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Abstract

The aim of this thesis is to offer a comprehensive guide for constructing the proposed
SOC, consisting of a traditional processor and a neuromorphic coprocessor. To achieve
this goal, I conducted a thorough analysis of the state-of-the-art PULP platforms and the
latest neuromorphic processors. Following this, I identified the most suitable candidates that
meet high standards of power and flexibility, ultimately selecting PULPissimo and Reckon,
interconnected through the uDMA module.

To verify the functionality of the proposed configuration, I conducted an initial test by
launching data from memory serially to Reckon, and subsequently validating the transmission
through uDMA with the PULP toolchain. The results of this test provided valuable insights
into how to simulate various modules using QuestaSim, and a detailed guide on how to
effectively operate the PULP platform.
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CHAPTER 1

Introduction

Neuromorphic computing is a relatively new field of study that combines the principles of
neuroscience with traditional computing in order to create a more efficient and powerful
computing systems miming the human brain with a neuron-synaptic model. This approach
to computing has the potential to achieve higher energy efficiency, faster processing speeds,
and greater adaptability to new situations, which could lead to breakthroughs in fields such
as robotics, artificial intelligence, and cognitive computing.

One of the key benefits of neuromorphic system is its potential for energy efficiency,
indeed the power consumption of this system is really low compared to traditional one that
are power-hungry and, doing so,will limit their potential for use in mobile and other battery-
powered devices. Neuromorphic systems, on the other hand, can be designed to operate on
very low power, allowing for more widespread deployment of intelligent systems in a variety
of settings.
In this context the aim of this thesis is to prepare the ground for placing neuromorphic
processors alongside to traditional processors. By moving in this direction we have the
opportunity to harness the power of neuromorphic computing along with the universality
and versatility of traditional systems. As a first approach we obviously need to see, for both
neuromorphic and traditional, which systems are most suitable for our purposes. Once they
have been selected the next step is to find a method of connecting and finally integrating
them. This preliminary research must be done through both software models and hardware
specifications.
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CHAPTER 2

Background

In this chapter, we will delve into a comprehensive exploration of traditional RISC-V and
neuromorphic processors, examining their current state of the art. Additionally, we will
analyze the potential communication bridges between these two types of processors. Finally,
we will compare and contrast the two and determine the optimal combination that achieves
both low power consumption and high versatility.

2.1 Neuromorphic architecture

2.2 Odin

Figure 2.1: Odin [1]

ODIN is a digital online-learning spiking neuromorphic processor published in 2019 . ODIN
is based on a single 256-neuron 64k-synapse crossbar neurosynaptic core [1]. The principal
feature that this architecture has is the possibility to configure the network as the user
prefer thanks to synaptic plasticity (SDSP) and the possibilities to individually reach out
and activate a specific neuron. ODIN was conceived to increase the density of neurons in
the silicon and to try to minimize the power consumption in comparison of other solutions
that was proposed in SNNs domain ,that could be seen on the table on 2.5. From the purely
neuron management point of view, Odin has an infrastructure called a 2d mesh topology
architecture, which is great for prototyping but energy-intensive.
In fact already other authors have identified that 2d mesh is a power hungry solution and
multiple authors have suggested to perform a replacement with a Mixed-mode hierarchical-
mesh routing architecture that would bring ODIN even closer to the goal of being a lightweight
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circuit [12]

Neuron Core

Each neuron is associated to a 128-bit word in the neuron memory, which contains its
parameters and state information that are stored in single-port SRAM, The most-significant
bit (MSB) of each word allows individually disabling neurons (1: disabled, 0: enabled).

The least-significant bit (LSB) of each word allows individually choosing the model for
each neuron.
These parameters are preloaded during the initial SPI configuration of ODIN. For setting
the various parameters ODIN uses an SPI interface to write on the SRAM.

Neurons can be individually configured as an 8-bit leaky integrate-and-fire (LIF) model
or as a custom phenomenological Izhikevich (IZH) neuron model, that allows for considerable
flexibility in which model you want to rely on. LIF and IZH neuron models were designed
to be entirely event-driven, so the activation Is done through the stimulation of neurons.//
Neurons can be stimulated in 7 different way:

• Single-synapse event: Two log N-bit addresses are provided: source neuron i and the
address of destination j. This event is handled similarly to an AER neuron spike event,
but only the neuron j of ODIN will be updated, together with a single SDSP weight
update to synapse i of neuron j. in other word the source do not change but the
destination does.

• Single-neuron time reference event:Activates a time reference event for neuron

• All-neurons time reference event: Activates a time reference event for all neurons.

• Single-neuron bistability event:Activates a bistability event for all synapses in the
dendritic tree of neuron

• All-neurons bistability event:Activates a bistability event for all synapses in the crossbar
array.

• Neuron spike event: stimulates all neurons with the synaptic weight associated to
pre-synaptic neuron

• Virtual event:Stimulates a specific neuron with weight without activating a physical
synapse

Synaptic Core

The synapses are charged with 8192 word sized on 32-bit in an SRAM memory. Each
synapse occupies 4 bits, so 8 synapses are accessed per word. The first MSB is used for
mapping table used to enable on-line learning on the synapses and the other three LSBs
are used to set the synaptic weight. The main role of this core is to connect the various
neurons to each other through 2d programmable mesh connections that allow the creation
of communication infrastructures prioritized with the respect to the established history of
connection frequency.
Through the manipulation of the weight with the synaptic SRAM.
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crossbar

Figure 2.2: crossbar [1]

Once we have described the neurons, which represent the computational engine, and once
we understand what synapses are, the next step is to describe the communicative bridges
between this two and understand how this two component are linked inside ODIN.
As can be seen from the figure 2.2.
The trigger that will activate the SNN is the arrivals of the AER packets direct to the
neurons network.
From the picture 2.2 it is possible to see how the controller plays a key role in the harmony
of the information distribution process through the crossbar.

Controller

To control the whole process ODIN uses a Moore’s FSM with 14 possible stages:

• W_NEUR: write on Neuron SRAM

• W_SYN: write on synapses’s memory

• R_NEUR: read on Neuron SRAM

• R_SYN: read on synapsis’s memory

• TREF : from Input AER interface is detected a time reference event

• BIST : from Input AER interface is detected a reference bistability

• SYNAPSE : from Input AER interface is detected a single synapse

• PUSH: AER event that should be handled onto the scheduler

• POP_NEUR: if scheduler have an event to be processed

• POP VIRT: if scheduler have an event to be processed, AER must be virtual event

• WAIT : wait that output AER interface is free for transmitting new data

• WAIT_SPIDN: SPI write parameters in SRAM memory it took 40 SPI clock cycles

• WAIT REQDN: ODIN receives an input from AER input interface and the IC have
to manage that.

• RST : Reset the system
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Scheduler

Figure 2.3: scheduler [1]

The scheduler structure is shown in 2.3 and can be thought as a priority-based FIFO. The
need of this component is related to the problem that ODIN is a system that works in parallel;
so, when we perform for example an output burst operation, it is necessary to develop a
buffer component that allows optimal scheduling to connect the processed information and
sequence it at the right time. In detail spiking and bursting neurons of ODIN send 14-bit
event packets to the scheduler. The packets contain:

• 8-bit address of the source neuron

• 3-bit field indicating the number of spikes to

• 3-bit field quantifying the ISI be generated

while all single-spike events are stored in the scheduler, if the ODIN would like to perform
a multi-spike events, the system will send the burst packet into a decoder. The role of the
decoder is to divide the burst into multiple single-spike events and spread among buffers
that have the role to send AER data sequentially to the output event. In the ODIN
documentation they describe this process with the FIG. 2.3 : In first place arrives a neuron
event packet and the packet, and it is divided if this packet is a single or multiple type.
Then Three single-spike events that will be generated by the burst packet decoder if the
packet is a multi packet toward FIFOs associated. The FIFO has a sequentially time steps
that starts from l+0 (will be processed immediately by the controller ) and will continue
until it reaches 56; Each Buffer unit keep 8-bit address of the source spiking neuron.

Simulation configuration

ODIN is an open source project, so is provided the verilog source that could be simulated
in a behavioral simulation whit any tool(Modelsim or Questasim).
For the implementation and the synthesis the behavioral SRAMs need to be replaced with
the Block RAM that it is used for FPGA implementations (as Vivado).

Specifications

the most important thing in systems is energy consumption:
P = P_leak + P_idle x f_clk + E_SOP
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• P_leak: leakage power without clock activity

• P_leak + P_idle x f_clk :power consumption of ODIN without any activity in the
network with clock

• E_SOP :includes the contributions of reading and updating the synaptic weight according
to the SDSP learning rule, reading and updating the associated neuron state, as well
as the controller and scheduler overheads, in other words the neuromorphic system.

With the measurement done directly to ODIN on the FPGA at 0.55 V with a P_leak of 27.3
uW and P_idle of 1.78 uW/MHz plus the energy of SOP OF 8.43 pJ, the overall measured
power of ODIN is 477 uW

Metric measured
Implementation Digital
Technology 28nm FDSOI
Neurosynaptic core area [mm 2 ] 0.086
Izhikevich behaviors 20
neurons per core 256
Synaptic weight storage 4 bit
Embedded online learning SDSP
synapses per core 64k
Time constant BIO
Neuron core density [neur/mm 2 ] 3.0k
Synapse core density [syn/mm 2 ] 741k
Supply voltage 0.55V 1.0V
interface SPI and AER
Leakage_power 27.3uW at 0.55V
Idle power 1.78uW/MHz at 0.55V
Total_power 477 uW
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2.3 ReckOn

Figure 2.4: ReckOn [2]

ReckOn is a spiking recurrent neural network (RNN) processor that is able to perform on-
line learning [2]. It was prototyped and measured in 28-nm FDSOI CMOS and published
at the 2022 and it has two main features:

• end-to-end on-chip learning in a milliseconds temporal resolution

• Low-cost solution and low memory usage

The Target of Reckon is to overcome the memory requirements problem that conventional
neural network training algorithms has. This Memory usage lead to power and cost problem.
Most of the architecture proposed use external SRAMs whit only one access point that
bring problems related to Von neumann bottlenecks to the processor and breaks down the
computational capabilities and turn down the ability to learn in short timescale.
To get this result Reckon drastically has reduced the memory requirements, power and area
budgets for tasks related to gesture recognition and navigation.

2.4 shows the system diagram and the architecture of ReckOn, which implements the
spiking RNN topology and computes the network dynamics in a time-stepped fashion thanks
FSM controller. The communication is interfaced by using an input AER produced by
asynchronous neuromorphic peripheral equipment with an 8-bit 4-phase-handshake AE
decoder.

Controller

To control the whole process ODIN uses a Moore’s FSM with 6 possible stages:

• IDLE: is the non-working state in which all outputs are to zero and ReckOn is waiting
for an internal or external signal.

• PROP : hidden neurons for learning are activated

• STEP: AER input writing state, neurons are updated according to the assigned
parameters

• SDONE : Input received, is forwarded to the process or output states

• CONFIG: Configuration of synaptic and neuronal parameters through the SPI port
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• EPROP:Activation of the Eprop algorithm for resolution

• SEND:output the result of the computation into the AER output port

Testing features

One of the most emerging advantages of this architecture is the ready-to-test datasets that
accompany this processor for demonstrating on-line learning. This demonstration hold
data contains two single 50-sample batches (one for training, one for test) of the delayed-
supervision navigation task, whose size and complexity are suitable for RTL simulations in
most common simulator.

Simulation configuration

Reckon is an open source project, so it is provided the verilog source that could be simulated
in a behavioral simulation whit any tool(Modelsim or Questasim).
For the implementation and the synthesis the behavioral SRAMs need to be replaced with
the Block RAM that it is used for FPGA implementations (as Vivado).

Specifications

Figure 2.5: Comparison table [2]

The table above allows you to see how compared to all the other developed architectures this
one is the most efficient and versatile. For all tasks the supply voltage can be scaled down to
0.5V, which allows a power budgets of 150uW. With a core area of 0.45 mm² with 138 Kbyte
of SRAM storage compared with other works without external memory nor pre-training it
is possible to see that this architecture has an energy values of 1.5-178nJ during learning
process at 0.5V.
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Metric measured
Implementation Digital
Technology 28nm FDSOI
Neurosynaptic core area [mm 2 ] 0.45
ODIN and Synaptic weight storage 8 bit
Embedded on-line learning EPROP
synapses per core 132k
Time constant BIO
Neuron core density [neur/mm 2 ] 0.57k
Synapse core density [syn/mm 2 ] 293k
Supply voltage 0.5V 1.0V
interface SPI and AER
Leakage_power 13uW at 0.55V
Idle power -
Total_power 150 uW

Specifications ReckOn
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2.4 RANC

Figure 2.6: RANC [3]

The configurable Architecture for neuromorphic Computing is an open source board able to
be deployed in several FPGA [3].
RANC mimes the behavior of biological neurons in the brain using spike model. The engine
architecture is based on 2D mesh network-on-chip composed of cores that have the same
structure: neuron block, core controller, core SRAM, packet router, and packet scheduler.
This structure allows to build a Network like behaviors that are implemented via the neuron
block that it is coupled, with a controller and an SRAM, that will support memory and
processing operation.
The output of the neurons are routed between neuron blocks thanks to routing network
via the packet scheduler. Should be noticed that no performance value has been provided
because this architecture it was used only in researching platform.

Neuron Block

The neuron block emulates a crossbar connected to the output, called neurons, and input,
called axon, that is able to emulate a synaptic connection.
The neurons weight are stored in a hardcoded index inside the SRAM. In the reset moment,
the neuron block, contains a basic datapath that will be updated for mimicking the voltage
characteristics of an LIF neuron model.

This model allows the board to put each input spike that a neuron receives on one of
its axons; This signal will be weighted with the current neuron potential that it is stored
in the SRAM. The main idea is that a neuron has a certain potential value that should be
exceeded for trigger an activation event.
Once this event occurs may appear a decay of potential if it is parameterized by the user in
the configuration phase.
At the end of its computation cycle the neuron’s final potential value will be written into
the SRAM core .

Core controller

The core controller applies a digital force to the neuron block datapath to coordinate memory
accesses and data transfers using FSM. The role of core controller is the continued iteration
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with the input axons to checking if the axon-neuron crossbar contains a neural connection
or not .
If, for example, connection is present, the weight associated with that axon is sent to the
neuron block datapath for accumulation into the neuron potential. Once all input spikes are
processed for a given neuron, the controller checks if this neuron has produced an output
spike. If it has, the controller sends a handshake signal to the router for enqueue spike to
target destination.

Core SRAM

It contains configuration of each neuron using a matrix which column has the number of
bits required to encode all parameters for a single neuron. All parameters for each neuron
(weights, connections, current potential, reset values, thresholds, leak value, destination of
generated spikes) are stored as a single word in the core SRAM. After the computation it
is done the potential value is updated and core SRAM is committed back to memory in a
single write.

Packet Router

The packet router is in charge to carry information to neurons destination to be used as an
axon input around the chip using XY algorithm.

Packet Scheduler

When a packet arrives to destination the role of core’s scheduler is scheduling. This process
is done using the decompression of upcoming packet in base of how long this input spike
should wait before being processed by the core and the destination axon. Both values are
used to point to an index pointer to an auxiliary memory that is used in as FIFO .

Simulation configuration

In order to stream data, RANC needs an FPGA with at least two arm cores.
For this reason was used the ZYNQ Ultra-Scale MPSOC using Xilinx Vivado 2018.2. For
exporting the hardware it was used Xilinx SDK. In other word all the project was based on
Xilinx’s platform
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2.5 SENeCA

Figure 2.7: SENeCA [4]

SENeCA it is the latest architecture that was released in 2022 and, declared as open source,
it will be uploaded freely really soon. Based on 64 Neuron Compute Cluster (NCC) that
contain a RISC-V core (Ibex), instruction and data memory, Axon Message Interface (AMI),
Network on Chip (NoC), Share Memory Pre-fetch Unit (SMPU), and several other units. [4]

Ibex core

RISC-V Ibex core is used as a controller for the NCC. 2-stage pipeline and uses the RV32IMC
instruction set.
As declared the choice of this unit was done due performance efficiency Flexible memory
allocation. this structure will be studied later in Pulp section.

Axon Massages Interface

AMI is a programmable accelerator that manages the events as filtering and control. AMI
has the power to send interrupts signal to the Ibex when there are enough events in the
input queue to be processed and there are no more processing space.

Shared Memory Pre-fetch Unit

SENeCA use hierarchy memory to be able to share memory between a few NCCs to be able
to go beyond the area limitations of SRAM for memory-intensive applications. Using shared
memory is optional and only required when the internal memories are insufficient to store
the application parameters, and at the same time, it is not feasible to tile more SENeCA
chips for the target application
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Neuron Co-Processor

Neural Co-Processor have the role to execute the primary neural operations emulating silicon
neurons by accelerating the most common neuromorphic instructions. This accelerator has
a Neuron Processing Elements which it is used for primary operation, and it has also a
small memory made from register files and a processing unit that executes a category of
most common neuromorphic instructions that can be executed one per clock cycle. Inside
this processor there is also the Event-Capture Unit, able to takes the input spike vector and
converts them to the form of Address Event Representation (AER)and a Loop Buffer used
to update several hundreds of neurons.

Network on Chip

To connect the NCCs and deliver the spike events SENECA has implemented a 2D matrix
with some features that supports multicasting on cluster and also supports variable-length
packets. Multicasting is implemented by using source-based addressing. In this method,
the packet contains the source address instead of the destination address in conventional
NoCs. This method avoids the need of building hierarchical structure. The multicasting
was done to reduce the amount of data communication over the NoC by for improving the
NoC performance

Simulation configuration

Figure 2.8: SDK architecture for SENeCA [4]

SENeCA will be Integrated with a specific SDK that will set up all the environment. Since
it is A 2022 architecture the SDK it is not already ready to be published. Regarding
the implementation seneca was implemented with a Xilinx Virtex-7 FPGA (XCVU35p, in
50MHz) that use 4 Block-RAM (instruction memory) and 8 Ultra-RAMs (data memory).
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2.6 Ariane

Figure 2.9: Ariane pipeline [5]

Ariane is a RISC-V architectures owned by PULP opensorce that is able to run Linux.
It is a 64 bits architecture with the ability to perform integer, IEEE compliant Floating
Point Unit and atomic memory operations. In terms of capability Ariane is able to perform
also multiplication and division operation.
Like all RISC5 processors, Ariane also has a staged structure as shown in the following
image. 2.9 The pipeline is divided through Frontend and Back-end :one is in charge to
receiving information from the SRAM and the other execute the instruction stream.

• PC Generation :This stage has the role to select the next Program Counter by
increment the previous one. From here there is an exception handler called Control
and Status Registers will be call when inside the pipeline there is some stall behaviors
as exception, debug interface or mispredicted branch

• Instruction Fetch translates the virtual address into the physical one to be trodden
from the instruction cache.
This stage is a pre-decode logic that has the power to guide the branch-prediction
by Address Translation and Cache pipelining. Address Translation is performed by
fetching from the previous stage the page-offset (12 LSB) and the virtual one (12 to
39 bit) that will load Introduction that are stored inside the cache. While Cache
pipelining is when cache’s data arrays is processed before being pre-decoded in the
next stage

• Instruction Decode:The aim of this stage is to re-aligns potentially unaligned instructions
with the use of a specific unit called re-aline and perform a decompression to decodes
them instruction in the right order that will be putted in an issue queue in issue stage
ready to be launched.

• Issue Stage: Issue stage has the role to read operands, in integer or float register, and
detect possible dependency conflicts. This is done with the Re-order Buffer (ROB)
and the scoreboard (Dependencies are tracked in the scoreboard and operands are
forwarded from the ROB if necessary)
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• Execute Stage: is where operation are performed, using ALU, multiplier/divider,
FPU and the load/store unit (LSU).if some instruction is not ables to be executed
Ariane uses a retired out-of-order buffer that will be loaded again in the execution
unit when Write-back conflicts are resolved through the ROB.

• Commit Stage:authorizes the result to be written to the SRAM or in the data cache,
Stores and atomic memory operations

Scoreboard

One of the most atypic structure is inside the Issue Stage : The scoreboard.
It is made with a first in and first out queue that are sourced with the decoded stage.
Instruction that are stopped by a stall operation, that will be required to be inserted in the
execution unit, will be placed in this component. Once the stall has been completed and
the preceding instructions have been committed, the scoreboard push in the execution unit
the delayed instruction.

Functional Units

Ariane contains six functional units that it is used to perform classic RISCV operation:

• ALU: Covers most of the RISC-V base ISA, including branch target calculation

• LSU: Manages integer and floating-point load/stores as well as atomic memory operations

• FPU: IEEE compliant floating-point

• Branch unit:extension to the ALU which handles branch prediction and branch
correction.

• CSR: atomic instruction processor

• Multiplier: fully pipelined two-stage multiplier.

• Divider: bit-serial divider with input preparation from 2 to 64 cycles

Hardware Control Interfaces

Figure 2.10: Ariane Hardware Control and general purposes Interfaces. [5]

One of the most important parts for this thesis is to evaluate which architecture has a more
suitable configuration for integrating an external interfaces. So it becomes clear that the
interfaces available for this architecture it is a discriminatory key.
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AXI

The core contains a single Advanced extensible Interface (AXI) with five-master port as well
as four interrupt sources from the slave unit.
The advanced extensible Interface is a parallel on-chip bus with multi-master and multi-slave
communication interface. It was chosen this one because AXI has Separate address/control
and data phases and because it is flexible. This protocol it is adopted by Xilinx as primary
communication bus for their products [13] and also for the ZYNQ model so it is a welcome
feature. In the figure 2.10 you can see the various interfaces and how Ariane could be
inserted in a SOC.

UART and SPI

For the communication from outside to inside, Ariane uses the classic serial communication
buses. when a certain sequence is intercepted on these input serial ports Ariane triggers a
handler routine to stall the process according to the operations that should be performed.
Note that this block can be used with a UART or SPI to configure the architecture.
To be more specific UART and SPI are both serial communication protocols; While UART
is a full-duplex protocol, which means it can send and receive data simultaneously, SPI is a
half-duplex protocol, which means it can only send or receive data at any given time.
UART is typically used for short-range communication between two devices, while SPI is
used for communication between multiple devices. UART requires two wires for communication,
while SPI requires four.
UART is generally used for transmitting data over short distances, while SPI is used for
transmitting data over longer distances.

Specifications

The specifications that we are going to fetch are come form the references paper [5]. As
pointed before Ariane can communicate in a SoC via a full-duplex 64-bit address AXI
interconnection and 16 kB of instruction cache data.
The SoC that was used it was developed with a small memory that contains 520 kB of
on-chip memory interfaced with several peripherals such as HyperRAM, SPI, UART, and
I2C.
Regarding the power Ariane is able to produce 192 mW in 22nm FDSOI

Simulation configuration

The simulation of Ariane it is possible to do with verilator and also Questa Sim. For the
FPGA emulation it is used Vivado 2018.2 with Xilinx Genesys 2. For debug and program the
FPGA it is done using OpenOCD interfaced and attached to the FTDI 2232 USB-to-serial
chip on the Genesys 2 board.
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2.7 Pulpino

Figure 2.11: Pulpino pipeline

The PULPino is a single-core System on Chip developed by the Integrated Systems Laboratory
(IIS) of ETH Zürich and Energy-efficient Embedded Systems (EEES) of the University of
Bologna. At the top is possible to see the block diagram of the PULPino [15].
the core communicates directly with the memories through the on-chip bus AXI4, this
architecture based on three masters: core, IP SPI Slave and the IP Advanced Debug Unit.
while the other memories are accessed as a AXI slave as GPIOs, UART, I2C and SPI. In
the top figure is also possible to see that inside the peripheral there is a JTAG input;
The advanced debug unit AXI’S master interface allows to perform the debug operation of
the system from outside, but the most important feature is that any interface could be used
for this target as SPI or any other interface. In terms of memories is possible to see that
there are a BOOT ROM, instruction RAM, and memories RAM.

GPIO, UART, I2C

GPIO

The PULPino input, output and general purpose peripheral (GPIO) has nine 32-bit registers
that are useful to perform operation outside the PULPino Board . In those nine the most
Notable are the PADDIR, PADIN and PADOUT registers: The first controls the data
direction of each of the GPIO pins, the second is used for the input pins and the last one for
the output pin. using this register it is possible to connect this board to an external board,
here below the GPIO interface

Signal Direction Description
gpio_in[31:0] input Transmit Data
gpio_out[31:0] output Receive Data
gpio_dir[31:0] output Request to Send
gpio_padcfg[5:0][31:0] output Pad Configuration
interrupt output Interrupt (Rise or Fall or Level)

GPIO Signals
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UART

Another important feature that PULPino has is the serial interface UART with this signal,
below there is the table with the UART interface:

Signal Direction Description

uart_tx output Transmit Data
uart_rx input Receive Data
uart_rts output Request to Send
uart_cts input Clear to send
uart_dtr output Data Terminal Ready
uart_dsr input Data Set Ready

External UART Signals

I2C

I2C is an open-drain signaling protoco, that mean that high logic values are obtained by
using a pull-up resistor in the SDA and SCL lines.Table below shows the I2C signals interface.

