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Let me say quite categorically that there is no such thing
as a fuzzy concept... We do talk about fuzzy things but
they are not scientific concepts. Some people in the past
have discovered certain interesting things, formulated their
findings in a non-fuzzy way, and therefore we have
progressed in science.

Rudolf Emil Kalman





Abstract

Ultra-WideBand (UWB) technology has an acknowledged importance in the field
of localization, particularly for what concerns Global Navigation Satellite Systems
denied zones, and space and extraterrestrial environments make no exception. This
thesis presents the design and development of a UWB localization system setup for a
mobile rover in a 22× 26m2 open-air facility that mimics the Martian environment.
The system is based on commercially available UWB modules and custom hard-
ware, consisting of 12 antenna systems (anchors) placed at three different heights
on the perimeter walls of the facility and a mobile tag on the robot. The ranging
information is processed by a ROS2 node implemented on the rover, which employs
Kalman filters to estimate the pose of the robot using the trilateration algorithm,
based on the known absolute positions of the anchors. The thesis includes the design
of a custom PCB to adapt the 24V AC power supply of the facility to the 12V DC
voltage required by the microcontroller, the 3D modeling of a detachable waterproof
case for the antenna system, and the development of a 3D graphical simulator of
the facility terrain and the rover using ROS2, to test filter algorithms and features
and to emulate the real behavior with noisy measurements. Simulation tests show
extremely precise tracking on the XY plane, with average errors of about 5 cm,
while in experimental tests they stand on about 10 cm but still provide a reliable
localization of the rover, also by virtue of an extensive activity of calibration and
error mapping. Overall, this thesis presents a low-cost and high-performance UWB
localization system for mobile robotics, providing ground truth measurements for
facility tests but also making it suitable for a possible setup in the extraterrestrial
outposts of tomorrow.
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Introduction to the Thesis work

Ultra-WideBand (UWB) technology has been gaining significant attention in recent
years as a viable alternative for localization in scenarios where Global Navigation
Satellite System (GNSS) signals may not be accessible. The most notable advantages
that UWB offers comprise high accuracy, low latency, and robustness against noise
and multipath interference, making it suitable even for harsh environments. UWB
technology has found several applications in fields like healthcare, automotive, and
industrial automation, and it is also being explored for space and extraterrestrial
environments, where a satellite-based system for localization is still not available.

This thesis presents the design and development of a low-cost UWB localization
system for a mobile rover in a 22 × 26m2 open-air facility that simulates the Mar-
tian environment. The system employs commercially available UWB modules from
Qorvo (Decawave) and comprises 12 antenna systems, called anchors, placed on the
perimeter of the facility at three different heights and a movable one on the robot,
the tag to be localized. In order to estimate the pose of the rover using the trilatera-
tion technique, the ranging data and the absolute positions of the anchors are fed to
a ROS2 node that implements the Kalman Filter which performs the localization.

The first part is focused on UWB technology and its application in the localization
field: in particular, in Chapter 1, a synopsis of the localization techniques and
positioning systems that rely on satellite support is provided.
Chapter 2 instead deepens the UWB technology and presents an overview of its
functioning, regulations, and the various techniques that can be applied to perform
the ranging activity.
In Chapter 3 it is described how the trilateration algorithm works and how a Kalman
Filter can implement it to deliver a reliable estimation of position. Furthermore, the
chapter contains an introduction to the Kalman Filter math and base functioning,
also presenting the two main typologies of filters that are commonly used when
dealing with non-linear models, the Extended and Unscented Kalman Filters, which
have been both implemented in this thesis for comparison purposes.

The second part is devoted to the presentation of the case study and the experimen-
tal activity that has been performed at the TAS-I RoXY facility: Chapter 4 collects
some knowledge about the state of the art of the localization of robots in facilities
and spatial environments, while in Chapter 5 the actual fieldwork is thoroughly de-
scribed.
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Introduction to the Thesis work

In particular, the facility setup and equipment are presented along with the hardware
that has been used, which includes UWB antennas and STM32 microcontrollers and
a custom PCB that has been designed to adapt the AC power supply of the facil-
ity to the DC voltage required by the microcontroller; the chapter also shows the
development of a 3D graphical simulator of the facility terrain and the rover using
ROS2, due to the necessity to extensively test and tune the algorithms accounting
for noisy measurements, while the need for a reliable placing of the anchors that
would not obstruct eventual reprogramming needs has led to the design of a 3D
modeled detachable waterproof case.
Moreover, it is provided a concise explanation of the ROS2 framework and the
characterization of the nodes that have been coded to perform the localization al-
gorithms. Finally, both the simulation and field tests are described and analyzed,
highlighting the differences between them and their causes. The thesis ends with
a synopsis of the work that has been presented and predictions of what could be
future improvements that can follow this activity.
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Part I

UWB and Localization
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Chapter 1

Localization techniques

Localization and positioning have become essential techniques in many areas of mod-
ern society: from navigation systems in automotive and transportation to tracking
devices for wildlife, the ability to determine the precise location of objects has be-
come increasingly important. This need is actually firmly bound to the necessity of
mankind to explore the external environment and impose its control upon it. That
led to the creation of the first instruments based on the observation of the sky and
stars, used to let people get oriented during world exploration. With the advent of
wireless technologies such as the employment of radio waves, the field of localization
began to see its greatest development, with astonishing improvements in terms of
reliability and variety of use cases.

There is now a multitude of positioning systems available for a wide range of applica-
tions. They present differences in terms of employed technology, field of application,
accuracy, and so on. The most widespread and commonly used is surely the Global
Positioning System (GPS), with falls in the bigger category of the Global Naviga-
tion Satellite Systems (GNSS), but it is usual to find positioning systems that rely
on Wi-Fi and local wireless sensors to estimate the position of objects and people,
such as the Bluetooth technology that nowadays can be found in every smartphone.
The variety of techniques that have been implemented up to the present day can be
classified to better delimiter the characteristics of each one as well as to group their
similarities.

1.1 Classification of Positioning Systems

There exists more than one way to classify the various positioning systems and
localization techniques. Here it has been chosen to follow two classifications: one
based on the reference frame, as proposed by Zekavat and Buehrer [40], and the
other which takes into account the signal measurement employed and the tracking
method, as per Isaia and Michaelides [18].

4



Localization techniques

Figure 1.1.1: General Classification on Positioning Systems [40]

The first mentioned classification focuses on the differences of reference frames: a
Global Positioning System allows the localization of targets on the whole globe,
using latitude and longitude information and providing an absolute measurement,
while a Local Positioning System employs the information about other reference
objects and their positions with respect to the actual target to deliver the estimated
location, so constituting a form of relative localization.

LPSs can be furtherly differentiated considering again the reference frame: if the
system always refers to the same static point at any given location and time, as
happens for Inertial Navigation Systems, it is called a Self-Positioning System,
otherwise, when the position is obtained through the referencing to other nodes
located in the coverage area, it is defined as a Remote Positioning System.

An additional difference that can be pointed out regards the role of the reference
nodes within the area of remote positioning: apart from the staticity or dynamicity
of the nodes involved, they can actively cooperate in the localization of the target,
as for example happens in the Radio Frequency Identification (RFID), or can be
passive and not participating to the localization process, as in case of vision systems
and radars. A system belonging to the first group is hence referred to as an Active
Remote Positioning System, whereas a Passive Remote Positioning System
reside in the second one.

Figure 1.1.1 summarizes this first categorization of positioning systems. Although
it points out very clearly delineated boundaries, it makes no mention of the type of
signal involved in the measurement process, neither does of the localization method
itself. For this reason, it is now presented another type of classification that instead
is based on the previously mentioned characteristics.

5
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Figure 1.1.2: Localization/Positioning Techniques Classification [18]

Figure 1.1.2 shows a bigger variety of localization techniques, which are mainly
distinguishable by the localization method (Range-based and Range-free) and the
signal measurement employed (Time-based, Angle-based, and Channel-based).

1.1.1 Range-free localization

Range-free techniques directly estimate the position by using the topological data of
the sensor nodes (i.e. the number of hops made in the propagation of the informa-
tion). Despite providing limited accuracy because of the lack of correlation between
absolute distance and signal strength, they don’t need any additional hardware,
which makes them more cost-effective and affordable than their counterpart.

Examples include the Centroid Method, Distance Vector-Hop, and Subtract on Neg-
ative, Add on Positive (SNAP) algorithm:

• The Centroid method estimates the receiving node’s position as the centroid
of all transmitting nodes’ positions with minimum computations. The receiver
node first determines whether it is situated close enough to the known sending
nodes to communicate with them, then it pinpoints its location by utilizing
the average coordinates of all known transmitting nodes that are situated
inside the threshold zone. Relatively easy to implement, but its accuracy
heavily depends on the environmental conditions and the density of anchor
deployment.

6
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• The DV-Hop technique is a distributed algorithm based on the distance vec-
tor routing protocol. All the network nodes are assumed to broadcast their
localization information and estimate their distance from the other nodes, so
that all nodes acquire the last hop count required to reach each other; then,
the average hop count is computed and broadcasted by all nodes, and the
unknown node utilizes it to calculate its distance from the other nodes. The
assumption that the pathways are straight or that the nodes are dispersed
uniformly is the major flaw in the DV-hop localization technique.

• The SNAP algorithm presupposes the usage of binary sensors and maximum
likelihood estimation. In order to create the likelihood matrix, the sensor
nodes’ (+1) and (-1) contributions are used, depending on whether they are
in an alarm state. While the non-alarmed sensors add a negative one, each
alarmed sensor adds a positive one to the likelihood matrix elements corre-
sponding to the cells inside its region of coverage (ROC). The region of influ-
ence (ROI) is identified by a probability of at least 0.5 for the sensor to be
alarmed. An excellent explanatory picture is reported below:

Figure 1.1.3: SNAP Likelihood matrix with eight sensor nodes,
three of which are alarmed and shown in whole line. The event is
correctly localized in the grid cell with the maximum value of +3
[23]

1.1.2 Range-based localization

Range-based localization techniques first utilize the signal measurements for estimat-
ing the distance from various reference nodes, relying on time-based, angle-based,
and channel-based signals. Then, the distance measurements are combined using
suitable algorithms for evaluating the nodes’ unknown positions.

7
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1.1.2.1 Distance Estimation Techniques

Time-based measurements estimate the time difference between the transmitting
and receiving nodes based on the signal propagation delay, and that makes them
particularly susceptible to environmental bias. Among them, there is worth men-
tioning Time of Arrival (ToA), Time Difference of Arrival (TDoA), and Round Trip
Time (RTT):

• Time of Arrival (ToA) is a one-way time measurement of the signal propa-
gation time and is employed to determine how far apart the transmitting and
receiving nodes are from one another. The timestamps of the received packets
are used by the receiving node to calculate its distance d from the transmitting
node through the following equation:

d = v · (t1 − t0)

where v is the velocity of the signal (c = 3×108m/s for electromagnetic waves)
and t0 and t1 are the transmitting and receiving time, making their difference
the time of flight (ToF). A graphical representation is shown in Figure 1.1.4a.
Both precise time synchronization between the nodes’ clocks and timestamp
data to be included in the various packets transferred inside the network are
necessary.

• Time Difference of Arrival (TDoA) is a variant of the method just pre-
sented, which is precisely employed to overcome its limitation concerning the
synchronization of the nodes. The TDoA measurements estimate the time
lapse between the receiving node and the two signals received from two differ-
ent transmitting nodes, as shown in Figure 1.1.4b. The propagation distance
difference ∆di,j at the receiving node side can be estimated as follows:

∆di,j = di − dj = v · (ti − t0)− v · (tj − t0) = v · (ti − tj) = v ·∆ti,j

where i and j are the different transmitting nodes and v is the velocity of the
signal. Typically, compared to ToA, the TDoA can offer improved positioning
precision and simply needs temporal synchronization between the transmitting
nodes.

Figure 1.1.4: Time-based estimations: (a) Time of Arrival (ToA),
(b) Time Difference of Arrival (TDoA) and (c) Round Trip Time
(RTT) [18]

8
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• Round Trip Time (RTT) calls for two-way communication between the
nodes and the inclusion of the timestamp in the messages sent. It has been
utilized in some Wi-Fi amendments, like the IEEE 802.11mc with Wi-Fi fine
timing measurement (FTM). As it can be seen from Figure 1.1.4c, the distance
measurement is obtained by:

d = v · (t4 − t1)− (t3 − t2)

2

where t1 and t4 are the timestamps of the signal sent and received at the
transmitting node, t2 and t3 are the timestamps of the signal received and
sent at the receiving node, and v is the velocity of the signal.

Angle-based measurements include both phase measurements to compare the arriv-
ing signal phase at the target node (incident signal) with the phase of the signal
transmitted and measurements of the angle between the nodes and the intersection
of multiple directions of the wireless signal. It is so straightforward to discuss Phase
of Arrival (PoA) and Angle of Arrival (AoA).

• Phase of Arrival (PoA) makes use of the phase difference of the carrier sig-
nal for estimating the distance between the transmitting and receiving nodes.
The incident signals arrive with a phase difference at different antennas, as
shown in Figure 1.1.5a. This quantity is then employed in the following for-
mula that returns the distance d:

d = λ ·
(
ϕRx

2π
+ k

)

where k is a positive integer, λ is the wavelength, and ϕRx is the phase of the
received signal. This technique suffers from poor accuracy, so it is often used
in combination with other methods.

• Angle of Arrival (AoA) exploits the information about the angle between
the sending and receiving nodes as well as the intersection of multiple wireless
signal directions, as can be seen in Figure 1.1.5b. While ToA and TDoA
require temporal synchronization between nodes, AoA does not need it and its
accuracy is proportional to the density of the nodes. The disadvantage of this
method is that additional hardware, like an antenna array, is needed. Many
algorithms are available to compute the direction of the incoming signals, such
as Multiple Signal Identification and Classification (MUSIC) and Estimation of
Signal Parameters via Rotational Invariant Techniques (ESPRIT), the former
providing more accuracy and more resolution the latter [29].
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Figure 1.1.5: Angle-based estimations: (a) Phase of Arrival (PoA)
[39] and (b) Angle of Arrival (AoA) [5]

Finally, if a technique employs information extracted from the analysis of the carrier
wave itself, it falls back into the category of Channel-based measurements. Among
the various ones, they include Received Signal Strength (RSS) and Channel State
Information (CSI).

• Received Signal Strength (RSS) estimates the distance between the trans-
mitting and receiving nodes by means of the signal strength attenuation, cal-
culating the signal path loss, often expressed in decibel milliwatts (dBm).
The latter is the reduction in power density of an electromagnetic wave as it
propagates through space, caused by effects such as refraction, reflection, and
multipath, as well as the environment and propagation medium. The signal
strength is inversely proportional to the distance d and can be estimated by
the following formula:

P (d) = P (d0)− n · 10 log10
(

d

d0

)
where P (d0) is the signal power at a reference distance d0, measured in dBm, n
is the path loss attenuation factor and d is the distance between the transmitter
and the receiver. The parameters are often evaluated statistically, performing
measurements at known distances. Despite being one of the simplest and
most widely used techniques, the accuracy of RSS is strongly affected by the
presence of obstacles and multipath propagation, as well as environmental
conditions such as rain, humidity, and temperature [15].

• Channel State Information (CSI) is a sophisticated ranging method em-
ployed to deliver precise received signal parameters throughout the whole sig-
nal bandwidth. It is exclusively employed in orthogonal frequency division
multiplexing (OFDM) systems, in which data is simultaneously modulated on
a number of subcarriers operating at various frequencies. The OFDM sepa-
rates the data stream into several sub-streams and broadcasts them concur-
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rently across several orthogonal frequency sub-channels, thus avoiding mul-
tipath effects and reducing the noise. The amplitude and phase frequency
characteristics of the signal can be used to extract the CSI information in the
frequency domain as a channel frequency response (CFR), which represents
the multipath propagation of the signal. This frequency diversity provides a
unique fingerprint, which can be used for constructing a radio map. As re-
ported in [37], the combination of RSS and CSI can provide more accurate
distance information, as compared to only using an existing RSS attenuation
model. Moreover, the CSI was found to be more stable in the indoor environ-
ment.

Table 1.1 summarizes the distance estimation techniques that have been presented,
highlighting their main features and limitations.

1.1.2.2 Position Estimation Techniques

After the distance measurements have been acquired, they have to be properly
elaborated to get the actual information about the target position. Some of the
most effective methods that can be used surely are (Multi)Lateration, Hyperbolic
technique, and Fingerprinting.

• (Multi)Lateration works by intersecting the various acquired distances know-
ing all the nodes’ positions in advance. The potential locations of the receiver
are first indicated by a theoretical circle constructed in accordance with the
measured range from each known transmitting node. The receiving node can
be positioned anywhere on the perimeter of the circle for a single sending
node, as shown in Figure 1.1.6a. The receiving node can be placed on either
of the two intersection locations created by adding another transmitting node,
as shown in Figure 1.1.6b. Finally, the ambiguity is reduced to a single point:
the intersection of the three circles by adding a third transmitting node, as
illustrated in Figure 1.1.6c.

In 2D, the minimum number of anchors required is three (trilateration of cir-
cles), while for the localization in a 3D space, at least four sensors are required
(multilateration of spheres), as visible in Figure 1.1.7. These theoretical cir-
cles or spheres cross at a single point in an error-free environment, revealing
the location of the receiving node in space; however, due to the ever-present
noise, the circles or spheres usually do not meet at a single point in real-world
applications; as a result, a potential region is produced, from which a single
point is chosen employing further methods such as the least squared method,
the centroid method or using Kalman filters.
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Distance Estimation
Techniques

Features Limitations

Time of Arrival
(ToA)

More accurate results compared to
RSSI measurements

• Precise time synchronization be-
tween nodes is required
• Highly biased from the environment
• Additional hardware may be re-
quired

Time Difference
of Arrival (TDoA)

• Contrary to ToA, TDoA only re-
quires precise time synchronization be-
tween the transmitting nodes
• Provides higher accuracy than ToA
• It can be used with different commu-
nication technologies, i.e. ultrasound
and RF

• Time synchronization between
transmitting nodes is required
• Performance is degraded in the Non-
Line of Sight signal propagation
• Higher cost due to nodes deployment
density required

Round Trip Time
(RTT)

• It eliminates the need of utilizing dif-
ferent clocks and time synchronization

• It requires bidirectional communica-
tion capabilities
• Accuracy is biased from the different
changes in the environment
• Latencies may occur for fast-moving
devices

Phase of Arrival
(PoA)

• It can be combined with other mea-
surements for higher accuracy

• The phase cannot be distinguished,
so it can only determine in which frac-
tion of the wavelength a signal is re-
ceived
• It requires Line of Sight
• Latencies may occur for fast-moving
devices

Angle of Arrival
(AoA)

• At least two transmitting nodes are
required
• No time synchronization between the
nodes is required

• Accuracy is proportional to the
nodes’ density
• It requires Line of Sight
• Additional hardware is required
(e.g., antenna arrays)

Received Signal
Strength (RSS)

• Easily scaled to larger areas and mul-
tiple users
• Minimum infrastructure required
• Cost-effective computation

• Accuracy is affected by the existence
of obstacles and multipath propagation
• Affected by weather conditions, such
as rain
• Affected by Non-Line of Sight condi-
tions

Channel State
Information (CSI)

• It can be used as a unique fingerprint
• More accurate estimates, compared
to the RSS estimations

• It can only be used with technologies
supporting OFDM
• Special hardware is required (in-
creased cost and complexity)
• It is affected by the dynamic changes
of the transmitting nodes’ power

Table 1.1: Comparison of range-based distance estimation techniques
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Figure 1.1.6: Trilateration localization technique: (a) the receiving node can be
located anywhere on the circle circumference; (b) the receiving node can be located
on both the two intersection points; (c) the receiving node can only be located on
the intersection of the three circles [18]

Figure 1.1.7: Multilateration localization technique: the fourth sphere iden-
tifies a single point between the two intersections of the other three spheres

• Hyperbolic localization makes use of TDoA measurements. Figure 1.1.8 il-
lustrates how each TDoA offers a hyperbolic curve in the localization space
on which the location of the unknown receiving node resides, and how their
intersection identifies a specific location. Particularly, the numerous hyper-
bolic curves created indicate the various transmission times, while the known
transmitting nodes represent the foci of the hyperbolae. The known anchor
nodes 1 and 2 lay in the hyperbola’s foci, and the focal length is equal to their
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difference in distance, ∆d1,2. The known anchor nodes 1 and 3 are the foci of
the new hyperbola created by the addition of a third transmitting node, and
their distance difference, ∆d1,3, serves as the focal length; clearly, the third
node automatically generates another hyperbola by its relation with the sec-
ond node, and this serves as a further reduction of the uncertainty.

At the intersection of all the hyperbolae, the unknown receiving node position
is calculated as:

∆di,1 =
√
(x− xi)2 + (y − yi)2 + (z − zi)2−

√
(x− x1)2 + (y − y1)2 + (z − z1)2

where (xi, yi, zi) are the known i-th transmitting node’s coordinates.

Many techniques involving a Taylor series expansion and transformation into
a linear set of equations are frequently employed to solve these nonlinear hy-
perbolic equations. Chan’s, Foy’s, Fang’s, and Friedlander’s approaches all are
valid alternatives: in [33], it was determined that Chan’s method is the best
option for solving the hyperbolic equations, even requiring an approximate a
priori knowledge of all the distances.

