection dedicated to veth
pairs in section 4.3.3. The commands in lines 31-33 are used to provide the host’s internet
connectivity to the container, by associating it to the host interface ens3.

Finally, the internet-connected device (the vethDefault interface) is set as the con-
tainer default gateway (line 36) and routes towards OMNeT++/INET to reach other
workers are added by specifying their IP, as in line 39. The last step in line 42 is to start
the OMNeT++/INET simulation2.

2Once created, the containers are still isolated, as the networking takes some second to be set up; the
FL workers are forced to be idle for a couple of seconds to stop them connecting to the network too early.

49

50

Chapter 5

Experimental evaluation

In this chapter, we measure the system emulator performances to obtain a clear picture
of the simulation range in terms of delay and bandwidth. Next, we evaluate our federated
learning framework, to verify the goodness of our design choices and to assess the system
performances. As a benchmark for comparison, we take the original Flower synchronous
FL implementation, combined with the FedAvg aggregation strategy and the random
client selection algorithm.

5.1 System validation
In this section, we provide the evaluation of our federated learning emulator behaviour: in
section 5.1.1, we validate the connectivity of the containers through OMNeT++/INET,
while in section 5.1.2 we measure the network emulator performances.

5.1.1 Docker validation

We run a number of functional tests to verify the Docker containers setup, combined with
the OMNeT++/INET framework (see section 4.3), and the obtained results are good:
containers are able to successfully communicate through the network emulator. As an
additional check, we verify the available CPUs with the portainer tool [27]: fig. 5.1 shows
a single client’s CPU utilisation during the training (the most demanding phase in terms
of computations) when the Docker CPU limit is set to 2, 1 and 0.5 CPUs, respectively.

51

Experimental evaluation

Figure 5.1. Example of container CPU usage during the client training phase with maximum CPU
limit set to 2, 1 and 0.5 CPUs.

5.1.2 OMNeT++/INET validation

In this section, the performances of the network emulator are evaluated by setting up two
different network configurations and performing ping tests and iperf3 tests, to measure
the actual system characteristics against the theoretical ones.

In the following experiments, we connect two hosts with a plain point-to-point link.
We firstly set up a single-router network, which is the simplest network topology that
allows the emulation, in order to evaluate the OMNeT++/INET performances without
further restrictions. Then, we build a two-routers network to be able to configure and
evaluate the network bandwidth and delay of the point-to-point connection.

Two containers and single-router OMNeT++/INET network setup

The first experiment, which involves two Docker containers and a network composed
only by one router, is the first step to verify connectivity (id est, correct routing and

52

5.1 – System validation

parameters setup) and to check the system bottleneck on the bandwidth and delay. The
setup is shown in fig. 5.2. Ping and iperf3 tests are run in these conditions: the results
are summarised in table 5.1.

Figure 5.2. Single-router network setup.

Table 5.1. Results of ping and iperf3 between two containers (host0 and host1) with a single-router
network. The bandwidth measure is the average of 10 tests run in the same conditions.

command result
sudo nsenter -t $(docker-pid host1) -n ping 192.168.2.1 -c 10000 -i 0.0001 average RTT = (0.161 ± 0.034) ms
sudo nsenter -t $(docker-pid host0) -n iperf3 -c 192.168.3.1 -p 5001 -t 60 bandwidth = (61.2 ± 0.9) Mbps
sudo nsenter -t $(docker-pid host0) -n iperf3 -c 192.168.3.1 -p 5001 -t 60 -u -b 100M bandwidth = (76.8 ± 1.5) Mbps

The results indicate that the maximum reachable bandwidth is around 75 Mbps. This
limitation is due to the network emulator setup: OMNeT++/INET does not take advan-
tage of hardware parallelism and only uses one CPU in this experimental environment.
As a proof of this, with the htop tool provided by Linux [28] it is possible to verify that
the utilisation of a single CPU (the one dedicated to the network emulator process) goes
up to 100% during the iperf3 test under stress. Also, the average delay introduced by
the OS is less than 1 ms, therefore it is possible to make this delay negligible by properly
configuring higher delays inside OMNeT++/INET.

Two containers and two-routers OMNeT++/INET network setup

The second experiment involves two Docker containers and a network made up by two
routers with a customisable point-to-point link between them, to verify the network
emulator bottleneck on the bandwidth and delay (setup shown in fig. 5.3).