Signal Direction Description

scl_pad_i input SCL Input
scl_pad_o output SCL Output (always 0)
scl_padoen_o output SCL Pad Direction
sda_pad_i input SDA Input
sda_pad_o output SDA Output (always 0)
sda_padoen_o output SDA Pad Direction
interrupt_o output Event/Interrupt

I2C Signals

core

Figure 2.12: Ariane pipeline

ZERO-RISCY

This core was an upgrade from RI5CY,and is more light because provides only 2 stage.
This choice was taken because the SOC’s need a small and low latency ISA architectures.
The reduction of the stages from fives DLX to 4 of RI5CY and at the end with ZERO-RISCY
at 2 means that in comparison with a ancient DLX, 100 instruction with no dependency are
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processed in 500 clk cycle for DLX, 400 clk for RI5CY (20% clock cycles saved), 200 clk for
ZERO-RISCY (60% clock cycles saved).

PULPino supports both the RISC-V RI5CY and the RISC-V zero-riscy ISA because
both have The same external interface, but the inner is different. The difference between
this two is only in the operation that actually they can perform. RI5CY has more internal
fragmentation with the separate multiplication and division unit, while the zero-riscy has a
more compact architecture by combining the DIV/MUL unit in the same functional block.
below some detail

RI5CY

The architecture RI5CY is a 4 stage pipeline structure that is able to perform integer and
floating point operation.
Another important feature that RI5CY brings is the Interrupts routines,Exceptions, and the
management of events that allow the core to go in IDLE set when the core is not called to
perform an operation

Simulation configuration

The toolchain is ModelSim with a versions greater of 10.2c for simulation proposes. PULPino
can be synthesized and deployed on a ZedBoard from the Xilinx, so the synthesis software
is Vivado.
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2.8 Pulpissimo

Figure 2.13: PULPissimo

PULPissimo is a 32 bit RI5CY single-core System-on-a-Chip.
Differently from the PULPino, PULPissimo is able to perform more complex memory
manipulation and organization and it has an autonomous I/O subsystem and new peripherals.
Having inherited the structure directly from its predecessor, this platform also can be
configured at design stage to use the RISC-V or zero-riscy core. Regarding the peripherals
those are connected to the uDMA that is in charge to transfers the date to the memory
subsystem in a more efficient and clever way.

As PULPino also here we have the JTAG and the the AXI interface to access to the
SOC propriety. Also the debug unit is present and it is used to access to system and core
registers, memories and memory-mapped IO via JTAG. In particular, in the focus of this
thesis we can see that the presence of the AXI on-bus interface can be used to extend the
PULPino with a co-multi-core cluster or an accelerator.

FLL

The frequency-locked loop is a compensator circuit that has the main task to compare the
actual frequency of an oscillator and intervene in such way that the frequencies will be
adjusted to a certain reference that the FLL has stored in a register.
In other words the frequencies automatically raises or lowers with in input the oscillator
until the output of FLL matched the reference. PULPissimo contains 3 FLL that are used
for generating the correct clock.

• FLL that is act in the peripheral domain

• FLL that is employed to the core domain ( core, memories, event unit)

• FLL that is employed in the the cluster domain

But is important to understand that FLL is only a feature that could be used because all the
three FLLs can be bypassed by adding an external clock that take control over this domain.
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µDMA Autonomous I/O Subsystem

The µDMA is a special peripheral bus that is able to have two ports that are linked to
memory area. Those direct connections limit the µDMA to access only the system memory
and do not allow direct transfers to the processing subsystem or to other peripheral mapped
on the APB bus.
The ports towards the memory are 32-bit wide while the single channel interface toward the
peripherals may have smaller widths from 8 to 32 bits due peripheral configuration.

The data transfer on TX and RX channels are completely decoupled and not synchronized,
this is done to allow to reads and writes data at the same time with no conflict.

In this structure the master’s channels will transfer data to/from the memory. At the
end of each transaction µDMA generates a dedicated event to notify that is possible to queue
another transaction.
When it is happens each channel can have only one transaction running and one enqueued;
the last one will be automatically started at the end of the running transaction to support
continuous data flow based on a double buffering scheme.

HWPE

Figure 2.14: Hardware Processing Engines

The presence of a hardware accelerator inside this system is to be taken into account precisely
because the coprocessor that we are going to implement serves exactly for this purpose, even
if the structure is no longer digital, but the presence of this component, HWPE, accentuates
the fact that this system is more suitable because is able to manage a neural network
hardware oriented information system.
The architecture of HWPE is divided in three stages: the first one that start the execution
of an accelerations process is a control phase that main role to handshake the activation
signal that it comes from the APB peripheral bus and, this phase, will set up all the initial
parameters. when the control phase is finished it start the ENGINE phase that have the
role to execute the operation of accelerations of Neural network.
The last phase is the Data stream, is like an write back where all the data that was produced
in the ENGINE phase will be available in the Tightly Coupled Data Memory Interconnect,
and then in the memory unit.

Peripherals list

FLL, APB GPIO, Event Controller, Interrupt Controller, APB Timer, uDMA ( IIC,SPI,UART,CAMIF,I2S,
AXI).
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Simulation configuration

The toolchain is based on Questasim exclusively for RTL base and for the simulation on
higher level is need only Pulp-sdk. PULPissimo has been implemented on FPGA for the
various Xilinx FPGA boards as Digilent Genesys2, Xilinx ZCU104, Xilinx ZCU102, Xilinx
VCU108, Digilent Nexys Board Family and ZedBoard

B
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2.9 CORE-V X-Interface

Figure 2.15: CORE-V-xif

RISC-V eXtension interface is a generalized framework suitable to extend ISA of a RISC-V
Processor offloading instructions using the not used ISA and writeback the results in the
same Bus that the processor is lied [14]. In the documentation available it is possible to
se that a processor is extended whit a coprocessor for reducing the task that the main
processor have to do and delegate the work to this last; in particular this extensor was
used for Bit Manipulation, Integer Multiplication and Division, Single-Precision or Double-
Precision Floating Point or implement custom extensions(what we’re interested in). All this
operation it is done outside the processor using the memory inusage, in that way it is possible
to avoid to modify the processor itself, in other words extending instructions without the
need to change the RTL using opcodes which are not used by the processor ISA adding
Custom instructions that will be performed by The coprocessor as load/store or ALU .

The most important feature that this extension has it is possible to resume as follow:

• Minimal requirements on extension instruction encoding.

• Support for dual writeback instructions (optional, based on X_DUALWRITE).

• Support for dual read instructions (per source operand) (optional, based on X_DUALREAD).

• Support for ternary operations.(three source operands.)

• Support for instruction speculation.

Interfaces

We generally refer to a type x interface only as the one that connects the processor to the
CORE-V X-Interface. while we will talk about c interface all others

X-intf

The X-Interface defines in total of four independent channels of communication between
the accelerator adapter and the offloading processor core. The X-Request and X-Response
channels s and and

• X-Request: route instruction offloading request

• X-Response: writeback responses FROM accelerator

• XMem-Request: memory transaction requests
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• XMem-Response:memory transaction responses

This four channel are subject to working in this four handshake :

- The offloading core asserts an ‘valid‘ status in the decode stage and initialized a
transaction.

- ‘ q_instr_data ‘ must remain stable.

- check if no pending writeback in the destination register.

- Asserts a ‘q_ready‘if the instruction is accepted by any of the connected pre decoders

- The instruction is not accepted by any of the connected pre decoders.

- When both ‘q_valid‘ and ‘q_ready‘ are high, the transaction is successful

C-intf

The C-Interface implements signal routing from and to the accelerator units whit four
independent channels for communication between the accelerator adapter and the accelerator
units:

• C-Request: route instruction offloading

• C-Response: writeback responses

• CMem-Request: memory transaction requests

• CMem-Response:memory transaction responses

This four channel are subject to working in this four handshake :

- The initiator asserts an ‘valid‘ status.

- Once ‘valid‘ has been asserted all data must remain stable.

- The receiver asserts ‘ready‘ whenever it is ready to receive the transaction. Asserting
‘ready‘ by default is allowed. While ‘valid‘ is low, ‘ready‘ may be retracted at any
time.

- When both ‘valid‘ and ‘ready‘ are high the transaction is successful.

Accelerator adapter

The accelerator adapter module implements accelerator-agnostic instruction offloading from
the CPU core to the accelerator interconnect. The core-side connection implements the
instruction offloading using X-interface while the connection through accelerator is performed
by the C-interface. The adapter module operates in conjunction with an array of accelerator-
specific This module is the first interface whit the Core 0, and it is really versatile for the most
common ISA architecture (32,64,128) and also if it is supported dual-writeback instructions
and ternary operations to be offloaded in the external engine.

Accelerator interconnect

The accelerator interconnect module implements the interconnect connection on each level
and the interconnect hierarchy. It comprises a crossbar for routing requests and responses
from a generic number of requesting units as well as a bypass-path to forward requests from
and to a higher hierarchy level.
All in and output ports implement the C-interface.
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Specifics on CORE-V X-Interface

at the theoretical level this interface allows to build a system that can rely on more coprocessors
and thus decrease considerably more the rendering time and performance, in the practical
act, instead many parts of the open-source code was deleted by the authors probably because
they wished to effect a more recent release that however was never done, so this interface
will not be able to be used
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2.10 Hardware Processing Engines

Figure 2.16: Template of a Hardware Processing Engine (HWPE)

Hardware Processing Engines (HWPEs) are special-purpose, memory-coupled accelerators
that can be inserted in the SoC or cluster of a PULP system to amplify its performance and
energy efficiency in particular tasks. the HWPE is support multicore and do not rely on
DMA architecture but operate directly on the same memory that is shared by other elements
in the PULP system whit a limited number of pointer and parameters. The HWPE is a
stream of entity’s that pass towards memory system, a control/peripheral interface used
for programming it and an engine containing the actual datapath of the accelerator. So it
possible to imagine that solution like an 3 stage out processor component.

HWPE-Stream protocol

Figure 2.17: HWPE-Stream protocol [6]

The HWPE-Stream protocol is a simple protocol designed to move data between the various
sub-components of an HWPE. As HWPEs are memory-based accelerators, streams are
typically generated and consumed internally within the accelerator between fully synchronous
devices. HWPE-Stream can cross between two clock domains using dual-clock FIFOs;
handshakes still have to happen in a fully synchronous way. There is the need of only
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4 channels, two for handshakes and 2 for payloads. This protocol could be summarized in
these steps

• valid and ready are asserted

• data and strb can change their value when valid is de asserted or the cycle following
a handshake

HWPE-Mem

Figure 2.18: HWPE-Stream protocol [6]

HWPEs are the protocol that are connected to external L1/L2 shared-memory, using a
request/grant handshake.
The protocol used is called HWPE Memory (HWPE-Mem) protocol, and it is essentially
similar to the protocol used by cores and DMAs operating on memories in standard PULP
clusters. It supports neither multiple outstanding transactions nor bursts, as HWPEs using
this protocol are assumed to be closely coupled to memories.
It uses a two signal channel handshake and carries two phases, a request and a response.
The HWPE-Mem protocol is used to connect a master to a slave. For summarize the total
number of channel is 8. This protocol could be summarized in these steps

• req and gnt are asserted

• r_valid must be asserted in the cycle after a valid read handshake.

• r_data must be valid on the same cycle

• transition complete

HCI-Core

HCI-Core (Heterogeneous Cluster Interconnect Core) is a protocol designed as a light weight
extension of HWPE-Mem better suited for the needs of accelerators, and specifically of
cluster-coupled HWPEs. This novel interface protocol support bursts,and in-order multiple
outstanding transactions.
Differently from HWPE-Mem, HCI-Core uses a two signal handshake but also includes an
load signal to support load back pressure on the response phase.
HCI-Core carries two phases, a request and a response,p arithmetic width; hci_parameters
reports the parameters used by the HCI IPs; while hci_signals. In this protocol the
two phases of HCI-Core transactions can be treated as two separate channels, so HCI-
Core transactions can be latency insensitive and support multiple in-order outstanding
transactions Request and response phases are organized to be treated like HWPE-Stream
streams. But this protocol it is suitable for clusters architecture
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Controller

This component it is the most important one and inside it is possible to see that there is an
FSM, a memory-mapped register file to store parameters that should not change and and
parameters for base addresses for each type of data and a microcode processor that support
write and read registers and also other registers to save parameters

Engine

the motor entity is a generic component that has to be programmed by us, in our case it
could be seen as the co-processor so the motor is simply the operational offloading unit and
this can be of any type, so also neuromorphic

2.11 Design choices

After all the parts that will make up our SOC have been analyzed at a high level, now it is
time to choose the best combination of these elements to achieve a configuration that comes
closest to our goal, obviously the parameters of choice will be functional and specific to each
architecture presented.

RISCV

The decision about which platform to choose to use analyzed several criteria, also taking
into consideration the goals that we want to archive.
the candidates are Ariane,PULPino and PULPissimo.

The main criterion is to choose a processor that is lightweight but also powerful that can
accommodate neuromorphic solutions and easy extensibility for offloading. Ariane presents
an excessively classical architecture with an AXI-based communication protocol. If we were
to choose this processor we will have the limitation that our processor fits the axi architecture
leading to a bottleneck. So the choice falls between PULPino and PULPissimo. should we
choose PULPino we will have a higher degree of abstraction through the APB protocol . The
obvious solution is PULPissimo precisely because it has a higher versatility and orientation
to neural networks than previous Of course, integration can be done in two ways: through
the DMA as a common peripheral or, as we will probably do, through replacing the HWPE
by including the neuromorphic processor as an engine. In this way we do not have the
need to change the risk architecture since the coprocessor itself becomes part of the Risc
architecture, since it is treated as such

Intra-processor interface

now that the choice has fallen on PULPissimo the next step is to choose how to integrate
the processor and coprocessor, the choice obviously falls on HWPE precisely because,being
the only complete and working one anyway, it also has the role of being the protocol that is
used in PULPissimo

Neuromorphic coprocessor

In this section we are going to compare the two architectures that was just seen: Odin
and ReckOn. the reason for that is because this architecture are a stabile and well-know,
neuromorphic oriented architecture while Seneca and Ranc are too new for to be considered.
the benchmarks will only be qualitative by checking in particular the computing power .

From the point of view of documentation it can be said that ODIN is clearly superior,
this is because the purpose of that research was to create a first working prototype so the
documentation that was produced is exhaustive and complete, on the other hand RECKON
has poor documentation and also the code is poorly commentated.
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This leads to a greater difficulty. On the other hand, from the point of view of the technology
used, the two processors use the same base, this means that, since the RECKON area is
half of ODIN’S one and the lower consumption of RECKON, cit is possible to get at the
conclusion that an ODIN is approximately two RECKONs but a RECKON can perform the
same operations as an ODIN with a net lower time and power.
Aside for documentation an similarly RECKON wins on all other parameters : less area,
less power, enhanced synapse programming from 4 to 8 bits, innovative algorithm to handle
neuronal operations, this is why RECKON is our neuromorphic Coprocessor.

Metric ODIN ReckOn
Implementation Digital Digital
Technology 28nm FDSOI 28nm FDSOI
Neurosynaptic core area [mm 2 ] 0.086 0.45
Izhikevich behaviors 20 -
neurons per core 256 256
Synaptic weight storage 4 bit 8 bit
Embedded online learning SDSP EPROP
synapses per core 64k 132k
Time constant BIO BIO
Neuron core density [neur/mm 2 ] 3.0k 0.57k
Synapse core density [syn/mm 2 ] 741k 293k
Supply voltage 0.5V 1.0V 0.5V 1.0V
interface SPI and AER SPI and AER
Leakage_power 27.3uW at 0.5V 13uW at 0.5V
Idle power 1.78uW/MHz at 0.55V -
Total_power 477 uW 150 uW

Specifications ODIN and ReckOn

Proposed SOC architecture

We decide to structuring the system on chip whit PULPissim as RISCV, the ReckOn as
Neuromorphic coprocessor and the HWPE as intra-processor interface

Figure 2.19: SOC Implementation [7]



CHAPTER 3

Materials and method

In this chapter, we will embark on a journey of discovery, exploration, and experimentation.
Our focus will be on testing and demonstrating the choices we have made so far. By doing
so, we hope to gain a deeper understanding of the world of pulp and its many derivations.

Our first task will be to explore the world of pulp and its various forms. This will involve
carrying out tests that will show us how it works and what its properties are. We will look
at different types of pulp, such as mechanical pulp, chemical pulp, and recycled pulp, and
examine their characteristics, strengths, and weaknesses.

Through these tests, we will gain a better understanding of the properties of pulp and
how they can be leveraged to create different products. We will also explore how pulp can
be processed to create different forms, such as paper, cardboard, and packaging materials.

Next, we will turn our attention to the rekon test. This test will help us to assess the
performance of our chosen communication platform, HWPE. We will examine the features
and capabilities of HWPE and evaluate its effectiveness in meeting our needs.

Once we have completed our study of HWPE, we will propose integration solutions that
will allow us to integrate the platform with our existing systems. We will evaluate these
solutions based on their effectiveness, feasibility, and cost, and select the one that best meets
our requirements.

In summary, this chapter will be a comprehensive exploration of the world of pulp and
its many derivatives. We will carry out tests, study communication platforms, propose
integration solutions, and ultimately make informed choices that will enable us to achieve
our goals. We are excited to embark on this journey and look forward to the insights and
knowledge we will gain along the way.

34
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3.1 PULP Simulation

Figure 3.1: PULP Software Environment [8]

The next step it is done to familiarize with the pulp platform using a virtual board simulator
that allows you to perform accurate simulations of the behavior that we will expect. This
operation is achieved through a SDK that pulp has constituted based on several SDK
platform, the most important are the one developed entirely by Pulp,one by GreenWaves-
Technologies as GVSoC, and others . i will guide the reader through all the steps First, before
proceeding, I will report the specifications of linux that PULP’s we have used: Ubuntu 20.04
LTS.

1 D i s t r i bu t o r ID : Ubuntu
2 Desc r ip t i on : Ubuntu 18 . 0 4 . 5 LTS
3 Release : 18 .04
4 Codename : b i on i c

in fig3.1 it is possible to see the software structure of pulp SDK,at the end of all this
step it is possible to see our target that we are going to activate : GVSoc.

installation

This process it is really long if you follow the official guide, be aware that the documentation
on PULP-SDK it is written really bad and, if you want to try over there will appeared a
lot errors due G++ and Gcc problems. At first time i’ve installed thought the use of the
official guide in ubuntu 16.04 , 18.04 and finally In 20.04 but in any case, once i’ve tried to
install everything correctly step by step, there are some internal compiler error as depicted
here below:

1 CXX s r c / t r a c e / l x t 2 . cpp
2 g++: i n t e r n a l compi le r e r r o r : K i l l e d ( program cc1p lus )
3 Please submit a f u l l bug report ,
4 with preproce s s ed source i f appropr ia t e .
5 See < f i l e :/// usr / share /doc/gcc−7/README. Bugs> for i n s t r u c t i o n s .
6 Make f i l e : 5 9 : r e c i p e for t a r g e t ’ /home/pulp/opt/ r i s c v /pulp−sdk/ bu i ld / gvsoc /

engine /vp . o ’ f a i l e d
7 make [ 2 ] : ∗∗∗ [ / home/pulp/opt/ r i s c v /pulp−sdk/ bu i ld / gvsoc / eng ine /vp . o ] Error 4
8 make [ 2 ] : ∗∗∗ Waiting for un f i n i sh ed jobs . . . .
9 make [ 2 ] : Leaving d i r e c t o r y ’ /home/pulp/opt/ r i s c v /pulp−sdk/ t o o l s / gvsoc /common/

engine ’
10 Make f i l e : 2 4 : r e c i p e for t a r g e t ’ bu i ld ’ f a i l e d
11 make [ 1 ] : ∗∗∗ [ bu i ld ] Error 2
12 make [ 1 ] : Leaving d i r e c t o r y ’ /home/pulp/opt/ r i s c v /pulp−sdk/ t o o l s / gvsoc /common ’
13 make [ 1 ] : Enter ing d i r e c t o r y ’ /home/pulp/opt/ r i s c v /pulp−sdk/ t o o l s / gvsoc /pulp/

models ’
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14 CXX pulp/ f l l / f l l_c t r l_ imp l . cpp
15 make [ 1 ] : ∗∗∗ No ru l e to make ta r g e t ’ /home/pulp/opt/ r i s c v /pulp−sdk/ i n s t a l l /

workstat ion / l i b / l ibpu lpvp . so ’ , needed by ’ /home/pulp/opt/ r i s c v /pulp−sdk/
bu i ld / gvsoc /models /pulp/ f l l / f l l_c t r l_ imp l . so ’ . Stop .

16 make [ 1 ] : Leaving d i r e c t o r y ’ /home/pulp/opt/ r i s c v /pulp−sdk/ t o o l s / gvsoc /pulp/
models ’

17 r u l e s / gvsoc .mk: 2 9 : r e c i p e for t a r g e t ’ gvsoc . bu i ld ’ f a i l e d
18 make : ∗∗∗ [ gvsoc . bu i ld ] Error 2

This is done because there are some bug in gpp and gcc dependency. The correct way to
setup all the environment is to follow this steps: The first step is to install some package
prerequisites for SDK and the toolchain. Among the most important ones appear gtkwave,
useful to graph the results of the query to pulp, pip from Python3 ,that we will need to
install modules later, and doxygen, that it is a standard tool for generating documentation
from annotated C++ sources and other popular programming languages.

1 $ sudo apt−get i n s t a l l −y bui ld−e s s e n t i a l g i t l i b f t d i −dev l i b f t d i 1
2 doxygen python3−pip l i b s d l 2 −dev cu r l cmake l ibusb −1.0−0−dev
3 scons gtkwave l i b s n d f i l e 1 −dev rsync autoconf automake t e x i n f o l i b t o o l
4 pkg−c on f i g l i b s d l 2 −t t f−dev
5
6 $ sudo apt−get i n s t a l l autotoo l s−dev cu r l libmpc−dev l ibmpfr−dev
7 libgmp−dev gawk bui ld−e s s e n t i a l b i son f l e x t e x i n f o gpe r f p a t c hu t i l s bc

z l ib1g−dev

The SDK also requires the argcomplete, Python’s extensible command line for managing
bash and shell, and ,and pyelftools a library for parsing and analyzing ELF files and DWARF
debugging information

1 $ pip i n s t a l l −−user argcomplete p y e l f t o o l s

In the next step it is required to install the basic toolchain that have the role to be
a RISC-V and C++ cross-compiler supporting generic ELF/Newlib toolchain and a more
sophisticated Linux-ELF/glibc toolchain compiler. opening a new terminal in the home it
is possile to start

1 $ pwd
2 /home/ jonathan
3 $ g i t c l one https : // github . com/pulp−plat form/pulp−sdk . g i t
4 $ wget https : // i i s −nextc loud . ee . ethz . ch/ s /aYESyR5W9FrHgYa/download/ r i s cv−nn−

t oo l cha in . z ip
5 $ unzip r i s cv−nn−t oo l cha in

once the two software are avaliable the next move, that is not neccesary but it is
comfortable, it is To rename the two folder one as pulp-sdk and the riscv-nn-toolchain as
pulp-riscv-gnu-toolchain. now we are ready to run our Hello word. IT IS IMPORTANT
That in the next environmental context that the latest directory point in the folder that
there is the BIN directory of the pulp-riscv-gnu-toolchain.
rembeber also the initial backslach at the beggining,in my case like that.
also important is that in sudo mode all the previous settings are lost, so you have to redone.

