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Summary

Combinatorial optimization problems aim to find the configuration of inputs that
minimizes a cost function and can be employed in many real-world applications.
Most of them are known to be NP-complete or NP-hard, thus classically solv-
able with exponential complexity. Quadratic Unconstrained Binary Optimization
(QUBO) formulation can express them in a format suitable for quantum solvers,
which can reduce the computational complexity by exploiting the quantum prin-
ciples. One of the most recent solvers, the Grover Adaptive Search (GAS), is a
successive approximation method that iteratively shifts the cost function whenever
a negative value is obtained until the minimum is achieved. It encodes the function
in a quantum state as key-value pairs and exploits Grover’s search (GS), a quantum
routine able to explore an unordered dataset with lower complexity than the clas-
sical counterpart, for obtaining negative samples. Since current quantum hardware
still has a limited number of qubits, this thesis seeks to build a QUBO prepro-
cessing toolchain for quantum solvers, in particular for GAS algorithm, focused on
reducing the number of variables of the problem. The toolchain uses Cython to
bridge between Python, which is used by most quantum backend APIs, and C++,
which is used to implement the algorithms guaranteeing the efficiency of a compiled
language.

The toolchain consists of many steps of at most polynomial complexity. First,
the cost function is transformed to an equivalent network form to find persistencies,
i.e., variables to which binary values valid in at least one optimal solution can be
assigned. Two routines exploit graph traversals and strongly connected components
(SCCs), which are subgraphs where every node is reachable from any other node, to
find these assignments. Finally, by eliminating the persistencies, a homogeneously
quadratic function is obtained.

After these procedures, decomposition routines divide the network into smaller
ones: separating the disconnected components, which correspond to independent
subfunctions, and extracting the remaining SCCs. The latter operation is needed
because the minimum of a purely quadratic function can be obtained just by finding
the minima of the subfunctions associated with these components. In this way,
when solving the networks with no SCCs the minimum is known in advance, thus
applying GS instead of GAS is sufficient to obtain the optimal solution, which
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significantly decreases the execution time. The presented mechanisms also permit
the decomposition of specific classes of problems and the computation of a lower
bound for the optimal solution, which allows the estimation of the number of qubits
necessary for representing the cost function values in a quantum state.

Finally, if the available hardware resources are still insufficient, the Shannon
decomposition partitions the problem into two functions: one in which a chosen
variable is equal to 1 and the other in which it is 0. Besides, if the variable removal
breaks an SCC into two, the subfunction can be in turn decomposed.

The results show that the persistency-finding techniques are very efficient in
removing all the variables that are not part of SCCs. For many benchmarks, once
persistencies are taken out, decompositions reveal that functions are composed of
a unique SCC. Moreover, the SCC usually has a size not small enough to directly
run GS on currently available backends. Hence, breaking down SCCs is the only
way to furtherly reduce the number of variables.

In the first chapter, the work motivations are illustrated, and a brief introduction
to the quantum computing paradigm, with a particular focus on quantum formalism
and commonly employed algorithms, is reported.

The Quadratic Unconstrained Binary Optimization formalism is presented in
the second. Moreover, the problems employed for benchmarking are showcased,
explaining how it is possible to write them according to the QUBO formalism.

The Grover Adaptive search algorithm and its degrees of freedom are introduced
in the third chapter.

The fourth chapter describes the structure of the proposed preprocessing toolchain,
detailing the choice of the programming language and the included blocks.

The fifth chapter describes how to obtain the network representation of a QUBO
problem for applying the preprocessing algorithms for variable reduction, problem
decomposition, and estimation of the function range.

Persistencies are defined in the sixth chapter, and the algorithms for identifying
them are explained. In addition, the probing technique, which permits more ac-
curate estimation of the function range and identification of further persistency, is
presented.

Furthermore, decomposition methods are explained in the seventh chapter. In
particular, trivial, strong components, Shannon, and problem-specific decomposi-
tion approaches are considered.

The eighth chapter reports and comments on the obtained results, with partic-
ular attention on the benefit that can be reached in the exploitation of the Grover
Adaptive Search solver.

Future perspectives are presented in the ninth chapter. In particular, possible
approaches for toolchain expansion and improvement are suggested.

In the end, conclusions are drawn in the tenth chapter.
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Chapter 1