Figure 1.1.8: Hyperbolic localization technique [39]

• Fingerprinting is one of the most commonly used localization techniques
that make use of Machine Learning. It consists of an offline data-collecting
phase and an online matching phase and is based mostly on the analysis of par-
ticular measures or properties of the signal received by the unknown receiving
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node. A site survey is conducted during the offline phase using the specific lo-
cation fingerprints, i.e., signal characteristics, coordinates of sample locations,
and signal strength. It can be classified as deterministic or probabilistic [6]:
the former involves the storage of various fingerprints, while the latter com-
putes some statistics of the data first, such as taking a simple average of the
RSS measurements. Then, during the online phase, real-time measurements
are gathered and contrasted with those that have previously been recorded
during the offline phase. The matching phase includes a comparison that de-
termines the best match between the stored and real-time fingerprints, and
this is frequently based on a matching score computed by means of the k-
Nearest Neighbors ML algorithm. The main drawback of this approach is the
requirement for large training datasets and high computational complexity,
which can be challenging if the available devices only have low computational
power.

1.2 Global Navigation Satellite Systems (GNSS)

Figure 1.2.1: GNSS functioning. Source: Global Geodetic Observing System (ggos.org)

A GNSS provides a geo-spatial positioning service with global coverage that enables
small, dedicated electronic receivers to determine their geographic coordinates in
terms of longitude, latitude, and altitude on any point on the earth’s surface or
atmosphere with an error of a few meters by processing radio-frequency signals
transmitted in line-of-sight from such satellites. To calculate the distances between
satellites and receivers, the travel times of radio waves continuously emitted by
satellites are measured in a very accurate way, since the timestamps are produced
by the satellites’ atomic clocks.

The distance between the receiver’s unknown position and the satellite’s known
position is given by the difference between the signal’s arrival and emission times,
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which is then multiplied by the speed of light. The initial distances determined from
the signal travel times are known as pseudo-ranges since the satellite and receiver’s
clocks are not in sync. Clocks in satellites and receivers must be synchronized at the
level of a nanosecond to tens of picoseconds in order to enable a correct determination
of the distance between satellite and receiver: the system operators synchronize the
atomic clocks in the satellites from the control center, while the receiver manages
to get the information about its clock bias with respect to the true system time
exploiting a fourth satellite, even if theoretically three of them would be enough.

Every GNSS estimate is affected by the variations in weather conditions, the avail-
ability and position of satellites relative to the receiver, the quality and type of
receiver, radio signal propagation effects in the ionosphere and troposphere (e.g.,
the refraction), and the effects of relativity; for this reason, there have been devel-
oped several aiding systems, known as GNSS Augmentation Systems, that employ
additional measurements to improve the performance of standard GNSSs: some
examples are the Wide Area Augmentation System, the European Geostationary
Navigation Overlay Service, and the Differential GPS.

1.2.1 Operating satellite-based positioning systems

At the present time, there are a few main GNSSs that are publicly available, which
are the United States’ most famous GPS, the European Galileo, and the Russian
GLONASS; there exist other ones which are restricted to regional use, as the Chinese
BeiDou 2, the Indian NavIC (formerly IRNSS) and the Japanese QZSS. Now follows
a description of the above with their main features and limitations:

Figure 1.2.2:
GNSSs orbits.
Source: Wikipedia

• GPS is the abbreviation of NavSTAR GPS, which is, in turn, the acronym
of Navigation Satellite Timing And Ranging Global Positioning System. It
comprehends a total of 31 satellites arranged into six equally-spaced orbital
planes surrounding the Earth, of which only 27 are actually considered part
of the core constellation after an expansion made by the Air Force in 2011
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[24]. Each GPS satellite flies in Medium Earth Orbit (MEO) at an altitude
of approximately 20 200 km with a revolution period of half a day. In 1991,
when the service first became available, the United States delivered two types
of GPS services, the Standard Positioning Service (SPS) dedicated to civil
use, while they reserved the Precise Positioning System (PPS) for the US
military forces, which had an accuracy of 10− 20m: in principle, the SPS was
supposed to introduce errors in the satellite signal, reducing the accuracy to
900 − 950m, but in May 2000 this degradation was disabled by a decree of
US President Bill Clinton. Each satellite broadcasts on two channels: L1, the
only one available to SPS service, and L2 for exclusive use for PPS service and
the carrier frequencies are 1575.42MHz and 1227.6MHz, respectively. As an
example of the GPS accuracy, on April 20, 2021, as stated in [24], the global
average User Range Error (URE) across all satellites was ≤ 0.643m, 95% of
the time.

• Galileo is the European GNSS co-developed by the European Commission
(EC) and the European Spatial Agency (ESA), with an important contribu-
tion from the Italian Spatial Agency (ASI). Its commissioning, initially sched-
uled for the end of 2019, has been brought forward to December 15, 2016.
Entirely designed for civilian use, Galileo is composed of 30 orbiting satellites
(24 operating and 6 as backup) laying on 3 planes inclined to the Earth’s
equatorial plane by about 56° at an altitude of about 23 925 km (MEO), an
optimal geometry constellation that allows better coverage and accuracy all
around the globe if compared to GPS. The launch program, using Soyuz and
Ariane rockets, began on October 21, 2011, with the departure of the first two
satellites and continued with the launch of the second pair, IOV3 and IOV4,
in October 2012. In August 2013, the trial phase of PRS (Public Regulated
Service), a high-precision service designed to provide positioning data for the
development of sensitive applications, began for users expressly authorized by
national governments [38]. The other services that Galileo provides consist of
an Open Service (OS), which delivers free positioning, timing, and navigation
services for all users, with approximately 4m accuracy; a Commercial Service
(CS), a paid encrypted service that allows sub-meter accuracy, up to 10 cm; a
Safety of Life (SoL) service, specifically designed for security operators (police
and military) of the EU and member states and strategic applications for avia-
tion, maritime and rail transport security, with the main purpose of delivering
robustness against disturbances and reliable detection of problems within 10
seconds; a Search and Rescue (SaR) service that provides assistance to the
COSPAS-SARSAT system for managing alerts and locating endangered users
in order to assist rescue operations. Thales Alenia Space is responsible for in-
dustrial support activities related to system design, performance, integration,
and validation. [19]

• GLONASS stands for GLObal NAvigation Satellite System, transliterated
from Russian, and constitutes the Russian alternative to GPS and Galileo.
Differently from GPS and Galileo, given the historical closeness of the Russian

17



Localization techniques

government and its distrust of abroad allies, GLONASS control stations are
only located inside the former Soviet Union territory, making that a weakness
that causes a reduction of precision and efficiency with respect to the other
GNSSs. At the current state, the constellation comprises 24 operating satel-
lites plus 4 back-ups, arranged on three orbit planes inclined at 64.8° to the
equator and spaced by 120°, with satellites on the same orbit separated by
45°; GLONASS satellites are placed in roughly circular orbits with the nomi-
nal orbit altitude 19 100 km and an orbital period of 11 hours, 15 minutes, 44
seconds. Due to the period value, it became possible to create a sustainable
orbital system that unlike GPS does not require supporting correcting pulses
during its active lifetime [31].

• BeiDou 2, also known as Compass Navigation Satellite System (CNSS), is
China’s second-generation satellite navigation system capable of providing con-
tinuous, real-time passive 3D geo-spatial positioning and speed measurement.
The first generation, 北斗 (běidǒu), was named after the Chinese name of the
asterism of the Ursa Major constellation and was meant to provide navigation
and timing for both military and civil use only to China and its surround-
ings, through its 4 satellites in Geostationary Earth Orbit (GEO); with the
advent of Beidou 2, which at its final development will comprise 35 satellites,
of which 5 in GEO (approximately at an altitude of 36 000 km) to maintain
compatibility with BeiDou 1, 27 in MEO (about 21 000 km)and 3 in Inclined
Geo-Synchronous Orbit (IGSO) and will ensure global coverage [9]. CNSS will
provide two types of services: a free service for civilian users with positioning
accuracy of within 10m, velocity accuracy of within 0.2m/s and timing accu-
racy of within 50 ns, and a licensed service with higher accuracy (up to 10 cm
for authorized and military users only [32].

• NavIC, the acronym of NAVigation with Indian Constellation, is the oper-
ational name of the Indian Regional Navigation Satellite System (IRNSS).
It covers India and a region extending 1500 km around it and an extended
service area lies between the primary service area and a rectangle area of
1500 − 6000 km km enclosed by the 30th parallel south to the 50th parallel
north and the 30th meridian east to the 130th meridian east [35]. The system
currently consists of a constellation of 7 satellites: three of them are located
in GEO at longitudes 32.5° E, 83° E, and 131.5° E, approximately 36 000 km
above Earth’s surface, while the remaining four are in IGSO. NavIC provides
two levels of service, the Standard Positioning Service (SPS), which is meant
for civilian use, and a Restricted Service (RS), an encrypted service available
only to authorized users. The system is reported to provide position accu-
racy better than 20m during all weather conditions thanks to its signal which
travels at dual frequencies in L5 and S bands [35].

• QZSS, also known as Michibiki, is the Japanese Quasi-Zenith Satellite System
and it was initially meant to provide video and audio communication services
and to serve as an augmentation for the GPS on the Japanese region [7]. The
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initial design called for the constellation to consist of three satellites, arranged
in a geosynchronous, highly inclined, and slightly elliptical orbit (Quasi-Zenith
Orbit QZO) at around 32 000 km, and separated from each other by 120°;
thus, they would have to travel, relatively to a ground observer, on a figure-of-
eight trajectory (called an analemma and visible in Figure 1.2.3) that should
have ensured coverage of Japanese territory by at least one satellite at all
times. Subsequently, though, the Japanese government decided to increase
the number of satellites to four and signed an agreement with the European
Spatial Agency (ESA) to integrate QZSS into the Galileo system in the near
future.

Figure 1.2.3: QZSS analemma path. Source: qzss.go.jp

1.3 Local Positioning Systems

Local Positioning Systems are a crucial technology for a wide range of applications,
particularly in situations where the use of GNSSs is not feasible or reliable: for
example, in indoor environments, such as warehouses or factories, GNSS signals
may not be able to penetrate walls or other obstacles, or may do it at expenses
of the signal strength, making it difficult to obtain accurate location information;
furthermore, another undesired effect is the multipath propagation, which happens
when the signal that reaches a receiver in Not Line of Sight (NLoS) comes from
one or more reflections on the nearby obstacles and walls: this would cause the
estimated range to be greater than it actually is, leading to even significant errors
in the position estimation.

In these situations, LPS can provide accurate and reliable location data, allowing
companies to track inventory, monitor equipment, and manage their operations more
efficiently, with accuracies that can vary from centimeters to a few meters or more,
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depending on the system characteristics and the necessities of the case. These sys-
tems use a range of technologies, including Radio Frequency Identification (RFID),
Bluetooth, Wi-Fi, and Ultra-WideBand (UWB) signals, to determine the location
of objects or people within a specific area.

• Radio Frequency Identification is actually a not-so-recent technology,
since its first prototypes date back to the mid-90s, with the first working
device patented in 1973 [8]; it is a wireless communication technology that
enables the automatic identification of objects, animals, or people by means of
electromagnetic fields. It operates by using low-power radio waves to transmit
information between a tag and a reader: the tag typically contains an inte-
grated circuit and an antenna, while the reader consists of an antenna and a
transceiver that reads and writes data to the tag. When RFID tags are affixed
to objects or people, they can be tracked within a designated area, typically
within a few meters or less. One of the benefits of RFID technology is its abil-
ity to function in harsh environments, including areas with high levels of dust,
dirt, or moisture. RFID tags are also durable and can withstand exposure to
extreme temperatures and physical impacts; furthermore, RFID technology
does not require line-of-sight communication, meaning that the tags can be
read through walls or other barriers.
RFID tags are distinct into active and passive ones: active RFID tags rely on a
power source, typically a battery, which enables them to transmit their signal
over longer distances, up to hundreds of meters, and it is the one that actually
sends interrogation signals and receives authentication replies; passive tags, on
the other hand, depend on the energy of the reader’s signal to power the tag’s
response and are typically employed because of cost or size requirements, being
less expensive than active ones but having a shorter range, typically within
a few meters. RFID technology has a wide range of applications, including
inventory management, asset tracking, access control, and personnel tracking:
for example, in a warehouse environment, RFID tags can be affixed to items,
allowing the warehouse manager to track the location of inventory with the
aid of Real-Time Locating System (RLTS). RFID technology can also be used
to track personnel movements in hospitals or manufacturing plants, ensuring
that workers are in the right location at the right time.

• Bluetooth is a well-known wireless communication protocol that enables data
transfer between devices over short distances using radio waves. Bluetooth
technology has evolved over the years, and the latest version of Bluetooth,
Bluetooth Low Energy (BLE), has become increasingly popular for use in lo-
cal positioning systems. Named after the 10th-century Danish king, Bluetooth
operates at frequencies between 2.402 and 2.480GHz, or 2.400 and 2.483GHz,
including guard bands 2MHz wide at the bottom end and 3.5MHz wide at the
top. Bluetooth beacons are small, low-power devices that broadcast a signal at
regular intervals, which can be picked up by Bluetooth-enabled devices, such
as smartphones or tablets, allowing the devices to determine their proximity
to the beacon; they typically have a range of up to 70 meters, although the
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actual range can vary depending on environmental factors, such as the pres-
ence of obstacles.
BLE beacons are often placed at strategic locations throughout the environ-
ment, and when a Bluetooth-enabled device comes within range of a beacon,
the device can determine its location based on the beacon’s signal strength.
There are several advantages to using Bluetooth technology as a local po-
sitioning system: first of all, Bluetooth technology is ubiquitous, and most
smartphones and tablets are equipped with Bluetooth capabilities, meaning
that implementing a Bluetooth-based system does not require the installation
of additional hardware; moreover, BLE beacons are small and easy to install,
making them an ideal solution for indoor application, where they can be placed
inconspicuously throughout the environment, with the not secondary feature
of low power consumption, that can allow them to run for months or even
years on a single battery; in addition, Bluetooth technology is highly accurate
when it comes to determining proximity, providing location information with
an accuracy of up to a few tens of centimeters, making it possible to track the
movement of individuals or objects in real-time.

• Wi-Fi stands for Wireless Fidelity and is a wireless communication protocol
that enables data transfer between devices over short and long distances using
radio waves. In recent years, Wi-Fi has become increasingly popular for use
as a local positioning system due to its omnipresent nature and the ability to
leverage existing Wi-Fi infrastructure. Wi-Fi positioning systems (WPS) can
employ different position estimation techniques, such as AoA, Multilateration,
or Fingerprinting, using a measurement of the strength of Wi-Fi signals from
multiple access points. One of the key advantages of using Wi-Fi technology as
a local positioning system is the non-invasivity, since it can exploit the already
present access points often placed throughout the environment to provide full
coverage, and the technology can determine the position of a device with the
accuracy of up to a few meters; another benefit of Wi-Fi technology is its abil-
ity to integrate with other location-based technologies, such as BLE beacons
or RFID tags: this integration enables location-based services to provide more
accurate and comprehensive information about a user’s position, allowing for
more effective tracking and management of resources.
This type of technology is also employed in a different way in public location
databases, such as the Combain Positioning Service and Mozilla Location Ser-
vice, whose aim is to provide both global indoor and outdoor positioning [10]
by exploiting the connectivity of online devices and their Wi-Fi data infor-
mation. There are, however, some limitations to using WiFi technology as a
positioning system: Wi-Fi signals can be disrupted by physical barriers, such
as walls or other obstructions, and the technology can be affected by interfer-
ence from other electronic devices. In addition, WiFi signals can be affected
by variations in the environment, such as changes in temperature or humidity.

• Ultra-WideBand is a wireless technology that enables high-precision posi-
tioning and tracking of devices within a designated area. UWB technology
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works by emitting low-power pulses of energy across a wide frequency band,
typically in the range of 3.1 to 10.6GHz. UWB-based positioning systems
work by using these pulses to measure the time of flight (ToF) between a
transmitting device and multiple receiving devices, such as anchors or tags.
By measuring the ToF of the signal between the transmitting device and each
anchor, the device’s position can be calculated with high accuracy, up to the
centimeter level, making it ideal for use in applications where high precision
is required, such as in industrial or manufacturing environments. Another ad-
vantage of UWB technology is its resistance to interference from other wireless
devices since its signals are designed to operate in crowded environments and
can coexist with other wireless technologies, being suitable for indoor location
tracking applications, also thanks to its ability to penetrate walls and other
physical barriers.
One limitation of UWB technology is its range: UWB signals have a lim-
ited range, typically not superior to 100 meters, compared to other wireless
technologies, depending on the power of the signal and the environmental
conditions; this makes it less suitable for outdoor applications where a longer
range is required. However, the UWB topic is addressed much more deeply in
the next chapter.
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Chapter 2

Ultra-Wideband and Localization

Ultra-Wideband (UWB) is a wireless communication technology that uses a broad
range of frequencies to transmit data over short distances with high precision and
accuracy. Unlike other wireless protocols such as Wi-Fi or Bluetooth, UWB does
not use a carrier frequency to transmit data, sending instead very short and low-
energy pulses across a wide frequency band. This allows for faster and more reliable
communication, as well as better location accuracy, making it ideal for a variety of
applications, including indoor positioning, tracking, and radar imaging. In recent
years, UWB technology has gained popularity and it has been integrated into a
growing number of consumer electronic devices, such as smartphones, and smart
home devices, as well as industrial and automotive applications, but its history
actually started in the XIX century.

2.1 UWB technology overview

2.1.1 History and Developments

UWB technology is often perceived as a recent innovation compared to narrow-band
radio transmissions, because of the huge increase in interest and popularity over the
past few years; however, it is in fact an old technology: Guglielmo Marconi’s first
radio communication in the late 19th century was based on spark gap transmitters,
developed after the previous works of Hertz, which produced brief pulses within a
large bandwidth, which undoubtfully fall back in the UWB category. However, the
spark gap transmitter was not very energy-efficient, and interferences were common
due to the lack of means of synchronization. As a result, the development of vacuum
tubes and transistors technologies led to the abandonment of UWB technology until
the late 1960s when the US military was in need of a technology capable to avoid
interceptions of wireless communication. Between 1969 and 1984, H. F. Harmuth
published papers and books on UWB, placing in the public domain the basic design
for UWB transmitters and receivers, while from 1972 to 1987, Ross and Robbins
patented devices for using UWB in communications, radar, and sensing applications
[2].

In 1989, the U.S. Department of Defense referred to this technology as “Ultra-
Wideband” for the first time and kept the technology restricted to military use for

23



Ultra-Wideband and Localization

the following few years. In the 1990s, T. E. McEwan developed the first low-power
application of UWB, the “Micropower Impulse Radar”, which also was small and
affordable despite being able to function with just a few microwatts of battery deple-
tion. The rush for regulation and standardization of UWB technology followed, and
the Federal Communication Commission (FCC) approved the use of UWB signals
for commercial use in 2002, followed by the European Commission in 2006, with
a little stricter regulation. In 2019, Apple announced the first consumer electronic
products embedding UWB technology, precisely the U1 chip.

2.1.2 Definition and Regulation

Various countries have released regulations regarding the use of Ultra-Wideband de-
vices to ensure compliance with applications, allocated frequency ranges, maximum
emissions levels, and techniques for reducing interferences. Referring to the previ-
ously mentioned approvals of the FCC in 2002 and the ECC in 2006, the definitions
of UWB and the limits on frequency bandwidth and power density spectral emission
that they state are slightly different.

The US FCC allows the unlicensed use of UWB signals within a frequency range of
3.1 to 10.6GHz and that occupy a 10 dB bandwidth B equal or greater of 500MHz,
or in terms of fractional bandwidth Bf , superior to the 20%:

B ≥ 500MHz or Bf =
2(fH − fL)

fH + fL
≥ 20% (2.1)

where fH and fL are the upper and the lower frequency at which the signal has a
power spectral density 10 dB lower than its maximum.

In March 2006, Europe released its regulations with two frequency ranges of 4.2-
4.8GHz and 6-8.5GHz for indoor applications, with potential extension up to 9
GHz, and fixed emission levels, as can be seen in Figure 2.1.1 where the FCC and
ECC spectral mask are compared. All countries have strict power emission levels
for UWB devices, with FCC’s mask allowing for a power spectral density of -41.3
dB/MHz for the whole mask, resulting in total transmitted power of 0.56 mW, and
also precise bans about the applications of UWB, as for example the prohibitions
on toys, aircraft, ships or satellites [4].
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Figure 2.1.1: UWB spectral masks from FCC and ECC regulations [1]

2.1.3 UWB Theoretical Knowledge

UWB has several advantages over other technologies due to its unique characteris-
tics. The distinctive trait of UWB is its wider bandwidth, which provides better
results in terms of accuracy and resolution. This wider bandwidth, generated by
the extremely short-duration pulses, allows for higher data rates over short ranges
thanks to the high frequencies, or high penetration capabilities at lower data rates,
because of its low-frequency content.
Another key advantage of UWB is its low power consumption, which makes it suit-
able for battery-powered devices, but also its low transmitted power, which instead
has the benefit to cause minor interferences with other devices. In addition, UWB
has a high multipath resolution, which means that it can distinguish between signals
that have traveled along different paths, and also a high level of time accuracy, which
is essential for applications that require precise synchronization. UWB has the abil-
ity to measure the time of flight of a signal to within a few nanoseconds, making it
ideal for applications such as distance measurement and precise synchronization of
wireless devices.