1 $ pwd
2 /home/ jonathan
3 $ cd pulp−sdk
4 $ export PULP_RISCV_GCC_TOOLCHAIN=/home/ jonathan /pulp−r i s cv−gnu−t oo l cha in
5 $ source c on f i g s /pulp−open . sh
6 $ make a l l
7 [ . . . ]
8 make [ 2 ] : u s c i t a da l l a d i r e c t o r y <</home/ jonathan /pulp−sdk/ t o o l s / gvsoc /

common/models>>
9 make −C models bu i ld ARCHI_DIR= −j 4

10 make [ 2 ] : i n g r e s s o n e l l a d i r e c t o r y <</home/ jonathan /pulp−sdk/ t o o l s / gvsoc /
common/models>>

11 f i nd /home/ jonathan /pulp−sdk/ i n s t a l l / workstat ion /python −type d −exec touch
{}/__init__ . py \ ;
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12 make [ 2 ] : u s c i t a da l l a d i r e c t o r y <</home/ jonathan /pulp−sdk/ t o o l s / gvsoc /
common/models>>

13 make [ 1 ] : u s c i t a da l l a d i r e c t o r y <</home/ jonathan /pulp−sdk/ t o o l s / gvsoc /
common>>

14 make [ 1 ] : i n g r e s s o n e l l a d i r e c t o r y <</home/ jonathan /pulp−sdk/ t o o l s / gvsoc /
pulp/models>>

15 f i nd /home/ jonathan /pulp−sdk/ i n s t a l l / workstat ion /python −type d −exec touch
{}/__init__ . py \ ;

16 make [ 1 ] : u s c i t a da l l a d i r e c t o r y <</home/ jonathan /pulp−sdk/ t o o l s / gvsoc /pulp/
models>>

if the compilation was successful with the make log as in the upper code then you can
proceed ahead in this way.
Next let’s invoke the hello world :

1 $ pwd
2 /home/ jonathan /pulp−sdk
3 $ cd t e s t s / h e l l o /
4 $ make c l ean a l l run

once you send the last command the output will appear:

1 RM /home/ jonathan /pulp−sdk/ t e s t s / h e l l o /BUILD/PULP/GCC_RISCV/
2 CC test . c
3 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / f l l −v1 . c
4 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / f req−domains . c
5 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /pulp/ ke rne l / ch ips /pulp/ soc . c
6 CC /home/ jonathan /pulp−sdk/ r t o s /pmsis /pmsis_bsp/ f s / read_fs / read_fs . c
7 CC /home/ jonathan /pulp−sdk/ r t o s /pmsis /pmsis_bsp/ f s / host_fs / semihost . c
8 CC /home/ jonathan /pulp−sdk/ r t o s /pmsis /pmsis_bsp/ f s / host_fs / host_fs . c
9 CC /home/ jonathan /pulp−sdk/ r t o s /pmsis /pmsis_bsp/ f s / f s . c

10 CC /home/ jonathan /pulp−sdk/ r t o s /pmsis /pmsis_bsp/bsp/pulp . c
11 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ l i b / l i b c /minimal/ i o . c
12 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ l i b / l i b c /minimal/ f p r i n t f . c
13 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ l i b / l i b c /minimal/ p r f . c
14 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ l i b / l i b c /minimal/ s p r i n t f . c
15 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ l i b / l i b c /minimal/ semiho . c
16 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / i n i t . c
17 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / ke rne l . c
18 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / dev i c e . c
19 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / task . c
20 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / a l l o c . c
21 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / a l l oc_poo l . c
22 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / i r q . c
23 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / soc_event . c
24 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / l og . c
25 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / time . c
26 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /pulp/ d r i v e r s / uart /uart−v1 . c
27 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /pulp/ d r i v e r s /udma/udma−v3 . c
28 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /pulp/ d r i v e r s / c l u s t e r / c l u s t e r . c
29 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / c r t0 . S
30 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / irq_asm . S
31 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l /task_asm . S
32 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l /time_asm . S
33 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /common/ ke rne l / soc_event_v2_itc . S
34 CC /home/ jonathan /pulp−sdk/ r t o s / pulpos /pulp/ d r i v e r s / c l u s t e r /pe−eu−v3 . S
35 LD /home/ jonathan /pulp−sdk/ t e s t s / h e l l o /BUILD/PULP/GCC_RISCV// test / test
36 gapy −−t a r g e t=pulp −−plat form=gvsoc −−work−d i r=/home/ jonathan /pulp−sdk/ t e s t s

/ h e l l o /BUILD/PULP/GCC_RISCV/ −−con f i g−opt=c l u s t e r /nb_pe=8 run −−image
−−binary=/home/ jonathan /pulp−sdk/ t e s t s / h e l l o /BUILD/PULP/GCC_RISCV// test

/ test
37 gapy −−t a r g e t=pulp −−plat form=gvsoc −−work−d i r=/home/ jonathan /pulp−sdk/ t e s t s

/ h e l l o /BUILD/PULP/GCC_RISCV/ −−con f i g−opt=c l u s t e r /nb_pe=8 run −−f l a s h
−−binary=/home/ jonathan /pulp−sdk/ t e s t s / h e l l o /BUILD/PULP/GCC_RISCV// test

/ test
38 gapy −−t a r g e t=pulp −−plat form=gvsoc −−work−d i r=/home/ jonathan /pulp−sdk/ t e s t s

/ h e l l o /BUILD/PULP/GCC_RISCV/ −−con f i g−opt=c l u s t e r /nb_pe=8 run −−exec−
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prepare −−exec −−binary=/home/ jonathan /pulp−sdk/ t e s t s / h e l l o /BUILD/PULP/
GCC_RISCV// test / test

39 He l lo from FC

I voluntarily included the log precisely because from the logs you can see all the internal
systems of our pulp-open with their interfaces and internal components, the final result will
be Hello from FC

Hello world cluster

now that we have the demonstration that it works the next step is to call the pulp cluster,

Figure 3.2: Pulp cluster Architecture [9]

1 cd /home/ jonathan /pulp−sdk/ t e s t s / h e l l o /
2 make c l ean a l l run

Now that the project has been compiled we can check what it does the previous process was
based on the same architecture in the figure below only with pulpissimo as a reference. in
the next step we are going to call the cluster with this command. this command re-specifies
the same considerations made for pulp hello, so just send the command in sucession to the
previous section here below the code of the hello word cluster:

1 /∗
2 ∗ Copyright (C) 2017 ETH Zurich , Un ive r s i t y o f Bologna and GreenWaves

Technolog ies
3 ∗ A l l r i g h t s re served .
4 ∗
5 ∗ This so f tware may be modi f ied and d i s t r i b u t e d under the terms
6 ∗ o f the BSD l i c e n s e . See the LICENSE f i l e f o r d e t a i l s .
7 ∗
8 ∗ Authors : Germain Haugou , ETH ( germain . haugou@iis . ee . e t h z . ch )
9 ∗/

10
11 #inc lude "pmsis . h"
12
13
14 #i f de f ined (CLUSTER)
15 void pe_entry (void ∗ arg )
16 {
17 p r i n t f ( " He l lo from c lu s t e r_ id : %d , core_id : %d\n" , p i_c luster_id ( ) ,

pi_core_id ( ) ) ;
18 }
19
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20 void c lu s t e r_ent ry (void ∗ arg )
21 {
22 pi_cl_team_fork ( (NUM_CORES) , pe_entry , 0) ;
23 }
24 #end i f
25
26 stat ic int test_entry ( )
27 {
28 #i f de f ined (CLUSTER)
29 struct pi_device c luster_dev ;
30 struct pi_cluster_conf c l_conf ;
31 struct pi_cluster_task cl_task ;
32
33 p i_c lus te r_conf_in i t (&cl_conf ) ;
34 pi_open_from_conf(&cluster_dev , &cl_conf ) ;
35 i f ( pi_cluster_open(&cluster_dev ) )
36 {
37 return −1;
38 }
39
40 pi_cluster_send_task_to_cl(&cluster_dev , p i_c luster_task(&cl_task ,

c luster_entry , NULL) ) ;
41
42 p i_c lu s t e r_c lo s e (&cluster_dev ) ;
43 #end i f
44 #i f ! d e f i n ed (CLUSTER)
45 p r i n t f ( " He l lo from FC\n" ) ;
46 #end i f
47
48 return 0 ;
49 }
50
51
52
53 int main ( )
54 {
55 return pmsis_kicko f f ( ( void ∗) t e s t_k i c ko f f ) ;
56 }

The first include it is used for include all the runtime basic functions and libraries and
architecture definition and other parameter that will be usefoul for set pulp correctly, this file
it is in ./rtos/pulpos/common/ folder of Pulp-sdk. Since this is made for cluster architecture
the ETH have insert an if definition that will be activated only if the target is an cluster. this
allows to query to each riscv element to process in parallel way thanks the callable function
void pe_entry that will print the core_id and in which cluster this is called, the rest of the
Code it is used to set up all the parameters. For compile and run this instruction we need
to declare the number of cluster and the relative cores. In this example we are going to use
only 1 cluster with 8 RISCV processors, and we’re doing so if we launch this command:

1 make c l ean a l l run USE_CLUSTER=1 NUM_CORES=8

and the relative output is printed below:

1 h e l l o from c lu s t e r_ id : 0 , core_id : 2
2 h e l l o from c lu s t e r_ id : 0 , core_id : 0
3 h e l l o from c lu s t e r_ id : 0 , core_id : 3
4 h e l l o from c lu s t e r_ id : 0 , core_id : 4
5 h e l l o from c lu s t e r_ id : 0 , core_id : 6
6 h e l l o from c lu s t e r_ id : 0 , core_id : 1
7 h e l l o from c lu s t e r_ id : 0 , core_id : 5
8 h e l l o from c lu s t e r_ id : 0 , core_id : 7

Now with the following command it is possible to estract the dissasembled in a .s file

1 $ make d i s > test . s
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Multiplication

The next operation is to try a simple vector multiplication and see in how many clock cycle
the PUlp-open will complete the task.
Here below the structure.

Figure 3.3: Pulp Vector multiplication [9]

Here below i will plot the code for vectors multiplication,

1 #include "pmsis . h"
2 #include " s t a t s . h"
3 #define N 128
4
5 // g l o b a l v a r i a b l e s
6 int A[N ] ;
7 int B[N ] ;
8 int tempC [N ] ;
9

10 // matrix f unc t i ons
11 void task_initMat ( )
12 {
13 for ( int i =0; i<N; i++){
14 A[ i ] = i ;
15 B[ i ] = i ;
16 }
17 }
18
19 void task_VectProdScalar ( int scalarA , int∗ matB , int ∗ matC , int dim)
20 {
21 for ( int i =0; i<dim ; i++){
22 matC [ i ] = sca larA ∗ matB [ i ] ;
23 }
24 }
25
26 void print_matrix ( int ∗ mat , int dim)
27 {
28 for ( int i =0; i<dim ; i++){
29 for ( int j =0; j<dim ; j++){
30 p r i n t f ( "%02d " , mat [ i ∗dim+j ] ) ;
31 }
32 p r i n t f ( "\n" ) ;
33 }
34 }
35
36 int main ( )
37 {
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38 // i n i t i a l i z e matrix operands
39 task_initMat ( ) ;
40
41 #ifdef PRINT_MATRIX
42 p r i n t f ( "\n\nThis i s the Matrix A\n" ) ;
43 print_matrix (A, N) ;
44 p r i n t f ( "\n\nThis i s the Matrix B\n" ) ;
45 print_matrix (B, N) ;
46 #endif
47 #ifndef STATS
48 // i n i t i a l i z e performance counters
49 pi_perf_conf (
50 1 << PI_PERF_CYCLES |
51 1 << PI_PERF_INSTR
52 ) ;
53
54 // measure s t a t i s t i c s on matrix opera t ions
55 pi_per f_reset ( ) ;
56 pi_per f_start ( ) ;
57 #else
58 INIT_STATS( ) ;
59
60 PRE_START_STATS( ) ;
61 START_STATS( ) ;
62 #endif
63
64 for ( int i =0; i<N; i++){
65 task_VectProdScalar (A[ i ] , B, tempC , N) ;
66 }
67
68 #ifndef STATS
69 pi_perf_stop ( ) ;
70 uint32_t inst r_cnt = pi_perf_read (PI_PERF_INSTR) ;
71 uint32_t cyc les_cnt = pi_perf_read (PI_PERF_CYCLES) ;
72
73 p r i n t f ( "Number o f I n s t r u c t i o n s : %d\nClock Cycles : %d\nCPI : %f%f \n" ,
74 instr_cnt , cycles_cnt , ( f loat ) cyc les_cnt / inst r_cnt ) ;
75 #else
76 STOP_STATS( ) ;
77 #endif
78 }

In this code it is possible to see the simple vector application. on the first part there is
the filling of the vector with some number with the init function as:

1 for ( int i =0; i<N; i++){
2 A[ i ] = i ;
3 B[ i ] = i ;
4 }

then we will start to multiply with this operation:

1 for ( int i =0; i<dim ; i++){
2 matC [ i ] = sca larA ∗ matB [ i ] ;
3 }

once we build we can see that in pulp open a total of 49812 instuction it is performed in
82582 for a 128 to 128 vector multiplication with a Clock Cycles per instruction by to 2.

1 Number o f I n s t r u c t i o n s : 49812
2 Clock Cycles : 82582
3 CPI : 1 .6578740 .000000

DORY

Now that we have seen how these processors are used the next step is to perform a more
complex test. What we are going to develop is a part of a certain memory allocation path
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for vision applications. The aim is to point to a three memory hierarchy for tiling of weights
and activations of nodes The operation of DORY is organized in three steps, performed
offline before network deployment of NEMO. First, the ONNX receives as input a QNN
graph using the Open Neural Network Exchange (ONNX format).
Then as second step the layer run a tiling loop with data movement.
Third the network parser merges information from the whole network to memory buffer.

Figure 3.4: PULP Dory flow [10]

As is possible to see on figure the process is divided in there stages:

• NEMO: used for build neural network from a specific dataset (as images)

• DORY: used to deploy the DNN data in memory bank

• PULP-NN: the implementation in sw-hw

in this demonstration we are going to reading of the ONNX output that comes from
NEMO process,perform a Layer-by-Layer tiling,Layer template compilation and at least
Network compilation.

ONNX Decode and control

The first operation performed by DORY is decoding the input from Nemo that are a an
already quantized DNN.
After the data it is fetched Dory process perform a reallocation in a set of layers. Layer
it is defined as a sequence of operations performed by distinct ONNX graph nodes. Every
layer contain a Linear pooling operation, optional Batch-Normalization operation and a
Quantization/Activation operation, all of this layer use quantized inputs, outputs, and
weight for processing data.
After a convolutional operation there are some Graph parsing operation with standard
operation. After the convolutional node it is established it is analyzing and, if it is recognized
as batch mode it is merged back on the conv. step otherwise it will append as new child.
After this first step we will generate list of propriety that each node have:

• Layer name

• Convolutional and linear parameters

• Linear Batchnorm

• Status of operation performed

• Network topology parameters
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Layer tilling

The next step it is to look inside each node that was described before and generate a memory
requirement. if the memory space it is enough it do not perform the tilling, if is not enough
but handable it is performed tilling and if it is too big it will send on external memory. after
the data it is minimized

load in hardware

The next step is the implementation, as before in the SDK we have this example of Dory.
Once everything it is set as before we can call the SDK function as this

1 $ cd pulp−sdk
2 $ export PULP_RISCV_GCC_TOOLCHAIN=/home/ jonathan /pulp−r i s cv−gnu−t oo l cha in
3 $ source c on f i g s /pulp−open . sh
4 $ make a l l
5 $ cd MobileNetV1/
6 $ make c l ean a l l run
7 L3 Buf f e r a l l o c i n i t i a l @ 3388608: Ok
8
9 L3 Buf f e r a l l o c i n i t i a l @ 2388608: Ok

10
11 L3 Buf f e r a l l o c i n i t i a l @ 1388608: Ok
12 Layer 0 : Checksum = 120996 , FLASH 120996 , Check OK
13 Layer 1 : Checksum = 53504 , FLASH 53504 , Check OK
14 Layer 2 : Checksum = 303730 , FLASH 303730 , Check OK
15 Layer 3 : Checksum = 117611 , FLASH 117611 , Check OK
16 Layer 4 : Checksum = 1103930 , FLASH 1103930 , Check OK
17 Layer 5 : Checksum = 234609 , FLASH 234609 , Check OK
18 Layer 6 : Checksum = 2236755 , FLASH 2236755 , Check OK
19 Layer 7 : Checksum = 204746 , FLASH 204746 , Check OK
20 Layer 8 : Checksum = 4266224 , FLASH 4266224 , Check OK
21 Layer 9 : Checksum = 524077 , FLASH 524077 , Check OK
22 Layer 10 : Checksum = 8552435 , FLASH 8552435 , Check OK
23 Layer 11 : Checksum = 451595 , FLASH 451595 , Check OK
24 Layer 12 : Checksum = 17038175 , FLASH 17038175 , Check OK
25 Layer 13 : Checksum = 1057921 , FLASH 1057921 , Check OK
26 Layer 14 : Checksum = 33824230 , FLASH 33824230 , Check OK
27 Layer 15 : Checksum = 986273 , FLASH 986273 , Check OK
28 Layer 16 : Checksum = 34152523 , FLASH 34152523 , Check OK
29 Layer 17 : Checksum = 945904 , FLASH 945904 , Check OK
30 Layer 18 : Checksum = 28531734 , FLASH 28531734 , Check OK
31 Layer 19 : Checksum = 981254 , FLASH 981254 , Check OK
32 Layer 20 : Checksum = 27547438 , FLASH 27547438 , Check OK
33 Layer 21 : Checksum = 950986 , FLASH 950986 , Check OK
34 Layer 22 : Checksum = 27160429 , FLASH 27160429 , Check OK
35 Layer 23 : Checksum = 899062 , FLASH 899062 , Check OK
36 Layer 24 : Checksum = 70825648 , FLASH 70825648 , Check OK
37 Layer 25 : Checksum = 2086584 , FLASH 2086584 , Check OK
38 Layer 26 : Checksum = 98869725 , FLASH 98869725 , Check OK
39 Layer 28 : Checksum = 130510192 , FLASH 130510192 , Check OK
40
41 L2 Buf f e r a l l o c a t e d i n i t i a l @ 0x1c021c38 : Ok
42 L1 Buf f e r a l l o c a t e d i n i t i a l @ 0x10006420 : Ok
43
44 Checksum in/out Layer : Ok
45 Layer 0 ended
46 Checksum in/out Layer : Ok
47 Checksum in/out Layer : Ok
48 [ . . . ]
49 [ 0 ] : num_cycles : 123309034
50 [ 0 ] : MACs: 186400768
51 [ 0 ] : MAC/ cyc l e : 1 .511655
52 [ 0 ] : n . o f Cores : 1

This result it is applied to different buffer information that it is contained in 28 layer.
Each layer it is similar to others but what change,of course, is the data but the template
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produced by pytorch it is the same.
Here i will report only the layer 0 as example, it is possible to see all the parameter that
was extracted.

1 sdk pulp_sdk
2 dma_para l l e l i za t i on 8−co r e s
3 opt ional_type 8 b i t
4 func_name layerConvBNRelu0
5 flag_DW 0
6 opt i ona l conv
7 FLAG_BATCHNORM 1
8 has_bias 0
9 FLAG_RELU 1

10 t e s t_ lo ca t i on L3
11 type char
12 nof 32
13 f a c t o r 1
14 g 1
15 n i f 3
16 conv_overlap1 1
17 conv_overlap2 1
18 padding_top 1
19 padding_bottom 1
20 padding_le f t 1
21 padding_right 1
22 s t r i d e 2
23 x_h 128
24 x_w 128
25 x_data_size_byte 8
26 x_t i l e_s i ze_ni f 3
27 x_ti le_size_h 97
28 x_tile_size_w 17
29 x_ti le_size_byte 4947
30 x_ti le_size_ni f_byte 3
31 x_stride_w_byte 384
32 x_stride_c_byte 3
33 y_h 64
34 y_w 64
35 y_data_size_byte 8
36 act_dim_bit 32
37 y_ti le_size_nof 32
38 y_ti le_size_h 48
39 y_tile_size_w 8
40 y_ti le_size_byte 12288
41 y_stride_w_byte 2048
42 y_stride_c_byte 32
43 y_ti le_size_nof_byte 32
44 tile_dim_h 2
45 tile_dim_w 8
46 tile_dim_nof 1
47 t i le_dim_nif 1
48 f s 1 3
49 f s 2 3
50 W_data_size_byte 8
51 W_tile_size_nof 32
52 b_size_byte 32
53 W_tile_size_nif 3
54 W_tile_size_byte 864
55 W_stride_nof_byte 27
56 W_stride_hw_byte 3
57 W_tile_nif_byte 3
58 l2_off_k 864
59 l2_off_lambda 992
60 k_ti le_size_byte 256
61 lambda_tile_size_byte 256
62 k_size_byte 128
63 lambda_size_byte 128
64 k_t i l e_s ize_byte_trans fe r 128
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65 lambda_ti le_size_byte_transfer 128
66 l1_x_of f set 0
67 l1_y_of f set 9898
68 l1_W_offset 34478
69 l1_k_of f set 36210
70 l1_lambda_offset 36470
71 x_t i l e_s i z e_n i f_ la s t 3
72 x_ti le_s ize_ni f_byte_last 3
73 x_ti le_size_h_last 33
74 x_ti le_size_w_last 17
75 W_tile_size_nof_last 32
76 W_tile_size_nif_last 3
77 W_tile_size_nif_byte_last 3
78 y_ti l e_s ize_nof_last 32
79 y_ti le_size_h_last 16
80 y_ti le_size_w_last 8
81 y_length_nof_byte_last 32

cheat sheet

1 $ cd pulp−sdk
2 $ export PULP_RISCV_GCC_TOOLCHAIN=/home/ jonathan /pulp−r i s cv−gnu−t oo l cha in
3 $ source c on f i g s /pulp−open . sh
4 $ make c l ean a l l run

3.2 Reckon implementation

Figure 3.5: Reckon

Inside this section we are going to discuss the simulation and implementation of the reckon
as an standalone core. At the first part we are going to deal with the RTL simulation done
with Questasim. After the simulation will go as expected we are going to move In physical
implementation to end in the deployment.
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Overall view

Figure 3.6: SNN

The overall HDL description it is organized in two modules: the first one is the SPI port,
that is in charge to connect the outside word with the accelerator for programming target;
The second is the neuromorphic core and have the role to be the engine for SNN resolution
processor.

The aim of the Reckon is to train and use a SNN to implement a pattern recognition
inside hardware. The outside word it is modeled using the AER protocol indeed, the testing’s
input called interference, are sent through the ReckOn using this protocol while the output
are managed as a digital label. The inner structure of this coprocessor is the neural spiking
network that is composed of different internal layer that have several fans in and fan out to
configure the

correct behavior as could be seen in the figure above. The most important feature is the
SPI that have the principal role to be a milestone for configuration proposes.

SPI

Figure 3.7: 32-bit SPI timing diagram for (a) write and (b) read operations. [9]

Between the many protocols available in the IC world one that has been massively adopted
for communication between microcontrollers and external peripherals is SPI (Serial Peripheral
Interface).
The SPI protocol is a serial protocol that allows bi-directional synchronous transmission
using master and slave channels. This protocol requires a master to control the clock and a
slave to validate the correct receiving of a datum .
One of the bigger strength of SPI are the bidirectional way: the master can send or receive
information from the slaves, but it will decide who sends and who receives among them.
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In Reckon it is possible to see that this architecture it is need to configure the inner registers
on the SRAM on chip to update correctly datum and weight for the network.
The slave configuration, based on 32 bit, it works in a precise sequence: in the first stage the
Master send through MoSi the address that he want to write and, after the address phase
, he will send the data on the same wire of 32 bit wise. For reading the procedure is the
same but the output of the address request it is sent on the MiSo wire. In the testing file
the sending process it is built inside a sending task where it is possible to see that working
method:

1 task automatic spi_send (
2 input l o g i c [ 3 1 : 0 ] addr ,
3 input l o g i c [ 3 1 : 0 ] data ,
4 input l o g i c MISO, // not used
5 r e f l o g i c MOSI,
6 r e f l o g i c SCK
7 ) ;
8 i n t e g e r i ;
9

10 for ( i =0; i <32; i=i +1) begin
11 MOSI = addr [31− i ] ;
12 wait_ns ( ‘SCK_HALF_PERIOD) ;
13 SCK = 1 ’ b1 ;
14 wait_ns ( ‘SCK_HALF_PERIOD) ;
15 SCK = 1 ’ b0 ;
16 end
17 for ( i =0; i <32; i=i +1) begin
18 MOSI = data [31− i ] ;
19 wait_ns ( ‘SCK_HALF_PERIOD) ;
20 SCK = 1 ’ b1 ;
21 wait_ns ( ‘SCK_HALF_PERIOD) ;
22 SCK = 1 ’ b0 ;
23 end
24 endtask

If we wan to take as example that we want to perform an write operation in the address
0.1.0.8 (IPv4 notation), in the testbench it is possible to access to this address using the
previews task:

1 \\ with the value o f ze ro $ ( SPI\_RST\_MODE = 0x00 ) $ :
2 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d8 }) ,
3 . data ( ‘SPI_RST_MODE) , .MISO(MISO) ,
4 .MOSI(MOSI) , .SCK(SCK)
5 ) ;

programming the parameters

Once the description of the SPI it is closed we can focus now on the next phase: The
programming phase of the ReckOn’s neural network:

1 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d0 }) , . data (1
2 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d1 }) , . data ( ‘SPI_RO_STAGE_SEL
3 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d2 }) , . data ( ‘SPI_GET_CLKINT_OUT
4 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d8 }) , . data ( ‘SPI_RST_MODE
5 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d9 }) , . data ( ‘SPI_DO_EPROP
6 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d10 }) , . data ( ‘SPI_LOCAL_TICK
7 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d11 }) , . data ( ‘SPI_ERROR_HALT
8 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d12 }) , . data ( ‘SPI_FP_LOC_WINP
9 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d13 }) , . data ( ‘SPI_FP_LOC_WREC

10 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d14 }) , . data ( ‘SPI_FP_LOC_WOUT
11 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d15 }) , . data ( ‘SPI_FP_LOC_TINP
12 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d16 }) , . data ( ‘SPI_FP_LOC_TREC
13 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d17 }) , . data ( ‘SPI_FP_LOC_TOUT
14 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d18 }) , . data ( ‘SPI_LEARN_SIG_SCALE
15 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d19 }) , . data ( ‘SPI_REGUL_MODE
16 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d20 }) , . data ( ‘SPI_REGUL_W
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17 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d21 }) , . data ( ‘SPI_EN_STOCH_ROUND
18 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d22 }) , . data ( ‘SPI_SRAM_SPEEDMODE
19 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d23 }) , . data ( ‘SPI_TIMING_MODE
20 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d25 }) , . data ( ‘SPI_REGRESSION
21 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d26 }) , . data ( ‘SPI_SINGLE_LABEL
22 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d27 }) , . data ( ‘SPI_NO_OUT_ACT
23 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d30 }) , . data ( ‘SPI_SEND_PER_TIMESTEP
24 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d31 }) , . data ( ‘SPI_SEND_LABEL_ONLY
25 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d32 }) , . data ( ‘SPI_NOISE_EN
26 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d33 }) , . data ( ‘SPI_FORCE_TRACES
27 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d64 }) , . data ( ‘SPI_CYCLES_PER_TICK
28 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d69 }) , . data ( ‘SPI_KAPPA
29 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d70 }) , . data ( ‘SPI_THR_H_0
30 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d74 }) , . data ( ‘SPI_H_0
31 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d79 }) , . data ( ‘SPI_LR_R_WINP
32 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d80 }) , . data ( ‘SPI_LR_P_WINP
33 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d81 }) , . data ( ‘SPI_LR_R_WREC
34 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d82 }) , . data ( ‘SPI_LR_P_WREC
35 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d83 }) , . data ( ‘SPI_LR_R_WOUT
36 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d84 }) , . data ( ‘SPI_LR_P_WOUT
37 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d85 }) , . data ( ‘SPI_SEED_INP
38 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d86 }) , . data ( ‘SPI_SEED_REC
39 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d87 }) , . data ( ‘SPI_SEED_OUT
40 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d88 }) , . data ( ‘SPI_SEED_STRND_NEUR
41 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d89 }) , . data ( ‘SPI_SEED_STRND_ONEUR
42 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d90 }) , . data ( ‘SPI_SEED_STRND_TINP
43 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d91 }) , . data ( ‘SPI_SEED_STRND_TREC
44 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d92 }) , . data ( ‘SPI_SEED_STRND_TOUT
45 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d94 }) , . data ( ‘SPI_NUM_INP_NEUR
46 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d95 }) , . data ( ‘SPI_NUM_REC_NEUR
47 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d96 }) , . data ( ‘SPI_NUM_OUT_NEUR
48 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d98 }) , . data ( ‘SPI_REGUL_F0
49 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d99 }) , . data ( ‘SPI_REGUL_K_INP_R
50 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d100 }) , . data ( ‘SPI_REGUL_K_INP_P
51 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d101 }) , . data ( ‘SPI_REGUL_K_REC_R
52 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d102 }) , . data ( ‘SPI_REGUL_K_REC_P
53 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d103 }) , . data ( ‘SPI_REGUL_K_MUL
54 spi_send ( . addr ({1 ’ b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d104 }) , . data ( ‘SPI_NOISE_STR

To be clear here below we’re report the documentation explanation what we have done
in the last configuration. Reader should be aware that this configuration it is made only
for a specific case and for other type of configuration it is need more work on the data
parameterization.