Figure 5.3. Two-routers network setup: details of the channel bandwidth B and delay.

53

Experimental evaluation

Figure 5.4 shows the bandwidth measured with iperf3 with respect to the theoretical
bandwidth set in OMNeT++/INET: the blue line in the graph represents the bisector.
The emulator comfortably sustains bandwidths up to around 40 Mbps, as the points are
very near to the blue line; however, when setting higher values, the measured bandwidth
saturates at around 47 Mbps because the CPU used by the simulator goes up to 100% of
usage.

Figure 5.4. Measured vs. configured OMNeT++/INET link bandwidth between two routers. De-
tails of the CPU usage when the emulator saturates; the blue line is the graph bisector.

Figure 5.5 shows the measured RTT with ping with respect to the theoretical delay
value set in OMNeT++/INET. The red line is the bisector: since all measured values
are very close to the bisector, we can conclude that the measured RTT is very accurate;
also, considering that the ping test is not a very computationally demanding task, the
simulator CPU does not saturate for any tested value.

54

5.1 – System validation

Figure 5.5. OMNeT++/INET configured delay vs. measured average RTT: the red line indicates
the bisector, that is, the theoretical values if the simulator did not introduce additional delays.

From the last two experiments, we deduce that, while the configured delay does not
affect the simulation, setting a high value of link bandwidth can saturate the CPU.
Therefore, the next experiment is to evaluate the average delay introduced by the OM-
NeT++/INET for different bandwidths (setting a fixed delay of 500 ms). The results of
the experiment are shown in fig. 5.6 and fig. 5.7; in particular, the second graph shows
the RTT coefficient of variation, which indicates how much variance is present within the
average delay measure. The network emulator does not introduce any significant delay for
bandwidth higher than 50 kbps; however, the delay becomes quite large if the bandwidth
decreases under that threshold. In conclusion, any bandwidth values between 50 kbps
and 40 Mbps are acceptable in our network simulator.

55

Experimental evaluation

Figure 5.6. Average delay introduced
by OMNeT++/INET, computed as the
measured RTT subtracted by the nomi-
nal RTT.

Figure 5.7. Coefficient of variation
(CV) of the average delay introduced by
OMNeT++/INET in fig. 5.6.

Figure 5.8. Mean and CV of the delay introduced by OMNeT++/INET.

56

5.2 – Experimental evaluation

5.2 Experimental evaluation
This section presents the main experimental results we obtained. Our comparison bench-
mark is synchronous FL with random selection and FedAvg aggregation strategy; the
analysed network configurations include symmetric networks, with no delayed clients,
and asymmetric networks, with clients which are penalised in terms of link bandwidth.
We study both IID and non-IID scenarios.

To explore the different aspects of our framework, we perform three main simulations:
• section 5.2.1 shows a comparison of our asynchronous architecture with respect to

the classical synchronous one under different network conditions;

• section 5.2.2 analyses the effect of the position of the mediator in the edge-cloud
continuum on the FL rounds;

• section 5.2.3 evaluates the performances of the ack procedure in a heterogeneous
scenario.

Dataset and neural network model

In our experiments, we use the MNIST [29] dataset: it is made of 60000 training images
and 10000 validation images that represent each a digit between 0 and 9 (10 classes). The
images are gray-scale, composed by 28 × 28 pixels. We also employ a sequential neural
network model with 4 layers, characterised as follows:

• layer 1: first layer to flatten the input, input dimensions equal to the images di-
mensions (28 × 28)

• layer 2: dense NN layer, ReLu activation function, output space dimension 128

• layer 3: dense NN layer, ReLu activation function, output space dimension 256

• layer 4: dense NN layer, SoftMax activation function, output space dimension 10
(equal to the number of classes of the MNIST dataset)

5.2.1 Synchronous vs. asynchronous FL architectures

In the first experiment, we compare our asynchronous double-layer framework with the
classical synchronous FL implementation in two different network settings: one with no
delays and symmetrical client conditions, the other one with two delayed clients (in terms
of bandwidth). We also verify the behaviour in case of IID and non-IID data distributions
among clients, with the same network setups. In this first simulation, the ack procedure
is turned off to analyse only the asynchronous structure.