2.1.3.1 Channel model

The other main component of a UWB system, apart from the transmitter and the
receiver, certainly is the wireless channel the electromagnetic waves travel through.
The properties of this channel may alter the signal content output by the transmitter,
thus it is crucial to know how to model them as precisely as possible, in order to apply
the required correction at the receiver. There are typically two ways of modeling a
channel: if the characteristics of the area that surrounds the transmitter are known
from an electromagnetic point of view, it is possible to solve Maxwell’s equations in
a closed form; in doing so, what is obtained is a reliable prediction of the Channel
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Input Response (CIR) of the environment, and it is called a deterministic model.
Otherwise, if the model takes into account “canonical” characteristics of the channel,
without specific reference to the actual location, the properties are known with a
certain probability, and the model is said to be stochastic [13]. The latter is the
most employed approach in modeling a UWB channel, and what follows are two
examples of a stochastic model:

One of the simplest models of the CIR of a UWB channel is given by the following
equation:

h(t) =
N∑

n=1

an · δ(t− τn) · ejθn (2.2)

where h(t) is indeed the channel input response, δ is the Dirac delta function, N
is the number of signal components, an, τn and θn are respectively the amplitude,
delay and phase of the n-th component.

The CIR is a useful form to express a channel model since the received signal y(t)
is simply given by the convolution of it with the input signal x(t). Looking at
Equation 2.2 it is trivial to recognize that the input signal is transformed by the
CIR into a summation of N versions of it shifted in time, weighted by the respective
an parameter, thanks to the Dirac delta function shifting property:

y(t) = h(t) ∗ x(t) :=
∫ +∞

−∞
h(τ) · x(t− τ) dτ

=

∫ +∞

−∞

N∑
n=1

an · δ(τ − τn) · x(t− τ)

=
N∑

n=1

an · x(τ − τn)

(2.3)

where in this case a baseband signal is taken into account, thus omitting the θ
parameter. Equation 2.3 shows in the clearest form why UWB works so well in
a multipath environment: thanks to its extremely short pulses, the overlaps of the
different components are minimum and the direct path signal is recognized correctly.

A quite more complex model is also presented, since it and its modified versions are
the most used models to describe UWB channels. The Saleh and Valenzuela (S-V)
model takes into consideration the characteristic of multipath components to cluster
and so a double Poisson process is used [17]:

h(t) =
+∞∑
m=0

+∞∑
n=0

am,n · δ(t− Tm − τm,n) · ejθm,n (2.4)

where am,n and θm,n indicates the same multipath amplitude and phase as the pre-
vious model, Tm is the arrival time of the first path of m-th cluster, and τm,n) is
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the delay of the n-th ray of the m-th cluster. Figure 2.1.2 represent a typical power
delay profile of the S-V model:

Figure 2.1.2: A typical power delay profile of the Saleh-Valenzuela model [12]

2.1.3.2 Signal Modulations

There is more than one way to exploit the UWB frequency spectrum: the simplest
one is employing signals of the type described up to this point, so pulses of extremely
narrow time duration, in the orders of nanoseconds; in this way, no carrier is needed
and the efficiency is kept high despite simple architectural antennas. This method
goes under the name of Impulse Radio (IR), but its simplicity leads to the major
drawback of a not fully exploited band.

To overcome this limitation, different kinds of modulations can be used. Hereafter
some of the most employed ones are presented:

• Orthogonal Frequency-Division Multiplexing (OFDM): this technique makes
use of multi-carrier frequencies, each one transmitting a specific portion of the
band of the signal with its own modulation. By generating the sub-carriers
such that they are all orthogonal to each other, undesired phenomena such
as crosstalk can be avoided and small guard bands can be used, as shown in
Figure 2.1.3; moreover, OFDM also delivers high-quality transmissions even
in poor channel conditions, in addition to permitting complete exploitation
of the characteristic wide-band. Clearly, this comes with a cost, specifically
in terms of energy and hardware complexity, given the necessity to provide
accurate frequency synchronization between the antennas.
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Figure 2.1.3: Frequency-Time representation of an OFDM signal.
Source: rfmw.em.keysight.com

• On-Off Keying (OOK): in order to transmit zeros and ones, one of the simplest
modulation techniques is to encode the ’1’ with the transmission of a pulse and
the ’0’ with no transmission at all. As can be seen in Figure 2.1.4, the bits’
time slots have to be known precisely from the receiver to correctly identify
the sequence.

Figure 2.1.4: On-Off Keying bit pulses (Rayleigh monocycles [13])

• Pulse Amplitude Modulation (PAM): this method can be seen as a generaliza-
tion of the OOK, since in this case also the zeros are transmitted but encoded
with a low amplitude pulse, while the ones’ pulses get higher amplitude (Fig-
ure 2.1.5).

Figure 2.1.5: Pulse Amplitude Modulation bit pulses (Rayleigh monocycles
[13])
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• Phase Shifting Keying (PSK): dissimilarly from the two previously mentioned
modulations, PSK involves the polarity of the pulses to differentiate zeros and
ones; if only two phases are employed (e.g. 0° and 180° as in Figure 2.1.6),
the technique is referred to as Bi-Phase Shifting Keying (BPSK) and has the
advantage of generating a smoother spectrum with respect to the spikes present
in PAM and OOK modulations.

Figure 2.1.6: Bi-Phase Shifting Modulation bit pulses (Rayleigh monocycles
[13])

2.2 UWB ranging techniques

In subsection 1.1.2, the main distance estimation techniques have been discussed
and analyzed. Among them, the most used one when it comes to UWB antennas
certainly is the Time of Arrival (TOA); it is usually preferred to other techniques
such as AoA or RSS because of its hardware simplicity and higher accuracy. In
general, time-based ranging techniques provide the best result in terms of accuracy
when used in UWB systems, and it can be proved by means of a mathematical
formulation of the distance estimation accuracy:

σ(d) ≥ c

2
√
2π

√
SNRβ

(2.5)

where σ(d) is the standard deviation of the measured distance d, which is equal
to the square root of the distance variance and provides the information about the
measurement accuracy, c is the speed of light, SNR is the Signal to Noise Ratio
and β is the effective signal bandwidth. Equation 2.5 is referred to as the Cramer-
Rao lower bound for Additive White Gaussian Noise (AWGN) channels [16], and
it is evident how the characteristic large band of UWB systems allows the distance
estimation to be extremely precise.

As previously seen, the main drawback of the ToA method is the requirement for
extremely precise clock synchronization between transmitters and receivers in order
to get a reliable ToA estimation. This is usually not easy to ensure, especially
if the UWB has to be designed to be low-cost; to overcome this limitation, the
most commonly adopted solution is to apply to so-called Two-Way Ranging (TWR)
protocol.
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2.2.1 Two-Way Ranging

2.2.1.1 Single-Sided Two-Way Ranging

Figure 2.2.1: Single-Sided Two-Way Ranging (SS-TWR). Source: Implementation
of TWR, Qorvo

In Figure 2.2.1 is depicted the Single-Sided Two-Way Ranging (SS-TWR) protocol:
the initiator (on the left, also referred to as Tag) transmits a radio message to the
responder (on the right, also referred to as Anchor) and records its time of transmis-
sion (transmission timestamp) t1; the responder receives the message and transmits
a response back to the initiator after a particular delay treply; the initiator then
receives this response and records a reception timestamp t2. Using the timestamps
t1 and t2, the initiator can calculate the round trip time troundtrip and knowing the
reply time treply, the TOF can be determined by:

TOF =
troundtrip − treply

2
=

t2 − t1 − treply
2

(2.6)

and the distance between the two nodes can be easily obtained by multiplying the
TOF by the speed of light c, assuming that the speed of radio waves through the
environment is the same as the speed of light.

As already said, the main source of error is known to be the varying clock speed
between tag and anchor. To measure the impact of it on the measurement, Nierynck
et al. proposed a fairly simple model [25]:

T̂ =
1

2
· (t̂roundtrip − t̂reply) (2.7)
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t̂roundtrip := troundtrip(1 + einit)

t̂reply := treply(1 + eresp)

where T stands for TOF, X and X̂ represent the nominal and actual values for each
quantity involved, and einit and eresp model the deviation from the nominal frequency
of, respectively, the initiator and the responder, and is typically expressed in parts
per million (ppm).

From Equation 2.6 and Equation 2.7, the error on the Time of Flight T̂ − T equals:

T̂ − T =
1

2
(t̂roundtrip − t̂reply)−

1

2
(troundtrip − treply)

=
1

2
(t̂roundtrip − t̂reply − troundtrip + treply)

=
1

2
(troundtrip(1 + einit)− treply(1 + eresp)− troundtrip + treply)

=
1

2
(troundtrip + troundtripeinit − treply − treplyeresp − troundtrip + treply)

=
1

2
(troundtripeinit − treplyeresp)

(2.8)

Recalling that troundtrip strictly depends on treply, given the structure of the protocol,
it is clear that treply is the dominant factor determining the size of the ToF error.
Typically, the ToF is in the order of nanoseconds, while treply is in the order of
milliseconds and it is determined by the length of the packets to be transmitted,
the processing speed of the measurement circuit, and its control logic. In subsec-
tion 5.2.1, it will be analyzed how the SS-TWR can be corrected in a particular way
in post-processing to greatly increase its performance.

2.2.1.2 Double-Sided Two-Way Ranging

As just seen, SS-TWR is subject to a number of sources of error due to clock drift
and frequency drift, so a variation of this method can be used to obtain better
results.

Figure 2.2.2: Double-Sided Two-Way Ranging (DS-TWR). Source: Implementation
of TWR, Qorvo
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The Double-Sided Two-Way Ranging (DS-TWR) is a particular implementation of
TWR that makes use of three transmissions to overcome the potential errors that
could be generated by the lack or loss of clocks’ synchronization. In DS-TWR, a
“poll” frame is sent by the initiator (recording the TX time-stamp of the poll) and
then it waits for a “response” message expected from the responder. When the re-
sponse is received, its RX timestamp is recorded and the initiator transmits a “final”
message to complete the exchange. The final message contains all the timestamps
recorded by it, including the poll TX, the response RX and the calculated/predicted
TX timestamp for the final message itself; with this data and the local timestamps
of poll RX, response TX, and final RX, the responder works out a value for the ToF
over-the-air (Tprop) and, thus, the estimated distance between the two devices using
the formula:

Tround1 = 2Tprop + Treply1 (2.9a)

Tround2 = 2Tprop + Treply2 (2.9b)

=⇒ Tprop =
1

4
(Tround1 − Treply1 + Tround2 − Treply2) (2.9c)

Again, the error that this variation of TWR produces can be evaluated with a model
analogous to the previous one [25]:

T̂prop =
1

4
(T̂round1 − T̂reply1 + T̂round2 − T̂reply2) (2.10)

T̂round1 := Tround1(1 + einit)

T̂reply1 := Treply1(1 + eresp)

T̂round2 := Tround2(1 + eresp)

T̂reply2 := Treply2(1 + einit)

Therefore, the error on the Time of Flight T̂prop − Tprop is derived as before:

T̂prop − Tprop =
1

4
(T̂round1 − T̂reply1 + T̂round2 − T̂reply2)+

− 1

4
(Tround1 − Treply1 + Tround2 − Treply2)

=
1

4
(Tround1(1 + einit)− Treply1(1 + eresp)+

+ Tround2(1 + eresp)− Treply2(1 + einit))+

− 1

4
(Tround1 − Treply1 + Tround2 − Treply2)

=
1

4
(einit(Tround1 − Treply2) + eresp(Tround2 − Treply1))

(2.11)
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which, recalling the definitions of Tround1 and Tround2 from Equation 2.9a and Equa-
tion 2.9b, becomes:

T̂prop − Tprop =
1

2
Tprop(einit + eresp) +

1

4
(einit − eresp)(Treply1 − Treply2) (2.12)

It is easy to recognize that if Treply1 and Treply2 were designed to be equal (Sym-
metrical DS-TWR), the second addendum would cancel out, and the error would
be minimized, depending only on Tprop which has been said to be in the order of
nanoseconds and would lead to a time error smaller than a picosecond. In practice,
the two reply times cannot really be perfectly equal, but, referring to the IEEE
802.15.4a standard and considering the worst case (einit + eresp) of ± 40 ppm and
the worst case Treply1 − Treply2 in the order of nanoseconds, the second half of the
error term would be in the order of femtoseconds, leading to a distance measurement
error of tens or hundreds of micrometers [25].

There still are some disadvantages to the use of DS-TWR: it requires at least one
packet transmission more than the SS-TWR, and only the anchor is able to com-
pute the distance measurement, otherwise a further transmission has to be per-
formed from the anchor to the tag, to inform it of all the quantities and let it do
the calculations; this obviously results in a more time expensive communication,
with the resulting increasing probability of faults for the computation of a single
measurement, which would also lead to the repetition of the whole procedure from
the start.

The desire to eliminate the requirement for equal reply delays led Nierynck et al. to
propose alternative processing [25] that does not need a modification of the DS-TWR
protocol, and is referred to as Asymmetrical DS-TWR: starting from Equation 2.9a
and Equation 2.9b, rather than adding them as before, they are multiplied as follows:

Tround1Tround2 = (2Tprop + Treply1)(2Tprop + Treply2) (2.13)

which lead to a final formulation of the ToF of:

Tprop =
Tround1Tround2 − Treply1Treply2

Tround1 + Tround2 + Treply1 + Treply2

(2.14a)

=
Tround1Tround2 − Treply1Treply2

2(Tround1 + Treply1)
(2.14b)

=
Tround1Tround2 − Treply1Treply2

2(Tround2 + Treply2)
(2.14c)

In this way, the Time of Flight estimation T̂prop can be written as:

T̂prop =
T̂round1T̂round2 − T̂reply1T̂reply2

2(T̂round1 + T̂reply1)
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=
(1 + einit)(1 + eresp)

(1 + einit)

Tround1Tround2 − Treply1Treply2

2(Tround1 + Treply1)
= (1 + eresp)Tprop

(2.15a)

=
T̂round1T̂round2 − T̂reply1T̂reply2

2(T̂round2 + T̂reply2)

=
(1 + einit)(1 + eresp)

(1 + eresp)

Tround1Tround2 − Treply1Treply2

2(Tround2 + Treply2)
= (1 + einit)Tprop

(2.15b)

The error between the estimated and true values is therefore:

T̂prop − Tprop = (1 + einit)Tprop − Tprop = einitTprop (2.16a)

= (1 + eresp)Tprop − Tprop = erespTprop (2.16b)

By comparing Equation 2.12 and Equation 2.16, it is evident that both of them
have best-case errors of eTprop, but the latter achieves this performance under all
circumstances, despite different reply delays. In addition to that, this alternative
processing makes the ToF error dependent only on one device, while the standard
one averages the two errors, and that could be exploited if one device has a much
better time reference than the other to yield superior performances.
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Chapter 3

Position Estimation: Kalman
Filters

With the distance measurements obtained by the chosen ranging technique, the
next step to obtain the actual position estimation is to feed the measurements into
a model that is able to relate each one of them to the others and the a priori known
anchor’s positions. Some of the techniques used to fulfill this purpose have been
discussed in subsubsection 1.1.2.2; among them, Multilateration is probably the
most used one, but the problem of dealing with ever-present errors in measurements
and the consequent lack of a perfect estimation of a single point still remains.

The literature is plenty of algorithms designed to accomplish this goal and the
most commonly employed ones surely rely on Linear Least Square (LLS) estimation,
Gauss-Newton (G-N) algorithm, and Kalman Filters (KF).
The LLS method is a statistical algorithm used to find the parameters of a linear
system that minimize the sum of the squared errors between the measurements
and the predicted values, being computationally efficient and able to handle large
datasets, but under the assumption of Gaussian noise and obviously, as the name
suggests, of linear systems.
The G-N algorithm is an optimization method commonly used in nonlinear least
squares problems, where precisely the former method fails. It iteratively updates
the estimate of the unknown parameters by approximating the nonlinear equations
with a linear model and solving for the parameters using the least squares method.
The Gauss-Newton method can handle nonlinear systems, but it can converge to a
local minimum and is sensitive to the initial estimate.

Compared to previously mentioned techniques, the Kalman Filter is more power-
ful and flexible, being able to handle nonlinear systems, non-Gaussian noise, and
time-varying dynamics, making it a more versatile technique for state estimation. It
consists of two main steps, the prediction step and the update step: in the prediction
step, the filter predicts the state of the system at the next time step based on the
current state and a model of the system’s dynamics; in the update step, the filter
adjusts the predicted state based on a new measurement, taking into account the
uncertainty of the measurement and the predicted state.
The Kalman Filter is able to perform better than other techniques because it takes
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into account the dynamics of the system and the uncertainty of the measurements,
while also providing a means to update the estimate as new measurements be-
come available: this allows the filter to be more accurate and robust, especially in
situations where there is significant noise or uncertainty in the measurements. Ad-
ditionally, the KF can be easily adapted to handle different types of systems and
measurements, making it a widely used tool in a variety of applications, more than
other types of filters such as the Particle filter because of its simpler structure and
lower complexity.

In the next sections, the math of the basic Kalman filter is deepened and variations
of it meant to deal with nonlinear problems are also discussed and compared [21].

3.1 Kalman Filter overview
The algorithm of a basic multivariate Kalman Filter is suited to deal with linear
systems, and what follows is an explanation of how it works assuming to be in
presence of white Gaussian noise and discretized process of interest, which is the
case dealt with in the experimental part of this work.
Let us assume to be able to describe the process of interest by its state with a simple
differential equation in matrix form:

ẋ = Ax+Bu+w (3.1)

where ẋ is the first time derivative of the state x, A is the system dynamic matrix,
which indeed describes the system dynamics with respect to each component of x,
B is the control matrix, which models the effect of the control input u on the system
state, and w is the process noise.

Since the quantity of interest is x rather than ẋ, it can be characterized by means
of this discrete-time equation obtained with the state space method :

xk|k−1 = Fxk−1 +Bkuk (3.2)

where, ignoring the discrete-time noise wk for a moment, F is the state transition
matrix, also called fundamental matrix, and its purpose is to describe the transition
to the state’s value between discrete time steps, which are indicated with the k

subscript as a convention for the quantity value at the kth value of time t and with
the k|k−1 notation to indicate the quantity at the time step k given the evidence
from the step k − 1.

Then, to update the estimation of the state of the system, it is necessary to measure
it. Typically, what the measurement returns is not in the state space, so to be able
to compare the two quantities, one has to be transposed in the other’s space; to
accomplish this task many algorithms can be used depending on the specific nature
of the process: in the case of positioning, the position estimation algorithms seen in
the subsubsection 1.1.2.2 are fit for the purpose. In general, a measurement can be
expressed as:
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zk = Hxk + vk (3.3)

where z is the measurement, H is the measurement function, which is just what is
needed to yield a measurement starting from the information of the state x, so it is
chosen to implement one of the position estimation algorithm previously mentioned,
and v is the measurement noise.

At this point, the various equation can be rewritten in the following way with the
state space method:

x̂k|k−1 = Fxk−1 +Buk (3.4)

zk = Hxk

where x̂ denotes the fact that the state so obtained is a prior estimation, i.e. a first
guess of the filter made only given the last state and the control input, and where in
the measurement z expression the discrete-time noise vk is left aside, as done before
for w − k. This is due to the fact that both of them are incorporated in two other
matrices Rk and Qk, respectively the measurement noise covariance and the process
noise covariance, which are used in the next steps.

The state estimation is not a sure thing, but clearly comes with a certain belief,
a certain awareness of how much it is accurate. This awareness is mathematically
rendered with the P matrix, the state covariance matrix, whose equation is:

P̂k|k−1 = FPk−1F
T +Qk (3.5)

where P̂ is again the prior estimation of the P matrix. The multiplication with F
matrix and its transpose is common in linear algebra, where is called congruence
transformation, and it can be viewed as projecting the state covariance by the state
transition, thus obtaining an estimate of how the belief in the state estimation
transitions over the time; the process noise Qk is also used here to reflect a certain
loss of knowledge due to the presence of the noise.

Equation 3.2 and Equation 3.5 are referred to as the Prediction Equations, as they
are used to compute the prior next state of the system. Then, it follows the update
phase of the algorithm, where the measurements are employed to correct the prior
estimation.

As already mentioned, the measurement and the state estimation have to be com-
pared to get a residual ỹ, i.e. the difference between the actual measurement and
the hypothetical measurement that one would get if the state of the system were
equal to the prior estimation. The residual is simply obtained with the equation:

ỹk = zk −Hx̂k|k−1 (3.6)
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Furthermore, to work in the measurement space, the Kalman filter has to project
the state covariance into the measurement space: the method used is analogous to
the one used to transition the matrix Pk−1 in Equation 3.5:

Sk = HP̂k|k−1H
T +Rk (3.7)

where S is called system uncertainty matrix. Again, the congruence transformation
is used to pass from the state space to the measurement one, and therefore the Rk

comes into play to add the uncertainty information due to the measurement noise,
as was before with Qk.

Now a measurement and a prediction are available, and it is needed to select an
estimate between the two. To perform this task, a matrix that constitutes the very
core of the Kalman filter is employed, the Kalman gain K; it is obtained through
the formula:

Kk = P̂k|k−1H
TS−1

k (3.8)

It can be seen as the quantity that models the correction to be applied to the prior
state estimation given the measurement: if the inverse of a matrix can be thought
to as the linear algebra’s way to provide the reciprocal, then the Kalman gain can
be seen as the “ratio” of the prediction uncertainty (P̂k|k−1) over the measurement
uncertainty (Sk), which is then “converted” back to the state space through the
term HT.