Introduction

1.1 Motivation
The optimization goal is identifying the configuration of input variables that min-
imizes or maximizes an objective function (cost or fitness function if referred
to minimization or maximization). In the rest of this thesis, optimization will al-
ways be referred to as a minimization problem, considering that a maximization
one can be written as a minimization by changing the sign of the objective function.
In some applications, not all the input configurations are allowed, hence some con-
straints have to be applied to variables (constrained optimization). Optimization
problems can be defined as combinatorial if they deal with discrete variables.
They find applications in several fields, such as finance [1, 2], scheduling [3], VLSI
design [4] and electoral legislation [5]. Such problems are NP-hard or NP-complete
problems, thus they are classically solvable in a runtime scaling exponentially with
their size. A brute-force approach computes the solution for every possible com-
bination of the input variables configurations and it clearly grants to find the opti-
mal one, but at the expense of an unfeasible computational cost even for problems
of small dimensions. Other classical methods such as stochastic ones can achieve
a reasonable runtime, but it is not guaranteed that the optimal solution will be
found. One of the best-known algorithms belonging to this category is simulated
annealing (SA) [6], which arises from an analogy with the thermal annealing pro-
cess. At every iteration, it selects a new solution that is accepted if it improves the
previous one. If it worsens the attained value, it is accepted with a probability de-
pending on a parameter called temperature. The value of this parameter decreases
as the algorithm proceeds. In this way, at the beginning of the process, when the
probability to accept a worse solution is higher, it is easier to escape local minima.
Real-world problems cost functions are typically multimodal, i.e., they present sev-
eral local minima. These are values that are optimal in a neighborhood but are not
the lowest value assumed by the whole function. However, all the classical methods
may never converge, or take an unfeasible amount of time or achieve suboptimal
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1 – Introduction

solutions. Therefore, the quantum properties could be exploited to offer new opti-
mization methods having the potential to overcome critical issues of classical ones.
Two quantum computing paradigms can be used in this context: quantum an-
nealing and gate-based computing. The first, which is the quantum counterpart
of simulated annealing, is based on an adiabatic evolution of a quantum system,
which permits reaching the ground state of the problem energy profile, namely, the
minimum of the cost curve. Thanks to quantum tunneling, it is able to overcome
high and narrow barriers in the function avoiding getting stuck in local minima. It
exploits a special-purpose computer since it is only used for optimization. The sec-
ond paradigm, in which the evolution of a quantum state can be achieved through
a sequence of unitary transformations called quantum gates, is based on the use of
general-purpose quantum computers that can be used to implement optimization
algorithms. Current quantum annealers or gate-based quantum computers can not
directly compute the solution of any combinatorial optimization problem because
they face a severe limitation on the available qubits [7], i.e., quantum bits. A higher
amount of qubits causes greater noise, thus the state of the qubits would not be
stable and it may lead to errors. For this reason, in current hardware, fewer qubits
are available than many objective functions require.

This thesis aims to develop a preprocessing toolchain for improving the ex-
ploitability of quantum approaches in an optimization context, with a particular
focus on a recently proposed algorithm, called Grover Adaptive Search. The goal
is to decompose cost functions into multiple subfunctions with a lower number of
variables. Reduction techniques can also be employed, alone or in addition to de-
composition, to remove variables whose optimum value can be deduced a priori.
Once the qubits demand of the reduced and decomposed function is compatible
with available hardware, the minimization problems can be solved. Still, the newly
obtained functions must ensure that the results can be combined to find the solution
to the original problem.

1.2 Quantum computing
In order to provide sufficient knowledge of the theoretical concepts necessary for
the comprehension of this thesis’s work, the following section is an introduction to
the quantum computing paradigm, which is the result of the study of Yanofsky and
Mannucci’s “Quantum computing for computer scientists” [8].

1.2.1 Qubit and quantum state
A qubit is a unit of information describing a two-dimensional quantum system.
It is the quantum counterpart of a bit for a classical system. A classical bit can
either be in state 0 or 1, while a qubit can be in a state of superposition of the
two bases |0⟩ and |1⟩. According to the Dirac notation, the states |0⟩ and |1⟩ are
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1.2 – Quantum computing

defined as:
|0⟩ =

C
1
0

D
, |1⟩ =

C
0
1

D
. (1.1)

These two states form an orthogonal basis in C2, thus the set of all their linear
combinations generates the vector space C2. The state |ψ⟩ of a generic qubit, can
be expressed as a linear combination of the basis states:

|ψ⟩ = c0 |0⟩ + c1 |1⟩ . (1.2)

Therefore, |ψ⟩ can be considered as simultaneously in both of these states (super-
position), but, if a projective measurement onto the basis {|0⟩ , |1⟩} is performed,
it will collapse into either |0⟩ or |1⟩ with probability P (0) = | ⟨0|ψ⟩ |2 = |c0|2 and
P (1) = | ⟨1|ψ⟩ |2 = |c1|2, which are the projections of |ψ⟩ onto |0⟩ and |1⟩ respec-
tively. By definition of probability, P (0) + P (1) = 1, hence the state vector always
has to be normalized, that is applying the following operation:

|ψ′⟩ = |ψ⟩
|| |ψ⟩ ||2

(1.3)

The vector is always normalized and multiplying it by a constant number does not
affect it, thus the vector obtained is just a representation of the same state.