Experimental setup 1: IID data distribution

The experiment involves 6 clients, with equal computational capabilities between them.
The whole MNIST dataset is provided to all clients. The server and clients setups for
the synchronous FL simulation are shown in table 5.2, while the asynchronous framework
setup for server, mediators and clients is shown in table 5.3.

57

Experimental evaluation

Table 5.2. Server and clients settings for the synchronous FL simulation with the MNIST dataset.

Server settings Clients settings
n.° clients 6 dataset MNIST

rounds 20 epochs 3
CPUs 1 CPUs 0.5

n.° selected clients per round 4

Table 5.3. Server, mediators and clients settings for the asynchronous FL simulation with the
MNIST dataset. The total number of clients is 6 (three clients for each mediator, two mediators
in total).

Server settings Mediators settings Clients settings
n.° mediators 2 n.° clients 3 dataset MNIST

rounds 20 n.° selected clients per round 2 epochs 3
CPUs 1 CPUs 1 CPUs 0.5

timeout [s] 90

In the first stage of the experiment, the network links are configured to be symmetric
for all clients; also, to be fair with respect to the double-layer framework, an additional
20 Mbps link is added between clients and server in the synchronous setup. Figure 5.9
and fig. 5.10 show the network configurations in the synchronous and asynchronous cases,
respectively.

58

5.2 – Experimental evaluation

Figure 5.9. Network and computational conditions of the 6-client synchronous simulation setup:
case of symmetric network.

Figure 5.10. Network and computational conditions of the 6-client asynchronous simulation setup:
case of symmetric network.

59

Experimental evaluation

In the second setup, two clients become slower with respect to the others since their
configured link bandwidth is reduced by a factor of 20 (50 kbps with respect to 1 Mbps).
Figure 5.11 and fig. 5.12 show the network configurations in the synchronous and asyn-
chronous cases, respectively: in the asynchronous framework, the two slow clients are
divided between the two mediators.

Figure 5.11. Network and computational conditions of the 6-client synchronous simulation setup:
case of asymmetric network. Two clients have links with a reduced bandwidth, 20 times smaller
than the other clients.

60

5.2 – Experimental evaluation

Figure 5.12. Network and computational conditions of the 6-client asynchronous simulation setup:
case of asymmetric network. Two clients have links with a reduced bandwidth, 20 times smaller
than the other clients.

Results

Figure 5.13 shows the accuracy and loss of the simulation run in the symmetric network
conditions: these metrics are centrally computed by the server after each aggregation
phase, and the whole MNIST dataset is used for the evaluation. The two frameworks have
comparable execution times, and the time-to-accuracy metric of the asynchronous double-
layer architecture is slightly superior than the synchronous FL since higher accuracies are
reached in less time. Figure 5.14, however, shows the same metrics in the asymmetric
network case with two slow clients: here, it is possible to see that our framework is able
to react better to the presence of stragglers. Not only it outperforms the synchronous FL
in terms of execution time, but is also reaches a higher value of accuracy earlier.

61

Experimental evaluation

Figure 5.13. Accuracy and loss for the 6-client setup with symmetric network conditions and IID
data distribution.

Figure 5.14. Accuracy and loss for the 6-client setup with asymmetric network conditions and
IID data distribution.

62

5.2 – Experimental evaluation

Experimental setup 2: non-IID data distribution

In the second experiment, we change the distribution of the dataset among clients to
obtain a non-IID scenario. The MNIST dataset is divided into 6 parts with equal size
and divided among the 6 clients; in this way, classes "0", "2", "4", "5", "7", "9" are uniquely
assigned to clients 1, 2, 3, 4, 5, 6 respectively, while the remaining classes are shared among
two clients. The symmetric/asymmetric network setup and computational capabilities
are left unchanged with respect to the last experiment (refer to fig. 5.11, fig. 5.12). The
workers settings are shown in table 5.4 and table 5.5: since the dataset size is smaller
and the computational capability is the same, the client training time becomes smaller
as well and, to adjust to this, in the asynchronous case we set the server timeout to 30 s
instead of 90 s.

Table 5.4. Server and clients settings for the synchronous FL simulation with the MNIST dataset
and non-IID data distribution.