• SPI_EN_CONF : Enables access to the network internal state through SPI and ensures the control FSM
goes into a safe state to do so, which will be signalled through the SPI_RDY pin.

• SPI_RO_STAGE_SEL : Selects the stage of the ring-oscillator-based local clock generator (not used in
the released HDL code as technology-specific blocks, incl. clock gen and frequency divider, were removed).

• SPI_GET_CLKINT_OUT : Enables a frequency-divided copy of the locally generated clock to be displayed
on the SPI MISO pin for monitoring purposes (not used in the released HDL code as technology-specific
blocks, incl. clock gen and frequency divider, were removed).

• SPI_GET_TAR_REQ_OUT : Enables the target request signal to be displayed on the MISO pin.

• SPI_RST_MODE : Selects the spike reset mode of LIF neurons (1: reset to zero, 0: reset by subtraction).

• SPI_DO_EPROP : Enables e-prop updates (bit 0: input weight updates, bit 1: recurrent weight updates,
bit 2: output weight updates). Input/recurrent/output weights can be independently configured in any
plastic/frozen configuration.

• SPI_LOCAL_TICK : Enables local generation of timestep ticks (see SPI_CYCLES_PER_TICK for the
timestep duration). If configured to 0, timestep ticks are provided externally through the TIME_TICK pin.

• SPI_ERROR_HALT : Enables halting the network operation if a timing error takes place (i.e. a timestep
tick occurred before the global FSM finished processing the current timestep) for debugging purposes. A
network reset will be necessary.

• SPI_FP_LOC_WINP : Input weight scaling parameter. The stored 8-bit input weights are sign-extended
to 16 bits and left-shifted by the value of SPI_FP_LOC_WINP before being added to the neuron membrane
potentials.



49

• SPI_FP_LOC_WREC : Recurrent weight scaling parameter. The stored 8-bit recurrent weights are sign-
extended to 16 bits and left-shifted by the value of SPI_FP_LOC_WREC before being added to the neuron
membrane potentials.

• SPI_FP_LOC_WOUT : Output weight scaling parameter. The stored 8-bit output weights are sign-
extended to 16 bits and left-shifted by the value of SPI_FP_LOC_WOUT before being added to the
neuron membrane potentials.

• SPI_FP_LOC_TINP : Radix point location of input traces (left-shifted by the value of SPI_FP_LOC_TINP).

• SPI_FP_LOC_TREC : Radix point location of recurrent traces (left-shifted by the value of SPI_FP_LOC_TREC).

• SPI_FP_LOC_TOUT : Radix point location of output traces (left-shifted by the value of SPI_FP_LOC_TOUT).

• SPI_LEARN_SIG_SCALE : Learning signals scaling parameter, which are left-shifted by the value of
SPI_LEARN_SIG_SCALE.

• SPI_REGUL_MODE : Selects the weight regularization mode (bit 0: multiplicative regularization, bit 1:
additive regularization). If bit 2 is asserted, regularization is enabled during all timesteps, not only when
the TARGET_VALID pin is asserted (for use only with additive regularization).

• SPI_REGUL_W : Enables weight regularization (bit 0: input weights, bit 1: recurrent weights). Input/recurrent
weights can be independently configured in any regularized/non-regularized configuration.

• SPI_EN_STOCH_ROUND : Enables stochastic rounding in the eligibility traces and neuron membrane
potentials.

• SPI_SRAM_SPEEDMODE : Configuration of the SRAM macro speed modes (not used in the released
HDL code as technology-specific blocks were removed).

• SPI_REGRESSION : Should be programmed to 1 for regression tasks and 0 for classification tasks.

• SPI_SINGLE_LABEL : Should be programmed to 1 for classification tasks in order to provide the classification
label only once per sample, instead of at every timestep.

• SPI_NO_OUT_ACT : Disables the hard-sigmoid non-linearity applied to the membrane potential of output
neurons. SPI_SEND_PER_TIMESTEP Enables sending the network output (format conditioned by
SPI_SEND_LABEL_ONLY) at every timestep instead of once at the end of the sample. Typically for
use in regression tasks.

• SPI_SEND_LABEL_ONLY : Configures the network output contents sent over the output bus (1: winning
neuron label, 0: membrane potential values of all enabled output neurons). Typically configured to 1 for
classification tasks and 0 for regression tasks.

• SPI_NOISE_EN : Enables the addition of random noise to membrane potential updates of LIF neurons
(noise magnitude configured with SPI_NOISE_STR).

• SPI_FORCE_TRACES : Forces eligibility trace computation even if e-prop updates are disabled (for
monitoring purposes).

• SPI_CYCLES_PER_TICK :Number of clock cycles per locally generated timestep tick (used only if
SPI_LOCAL_TICK is enabled).

• SPI_ALPHA_CONF : Each bit of SPI_ALPHA_CONF selects the 4 MSBs of the 16-bit leakage decay
factors alpha associated to every pair of two LIF neurons, which consist of a single-bit integer part and a
15-bit fractional part (1: the integer part bit is 1 and the three MSBs of the fractional part are 3’b000, 0:
the integer part bit is 0 and the three MSBs of the fractional part are 3’b111). The 12 LSBs of alpha’s for
every pair of two LIF neurons are defined in the neuron memory.

• SPI_KAPPA : Defines the value of the 8-bit leakage factor kappa shared among all output LI neurons,
which consists of a single-bit integer part and a 7-bit fractional part.

• SPI_THR_H_0 :Defines the membrane potential threshold separating the first and second segments of the
straight-through-estimator (STE) function.

• SPI_THR_H_1 : Defines the membrane potential threshold separating the second and third segments of
the straight-through-estimator (STE) function.

• SPI_THR_H_2 : Defines the membrane potential threshold separating the third and fourth segments of
the straight-through-estimator (STE) function.

• SPI_THR_H_3 : Defines the membrane potential threshold separating the fourth and fifth segments of
the straight-through-estimator (STE) function.

• SPI_H_0 : Defines the value of the first segment of the straight-through-estimator (STE) function.

• SPI_H_1 :Defines the value of the second segment of the straight-through-estimator (STE) function.

• SPI_H_2 : Defines the value of the third segment of the straight-through-estimator (STE) function.

• SPI_H_3 : Defines the value of the fourth segment of the straight-through-estimator (STE) function.

• SPI_H_4 : Defines the value of the fifth segment of the straight-through-estimator (STE) function.
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• SPI_LR_R_WINP : Input weight update probability scaling parameter (applies a right shift by the value
of SPI_LR_R_WINP).

• SPI_LR_P_WINP : Input weight update probability scaling parameter (applies a left shift by the value
of SPI_LR_P_WINP).

• SPI_LR_R_WREC : Recurrent weight update probability scaling parameter (applies a right shift by the
value of SPI_LR_R_WREC).

• SPI_LR_P_WREC : Recurrent weight update probability scaling parameter (applies a left shift by the
value of SPI_LR_P_WREC).

• SPI_LR_R_WOUT : Output weight update probability scaling parameter (applies a right shift by the
value of SPI_LR_R_WOUT).

• SPI_LR_P_WOUT : Output weight update probability scaling parameter (applies a left shift by the value
of SPI_LR_P_WOUT).

• SPI_SEED_INP : Seed of the unfolded LFSR generating random numbers for stochastic input weight
updates.

• SPI_SEED_REC : Seed of the unfolded LFSR generating random numbers for stochastic recurrent weight
updates.

• SPI_SEED_OUT : Seed of the unfolded LFSR generating random numbers for stochastic output weight
updates.

• SPI_SEED_STRND_NEUR : Seed of the unfolded LFSR generating random numbers for stochastic rounding
of the LIF neuron membrane potentials.

• SPI_SEED_STRND_ONEUR : Seed of the unfolded LFSR generating random numbers for stochastic
rounding of the output neuron membrane potentials.

• SPI_SEED_STRND_TINP : seed of the unfolded LFSR generating random numbers for stochastic rounding
of the input eligibility traces.

• SPI_SEED_STRND_TREC : Seed of the unfolded LFSR generating random numbers for stochastic rounding
of the recurrent eligibility traces.

• SPI_SEED_STRND_TOUT : Seed of the unfolded LFSR generating random numbers for stochastic
rounding of the output eligibility traces.

• SPI_SEED_NOISE_NEUR : Seed of the unfolded LFSR generating random numbers for the configurable
amount of noise added to the LIF neuron membrane potentials.

• SPI_NUM_INP_NEUR : Number of input neurons enabled in the network (should be configured to the
target number of neurons -1).

• SPI_NUM_REC_NEUR : Number of recurrent neurons enabled in the network (should be configured to
the target number of neurons -1).

• SPI_NUM_OUT_NEUR : Number of output neurons enabled in the network (should be configured to the
target number of neurons -1).

• SPI_REGUL_F0 : Value of the post-synaptic recurrent eligibility traces above which regularization on the
pre-synaptic weights is turned on.

• SPI_REGUL_K_INP_R : Input weight additive regularization scaling parameter (applies a right shift by
the value of SPI_REGUL_K_INP_R).

• SPI_REGUL_K_INP_P : Input weight additive regularization scaling parameter (applies a left shift by
the value of SPI_REGUL_K_INP_P).

• SPI_REGUL_K_REC_R : Recurrent weight additive regularization scaling parameter (applies a right
shift by the value of SPI_REGUL_K_REC_R).

• SPI_REGUL_K_REC_P : Recurrent weight additive regularization scaling parameter (applies a left shift
by the value of SPI_REGUL_K_REC_P).

• SPI_REGUL_K_MUL : Input and recurrent weight multiplicative regularization scaling parameter (applies
a right shift by the value of SPI_REGUL_K_MUL).

• SPI_NOISE_STR : Neuron noise scaling parameter. Noise is generated as pseudo-random 16-bit words to
be added to the LIF neuron membrane potentials, right-shifted by the value of SPI_NOISE_STR.

After the network is setup and the weights are imposed the next phase is to verify that
all the network is set up correctly with this phrase: Done verification of programmed SNN
parameters.
When this is done the network it is implemented, and we are going to perform the network
testing.



51

Testing phase and training

As an explanatory example the next section we are going to see the process of testing. The
basic idea of what actually we are going to do, it is possible to see in the figure below.
The figure is auto explanatory, indeed, when an object is encoded in the axon the SNN will
produce a result looking for the training that he has done earlier. The output of this process
it is a decision variable, or label, that brings the object determination.

Figure 3.8: SNN example [11]

When the first spike reach the SNN the results are compared with the neuron threshold.
If the result is less than the threshold, the neuron will not fire and cumulate next spike’s
result until the sum of result is larger than the threshold. Once the neuron of subsequent
layer fire, that neuron will not receive any spike until the network is reset, and a new input
pattern is presented.

Therefore, when the SNN finish a pattern recognition, it maybe just needs to input a
few spikes not all spikes. This allows the SNN to have faster responded. Furthermore, We
set the classification through the first fire neuron of output layer, which is beneficial to the
acceleration of results. So, the trained SNN could process directly the AER input form its
port.

FAST DELAYED-SUPERVISION NAVIGATION E-PROP BENCHMARKING

After the SNN it is set up, now we have a brand-new system ready to work. Now we will
start the training phase.
This operational part it is performed with several loops that are in charge to call a specific
dataset to train and configuring the overlay architecture.
After the set-up phase we are starting the delayed-supervision navigation benchmarking
(e-prop enabled on random weights) opening the input weights with the dataset provided
(path_to_init_inp_weights.dat).

1 fd = $fopen ( path_to_init_inp_weights , " r " ) ;
2 f o rk begin
3 for ( i =0; i <40; i=i +1) begin
4 spi_half_w ( . data ({1 ’ b0 , 3 ’ h3 ,12 ’ d25 ,{2 ’ b0 , i [ 7 : 0 ] , 6 ’ d0 }}) , .MISO(MISO)

, .MOSI(MOSI) , .SCK(SCK) ) ;
5 // Header o f a multi−wr i t e t r an sa c t i on s t a r t i n g at pos t synapt i c

address
6 //0 o f pre−synapt i c neuron i (25 32−b i t wr i t e s = 100 post−synapt i c

weights )
7 f o r ( j =0; j <25; j=j +1) begin
8 prog_val32 = 32 ’ b0 ;
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9 for ( k=0; k<4; k=k+1) begin
10 s t a tu s = $ f s c an f ( fd , "%d" , weight ) ;
11 a s s e r t ( s t a tu s == 1) else $ f a t a l (0 , "A problem occured whi l e

p r o c e s s i ng input weights f i l e . " ) ;
12 prog_val32 = prog_val32 | ({24 ’ b0 , weight [ 7 : 0 ] } << (8∗k ) ) ;
13 end
14 spi_half_w ( . data ( prog_val32 ) , .MISO(MISO) , .MOSI(MOSI) , .SCK(SCK

) ) ;
15 end
16 end
17 end j o i n

The piece of code that I’ve reported here it is extracted from the phase where reckon are
testing and train the snn.
In all the stages the structure remain the same but what it is change is only the dataset
that we are going to open as listed below.

• dataset_cueAcc_test.dat: testing the snn

• dataset_cueAcc_train.dat :training snn data

• init_rand_weights_inp_cueAcc.dat :Initializing input weights

• init_rand_weights_out_cueAcc.dat :Initializing output weights:

• init_rand_weights_rec_cueAcc.dat : Initializing recurrent weights

Once one at the time it is called, the next step is to call the training data, and we will
display on terminal the log of training that we are processing. For this step it is required a
lot of time because the epoch is 10 and the sample that are going to analyze is a lot (near
50). For speed up the process we have reduced the epoch to 2 and the sample to 30.
If no error appear the output will be like something like that:

1 −−−−− Programming SNN parameters . . .
2 # −−−−− S ta r t i n g v e r i f i c a t i o n o f programmed SNN parametersa
3 # I n i t i a l i z i n g neurons ( with SPI) . . .
4 # Star t t r a i n i n g f o r 10 epochs . . .
5 # −−− Epoch 1 :
6 # Sample 0 : in f e r ence i s 0 , l a b e l i s 0
7 # Sample 1 : in f e r ence i s 0 , l a b e l i s 1
8 # Sample 2 : in f e r ence i s 1 , l a b e l i s 1
9 # Sample 3 : in f e r ence i s 0 , l a b e l i s 0

10 # Sample 4 : in f e r ence i s 0 , l a b e l i s 0
11 # Sample 5 : in f e r ence i s 0 , l a b e l i s 1
12 # Sample 6 : in f e r ence i s 1 , l a b e l i s 1
13 # Sample 7 : in f e r ence i s 1 , l a b e l i s 0
14 # Sample 8 : in f e r ence i s 1 , l a b e l i s 1
15 # Sample 9 : in f e r ence i s 1 , l a b e l i s 1
16 # Sample 10: in f e r ence i s 1 , l a b e l i s 0
17 # Sample 11: in f e r ence i s 0 , l a b e l i s 0
18 # Sample 12: in f e r ence i s 0 , l a b e l i s 0
19 # Sample 13: in f e r ence i s 0 , l a b e l i s 0
20 # Sample 14: in f e r ence i s 0 , l a b e l i s 0
21 # Sample 15: in f e r ence i s 0 , l a b e l i s 0
22 # Sample 16: in f e r ence i s 0 , l a b e l i s 0
23 # Sample 17: in f e r ence i s 0 , l a b e l i s 1
24 # Sample 18: in f e r ence i s 0 , l a b e l i s 1
25 # Sample 19: in f e r ence i s 1 , l a b e l i s 1
26 # Sample 20: in f e r ence i s 1 , l a b e l i s 1
27 # Sample 21: in f e r ence i s 1 , l a b e l i s 1
28 # Sample 22: in f e r ence i s 1 , l a b e l i s 0
29 # Sample 23: in f e r ence i s 1 , l a b e l i s 0
30 # Sample 24: in f e r ence i s 0 , l a b e l i s 0
31 # Sample 25: in f e r ence i s 0 , l a b e l i s 1
32 # Sample 26: in f e r ence i s 0 , l a b e l i s 0
33 # Sample 27: in f e r ence i s 0 , l a b e l i s 1
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34 # Sample 28: in f e r ence i s 1 , l a b e l i s 1
35 # Sample 29: in f e r ence i s 1 , l a b e l i s 0
36 # Score wh i l e t r a i n i n g i s 21/50 ( 42 percen t s ) !
37 # Sample 0 : in f e r ence i s 1 , l a b e l i s 1
38 # Sample 1 : in f e r ence i s 1 , l a b e l i s 1
39 # Sample 2 : in f e r ence i s 0 , l a b e l i s 0
40 # Sample 3 : in f e r ence i s 0 , l a b e l i s 1
41 # Sample 4 : in f e r ence i s 1 , l a b e l i s 1
42 # Sample 5 : in f e r ence i s 1 , l a b e l i s 1
43 # Sample 6 : in f e r ence i s 0 , l a b e l i s 0
44 # Sample 7 : in f e r ence i s 0 , l a b e l i s 0
45 # Sample 8 : in f e r ence i s 0 , l a b e l i s 0
46 # Sample 9 : in f e r ence i s 0 , l a b e l i s 0
47 # Sample 10: in f e r ence i s 1 , l a b e l i s 1
48 # Sample 11: in f e r ence i s 1 , l a b e l i s 1
49 # Sample 12: in f e r ence i s 0 , l a b e l i s 0
50 # Sample 13: in f e r ence i s 0 , l a b e l i s 0
51 # Sample 14: in f e r ence i s 0 , l a b e l i s 0
52 # Sample 15: in f e r ence i s 0 , l a b e l i s 0
53 # Sample 16: in f e r ence i s 0 , l a b e l i s 0
54 # Sample 17: in f e r ence i s 0 , l a b e l i s 0
55 # Sample 18: in f e r ence i s 0 , l a b e l i s 0
56 # Sample 19: in f e r ence i s 0 , l a b e l i s 0
57 # Sample 20: in f e r ence i s 1 , l a b e l i s 1
58 # Sample 21: in f e r ence i s 1 , l a b e l i s 1
59 # Sample 22: in f e r ence i s 0 , l a b e l i s 0
60 # Sample 23: in f e r ence i s 0 , l a b e l i s 0
61 # Sample 24: in f e r ence i s 0 , l a b e l i s 1
62 # Sample 25: in f e r ence i s 1 , l a b e l i s 1
63 # Sample 26: in f e r ence i s 0 , l a b e l i s 0
64 # Sample 27: in f e r ence i s 1 , l a b e l i s 1
65 # Sample 28: in f e r ence i s 1 , l a b e l i s 1
66 # Sample 29: in f e r ence i s 0 , l a b e l i s 0
67 # Score on t e s t s e t i s 28/50 ( 56 percent s ) !
68 # −−−−− Ending delayed−supe r v i s i on nav i ga t ion benchmarking .
69 # ∗∗ Note : $ f i n i s h : tbench . sv (491)
70 # Time : 1785324992 ns I t e r a t i o n : 0 Ins tance : / tbench
71 # End time : 22 :52 :28 on Dec 29 ,2022 , Elapsed time : 1 :49 :46

For understanding the meaning of the log it is important to understand that the interference
is actually the sample that was sent, and the label is actually the output of the Rekon. If
the interference and the label are target in the SNN have processed correctly otherwise the
result it is not correct. As it is possible to see the Score on test it will go better every time
the sample are greater .

AER

Figure 3.9: Input AER four-phase handshake timing diagram.

Once a lot o data it is sent and the snn it is almost trained the next step is the possibility
to send real data through AER.
For each sample that was sent through the recurrent phase there are an AER that simulate
the behavior when the Reckon receive data from outside.



54

The testing source that we are using also have embedded AER sending task as below.

1 [ . . . ]
2 AERIN_TAR_EN = 1 ’ b1 ;
3 aer_send ( . addr_in ( evt_target [ 7 : 0 ] ) , . addr_out (AERIN_ADDR) , . ack (AERIN_ACK) , .

req (AERIN_REQ) ) ;
4 wait_ns (200) ;
5 AERIN_TAR_EN = 1 ’ b0 ;
6 wait_ns (100) ;
7 TARGET_VALID = 1 ’ b1 ;
8 [ . . . ]

So inside a while there are some sending data to see if the label recognizer work properly.
As it is possible to see from previews script we are using aer_send:

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 AER send event
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5 task automatic aer_send (
6 input l o g i c [ ‘M−1:0 ] addr_in ,
7 r e f l o g i c [ ‘M−1:0 ] addr_out ,
8 r e f l o g i c ack ,
9 r e f l o g i c req

10 ) ;
11 while ( ack ) wait_ns (1 ) ;
12 addr_out = addr_in ;
13 wait_ns (1 ) ;
14 req = 1 ’ b1 ;
15 whi l e ( ! ack ) wait_ns (1 ) ;
16 wait_ns (1 ) ;
17 req = 1 ’ b0 ;
18 endtask

This task is able to send a AER message in the AER port, it is important to remember that
in this steep the input inputlogic[7 : 0]addr_in it is the event in which we are going to step
the stimuli process.

Module port

As last point we are going to analyze better the port configuration.
This point, even though at first it may be unnecessary, it is crucial because allows the
neuromorphic coprocessor configuration to be visualized in plain text.
As can be seen from the code the most important ports are obviously the spi port and also
the AER communication port and the fundamental output port called and named with the
prefix out

1 module reckon #(
2 parameter N = 256 ,
3 parameter M = 8
4 ) (
5 // Global inputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 input wire CLK_EXT,
7 input wire CLK_INT_EN,
8 input wire RST,
9

10 // SPI s l av e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 input wire SCK,
12 input wire MOSI,
13 output wire MISO,
14
15 // Input bus and con t r o l inputs −−−−−−−−−−−−−−−−−−
16 input wire [M−1:0 ] AERIN_ADDR,
17 input wire AERIN_REQ,
18 output wire AERIN_ACK,
19 input wire AERIN_TAR_EN,
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20 input wire SAMPLE,
21 input wire TIME_TICK,
22 input wire TARGET_VALID,
23 input wire INFER_ACC,
24
25 // Output bus and con t r o l outputs −−−−−−−−−−−−−−−−
26 output wire SPI_RDY,
27 output wire TIMING_ERROR_RDY,
28 output wire OUT_REQ,
29 input wire OUT_ACK,
30 output wire [ 7 : 0 ] OUT_DATA
31 ) ;

innovus

vivado

For running the vivaldo we used the EDA server and the command to load the modules is
moduleloadtools/xilinx/all then run the basch vivado. after it is load we need to fix a point
in the file spi_slave.v near line 313:

1 //SPI_RO_STAGE_SEL − 9 b i t s − address 1
2 always @( posedge SCK, posedge RST_async)
3 i f (RST_async) SPI_RO_STAGE_SEL <= 9 ’ d0 ; // to be add
4 e l s e i f (~ | spi_addr [ 3 1 : 2 8 ] && ( spi_addr [ 1 5 : 0 ] == 16 ’ d1 ) && &spi_cnt

[ 4 : 0 ] && | spi_cnt [ 1 6 : 5 ] ) SPI_RO_STAGE_SEL <= { spi_shi f t_reg_in [ 7 : 0 ] ,
MOSI} ;

in that way it is possible to run the synthesis correctly and we can open the elaborated
design section after we set up correctly the Board target: XCZU9EG-FFVB1156-1-e with
1156 bidirectional pins and 912 blocks of RAM.

After a while it show up the schematics.

Xlinix deployment

3.3 HWPE

In this section we are going to deal in more detail about HWPE .

Data organization

The test that we are going to do is an standalone SOC environment that is focused on
HWPE performing multiply-accumulate on a vector of fixed-point Values. For simulation
proposes the structural description it is implemented with a dummy memories and the usage
of a zero-riscy core to execute tests written directly in C and other boot assembly script and
linker script (link.ld)

installation

here we are going to see how we could install this test on linux distro. It is important to
point out that the software Prerequisites it is pointed on Questasim 10.6 and Modelsim it
is not supported.