At this point, the prior state estimation x̂k|k−1 can be corrected by exploiting the
information that comes from the residual, and it is done by scaling the latter by the
Kalman gain:

xk|k = x̂k|k−1 +Kkỹk (3.9)

The only thing left to update is the state covariance matrix Pk|k−1 involving the
same information used in the state update:

Pk|k = (I−KkH)P̂k|k−1 (3.10)

where I stands for the identity matrix. This equation allows adjusting the size of the
uncertainty on the state with respect to the prior estimation based on the Kalman
gain, as done for the state update. One thing that can be pointed out is that the
previous equation is numerically unstable, since the (I−KkH) subtraction can lead
to a nonsymmetric matrix due to floating point errors when implemented on a real
computation device, with a consequent divergence of the Kalman filter; for this
reason, to this formulation, it is preferred the Joseph equation that can be proved
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to be equivalent and far less likely to make the filter diverge when facing real-world
conditions [21]:

Pk|k = (I−KkH)P̂k|k−1(I−KkH)T +KkRkK
T
k (3.11)

Table 3.1 summarizes the Prediction and Update equations discussed until this point
and their role within the algorithm:

Predict Step

x̂k|k−1 = Fxk−1 +Buk

Prior state estimation at the next
time step, given the system behav-
ior and the control input

P̂k|k−1 = FPk−1F
T +Qk

Prior state covariance estimation, to
adjust the belief in the prediction ac-
counting for the uncertainty

Update Step

ỹk = zk −Hx̂k|k−1
Residual between the prediction and
the measurement

Sk = HP̂k|k−1H
T +Rk

System uncertainty, given the belief
in the accuracy of the measurement

Kk = P̂k|k−1H
TS−1

k

Kalman gain, the scaling factor
based on whether the prediction of
the measurement is more accurate

xk|k = x̂k|k−1 +Kkỹk

Posterior state estimation, corrected
based on the residual and the scaling
factor

Pk|k = (I−KkH)P̂k|k−1

Posterior state covariance, corrected
according to the belief about the
measurement correctness

Table 3.1: Multivariate Kalman filter equations

3.2 Extended Kalman Filter
As mentioned at the beginning of the previous section, the basic multivariate Kalman
filter can only cope with linear problems as it is designed. This poses a huge limita-
tion to its use, since the real world abounds in processes that can be modeled only
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as nonlinear, especially the ones for which a tool such as the Kalman filter is most
useful, as the localization discussed in this work.

In order to relax this constraint and be able to deal with nonlinear problems, many
variations of the Kalman filter have been designed and proposed through the years,
among which one of the very first techniques that still remains the most commonly
employed is the Extended Kalman Filter (EKF). The EKF handles nonlinearity
by linearizing the system at the point of the current estimate, and then the linear
Kalman filter is used to filter this linearized problem, as is often done by many other
algorithms that address nonlinear problems.

Recalling the previous equations for the process and measurement models and their
corresponding discrete-time state space representation:

ẋ = Ax+Bu+w

z = Hx+ v
=⇒

x̂k|k−1 = Fxk−1 +Buk

zk = Hxk

it is easy to substitute the linear expression Fx + Bu with a nonlinear function
f(x,u) and the linear expression Hx with a nonlinear function h(x).

x̂ = f(x,u) +w (3.12)

z = h(x) + v (3.13)

Finding a new set of Kalman filter equations that optimally solve these equations
will not work in this case, since passing a Gaussian through a nonlinear function
results in a probability distribution that is no longer Gaussian. In fact, what the
EKF does is to linearize the nonlinear equations at the point of the current estimate
and then directly employ the linear Kalman filter. Linearize differential equations
as f(x,u) and h(x) means taking partial derivatives of each one (obtaining the
Jacobian matrix) to evaluate respectively F and H at the point (xtk−1

,utk−1
).

F =
∂f(xt,ut)

∂x

∣∣∣∣
(xk−1,uk−1)

(3.14)

H =
∂h(x̂t)

∂x̂

∣∣∣∣
xk−1

(3.15)

The other dissimilarities with respect to the linear Kalman filter are the different
evaluations of the prior state estimation x̂k|k−1 and the system uncertainty S, and
the computation of the residual: while in the linear version of the filter the F
and H matrices are used respectively in the estimation of the state transition and
the calculation of the residual, doing so in a linearized model would propagate the
natural inaccuracies that always came along with the linearization; therefore, it is
preferred to directly use the nonlinear equations f(x,u) and h(x) to accomplish
the task and get more accuracy, possibly exploiting a suitable numerical integration
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technique such as Euler or Runge-Kutta methods. In addition, two other Jacobian
matrices are due: the Jacobian of f with respect to the input noise w, W, and the
Jacobian of h with respect to the measurement noise v, V:

W =
∂f(xt,ut)

∂w

∣∣∣∣
(xk−1,uk−1)

(3.16)

V =
∂h(x̂t)

∂v

∣∣∣∣
xk−1

(3.17)

The EKF equations are thus reported in Table 3.2, together with direct comparison
with their counterparts in the linear filter:

Linear Kalman Filter Extended Kalman Filter

F =
∂f(xt,ut)

∂x

∣∣∣∣
(xk−1,uk−1)

W =
∂f(xt,ut)

∂w

∣∣∣∣
(xk−1,uk−1)

x̂k|k−1 = Fxk−1 +Buk x̂k|k−1 = f(xk−1,uk−1)

P̂k|k−1 = FPk−1F
T +Qk P̂k|k−1 = FPk−1F

T +WQkW
T

H =
∂h(xt)

∂x

∣∣∣∣
xk−1

V =
∂h(x̂t)

∂v

∣∣∣∣
xk−1

ỹk = zk −Hx̂k|k−1 ỹk = zk − h(x̂k|k−1)

Sk = HP̂k|k−1H
T +Rk Sk = HP̂k|k−1H

T +VRkV
T

Kk = P̂k|k−1H
TS−1

k Kk = P̂k|k−1H
TS−1

k

xk|k = x̂k|k−1 +Kkỹk xk|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkH)P̂k|k−1 Pk|k = (I−KkH)P̂k|k−1

Table 3.2: Extended Kalman filter equations and linear filter comparison

3.3 Unscented Kalman Filter
It has been seen how the need to deal with nonlinear processes has led to the for-
mulation of a different approach to the modeling with respect to the basic Kalman
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filter, the one based on the linearization of the problem. That however gives rise to
other complications and drawbacks that should be highlighted: the linearization is
based on the computation of the Jacobian for the state and the measurement model,
which is often non-trivial even with simple models. It is not rare to deal with prob-
lems that result in a Jacobian which is difficult or impossible to derive analytically,
having to resort to numerical methods which are typically hard to implement and
increase the whole complexity; in addition to that, even with all the matrix available,
a linearized filter only takes in consideration the state and measurement equations
in one point, which sometimes can be a too rough approximation.

To overcome these limitations, the idea of the Kalman filter has been readapted in
many ways over the years, experimenting with different modeling approaches that
could be compatible with the core math of the Kalman filter. An approach that
turned out to be successful was the Unscented Kalman Filter (UKF), and the idea
behind it is actually quite logical and straightforward: the EKF has limited accuracy
in many cases due to the evaluation of the nonlinear equations in only one point, so
what can be helpful is to increase the number of points considered in the estimation;
for example, considering to a well-known technique as the Monte Carlo approach,
the accuracy that a filter would get using very large amounts of random points to
fed to the nonlinear equations and computing the mean and variance of the result
would certainly be high, if the points are enough. Obviously, this kind of approach
is terribly expensive from the computational burden point of view and exceptionally
slow, so the core idea of the UKF is to deterministically choose the points in which
to evaluate the functions, to keep the mean and covariance as similar as possible to
the ones obtained with many more points.

The points, called sigma points X , can be chosen following different strategies,
among which the most famous ones are the Julier sigma points algorithm proposed
by Simon J. Julier, who was also one of the authors of the UKF along with Jeffrey
Uhlmann, and the Van der Merwe Scaled sigma points algorithm, a reformulation
of the Julier’s algorithm published by Rudolph Van der Merwe in his 2004 Ph.D.
dissertation [36], which is also the version research and industry have mostly settled
on. Any technique anyway is based on the same core idea: they are chosen to sample
a Gaussian distribution, which the state x and state covariance P both are, and
typically they are in odds numbers so that there is always one sample point at the
mean of the inputs and couples of other points that map the input in a symmetrical
way. The points are then fed directly to the nonlinear state equation that returns a
new distribution from which mean µ and covariance Σ can be extracted, constituting
the state and state covariance prior estimations.

Y = f(X ) µ =
2n∑
i=0

wm
i Y i Σ =

2n∑
i=0

wc
i (Y i − µ)(Y i − µ)T (3.18)

where the subscript i denotes the sigma point and the subscripts m and c refer to
the weights respectively for the mean and the covariance.
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The problem could require weighing differently the sigma points, for instance putting
much more belief in the center point than in the ones far from the mean. This applies
both to the state and the covariance prior estimation, and the criteria to choose the
weight is mostly arbitrary, and again the techniques present in the literature are
multiple. In particular, the equations of the Van der Merwe’s scaled algorithm for
both the sigma points and the weights are presented, being also the ones employed
in the implementation of UKF in the experimental work.

The formulation uses 3 parameters to control how the sigma points are distributed
and weighed: α, β, and κ. Of the three, α has the more straightforward role:
Figure 3.3.1 depicts the same distribution of which two covariance ellipses showing
the first and second standard deviations are represented, comparing the effect of α
on the points layout.

Figure 3.3.1: Effect of α on the sigma points layout [21]

It is evident that the sigma points become more and more spread out with respect to
the mean the larger α gets, also weighing more the mean point and less the others.
The meaning of it should fit the intuition: the further a point is from the mean, the
less it should be considered and so weighed.

The first sigma point is chosen as the mean of the input, while the others are com-
puted with the following equation, which employs the three mentioned parameters:

X 0 = µ

X i =

{
µ+

√
(n+ λ)Σ

∣∣
i

i = 1 · · ·n
µ−

√
(n+ λ)Σ

∣∣
i−n

i = (n+ 1) · · · 2n
(3.19)

where λ is a parameter defined for notational convenience as λ = α2(n + κ) − n,
where n is the dimension of the state vector x, and the i subscript chooses the i-th
row of the matrix. So basically the covariance matrix Σ is scaled by a constant,
square rooted, and then added or subtracted to the mean µ to ensure the symmetry.
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Then the formulation provides one set of weights for the mean and another for the
covariance:

Wm
0 =

λ

n+ λ

Wc
0 =

λ

n+ λ
+ 1− α2 ++β

Wm
i = Wc

i =
1

2(n+ λ)

(3.20)

The parameters should be chosen as follows: 0 ≤ α ≤ 1, β ≥ 0 to incorporate
knowledge of the higher order moments of the distribution (β = 2 is the optimal value
for Gaussian), and κ ≥ 0 to guarantee positive semidefiniteness of the covariance
matrix [36]. A reasonable choice for the parameters is the following: α typically a
small number to avoid sampling non-local effects, κ = 3 − n with n the dimension
of x, and as said β = 2 [21].

With sigma points X k|k−1 and weights so obtained, the transformed points distri-
bution Yk|k−1 can be obtained through the nonlinear state function f and the prior
state mean and covariance are computed next using the Unscented Transform, whose
equations are along the lines of Equation 3.18:

x̂k|k−1 =
2n∑
i=0

wm
i Yk|k−1,i (3.21)

P̂k|k−1 =
2n∑
i=0

wc
i (Yk|k−1,i − x̂k|k−1)(Yk|k−1,i − x̂k|k−1)

T +Qk (3.22)

In an analogous way, the measurement estimates distributionZk|k−1 can be obtained
from the transformed sigma points through the nonlinear measurement function h,
and the mean ẑk|k−1 and covariance Sk can be calculated again by means of the
unscented transform:

Zk|k−1 = h(Yk|k−1) (3.23)

ẑk|k−1 =
2n∑
i=0

wm
i Zk|k−1,i (3.24)

Sk =
2n∑
i=0

wc
i (Zk|k−1,i − ẑk|k−1)(Zk|k−1,i − ẑk|k−1)

T +Rk (3.25)

and then the characteristic equations of the Kalman filter can finally be used, with
minor alterations. In fact, in this case, a new matrix is defined, the cross covariance
Pxz,k, which relates the uncertainty in the state estimation with the uncertainty in
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the measurement one, exactly as the expression P̂k|k−1H
T did before in the linear

filter:

Pxz,k =
2n∑
i=0

wc
i (Yk|k−1,i − x̂k|k−1)(Zk|k−1,i − ẑk|k−1)

T (3.26)

which is subsequently used to evaluate the Kalman gain, which is again a factor that
compares the belief in the state (Pxz,k) with the belief in the measurement (Sk) as:

Kk = Pxz,kS
−1
k (3.27)

What is left to do is to compute the residual of the measurement zk with respect to
the measurement estimate ẑk|k−1:

ỹk = zk − ẑk|k−1 (3.28)

and then the posterior state xk|k and covariance Pk|k can finally be evaluated as:

xk|k = x̂k|k−1 +Kkỹk (3.29)

Pk|k = P̂k|k−1 −KkSkK
−1
k (3.30)

Figure 3.3.2 shows how differently the sampling (Monte Carlo), the EKF, and the
UKF accuracies are when dealing with an arbitrary nonlinear function:

Figure 3.3.2: Comparison of the accuracies of the Monte Carlo, EKF and UKF
approaches in the mean and covariance propagation through a nonlinear function
[36]
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The picture is taken directly from Van der Merwe’s Ph.D. dissertation: g corresponds
to the state transition function f , so ∇g is its Jacobian, previously indicated as F.

All the UKF equations are reported in Table 3.3, again with a direct comparison
with the standard linear filter ones:

Linear Kalman Filter Unscented Kalman Filter

X = sigma-function(xk−1,Pk−1)

Wm,Wc = weight-function(α, β, κ, n)

Y = f(X )

x̂k|k−1 = Fxk−1 +Buk x̂k|k−1 =
∑2n

i=0 w
m
i Yk|k−1,i

P̂k|k−1 = FPk−1F
T +Qk P̂k|k−1 =

∑2n
i=0w

c
i (Yk|k−1,i − x̂k|k−1)(Yk|k−1,i − x̂k|k−1)

T +Qk

Zk|k−1 = h(Yk|k−1)

ẑk|k−1 =
∑2n

i=0w
m
i Zk|k−1,i

ỹk = zk −Hx̂k|k−1 ỹk = zk − ẑk|k−1

Sk = HP̂k|k−1H
T +Rk Sk =

∑2n
i=0 w

c
i (Zk|k−1,i − ẑk|k−1)(Zk|k−1,i − ẑk|k−1)

T +Rk

Pxz,k =
∑2n

i=0w
c
i (Yk|k−1,i − x̂k|k−1)(Zk|k−1,i − ẑk|k−1)

T

Kk = P̂k|k−1H
TS−1

k Kk = Pxz,kS
−1
k

xk|k = x̂k|k−1 +Kkỹk xk|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkH)P̂k|k−1 Pk|k = P̂k|k−1 −KkSkK
−1
k

Table 3.3: Unscented Kalman filter equations and linear filter comparison

The advantages of the UKF over the EKF are multiple: when it comes to the
modeling of the real-world process, the EKF poses hard challenges to solve in order
to be able to use it, such as the computation of the Jacobian matrices; on the other
hand, the UKF does not require any type of linearization and is much simpler in
terms of modeling, since its nature is to exploit the characteristics of distributions
to estimate the propagation of means and covariances, and so it is able to deal with
processes that can be highly nonlinear and that the EKF cannot handle. In addition

46



Position Estimation: Kalman Filters

to that, the UKFs present in literature are often proven to perform better that the
EKFs, and it is foreseeable since the latter limits its scope to a single point, while
the UKF acts on multiple points. Finally, the UKF can also be tuned through the
choice of the sigma points, which is, in turn, dependent on the choice of the α, β,
and κ parameters, almost arbitrarily selected by the user.

3.4 Additional Features
All the different variations of the Kalman filter just seen have some flaws, as every
modeling and prediction tool does: apart from the linearization problem already
discussed for the EKF, all three of them share some weaknesses that directly depend
on the non-idealities characteristics of real-world processes.

The Kalman filters require an initial condition to start their processing and provide
a first estimation, and that can only be arbitrarily chosen by the user; on the basis
of the discordance of the initial guess from the true state, the filters can even diverge
in a small amount of time. This behavior can be caused also by other factors, such
as the non-Gaussianity of the measurement or process noise, which depending on
the actual problem of interest could also occur. The noise can also happen to be
non-additive, as instead the Kalman filters model it, and that may also contribute
to faulty estimations or directly the divergence.

Among all the sources of errors in Kalman filters, the one whose effects are the
most visible and most of all occurs in nearly all kinds of real-world problems, is
certainly the presence of outliers in the measurements. An outlier is a measurement
value that largely differs from the expected or typical value at that moment, so a
point that is placed on the tails of the distribution; outliers are actually frequent in
real processes, because every type of measurement system is subject to variations
in temperature, pressure, humidity, light conditions and so on, that even in small in
magnitude can cause even very different results.
Because of the way the Kalman filters are designed, the outliers are taken into
account in the estimates, causing the filters to underestimate or overestimate the
true state of the system, which can also lead to the divergence if the deviation from
the expected value or the outlier occurrence rate are too high.

To deal with this flaw, some variations to the EKF and UKF have been proposed in
the past years, and they all rely on a robust filtering technique, such as the Huber
filter, the Student’s T filter, and the M-estimation filter, or on the increase of outlier
handling capacity of the Kalman filter through specific adaptiveness features that
the matrices are provided to. This second group of filters is designed with the idea of
adapting the covariance matrices according to the obtained measurements in order
to accommodate the presence of outliers by increasing the uncertainty about them,
privileging the ones that are close to the expected value. Actually, the equations
of the Kalman filters of the previous sections have been reported in a specific way
precisely to include the possibility of adaptiveness; in fact, one thing that is worth
being highlighted is the notation used for the matrices and vectors: among the
right-hand side matrices, the only ones that are reported with time steps subscripts,
apart from those that are explicitly updated in the equations discussed, are the noise
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matrices Qk and Rk. This has been made exactly to highlight the fact that even
if they are initially provided by the user, according to the characterization of the
properties of the process model and the actual sensors used for the measurement,
nothing forbids altering them on the basis of the specific data of each time step to
provide the filter of an adaptability feature.

Nearly all the proposed modifications of the Kalman filters that can be found in the
literature are based on the alteration of specific equations and/or matrices, made
upon some kind of metrics that are able to provide statistical information about
the goodness of a measurement. Among them, one of the most used metrics is
the so-called Mahalanobis distance: it was first proposed by the Indian statistician
P.C. Mahalanobis as a measure of the distance of a point from a distribution, and
it can be seen as a multidimensional generalization of the idea of measuring how
many standard deviations away the point is from the mean of the distribution. It is
defined as:

MD(x,Q) =
√

(x− µQ)TΣ
−1
Q (x− µQ) (3.31)

where x and Q are the multidimensional point and distribution of interest and µQ

and ΣQ are respectively the mean and the positive-definite covariance matrix of the
distribution Q.

From the theory of hypothesis testing, it can be verified that the Mahalanobis dis-
tance squared applied to a Gaussian distribution obeys to the χ2 distribution with n
degrees of freedom, where n is the number of dimensions of the normal distribution.
It means that supposing a significance level α ranging from 0 to 1, MD(x,Q)2 has
just an α probability of being higher of a certain threshold χ2

n,α which is tabulated
and dependent on α and the degree of freedom n of the distribution. This prop-
erty can be usefully exploited to obtain a piece of statistical information about the
trust level that should be put in a certain measurement, which has so to exhibit a
Mahalanobis distance squared smaller than the threshold value.

Among the techniques that realize adaptive filtering by making use of the Maha-
lanobis distance, here it is chosen to report the three of them which have also been
implemented in the Kalman filters designed in the experimental work, showing in-
teresting results.

The first technique described is the simplest one to use when the Mahalanobis
distance is involved, the thresholding technique. It is as straightforward as the
name suggests: a measurement can be either retained or discarded based on the
information provided by the Mahalanobis distance, which, instead of considering
the whole measurement vector, is computed measurement by measurement in this
case, as it is also done in other proposed techniques and in some of the ones that will
be discussed later. The formula used is a direct derivation of the multidimensional
case, treating the multiplication of a vector by its transpose as the matrix way to
compute its square and the inverse of a matrix as a way to make a ratio out of it:
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MD(zk,Sk)i =

√
(zk,i − ẑk,i)2

Ski,i

(3.32)

where Ski,i is i-th element of the diagonal of the measurement uncertainty matrix
corresponding to the i-th measurement zk,i and ẑk,i is the i-th measurement estimate.

The corresponding degree of freedom is then reduced to one, since the measurements
are treated value by value, and the significance level can be chosen arbitrarily, al-
though a significance level of 0.05 is often used as the cutoff between significant and
non-significant results, which in this case results in a χ2

1,0.05 threshold value of 3.841,
according to the χ2 tables.
Then the algorithm simply cuts off each measurement that results greater than the
threshold, actually reducing the dimension of the measurement vector. This clearly
implies a collective reduction of dimension for all the matrices that directly involve
the measurement vector in their calculations (Sk and Kk for the EKF, to which
Pxz,k is added in the case of UKF), effectively downscaling the order of the system.
The technique is effective because of its simplicity, allowing the filter not to be af-
fected by the outliers’ influence without a real increase in complexity; its drawback
on the other hand is again its unsophistication, since it completely ignores the data
of some sensors and makes the filter rely only on a subset of them, leading to a loss
of accuracy in some cases.