Server settings Clients settings
n.° clients 6 dataset 1/6 MNIST

rounds 20 epochs 3
CPUs 1 CPUs 0.5

n.° selected clients per round 4

Table 5.5. Server, mediators and clients settings for the asynchronous FL simulation with the
MNIST dataset and non-IID data distribution. The total number of clients is 6 (three clients for
each mediator, two mediators in total).

Server settings Mediators settings Clients settings
n.° mediators 2 n.° clients 3 dataset 1/6 MNIST

rounds 20 n.° selected clients per round 2 epochs 3
CPUs 1 CPUs 1 CPUs 0.5

timeout [s] 30

Results

In the non-IID scenario, accuracy and loss are evaluated by the server on the whole
MNIST dataset: fig. 5.15 and fig. 5.16 show the accuracy and loss metrics of the sim-
ulation run in symmetric and asymmetric network conditions, respectively. In these
simulations, the overall execution time is smaller than in the IID data distribution case:
this is caused by the smaller size of the dataset, which reduces the clients’ computa-
tional time at each round. Due to the non-IID data distribution, the accuracy curve
grows slower than the IID case for the same number of epochs; however, the comments

63

Experimental evaluation

of the previous experiment hold in this situation too, and the asynchronous double-layer
framework performances exceed the synchronous FL ones.

Figure 5.15. Accuracy and loss for the 6-client setup with symmetric network conditions and
non-IID data distribution.

64

5.2 – Experimental evaluation

Figure 5.16. Accuracy and loss for the 6-client setup with asymmetric network conditions and
non-IID data distribution.

Discussion on network delays

Considering the emulator validation performed in section 5.1, 40 Mbps is the maximum
link bandwidth limit which cannot be exceeded, not to saturate the CPU dedicated to
the emulator; in the clients links, we never exceed the reasonable threshold of 1 Mbps.
From packet captures, we evaluated the time needed to transmit the model parameters
from client to mediator; with a 1 Mbps link, the transmission time is around 40 s for the
MNIST dataset (the data size depends on the dataset and NN model).

Realistic network delays for a fiber link are below 200 ms; the RTT delay due to a
satellite connection with a geostationary satellite is around 600 ms and this is one of
the slowest physical connections nowadays. Even considering this higher value, in our
simulation a delay below 1 s would not have a major impact on the transmission time of
40 s. Inserting a delay greater than 1 s would therefore be unrealistic: we then choose to
vary the link bandwidth instead, since this has a far greater effect on the transmission
time.

5.2.2 Effect of the position of the mediator in the network

In the next experiment, we analyse how the position of the mediator in the edge-cloud
continuum influences the federated learning process.

65

Experimental evaluation

Experimental setup: symmetric network, non-IID data distribution

In this test, the workers settings are the same as the last experiment in the non-IID case
(refer to table 5.4, table 5.5). Figure 5.17 shows the network setup: the mediator-server
link bandwidths are varied at every run of the experiment (while they are also kept equal
to each other). Since we are interested in the effect of the mediator position with respect
to the server, we set the client-mediator links to the same value of 1 Mbps.

Figure 5.17. Network and computational conditions of a 6-client asynchronous non-IID simulation
setup: symmetric network, adjustable link-server link bandwidth.

Results

Figure 5.18 shows the accuracy and loss of the simulations run with the previously de-
scribed settings, with 6 different mediator-server link bandwidth values (ranging from 200
kbps to 40 Mbps). The result is unexpected: when the mediator-server link is high with
respect to the client-mediator links, the performances in terms of time-to-convergence are
very similar; however, the farther the mediator is from the server (when the mediator-
server link bandwidth becomes comparable with the client-mediator links), the longer the
model needs to converge. Also, the final accuracy of the low-bandwidth models is lower
than the other cases.

66

5.2 – Experimental evaluation

Figure 5.18. Accuracy and loss for the 10-client setup with symmetric network conditions and
non-IID data distribution.

5.2.3 Ack procedure and complete heterogeneous scenario

The last experiment involves the ack procedure described in section 3.2.3. Two different
tests are run: the first one with asymmetric client network conditions, the second one
with a complete scenario with both asymmetric network conditions and diverse client
computational capabilities.

Experimental setup 1: simulation with network delays

In the first stage of the experiment, we focus on the ack procedure effectiveness with
respect to the synchronous FL: in particular, we show the effect of the γ macro-parameter
on our framework. We run simulations with two different γ values (0.01 and 0.005) on
10 clients: table 5.6 and table 5.7 show the synchronous and asynchronous simulation
settings; clients have either 1 Mbps or 200 kbps of link bandwidth towards the first router
and 0.5 CPUs each (the setup is similar to the one described for previous experiments).