The state of a qubit can be written by expressing complex numbers with polar
coordinates. In order to do this, it is necessary to start writing the probability
amplitude in phase and modulus form:

|ψ⟩ = r0e
iϕ0 |0⟩ + r1e

iϕ1 |1⟩ . (1.4)

Since a multiplication for a constant complex number gives just a different repre-
sentation of the same normalized state, the amplitude of the first basis state can
be made real by multiplying the state by a complex number with modulus 1 and
phase −ϕ0:

e−iϕ0 |ψ⟩ = e−iϕ0(r0e
iϕ0 |0⟩ + r1e

iϕ1 |1⟩) = r0 |0⟩ + r1e
i(ϕ1−ϕ0) |1⟩ . (1.5)

Furthermore, knowing that |c0|2+|c1|2 = r2
0+r2

1 = 1, the real parts of the amplitudes
can be expressed as r0 = cos θ and r1 = sin θ. Therefore, the polar form of the
state is:

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ . (1.6)

By exploiting the polar form, it is possible to graphically represent the state vector
in the Bloch sphere (Figure 1.1). It is a sphere of radius 1, in which each point on
its surface is an eligible quantum state. Any state |ψ⟩ can be drawn on the sphere
by means of the coordinates given by the Bloch vector(r):

r =

sin θ cosϕ
sin θ sinϕ

cos θ

 . (1.7)
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φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 1.1: Bloch Sphere

The two basis states |0⟩ and |1⟩ are associated, respectively, with the north pole
and the south pole. Any other point on the surface of the sphere is associated
with a state composed of a superposition of the basis states. In particular, in the
equator, all the states are a uniform superposition of |0⟩ and |1⟩ and they differ
from each other just for the local phase ϕ.

A new quantum system can be obtained by assembling many quantum systems
and states will be represented in a vector space that is the tensor product of the
vector space of each system. Therefore, to obtain a system composed of more qubits,
the quantum state can be described by the tensor product of the states of every
single qubit. For example, a qubyte describes a system made by 8 qubits, whose
vector space is isomorphic to (C2)⊗8. The basis states of an assembled quantum
system are the tensor product of the basis states of the systems that compose it.
Instead, a state vector of an assembled system can not be always written as the
tensor product of the states of the original systems. Take for example a state of
the system obtained by assembling two systems A and B (called Bell state):

|ψAB⟩ = 1√
2

(|00⟩ + |11⟩). (1.8)

Writing this state as the tensor product of the states of A and B:
|ψAB⟩ = |ϕA⟩ ⊗ |ϕB⟩ = (c0 |0⟩ + c1 |1⟩) ⊗ (c′

0 |0⟩ + c′
1 |1⟩)

=c0c
′
0 |00⟩ + c0c

′
1 |01⟩ + c1c

′
0 |10⟩ + c1c

′
1 |11⟩ .

(1.9)
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1.2 – Quantum computing

Now to obtain the above state of the system AB, the amplitudes of the states A
and B should satisfy the equations c0c

′
0 = c1c

′
1 = 1 and c0c

′
1 = c1c

′
0 = 0, but they

have no solution. Therefor,e the state of an assembled system can not always be
written as a tensor product. States for which this is possible are called separable
states, whereas states for which this is not, are called entangled states. The
Bell state previously shown is obtained creating entanglement between qubits. For
the state |ψAB⟩, if a measurement finds the first qubit in the state |0⟩ the second
qubit collapses to the state |0⟩ since there is a probability equal to 1 to measure the
second qubit in the state |0⟩. Equivalently if a measurement finds the first qubit
in the state |1⟩ the state of the second qubit collapses to |1⟩. Entanglement is
a very strong form of correlation because measuring one qubit, even if the other
system is in a faraway position, it is possible to know the state of the other qubit.

1.2.2 Quantum gates
A quantum circuit is described by a sequence of gates, that perform elemen-
tary operations on qubits. Unlike classical gates, quantum ones are not physical
blocks inserted and connected to other blocks in the circuit, but they are electric
or magnetic pulses applied to qubits characterized by amplitude, phase and time
of application [9] and allow performing any reversible transformation. Reversibility
means that inputs can be derived from outputs. Consequently, there is a one-to-one
correspondence between inputs and outputs. Since the operators applied to quan-
tum systems are characterized by this property, quantum gates are represented by
unitary matrices (for a unitary matrix U: UU † = U †U = I, where I is the identity
matrix).

The fundamental single qubits gates are the Pauli gates. These gates, visual-
izing their effect on the Bloch sphere, perform a rotation of an angle π around the
x, y and z axis, respectively. For the states |0⟩ and |1⟩ applying the Pauli X gate is
equivalent to the classical not operation because rotating the north pole vector by
π, the south pole vector is obtained and vice versa. Indeed, the Pauli X gate is also
called NOT . X, Y and Z transformations do not affect states parallel respectively
to the x, y and z axes in the Bloch sphere. The corresponding matrices are reported
below:

X =
C
0 1
1 0

D
, Y =

C
0 −i
i 0

D
, Z =

C
1 0
0 −1

D
. (1.10)

The S gate performs a rotation of π/2 around the z-axis, thus the corresponding
matrix is the square root of the Pauli Z gate:

S =
C
1 0
0 i

D
. (1.11)

The Hadamard gate can create a superposition of states if applied to a basis state
|0⟩ or |1⟩, indeed it is often used at the beginning of quantum algorithms for the
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state preparation. It can be interpreted as a rotation of π/2 around the y-axis and
then a rotation of π around the x-axis, therefore H = XY

1
2 .