1 g i t c l one https : // github . com/pulp−plat form/hwpe−tb . g i t
2 cd hwpe−tb
3 make update−i p s
4 make bui ld−hw
5 cd hw/sim
6 make
7 vsim
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The testbench

Since the memory is not syntetizable it is used a dummy memory for simulation proposes.
The architecture is straightforward since the communication between the Riscv and the
coprocessor it is done using only the TCDM bus interconnection interface namely hwpe_stream_intf_tcdm

1 l o g i c req ;
2 l o g i c gnt ;
3 l o g i c [ 3 1 : 0 ] add ;
4 l o g i c wen ;
5 l o g i c [ 3 : 0 ] be ;
6 l o g i c [ 3 1 : 0 ] data ;
7 l o g i c [ 3 1 : 0 ] r_data ;
8 l o g i c r_val id ;
9

10 modport master (
11 output req , add , wen , be , data ,
12 input gnt , r_data , r_val id
13 ) ;
14 modport s l av e (
15 input req , add , wen , be , data ,
16 output gnt , r_data , r_val id
17 ) ;
18 modport monitor (
19 input req , add , wen , be , data , gnt , r_data , r_val id
20 ) ;

from this interface it is possible to have a slave ,a master and a monitor. For our SOC
architectureit is declaredin that way :

1 hwpe_stream_intf_tcdm i n s t r [ 0 : 0 ] ( . c l k ( c lk_i ) ) ;
2 hwpe_stream_intf_tcdm stack [ 0 : 0 ] ( . c l k ( c lk_i ) ) ;
3 hwpe_stream_intf_tcdm tcdm [MP: 0 ] ( . c l k ( c lk_i ) ) ;
4
5 mac_top_wrap #(
6 .N_CORES ( NC ) ,
7 .MP ( MP ) ,
8 . ID ( ID )
9 ) i_hwpe_top_wrap (

10 . c lk_i ( c lk_i ) ,
11 . r s t_ni ( rst_ni ) ,
12 . test_mode_i ( 1 ’ b0 ) ,
13 . tcdm_add ( tcdm_add ) ,
14 . tcdm_be ( tcdm_be ) ,
15 . tcdm_data ( tcdm_data ) ,
16 . tcdm_gnt ( tcdm_gnt ) ,
17 . tcdm_wen ( tcdm_wen ) ,
18 . tcdm_req ( tcdm_req ) ,
19 . tcdm_r_data ( tcdm_r_data ) ,
20 . tcdm_r_valid ( tcdm_r_valid ) ,
21 . periph_add ( periph_add ) ,
22 . periph_be ( periph_be ) ,
23 . periph_data ( periph_data ) ,
24 . periph_gnt ( periph_gnt ) ,
25 . periph_wen ( periph_wen ) ,
26 . periph_req ( periph_req ) ,
27 . periph_id ( periph_id ) ,
28 . periph_r_data ( periph_r_data ) ,
29 . periph_r_valid ( periph_r_valid ) ,
30 . periph_r_id ( periph_r_id ) ,
31 . evt_o ( evt )
32 ) ;
33
34
35
36 ze ro r i s cy_cor e #(
37 .N_EXT_PERF_COUNTERS ( 0 ) ,
38 .RV32E ( 0 ) ,
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39 .RV32M ( 1 )
40 ) i_z e r o r i s c y (
41 . c lk_i ( c lk_i ) ,
42 . r s t_ni ( rst_ni ) ,
43 . clock_en_i ( 1 ’ b1 ) ,
44 . test_en_i ( 1 ’ b0 ) ,
45 . core_id_i ( ’ 0 ) ,
46 . c lus te r_id_i ( ’ 0 ) ,
47 . boot_addr_i ( ’ 0 ) ,
48 . instr_req_o ( ins t r_req ) ,
49 . instr_gnt_i ( instr_gnt ) ,
50 . i n s t r_rva l i d_ i ( i n s t r_rva l i d ) ,
51 . instr_addr_o ( instr_addr ) ,
52 . instr_rdata_i ( ins t r_rdata ) ,
53 . data_req_o ( data_req ) ,
54 . data_gnt_i ( data_gnt ) ,
55 . data_rval id_i ( data_rval id ) ,
56 . data_we_o ( data_we ) ,
57 . data_be_o ( data_be ) ,
58 . data_addr_o ( data_addr ) ,
59 . data_wdata_o ( data_wdata ) ,
60 . data_rdata_i ( data_rdata ) ,
61 . data_err_i ( data_err ) ,
62 . i rq_i ( evt [ 0 ] [ 0 ] ) ,
63 . irq_id_i ( ’ 0 ) ,
64 . irq_ack_o ( ) ,
65 . irq_id_o ( ) ,
66 . debug_req_i ( ’ 0 ) ,
67 . debug_gnt_o ( ) ,
68 . debug_rvalid_o ( ) ,
69 . debug_addr_i ( ’ 0 ) ,
70 . debug_we_i ( ’ 0 ) ,
71 . debug_wdata_i ( ’ 0 ) ,
72 . debug_rdata_o ( ) ,
73 . debug_halted_o ( ) ,
74 . debug_halt_i ( ’ 0 ) ,
75 . debug_resume_i ( ’ 0 ) ,
76 . fetch_enable_i ( fetch_enable ) ,
77 . ext_perf_counters_i ( ’ 0 )
78 ) ;
79
80
81 tb_dummy_memory #(
82 .MP ( MP+1 ) ,
83 .MEMORY_SIZE ( MEMORY_SIZE ) ,
84 .BASE_ADDR ( BASE_ADDR ) ,
85 .PROB_STALL ( PROB_STALL ) ,
86 .TCP ( TCP ) ,
87 .TA ( TA ) ,
88 .TT ( TT )
89 ) i_dummy_memory (
90 . c lk_i ( c lk_i ) ,
91 . randomize_i ( randomize_mem ) ,
92 . enable_i ( enable_mem ) ,
93 . s t a l l a b l e_ i ( busy ) ,
94 . tcdm ( tcdm )
95 ) ;
96
97 tb_dummy_memory #(
98 .MP ( 1 ) ,
99 .MEMORY_SIZE ( MEMORY_SIZE ) ,

100 .BASE_ADDR ( BASE_ADDR ) ,
101 .PROB_STALL ( 0 ) ,
102 .TCP ( TCP ) ,
103 .TA ( TA ) ,
104 .TT ( TT )
105 ) i_dummy_instr_memory (
106 . c lk_i ( c lk_i ) ,
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107 . randomize_i ( 1 ’ b0 ) ,
108 . enable_i ( 1 ’ b1 ) ,
109 . s t a l l a b l e_ i ( 1 ’ b0 ) ,
110 . tcdm ( i n s t r )
111 ) ;
112
113 tb_dummy_memory #(
114 .MP ( 1 ) ,
115 .MEMORY_SIZE ( MEMORY_SIZE ) ,
116 .BASE_ADDR ( BASE_ADDR ) ,
117 .PROB_STALL ( 0 ) ,
118 .TCP ( TCP ) ,
119 .TA ( TA ) ,
120 .TT ( TT )
121 ) i_dummy_stack_memory (
122 . c lk_i ( c lk_i ) ,
123 . randomize_i ( 1 ’ b0 ) ,
124 . enable_i ( 1 ’ b1 ) ,
125 . s t a l l a b l e_ i ( 1 ’ b0 ) ,
126 . tcdm ( stack )
127 ) ;

From this structural architecture it is possible to note that there are the most important
configuration operand Test_mode_i = 10b0),.
This input port have the role to set up the engine between a simple multiplication mode
that takes two 32bit streams (vectors) a, b and computes the multiplication : d = a ∗ b.
or a scalar product that takes three 32bit fixed-point streams a, b, c and computes the
operation as here: d = dot(a, b) + c.
input Once the 64 multiplication is done the vectors are separated by an iteration stride and
normalized with a configurable shift factor.
The four streams a, b, c, d are connected to four separate ports on the external memory
interface.
Indeed inside the top_mac it is possible to see the integration of the HWPE modules of the
data bus in and out from the engine :

1 hwpe_stream_intf_stream #( .DATA_WIDTH(32) ) a ( . c l k ( c lk_i ) ) ; \\ input
2 hwpe_stream_intf_stream #( .DATA_WIDTH(32) ) b ( . c l k ( c lk_i ) ) ; \\ input
3 hwpe_stream_intf_stream #( .DATA_WIDTH(32) ) c ( . c l k ( c lk_i ) ) ; \\ input
4 hwpe_stream_intf_stream #( .DATA_WIDTH(32) ) d ( . c l k ( c lk_i ) ) ; \\ output

this interface will be called later on the script when we want to connect the real datapath
of the engine that it is embedded inside the mac_engine i_engine

1 mac_engine i_engine (
2 . c lk_i ( c lk_i ) ,
3 . r s t_ni ( rst_ni ) ,
4 . test_mode_i ( test_mode_i ) ,
5 . a_i ( a . s ink ) ,
6 . b_i ( b . s ink ) ,
7 . c_i ( c . s ink ) ,
8 . d_o ( d . source ) ,
9 . c t r l_ i ( eng ine_ct r l ) ,

10 . f lags_o ( eng ine_f lags )
11 ) ;

Since the testing was done only for the simple multiplication what we need is only the
stream a b and d. the figure 3.10 show the simulation of the multiplication.
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Figure 3.10: hwpe result of testing

then this result will be saved on the memory as possible to see here

Figure 3.11: HWPE result of testing
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First Idea

All the analyses down until now have brought me to create a first implementation. The basic
idea was to tailor the modules as an emergency SOC. The idea it is pretty simple based on
Frankel result: The coprocessor it is always turned on, when there are a recognition of a
certain situation inside the SOC will flow a trigger signal that perform a specific interrupt
routine from the zero riscy.
Here below it is possible to see the figure of that idea :

Figure 3.12: uDMA

The warning structure it was deployed but the target of this implementation proposed
was centered in the Reckon while the true task is to engage the processor zero riscy.
But for be able to have a landscape of all the possible combination and utilization It will
present also this idea, although it was not developed because it is out of target but could
be presented for a further implementation for security camera or something more centered
on the peripheral and not on the central unit.

Anyway, before going deep below it is reproduced the wave output:

Figure 3.13: wave of security method

The picture shows all the running structure.
For time reason I have sized the Rom SPI mem only with 5 register but could be extended
with a more huge sized memory bank. This SPI mem will be sent on the SPI bus on SPI
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Data wire that it is attached directly on Reckon’s SPI. The memory was design for be able
to send on the control unit a signal that inform the system that all the parameters are sent
correctly, and it is named as Done. Done have a 0 for default and 1 when we reach the
bottom of the RAM.

1 // vsim −voptargs=+acc work . tbench_spi_mem
2 t imeunit 1ns ;
3 t imep r e c i s i on 1ns ;
4 ‘ d e f i n e CLK_HALF_PERIOD 10
5 ‘ d e f i n e SCK_HALF_PERIOD 50
6 ‘ d e f i n e EPOCHS 10
7 ‘ d e f i n e SPI_RO_STAGE_SEL 9 ’ b0
8 ‘ d e f i n e SPI_GET_CLKINT_OUT 1 ’ b0
9 ‘ d e f i n e SPI_RST_MODE 1 ’ b0

10 ‘ d e f i n e SPI_DO_EPROP 3 ’ b000
11 ‘ d e f i n e SPI_LOCAL_TICK 1 ’ b0
12 ‘ d e f i n e SPI_ERROR_HALT 1 ’ b1
13 ‘ d e f i n e SPI_FP_LOC_WINP 3 ’ b011
14 ‘ d e f i n e SPI_FP_LOC_WREC 3 ’ b011
15 ‘ d e f i n e SPI_FP_LOC_WOUT 3 ’ b011
16 ‘ d e f i n e SPI_FP_LOC_TINP 3 ’ b011
17 ‘ d e f i n e SPI_FP_LOC_TREC 3 ’ b100
18 ‘ d e f i n e SPI_FP_LOC_TOUT 3 ’ b110
19 ‘ d e f i n e SPI_LEARN_SIG_SCALE 4 ’ b0101
20 ‘ d e f i n e SPI_REGUL_MODE 3 ’ b010
21 ‘ d e f i n e SPI_REGUL_W 2 ’ b11
22 ‘ d e f i n e SPI_EN_STOCH_ROUND 1 ’ b1
23 ‘ d e f i n e SPI_SRAM_SPEEDMODE 8 ’ b00000000
24 ‘ d e f i n e SPI_TIMING_MODE 1 ’ b0
25 ‘ d e f i n e SPI_REGRESSION 1 ’ b0
26 ‘ d e f i n e SPI_SINGLE_LABEL 1 ’ b1
27 ‘ d e f i n e SPI_NO_OUT_ACT 1 ’ b0
28 ‘ d e f i n e SPI_SEND_PER_TIMESTEP 1 ’ b0
29 ‘ d e f i n e SPI_SEND_LABEL_ONLY 1 ’ b1
30 ‘ d e f i n e SPI_NOISE_EN 1 ’ b0
31 ‘ d e f i n e SPI_FORCE_TRACES 1 ’ b0
32 ‘ d e f i n e SPI_CYCLES_PER_TICK 32 ’ b0
33 ‘ d e f i n e SPI_ALPHA_CONF 128 ’ h0
34 ‘ d e f i n e SPI_KAPPA 8 ’ h79
35 ‘ d e f i n e SPI_THR_H_0 $s igned (16 ’ d205 )
36 ‘ d e f i n e SPI_THR_H_1 $s igned (16 ’ d205 )
37 ‘ d e f i n e SPI_THR_H_2 $s igned (16 ’ d205 )
38 ‘ d e f i n e SPI_THR_H_3 $s igned (16 ’ d205 )
39 ‘ d e f i n e SPI_H_0 $s igned (5 ’ d0 )
40 ‘ d e f i n e SPI_H_1 $s igned (5 ’ d0 )
41 ‘ d e f i n e SPI_H_2 $s igned (5 ’ d0 )
42 ‘ d e f i n e SPI_H_3 $s igned (5 ’ d0 )
43 ‘ d e f i n e SPI_H_4 $s igned (5 ’ d1 )
44 ‘ d e f i n e SPI_LR_R_WINP 5 ’ b0
45 ‘ d e f i n e SPI_LR_P_WINP 5 ’ d8
46 ‘ d e f i n e SPI_LR_R_WREC 5 ’ b0
47 ‘ d e f i n e SPI_LR_P_WREC 5 ’ d8
48 ‘ d e f i n e SPI_LR_R_WOUT 5 ’ b0
49 ‘ d e f i n e SPI_LR_P_WOUT 5 ’ d14
50 ‘ d e f i n e SPI_SEED_INP 25 ’hF0F0
51 ‘ d e f i n e SPI_SEED_REC 25 ’hF1F1
52 ‘ d e f i n e SPI_SEED_OUT 22 ’hF2F2
53 ‘ d e f i n e SPI_SEED_STRND_NEUR 30 ’h3F3FF3F3
54 ‘ d e f i n e SPI_SEED_STRND_ONEUR 15 ’hF4F4
55 ‘ d e f i n e SPI_SEED_STRND_TINP 30 ’h3F5FF5F5
56 ‘ d e f i n e SPI_SEED_STRND_TREC 30 ’h3F6FF6F6
57 ‘ d e f i n e SPI_SEED_STRND_TOUT 30 ’h3F7FF7F7
58 ‘ d e f i n e SPI_SEED_NOISE_NEUR 17 ’h00FF0
59 ‘ d e f i n e SPI_NUM_INP_NEUR 8 ’ d39
60 ‘ d e f i n e SPI_NUM_REC_NEUR 8 ’ d99
61 ‘ d e f i n e SPI_NUM_OUT_NEUR 4 ’ d1
62 ‘ d e f i n e SPI_REGUL_F0 12 ’ d160
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63 ‘ d e f i n e SPI_REGUL_K_INP_R 5 ’ b0
64 ‘ d e f i n e SPI_REGUL_K_INP_P 5 ’ d10
65 ‘ d e f i n e SPI_REGUL_K_REC_R 5 ’ b0
66 ‘ d e f i n e SPI_REGUL_K_REC_P 5 ’ d10
67 ‘ d e f i n e SPI_REGUL_K_MUL 5 ’ d0
68 ‘ d e f i n e SPI_NOISE_STR 4 ’ b0000
69
70
71
72 module tb_dummy_memory
73 #(
74 parameter MEMORY_SIZE ,//1024
75 parameter MEMORY_word = 64 ,
76 parameter ADD_word = 8
77 )
78 (
79 input l o g i c clk_i ,
80 input l o g i c enable_w ,
81 //OUTPUT
82 output l o g i c spi_data ,
83 output l o g i c s c l k ,
84 output l o g i c done = 1 ’ b0
85 // i n t e r f a c e
86 // sp i_int . s l a v e
87
88 ) ;
89
90 l o g i c [MEMORY_SIZE−1 : 0 ] [MEMORY_word−1:0 ] memory ;
91 l o g i c [MEMORY_word−1:0 ] pre_spi_data ;
92 i n t e g e r add = 0 ;
93 i n t i = 0 ;
94 i n t a = 0 ;
95 i n i t i a l begin
96 memory [ 0 ] <= ’ 0 ;
97 memory [ 1 ] <= {1 ’b1 , 3 ’ b111 ,12 ’ d1 ,16 ’ d0 , ’ 0 ,32 ’ d1 } ;
98 memory [ 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d1 , ‘SPI_RO_STAGE_SEL } ; //

SPI_RO_STAGE_SEL
99 memory [ 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d0 ,1 } ; //

SPI_EN_CONF
100 memory [ 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d1 , ‘SPI_RO_STAGE_SEL } ; //

SPI_RO_STAGE_SEL
101 memory [ 5 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d2 , ‘SPI_GET_CLKINT_OUT } ; //

SPI_GET_CLKINT_OUT
102 memory [ 6 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d8 , ‘SPI_RST_MODE } ; //

SPI_RST_MODE
103 memory [ 7 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d9 , ‘SPI_DO_EPROP } ; //

SPI_DO_EPROP
104 memory [ 8 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d10 , ‘SPI_LOCAL_TICK } ; //

SPI_LOCAL_TICK
105 memory [ 9 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d11 , ‘SPI_ERROR_HALT } ; //

SPI_ERROR_HALT
106 memory [ 1 0 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d12 , ‘SPI_FP_LOC_WINP } ; //

SPI_FP_LOC_WINP
107 memory [ 1 1 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d13 , ‘SPI_FP_LOC_WREC } ; //

SPI_FP_LOC_WREC
108 memory [ 1 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d14 , ‘SPI_FP_LOC_WOUT } ; //

SPI_FP_LOC_WOUT
109 memory [ 1 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d15 , ‘SPI_FP_LOC_TINP } ; //

SPI_FP_LOC_TINP
110 memory [ 1 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d16 , ‘SPI_FP_LOC_TREC } ; //

SPI_FP_LOC_TREC
111 memory [ 1 5 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d17 , ‘SPI_FP_LOC_TOUT } ; //

SPI_FP_LOC_TOUT
112 memory [ 1 6 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d18 , ‘SPI_LEARN_SIG_SCALE } ; //

SPI_LEARN_SIG_SCALE
113 memory [ 1 7 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d19 , ‘SPI_REGUL_MODE } ; //

SPI_REGUL_MODE
114 memory [ 1 8 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d20 , ‘SPI_REGUL_W }; //
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SPI_REGUL_W
115 memory [ 1 9 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d21 , ‘SPI_EN_STOCH_ROUND } ; //

SPI_EN_STOCH_ROUND
116 memory [ 2 0 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d22 , ‘SPI_SRAM_SPEEDMODE } ; //

SPI_SRAM_SPEEDMODE
117 memory [ 2 1 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d23 , ‘SPI_TIMING_MODE } ; //

SPI_TIMING_MODE
118 memory [ 2 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d25 , ‘SPI_REGRESSION } ; //

SPI_REGRESSION
119 memory [ 2 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d26 , ‘SPI_SINGLE_LABEL } ; //

SPI_SINGLE_LABEL
120 memory [ 2 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d27 , ‘SPI_NO_OUT_ACT } ; //

SPI_NO_OUT_ACT
121 memory [ 2 5 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d30 , ‘SPI_SEND_PER_TIMESTEP } ; //

SPI_SEND_PER_TIMESTEP
122 memory [ 2 6 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d31 , ‘SPI_SEND_LABEL_ONLY } ; //

SPI_SEND_LABEL_ONLY
123 memory [ 2 7 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d32 , ‘SPI_NOISE_EN } ; //

SPI_NOISE_EN
124 memory [ 2 8 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d33 , ‘SPI_FORCE_TRACES } ; //

SPI_FORCE_TRACES
125 memory [ 2 9 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d64 , ‘SPI_CYCLES_PER_TICK } ; //

SPI_CYCLES_PER_TICK
126 memory [ 3 0 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d69 , ‘SPI_KAPPA } ; //

SPI_KAPPA
127 memory [ 3 1 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d70 , ‘SPI_THR_H_0 } ; //

SPI_THR_H_0
128 memory [ 3 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d71 , ‘SPI_THR_H_1 } ; //

SPI_THR_H_1
129 memory [ 3 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d72 , ‘SPI_THR_H_2 } ; //

SPI_THR_H_2
130 memory [ 3 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d73 , ‘SPI_THR_H_3 } ; //

SPI_THR_H_3
131 memory [ 3 5 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d74 , ‘ SPI_H_0 } ; //

SPI_H_0
132 memory [ 3 6 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d75 , ‘ SPI_H_1 } ; //

SPI_H_1
133 memory [ 3 7 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d76 , ‘ SPI_H_2 } ; //

SPI_H_2
134 memory [ 3 8 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d77 , ‘ SPI_H_3 } ; //

SPI_H_3
135 memory [ 3 9 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d78 , ‘ SPI_H_4 } ; //

SPI_H_4
136 memory [ 4 0 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d79 , ‘SPI_LR_R_WINP } ; //

SPI_LR_R_WINP
137 memory [ 4 1 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d80 , ‘SPI_LR_P_WINP } ; //

SPI_LR_P_WINP
138 memory [ 4 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d81 , ‘SPI_LR_R_WREC } ; //

SPI_LR_R_WREC
139 memory [ 4 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d82 , ‘SPI_LR_P_WREC } ; //

SPI_LR_P_WREC
140 memory [ 4 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d83 , ‘SPI_LR_R_WOUT } ; //

SPI_LR_R_WOUT
141 memory [ 4 5 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d84 , ‘SPI_LR_P_WOUT } ; //

SPI_LR_P_WOUT
142 memory [ 4 6 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d85 , ‘SPI_SEED_INP } ; //

SPI_SEED_INP
143 memory [ 4 7 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d86 , ‘SPI_SEED_REC } ; //

SPI_SEED_REC
144 memory [ 4 8 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d87 , ‘SPI_SEED_OUT } ; //

SPI_SEED_OUT
145 memory [ 4 9 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d88 , ‘SPI_SEED_STRND_NEUR } ; //

SPI_SEED_STRND_NEUR
146 memory [ 5 0 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d89 , ‘SPI_SEED_STRND_ONEUR } ; //

SPI_SEED_STRND_ONEUR
147 memory [ 5 1 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d90 , ‘SPI_SEED_STRND_TINP } ; //

SPI_SEED_STRND_TINP
148 memory [ 5 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d91 , ‘SPI_SEED_STRND_TREC } ; //
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SPI_SEED_STRND_TREC
149 memory [ 5 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d92 , ‘SPI_SEED_STRND_TOUT } ; //

SPI_SEED_STRND_TOUT
150 memory [ 5 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d93 , ‘SPI_SEED_NOISE_NEUR } ; //

SPI_SEED_NOISE_NEUR
151 memory [ 5 5 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d94 , ‘SPI_NUM_INP_NEUR } ; //

SPI_NUM_INP_NEUR
152 memory [ 5 6 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d95 , ‘SPI_NUM_REC_NEUR } ; //

SPI_NUM_REC_NEUR
153 memory [ 5 7 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d96 , ‘SPI_NUM_OUT_NEUR } ; //

SPI_NUM_OUT_NEUR
154 memory [ 5 8 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d98 , ‘SPI_REGUL_F0 } ; //

SPI_REGUL_F0
155 memory [ 5 9 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d99 , ‘SPI_REGUL_K_INP_R } ;

//SPI_REGUL_K_INP_R
156 memory [ 6 0 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d100 , ‘SPI_REGUL_K_INP_P } ;

//SPI_REGUL_K_INP_P
157 memory [ 6 1 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d101 , ‘SPI_REGUL_K_REC_R } ;

//SPI_REGUL_K_REC_R
158 memory [ 6 2 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d102 , ‘SPI_REGUL_K_REC_P } ;

//SPI_REGUL_K_REC_P
159 memory [ 6 3 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d103 , ‘SPI_REGUL_K_MUL } ;

//SPI_REGUL_K_MUL
160 memory [ 6 4 ] <= {1 ’b0 , 3 ’ b000 ,12 ’ d1 ,16 ’ d104 , ‘SPI_NOISE_STR } ;