A more advanced approach to outlier detection is the one proposed in 2007 by Ting,
Theodorou, and Schaal [34] in 2007, whose advantage is the lack of need for manual
parameter tuning by the user, which is often required in other proposed Kalman
filter variations. It makes use of a weight wk applied to the measurement noise
matrix Rk in order to privilege the most reliable measurements by associating them
with a higher weight, while down-weighing the ones that turn out to be too far from
the expected value. The equations of the “Weighted Robust” Kalman filter, as it is
called by the authors, are the following:

Prediction:

x̂k|k−1 = Fxk−1 +Buk (3.33)

P̂k|k−1 = Qk (3.34)

Update:

ỹk = zk −Hx̂k|k−1 (3.35)

Sk = HP̂k|k−1H
T +

1

wk

Rk (3.36)

Kk = P̂k|k−1H
TS−1

k (3.37)

xk|k = x̂k|k−1 +Kkỹk (3.38)

Pk|k = (I−KkH)P̂k|k−1 (3.39)

49



Position Estimation: Kalman Filters

and the two differences with the general Kalman filter equations are in P̂k|k−1 and

Sk matrices: for the state covariance matrix P̂k|k−1, this filter eliminates its explicit

dependency on P̂k−1 by imposing that at each timestep the measurement noise
matrix is set equal to the process noise matrix Qk; For Sk instead, it performs a
rescaling of the measurement noise matrix Rk at each timestep through the weight
wk defined as:

wk =
awk

+ 1
2

bwk
+ (zk −Hx̂k|k−1)TR

−1
k (zk −Hx̂k|k−1)

(3.40)

where it is evident the use of the squared Mahalanobis distance at the denominator,
which has the effect of lessening the weight given to a measurement too distant
from the expected value. The parameters awk

and bwk
are prior scale parameters

for the weight wk: they have to be selected so that the initial average weight is
equal to 1 with some confidence, meaning that the algorithm starts assuming that
most measurement data are inliers. That can be achieved with a choice of awk

and bwk
both equal to 1, so that the maximum value of wk is capped at 1.5. It

is worth noticing that differently from the thresholding technique, the Weighted
Robust Kalman filter does never cut off completely an outlier measurement, instead
it makes it less influent by increasing its related uncertainty. The computational
complexity of this filter is in the same order as that of the standard Kalman filter.

Another technique that performs well in presence of outliers, for example in NLoS
condition in the positioning field, is the one proposed by Li, Wang, and Khoshelham
[22] in 2018. It is very similar to the previously discussed one, but it performs the
rescaling of the Rk matrix in another way and also extends the procedure to the
state covariance matrix Pk|k−1. The algorithm computes the Mahalanobis distance
MDk,i for each measurement zk,i as for the thresholding technique, but then the
scaling factor applied to the measurement noise matrix is the ratio of MDk,i and the
threshold value of the χ2 distribution, so that:

Rki,i =

R0i,i MDk,i < χ2
1,α(

MDk,i

χ2
1,α

)
·R0i,i MDk,i ≥ χ2

1,α

(3.41)

where R0i,i indicates the i-th element of the diagonal of the initial user-provided R
matrix, so the one at time zero, and χ2

1,α indicates the threshold value of the χ2

distribution with one DoF and significance value α.
In an analogous way, the authors propose an adaptation of the state covariance
matrix P̂k|k−1 to overcome abnormal system states, when instead the measurements
are correct, which can be caused by sudden variations of the state, unknown biases
or even incorrect knowledge of process statistics:
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P̂′
k|k−1 =

 P̂k|k−1 MDk,i < χ2
1,α(

MDk,i

χ2
1,α

)
· P̂k|k−1 MDk,i ≥ χ2

1,α

(3.42)

observing that the Mahlanobis distance of a single measurement causes the whole
P̂k|k−1 matrix to adapt. To detect abnormal system states, the aforementioned
paper introduces a robustness factor that employs knowledge about the sensors’
error behavior to discover if the actual error comes from a wrong measurement or a
wrong process model. This computation surely moderately increases the complexity
of the filter, but the adaptiveness equations introduce only a small overhead per se.

The third and last technique that will be reported is the one discussed by Echeverri,
Medeiros et al. [14] in 2018. This approach is not dissimilar to the previous one, but
its advantage, mainly with respect to the thresholding technique, is to redefine the
Rk matrix by means of a sigmoid function to allow for smoother transitions between
the various weights. In particular, the employed equation is the following:

wk,i =
1

1 + e−(MDk,i−ξ)
(3.43)

where MDk,i indicates the Mahalanobis distance of the single measurement zk,i com-
puted as in Equation 3.32, and ξ is the analogue of the χ2

1,α described before. Then,
these weights are used to redefine the measurement noise matrix as follows:

Rk = ∆wk (3.44)

where ∆ is defined as the diagonal matrix that reflects the a priori knowledge of the
errors of the various sensors, so the resulting matrix Rk is a diagonal matrix as well.
This allows the user to furtherly scale the uncertainty of a single sensor more or less
than the others if their error trends are known to be different; if otherwise the sensors
behave similarly and are all equally modeled, ∆ is simply the identity matrix, and
Rk is equal to diag(wk). In the paper the technique is applied in a slightly different
way, since the sensors they used were of different types and organized in clusters,
each one having its own Kalman filter, and then a final filter was in charge of the
sensor fusion; so, the Mahalanobis distance was applied in the vector sense as in
Equation 3.31 and the ∆ matrix was implemented in the final filter to reflected the
knowledge about each cluster, along with other scaling factors derived from other
methods specific of the application.
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Case Study: Rover localization
inside a Martian ground

simulation facility
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Chapter 4

State of the Art

Accomplishing the task of positioning is surely one of the most important require-
ments when dealing with mobile robotics. If the use case is related to open-air
activities, the various available GNSSs have a predominant role in providing a re-
liable estimation of the global position of a robot, but they cannot be so useful
in indoor activities, due to all the limitations that have been discussed. Even in
outdoor environments, there are not always the ideal conditions for the satellite
systems to work as they should, especially when the area of action is very large and
so the environmental conditions such as the extension of the vegetation do change
from one point to another. Another challenging case is when the area of interest is
not defined a priori, and so the environmental circumstances are little to completely
unknown; this happens when the robot is demanded to perform a first exploration
of the surroundings, so chances are that in many zones there would be no coverage
of satellite signals.

To overcome the limitations present in GNSSs-challenging or denied environments,
many approaches have been followed through the years and are well documented
in the literature. Most of them make use of inertial measurements and cameras to
analyze the surrounding environment up to a certain radius from the robot: Visual
Odometry (VO) involves Inertial Measurement Units (IMU) to report a body’s spe-
cific force, angular rate, and occasionally the orientation of the body and compare
this information with the deviation of motion present in the sequences of images
captured by on-board cameras; Simultaneous Localization And Mapping (SLAM),
instead, relies on a live map that is incrementally-built by the algorithm during
the exploration, and then compares the previously acquired data with the current
information to keep track of its position within the map.
The advantages of the use of IMUs and cameras certainly are their low weight and
low power requirement, but they also experience drawbacks when the light condi-
tions or the reflective properties of the environment change (for the cameras) or in
general when the navigation is performed for a long time.

When it comes to space exploration, though, the main limitation in performing lo-
calization is the total lack of global positioning systems and the impossibility to rely
on magnetometers, which are extremely useful to acquire orientation data. The case
study in particular is focused on handling the positioning task in a particular space
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setup: with the constant increase of interest in space exploration, it is not tempo-
rally remote the day in which mankind will be able to realize the first extraterrestrial
outpost on the Lunar or Martian soil; this will pose a whole range of challenges in
building a network able to provide information to astronauts about their surround-
ings and the precise location of instrumentation, vehicles, or any other targets of
interest.
With this goal in mind, an excellent solution would be the employment of prein-
stalled, fixed radiofrequency anchors: this solution would perform better than other
approaches since it is able to fully exploit the characteristics of a structured envi-
ronment, and the fact that its aim would not be to perform a first exploration of the
environment, so it could make full use of pre-existent, reliable knowledge of known
surroundings. If the user is able to provide the system with precise information
about the positions of the anchors, a technology such as UWB would be ideal to be
employed because of all the advantages in terms of accuracy, fidelity, low cost, and
robustness.

Dardari et al. [11] developed in 2020 a real-time locating system (RTLS) with
ultra-low power UWB tags within the project “LOST” (Localization of Objects in
Space through RF Tags) funded by ESA; their purpose was to investigate suitable
technologies to localize objects deployed or floating inside the International Space
Station or future space stations, aimed at tracking every tagged object present in the
environment to avoid potentially dangerous situations and to allow astronauts not
to waste their extremely valuable time searching for lost tools. The characteristics
of the system were high accuracy (close to 1 cm) and medium coverage (a few tens of
meters) but the most important was the battery-less UWB tags: in fact, the system
exploited the UHF technology to deliver power to the tags, which then utilized UWB
pulses to perform the localization through fixed reference nodes. They performed a
wide test campaign of 2D localization in a room of size 10× 7m2, using a TOTAL
laser station as ground truth, obtaining average errors of 4 cm and discovering good
robustness to metallic obstacles with diameters of tens of centimeters. They also
performed a final demonstrator in ESA/ESTEC RObotic Labs by mounting the
developed system on the Mars Rover prototype, observing quite large errors in the
z-direction because of the physical area constraints, an error below 3 cm on the x-y
plane and an overall localization error which remained below the 10 cm in 95% of
cases.

Another interesting project was developed by Ni and Barton [28] in 2005. The
system they designed at NASA Johnson Space Center (JSC) aimed to provide aid
in inspection around the IIS and the Space Shuttle through a free-flying video camera
known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) equipped
with UWB technology to implement the tracking system. They made use of TDoA
measurements to develop a 2D tracking system that reached accuracies of tens of
centimeters within a planar orbit of a 100 m radius. Their UWB test setup was
designed to avoid the receivers’ synchronization problem by using four transmitter
antennas and only one receiver, which could scan four delayed versions of the received
signal from as many antennas within a time window less than 100 ns long; the
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tracking resolution obtained was less than 1 foot in a 15 × 15 squared feet lab
environment.

In the same year, Ni et al. [26] continued the efforts of the previous project re-
adapting it to the tracking need of the SCOUT vehicle performing outdoor tests
near the Meteor Crater in Arizona. They obtained simulation results carried out at
a range of 610 m which showed an average tracking error of below 3 m, less than
0.5% of the tracking range; the outdoor tracking performance was encouraging as
well, being less than 1% at ranges up to 2000 feet.

What is closest to the project developed in this thesis is the work carried out in
2010 by Ni, Arndt et al. [27], who designed a positioning system for a robotic con-
trol system in the “Moonyard” facility at Honeywell Defense & System in Arizona.
They designed a UWB TDoA high-resolution 3D proximity tracking system for the
localization of rovers and astronauts during early exploration missions when satel-
lite navigation systems are not available. Simulations were performed utilizing five
receivers uniformly distributed in a given squared space of approximately 7 m side in
an optimum configuration called “Twisted Square Configuration”, where a receiver
is placed in the origin of the reference system, and the remaining four lay on the
vertices of a “Twisted Square” (two on the x-z plane and two in the y-z plane) at
a distance from the origin defined as the radius of the configuration baseline; they
observed a small stable error when the target was located inside the baseline and
an exponentially increasing error outside of it.
For the field test, they kept the “One-Receiver-Multiple-Antennas” design to avoid
the degradation in time resolution introduced by synchronization errors among re-
ceivers, obtaining the time-delayed versions of the UWB pulses as in the previous
work, keeping the Twisted Square Configuration” adopted in the simulations; the
center antenna was set at height of 4 feet, while the other four were set at 2 and 6
feet in pairs, at a radius of 20 feet. They experienced average tracking accuracy of
less than 1 inch in x and y-directions, while on the z-axis it exceeded 2 inches; they
conjectured that the tracking accuracy degradation was due to the limited span of
the z-dimension: in fact, further simulations performed at an increased span in the
z-direction (40 feet) demonstrated the alignment of the vertical tracking error with
the one exhibited in the x-y plane.
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Chapter 5

Experimental Work

This work aims to offer a low-power, low-cost, modular, easily scalable solution to
provide an extraterrestrial outpost with a local positioning system; it is also con-
ceived, though, to serve as ground truth for the research activities of TAS-I Robotics,
offering a reliable and precise position reference to aid the development of different
mapping and exploration algorithms without interfering with all the RF communi-
cation signals already present. The chapter will go through a brief description of the
RoXY facility and the equipment used during the field tests and the environment
setup; it will follow a detailed discussion of the UWB sensors employed in the sys-
tem, mentioning their functioning algorithm and the hardware developed to deliver
the final setup, including the power adapter PCB and the 3D-printed outdoor de-
tachable case. Subsequently, the ROS2 framework will be presented along with the
main nodes developed to implement the positioning algorithm and to integrate it
within the rover system; furthermore, the simulation environment will be detailed,
providing an overview of the preexisting tools and the developed ones that have
been used to test and tune the algorithms, as well as the obtained results. Finally,
it will be described the UWB antennas’ calibration strategy and the carrying out of
the field tests, their results, and a comparison with the simulations.

5.1 TAS-I Torino RoXY setup and equipment

The whole system has been developed in such a way as to fully exploit the properties
of the Rover eXploration facilitY (RoXY) at TAS-I Turin: the latter, as visible in
Figure 5.1.1, is a technological area dedicated to robotic systems design, develop-
ment, validation, and verification. It covers an area of about 700m2, including a
Mars playground, a control room, and a workshop. The outdoor playground extends
to an area of 22 × 26m2 that reproduces Mars-like planetary morphology in terms
of color, landscape, boulders, smaller rocks, and slopes. The control room hosts
the software development, validation, and verification infrastructure, including CC
cameras and communication antennas, while the workshop provides a secure area
where to store robots and materials, and also to perform integration, tests, and
maintenance activities. The perimeter is surrounded by uniform background walls,
which isolate the terrain from external interferences like people and vehicles.
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Figure 5.1.1: Perspective view of Rover eXploration facilitY at TAS-I Turin

Moreover, the workshop office box can be transported via truck to be relocated
to the field to provide on-site logistics during field test campaigns. The facility is
equipped with different power supply rails that run all along the perimeter walls:
besides a 220 V rail with standard sockets, there also are 48 V and 24 V AC rails,
and the latter has been specifically employed as the power delivery bus chosen for
this project. The following subsections report a brief description and a specification
table for each significative tool and equipment that has been used, leaving aside
everything that concerns the UWB anchors, which will be presented in detail in
section 5.2.

5.1.1 Adept MobileRobots Seekur Jr Rover

Seekur Jr by Adept MobileRobots is an all-terrain, all-weather four-wheel skid-steer
robot meant for laboratory experimentation or outdoor operation. The actual rover
in the RoXY facility has been heavily customized with respect to the stock one,
retrofitting it with a modern suite of on-board hardware and keeping only the me-
chanical parts: it has been provided with an Intel i7 on Versalogic VL-EBXe-41SJF
Copperhead primary OBC, and an Nvidia Jetson Xavier NX as secondary OBC,
also embedding a LucidLabs Helios2 Time-of-Flight (ToF) camera and a StereoLabs
Zed2 stereocamera with a built-in IMU, used for visual odometry and autonomous
navigation. Its core software has been totally rewritten to implement a wide ROS2
system to organically control locomotion, cloud point processing, and sensor fusion.
It can be controlled remotely with a joypad or laptop, with position goal auto-
reaching. Its versatility makes it an ideal solution for R&D purposes, enabling easy
sensors integration and algorithm testing without the additional complications that
arise with real space exploration rovers. For the purpose of this project, a custom
stand has been modeled and 3D-printed to be attached to the top of the rover, in its
center, in order to support the UWB target tag. The technical specs of the standard
commercial Seekur Jr are reported in Table 5.1.
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(a) (b)

Figure 5.1.2: Adept MobileRobots Seekur Jr standard version (a) and RoXY Lab
customized version (b)

Dimensions 1151mm× 835mm× 494mm

Weight + Payload 77 kg + 40 kg

Body material & IP ratings Powder-coated aluminum IP-54

Tires 16 inch pneumatic

Max forward/backward speed 1.2m/s

Turn & Swing radius 0 cm, 52 cm

Run time 3 hours

Operating temperature (-5°C , +35°C)

Table 5.1: Adept MobileRobots Seekur Jr technical specifications

5.1.2 Leica Absolute Tracker AT403

Leica Absolute Tracker AT403 is a portable laser tracker with continuous measure-
ments and reflector tracking features. It allows a precise and trustworthy ground
truth for the anchors’ location, which has been exploited in both anchors’ calibra-
tion and final placement, employing prisms with extremely precise dimensions and
offsets. Measurements are gathered by means of SpatialAnalyzer® software, which
also enables a quick and simple generation of reports and ASCII files that can be
used for data analysis and post-processing, such as the creation of planes, the di-
rectional removal of offsets and the table of reciprocal distances. The laser tracker’s
technical specifications are listed in Table 5.2.
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(a) (b)

Figure 5.1.3: Leica AT430 mounted on a tripod with its control unit (a) and the
0.5” prism used in anchors’ placement (b)

Dimensions (L x W x H) 290mm× 221mm× 188mm

Weight 7.3 kg

Measurement angle Horizontal: ±360°, Vertical: ±145°

Accuracy ±15 µm+ 6 µm/m

Laser class 2

Laser type 635 nm, < 1mW

Operating temperature (-15°C , +45°C)

Operating relative humidity < 95%

Table 5.2: Leica AT403 technical specifications
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5.1.3 Bosch GLM 250 VF Professional Laser Measure

Bosch GLM 250 VF Professional is a portable laser tool able to perform a wide range
of measurements, including standard length, surface, volume, and indirect height.
It is provided with a wide optical lens and a bubble level, and ensures built-in dust
and splash water protection, making it ideal for outdoor environments. It has been
employed during field tests to measure single-point positions to be compared with
the result provided by the UWB system. Technical specifications follow in Table 5.3.

Figure 5.1.4: Bosch GLM 250 VF Professional Laser Measure

Dimensions (L x W x H) 120mm× 66mm× 37mm

Measurement range (0.05 , 250) m

Measurement time Typ: < 0.5 s, Max: 4 s

Accuracy Typ: ± 1 mm

Laser class 2

Laser type 635 nm, < 1mW

Dust and splash protection IP-54

Table 5.3: Bosch GLM 250 VF Professional technical specifications
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5.1.4 Advanced Navigation Spatial GNSS/INS

Spatial is a ruggedized miniature GNSS-aided Inertial Navigation System (INS) and
Attitude and Heading Reference System (AHRS) that provides accurate position,
velocity, acceleration, and orientation under the most demanding conditions. It
combines temperature-calibrated accelerometers, gyroscopes, magnetometers, and
a pressure sensor with an advanced GNSS receiver that supports GPS, Galileo,
GLONASS and BeiDou. The sensors are coupled in a sophisticated AI neural
network fusion algorithm to deliver accurate and trustworthy navigation and ori-
entation; it also supports Real-Time Kinematics (RTK) technology for real-time 2
cm position accuracy. It has been exploited as a reliable benchmark for the UWB
positioning system to be compared to. Its technical specs are listed in Table 5.4.

Figure 5.1.5: Advanced Navigation Spatial GNSS/INS

Dimensions (L x W x H) 40mm× 30mm× 24mm

Horizontal accuracy 2 cm (with L1 RTK)

Vertical accuracy 3 cm (with L1 RTK)

Update rate 10 Hz

Communication interface RS232

Environmental protection IP67 & MIL-STD-810G

Table 5.4: Advanced Navigation Spatial GNSS/INS technical specifications
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5.2 UWB anchors

5.2.1 Qorvo Decawave DWM3000EVB + STM32 Nucleo-
F429ZI

The localization system designed for this thesis relies on UWB anchors composed
of a microcontroller and a UWB antenna peripheral. The choice for the latter fell
on the Qorvo ® (Decawave) DWM3000 Evaluation Board, an evolution from the
previous DWM1000 model that has been optimized in terms of power consumption,
SPI speed, and cost. One of its drawbacks is the limited API compatibility: de-
spite being provided with an Arduino-compatible shield, the API supplied by the
manufacturer, and at the time being the only one that constitutes a reliable and
complete solution, has been designed so that the compatibility is ensured only for a
small set of microcontrollers; among them, the STMicroelectronics Nucleo-F429ZI
development board has been chosen as the MCU for the UWB peripheral, to keep
the system as low cost as possible as well as because of previous experiences with
STM boards.

The DWM3000EVB is an Arduino form-factor compatible shield designed for the
evaluation of the DWM3000 UWB transceiver module, which integrates the antenna,
power management and clock circuitry in one low-power component, simplifying the
integration. It can be used in two-way ranging or TDoA location systems to locate
assets to a precision of 10 cm and supports data rates of up to 6.8 Mbps; it supports
both UWB Channels 5 and 9, allows programming the transmitter output power
and it is fully compliant with FCC & ETSI UWB spectral masks. Table 5.5 sums
up the main technical characteristics.

Dimensions (L x W x H) 78mm× 53mm× 14mm

Operating bands UWB Channel 5 (6.5 GHz) and 9 (8 GHz)

Data rate 6.8 MBps (IEEE 802.15.4-2015 compliant)

Spectral density -41.3 dBm/MHz (Max)

UWB antenna Qorvo® DW3110 IC

Ranging technique SS-TWR, DS-TWR, TDoA

Ranging precision 10 cm (2D)

Table 5.5: Qorvo ® DWM3000 Evaluation Board technical specifications
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(a) (b)

Figure 5.2.1: Qorvo ® DWM3000 Evaluation Board (a) and STMicroelectronics
Nucleo-F429ZI development board (b)

Figure 5.2.2: Assembled UWB anchor with soldered power supply cable
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The STM32 Nucleo-F429ZI board is one of the two MCU development platforms sug-
gested by the UWB antenna manufacturer to be used along with the DWM3000EVB
since completely compatible with its software package provided by Qorvo ®. It inte-
grates the ST-LINK Debugger/Programmer which allows to easily and quickly load
the application software on the platform or flash and update the firmware on the
MCU; it is also provided with ST Zio connector, which extends the Arduino® Uno
V3 connectivity, and ST morpho headers that constitute an easy means of expand-
ing the functionality of the Nucleo open development platform with a wide choice
of specialized shields.