H =
C
1 1
1 −1

D
(1.12)

H |0⟩ = 1√
2

(|0⟩ + |1⟩) . (1.13)

The gates just examined are all inversions or rotations of a fixed angle on the Bloch
sphere, but phase shift gates allow for turning the state vector on the surface of
the Bloch sphere around each direction of any angle θ, that is a parameter of the
gate.

Rx(θ) =
C

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

D
, (1.14)

Ry(θ) =
C
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

D
, (1.15)

Rz(θ) =
C
e−i θ

2 0
0 ei

θ
2

D
. (1.16)

A gate acting on n + m qubits can be used to perform an operation on n qubits
(targets) according to the state of the remaining m qubits (controls). A gate
that does such an operation is called controlled gate. The identity operation
is performed on the target qubits, If control is applied to a qubits in state |0⟩.
Otherwise, the quantum gate is enforced on the targets. Alternatively, if anti-
control is applied to a qubit the quantum gate is enforced to the other n ones, if it
is in state |0⟩, or, in the opposite case, the identity operation is performed.

The controlled-U (or cU) operation can be formalized for any quantum gate U
and it is represented by the following unitary matrix considering the control to be
applied to the most significant qubit:

U =
C
a b
c d

D
, cU =


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 . (1.17)

For instance, the controlled not gate (or CNOT) acting on 2 qubits when the control
is applied to the most significant qubit is represented by the following matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.18)
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1.2 – Quantum computing

In quantum computing, the circuit can be just a visual representation of the se-
quence of gates to be applied to the qubits. Gates can just be stimuli applied to
the qubits and they are not physical blocks connecting them. Hence, the quantum
equivalent of swapping two wires is the swap gate [10]. It can be used for ad-
dressing issues of connectivity among qubits. Since multiple qubits operations, in
general, can not be performed on any group of qubits, the swap can be utilized to
transfer the state of a qubit to different physical qubits.

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.19)

A swap gate does not affect input states |00⟩ and |11⟩, whereas it complements
the inputs |01⟩ and |10⟩. It can be constructed only using CNOT gates (Figure
1.2). In the figure on the left-hand side, it is shown the symbol of the swap gate,
whereas, on the right-hand side, the three CNOT gates required for implementing
it are represented by the corresponding symbols. If the input is |01⟩ the last gate
will not have any effect and both qubits will be complemented, if it is |10⟩ the first
gate will not have an effect and both qubits will be complemented and if the inputs
are |00⟩ or |11⟩ the gates will not have an effect at all since states are symmetric.

q0

q1

=
q0

q1

Figure 1.2: Equivalence between swap and three CNOT gates

Finally, the measurement operation is employed at the end of a circuit to measure
qubits and obtain classical bits. It is indicated by the symbol in Figure 1.3.

Figure 1.3: Measurement symbol
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1 – Introduction

1.2.3 Quantum algorithms

A quantum algorithm is a finite sequence of steps to solve a given problem, running
on a quantum computer, thus exploiting quantum mechanics properties to achieve
a lower computational complexity over any other classical algorithm. A typical
element found in many quantum algorithms is an oracle, which can provide some
answers by passing it queries. For instance, an oracle could give a boolean answer
to the question “is an input configuration x present in a certain database?”. More
precisely, an Oracle is a “black box” operation that evaluates a function but it is
not possible to see how this function is defined. In a classical computer, an oracle
could be defined as an operator, that can be written as a matrix acting on the input
bits, which has an input string on n bits and an output string on m bits:

f : {0,1}n → {0,1}m. (1.20)

On a quantum computer, each operator should be unitary and reversible, therefore
if the function has n qubits as input and m qubits as output the quantum gate
needs another m−n qubits as input called ancillae qubits, since from the output
it must be possible to derive the input. Therefore, a boolean oracle is defined as:

Of (|x⟩ ⊗ |y⟩) = |x⟩ ⊗ (|y⟩ ⊕ f(x)). (1.21)

Using the boolean oracle, initializing the ancilla qubit to |1⟩ and then applying a
Hadamard gate, a phase oracle can be constructed. According to the value of the
function, it can apply a phase to the input:

Uf |x⟩ = (−1)f(x) |x⟩ . (1.22)

In this context, the ancilla qubit is needed to implement the function but the result
is independent of it. Hence, it is not reported and it is considered included in the
phase oracle operator.

1.3 Deutsch-Josza algorithm
The first quantum algorithm that, by using the superposition of states, showed an
advantage with respect to the classical ones, is the Deutsch-Josza algorithm.
Given an oracle that evaluates a function f : {0,1}n → {0,1} which can be either
balanced or constant, the Deutsch-Josza algorithm is able to determine which of
the two properties f possesses using just one query. For classical computing in the
worst case, 2n−1 + 1 queries are needed, where n is the number of input bits. The
algorithm implemented by quantum gates is reported in Figure 1.4.
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0
0

0
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.

H

H

H
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.

Uf

H

H

H
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. 

.

y0

y1

yn-1

Figure 1.4: Deutsch-Josza algorithm

If the function is constant, if f(x) = 0, the phase oracle does not affect the input
states. Two Hadamard gates applied in series, since they are unitary matrices, are
equivalent to applying an identity matrix. If f(x) = 1, the oracle applies a global
phase of −1, but, for the measurements, the global phase has no meaning, so the
input states are again not affected. Instead, if the function is balanced, the phase
oracle actually affects the inputs and the outputs will be different than the 0 string.