//SPI_NOISE_STR
161 memory [ 6 5 ] <= {1 ’b1 , 3 ’ b111 ,12 ’ d1 ,16 ’ d0 , ’ 0} ;
162 end
163
164 always @( posedge c lk_i )
165
166 begin : dummy_proc
167 i f ( enable_w ) begin
168 f o r ( a=0 ; a < 5 ; a++) begin
169 add <= add + 1 ’ b1 ;
170 pre_spi_data <= memory [ add ] ;
171 for ( i=0 ; i <64; i=i +1) begin
172 spi_data <= pre_spi_data [63− i ] ;
173 // tbench . t ry = MOSI ;
174 #30;
175 s c l k <= 1 ’ b1 ;
176 #30;
177 s c l k <= 1 ’ b0 ;
178 end
179 i = 0 ;
180
181 end
182 done = 1 ’ b1 ;
183 end
184
185 end
186
187
188
189
190
191
192
193 endmodule // tb_dummy_memory
194 $

Here is possible to see the core, as said before is not complete because it was not
developed a slave interface to store data inside the memory bank but there is a preloaded
SPI configuration. With the central task of the dummy process.
Then we have configured a structural using the two module of the reckon and the other
module as the CU and the spi

1 // vsim −voptargs=+acc work . tbench
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2 t imeunit 1ns ;
3 t imep r e c i s i on 1ns ;
4
5 ‘ d e f i n e CLK_HALF_PERIOD 10
6 ‘ d e f i n e SCK_HALF_PERIOD 30
7
8 // sim :/ tbench/ tc /MOSI_prefifo/data
9

10 module tbench ( ) ;
11
12 l o g i c c l k ;
13 l o g i c s c l k ;
14 l o g i c RST = 1 ’ b0 ;
15 l o g i c SPI_RDY;
16 l o g i c TIMING_ERROR_RDY;
17 l o g i c OUT_REQ;
18 l o g i c OUT_ACK;
19 l o g i c [ 7 : 0 ] AERIN_ADDR ;
20 l o g i c AERIN_REQ;
21 l o g i c AERIN_ACK;
22 l o g i c AERIN_TAR_EN;
23 l o g i c SAMPLE;
24 l o g i c TIME_TICK;
25 l o g i c TARGET_VALID;
26 l o g i c INFER_ACC;
27 l o g i c c l e a r_ i ;
28 l o g i c rk_ISR_o ;
29 // sim :/ tbench/RST
30
31
32 hwpe_stream_intf_stream #(8) MOSI ( ) ;
33 hwpe_stream_intf_stream #(8) MISO ( ) ;
34 hwpe_stream_intf_stream #(8) OUT_DATA () ;
35 hwpe_stream_intf_stream #(8) MOSI_prefifo ( ) ;
36 l o g i c t ry ;
37 l o g i c [ 7 : 0 ] out_rec ;
38
39
40 //
41 l o g i c enable_w ;
42 l o g i c spi_data ;
43 l o g i c done ;
44 //
45
46
47 i n i t i a l begin
48
49 RST = 1 ’ b0 ;
50 # 100 ;
51 RST = 1 ’ b1 ;
52 # 100 ;
53 RST = 1 ’ b0 ;
54 # 100 ;
55 AERIN_ADDR = ’d0 ;
56 AERIN_REQ = 1 ’ b0 ;
57 AERIN_TAR_EN = 1 ’ d0 ;
58 TARGET_VALID = 1 ’ b0 ;
59 INFER_ACC = 1 ’ b0 ;
60 SAMPLE = 1 ’ b0 ;
61 TIME_TICK = 1 ’ b0 ;
62 OUT_ACK = 1 ’ b0 ;
63 # 100 ;
64 enable_w = 1 ’ b1 ;
65 end
66
67
68
69
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70
71
72
73
74
75 mac_engine tv ( / / ( .N(256) , .M(8) )
76
77 // Global inputs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 .CLK_EXT( c lk ) ,
79 .CLK_INT_EN(1 ’ b0 ) ,
80 .RST(RST) ,
81
82 // SPI s l av e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 .SCK( s c l k ) ,
84 .MOSI( spi_data ) ,
85 .MISO(MISO. source ) , // input
86
87 // Output bus and con t r o l outputs −−−−−−−−−−−−−−−−
88 .SPI_RDY (SPI_RDY) ,
89 .TIMING_ERROR_RDY (TIMING_ERROR_RDY) ,// output
90 .OUT_REQ (OUT_REQ) ,// output
91 .OUT_ACK (OUT_ACK) ,//INPUT
92 // AER
93 .AERIN_ADDR(AERIN_ADDR) , // [M−1:0 ]
94 .AERIN_REQ(AERIN_REQ) ,
95 .AERIN_ACK(AERIN_ACK) ,
96 .AERIN_TAR_EN(AERIN_TAR_EN) ,
97 .SAMPLE(SAMPLE) ,
98 .TIME_TICK(TIME_TICK) ,
99 .TARGET_VALID(TARGET_VALID) ,

100 .INFER_ACC(INFER_ACC) ,
101 // Output bus and con t r o l outputs
102 .OUT_DATA(OUT_DATA. source ) // output
103 ) ;
104
105
106
107 tb_dummy_memory #(
108 .MEMORY_SIZE(65) ,
109 .MEMORY_word(64) ,
110 .ADD_word(8 ) )
111 dut (
112 . c lk_i ( c l k ) ,
113 . enable_w ( enable_w ) ,
114 //OUTPUT
115 . spi_data ( spi_data ) ,
116 . s c l k ( s c l k ) ,
117 .done (done)
118
119 ) ;
120
121
122 cu cu
123 (
124 . c lk_i ( c l k ) ,
125 . rk_out_data_i (OUT_DATA. s ink . data ) ,
126 . rk_ISR_o(rk_ISR_o)
127
128 ) ;
129
130 always
131
132 begin
133 # ‘CLK_HALF_PERIOD c l k = 1;
134 # ‘CLK_HALF_PERIOD c l k = 0;
135 end
136
137
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138
139 endmodule

The result of this structural could be seen in the 3.13

3.4 Plans review

Once the presentation of the plan was made to the Pulpissimo and HWPE authors they have
suggested to change the configuration and the idea in one more robust using the Pulpissimo
modules already ready and tested, here below we report the proposed configuration by the
authors.

Figure 3.14: Final configuration

As it is possible to see the idea is straightforward: we use the uDMA for sending SPI
data, and we are using the L2 bank of memory to store all the possible configuration In this
way we could have multiple SNN configuration that could be loaded to Reckon whenever we
want.
Doing so we’ll be able to exclude the SOC from the pc and using independently for embedded
system.

Data wire that it is attached directly on Reckon’s SPI. The memory was design for be
able to send on the control unit a signal that inform the system that all the parameters are
sent correctly and it is named as Done. Done have a 0 for default and 1 when we reach the
bottom of the RAM.

3.5 uDMA

uDMA (micro Direct Memory Access) and DMA (Direct Memory Access) are both technologies
used to transfer data between different devices in a SOC without involving the central
processing unit CPU or request processor. However, there are some key differences between
them:

• Scale: uDMA is designed to be used in smaller especially for embedded systems
domain, while DMA is typically used in larger complex, systems for support heavy
memory translation.
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• Complexity: uDMA is generally simpler and has less functionality due his nature
compared to DMA, making it more suitable for smaller systems.

• Performance: Since DMA it was not designed for be less restricted it is generally faster
than uDMA due to its more advanced features and support for multiple channels and
multi peripheral structure. Indeed DMA allows for multiple data transfers to occur
simultaneously.

• Cost: uDMA is generally less expensive than DMA due to its simpler design and
smaller scale.

In summary, the choice between uDMA and DMA depends on the specific requirements
and constraints of a system; In Pulpissimo, embedded system oriented design, the choice of
uDMA was obvious.
Here we are going to see the central part about the Pulpissimo system in the soc domain.
In the architecture there are two separate part: the pad and the soc environment. The
environment could be enclose in various sub module that have multiple functionality and,
linked one to other, will produce the final result.

Figure 3.15: uDMA [9]

In the original project there are several unit that we are going to discover a little:

Top module

The uDMA subsystem is composed by a initial declaration that has the role to set up all
the parameter inside the generate statement embedded in the peripheral modules. Indeed,
the L2 parameter have the role to fix the value of the memory bank size in terms of address
and data width. Later the most important setting is refereed to the number of peripheral
port that we are going to have in the SOC.
This data it is important because will tailor the receiver and the sender bus based on the
number of port. In terms of interface we are going to see that there are a interface to receive
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data in memory with the L2_ro prefix and L2_wo for sending data in and from memory.
This interface it is casted to be an HWPE standard.

1 module udma_subsystem
2 #(
3 parameter L2_DATA_WIDTH = 32 ,
4 parameter L2_ADDR_WIDTH = 19 , //L2 addr space o f 2MB
5 parameter CAM_DATA_WIDTH = 8 ,
6 parameter APB_ADDR_WIDTH = 12 , //APB s l a v e s are 4KB by de f au l t
7 parameter TRANS_SIZE = 20 , //max uDMA tran sa c t i on s i z e o f 1MB
8 parameter N_SPI = 4 ,
9 parameter N_UART = 4 ,

10 parameter N_I2C = 1 ,
11 parameter N_HYPER = 1 ,
12
13 localparam N_PERIPH_MAX = 32
14 )
15 (
16 output l o g i c L2_ro_wen_o ,
17 output l o g i c L2_ro_req_o ,
18 input l o g i c L2_ro_gnt_i ,
19 output l o g i c [ 3 1 : 0 ] L2_ro_addr_o ,
20 output l o g i c [L2_DATA_WIDTH/8−1:0] L2_ro_be_o ,
21 output l o g i c [L2_DATA_WIDTH−1:0 ] L2_ro_wdata_o ,
22 input l o g i c L2_ro_rvalid_i ,
23 input l o g i c [L2_DATA_WIDTH−1:0 ] L2_ro_rdata_i ,
24
25 output l o g i c L2_wo_wen_o ,
26 output l o g i c L2_wo_req_o ,
27 input l o g i c L2_wo_gnt_i ,
28 output l o g i c [ 3 1 : 0 ] L2_wo_addr_o ,
29 output l o g i c [L2_DATA_WIDTH−1:0 ] L2_wo_wdata_o ,
30 output l o g i c [L2_DATA_WIDTH/8−1:0] L2_wo_be_o ,
31 input l o g i c L2_wo_rvalid_i ,
32 input l o g i c [L2_DATA_WIDTH−1:0 ] L2_wo_rdata_i ,

Always in the same module declaration we could see that there is some configuration
with the idea of using two clock signal and a reset trigger.

1 input l o g i c dft_test_mode_i ,
2 input l o g i c dft_cg_enable_i ,
3 input l o g i c sys_clk_i ,
4 input l o g i c sys_resetn_i ,
5 input l o g i c periph_clk_i ,

Then we have the interface that comunicate with the APB bus. This is done because we
could expect interrupt or other control signal from the rest of component

1
2 input l o g i c [APB_ADDR_WIDTH−1:0 ] udma_apb_paddr ,
3 input l o g i c [ 3 1 : 0 ] udma_apb_pwdata ,
4 input l o g i c udma_apb_pwrite ,
5 input l o g i c udma_apb_psel ,
6 input l o g i c udma_apb_penable ,
7 output l o g i c [ 3 1 : 0 ] udma_apb_prdata ,
8 output l o g i c udma_apb_pready ,
9 output l o g i c udma_apb_pslverr ,

10 output l o g i c [N_PERIPH_MAX∗4−1:0] events_o ,
11 input l o g i c event_valid_i ,
12 input l o g i c [ 7 : 0 ] event_data_i ,
13 output l o g i c event_ready_o ,

Here come the most important element for our task: the SPI.
Here is possible to see that there are a standard logic bus of spi. of course the Sclk is unique
but the data and the control signal are sized in view of the number of SPI that we want to
integrate in our system with the parametric N_SPI
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1 // SPIM
2 output l o g i c [N_SPI−1:0 ] spi_clk ,
3 output l o g i c [N_SPI−1:0 ] [ 3 : 0 ] spi_csn ,
4 output l o g i c [N_SPI−1:0 ] [ 3 : 0 ] spi_oen ,
5 output l o g i c [N_SPI−1:0 ] [ 3 : 0 ] spi_sdo ,
6 input l o g i c [N_SPI−1:0 ] [ 3 : 0 ] spi_sdi ,

Then we do not report the HDL for other port (I2C,UART,SDIO,I2S,HYPERBUS)
interfaces because will not be used for the moment but for completeness we will do a little
description, so later we are able to valuate a greater future substitution of SPI:

I2C is a serial communication protocol used for extra chip communication formed by two-
wire interface that uses a clock signal, controlled by master, and a data signal to transmit
data between devices (slave). The transition speed is from 100 kbps to 5 Mbps and Support
multiple slave recognized with incremental or arbitrary unique address on 7-bit and 10-bit
with bursting control and data information .Is important to underline that I2C are mostly
spread in sensors and EEPROMs memory.

Also, the UART have some similar feature: a transit line (TX) and a reception line (RX).
The master stream down data on TX for RX, and they are clocked internal for the speed
asynchronous. UART is Simple and easy to implement and also low cost and low power
consumption used commonly for long distance inclined for the total separation between the
SOCs.

Another peripheral that is implemented is the SDIO (Secure Digital Input Output) used
for high-speed communication between the host device and the peripheral device from 25
Mbps up to 104 Mbps.
Since it is streaming media and video oriented, due high-bandwidth data transfer, this allows
a fast burst of data on the peripheral output with also a low power consumption so ideal for
battery-powered devices such as drones or unnamed devices.
Another unit is serial communication protocol the Inter-IC Sound used to transmit digital
audio signals between integrated circuits over a single data line with separate clock and
control signals. I2S is commonly used in audio applications such as digital signal processing,
digital-to-analog converters (DACs), and audio codecs. It supports high-quality audio
with low noise and low distortion and is widely used in consumer and professional audio
equipment.

The last in the list is the HYPERBUS a new high-speed, low-power interface protocol
that was thought for fast communication between a host processor and high-performance
memory devices based on 12-pin interface and supports data transfer rates of up to 400
MB/s. Since it is really fast it is used to high-performance embedded applications that
require fast data transfer, such as automotive infotainment systems or industrial control
systems so that applications that require high-bandwidth memory access.
The SPI and I2C could not compete and probably will be the next implementation for reckon
if we want a top edge SOC.

signal and parameter setting

May seem that next part it is useless to be reporeted but this parameter and those signal
reppresent the backbone of the entire system:

1 localparam DEST_SIZE = 2 ;
2
3 localparam L2_AWIDTH_NOAL = L2_ADDR_WIDTH + 2 ;
4
5 localparam N_I2S = 1 ;
6 localparam N_CAM = 1 ;
7 localparam N_CSI2 = 0 ;
8 localparam N_SDIO = 1 ;
9 localparam N_JTAG = 0 ;

10 localparam N_MRAM = 0 ;
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11 localparam N_FILTER = 1 ;
12 localparam N_CH_HYPER = 8 ;
13 localparam N_FPGA = 0 ;
14 localparam N_EXT_PER = 0 ;
15
16 localparam N_RX_CHANNELS = N_SPI + N_HYPER + N_MRAM + N_JTAG + N_SDIO +

N_UART + N_I2C + N_I2S + N_CAM + 2∗N_CSI2 + N_FPGA + N_EXT_PER +
N_CH_HYPER;

17 localparam N_TX_CHANNELS = 2∗N_SPI + N_HYPER + N_MRAM + N_JTAG + N_SDIO +
N_UART + 2∗N_I2C + N_I2S + N_FPGA + N_EXT_PER + N_CH_HYPER;

18
19 localparam N_RX_EXT_CHANNELS = N_FILTER;
20 localparam N_TX_EXT_CHANNELS = 2∗N_FILTER;
21 localparam N_STREAMS = N_FILTER;
22 localparam STREAM_ID_WIDTH = 1;// c log2 (N_STREAMS)
23
24 localparam N_PERIPHS = N_SPI + N_HYPER + N_UART + N_MRAM + N_I2C + N_CAM +

N_I2S + N_CSI2 + N_SDIO + N_JTAG + N_FILTER + N_FPGA + N_EXT_PER +
N_CH_HYPER;

At this point we are going to define the parameter using the number of component inside
the system. At the next we are going to develop the standard logic size of the rx and tx bus

1 // Current ly s_events i s des igned for N_PERIPH=32. I f we change t h i s then
2 // make sure a l l the events are c o r r e c t l y mapped and connected .
3 i f (N_PERIPHS > N_PERIPH_MAX)
4 f a t a l (1 , "number o f events i s des igend f o r at most %d pe r i ph e r a l s " ,

N_PERIPH_MAX) ;
5
6 // TX Channels
7 localparam CH_ID_TX_UART = 0 ;
8 localparam CH_ID_TX_SPIM = N_UART;
9 localparam CH_ID_CMD_SPIM = CH_ID_TX_SPIM + N_SPI ;

10 localparam CH_ID_TX_I2C = CH_ID_CMD_SPIM + N_SPI ;
11 localparam CH_ID_CMD_I2C = CH_ID_TX_I2C + N_I2C ;
12 localparam CH_ID_TX_SDIO = CH_ID_CMD_I2C + N_I2C ;
13 localparam CH_ID_TX_I2S = CH_ID_TX_SDIO + N_SDIO ;
14 localparam CH_ID_TX_CAM = CH_ID_TX_I2S + N_I2S ;
15 localparam CH_ID_TX_HYPER = CH_ID_TX_CAM + N_CAM ;
16 // Tx Ext Channel
17 localparam CH_ID_TX_EXT_PER = CH_ID_TX_HYPER + N_HYPER + N_CH_HYPER;
18
19
20 // RX Channels
21 localparam CH_ID_RX_UART = 0 ;
22 localparam CH_ID_RX_SPIM = N_UART;
23 localparam CH_ID_RX_I2C = CH_ID_RX_SPIM + N_SPI ;
24 localparam CH_ID_RX_SDIO = CH_ID_RX_I2C + N_I2C ;
25 localparam CH_ID_RX_I2S = CH_ID_RX_SDIO + N_SDIO ;
26 localparam CH_ID_RX_CAM = CH_ID_RX_I2S + N_I2S ;
27 localparam CH_ID_RX_HYPER = CH_ID_RX_CAM + N_CAM ;
28 // Rx Ext Channel
29 localparam CH_ID_RX_EXT_PER = CH_ID_RX_HYPER + N_HYPER + N_CH_HYPER;
30
31 // Stream Channel
32 localparam STREAM_ID_FILTER = 0 ;
33
34 localparam CH_ID_EXT_TX_FILTER = 0 ;
35 localparam CH_ID_EXT_RX_FILTER = 0 ;
36
37 localparam PER_ID_UART = 0 ;
38 localparam PER_ID_SPIM = PER_ID_UART + N_UART ;
39 localparam PER_ID_I2C = PER_ID_SPIM + N_SPI ;
40 localparam PER_ID_SDIO = PER_ID_I2C + N_I2C ;
41 localparam PER_ID_I2S = PER_ID_SDIO + N_SDIO ;
42 localparam PER_ID_CAM = PER_ID_I2S + N_I2S ;
43 localparam PER_ID_FILTER = PER_ID_CAM + N_CAM ;
44 localparam PER_ID_HYPER = PER_ID_FILTER + N_FILTER ;
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45 localparam PER_ID_EXT_PER = PER_ID_HYPER + N_HYPER + N_CH_HYPER;

core

Before going deep witH the SPI logic we are going to see how the core is connected with the
other external peripheral. Each component have an independent interface that will be used
to control the stream of data for and inside the core

1 udma_core #(
2 .L2_AWIDTH_NOAL ( L2_AWIDTH_NOAL ) ,
3 .L2_DATA_WIDTH ( L2_DATA_WIDTH ) ,
4 .DATA_WIDTH ( 32 ) ,
5 .N_RX_LIN_CHANNELS ( N_RX_CHANNELS ) ,
6 .N_TX_LIN_CHANNELS ( N_TX_CHANNELS ) ,
7 .N_RX_EXT_CHANNELS ( N_RX_EXT_CHANNELS ) ,
8 .N_TX_EXT_CHANNELS ( N_TX_EXT_CHANNELS ) ,
9 .N_STREAMS ( N_STREAMS ) ,

10 .STREAM_ID_WIDTH ( STREAM_ID_WIDTH ) ,
11 .TRANS_SIZE ( TRANS_SIZE ) ,
12 .N_PERIPHS ( N_PERIPHS ) ,
13 .APB_ADDR_WIDTH ( APB_ADDR_WIDTH )
14 ) i_udmacore (
15 . sys_clk_i ( sys_clk_i ) ,
16 . per_clk_i ( periph_clk_i ) ,
17
18 . dft_cg_enable_i ( dft_cg_enable_i ) ,
19
20 .HRESETn ( sys_resetn_i ) ,
21
22 .PADDR ( udma_apb_paddr ) ,
23 .PWDATA ( udma_apb_pwdata ) ,
24 .PWRITE ( udma_apb_pwrite ) ,
25 .PSEL ( udma_apb_psel ) ,
26 .PENABLE ( udma_apb_penable ) ,
27 .PRDATA ( udma_apb_prdata ) ,
28 .PREADY ( udma_apb_pready ) ,
29 .PSLVERR ( udma_apb_pslverr ) ,
30
31 . periph_per_clk_o ( s_clk_periphs_per ) ,
32 . periph_sys_clk_o ( s_clk_periphs_core ) ,
33
34 . event_val id_i ( event_val id_i ) ,
35 . event_data_i ( event_data_i ) ,
36 . event_ready_o ( event_ready_o ) ,
37
38 . event_o ( s_tr igger_events ) ,
39
40 . periph_data_to_o ( s_periph_data_to ) ,
41 . periph_addr_o ( s_periph_addr ) ,
42 . periph_data_from_i ( s_periph_data_from ) ,
43 . periph_ready_i ( s_periph_ready ) ,
44 . periph_valid_o ( s_periph_valid ) ,
45 . periph_rwn_o ( s_periph_rwn ) ,
46
47 . tx_l2_req_o ( L2_ro_req_o ) ,
48 . tx_l2_gnt_i ( L2_ro_gnt_i ) ,
49 . tx_l2_addr_o ( L2_ro_addr_o ) ,
50 . tx_l2_rdata_i ( L2_ro_rdata_i ) ,
51 . tx_l2_rval id_i ( L2_ro_rvalid_i ) ,
52
53 . rx_l2_req_o ( L2_wo_req_o ) ,
54 . rx_l2_gnt_i ( L2_wo_gnt_i ) ,
55 . rx_l2_addr_o ( L2_wo_addr_o ) ,
56 . rx_l2_be_o ( L2_wo_be_o ) ,
57 . rx_l2_wdata_o ( L2_wo_wdata_o ) ,
58
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59 . stream_data_o ( s_stream_data ) ,
60 . stream_datasize_o ( s_stream_datasize ) ,
61 . stream_valid_o ( s_stream_valid ) ,
62 . stream_sot_o ( s_stream_sot ) ,
63 . stream_eot_o ( s_stream_eot ) ,
64 . stream_ready_i ( s_stream_ready ) ,
65
66 . tx_lin_req_i ( s_tx_ch_req ) ,
67 . tx_lin_gnt_o ( s_tx_ch_gnt ) ,
68 . tx_lin_valid_o ( s_tx_ch_valid ) ,
69 . tx_lin_data_o ( s_tx_ch_data ) ,
70 . tx_lin_ready_i ( s_tx_ch_ready ) ,
71 . tx_l in_datas ize_i ( s_tx_ch_datasize ) ,
72 . tx_l in_dest inat ion_i ( s_tx_ch_destination ) ,
73 . tx_lin_events_o ( s_tx_ch_events ) ,
74 . tx_lin_en_o ( s_tx_ch_en ) ,
75 . tx_lin_pending_o ( s_tx_ch_pending ) ,
76 . tx_lin_curr_addr_o ( s_tx_ch_curr_addr ) ,
77 . tx_lin_bytes_left_o ( s_tx_ch_bytes_left ) ,
78 . tx_lin_cfg_startaddr_i ( s_tx_cfg_startaddr ) ,
79 . tx_l in_cfg_size_i ( s_tx_cfg_size ) ,
80 . tx_lin_cfg_continuous_i ( s_tx_cfg_continuous ) ,
81 . tx_lin_cfg_en_i ( s_tx_cfg_en ) ,
82 . tx_lin_cfg_clr_i ( s_tx_cfg_clr ) ,
83
84 . rx_lin_val id_i ( s_rx_ch_valid ) ,
85 . rx_lin_data_i ( s_rx_ch_data ) ,
86 . rx_lin_ready_o ( s_rx_ch_ready ) ,
87 . rx_l in_datas ize_i ( s_rx_ch_datasize ) ,
88 . rx_l in_dest inat ion_i ( s_rx_ch_destination ) ,
89 . rx_lin_events_o ( s_rx_ch_events ) ,
90 . rx_lin_en_o ( s_rx_ch_en ) ,
91 . rx_lin_pending_o ( s_rx_ch_pending ) ,
92 . rx_lin_curr_addr_o ( s_rx_ch_curr_addr ) ,
93 . rx_lin_bytes_left_o ( s_rx_ch_bytes_left ) ,
94 . rx_lin_cfg_startaddr_i ( s_rx_cfg_startaddr ) ,
95 . rx_l in_cfg_size_i ( s_rx_cfg_size ) ,
96 . rx_lin_cfg_continuous_i ( s_rx_cfg_continuous ) ,
97 . rx_lin_cfg_stream_i ( s_rx_cfg_stream ) ,
98 . rx_lin_cfg_stream_id_i ( s_rx_cfg_stream_id ) ,
99 . rx_lin_cfg_en_i ( s_rx_cfg_en ) ,

100 . rx_lin_cfg_clr_i ( s_rx_cfg_clr ) ,
101
102 . rx_ext_addr_i ( s_rx_ext_addr ) ,
103 . rx_ext_datasize_i ( s_rx_ext_datasize ) ,
104 . rx_ext_dest inat ion_i ( s_rx_ext_destination ) ,
105 . rx_ext_stream_i ( s_rx_ext_stream ) ,
106 . rx_ext_stream_id_i ( s_rx_ext_stream_id ) ,
107 . rx_ext_sot_i ( s_rx_ext_sot ) ,
108 . rx_ext_eot_i ( s_rx_ext_eot ) ,
109 . rx_ext_valid_i ( s_rx_ext_valid ) ,
110 . rx_ext_data_i ( s_rx_ext_data ) ,
111 . rx_ext_ready_o ( s_rx_ext_ready ) ,
112
113 . tx_ext_req_i ( s_tx_ext_req ) ,
114 . tx_ext_datasize_i ( s_tx_ext_datasize ) ,
115 . tx_ext_dest inat ion_i ( s_tx_ext_destination ) ,
116 . tx_ext_addr_i ( s_tx_ext_addr ) ,
117 . tx_ext_gnt_o ( s_tx_ext_gnt ) ,
118 . tx_ext_valid_o ( s_tx_ext_valid ) ,
119 . tx_ext_data_o ( s_tx_ext_data ) ,
120 . tx_ext_ready_i ( s_tx_ext_ready )
121
122 ) ;

Since the other interface for the moment will not be taken in consideration we are going
to see something more interesting about the SPI interface.
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The interface it was developed for generic structure of interface and with a generic recurrent
statement it is possibe to cast a multi SPI ports.