The DWM3000 manufacturer provides a set of APIs designed to allow the user
to take confidence with the peripheral and to test the different configuration modes
that the UWB antenna supports, detailing every function and parameter in DW3xxx
Device Driver - Application Programming Interface (API) Guide.
The device driver is essentially a set of low-level functions providing a means to
exercise the main features of the transceiver without having to deal with the details
of accessing the device directly through its SPI interface register set. It is provided
as source code in C programming language to allow it to be ported to any target mi-
croprocessor system with an SPI interface. In addition to that, the guide comes with
a handful of example codes meant to show the user how to properly use the main
functions and choose the desired use configurations of the IC; some of the examples
also provide boilerplate code to implement specific actions and ranging communi-
cations: specifically, they show how to perform transmissions, receptions, blinking,
and also complete TWR communications, both the Single-Sided and Double-Sided
versions.

For this specific application and environment, the SS-TWR ranging mode has been
employed, because more than one reason: first, the actual localization algorithm
is performed on the rover’s OBC and on a laptop mounted on top of it, so the
final information about the ranges has to be obtained by the onboard UWB tag,
meaning that the DS-TWR cannot be used without adjustments. In fact, there are
only two cases in which the DS version could be used: the first assumes that a fourth
additional message (with respect to the two needed by the SS) was sent from the
anchors to the tag to inform it of the ranging calculation results, and that should
happen for each anchor, leading to a doubling of messages sent and consequent
time spent in the ranging activity; in the second one instead, each anchor should
be equipped with a communication cable to send the ranging results to a central
computer in the control room, increasing by a lot the complexity of the system,
because of the synchronization needed, and also the total length of the path that
the information has to run to get to the rover, because of the further communication
to be performed from the control room to the moving robot.
In addition to the previous motivation, there’s another one that has led to prefer
the SS-TWR over the DS-TWR: in subsection 2.2.1 it has been seen how the usual
performances of SS-TWR are worse than the DS version because of its poor accuracy
due to the clock offset between the two nodes, but it has also been anticipated that
additional adjustments could have been taken to increase them; in fact, among
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the functions provided by the examples code, there is a specific one called Carrier
Integrator Diagnostic that allows to read the clock offset and improve the accuracy
of the SS-TWR range estimation. The results are so good that the same API guide
states that, since the introduction of this compensation feature, they are no more
recommending to prefer the use of the DS-TWR over the SS one because the overall
performance is now comparable between the two.

With this premise, the implementation of the SS-TWR exchange is the following:
each anchor has its own ID number, which is embedded in the response message,
and waits indefinitely for a poll message from the tag to start the exchange; when
it is captured, the anchor sends its response message with its ID and all the times-
tamps recorded by the application, including the calculated/predicted transmission
timestamp for the response message itself. The tag, on the other side, is in charge of
initiating the exchange: it embeds the anchor ID in the poll message to communi-
cate with a specific one at a time, but it also loops the anchors’ IDs to continuously
get a range from each one; the poll message contains the timestamp of the trans-
mission, and when the response message is acquired (and if corresponding to the
expected one, in order to verify the reliability), all the timestamps are fed to the
TWR distance formula, after the response one has been corrected from its clock
offset. Finally, the tag application increases the current anchor ID to begin the
exchange with the next anchor, and when all the anchors have been interrogated, a
message is built with each anchor ID, a separator, and the corresponding estimated
range, and then sent to the calculator that implements the localization algorithm
through a serial communication via USB.

The application code also involves many parameters and constants that require
proper calibration to be performed for each anchor, in order to get the best pos-
sible results. More than the others, the constant that sets the antenna delay is
particularly critical because it directly affects the computed distance, with indirect
proportionality, and so requires precise tuning: in section 5.5 it will be discussed
the calibration strategy chosen to get to reliable results, that was actually a crucial
point and quite a challenge.

5.2.2 Power Supply PCB adapter

As previously anticipated, the RoXY facility is equipped with multiple power rails,
but they all supply alternating current, at least at 24 V. However, the STM32
Nucleo-F429ZI only accepts three types of power sources: it can be powered by a
micro-B USB cable through the micro-USB port on the integrated ST-LINK (U5V),
allowing powering and programming/debugging at the same time, or it can be run on
external voltages through two different pins (E5V and VIN), accepting respectively
5 ± 0.25 V and 7 V ≤ VIN ≤ 12 V, and obviously all three intended as DC. This
created the necessity to design a power adapter from the 24 V AC power rail to at
least the maximum voltage supported by the MCU board, 12 V DC, which in this
case was also a lucky number: the power adapter only needs to rectify the signal
and halve its amplitude.

With these requirements, a simple power adapter printed circuit board has been
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designed, employing commercial components to ease the procurement timelines, the
assembling, and the integration with the UWB anchor. The circuit is composed of
a diode rectifier bridge and a 12 V voltage regulator in cascade, with two filtering
capacitors of 470 µF and 0.1 µF respectively upstream and downstream of the regu-
lator, to provide both high and low-frequency filtering. The schematic is shown in
Figure 5.2.3.

Figure 5.2.3: Power adapter circuit schematic

The schematic has then been transposed on a real circuit with the aid of the open-
source KiCad EDA software: it has been provided with 2x1 micro-fit Molex con-
nectors for both the input and output port and a large dissipator for the voltage
regulator, arranged with all the discrete components footprints on the smallest area
possible, given a width equal to the one of the Nucleo-F429ZI. The traces have been
posed on the layer in order to be as far from each other as possible, while a wide
metal plate on a layer below has been used as ground, and also connected through
many vias to the upper layer also acting as a ground, increasing the ground area in
order to provide shielding against external interferences. A picture taken from the
PCB view of KiCad depicting the footprints, the traces, and the various layers is
shown below.

Figure 5.2.4: PCB masks and views
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The PCBs production has been entrusted to Eurocircuits and kindly borne from the
Politecnico di Torino Interdepartmental Centre for Service Robotics (PIC4SeR). The
PCBs have been hand-soldered with the various through-hole components, and then
continuity and validation tests have been performed for each one of them, showing an
output voltage that has never overcome the Nucleo board limit of 12 V. Figure 5.2.5
shows the physical PCB right following the production and after the components
soldering.

(a)

(b)

Figure 5.2.5: Physical PCB (a) and final soldered circuit (b)
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A 3D model of both the Nucleo board with the DWM3000EVB mounted on top
and the soldered PCB (Figure 5.2.6) has been acquired and exploited to aid the
design of the anchor case that will be presented afterward, in order to reduce at the
minimum the hand-taken measurement of the various component.

Figure 5.2.6: 3D model of the UWB anchor and the power adapter PCB

5.2.3 UWB anchor 3D-printed case

The UWB system proposed in this thesis effort is meant to become part of the
RoXY facility as a reliable system to provide position ground truth to assist the
research activities of the Robotics team of TAS-I Turin. This means that it has
to be provided with a suitable structure to allow it to be easily turned on and off,
to resist outdoor meteorological conditions such as snow and rain, and to be ready
and active with no time waste: to accomplish this task, a great effort has been put
in the development of a case for the UWB anchors that could contemporarily be
adequate for outdoor condition, be attached to the perimeter walls and remain fixed
but leaving the option to detach it to access the board to reprogram it, and that
could easily fit both the Nucleo MCU and the PCB.

The modeling of such a structure has been performed with the aid of a semi-
professional 3D modeling CAD called Shapr3D run on an iPad Pro: it has been
chosen because of prior experience with the software and because of the rapidness
and easiness in its use, which makes it an ideal choice for the rapid prototyping. In
fact, thanks to the availability of two Prusa i3 MK3S+ 3D printers available at the
facility, it has been possible to investigate many designs for the case, and also to
test specific portions of it to tune the perfect dimensions and tolerances to achieve
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the best fit between all the pieces.
The design of the case has been conceived as a single piece that could be both thick
enough to protect the board and the PCB from external agents and thin so that
it would not constitute a real obstacle for the UWB signal transmissions: that was
made possible by the employment of PETG material and special 3D honeycomb
construction patterns that allow the structure to be at the same time robust and
weather resistant while maintaining a thickness not superior to 3 mm, which also
reduces to less than 2 in the small area portion right in front of the UWB antenna,
to furtherly reduce the impact of the case; so, while it would not be incorrect to state
that a UWB transmission with such a cased antenna would constantly be in NLoS
conditions, the just discussed feature makes its performance de facto comparable to
the LoS ones.

(a) (b)

Figure 5.2.7: Case design expanded in its three components (a) and its render (b)
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The design is composed of three pieces, the anchor case, a cap, and a backplate,
as visible in Figure 5.2.7 where are shown both the model and its render, which
provides a better view of the details.

The actual case has a parallelepiped shape, with a top layer slightly thicker and the
honeycomb infill denser than the others, to ensure higher stiffness and robustness
on the impact surface of the weather agents, and offer less space to be filled should
a crack let some water seeping inside. It is also provided with bumps at the bottom
corners designed to provide the necessary space for inserting four nuts to screw in
the cap and simultaneously provide a sloping surface for water to flow outwards
while preventing it from ending up inside due to slits. It also presents three slots on
its back, apt to host the three corresponding supports laying on the backplate, to
realize the detachability feature. Finally, the inside lateral walls expose a rail suited
to slide the board and the PCB along the whole length of the case without letting
them slip down when the case is put in place upright, and with proper offsets from
the wall to keep them still and centered. A detail of the case is shown in Figure 5.2.8.

Figure 5.2.8: Detail of the bottom part of the case, showing the inside

For what concerns the cap, it has been designed with the following features: it
presents four holes in the corners, where the screws are to be put, with the furthest
corners extruded to helps inserting the cap in the right position, and its side flaps
slightly wider than the case to allow the user to easily detach it. In addition, a
platform whose perimeter corresponds to the bottom opening of the case is extruded
upward to fit seamlessly into the case and provide an additional measure of security
against some water that might seep in; on either side of the cap, there are two
segments shaped exactly like the case’s internal rails, designed to fit precisely into
them and hold the boards in place. Finally, there are two holes, a larger one through
which to run the power cables and then seal them with hot glue or silicone, and a
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much smaller one located at the bottom at the apex of a sloping pyramidal surface
whose purpose is to drain away any condensation that might build up inside. The
cap is displayed in detail in Figure 5.2.9a right below.

(a) (b)

Figure 5.2.9: Cap (a) and Backplate (b) in perspective view

Lastly, the backplate is the part that is meant to be attached to the wall: it presents
three supports perfectly corresponding with the inside of the slots on the back of
the case, providing a stiff grip and a large contact area to hold the case firmly in
place. Its back surface has been glued to the perimeter wall of the facility to avoid
making permanent damage to it, but the piece is designed so that two holes can be
made above and below the first support, to easily screw it to the walls. Figure 5.2.9b
shows the complete view of the backplate.

The 3D-printed case is then reported in Figure 5.2.10 below, showing all three pieces
and the final assembled structure, along with the four nuts inserted in their case
slots and the power cable glued on the cap.
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(a) (b)

(c) (d)

Figure 5.2.10: 3D-printed PETG backplate (a), cap (b), anchor case (c), and
assembled structure (d)
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Last of all, another structure has been designed and realized thanks to rapid proto-
typing, and that is the rover stand for the UWB tag. Its design is quite simple, as
it only needs to provide a suitable physical interface to place the Nucleo board and
screw it in, while also offering stability and robustness not to let the tag suffer the
mechanical solicitations due to the rover movement. So, it is provided with suitable
holes for screws and slots to insert the bottom pins and the Ethernet port, to let the
Nucleo board adhere firmly on a large contact area, and with vertical edge supports
on both sides to almost completely eliminate the oscillations in movement. The
design is shown in the following Figure 5.2.11:

Figure 5.2.11: 3D model of rover stand
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5.3 ROS2 Framework and nodes

ROS2 (Robot Operating System 2) is an open-source software framework designed
for developing and operating robotics systems. It is the successor to the original ROS
framework and was released in 2014 by the Open Robotics organization. ROS2 is
designed to address the limitations of the original ROS framework and provide a
more flexible, scalable, and robust platform for developing complex robotics sys-
tems. It supports multi-language programming, including C++ and Python, and
employs the Data Distribution Service (DDS) middleware to enable communication
between nodes, the fundamental functional units of a ROS2-based system, providing
a standard interface for exchanging data to make it easier to integrate different com-
ponents of a robotics system; the communication system involves the use of standard
or customized ROS2 messages sent by the nodes, broadcasted on the network on a
specific topic, which collect all the information about a single specific subject, to
which other nodes can subscribe.

Among its advantages, it is surely worth mentioning the large scalability potential,
which means that it can be used to develop robotics systems of different sizes and
complexity, but also the modularity feature is crucial, having ROS2 a small core
and a set of independent modules that can be added as needed, because it allows to
more easily develop and test individual components of a robotics system, and also
enabling easy customization and extension of the framework without impacting the
complexity of the internal communication system.

The potential of the ROS2 framework has been exploited to create a network of
nodes that cooperate to acquire the data from the ranging phase, elaborate them
within the filters algorithm, and then provide a set of metrics and visualizable data
to estimate the goodness of the system. The chosen programming language is C++,
for both prior experience with it and the not marginal difference in the execution and
communication speed that it provides, acting at a much lower level than Python;
however, a few nodes that do not directly intervene in the localization algorithm,
and therefore don’t need to be extremely optimized for speed, have been written
in Python because of the greater easiness of implementation due to ROS2 specific
structures.

The nodes that are explicitly involved in the localization algorithm are presented as
follows:

• SerialReader : this node employs the serial message read function available in
the Asio module of the well-known Boost C++ library to acquire the informa-
tion about the ranges estimated by the UWB anchor and sent serially via USB
cable. It receives the ranges with the respective anchor ID one by one, then
packs them all in one single ROS2 custom message in vector form, and sends
it through the related topic. Before sending the message, the node discards
the bad measurement, namely the ones that have reported errors or timeout,
replacing their range with a negative number.
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• ExtendedKF : this is the node responsible for computing the position estima-
tion by means of the Extended Kalman Filter equations. Its basic functioning
involves the collection of the ranges from the subscription to the correspond-
ing topic and the detection of wrong or absent measurements to modify ade-
quately the order of the filter (i.e. the size of the measurement matrix and the
related ones) or increase the corresponding entry of the uncertainty matrix R
to infinite to actually discards it from the calculation, based on the desired
approach; then it uses a vector parameter containing the exact 3D positions
of the anchors to compute the residual vector to fed to the standard EKF
equations. When the state and covariance are estimated, it broadcast them as
a 3D point with covariance, that can be displayed on the monitor, and adds it
to the previous ones to form a path that is also sent through the network to
be displayed; the code also collects some of the vectors and matrices used in
or computed by the filter’s equations to send them over another topic in order
to use them to calculate some metrics.

For what concerns the f and h functions implemented in the filter, the models
discussed in [20] have been taken into consideration: in the article, the authors
carried out a comparison between three models, the P-model, the PV-model
and the PVA-model, which stand for respectively Position, Position-Velocity
and Position-Velocity-Acceleration; they discovered that the most complex
model, the PVA one, actually presents poorer performances than the other
two, which are more or less equivalent to each other. In order to keep the
filter as simple as possible, the choice has fallen on the P-model, which only
takes into account the update of the position of the robot, while the PV and
PVA ones also take into account the laws of dynamics to compute the velocity
and the acceleration. Since no control input actually intervenes in the estima-
tion of the position given only the UWB ranges, the state transition function
f actually reduces to the identity function only, while the measurement func-
tion h implements the trilateration presented in subsubsection 1.1.2.2. Hence,
considering a 3D position state estimation vector x̂ = [x̂0 x̂1 x̂2] and a mea-
surement estimation vector ẑ = [ẑ0 ẑ1 ẑ2 · · · ẑn] obtained from the ranges
of n anchors, each one with its position pi = [pi,0 pi,1 pi,2], the F and H
matrices employed in the EKF are the following:

F =

1 0 0
0 1 0
0 0 1



H =



∂h1(x̂)
∂x̂

∣∣
x̂0

∂h1(x̂)
∂x̂

∣∣
x̂1

∂h1(x̂)
∂x̂

∣∣
x̂2

∂h2(x̂)
∂x̂

∣∣
x̂0

∂h2(x̂)
∂x̂

∣∣
x̂1

∂h2(x̂)
∂x̂

∣∣
x̂2

...
...

...

∂hn(x̂)
∂x̂

∣∣
x̂0

∂hn(x̂)
∂x̂

∣∣
x̂1

∂hn(x̂)
∂x̂

∣∣
x̂2

 =



x̂0−pi,0
ẑ0

x̂1−pi,1
ẑ0

x̂2−pi,2
ẑ0

x̂0−pi,0
ẑ1

x̂1−pi,1
ẑ1

x̂2−pi,2
ẑ1

...
...

...

x̂0−pi,0
ẑn

x̂1−pi,1
ẑn

x̂2−pi,2
ẑn
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where ẑi =
√

(x̂0 − pi,0)2 + (x̂1 − pi,1)2 + (x̂2 − pi,2)2 as required by the trilat-
eration method for the estimation of the range given the estimated state and
the anchor positions.

The node has been provided with several additional features, meant to increase
the effectiveness of the algorithm: the Mahalanobis distance-based threshold-
ing technique, as well as the modifications proposed in [34], [22], [14] and dis-
cussed in section 3.4 have been implemented in the code in an optional form,
which means that they can be activated and deactivated freely by the user.
In addition to that, also a smoother has been coded, to perform a moving av-
erage of the positions in a user-resizable window and reduce the output noise
increasing also the visual performance. Lastly, another additional function
called ”error map” has been added, this time to balance the error introduced
by the UWB anchors, but it will be discussed later in section 5.5.

To be able to compare the various features, it has been exploited ROS2’s abil-
ity to launch multiple instances of the same node with different names and
parameters. This feature has been crucial to allow the simultaneous visualiza-
tion of the performance of the different versions of the filters.

• UnscentedKF : similar to the previous node, this one is in charge of estimat-
ing the tag location employing the Unscented Kalman Filter equations. The
structure and the additional function seen in the EKF node are reused here,
where the only changes consist in the implemented equations, which obviously
refer to the UKF. Differently from what is done in the EKF, the UKF do
not approximate the estimation of state and measurements with a Jacobian
matrix, instead, it directly employs the f and h function to perform an ex-
act calculation. The state transition function f is analogous to the one in
the EKF to implement the P-model, so it simply is x̂ = f(x) = x, while
the measurement function h represents the distance computation and is again
ẑi = h(Y i,pi) =

√
(Yi,0 − pi,0)2 + (Yi,1 − pi,1)2 + (Yi,2 − pi,2)2, where Yi,k in-

dicates the k-th component of the i-th sigma point and pi is again the i-th
anchor.

A slight modification to the equations, with respect to their standard form seen
in section 3.3, has been made following the ones proposed in [30]. In particular,
the change affects the first part of the update step, where the measurements are
first estimated through the transformed sigma points: the authors re-compute
the sigma points after the estimation of the new state and covariance, using
exactly them to obtain a new sigma point distribution, which is then fed to
the Unscented Transform that calculates the estimate of the measurements;
it has been seen that this small changes positively influences the accuracy of
the filter. For the sake of clarity, the modified UKF equations are reported in
Table 5.6:
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X k−1 = sigma-function(xk−1,Pk−1)

Wm,Wc = weight-function(α, β, κ, n)

Yk−1 = f(X k−1)

x̂k|k−1 =
∑2n

i=0 w
m
i Yk−1,i

P̂k|k−1 =
∑2n

i=0w
c
i (Yk−1,i − x̂k|k−1)(Yk−1,i − x̂k|k−1)

T +Qk

Yk|k−1 = sigma-function(x̂k|k−1, P̂k|k−1)

Zk|k−1 = h(Yk|k−1)

ẑk|k−1 =
∑2n

i=0w
m
i Zk|k−1,i

ỹk = zk − ẑk|k−1

Sk =
∑2n

i=0 w
c
i (Zk|k−1,i − ẑk|k−1)(Zk|k−1,i − ẑk|k−1)

T +Rk

Pxz,k =
∑2n

i=0w
c
i (Yk|k−1,i − x̂k|k−1)(Zk|k−1,i − ẑk|k−1)

T

Kk = Pxz,kS
−1
k

xk|k = x̂k|k−1 +Kkỹk

Pk|k = P̂k|k−1 −KkSkK
−1
k

Table 5.6: Modified Unscented Kalman filter equations [30]

• MetricsPublisher : this node is the collector of the messages from both Ex-
tendedKF and UnscentedKF sent over the metrics topic. It utilized the state
vector x, the state estimation vector x̂, the state covariance matrix P, the
measurement vector z, the measurement estimation vector ẑ and the measure-
ment covariance matrix S to compute some indicators of the goodness of the
algorithm. In particular, x and x̂ are employed in the evaluation of the Root-
Mean-Square Error (RMSE) and of the Normalized Estimation Error Square
(NEES) considering also P, while z, ẑ and S are needed to compute the Nor-
malized Innovation Squared (NIS): the RMSE is useful to evaluate the quality
of estimation in terms of its variation and distortion, while the NEES helps to
check the consistency of a state estimator with a hypothesis test, following it
the chi-squared distribution, and the NIS serves the same purpose but for what
concerns the consistency on the measurement estimation. Furthermore, since
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Kalman filters are known to be more accurate on the xy-plane rather than in
the z-direction, a bi-dimensional version of RMSE and NEES are calculated
too. In addition to that, the node also computes and outputs the Mahalanobis
distance of both the state and the measurement.