1.4 Grover’s algorithm

Grover’s search has been the first quantum algorithm to prove the quantum ad-
vantage. It searches one or more elements in an unsorted database composed of N
elements with a computational cost that is O(

√
N), whereas on average the clas-

sical counterpart has O(N) complexity. In the beginning, the state preparation
operation creates a superposition of all the states in the database. It can be made
up of only Hadamard gates to generate an equal superposition of all the possible
states. A phase oracle Uf implements a function that returns 1 if the input state
is equal to the winning element |w⟩, which is the element having the desired char-
acteristics. This oracle changes the global phase of the state only if it is equal to
|w⟩. Then another phase oracle Uf0 is needed that returns 0 if the input state is
the 0-bit string, so it changes the global phase of the state if it is different from the
0 string.

The implementation of Grover’s algorithm is reported in Figure 1.5 and the
block formed by the inverse state preparation, in this case Hadamard gates, at the
inputs, Uf0 and the state preparation at the outputs, is called Diffuser(V).
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0

0
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.

H
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Uf

H

H
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Uf0
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. 

. 

.

Diffuser

Repeat r times

Figure 1.5: Grover’s algorithm

The first step in the algorithm is the state preparation. It encodes the database
in the quantum state in which the algorithm has to search for the winning element.
The simplest state preparation operator is composed of a layer of Hadamard gates
that prepares an initial state |s⟩ composed of the equal superposition of all the
possible input configurations. Therefore, each state has the same amplitude, as
shown in Figure 1.6.

|s⟩ = 1√
2n

Ø
x∈{0,1}n

|x⟩ . (1.23)

Amplitude

N states
configurations 

Figure 1.6: States amplitude after H⊗n operator (example with 3 qubits)

The functions evaluated by the two oracles can be written as shown in the

12



1.4 – Grover’s algorithm

following.
Uf = I − 2 |w⟩⟨w| . (1.24)

The phase oracle Uf flips the global phase only of the winning element because the
projection of a state |x⟩ on |w⟩ is 0, since they are orthogonal, whereas it gives
I |w⟩ − 2 |w⟩ = − |w⟩ for the target entry |w⟩. This operation is called phase
inversion: the amplitude of the element with the desired characteristics is flipped
and becomes negative (Figure 1.7).

Amplitude

N states
configurations 

Figure 1.7: States amplitude after Uf operator (example with 3 qubits)

Uf0 = 2 |0⟩⟨0|⊗n − I. (1.25)

The state preparation composed of only Hadamard gates creates the equal super-
position of all the possible states:

|s⟩ =
2nØ
x=0

1√
2n

|x⟩ . (1.26)

The phase oracle Uf0 flips the global phase of all the states except the 0 string
because only for the |0⟩⊗n state the projection onto itself is different than 0. The
diffuser function can now be evaluated by substituting the Uf0 expression.

V = H⊗nUf0H
⊗n = 2H⊗n |0⟩⟨0|⊗nH⊗n −H⊗nIH⊗n = 2 |s⟩⟨s| − I. (1.27)

Indicating as |w⊥⟩ the superposition of every state except |w⟩, that is a state which
lies in the plane spanned by |s⟩ and |w⟩, but is orthogonal to |w⟩, the state |s⟩ can

13
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be written in the following way:

|s⟩ =
ó

2n − 1
2n |w⊥⟩ + 1√

2n
|w⟩ = cos θ2 |w⊥⟩ + sin θ2 |w⟩ . (1.28)

Therefore, applying Uf means applying the identity to |s⟩ and then subtracting
two times the projection of |s⟩ into |w⟩, so this is equivalent to a reflection of |s⟩
around |w⊥⟩. Then applying the diffuser is equivalent to a reflection of the state
obtained before around |s⟩, so the V Uf operation corresponds to a rotation of |s⟩
by an angle θ [11, Sec. 3.8] as shown in the Figure 1.8.

w

w

s

s

sUf

VUf

θ
2
θ
2

θ

Figure 1.8: Effect of phase oracle and diffuser in Grover’s algorithm

Observing the diffusion operation by the amplitudes of all possible states’ point
of view, it is performed an inversion about the average. Since |s⟩ is the equal
superposition of all the basis states, each of them has the same amplitude 1√

2n ,
therefore the outer product |s⟩⟨s| is a matrix A that for each element has ( 1√

2n )2 =
1

2n . Hence, it is the matrix that finds the average (⟨α⟩) of the amplitudes of the
state (A |ψ⟩ = ⟨α⟩). Applying the diffuser on a state |ψ⟩ = q

x∈{0,1}n αx |x⟩ means

14
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applying the operator 2A− I, which gives as a result:

V |ψ⟩ =
Ø

x∈{0,1}n

(−αx + 2⟨α⟩) |x⟩ =
Ø

x∈{0,1}n

(⟨α⟩ + (⟨α⟩ − αx)) |x⟩ (1.29)

The result obtained is, indeed, the inversion about the average of the amplitudes
of all the possible states [12] (Figure 1.9).