1
2 //PER_ID 1
3 generate
4 for ( genvar g_spi=0;g_spi<N_SPI ; g_spi++)
5 begin : i_spim_gen
6 a s s i gn s_events [ 4 ∗ (PER_ID_SPIM+g_spi )+0] = s_rx_ch_events [CH_ID_RX_SPIM+g_spi

] ;
7 a s s i gn s_events [ 4 ∗ (PER_ID_SPIM+g_spi )+1] = s_tx_ch_events [CH_ID_TX_SPIM+g_spi

] ;
8 a s s i gn s_events [ 4 ∗ (PER_ID_SPIM+g_spi )+2] = s_tx_ch_events [CH_ID_CMD_SPIM+g_spi

] ;
9 a s s i gn s_events [ 4 ∗ (PER_ID_SPIM+g_spi )+3] = s_spi_eot [ g_spi ] ;

10
11 a s s i gn s_rx_cfg_stream [CH_ID_RX_SPIM+g_spi ] = ’ h0 ;
12 a s s i gn s_rx_cfg_stream_id [CH_ID_RX_SPIM+g_spi ] = ’ h0 ;
13 a s s i gn s_rx_ch_destination [CH_ID_RX_SPIM+g_spi ] = ’ h0 ;
14 a s s i gn s_tx_ch_destination [CH_ID_TX_SPIM+g_spi ] = ’ h0 ;
15 a s s i gn s_tx_ch_destination [CH_ID_CMD_SPIM+g_spi ] = ’ h0 ;
16 udma_spim_top
17 #(
18 .L2_AWIDTH_NOAL ( L2_AWIDTH_NOAL ) ,
19 .TRANS_SIZE ( TRANS_SIZE )
20 ) i_spim (
21 . sys_clk_i ( s_clk_periphs_core [PER_ID_SPIM+g_spi ] ) ,
22 . periph_clk_i ( s_clk_periphs_per [PER_ID_SPIM+g_spi ] ) ,
23 . r s tn_i ( sys_resetn_i ) ,
24 . dft_test_mode_i ( dft_test_mode_i ) ,
25 . dft_cg_enable_i ( dft_cg_enable_i ) ,
26 . spi_eot_o ( s_spi_eot [ g_spi ] ) ,
27 . spi_event_i ( s_tr igger_events ) ,
28 . spi_clk_o ( sp i_clk [ g_spi ] ) ,
29 . spi_csn0_o ( spi_csn [ g_spi ] [ 0 ] ) ,
30 . spi_csn1_o ( spi_csn [ g_spi ] [ 1 ] ) ,
31 . spi_csn2_o ( spi_csn [ g_spi ] [ 2 ] ) ,
32 . spi_csn3_o ( spi_csn [ g_spi ] [ 3 ] ) ,
33 . spi_oen0_o ( spi_oen [ g_spi ] [ 0 ] ) ,
34 . spi_oen1_o ( spi_oen [ g_spi ] [ 1 ] ) ,
35 . spi_oen2_o ( spi_oen [ g_spi ] [ 2 ] ) ,
36 . spi_oen3_o ( spi_oen [ g_spi ] [ 3 ] ) ,
37 . spi_sdo0_o ( spi_sdo [ g_spi ] [ 0 ] ) ,
38 . spi_sdo1_o ( spi_sdo [ g_spi ] [ 1 ] ) ,
39 . spi_sdo2_o ( spi_sdo [ g_spi ] [ 2 ] ) ,
40 . spi_sdo3_o ( spi_sdo [ g_spi ] [ 3 ] ) ,
41 . spi_sdi0_i ( sp i_sd i [ g_spi ] [ 0 ] ) ,
42 . spi_sdi1_i ( sp i_sd i [ g_spi ] [ 1 ] ) ,
43 . spi_sdi2_i ( sp i_sd i [ g_spi ] [ 2 ] ) ,
44 . spi_sdi3_i ( sp i_sd i [ g_spi ] [ 3 ] ) ,
45
46 . cfg_data_i ( s_periph_data_to ) ,
47 . cfg_addr_i ( s_periph_addr ) ,
48 . c fg_val id_i ( s_periph_valid [PER_ID_SPIM+g_spi ] ) ,
49 . cfg_rwn_i ( s_periph_rwn ) ,
50 . cfg_data_o ( s_periph_data_from [PER_ID_SPIM+g_spi ] ) ,
51 . cfg_ready_o ( s_periph_ready [PER_ID_SPIM+g_spi ] ) ,
52
53 . cmd_req_o ( s_tx_ch_req [CH_ID_CMD_SPIM+g_spi ] ) ,
54 . cmd_gnt_i ( s_tx_ch_gnt [CH_ID_CMD_SPIM+g_spi ] ) ,
55 . cmd_datasize_o ( s_tx_ch_datasize [CH_ID_CMD_SPIM+g_spi ] ) ,
56 . cmd_i ( s_tx_ch_data [CH_ID_CMD_SPIM+g_spi ] ) ,
57 . cmd_valid_i ( s_tx_ch_valid [CH_ID_CMD_SPIM+g_spi ] ) ,
58 . cmd_ready_o ( s_tx_ch_ready [CH_ID_CMD_SPIM+g_spi ] ) ,
59
60 . data_tx_req_o ( s_tx_ch_req [CH_ID_TX_SPIM+g_spi ] ) ,
61 . data_tx_gnt_i ( s_tx_ch_gnt [CH_ID_TX_SPIM+g_spi ] ) ,
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62 . data_tx_datasize_o ( s_tx_ch_datasize [CH_ID_TX_SPIM+g_spi ] ) ,
63 . data_tx_i ( s_tx_ch_data [CH_ID_TX_SPIM+g_spi ] ) ,
64 . data_tx_valid_i ( s_tx_ch_valid [CH_ID_TX_SPIM+g_spi ] ) ,
65 . data_tx_ready_o ( s_tx_ch_ready [CH_ID_TX_SPIM+g_spi ] ) ,
66
67 . data_rx_datasize_o ( s_rx_ch_datasize [CH_ID_RX_SPIM+g_spi ] ) ,
68 . data_rx_o ( s_rx_ch_data [CH_ID_RX_SPIM+g_spi ] ) ,
69 . data_rx_valid_o ( s_rx_ch_valid [CH_ID_RX_SPIM+g_spi ] ) ,
70 . data_rx_ready_i ( s_rx_ch_ready [CH_ID_RX_SPIM+g_spi ] ) ,
71
72 . cfg_cmd_startaddr_o ( s_tx_cfg_startaddr [CH_ID_CMD_SPIM+g_spi ] ) ,
73 . cfg_cmd_size_o ( s_tx_cfg_size [CH_ID_CMD_SPIM+g_spi ] ) ,
74 . cfg_cmd_continuous_o ( s_tx_cfg_continuous [CH_ID_CMD_SPIM+g_spi ] ) ,
75 . cfg_cmd_en_o ( s_tx_cfg_en [CH_ID_CMD_SPIM+g_spi ] ) ,
76 . cfg_cmd_clr_o ( s_tx_cfg_clr [CH_ID_CMD_SPIM+g_spi ] ) ,
77 . cfg_cmd_en_i ( s_tx_ch_en [CH_ID_CMD_SPIM+g_spi ] ) ,
78 . cfg_cmd_pending_i ( s_tx_ch_pending [CH_ID_CMD_SPIM+g_spi ] ) ,
79 . cfg_cmd_curr_addr_i ( s_tx_ch_curr_addr [CH_ID_CMD_SPIM+g_spi ] ) ,
80 . cfg_cmd_bytes_left_i ( s_tx_ch_bytes_left [CH_ID_CMD_SPIM+g_spi ] ) ,
81
82 . cfg_tx_startaddr_o ( s_tx_cfg_startaddr [CH_ID_TX_SPIM+g_spi ] ) ,
83 . cfg_tx_size_o ( s_tx_cfg_size [CH_ID_TX_SPIM+g_spi ] ) ,
84 . cfg_tx_continuous_o ( s_tx_cfg_continuous [CH_ID_TX_SPIM+g_spi ] ) ,
85 . cfg_tx_en_o ( s_tx_cfg_en [CH_ID_TX_SPIM+g_spi ] ) ,
86 . cfg_tx_clr_o ( s_tx_cfg_clr [CH_ID_TX_SPIM+g_spi ] ) ,
87 . cfg_tx_en_i ( s_tx_ch_en [CH_ID_TX_SPIM+g_spi ] ) ,
88 . cfg_tx_pending_i ( s_tx_ch_pending [CH_ID_TX_SPIM+g_spi ] ) ,
89 . cfg_tx_curr_addr_i ( s_tx_ch_curr_addr [CH_ID_TX_SPIM+g_spi ] ) ,
90 . cfg_tx_bytes_left_i ( s_tx_ch_bytes_left [CH_ID_TX_SPIM+g_spi ] ) ,
91
92 . cfg_rx_startaddr_o ( s_rx_cfg_startaddr [CH_ID_RX_SPIM+g_spi ] ) ,
93 . cfg_rx_size_o ( s_rx_cfg_size [CH_ID_RX_SPIM+g_spi ] ) ,
94 . cfg_rx_continuous_o ( s_rx_cfg_continuous [CH_ID_RX_SPIM+g_spi ] ) ,
95 . cfg_rx_en_o ( s_rx_cfg_en [CH_ID_RX_SPIM+g_spi ] ) ,
96 . cfg_rx_clr_o ( s_rx_cfg_clr [CH_ID_RX_SPIM+g_spi ] ) ,
97 . cfg_rx_en_i ( s_rx_ch_en [CH_ID_RX_SPIM+g_spi ] ) ,
98 . cfg_rx_pending_i ( s_rx_ch_pending [CH_ID_RX_SPIM+g_spi ] ) ,
99 . cfg_rx_curr_addr_i ( s_rx_ch_curr_addr [CH_ID_RX_SPIM+g_spi ] ) ,

100 . cfg_rx_bytes_left_i ( s_rx_ch_bytes_left [CH_ID_RX_SPIM+g_spi ] )
101 ) ;
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3.6 SPI

In the next section we are going to see the most important component that is central for
our target: the SPI module. This component has a specific integration that would be taken
in consideration.
Befor going further i will introduce better the SPI. SPI is a synchronous serial communication
protocol that is widely used to transfer data between modules and Soc that allows devices
to communicate with each other using a minimum of wires or interconnection. The master-
slave architecture it is designed to be monolithic and centralized : one device acts as the
master and controls the clock signal, while the other device(s) act as slaves and receive or
transmit data as directed by the master in a data transferred bit-by-bit in full duplex mode.
The SPI protocol supports multiple slave devices, which can be connected to a single master
and addressed individually, This is really important because in the application that we are
developing we could create a cluster of different neuromorifc agent for example. Since there
is only one wire and the synchronization of the data is not required this protocol is suitable
for applications that require fast data transfer using high rate of the clock. Regarding the
most important signal we have in general the Chip Select (CS) signal to select the slave
device from the master, but will not be used for our proposes.
Regarding the Data frame format SPI protocol is typically used in 8 bits but in this
application is sized to 32

Despite its advantages, the SPI protocol it is limited in its support for long-distance
communication, and it may not be the best choice for applications that require large amounts
of data to be transferred over long distances and supports a limited number of devices
(usually up to 8) on a single bus, which may not be sufficient for large-scale systems. These
two disadvantages are not affecting our design because we have only one Coprocessor.
A problem that could be however affecting our process is the data transfer rate of the
SPI protocol limited by the speed of the clock signal if not well-designed and electronically
efficient. Anyway the SPI is great for an initial prototype but for a more sophisticated
board we will need a faster protocol that could be used online and offline in writing process
to Reckon while it is running. Here the interface code

1 module udma_spim_top
2 #(
3 parameter L2_AWIDTH_NOAL = 12 ,
4 parameter TRANS_SIZE = 16 ,
5 parameter REPLAY_BUFFER_DEPTH = 6
6 )
7 (
8 input l o g i c sys_clk_i ,
9 input l o g i c periph_clk_i ,

10 input l o g i c rstn_i ,
11 input l o g i c dft_test_mode_i ,
12 input l o g i c dft_cg_enable_i ,
13 output l o g i c spi_eot_o ,
14 input l o g i c [ 3 : 0 ] spi_event_i ,
15 input l o g i c [ 3 1 : 0 ] cfg_data_i ,
16 input l o g i c [ 4 : 0 ] cfg_addr_i ,
17 input l o g i c cfg_val id_i ,
18 input l o g i c cfg_rwn_i ,
19 output l o g i c [ 3 1 : 0 ] cfg_data_o ,
20 output l o g i c cfg_ready_o ,
21 output l o g i c [L2_AWIDTH_NOAL−1:0 ] cfg_cmd_startaddr_o ,
22 output l o g i c [TRANS_SIZE−1:0 ] cfg_cmd_size_o ,
23 output l o g i c cfg_cmd_continuous_o ,
24 output l o g i c cfg_cmd_en_o ,
25 output l o g i c cfg_cmd_clr_o ,
26 input l o g i c cfg_cmd_en_i ,
27 input l o g i c cfg_cmd_pending_i ,
28 input l o g i c [L2_AWIDTH_NOAL−1:0 ] cfg_cmd_curr_addr_i ,
29 input l o g i c [TRANS_SIZE−1:0 ] cfg_cmd_bytes_left_i ,
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30
31 output l o g i c [L2_AWIDTH_NOAL−1:0 ] cfg_rx_startaddr_o ,
32 output l o g i c [TRANS_SIZE−1:0 ] cfg_rx_size_o ,
33 output l o g i c cfg_rx_continuous_o ,
34 output l o g i c cfg_rx_en_o ,
35 output l o g i c cfg_rx_clr_o ,
36 input l o g i c cfg_rx_en_i ,
37 input l o g i c cfg_rx_pending_i ,
38 input l o g i c [L2_AWIDTH_NOAL−1:0 ] cfg_rx_curr_addr_i ,
39 input l o g i c [TRANS_SIZE−1:0 ] cfg_rx_bytes_left_i ,
40
41 output l o g i c [L2_AWIDTH_NOAL−1:0 ] cfg_tx_startaddr_o ,
42 output l o g i c [TRANS_SIZE−1:0 ] cfg_tx_size_o ,
43 output l o g i c cfg_tx_continuous_o ,
44 output l o g i c cfg_tx_en_o ,
45 output l o g i c cfg_tx_clr_o ,
46 input l o g i c cfg_tx_en_i ,
47 input l o g i c cfg_tx_pending_i ,
48 input l o g i c [L2_AWIDTH_NOAL−1:0 ] cfg_tx_curr_addr_i ,
49 input l o g i c [TRANS_SIZE−1:0 ] cfg_tx_bytes_left_i ,
50
51 output l o g i c cmd_req_o ,
52 input l o g i c cmd_gnt_i ,
53 output l o g i c [ 1 : 0 ] cmd_datasize_o ,
54 input l o g i c [ 3 1 : 0 ] cmd_i ,
55 input l o g i c cmd_valid_i ,
56 output l o g i c cmd_ready_o ,
57
58 output l o g i c data_tx_req_o ,
59 input l o g i c data_tx_gnt_i ,
60 output l o g i c [ 1 : 0 ] data_tx_datasize_o ,
61 input l o g i c [ 3 1 : 0 ] data_tx_i ,
62 input l o g i c data_tx_valid_i ,
63 output l o g i c data_tx_ready_o ,
64
65 output l o g i c [ 1 : 0 ] data_rx_datasize_o ,
66 output l o g i c [ 3 1 : 0 ] data_rx_o ,
67 output l o g i c data_rx_valid_o ,
68 input l o g i c data_rx_ready_i ,
69
70 output l o g i c spi_clk_o ,
71 output l o g i c spi_csn0_o ,
72 output l o g i c spi_csn1_o ,
73 output l o g i c spi_csn2_o ,
74 output l o g i c spi_csn3_o ,
75 output l o g i c spi_oen0_o ,
76 output l o g i c spi_oen1_o ,
77 output l o g i c spi_oen2_o ,
78 output l o g i c spi_oen3_o ,
79 output l o g i c spi_sdo0_o ,
80 output l o g i c spi_sdo1_o ,
81 output l o g i c spi_sdo2_o ,
82 output l o g i c spi_sdo3_o ,
83 input l o g i c spi_sdi0_i ,
84 input l o g i c spi_sdi1_i ,
85 input l o g i c spi_sdi2_i ,
86 input l o g i c spi_sdi3_i
87 ) ;

Beside the verbosity of this module it is important to understand that could be compressed
logically in 4 sub parts:

• Generic: it is not directly part of communication as clock or reset and other configuration
type signal .

• Cfg: The configuration signal is made to fix the behavior in the register and in the
governing state machines.
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• Cmd: It is the resultant of a specific action that impose an action using the control
signal produced by the FSM.

• Data: It is the actual stream

• SPI : Is the SPI interface for controlling an SPI modules

Then inside the architecture declaration it is possible to see that there are some module

• udma_spim_reg_if

• udma_clkgen

• udma_dc_fifo

• io_tx_fifo

• udma_dc_fifo

• io_tx_fifo

• udma_dc_fifo

• udma_spim_ctrl

• udma_spim_txrx

• edge_propagator

All this structural module are functional to transmit data down to an SPI wiring.
Indeed, in the udma_spim_reg_if is the most important component because control the
behavior of the system with this command specification:

Command name Command field Description
SPI_CMD_CFG 0x0 Sets the configuration for the SPI Master IP
SPI_CMD_SOT 0x1 Sets the Chip Select (CS)
SPI_CMD_SEND_CMD 0x2 Transmits up to 16bits of data sent in the command
SPI_CMD_DUMMY 0x4 Receives a number of dummy bits
SPI_CMD_WAIT 0x5 Waits an external event to move to the next instruction
SPI_CMD_TX_DATA 0x6 Sends data (max 256Kbits)
SPI_CMD_RX_DATA 0x7 Receives data (max 256Kbits)
SPI_CMD_RPT 0x8 Repeat the commands until RTP_END for N times
SPI_CMD_EOT 0x9 Clears the Chip Select (CS)
SPI_CMD_RPT_END 0xA End of the repeat loop command
SPI_CMD_RX_CHECK 0xB Checks up to 16 bits of data against an expected value
SPI_CMD_FULL_DUPL 0xC Activate full duplex mode
SPI_CMD_SETUP_UCA 0xD Sets address for uDMA tx/rx channel
SPI_CMD_SETUP_UCS 0xE Sets size and starts uDMA tx/rx channel

All the hexadecimal command could be sent through the spi command from outside the
SPI core. This register are placed and controlled by the uDMA core.



CHAPTER 4

Results and Discussion

We will now implement the proposed configuration and analyze the results obtained from
simulations and tests to evaluate its effectiveness. The implementation involves designing
and configuring the system, integrating components, and testing for functionality and performance.
The analysis includes evaluating the system’s performance, reliability, and scalability. The
discussion of results highlights strengths, weaknesses, and recommendations for future improvements.
Overall, the implementation and analysis provide valuable insights into the proposed configuration’s
potential applications and limitations.

4.1 Results

Pulpissimo simulation toolchain

Now that almost all the single module are studied analyzed and simulated it comes the time
to spend some effort to the final procedure to simulate and build the simulation.
Since this operation was made in a remote Ubuntu 18.04 server that was configured whit
module feature we need in first place call the modules that we need to load the correct
specification.

Figure 4.1: Pulpissimo Toolchain

79
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The relative bash code could be seen here below
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1 module load t o o l s /mentor/ a l l
2 module unload t o o l s /mentor/ ca tapu l t /2022−23
3
4 export PULP_RISCV_GCC_TOOLCHAIN=/home/damone/ r i s cv−nn−t oo l cha in
5 export PATH=$PULP_RISCV_GCC_TOOLCHAIN/bin :$PATH
6
7
8
9 cd pu lp i s s imo

10 make checkout
11 source setup /vsim . sh
12 make bu i ld
13 cd
14
15 cd pulp−runtime
16 source c on f i g s / pu lp i s s imo . sh
17 cd
18
19
20
21
22 # SPI reg r e s s i on t e s t
23 cd r e g r e s s i o n_t e s t s / p e r i ph e r a l s / spim_flash
24 make c l ean a l l
25 make run gui=1 bootmode=fast_debug
26 cd

4.1.1 Hello pulpissimo

Once the last command is sent the Questasim will load the example contained in the runtime
example. Here below the content:

1 #inc lude <s t d i o . h>
2
3 i n t main ( )
4 {
5 printf ( " He l lo Pulpiss imo ! \ n" ) ;
6
7 return 0 ;
8 }

And the result is linear with the output, indeed write the printf on the Questasim
transcript. This introductory example is not enough to show the power of PULP platform
we need something that go down on the uDMA

4.1.2 UART pulpissimo

1 #inc lude <s t d i o . h>
2 #inc lude <pulp . h>
3 #inc lude <s t d i n t . h>
4
5 #de f ine BUFFER_SIZE 256
6
7 uint8_t tx_buf fer [BUFFER_SIZE ] ;
8
9

10 i n t main ( )
11 {
12 printf ( "Enter ing t e s t \n" ) ;
13
14 i f ( uart_open (0 , 115200) )
15 return −1;
16
17
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18 for ( i n t i =0; i<BUFFER_SIZE; i++)
19 {
20 tx_buf fer [ i ] = i ;
21 }
22
23 uart_write (0 , tx_buffer , BUFFER_SIZE) ;
24
25 uart_c lose (0 ) ;
26
27 return 0 ;
28 }

This snippet demonstrates how we can use PULP Platform’s UART interface.
To fully understand the flow we need to go in deep on the description of what the code does:
On first move the code includes the header files for using the PULP Platform as well as the
standard C library . Then we will declare BUFFER_SIZE with a value of 256 and declares
an array namely tx_buffer to hold the data that will be sent over the UART interface. Then
we are moving in the main with a check if the uart is opend in that case we call an error.
In next we are going to call a for loop used to fill the tx_buffer array with consecutive
numbers from 0 to 255 and later we call the uart_write() function to send the contents of
tx_buffer over the UART interface down to uDMA.
Regarding the procedure the most important and central function is related to the uart_write()
function: the first argument is the ID of the UART interface that we want to use and the
second argument is a pointer to the data to be sent (tx_buffer), and the third argument is
the number of bytes to be sent. This simple example is designed to show how the Pulpissimo
manage the uDMA.