67

Experimental evaluation

Table 5.6. Server and clients settings for the complete scenario synchronous FL simulation with
network delays.

Server settings Clients settings
n.° clients 10 dataset MNIST

rounds 20 epochs 5
CPUs 1 CPUs 0.5

n.° selected clients per round 4

Table 5.7. Server, mediators and clients settings for the complete scenario asynchronous FL
simulation with network delays. The total number of clients is 10 (five clients for each mediator,
two mediators in total).

Server settings Mediators settings Clients settings
n.° mediators 2 n.° clients 5 dataset MNIST

rounds 20 n.° selected clients per round 2 epochs 5
CPUs 1 CPUs 1 CPUs 0.5

timeout [s] 90

Results

Figure 5.19 shows the accuracy and loss metrics for the asymmetric network conditions
setup: our framework was tested with two different γ. The setup where γ = 0.01 converges
to higher accuracy values in less time with respect to synchronous FL, while it has similar
performances in terms of loss; the peaks in the loss graph are due to the asynchronous
nature of the framework, which causes more or less updates to be aggregated within the
same round. Instead, the simulation where γ = 0.005 has similar accuracy behaviour to
the synchronous case, but far worse performances for what regards the loss: not only the
loss curve decreases slowly, but also the peaks due to the asymmetric rounds are more
noticeable than the case with γ = 0.01.

68

5.2 – Experimental evaluation

Figure 5.19. Accuracy and loss for the 10-client setup with symmetric network conditions and
non-IID data distribution.

Experimental setup 2: complete simulation with network delays and asym-
metrical computational capabilities

To evaluate our framework in a more realistic environment, we set up a complete scenario
with heterogeneity both in network conditions and in client computational capabilities.
We run training on 10 clients with either 1 Mbps or 200 kbps link bandwidth and with
a number of CPUs between 0.1 and 2, combining the two variables to obtain the most
diverse scenario. Also, considering the results of the previous test, for the ack procedure
we choose γ = 0.01 in this experiment. Table 5.8 and table 5.9 show the synchronous
and asynchronous settings; table 5.10 provides the chosen network and computational
variability conditions, valid for both frameworks.

Table 5.8. Server and clients settings for the complete scenario synchronous FL simulation with
network delays and uneven clients computational capabilities.

Server settings Clients settings
n.° clients 10 dataset MNIST

rounds 20 epochs 5
CPUs 1 CPUs between 0.1 and 2

n.° selected clients per round 4

69

Experimental evaluation

Table 5.9. Server, mediators and clients settings for the complete scenario asynchronous FL
simulation with network delays and uneven clients computational capabilities. The total number
of clients is 10 (five clients for each mediator, two mediators in total).

Server settings Mediators settings Clients settings
n.° mediators 2 n.° clients 5 dataset MNIST

rounds 20 n.° selected clients per round 2 epochs 5
CPUs 1 CPUs 1 CPUs between 0.1 and 2

timeout [s] 120

Table 5.10. Network and computational conditions of the 10 simulated clients in the complete
scenario: these settings provide the environmental heterogeneity. The setup is valid both for the
synchronous and the asynchronous simulations; in our double-layer framework, clients 1 to 5 are
assigned to mediator 1 and clients 6 to 10 are assigned to mediator 2.

Client n.° Link bandwidth CPUs
1 1 Mbps 2
2 1 Mbps 0.5
3 200 kbps 0.5
4 1 Mbps 1
5 200 kbps 0.1
6 200 kbps 0.1
7 200 kbps 2
8 200 kbps 1
9 1 Mbps 0.5
10 1 Mbps 0.1

Results

In fig. 5.20, the usual metrics of accuracy and loss are shown for the complete simulation
scenario. Our asynchronous framework needs less than 40 minutes to complete the 20-
epochs training (synchronous FL requires 130 minutes); it also converges to a higher
accuracy with respect to synchronous FL. Peaks in the loss function are due to the
asynchronous nature of the framework, as explained before. In synthesis, we can conclude
that our framework performs substantially better than synchronous FL in terms of time-
to-accuracy metric, provided that the macro-parameter γ is properly tuned.