In the development of this thesis project, the coding of the nodes just described has
been performed in parallel with the other activities discussed in the previous subsec-
tions, but it ended up terminating much before that the other project components
did. This happened for various reasons related to the numerous iterations and the
literal time needed for the 3D rapid prototyping (several tens of hours), as well as
to the provisioning time to get all the Nucleo boards, to print and then solder the
PCBs, and so on. So, there has been a moment in which the software part of the
localization system was ready to be tested, but the complete field test setup was still
missing. To get around this problem, and also to be provided with a handier way
to test the algorithms and tune the parameters than perform countless field tests, a
great effort has been put into the development of a simulator of some sort.
Despite ROS2 being provided with its own simulator, called Gazebo, it has been
chosen not to involve it in the system development process: it is due to the high
complexity of Gazebo and its difficult customization to adapt it to own specific pur-
poses, but also and especially to the fact that it represents a huge overkill for the
necessities of this project; in fact, Gazebo is meant to simulate mostly the physical
properties and behaviors of the object that are loaded in it, including the gravity,
the collisions, and so on, while the type of simulator that was needed in this case
resembled more the simple robot simulator used in the ROS2 tutorials to explore
the characteristics of the framework, which is called TurtleSim.

Made on these premises, the simulator has been developed to possess the following
features: it had to represent the rover moving through the 3D space and be control-
lable, preferably by keyboard for convenience; it had to be able to spawn both the
anchors and the RoXY terrain to resemble a verisimilar environment with respect
to the field test, and the ranges acquired from the anchors needed to be affected by
a controllable noise, in order to fully simulate the behavior of the real ones; lastly
but more importantly, all these features had to be implemented in such a way to be
compatible with the input and output interfaces of the UWB system, which means
that the ranges had to be provided in the exact same format as the one generated by
the real anchors, and the visualization of the simulation had to be consistent with
the output of the real system.

To accomplish this task, the visualizer provided with the ROS2 framework, RViz2,
has been used, and four more nodes have been developed:

• AnchorsRoxySpawner : this node is the simplest among those deputed to the
implementation of the simulator, but surely the most useful one for what
concerns its visual performance. Its task is to read a parameter file containing
the positions of the anchors and broadcast as many corresponding frames; in
ROS2, a frame represents a reference system, often associated with an object,
that allows the ROS2’s transform library, tf2, to keep track of its position
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over time. tf2 maintains the relationship between coordinate frames in a tree
structure buffered in time and lets the user transform points, vectors, etc.
between any two coordinate frames at any desired point in time. For what
concerns the anchor, their position is fixed so the static version of the transform
broadcaster is used.

Furthermore, the node is also in charge to broadcast the 3D representation
of the anchors, which is associated with the respective frames, and it is made
possible by the STL file of the anchor case model. Similarly, the node al-
lows the visualization of the RoXY terrain thanks to a 3D scan of the play-
ground obtained by a stereocamera: it is extremely important to provide a
good verisimilarity with the real field conditions and to guide effectively the
simulated rover across a playground that also considers the third dimension.

• RangingSim: this node is the one that reproduces the functioning of the UWB
system. It exploits the transformed frames broadcasted by the previous node
to obtain the exact distance between them and the frame corresponding to
the rover position, which will be discussed in the next node, and it is worth
specifying that the node does not need to perform any calculation to get
the ranges, because tf2 directly provides them to the network. To make the
simulation as similar as possible to the real case, the white Gaussian noise
generator function of the standard library of C++ is employed: it allows easily
to add random noise with user-defined standard deviation to the exact ranges
to simulate the real noise conditions; furthermore, an optional parameter is
added, to allow the user to arbitrarily increase the noise (through its standard
deviation) even for a specific amount of time, and this has been done to test
the effectiveness of the various outlier rejection features of the filters. Finally,
the node sends a message containing all the ranges through the same interface
of the real UWB tag, in order to be compatible with the input of the filters.

• PasquaControl : this node serves as a controller to teleoperate the rover sending
control inputs to it (its name origins from the codename given to the modified
Seekur Jr rover present in the RoXY facility, Pasqualone). Along with the next
discussed node, they are the only nodes written in Python, as was mentioned
before that there would be: this was due to both the greater easiness of using
Python, when the speed limit is not crucial, and the fact that a public ROS2
node used to control the ROS2 tutorial simulator mentioned earlier, TurtleSim,
has been employed as boilerplate to the development of this node.

The code, however, has been almost completely revisited, since the nature of
the two simulators is quite different: it captures the keyboard inputs provided
by the user to move the robot and transforms them into directional velocity
commands; the keys, in fact, are bound to specific sets of values, which serve
as the increment to the current command. At the launch of the node, the
command is set to zero, but the user can vary it by adding constant incre-
ments; the velocity increments are designed to not allow the instantaneous
acceleration, in such a way that, within a single command, the user can only
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increase or decrease the speed or move the rover into the space at the currently
set speed changing the direction of the velocity.

The node actually allows a 5DoF control, since the command is composed
of linear and angular components; this had to be done in order to provide
the rover with the ability to move naturally across the 3D space as a real
one would do: in fact, the simulated one is able to perform smooth turns in
the xy-plane but also to climb hillocks and slopes. So, the controller is able
to singularly (or contemporarily) modify the linear and angular components
of the velocity commands, specifically the x-y-z components and the roll-yaw
components (imposing that the rover front direction corresponds to the y one,
it has been assumed that a pitch variation was not significant or useful for the
verisimilarity purpose): this means that the rover is able to contemporarily
change its position and orientation, to actually perform climbing and turning.

The node also provides commands to reset the increments to their default
values, while also ensuring that no negative speed command could be sent (to
reverse, for instance, only the y direction has to be negative, while the velocity
remains positive. Finally, the linear and angular direction components are
multiplied by the relative linear and angular speed values to obtain a twist
command, which in the end acts as a 6D velocity increment in the three linear
and three angular directions (but with the pitch increment fixed to zero). All
the commands are sent with an appropriate message through the reserved
topic.

• PasquaSim: this is the node that actually simulates the rover moving across
space. As already said, it has been written in Python, this time also because
a code skeleton previously developed and used by the Robotics team in TAS-
I was provided; its content, however, has been greatly modified to satisfy
the different needs of this simulator. The code is able to perform various
actions: its main function is to spawn into the simulated playground a frame
corresponding to the position of the rover and to move it across the space using
the commands sent by the previously seen node, but also allows to create a
path accumulating all the positions’ history, to nicely plot it on the visualizer,
and to reset the position to the user-defined default value, clearing the path.

The code implements a simple dynamic model to recompute position and
orientation of the rover as a set frequency: it multiplies the received speed
increments by the simulation time (the inverse of the update frequency) to get
the position, and then again multiplies it by a rotation matrix, to also obtain
the new orientation. It also provides an upper and lower bound to the climb
degree and checks that the rover position does not go below the ground, to
ensure the correspondence with the reality and the actual limits of the rover,
and alerts the user when the rover is brought back to a horizontal position.

Finally, it broadcasts the new pose of the rover and the updated path and
also moves the robot frame in the tf2 system. The frame is then used in
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the visualizer to spawn the 3D model of the rover in the playground area, to
achieve a realistic and good-looking visual performance.

Both the visual and algorithmic performance of this simulator was observed to be
really good, having it made a good job in aiding the testing of the computational
system, as will be presented in the next section.

5.4 Simulations and Results

The simulator made it much easier to perform many different simulations of both
the EKF, UKF, and their respective variations, and thanks to a ROS2 tool called
ROSbag it was also possible to save and store the input data (so the position of the
simulated rover and the ranges) to deterministically run the simulation over and
over, in order to be able to capture all the images and data for an accurate analysis
of all the filters. In particular, five types of paths have been simulated: the first two
were drawn to be regular shapes, a square and a circle, and lay on a single horizontal
plane without taking into account the playground; the other three paths instead run
across the RoXY terrain, with the second a little longer than the first and with the
third passing through ditches and knolls along the way to simulate the change of
height. It is worth mentioning that early simulations have been performed only
aiming to test and tune the algorithms, they employed different anchors positions
and statistical parameters since at the time the real ones were yet to be obtained;
for this reason, they have been repeated after having acquired all the missing data,
and those are the ones reported in this section: specifically, only a subset of images
and data will be shown, while the remaining ones can be found in Appendix A.

The following figures show a top and a perspective view of the complete route of
the squared path and the EKF performance:

(a)
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(b)

Figure 5.4.1: EKF top and perspective view - Square

In the pictures, it is visible the rover model and the anchors’ frames that indicate
their location, while the red line represents the exact path and the green one is the
EKF. It is clear that the filter is able to track successfully the rover movements, with
an evident poorer performance in the z-direction: this behavior will be common for
all the paths and filters and it is due to the much more limited span of the anchors
in that dimension, being them at only three different heights spaced 0.5 m one from
each other, while on the xy-plane the wider distribution allows greater accuracies.

The UKF behavior is instead shown on the circular path in Figure 5.4.2:
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(a)

(b)

Figure 5.4.2: UKF top view and detail - Circle

The performance of the UKF is visibly better than the EKF on the xy-plane, with
accuracies in the order of a few centimeters. Although filter variations have also been
tested on these paths, their regularity does not allow differences in performance to
be effectively highlighted, which will therefore be shown with more complex paths.
So, it follows the analysis of the first more complex path that also involves the RoXY
simulated terrain, where also the anchor cases are visible:
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(a)

(b)

Figure 5.4.3: EKF (green) vs UKF (blue) perspective and top view detail

These pictures make evident that the UKF performs better than the EKF in the
horizontal plane, but it suffers from the poor z-dimension anchors distribution much
more: this is probably due to the fact that the sigma point distribution accentuates
the lack of information in the vertical direction, while the linearization that occurs
in the EKF reduce the entity of the error. As it will be shown better later, among
the four filter algorithm modifications, only the matrix redefinition and rescaling
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techniques (hereafter referred to as Redef and Rescal version for convenience) have
been found to actually bring improvements to the basic filters performance, while
the weighted-outlier-robust (WOR) and thresholding techniques exhibit more or less
the same accuracy as the unmodified algorithms. The following figures depict the
comparison between the basic EKF and UKF performance and the Redef and Rescal
versions:

(a) (b)

(c) (d)

Figure 5.4.4: EKF and UKF vs Redef and Rescal perspective (a and b) and top
view detail (c and d)

The Redef and Rescal EKF are respectively the purple and yellow lines, while the
UKF versions are in violet and light brown color. It is visible, even if not markedly,
their better performance again on the xy-plane. It is important to state that these
algorithms are not meant to improve the basic filters in general, instead they are
designed to perform better in presence of outliers; so, the next pictures report their
behavior when a 10x noise is added to the ranging measurements only in a small
section of the route:
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(a) (b)

(c) (d)

Figure 5.4.5: EKF and UKF vs Redef and Rescal perspective (a and b) and top
view detail (c and d) with 10x added noise

While for the UKF there are no remarkable improvements, the EKF exhibits a quite
better performance on the xy-plane, with improvements of up to 15 cm with respect
to the basic version, but this time it is the z-direction that reports far superior
results, as it is evident from Figure 5.4.5a where the higher noise is almost completely
rejected. In the experimental test section, even superior filter performances will be
shown in presence of real outliers.

In addition to the already discussed features, smoothing has also been implemented
as a moving average with a window of user-configurable size; despite being a simple
and well-known technique, it is rather effective, so that in some sections of the path
it is indistinguishable from the exact track of the robot, as visible in Figure 5.4.6a
and Figure 5.4.6c:
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(a)

(b)

(c) (d)

Figure 5.4.6: EKF and UKF vs Smooth perspective (a and b) and top view detail (c and d)
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The smoothed versions (in white), here produced with a window size of 50, demon-
strate a much higher accuracy in all three dimensions, with particular regard to the
EKF version which is so accurate that it is covered by the exact track for a large
part of the route.

Lastly, the third path is shown in the following pictures, to highlight the height
changes:

(a)

(b)

Figure 5.4.7: EKF vs UKF vs Smooth perspective (a) and top view (b) of a height-
changing path
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In the figures, there are depicted the EKF, UKF, and their smoothed versions with
the same color code as before: the rover runs through a ditch and then a hillock in
the bottom part of Figure 5.4.7a and the filters are able to track its movement also
in the z-direction, even if with less accuracy.

Numerical data has been acquired from simulations thanks to a visualization tool
called PlotJuggler that is able to work seamlessly with ROS2 data. The metrics
used to evaluate the filter performances mainly are the RMSE and NEES, which
directly provide information about the system state, and also the 2D and 3D error
between the ground truth and the estimation. The data reported hereafter refer to
the path depicted in Figure 5.4.3a. The following picture highlights the paths of
EKF and UKF with respect to the exact reference path:

(a)

(b)

Figure 5.4.8: EKF vs UKF paths (a) and detailed view (b). Values in meters

Figure 5.4.8b reveals that the two-dimensional distribution of the poses estimated
by the UKF is quite narrower than its EKF counterpart. This behavior is actually
reversed for what concerns the vertical direction, as shown in Figure 5.4.9:
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(a)

(b)

Figure 5.4.9: EKF vs UKF vertical position estimation. Values in meters

In both pictures, there are also provided the smoothed plots obtained with the
same moving average employed in the previous pictures. From the first picture,
one can notice that the error in the z-direction is much higher than the horizontal
counterpart, as expected, while the second one reveals a far worse raw curve of the
UKF with respect to the EKF and an almost constant offset in its estimation, as
already observed and discussed in Figure 5.4.3. For better analysis and thanks to
the auxiliary functionalities of Plotjuggler, the errors both in the vertical direction,
on the xy-plane, and relative to the 3D distance were calculated and plotted:

(a)
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(b)

Figure 5.4.10: EKF vs UKF vertical position estimation error. Values in meters

and for sake of completeness, a 20 cm offset version of Figure 5.4.10b is reported
hereafter, to emphasize the comparable results, if not better in some parts, with the
EKF for what concerns the moving average if the offset is taken into account:

Figure 5.4.11: UKF vertical position estimation error with 20 cm offset. Values in
meters

In addition, for both EKF and UKF, two-dimensional and three-dimensional dis-
tances absolute errors between the curves and the ground truth have been calcu-
lated, always alongside their moving average. From Figure 5.4.12 it is crystal clear
how much the out-of-scale error in the vertical direction highly affects the three-
dimensional error: for the EKF, the error actually doubles going from 6 cm in 2D
to more than 11 cm in the 3D case, while the UKF exhibits both a lower error of
less than 5 cm in the xy-plane and a larger 3D error of approximately 30 cm, caused
indeed by the aforementioned vertical offset.

91



Experimental Work

Figure 5.4.12: EKF and UKF bidimensional and tridimensional absolute errors.
Values in meters

Finally, the RMSE and NEES metrics are discussed, with Figure 5.4.13a and Fig-
ure 5.4.13b showing the two metrics (RMSE averaged) concerning respectively the
EKF and the UKF:

(a)
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(b)

Figure 5.4.13: EKF and UKF Root-Mean-Square Errors (RMSE) and Normalized
Estimation Errors Square (NEES). Values in meters

Comparing the two pictures, much information can be obtained: first of all, the
overall higher RMSE of 13 cm average exhibited by the UKF is surely due to its
wider distribution in the vertical direction with respect to the EKF, where it is
almost stable at 6.5 cm; in fact, considering only the bidimensional case, the UKF
performs better, remaining approximately constant around 3 cm, while the EKF
presents an average of 5.5 cm. Furthermore, the NEES curves offer insights into the
estimation goodness, comparing it with the correspondent χ-squared value, in this
case considered at 3DoF and 2DoF for the 3D and 2D curves: the EKF produces
a quite less reliable estimate if compared to the UKF, and this behavior originated
from both the linearization error of the EKF and the fact that an error on the
xy-plane, where the distribution of the anchor is wider, is weighted more than a
correspondent error in the vertical direction, where a worse estimation is not so
much due to the model but to the nodes distribution instead. In practice, however,
the overall performance of the UKF is not a match for the EKF, because of the
former totally out-of-scale vertical error. In Appendix A there are reported these
same metrics but with respect to the ground truth position, obviously displaying
the same behavior just discussed, but with little higher errors.

A last analysis has been performed on the improvement brought by the filter vari-
ations: the complete set of curves can be found in Appendix A, while the following
part of the section will report only the Redef and Rescal RMSE metrics and the
Smoothed performance, having them the most interesting results. Figure 5.4.14
highlights the differences between the EKF and UKF variations behavior:
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(a)

(b)

Figure 5.4.14: EKF (a) and UKF (b) RMSEs vs Redef and Rescal RMSEs. Values
in meters

The EKF variations seem to perform much better, displaying more than a halving of
the RMSE value, than the correspondent UKF ones, which do not observe changes
at all; actually, paying attention to the scales of the plots, the truth is a little
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different: it is surely true that the EKF benefits from the implementation of matrix
adaptiveness, but its absolute performances in 2D ”only” reach almost the same
level of the UKF ones, which were better already without adaptiveness, while only
in 3D the difference is really evident because of all the causes already discussed.
The reason behind this behavior is to be found in the intrinsic noise introduced by
the ranging activity, rather than in the error contributed by the filter: in fact, the
filter variations exhibit a mean RMSE of approximately 3 cm for the UKF two-
dimensional case, which also extends to the 3D case for what concerns the EKF,
and which almost corresponds to the user-defined noise artificially injected in the
ranging simulation and constituting a global minimum for the error performance
obtainable with the system.

The performances of the smoothed versions of the filters have not been reported
herein, since their accuracy fully mirrors the behavior of the moving average curves
appearing in Figure 5.4.9 with the respective errors, but they can be found in Ap-
pendix A. However, it is possible to say that, despite being a fairly simple technique,
the results are rather good especially in the UKF case, where the distribution of es-
timated poses in the z-direction is more than five times less wide than the basic
version with respect to their respective mean values.

5.5 Anchors’ calibration

Before deepening into the discussion of the tests performed in the RoXY facility
playground, it is important to report how the anchors’ calibration has been carried
out, since it was quite a challenging task. As mentioned earlier, the configuration
code for the DMW3000 module involves the setting of many parameters, such as
the CPU processing time, to tune to the minimum possible until errors arise, the
inter-ranging delay period, the inter-frames delay, the receive response timeout to
wait before raising timeout exception, and so on; the most critical one, though, is the
TX and RX antenna delay, which acts as a correction factor due to delay introduced
by internal circuits, external components and the specific board that runs the code,
that has to be applied to the Time of Flight, so to the estimated range, to which is
inversely proportional.

It has been noticed that its variation led to quite different estimated measurements,
even considering their mean, during initial tests at a precise tag-anchor distance of
1 m, measured using the Bosch laser tool: specifically, considering that the default
value of antenna delay as provided by the manufacturer is 16385, slight variations
in the range of tens led to mean value changes of ± 2 cm. So, after the first round
of calibration tests, the anchors presented very different antenna delay values, even
of hundreds of units, but showed an almost perfect ranging estimation at 1 m, with
mean errors of a few millimeters. Unfortunately, however, when it has been tried
to measure a longer distance of 2 m, the results were completely wrong, such that
the required antenna delay to get back to an acceptable precision differed again
by hundreds of units. This evidence led to a complete rethinking of the calibration
procedure, which during its carrying out has been changed repeatedly until a reliable
strategy was found, and also gave the opportunity to perform another important
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action, error mapping.

The new calibration strategy was the following: in order to get the most reliable
values, the calibration has been performed in almost the final setup conditions,
placing a total of 8 anchor cases on the external perimeter walls, precisely 7 on the
left wall, spaced not completely evenly but at almost 4 m distance to each other, and
1 on the bottom one; in particular, the latter was reserved to the tag and has been
obtained from a wrong 3D printed case, which was opened up to expose the antenna
as on the rover it would have been, while the other seven were exactly reproducing
the final setup conditions, including the presence of the anchor case. To calibrate
an anchor, it has been placed in each one of the seven positions in a round fashion,
to be able to get its behavior at different distances, which varied in a range between
almost 5 and 24 meters, with a further 3 m distance obtained moving the tag to the
first position and the anchor to the second one and another 28 m distance obtained
later in time, after the placement of all the anchors in the final configuration. All the
positions have been acquired precisely by means of the Leica laser tracker, and their
relative distances have been computed by the SpatialAnalyzer® software. Here
follows the software representation:

Figure 5.5.1: Calibration positions acquired with Leica AT403 and SpatialAnalyzer
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Many ranging exchanges were performed: each calibration round consisted of 20000
measurements then considered in groups of 1000, and mean value, variance, standard
deviation, maximum error, and average error has been computed for each group.
Then, the best, average, and worst cases have been evaluated per group, and saved
in a spreadsheet. The procedure was repeated for all the different positions, and
an aggregate table has been produced from the data: the points obtained from the
average errors of the cases with respect to the relative distances have been plotted
and interpolated with a 3rd-degree polynomial regression, a 5th-degree one and a
3rd-degree spline.