Amplitude

N states
configurations 

Figure 1.9: States amplitude after V operator (example with 3 qubits)

The whole operation performed by the phase oracle and the diffuser is called
amplitude amplification. In this way, the amplitude of all the possible states is
reduced, whereas the amplitude of the winning element is increased. Iterating this
process means increasing the amplitude of the winning element, thus increasing the
probability of measuring it.

Once the phase oracle and diffusion operations are repeated r times, the initial
state |s⟩ has been rotated by an angle rθ. The goal is to rotate the initial state in
order to get as close as possible to the state |w⟩ from a starting angle of θ

2 , thus
rθ = π

2 − θ
2 . For the expression of the initial state |s⟩: sin θ

2 = 1√
2n . Hence it is

possible to evaluate the optimal r, knowing θ:

r = π

2θ − 1
2 = π

4 arcsin 1√
2n

− 1
2 . (1.30)

If the number of qubits n and, as a consequence, the number of elements N = 2n,
is sufficiently high to approximate r:

r ≈ π

4
√

2n. (1.31)
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This shows that the number of iterations of the Grover search algorithm scales
as O(

√
N). After r iterations, the final state |y⟩ and the state |w⟩ are at most

separated by an angular difference of θ
2 because otherwise another rotation would

have been performed to get closer to |w⟩. Therefore, the probability to measure
the winning element is given by:

P (w) = | ⟨w|y⟩ |2 ≥ cos2 θ

2 = 1 − 1
2n . (1.32)

Grover search algorithm can be also used to mark multiple target elements,
obtaining as the final state the superposition of all the winning strings [13]. Calling
M the number of elements to mark:

|w⟩ = 1√
M

MØ
i=1

|wi⟩ ,

|w⊥⟩ = 1√
2n −M

Ø
x/∈{w1,...,wM }

|x⟩ ,

|s⟩ =
ó

2n −M

2n |w⊥⟩ +
ó
M

N
|w⟩ = cos θ2 |w⊥⟩ + sin θ2 |w⟩ .

(1.33)

The initial state |s⟩ can be expressed in the same way as before, but the value of θ
has now changed. Grover’s iterations still perform a rotation of an angle θ towards
the winning state, thus, also in this case, r iterations are needed to rotate the state
by an angle π

2 − θ
2 .

r = π

4 arcsin
ñ

M
2n

− 1
2 . (1.34)

Considering a very high number of elements N = 2n with respect to the number of
winning ones, the optimal number of rotations can be approximated as:

r ≈ π

4

ó
2n
M
. (1.35)

Note that a particular case is when the number of solutions is exactly half of
the database size. In this case, the state |s⟩ is composed of an equal superposition
of winning and non-winning elements, therefore independently of the number of
iterations θ = π/4. This implies an equal probability of finding any item among all
the input configurations.

1.5 Quantum Fourier Transform
The Quantum Fourier Transform (QFT) [11, Sec. 3.5] performs the quantum
counterpart of the Discrete Fourier Transform. Considering N = 2n, where n is the
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number of qubits:

QFTN |ψ⟩ = 1√
N

N−1Ø
x=0

exp
I

2πiψx
N

J
|x⟩ . (1.36)

This function transforms qubits from the Z-basis (or computational) to the Fourier
basis (Figures 1.10 and 1.11). Therefore, it takes as inputs binary numbers and
encodes them in rotations across the z-axis, so that the most significant qubit is
rotated by 2πψ

N
, the qubit after by the double of the angle (4πψ

N
), the one after that

by the double of the latter angle and so on.

x y

z

x y x y

z

MSB LSB

Figure 1.10: Number −3 = (101)2 encoded in the z-basis in 2’s complement

x y

z

x y x y

z

MSB LSB

Figure 1.11: Number −3 = (101)2 encoded in the Fourier basis. The most signif-
icant qubit, on the left, is rotated by 5×2π

8 = 5
4π. The middle qubit is rotated by

10×2π
8 = 5

2π = π
2 . The least significant qubit is rotated by 5π = π.

The QFT circuit exploits the controlled phase gate CPk gate, defined as follows:

CPk =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp

î
2πi
2k

ï
 . (1.37)
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To the first qubit in the circuit (Figure 1.12), that is the least significant one, a
Hadamard gate is applied, so the state becomes:

H1 |ψ0⟩ = 1√
2

5
|0⟩ + exp

;2πi
2 ψ0

<
|1⟩

6
. (1.38)

Then n−1 CPi gates are applied by using as control qubits the n−1 more significant
ones. The controlled phase gate applies the phase change only to the state |1⟩ if
the control qubit is 1. After that, the state becomes:

1√
2

5
|0⟩ +

3
exp

;2πi
2n ψn−1

<
+ ...+ exp

;2πi
2 ψ0

<4
|1⟩

6
⊗ |ψ1...ψn−1⟩ =

1√
2

5
|0⟩ + exp

;2πi
2n ψ

<
|1⟩

6
⊗ |ψ1...ψn−1⟩ .