70

5.2 – Experimental evaluation

Figure 5.20. Accuracy and loss for the 10-client setup with symmetric network conditions and
non-IID data distribution.

71

72

Chapter 6

Conclusion

Today need for efficiently performing machine learning tasks on multiple devices in a
heterogeneous scenario motivates the foundation of this thesis.

Chapter 1 introduced the distributed machine learning problem and the target sce-
nario, the IoT world, to provide a context for the real-world applications of this work.

In chapter 2, we reviewed the main solutions that have been proposed in literature
to move towards distributed machine learning, focusing in greater detail on federated
learning. We also describe the main FL papers that have been our starting point.

The design choices made in chapter 3 and implementation solutions devised in chap-
ter 4 can be summarised in three main point: an asynchronous aggregation strategy to
counteract the presence of straggler clients; a double-layer structure with an additional
intermediate aggregator (the mediator) to provide an extra layer of intelligence to the
process and to reduce the amount of data crossing the network; the ack procedure be-
tween clients and mediators with early-exiting to directly tackle the network delay impact
on a round.

In chapter 4, the Flower [3] library was modified to adapt the classic client-server
structure to our design and to obtain the mediator component. The customisable network
conditions were achieved through the OMNeT++/INET [4] [5] network emulator and the
control on the clients computational capabilities through Docker [2] containers.

We experimentally verified the quality of the proposed architecture step by step in
chapter 5: we firstly tested the asynchronous double-layer structure against the classical
synchronous FL and we discovered that the two frameworks have similar performances in
case of identical network conditions and computational capabilities; when network delays
come int play, however, our framework behaves better to stragglers than the asynchronous
one. Next, we verified the influence of the position of the mediator on the performances
of the framework. When the server-mediator link bandwidth is comparable with the
client-mediator bandwidth, the time-to-accuracy metric converges slowly, while when it
is higher the framework is more performant. Eventually, we tested the ack procedure in
a heterogeneous scenario adding both network and computational capability variability:
provided that the γ value is properly tuned, our complete framework outperforms the
synchronous one.

73

Conclusion

6.1 Future directions
Although the proposed framework modifies the FL structure by adding mediators between
clients and server, it is very easily adapted to existing techniques; with this design,
the framework is able to accommodate other aggregation strategies or client selection
algorithms; also, more sophisticated methods based on affinity and divergence from the
current model can be applied locally by the mediators or centrally by the server, to
discriminate between updates.

Thanks to the huge range of simulation tools offered by OMNeT++, the simulated
network could be improved or substituted by a more sophisticated one (e.g., a 4G net-
work could be simulated with SimuLTE, which runs on top of the OMNeT++/INET
framework); mobility can be added to the clients to add mobility to the environment.

Considering the modular nature of our system components, the testing of this frame-
work could be moved into a real environment by replacing the simulated network with
the broad internet and by substituting the Docker containers with IoT devices. Since it
is written in Python, the Flower platform also offers the possibility to develop code for
real-world devices; even if for simulation purposes we used a single machine to host all
the workers, the code could be adapted to be run on the Android operating system. This
operation would substitute the simulated network with a real cellular network.

74

Bibliography

[1] Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and
Liang Liang. Astraea: Self-balancing federated learning for improving classification
accuracy of mobile deep learning applications. In 2019 IEEE 37th international
conference on computer design (ICCD), pages 246–254. IEEE, 2019.

[2] Docker overview. https://docs.docker.com/get-started/overview/. Accessed:
2023-01-09.

[3] Flower documentation. https://flower.dev/docs/. Accessed: 2023-01-20.
[4] What is omnet++? https://omnetpp.org/intro/. Accessed: 2023-01-09.
[5] What is inet framework? https://inet.omnetpp.org/Introduction.html. Ac-

cessed: 2023-01-09.
[6] Ibm machine learning definition and main concepts. https://www.ibm.com/

topics/machine-learning. Accessed: 2023-01-21.
[7] Sawsan Abdulrahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad,

Chamseddine Talhi, and Mohsen Guizani. A survey on federated learning: The
journey from centralized to distributed on-site learning and beyond. IEEE Internet
of Things Journal, 8(7):5476–5497, 2021.