A complete round of measurements for a single anchor has been performed a few
times, in order to see how the interpolated curve reflected the changes in the antenna
delay values, and the trial stopped at the value that provided the flattest curve with
a mean value closer to zero. Then the procedure has been repeated for each anchor,
with the representation of one ranging measurements distribution for a single range
and anchor shown in Figure 5.5.2 to highlight the excellent fit with a Gaussian
distribution, while a more detailed dataset is reported in Appendix B: in particular,
there are reported the statistics of the first three anchors, and both the ranges
distributions and the error map functions of the first six anchors.

Figure 5.5.2: Ranging measurements distribution of Anchor 2 at 6.388 m

Fortunately, this different strategy led to far better results, such that many anchors
actually shared almost the same antenna delay value (approximately 16360) corre-
spondent to the best curve fit, and also variations in this value did not generate
the difference of measurements experienced in the previous calibration setup, which
was evidently unfit for the order of magnitude of the ranges that the antennas were
meant to measure. However, even if the interpolated curves were very similar in
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shape and quite similar in values, they were far from being flat or zero-meaned, as
one of them reported in the following picture clearly highlights:

Figure 5.5.3: Error map of a UWB anchor, values in mm

It is a spline interpolation, and it is evident that at small distances, which 1 meter
clearly was, the error curve is rather steep and the sensor performances are then
very poor. Nevertheless, a similar curve has been generated for each anchor and the
three interpolation curves mentioned before have been implemented into the filters’
code in order to compensate for the raw measurement at a certain distance with the
interpolated error and then provide it to the localization algorithm.

5.6 Field tests and Results

The final setup of this UWB system consists of 12 anchors distributed on the RoXY
perimeter walls as evenly as possible in groups of 3, paying attention not to cover the
Line-of-Sight and thus avoiding placing any of them behind the large slope in the top
left corner of the terrain. Precise measurements have been performed again by means
of the Leica laser tracker, post-processing them to get rid of the offset introduced
by the prism and to refer them all to a common origin chosen and measured in
the bottom left corner; the SpatialAnalyzer® software representation is reported in
Figure 5.6.1, where the central marker represents the Leica tool position, the bottom
left cross indicates the chosen origin, and the lines that connect the anchor markers
are the orthogonal representations of the planes on which the same side anchors lay,
which provide the normal direction to be considered to remove the prism offset :
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Figure 5.6.1: Anchor positions acquired with Leica AT403 and SpatialAnalyzer

Then, the rover has been equipped with the UWB tag mounted on the 3D printed
rover stand and the AN Spatial GPS just next to it, all of them powered via a USB
hub connected to the rover. Figure 5.6.2 depicts the final rover setup:

Figure 5.6.2: Rover final setup
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Because of technical issues with the ROS2 environmental configurations due to un-
solvable differences of the reference frames in the locomotion and sensor-fusion rover
localization system (whose reference frame changes at every run) and the UWB sys-
tem, it was not possible to exploit Plotjuggler to obtain nice data plots as shown
in the simulation section; to overcome this limitation, the paths estimated by the
own robot localization and the UWB system have been only displayed using the
RViz tool, with a denser grid to approximately estimate the errors, while in order
to obtain more precise numerical data, single-point positions have been estimated
by the UWB system with a ground truth provided by the Bosch laser tool accurate
measurements.

Many paths with different lengths have been tested, with no one following a regular
shape due to the irregular terrain configuration, of which three of them are herein
reported; Figure 5.6.3 displays a direct comparison between the EKF and UKF two-
dimensional performance with respect to the path obtained by the robot sensor-
fusion system involving the stereocamera, ToF camera, wheel odometry, and GPS:

Figure 5.6.3: EKF (green) vs UKF (blue) vs Reference (red) - First path, top view
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Much information can be grasped from the picture: first of all, the red line that
should act as a reference is undoubtedly almost unaffected by noise, but does not
actually represent the exact path of the rover since in some small sections it experi-
ences drifts and shifts (top left corner); nevertheless, it is enough reliable to be taken
as a reference, and in doing so, considering that each square of the grid has 10 cm
side length, both the filters seem to produce quite a good tracking of the robot, with
estimation errors not above the 10 cm for most of the path. It should be noted that
the paths are much less noisy than they were in the simulation pictures, and this
is due to the different updating frequency of the real system, approximately 20 Hz,
from the simulated one, 50 Hz, the former therefore generating fewer estimations
and so less noise per unit time. Furthermore, both the filters have produced some
outlier estimations during the field test as it was foreseeable, quite different from
the increased noise test performed in the simulations, and they will be discussed
shortly.

A whole different situation is observed considering the vertical position estimation,
shown in Figure 5.6.4:

Figure 5.6.4: EKF vs UKF vs Reference - First path, perspective view

In the top view picture, the ground level has been artificially lowered in order to show
the complete paths as generated by the filter, but in reality the vertical estimation is
such that the EKF and UKF paths are respectively below and very much above the
ground, so they can be seen whole from this perspective view. The errors are of a few
tens of centimeters for the EKF, while they get to the order of a meter for the UKF:
this phenomenon was expected and it is due to the fact that the vertical uncertainty
of real system estimations is much higher than their correspondent horizontal one,
again because of the scarce distribution of the anchors in the vertical direction;
differently from the simulation, where the artificial noise was injected equally in the
three direction and definitely followed a Gaussian distribution much more ideal than
the real noise does, the vertical fluctuations are far more accentuated.
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To highlight the effectiveness of the outlier rejection of the filter variations, the
second path is reported hereafter:

Figure 5.6.5: EKF (green) vs Redef (orange) vs Reference (red) - Second path, top
view

The output of the modified filter, the Redef one in this picture but the Rescal one is
pretty much equivalent, is not so different for what concerns the errors with respect
to the reference path, but the real improvement verifies exactly in the sections
affected by outliers: the filter is able to correctly identify the presence of outliers
and successfully reject them, as it is more clearly visible from Figure 5.6.6.

(a) (b)

Figure 5.6.6: EKF vs Redef - Second path, top view detail
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The same happens with the UKF versions, which, however, present the exact same
estimation of the basic filters almost all along the path:

(a)

(b) (c)

Figure 5.6.7: UKF (blue) vs Redef (purple) vs Rescal (light brown)- Second path,
top view (a) and details (b and c)

In this case, the paths of both the outlier rejection algorithms are reported, and one
can see how both of them completely reject the erroneous estimations.

For sake of completeness, the UKF smoothed version of the second path is reported
in Figure 5.6.8:
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Figure 5.6.8: UKF vs Smooth - Second path, top view

It is interesting to note that apart from obviously increasing precision and reducing
the noise of the basic UKF, the smoothing also constitutes a valid and simple tech-
nique to get rid of outliers but only provided that their occurrence is locally limited
in time and randomly distributed in space, otherwise they would still influence the
average path and so the final result.

The error map-aided measurement correction discussed in the previous section has
been tested within the third path, which also was the longest and more complex one.
Figure 5.6.9 shows the complete path with the correspondent EKF estimation, while
the detailed view of Figure 5.6.10 reveals the effect of measurement compensations
on the position estimations: it is notable how in the top central section of the
path, what should be the reliable reference route actually experience unusual drifts
(probably due to exceptionally high background light conditions, which highly affects
the stereovision) while the UWB system provides instead quite a straight path.

For what concerns the error map feature, from Figure 5.6.10 it can be noticed,
even if the paths are hardly distinguishable, that there is no real improvement in
the filter estimation: this makes sense if one considers that the maximum error
correction is a bit more than 15 cm and the filter already works out discrepancies
of that entity, so it is hypothesized that the noise injected by the filter naturally
overcomes the eventual reduction that the ranging error correction provides. This
behavior is partly reassuring, meaning that the filter works well enough to admit a
certain range of ranging errors without affecting too much the performance, but on
the other hand it nullifies all the attempts to improve sensors accuracy.
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Figure 5.6.9: EKF vs Reference - Third path, top view

Figure 5.6.10: EKF vs Poly3 (yellow) vs Poly5 (blue) vs Spline3 (white) - Third
path, top view detail
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As anticipated at the beginning of the section, some measurements have been ac-
quired at individual points to numerically compare the EKF and UKF results, and
to obtain information about the filters’ accuracy and ability to provide stable es-
timations through time. The nine positions that were taken into account, almost
all at the same height, are shown in Figure 5.6.11 and the data that follow only
concern the two-dimensional position in the RoXY terrain, disregarding the height
component that has already been observed not to be either accurate or reliable. For
each position, 100 pose estimations (for a total of 5 seconds) have been retained and
analyzed in terms of mean value, standard deviation, maximum error, and average
error, which are all reported in Table 5.7 for the EKF and in Table 5.8 for the UKF.

Figure 5.6.11: Positions considered for the single point measurements
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EKF

Reference Mean Value
Standard

Deviation

Distance

Error

of Mean

Max

Distance

Error

x [m] y [m] x [m] y [m] x [m] y [m] [m] [m]

Position 1 4.941 5.079 4.875 5.013 0.007 0.007 0.093 0.109

Position 2 10.218 4.963 10.201 4.973 0.008 0.007 0.020 0.037

Position 3 16.919 7.187 16.934 7.081 0.010 0.012 0.107 0.133

Position 4 17.129 12.225 17.213 12.292 0.021 0.034 0.108 0.198

Position 5 10.933 10.030 10.919 10.074 0.008 0.008 0.046 0.071

Position 6 5.389 11.250 5.317 11.323 0.011 0.009 0.103 0.134

Position 7 7.414 16.196 7.309 16.313 0.012 0.030 0.157 0.245

Position 8 11.750 19.697 11.771 19.760 0.011 0.011 0.067 0.086

Position 9 15.638 20.598 15.750 20.705 0.045 0.011 0.155 0.241

Table 5.7: EKF metrics with single point measurements

UKF

Reference Mean Value
Standard

Deviation

Distance

Error

of Mean

Max

Distance

Error

x [m] y [m] x [m] y [m] x [m] y [m] [m] [m]

Position 1 4.941 5.079 4.850 4.999 0.006 0.005 0.121 0.134

Position 2 10.218 4.963 10.194 4.972 0.006 0.005 0.026 0.037

Position 3 16.919 7.187 16.938 7.085 0.009 0.013 0.104 0.124

Position 4 17.129 12.225 17.223 12.272 0.014 0.023 0.105 0.161

Position 5 10.933 10.030 10.892 10.068 0.006 0.006 0.056 0.075

Position 6 5.389 11.250 5.296 11.283 0.009 0.007 0.099 0.120

Position 7 7.414 16.196 7.315 16.296 0.010 0.022 0.141 0.200

Position 8 11.750 19.697 11.774 19.763 0.007 0.009 0.070 0.093

Position 9 15.638 20.598 15.757 20.697 0.036 0.007 0.155 0.232

Table 5.8: UKF metrics with single point measurements
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Several conclusions can be drawn from these data: first, it can be seen from the
standard deviations that the filters are both capable of providing continuous esti-
mates of a fixed position that do not deviate much from the mean value, noting in
fact that only in a few cases the value does exceed 1.5 cm for the EKF, while the
UKF is even more accurate. In addition, the data on the error distances of both
filters are in agreement with what was evident from the paths shown in the previous
figures, noting in particular that the mean error of neither filter ever exceeds 16 cm,
as well as the maximum error at each position is always below 25 cm.
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This thesis work presented the full-scale design of a UWB-based local positioning
system aimed at assisting the research activities of the Robotics team at the TAS-I
RoXY facility in Turin, by providing a reliable absolute position estimation free
from the drifts commonly found in techniques such as odometry and SLAM. The
project also had the higher goal of proposing a low-cost solution for local position-
ing in GNSS-denied zones, as the Moon and Mars are until extraterrestrial global
positioning systems such as LCNS (Lunar Communications and Navigation System)
will be finalized. The development started from the integration of the Qorvo UWB
module within the ST microcontroller board and its programming, paying particular
attention to the computational effort and time duration of the ranging algorithm,
and performing a fine-tune of all the parameters involved through an extensive cal-
ibration activity.
Furthermore, in order to comply with the 24 V AC power supply present in the
facility, a PCB power converter was designed to provide the 12 V DC required by
the ST board. The bare boards were assembled, soldered, and tested in the facility
workshop. In addition, given the necessity of a fixed setup for the system to perma-
nently integrate it within the facility, a wall-mounted waterproof case for the UWB
anchors was modeled with a 3D CAD and rapidly prototyped with the aid of Prusa
3D printers; the case was designed in order to be detachable from its wall support
for reprogramming purposes and also to contain the power converter PCB, in order
to exploit the pre-existent power supply rail of the facility.

The localization algorithm was implemented on the ROS2 framework by means of
both an Extended Kalman Filter and an Unscented Kalman Filter, to highlight the
different accuracies that they provide, and they were also enforced with further fea-
tures of outlier rejection, smoothing, and ranging error correction. To be able to
efficiently and repeatedly test their performances with and without the additional
features and to tune the parameters, a simulator was built employing many ROS2
tools in order to be compatible with the filters algorithms and to reproduce the
essential test characteristics, such as the ranging noise, the motion control of the
rover through space, and a faithful replica of the RoXY terrain. The simulation test
configuration was made as similar as possible to the one of real field tests, so a total
of 12 anchors were spawned on the perimeter of the playground, in groups of 3 and
at three different heights.
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The results showed that the filters were able to successfully track the rover’s move-
ment in the three dimensions, achieving 2D RMSE errors of approximately 5 cm
and 3 cm for the EKF and UKF, respectively, which increases to 7 cm and 14 cm if
the third dimension is taken into account, meaning that the estimation of the latter
is better carried out by the EKF than by the UKF. The poor performance in the
vertical estimation is well-known in the literature of UWB positioning systems, and
it is due to the scarce distribution of the anchors in the z-dimension with respect to
the always wider span in the xy-plane. Selectively increasing the injected ranging
noise for brief sections of the paths, the outlier rejection features were tested and
they were observed to deliver more accurate position estimation, as also did the
smoothing version of the basic filters.

The field tests were performed by placing the UWB anchors in the same positions
that were simulated before, precisely measuring them with the Leica laser tracker,
and by mounting the UWB tag on a dedicated 3D-printed support placed on top of
the rover and retrieving the data directly from the rover OBC through the connection
with the control room workstation. The reference path used to compare the filters’
performance was obtained with a sensor-fusion algorithm developed by the TAS-I
Robotics team, which involved data from a stereocamera, a Time-of-Flight camera,
wheel odometry, and a Real-Time-Kinematics-aided GPS.
The results highlighted an effective tracking of the rover position by both the filters,
with errors obviously higher than the simulation in both the two-dimensional and
three-dimensional cases, the latter being too much unreliable. On the xy-plane, the
errors of both filters were noticed to be within 10 cm and 15 cm, while the vertical
errors were totally out of scale. This was hypothesized to occur because of the higher
noise of the actual sensors with respect to the simulated ones, and all the real-life
undesired effects that were not taken into account during the simulations, such as
signal reflections, antenna orientation, and so on. The occurrence of real outliers
in the estimation made the outlier rejection techniques much more effective than
they were in the simulations, showing a successful detection and rejection of wrong
estimations in all cases. The same was observed enabling the smoothing features,
also because the outlier occurrence was rarely experienced, which furtherly validates
the effectiveness of the UWB system.

Future improvements of this kind of system will include the employment of UAVs
acting as movable UWB anchors aimed at increasing the span in the vertical di-
rection, thus providing a better estimation of the height component of the position
in three-dimensional space. Also, the filters could be provided with further tech-
niques designed to increase the robustness of the algorithms to divergence, which
occasionally occurred, mainly with the UKF. Furthermore, a more complex sensor-
fusion system could exploit the UWB ranging ability to provide even more precise
localization, combining relative visual information and odometry with an absolute
system as the UWB is.
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Appendix A

Simulation Data

(a) EKF vs
outlier rejections
vs Reference (xy)

(b) UKF vs
outlier rejections
vs Reference (z)
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(a) UKF vs
outlier rejections
vs Reference (xy)

(b) UKF vs
outlier rejections
vs Reference (z)

(d) EKF vs
Smooth vs
Reference

(e) UKF vs
Smooth vs
Reference
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(a) EKF metrics
referred to
Reference

(b) UKF metrics
referred to
Reference
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Appendix B

Error Map Data

Case
Error
[mm]

Mean
[mm]

Standard
Deviation
[mm]

Max Error
[mm]

Average
Error
[mm]

Reference
Distance
[mm]

Overall Average
Absolute Error

[mm]

Best 147.10 3060.10 20.76 229 147.10
2913

44.52

Average 150.74 3063.74 21.24 217 150.74
Worst 154.77 3067.77 23.36 229 154.77

Best 56.68 5148.68 20.39 123 56.74
5092Average 59.37 5151.37 22.95 127 59.43

Worst 61.77 5153.77 25.28 123 61.81

Best 25.37 6413.37 20.18 94 27.79
6388Average 28.08 6416.08 21.95 94 30.37

Worst 30.20 6418.20 23.92 103 33.00

Best -22.91 9430.09 24.53 101 27.99
9453Average -25.38 9427.62 24.37 106 29.25

Worst -28.08 9424.92 24.40 101 31.53

Best -11.26 13023.74 20.19 90 18.53
13035Average -13.10 13021.90 21.57 85 20.29

Worst -15.59 13019.41 22.60 90 22.21

Best 10.03 16840.03 16.23 55 15.12
16830Average 10.55 16840.55 16.11 59 15.41

Worst 11.55 16841.55 17.16 64 16.88

Best 20.74 20715.74 17.89 73 23.32
20695Average 21.49 20716.49 17.92 77 23.64

Worst 22.27 20717.27 17.66 73 23.97

Best 45.71 24661.71 20.55 120 45.75
24616Average 47.49 24663.49 19.15 112 47.56

Worst 48.89 24664.89 19.05 120 49.00

Best 71.03 28706.03 22.72 135 71.04
28635Average 77.62 28712.62 22.99 144 77.64

Worst 85.91 28720.91 23.93 145 85.94

Table B.1: Anchor 0 error data
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Case
Error
[mm]

Mean
[mm]

Standard
Deviation
[mm]

Max Error
[mm]

Average
Error
[mm]

Reference
Distance
[mm]

Overall Average
Absolute Error

[mm]

Best 147.15 3060.15 22.62 210 147.15
2913

54.08

Average 150.64 3063.64 21.88 217 150.64
Worst 154.30 3067.30 21.09 220 154.30

Best 70.48 5162.48 24.24 142 70.49
5092Average 71.71 5163.71 23.44 143 71.72

Worst 73.04 5165.04 23.17 151 73.04

Best 32.99 6420.99 23.06 94 34.47
6388Average 36.60 6424.60 24.28 109 38.10

Worst 39.34 6427.34 24.04 112 40.43

Best -42.84 9410.16 25.38 138 43.59
9453Average -45.17 9407.83 26.69 142 45.70

Worst -47.63 9405.37 27.00 129 47.95

Best -18.09 13016.91 15.31 81 19.95
13035Average -20.33 13014.67 15.92 72 22.26

Worst -22.08 13012.92 16.71 71 23.85

Best 16.82 16846.82 15.85 64 19.30
16830Average 17.96 16847.96 15.76 70 20.09

Worst 18.53 16848.53 16.11 64 20.85

Best 36.71 20731.71 19.52 92 37.01
20695Average 38.32 20733.32 19.81 94 38.61

Worst 39.68 20734.68 20.21 92 40.05

Best 51.24 24667.24 18.32 102 51.29
24616Average 51.88 24667.88 18.56 105 51.91

Worst 53.29 24669.29 18.77 102 53.31

Best 81.67 28716.67 24.37 154 81.67
28635Average 86.93 28721.93 25.67 154 86.93

Worst 90.91 28725.91 25.40 163 90.91

Table B.2: Anchor 1 error data

121



Case
Error
[mm]

Mean
[mm]

Standard
Deviation
[mm]

Max Error
[mm]

Average
Error
[mm]

Reference
Distance
[mm]

Overall Average
Absolute Error

[mm]

Best 146.80 3059.80 22.60 220 146.80
2913

45.24

Average 150.70 3063.70 22.48 221 150.70
Worst 153.30 3066.30 22.77 229 153.30

Best 66.60 5158.60 21.87 142 66.65
5092Average 70.39 5162.39 22.96 143 70.41

Worst 73.47 5165.47 25.09 133 73.48

Best 24.73 6412.73 21.95 103 27.94
6388Average 26.68 6414.68 20.21 85 28.90

Worst 28.96 6416.96 19.82 94 30.65

Best -28.59 9424.41 24.20 120 31.62
9453Average -31.10 9421.90 24.84 115 33.79

Worst -32.94 9420.06 24.48 129 34.69

Best -21.25 13013.75 20.98 71 25.46
13035Average -24.46 13010.54 21.38 84 27.72

Worst -27.28 13007.72 21.88 81 30.51

Best 0.00 16830.00 16.98 58 13.22
16830Average -0.68 16829.32 17.21 58 13.64

Worst -1.93 16828.07 16.94 58 13.45

Best 12.91 20707.91 16.20 73 16.93
20695Average 20.39 20715.39 16.95 72 22.43

Worst 24.10 20719.10 17.90 83 25.83

Best 34.89 24650.89 19.46 92 35.60
24616Average 37.52 24653.52 20.82 112 37.95

Worst 40.42 24656.42 22.08 120 40.75

Best 55.84 28690.84 24.20 135 56.00
28635Average 63.02 28698.02 23.43 138 63.05

Worst 69.76 28704.76 25.29 154 69.76

Table B.3: Anchor 2 error data
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Anchors 0 - 5 ranges distribution at the first 6 positions
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(a) Anchor 0 (b) Anchor 1

(c) Anchor 2 (d) Anchor 3

(e) Anchor 4 (f) Anchor 5

Figure B.2: Anchors 0 - 5 spline error functions, values in mm
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