(1.39)

Successively the same gates are applied to any other qubit. Therefore, to each
qubit, following the order from the least significant to the most significant, it is
applied a Hadamard gate first and then phase gates controlled by all the more
significant qubits than the one at hand. The obtained state is:

1√
2

5
|0⟩ + exp

;2πi
2n ψ

<
|1⟩

6
⊗ 1√

2

5
|0⟩ + exp

; 2πi
2n−1ψ

<
|1⟩

6
⊗ ...

⊗ 1√
2

5
|0⟩ + exp

;2πi
2 ψ

<
|1⟩

6
.

(1.40)

In the end, a layer of n/2 swap gates is needed to reverse the order of the qubits.
The first is swapped with the last, the second with the second to last and so on.
Now expressing this result in terms of the 2n basis states the same expression of
the discrete Fourier transform is attained:

1√
2n

np
k=1

C
|0⟩ + exp

I
2πiψ

2k

J
|1⟩

D
= 1√

2n
N−1Ø
x=0

exp
I

2πiψx2n

J
|x⟩ . (1.41)

H

. 

. 

.

. . . H

. . .

. . .

H

. 

. 

.

Figure 1.12: Circuit that implements QFT algorithm
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Chapter 2

QUBO formulation

2.1 Formulation
Quadratic unconstrained binary optimization (QUBO) is a mathematical
formulation, which can be exploited for describing many real-world combinatorial
problems. It is the most feasible formulation for solving optimization problems em-
ploying quantum approaches. In the acronym, quadratic indicates that the highest
power appearing in the function is two, unconstrained means that no constraint is
formally applied to variables, binary implies that variables can only assume values
0 and 1, and optimization refers to the target of the description, i.e. maximizing
or minimizing an objective function. Therefore, this model can be expressed in the
following way:

minimize f(x) = q0 +
Ø
i

qixi +
Ø
i<j

qijxixj, (2.1)

where q0 is a constant term and qi and qij are the coefficients of linear and quadratic
terms, respectively. The model can also be written as:

minimize f(x) = xtQx, (2.2)

where x is a vector of binary variables and Q is a square matrix of problem coeffi-
cients. The Q matrix can be symmetric or in upper triangular form. If it is
in upper triangular form for all i and j with j > i, the element in the row i and
column j of the matrix is equal to the coefficient qij. If it is symmetric, for all i
and j the element in the row i and column j is replaced by qij/2. In both cases,
linear terms are located in the diagonal.

Qtriangular =


q0 q01 q02 q03
0 q1 q12 q13
0 0 q2 q23
0 0 0 q3

 , Qsymmetric =


q0

q01
2

q02
2

q03
2

q01
2 q1

q12
2

q13
2

q02
2

q12
2 q2

q23
2

q03
2

q13
2

q23
2 q3

 . (2.3)
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2 – QUBO formulation

2.2 Constraints
In many optimization problems, the admissible solutions can be less than the pos-
sible ones because they may have to satisfy some conditions, that are called con-
straints. The QUBO model formally does not explicitly consider constraints. How-
ever, they can be taken into account by introducing weighted quadratic penalties
in the QUBO cost function. Therefore, extra components g(x) multiplied by a pos-
itive coefficient P are added to the original function:

y = f(x) + Pg(x) . (2.4)

Penalties are chosen such that the cost function gives higher results for solutions
that do not satisfy constraints. Hence, the penalty functions value is equal to 0
for feasible solutions, whereas it is equal to a positive amount for unfeasible ones
[14]. For some very common constraints, quadratic penalty functions are known in
advance and reported in Table 2.1.

Classical constraint Equivalent penalty
x+ y ≤ 1 P (xy)
x+ y ≥ 1 P (1 − x− y + xy)
x+ y = 1 P (1 − x− y + 2xy)
x ≤ y P (x− xy)

x1 + x2 + x3 ≤ 1 P (x1x2 + x1x3 + x2x3)
x = y P (x+ y − 2xy)

Table 2.1: Quadratic penalty functions of common employed constraints [14]

For general cases, in which penalty functions are not known in advance, it is
possible to find them by following the procedure reported below. Given a general
binary optimization problem:

min f(x) = xtCx,

subject to: Ax = b.
(2.5)

Constraints expressed as a linear system can be always written as quadratic penal-
ties to be added to the cost function. At this point a new QUBO model, taking
into account constraints, can be derived:

f(x) = xtCx+ P (Ax− b)t(Ax− b) = xtCx+ xtDx+ c = xtQx+ c. (2.6)

Dropping the additive constant, the now unconstrained problem is in the original
QUBO form. The constant c does not affect the optimal solution and, consequently,
can be neglected in the optimization phase. It can be eventually added once the
solution is found to recover the original cost function value.
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2.3 – QUBO and Ising models equivalence

Penalty coefficient values are crucial since a too-high value can make the func-
tion profile flatter thus making it more difficult to distinguish a better solution from
a worse one. Instead, a too-small one may cause a configuration of variables that
violates some constraints to have a better or equal result than other feasible solu-
tions [14]. Figure 2.1 displays an example of the profile of two functions obtained
with low and high P values.
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Input configurations x
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0.0

f(x
)