For demonstration reason we have reduced the data send from 256 to only 10 and the
result could be seen in next two figure

Figure 4.2: UART sending

4.1.3 Regression test of SPI

The next section we are going to view a more complex example that was pointed by the
authors: The regression test example. here below we print the bash commands

1 module load t o o l s /mentor/ a l l
2 module unload t o o l s /mentor/ ca tapu l t /2022−23
3
4 export PULP_RISCV_GCC_TOOLCHAIN=/home/damone/ r i s cv−nn−t oo l cha in
5 export PATH=$PULP_RISCV_GCC_TOOLCHAIN/bin :$PATH
6
7
8
9 cd pu lp i s s imo

10 make checkout
11 source setup /vsim . sh
12 make bu i ld
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13 cd
14
15 cd pulp−runtime
16 source c on f i g s / pu lp i s s imo . sh
17 cd
18
19
20
21
22 # SPI reg r e s s i on t e s t
23 cd r e g r e s s i o n_t e s t s / p e r i ph e r a l s / spim_flash
24 make c l ean a l l
25 make run gui=1 bootmode=fast_debug
26 cd

And here the code++

1 #inc lude <s t d i o . h>
2 #inc lude " pulp . h"
3 #inc lude " f lash_page . h"
4
5 #de f ine REG_PADFUN0_OFFSET 0x10
6 #de f ine REG_PADFUN1_OFFSET 0x14
7 #de f ine REG_PADFUN2_OFFSET 0x18
8 #de f ine REG_PADFUN3_OFFSET 0x1C
9 #de f ine REG_PADCFG0_OFFSET 0x24

10 #de f ine REG_PADCFG1_OFFSET 0x28
11 #de f ine REG_PADCFG2_OFFSET 0x2C
12 #de f ine REG_PADCFG3_OFFSET 0x30
13 #de f ine REG_PADCFG4_OFFSET 0x34
14 #de f ine REG_PADCFG5_OFFSET 0x38
15 #de f ine REG_PADCFG6_OFFSET 0x3C
16 #de f ine REG_PADCFG7_OFFSET 0x40
17 #de f ine REG_PADCFG8_OFFSET 0x44
18 #de f ine REG_PADCFG9_OFFSET 0x48
19 #de f ine REG_PADCFG10_OFFSET 0x4C
20 #de f ine REG_PADCFG11_OFFSET 0x50
21 #de f ine REG_PADCFG12_OFFSET 0x54
22 #de f ine REG_PADCFG13_OFFSET 0x58
23 #de f ine REG_PADCFG14_OFFSET 0x5C
24 #de f ine REG_PADCFG15_OFFSET 0x60
25
26 #de f ine OUT 1
27 #de f ine IN 0
28
29 #de f ine BUFFER_SIZE 16
30
31 #de f ine TEST_PAGE_SIZE 256
32
33 i n t pad_fun_offset [ 4 ] = {REG_PADFUN0_OFFSET,REG_PADFUN1_OFFSET,

REG_PADFUN2_OFFSET,REG_PADFUN3_OFFSET} ;
34 i n t pad_cfg_offset [ 1 6 ] = {REG_PADCFG0_OFFSET,REG_PADCFG1_OFFSET,

REG_PADCFG2_OFFSET,REG_PADCFG3_OFFSET,REG_PADCFG4_OFFSET,
REG_PADCFG5_OFFSET,REG_PADCFG6_OFFSET,REG_PADCFG7_OFFSET,
REG_PADCFG8_OFFSET,REG_PADCFG9_OFFSET,REG_PADCFG10_OFFSET,
REG_PADCFG11_OFFSET,REG_PADCFG12_OFFSET,REG_PADCFG13_OFFSET,
REG_PADCFG14_OFFSET,REG_PADCFG15_OFFSET} ;

35
36 s t a t i c i n l i n e void wait_cyc les ( const unsigned c y c l e s )
37 {
38 [ . . . ]
39 }
40
41
42
43 uint32_t conf igure_gpio ( uint32_t number , uint32_t d i r e c t i on , uint32_t

a l t e r n a t e ) {
44 uint32_t which_reg_fun = number / 16 ; // select the c o r r e c t r e g i s t e r
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45 uint32_t address = ARCHI_APB_SOC_CTRL_ADDR + pad_fun_offset [ which_reg_fun
] ;

46
47 //−−− set a l t e r n a t e 1/2/3 on GPIO
48 uint32_t value_wr = pulp_read32 ( address ) ;
49 value_wr |= ( ( a l t e r n a t e & 0x00000003 ) << ( ( number − which_reg_fun ∗16) ∗2) ) ;
50 pulp_write32 ( address , value_wr ) ;
51
52 //−−− set GPIO
53 i f ( number < 32)
54 {
55 i f ( d i r e c t i o n == OUT)
56 {
57 [ . . . ]
58 }
59 } else {
60 i f ( d i r e c t i o n == OUT)
61 {
62 [ . . . ]
63
64 }
65 }
66
67 while ( pulp_read32 ( address ) != value_wr ) ;
68
69 }
70
71 uint32_t set_gpio ( uint32_t number , uint32_t value ) {
72 uint32_t value_wr ;
73 uint32_t address ;
74 i f ( number < 32)
75 {
76 address = ARCHI_GPIO_ADDR + GPIO_PADOUT_OFFSET;
77 value_wr = pulp_read32 ( address ) ;
78 i f ( va lue == 1)
79 {
80 value_wr |= (1 << (number ) ) ;
81 } else {
82 value_wr &= ~(1 << (number ) ) ;
83 }
84 pulp_write32 ( address , value_wr ) ;
85 } else {
86 address = ARCHI_GPIO_ADDR + GPIO_PADOUT_32_63_OFFSET;
87 value_wr = pulp_read32 ( address ) ;
88 i f ( va lue == 1)
89 {
90 value_wr |= (1 << (number % 32) ) ;
91 } else {
92 value_wr &= ~(1 << (number % 32) ) ;
93 }
94 pulp_write32 ( address , value_wr ) ;
95 }
96
97 while ( pulp_read32 ( address ) != value_wr ) ;
98 }
99

100 uint32_t get_gpio ( uint32_t number ) {
101 uint32_t value_rd ;
102 uint32_t address ;
103 i f ( number < 32)
104 {
105 address = ARCHI_GPIO_ADDR + GPIO_PADIN_OFFSET;
106 value_rd = pulp_read32 ( address ) ;
107 } else {
108 address = ARCHI_GPIO_ADDR + GPIO_PADIN_32_63_OFFSET;
109 value_rd = pulp_read32 ( address ) ;
110 }
111 return value_rd & (1 << (number % 32) ) ;
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112 }
113
114 i n t main ( )
115 {
116
117 i n t e r r o r = 0 ;
118
119 //−−− r e f e r to t h i s manual for the commands
120 //−−− https : //www. cypre s s . com/ f i l e /216421/ download
121
122 //−−− command sequence
123 i n t tx_buffer_cmd_program [BUFFER_SIZE] = {SPI_CMD_CFG(1 , 0 , 0 ) ,
124 SPI_CMD_SOT(0) ,
125 SPI_CMD_SEND_CMD(0x06 , 8 , 0 ) ,
126 SPI_CMD_EOT(0 ,0 ) ,
127 SPI_CMD_SOT(0) ,
128 SPI_CMD_SEND_CMD(0x12 , 8 , 0 ) ,
129 SPI_CMD_TX_DATA(4 , 4 , 8 , 0 , 0 ) , //−−−

wr i t e 4B addr to the addr
bu f f e r ( f i r s t 4 bytes o f the "
page" array )

130 SPI_CMD_TX_DATA(TEST_PAGE_SIZE,
TEST_PAGE_SIZE, 8 , 0 , 0 ) , //−−−
wr i t e 256B page data to the
page bu f f e r

131 SPI_CMD_EOT(0 ,0 ) } ;
132
133 i n t addr_buffer [ 4 ] = {0x00 , 0 x00 , 0 x00 , 0 x00 } ; //−−− read ing address
134 i n t tx_buffer_cmd_read [BUFFER_SIZE] = {SPI_CMD_CFG(1 , 0 , 0 ) ,
135 SPI_CMD_SOT(0) ,
136 SPI_CMD_SEND_CMD(0x13 , 8 , 0 ) , //−−−

read command
137 SPI_CMD_TX_DATA(4 , 4 , 8 , 0 , 0 ) , //−−−

send the read address
138 SPI_CMD_RX_DATA(TEST_PAGE_SIZE,

TEST_PAGE_SIZE, 8 , 0 , 0 ) ,
139 SPI_CMD_EOT(0 ,0 ) } ;
140
141 i n t rx_page [TEST_PAGE_SIZE ] ;
142 i n t tx_buffer_cmd_read_WIP [BUFFER_SIZE] = {SPI_CMD_CFG(1 , 0 , 0 ) ,
143 SPI_CMD_SOT(0) ,
144 SPI_CMD_SEND_CMD(0x07 , 8 , 0 ) ,
145 SPI_CMD_RX_DATA(1 , 1 , 8 , 0 , 0 ) ,
146 SPI_CMD_EOT(0 ,0 ) } ;
147
148 i n t u = 0 ; //−−− select sp i 0
149
150
151 printf ( "[%d , %d ] Sta r t t e s t f l a s h page programming over qsp i %d\n" ,

get_cluster_id ( ) , get_core_id ( ) ,u ) ;
152
153 conf igure_gpio (28 ,OUT, 1 ) ; //−−− us ing t h i s GPIO as CS for the f l a s h
154 set_gpio (28 ,1 ) ;
155
156 //−−− enable a l l the udma channe l s
157 plp_udma_cg_set (plp_udma_cg_get ( ) | (0 x f f f f f f f f ) ) ;
158
159 //−−− get the base address o f the SPIMx udma channe l s
160 unsigned i n t udma_spim_channel_base = hal_udma_channel_base (UDMA_CHANNEL_ID(

ARCHI_UDMA_SPIM_ID(u) ) ) ;
161 set_gpio (28 ,0 ) ;
162 printf ( "uDMA spim%d base channel address %8x\n" , u , udma_spim_channel_base ) ;
163 set_gpio (28 ,1 ) ;
164
165 //−−− wr i t e the f l a s h page
166 plp_udma_enqueue (UDMA_SPIM_TX_ADDR(u) , ( i n t ) page ,TEST_PAGE_SIZE

∗4 + 4∗4 , UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;
167 plp_udma_enqueue (UDMA_SPIM_CMD_ADDR(u) , ( i n t ) tx_buffer_cmd_program , 68 ,
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UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;
168
169 //−−− wait until the page i s wr i t t en (we could use the WIP b i t i n s t ead o f

wa i t ing )
170 wait_cyc les (50000) ;
171
172 //−−− t ry to read back data
173 plp_udma_enqueue (UDMA_SPIM_RX_ADDR(u) , ( i n t ) rx_page , TEST_PAGE_SIZE

∗4 , UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;
174 plp_udma_enqueue (UDMA_SPIM_TX_ADDR(u) , ( i n t ) addr_buffer , 4∗4 ,

UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;
175 plp_udma_enqueue (UDMA_SPIM_CMD_ADDR(u) , ( i n t ) tx_buffer_cmd_read , 26 ,

UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;
176
177 wait_cyc les (50000) ;
178
179 for ( i n t i = 0 ; i < TEST_PAGE_SIZE; ++i )
180 {
181 printf ( " read %8x , expected %8x \n" , rx_page [ i ] , page [ i +4]) ;
182 i f ( rx_page [ i ] != page [ i +4])
183
184 i f ( e r r o r == 0)
185 {
186 printf ( "TEST SUCCEDED\n" ) ;
187 } else {
188 printf ( "TEST FAILED with %d e r r o r s \n" , e r r o r ) ;
189 }
190
191 return e r r o r ;
192 }

This code defines several memory-mapped registers and provides a function called "configure_gpio"
that sets up GPIO pins on the pulp to be able to produce the relative output . The register
offsets are stored in arrays called "pad_fun_offset" and "pad_cfg_offset" and are used for
control the overall configuration of the pins regarding direction and configuration.

wait_cycles method

1 s t a t i c i n l i n e void wait_cyc les ( const unsigned c y c l e s )
2 {
3 r e g i s t e r unsigned thr e sho ld ;
4 asm v o l a t i l e ( " l i %[ th r e sho ld ] , 4" : [ th r e sho ld ] "=r " ( th r e sho ld ) ) ;
5 asm v o l a t i l e goto ( " b l e %[ c y c l e s ] , %[ th r e sho ld ] , %l 2 "
6 : /∗ no output ∗/
7 : [ c y c l e s ] " r " ( c y c l e s ) , [ th r e sho ld ] " r " ( th r e sho ld )
8 : /∗ no c l obbe r s ∗/
9 : __wait_cycles_end ) ;

10 r e g i s t e r unsigned i = cy c l e s >> 2 ;
11 __wait_cycles_start :
12 // Decrement ‘ i ‘ and loop i f i t i s not yet zero .
13 asm v o l a t i l e ( " addi %0, %0, −1" : "+r " ( i ) ) ;
14 asm v o l a t i l e goto ( "bnez %0, %l1 "
15 : /∗ no output ∗/
16 : " r " ( i )
17 : /∗ no c l obbe r s ∗/
18 : __wait_cycles_start ) ;
19 __wait_cycles_end :
20 return ;
21 }

The purpose of the function is to introduce a delay of a specified number of clock cycles
declared in the argument of this function.

As first thing we are setting a threshold to 4 to ensure that the loop is not less then a
basic 4 clok instruction. if the number of clock cycles that is less than 4, as entering the
loop with an insufficient number of cycles will cause an underflow on the first subtraction
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operation. Later we branch to a label (__wait_cycles_end) if the cycles argument is less
than or equal to threshold: if the branch is not taken, the function initializes a local variable
i to cycles shifted right by 2 bits (which is equivalent to dividing cycles by 4) if is taken will
proceed to a loop.
The central loop controlled by the variable named "i" will branches to __wait_cycles_start
if i is not yet zero and ,if so, the loop terminates and the function returns.

GPIO config

1 //−−− set GPIO
2 i f ( number < 32)
3 {
4 i f ( d i r e c t i o n == OUT)
5 {
6 //−−− enable GPIO
7 address = ARCHI_GPIO_ADDR + GPIO_GPIOEN_OFFSET;
8 value_wr = pulp_read32 ( address ) ;
9 value_wr &= ~(1 << number ) ;

10 pulp_write32 ( address , value_wr ) ;
11 //−−− set d i r e c t i o n
12 address = ARCHI_GPIO_ADDR + GPIO_PADDIR_OFFSET;
13 pulp_write32 ( address , value_wr ) ;
14 } else i f ( d i r e c t i o n == IN) {
15 //−−− enable GPIO
16 address = ARCHI_GPIO_ADDR + GPIO_GPIOEN_OFFSET;
17 value_wr = pulp_read32 ( address ) ;
18 value_wr |= (1 << number ) ;
19 pulp_write32 ( address , value_wr ) ;
20 //−−− set d i r e c t i o n
21 address = ARCHI_GPIO_ADDR + GPIO_PADDIR_OFFSET;
22 pulp_write32 ( address , value_wr ) ;
23 }
24 } else {
25 i f ( d i r e c t i o n == OUT)
26 {
27 //−−− enable GPIO
28 address = ARCHI_GPIO_ADDR + GPIO_GPIOEN_32_63_OFFSET;
29 value_wr = pulp_read32 ( address ) ;
30 value_wr &= ~(1 << (number−32) ) ;
31 pulp_write32 ( address , value_wr ) ;
32 //−−− set d i r e c t i o n
33 address = ARCHI_GPIO_ADDR + GPIO_PADDIR_32_63_OFFSET;
34 pulp_write32 ( address , value_wr ) ;
35 } else i f ( d i r e c t i o n == IN) {
36 //−−− enable GPIO However t h i s example was taken in c on s i d e r a t i on

because i t shows us how i s p o s s i b l e to load a f irmware
37 us ing pulp method .
38 address = ARCHI_GPIO_ADDR + GPIO_GPIOEN_32_63_OFFSET;
39 value_wr = pulp_read32 ( address ) ;
40 value_wr |= (1 << (number−32) ) ;
41 pulp_write32 ( address , value_wr ) ;
42 //−−− set d i r e c t i o n
43 address = ARCHI_GPIO_ADDR + GPIO_PADDIR_32_63_OFFSET;
44 pulp_write32 ( address , value_wr ) ;
45 }
46 }

This code is for setting the direction GPIO pin, and it is sensible to the GPIO pin number
and the direction to be set. If the GPIO pin number is less than 32 we will use the lower
range of GPIO registers to set the direction while If the number is greater than or equal to
32 we are going to use the upper range of GPIO registers. In the first part we enable the
GPIO by reading the GPIO enable register, we are modifying the appropriate bit to enable
the selected GPIO pin, and then writing the modified value back to the register. When all
this step is done we are going to sets the direction of the GPIO pin by writing the enable
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register value to the appropriate GPIO direction register.

Central sending unit

This part that appear on the bottom is the core of this example and it is formed by three
element:

• tx_buffer_cmd_program

• tx_buffer_cmd_read

in detail:

1 i n t tx_buffer_cmd_program [BUFFER_SIZE] = {SPI_CMD_CFG(1 , 0 , 0 ) ,
2 SPI_CMD_SOT(0) ,
3 SPI_CMD_SEND_CMD(0x06 , 8 , 0 ) ,
4 SPI_CMD_EOT(0 ,0 ) ,
5 SPI_CMD_SOT(0) ,
6 SPI_CMD_SEND_CMD(0x12 , 8 , 0 ) ,
7 SPI_CMD_TX_DATA(4 , 4 , 8 , 0 , 0 ) , //−−−

wr i t e 4B addr to the addr bu f f e r
( f i r s t 4 bytes o f the "page"

array )
8 SPI_CMD_TX_DATA(TEST_PAGE_SIZE,

TEST_PAGE_SIZE, 8 , 0 , 0 ) , //−−−
wr i t e 256B page data to the page
bu f f e r

9 SPI_CMD_EOT(0 ,0 ) } ;

This code defines an array tx_buffer_cmd_program that contains a sequence of SPI for
programming the memory L2. The commands are defined using macros that take in various
parameters, such as the opcode, data size and transmission settings in this sequence :

• Configure the SPI controller for single I/O mode.

• Start of transmission.

• Send a write enable command (opcode 0x06).

• End of transmission.

• Start of transmission.

• Send a page program command (opcode 0x12).

• Transmit the 4-byte address of the page to be programmed.

• Transmit the page data.

• End of transmission.

All this setting are written to the tx_buffer_cmd_program array in the order that they
are intended to be executed by the SPI controller. This code is setting up a buffer for SPI
commands to read data from an SPI flash memory device.

1 i n t addr_buffer [ 4 ] = {0x00 , 0 x00 , 0 x00 , 0 x00 } ; //−−− read ing address
2 i n t tx_buffer_cmd_read [BUFFER_SIZE] = {SPI_CMD_CFG(1 , 0 , 0 ) ,
3 SPI_CMD_SOT(0) ,
4 SPI_CMD_SEND_CMD(0x13 , 8 , 0 ) , //−−−

read command
5 SPI_CMD_TX_DATA(4 , 4 , 8 , 0 , 0 ) , //−−−

send the read address
6 SPI_CMD_RX_DATA(TEST_PAGE_SIZE,

TEST_PAGE_SIZE, 8 , 0 , 0 ) ,
7 SPI_CMD_EOT(0 ,0 ) } ;
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The tx_buffer_cmd_read buffer is used to store a sequence of commands that will be
sent to the SPI flash memory to read data from a specific address in the memory. The buffer
is initialized with the following commands:

• SPI_CMD_CFG(1,0,0) configures the SPI interface to have 1 bit per transfer and
sets the Chip Select (CS) to be active low.

• SPI_CMD_SOT(0) indicates that the start of transfer signal should not be sent.

• SPI_CMD_SEND_CMD(0x13, 8, 0) sends the read command to the memory device,
which is represented by the hex value 0x13 and the 8 indicates that the command is 8
bits long, and the final 0 indicates that there is no delay after the command is sent.

• SPI_CMD_TX_DATA(4, 4, 8, 0, 0) sends the address to read from, which is stored
in the addr_buffer array. The first 4 specifies the length of the data being sent (4
bytes), the second 4 specifies the number of bits per transfer (4 bytes x 8 bits per byte
= 32 bits), and the final 0, 0 indicate that there is no delay after the data is sent.

• SPI_CMD_RX_DATA(TEST_PAGE_SIZE, TEST_PAGE_SIZE, 8, 0, 0) receives
the data from the SPI flash memory device. TEST_PAGE_SIZE is the size of the
data being read, and is likely set to 256 bytes (the size of a page on many SPI flash
memory devices). The 8 specifies the number of bits per transfer, and the final 0, 0
indicate that there is no delay after the data is received.

• SPI_CMD_EOT(0,0) indicates the end of the transfer and that there is no delay after
the end of transfer signal is sent.

1 i n t tx_buffer_cmd_read_WIP [BUFFER_SIZE] = {SPI_CMD_CFG(1 , 0 , 0 ) ,
2 SPI_CMD_SOT(0) ,
3 SPI_CMD_SEND_CMD(0x07 , 8 , 0 ) ,
4 SPI_CMD_RX_DATA(1 , 1 , 8 , 0 , 0 ) ,
5 SPI_CMD_EOT(0 ,0 ) } ;

This block is in charge to checking the status of the Write In Progress (WIP) bit in
a flash memory device . To be more detailed the WIP bit indicates whether the flash
memory device is currently busy with a write operation or not: If the WIP bit is set to
1, the device is busy and a write or erase operation cannot be initiated. Using a read
command (opcode 0x07) to read the status register of the L2 we will first configure the SPI
interface with a clock frequency of 1 MHz (SPI_CMD_CFG), then sends the read command
(SPI_CMD_SEND_CMD), receives one byte of data (SPI_CMD_RX_DATA) and at the
ends the transaction (SPI_CMD_EOT) performed.

main

Once all the register are setted we could Start test flash page programming over qspi inside
the memory using this GPIO as CS for the flash and later we will enable all the uDMA
channels and get the base address of the SPIMx udma channels that in our case is zero. On
next process we have to

1 //−−− wr i t e the f l a s h page
2 plp_udma_enqueue (UDMA_SPIM_TX_ADDR(u) , ( i n t ) page ,TEST_PAGE_SIZE∗4

+ 4∗4 , UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;
3 plp_udma_enqueue (UDMA_SPIM_CMD_ADDR(u) , ( i n t ) tx_buffer_cmd_program , 68 ,

UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32) ;

These two lines are used to enqueuing data to be sent over SPI using the pulp-rt driver.
The first plp_udma_enqueue is used to to add a new SPI transaction for transmitting

with four arguments to the function:
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• UDMA_SPIM_TX_ADDR(u): This is the address of the buffer to be transmitted.
The UDMA_SPIM_TX_ADDR macro returns the base address of the TX buffer of
the specified SPI device.

• (int)page: This is a pointer to the data to be transmitted, which in this case is the
contents of the page buffer.

• TEST_PAGE_SIZE*4 + 4*4: This is the number of bytes to be transmitted. TEST_PAGE_SIZE*4
represents the size of the page buffer in bytes, and 4*4 represents the size of the
addr_buffer in bytes.

• UDMA_CHANNEL_CFG_EN | UDMA_CHANNEL_CFG_SIZE_32: This configures
the UDMA channel for the SPI transaction. The UDMA_CHANNEL_CFG_EN bit
is set to enable the channel, and UDMA_CHANNEL_CFG_SIZE_32 indicates that
the data is 32 bits wide.

The second line is enqueuing a SPI command transaction for programming the flash memory
and have a similar behavior.

on last, we have the final check if the process have work correctly:

1 for ( i n t i = 0 ; i < TEST_PAGE_SIZE; ++i )
2 {
3 printf ( " read %8x , expected %8x \n" , rx_page [ i ] , page [ i +4]) ;
4 i f ( rx_page [ i ] != page [ i +4])
5 {
6 e r r o r++;
7 }
8 }
9

10 i f ( e r r o r == 0)
11 {
12 printf ( "TEST SUCCEDED\n" ) ;
13 } else {
14 printf ( "TEST FAILED with %d e r r o r s \n" , e r r o r ) ;
15 }
16
17 return e r r o r ;
18 }

This last part of the function is used to check if the data was sent correctly
A for loop is used to iterate over each element of the rx_page array as long as we reach

all the data sent. The if statement checks whether rx_page[i] is equal to page[i+4]. If they
are not equal, error is incremented.

After the loop, the function checks the value of error. If it is zero, the function prints
"TEST SUCCEDED". Otherwise, it prints "TEST FAILED with the number of test failed.
in short us a comparison test that is used to verify that some received data matches the
expected 3data counting the number of errors encountered during the test, which can be
used to determine whether the test was successful or not.
Below is possible to see the result on transmitting data using SPI.

Figure 4.3: SPI result
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However this example was taken in consideration because it shows us how is possible to
load a firmware that is able to write data on L2 and then invoke the pulp_enqueue method
to send through SPI the data

4.2 Discussion

The results just obtained reflect an aptitude of our system on the pulpissimo versality to any
kind of application, although it is only a starting point the results are encouraging because
you can clearly see how the modules work properly. Using generators it will be possible to
build load models through the jtag to enter the parameters in the L2 and then be called on
reckon when it is more appropriate



CHAPTER 5

Conclusion

This discussion was carried out in order to make an analytical study of the state of the art
of neuromorphic processors and the state of the art of SOC platforms that could host them.
After carefully choosing those components we ventured into the verification and inspection
of most of the internal modules to discover how they are thought. All this process was done
because we want to have a comprehensive and panoramic landscape of the technologies that
are currently available in research area. Have in mind the initial goals we were able to
choose the right combination (Reckon + pulpissimo) in order to obtain a SOC capable of
being autonomous and power efficient.

The discovery and the work done in this thesis have realized that these technologies
are the real future due low power consumption, robustness, dynamism and high level of
performance. If we take in view the traditional processors it is possible to affirm that is not
able to compete with this brand-new technologies and, if so, in a few years they will be an
industry a new standard.

This preliminary work underlines how strong the Reckon model and pulpissimo are;
However also demonstrates what are the points of improvement for a future work. In
particular we are referring that in a possible upgrade the programming phase with a replacement
of the SPI with a more performing communication model that allows a faster configuration
of the neurons. One possible improvement is the usage of HyperBus as communication
protocol: Compared to aged SPI, HyperBus supports higher data transfer rates and has a
more efficient command structure, which can translate in our case in a faster data access to
memory and improved system performance.
In addition, HyperBus, allows a direct memory access which reduces CPU overhead and can
improve overall system efficiency.

Overall all these improvements make HyperBus a more efficient and faster communication
protocol compared to SPI; Indeed this memory oriented protocol made possible the data
transfer from L2 to the two internal SRAM more in a faster way.
In conclusion we could affirm that this preliminary work have show how the integration
of these two processors could brings many benefits for applications that relies on battery
consumption.
In summary this starting point will allow future studies to create a stable and dynamic
platform capable of outclassing all the implementations created so far in the field of edge
computing on embedded system platform.
In conclusion We conducted an extensive exploration of the various hardware modules
integrated into the Pulp platform and Reckon, with particular attention paid to the uDMA
within Pulpissimo. Our thesis work was focused on developing a robust and well-documented
toolchain for launching and managing SPI communication on Pulpissimo.
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