[8] Yoshitomo Matsubara and Marco Levorato. Split computing for complex object
detectors: Challenges and preliminary results. arXiv preprint arXiv:2007.13312,
2020.

[9] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing
and early exiting for deep learning applications: Survey and research challenges.
ACM Computing Surveys, 55(5):1–30, 2022.

[10] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 10(2):1–19, 2019.

[11] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and
H Vincent Poor. Federated learning for internet of things: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

[12] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn-
ing: Challenges, methods, and future directions. IEEE signal processing magazine,
37(3):50–60, 2020.

[13] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware distributed
parameter servers. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 463–478, 2017.

75

https://docs.docker.com/get-started/overview/
https://flower.dev/docs/
https://omnetpp.org/intro/
https://inet.omnetpp.org/Introduction.html
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning

Bibliography

[14] Georgios Damaskinos, Rachid Guerraoui, Anne-Marie Kermarrec, Vlad Nitu,
Rhicheek Patra, and Francois Taiani. Fleet: Online federated learning via staleness
awareness and performance prediction. ACM Transactions on Intelligent Systems
and Technology (TIST), 13(5):1–30, 2022.

[15] Ahmed M Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A Fahmy.
Resource-efficient federated learning. arXiv preprint arXiv:2111.01108, 2021.

[16] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali Anwar, Shashank
Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish Verma, Mathieu Sinn, et al.
Ibm federated learning: an enterprise framework white paper v0. 1. arXiv preprint
arXiv:2007.10987, 2020.

[17] Facebook federated learning simulator (flsim). https://github.com/
facebookresearch/FLSim/blob/main/README.md. Accessed: 2023-02-12.

[18] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf Chowdhury. Oort:
Efficient federated learning via guided participant selection. In OSDI, pages 19–35,
2021.

[19] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis.
Safa: A semi-asynchronous protocol for fast federated learning with low overhead.
IEEE Transactions on Computers, 70(5):655–668, 2020.

[20] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with
heterogeneous resources in mobile edge. In ICC 2019-2019 IEEE international con-
ference on communications (ICC), pages 1–7. IEEE, 2019.

[21] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[22] Tensorflow documentation. https://www.tensorflow.org/about. Accessed: 2023-
01-21.

[23] Keras documentation. https://keras.io/about/. Accessed: 2023-01-21.
[24] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pe-

dro PB de Gusmão, and Nicholas D Lane. Flower: A friendly federated learning
research framework. arXiv preprint arXiv:2007.14390, 2020.

[25] Flower github repository. https://github.com/adap/flower. Accessed: 2023-03-
20.

[26] veth(4) — linux manual page. https://man7.org/linux/man-pages/man4/veth.
4.html. Accessed: 2023-01-09.

[27] Portainer documentation. https://www.portainer.io/. Accessed: 2023-02-18.
[28] htop(1) — linux manual page. https://man7.org/linux/man-pages/man1/htop.

1.html. Accessed: 2023-02-10.
[29] Li Deng. The mnist database of handwritten digit images for machine learning

research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

76

https://github.com/facebookresearch/FLSim/blob/main/README.md
https://github.com/facebookresearch/FLSim/blob/main/README.md
https://www.tensorflow.org/about
https://keras.io/about/
https://github.com/adap/flower
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.portainer.io/
https://man7.org/linux/man-pages/man1/htop.1.html
https://man7.org/linux/man-pages/man1/htop.1.html

	List of Figures
	List of Tables
	Introduction
	Background: federated learning
	Introduction on machine learning
	Centralised machine learning
	Distributed on-site learning
	Split learning

	Federated learning: state-of-the-art
	Available resources and open problems
	Related works

	Framework model
	Network effect on federated learning
	Model description
	FedAvg strategy and client selection characteristics
	Introducing tolerance to stragglers: asyncFedAvg strategy
	A new player: the mediator
	Final model architecture

	System components
	Flower framework
	Framework modifications to the Flower implementation

	Integration (Docker)
	OMNeT++/INET frameworks
	OMNeT++
	INET
	Network setup

	Connecting the dots

	Experimental evaluation
	System validation
	Docker validation
	OMNeT++/INET validation

	Experimental evaluation
	Synchronous vs. asynchronous FL architectures
	Effect of the position of the mediator in the network
	Ack procedure and complete heterogeneous scenario

	Conclusion
	Future directions

	Bibliography