(a) P = 4
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400
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100

0

f(x
)

(b) P = 100

Figure 2.1: Comparison of a cost function profile for a minimum vertex cover
problem (described in section 2.4) with (a) low P value and (b) high P value

Constraints can be of two categories: hard and soft. For a hard one, violations
are not admitted, thus P must be sufficiently large. For a soft one, violations are
accepted, hence the coefficient P can be smaller. Consider that the methodology
provided for including constraints in the QUBO problem is fully general because, if
A and b have integer elements, inequality constraints can always be traced back to
Ax = b form using slack variables. For example, the constraint 4x1 +5x2 −x3 ≤ 6
can be transformed into an equality constraint by adding a variable s, that can be
represented through a binary expansion, leading to 4x1 + 5x2 − x3 + s = 6. Then,
the number of binary variables required for the expansion depends on the upper
bound reachable by s. In the example, since s ≤ 7, a possibility is to expand it
with three binary variables (logarithmic expansion): s1 + 2s2 + 4s3. Then, the
slack variables have to be included in the binary variables vector x and the slack
coefficients in the matrix A.

2.3 QUBO and Ising models equivalence
The Ising model [15] was initially conceived for describing the magnetic properties
of some materials. The variables represent the spin of atoms that can be in spin-up
or spin-down configuration, which correspond to the values +1 and −1, respectively.
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2 – QUBO formulation

Atoms are located in a lattice and can interact in two different ways:

• external field interaction (linear) which determines the orientation preferred
by a single spin;

• quadratic interaction between a couple of spins, which indicates if they prefer
an aligned or anti-aligned orientation.

The system Hamiltonian is the following:

H(s) =
Ø
i

hisi +
Ø
i<j

Jijsisj, (2.7)

where hi are the external field coefficients and Jij are the interaction coefficients.
The variables s represent the spin of atoms. It is possible to notice that this model
can be employed for expressing combinatorial optimization problems. It is perfectly
equivalent to the QUBO formulation, indeed, the only difference is that the binary
variables for the Ising one are bipolar instead of unipolar (0, 1). In order to convert
the QUBO model into an Ising one, the following relation can be exploited:

si = 2xi − 1, (2.8)

whereas to transform the Ising model into a QUBO one, the equation is reported
below:

xi = 1 + si
2 . (2.9)

Moreover, solving QUBO problems is very important since any pseudo-boolean
function, which is a function f : Bn → R, can be represented as a multilinear
polynomial in its variables, and every multilinear polynomial binary optimization
problem can be transformed in a quadratic one at the cost of adding auxiliary
variables [16].

2.4 Benchmark problems
This section showcases the various problem classes, representable through the QUBO
formulation, which have been employed for testing the algorithms presented in this
thesis and obtaining the results presented in Chapter 8. The qubovert [17] Python
library has been exploited to formulate all these problems and to compute the
optimal value and input configurations using the available solvers.

2.4.1 Minimum vertex cover
Given an undirected graph G(V,E), with vertex set V and edge set E, the min-
imum vertex cover is the smallest subgraph such that every edge in E has at
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least one endpoint in one of the vertices of the subgraph [14] (example in Figure
2.2).

0

3

7

65

21

4

Figure 2.2: Example of minimum vertex cover (highlighted in blue).

The QUBO formulation can be written by associating a variable xi with the
ith vertex which assumes the binary value 1 if the vertex belongs to the minimum
vertex cover, or it is equal to 0 otherwise. It has to minimize the number of nodes
in the subgraph, satisfying the condition that for each edge connecting nodes i and
j, at least one of them must be part of the vertex cover. This can be written in the
following way:

minimize f(x) =
Ø
i∈V

xi,

subject to: xi + xj ≥ 1 ∀(i, j) ∈ E.
(2.10)

The constraint has the form of one of those shown in Table 2.1 and the correspond-
ing quadratic penalty can be directly included in the objective function. Hence,
the final QUBO function is obtained:

minimize f(x) =
Ø
i∈V

xi + P

 Ø
(i,j)∈E

(1 − xi − xj + xixj)
 (2.11)

For instance, a feasible value for the penalty coefficient is P = 8.

2.4.2 Maximum clique
Given an undirected graph G(V,E), with vertex set V and edge set E, the max-
imum clique is the subgraph G′ with the largest size, in which every vertex is
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2 – QUBO formulation

connected by an edge with all the other vertices in the subgraph (example in Fig-
ure 2.3).
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Figure 2.3: Example of maximum clique (highlighted in blue).

The QUBO formulation can be written by associating a variable xi with the ith
vertex which assumes the binary value 1 if it is part of the clique, or it is equal to 0
otherwise. Note that this is a maximization problem, thus the optimal solution is
the maximum value of the function, but then it will be considered as a minimization
one by flipping the sign of the objective function once it is generated. The goal is
to maximize the number of vertices in the subgraph, satisfying the condition that
for each couple of vertices in G′ an edge must exist. Therefore, the problem can be
written in the following way:

minimize f(x) = −
Ø
i∈V

xi,

subject to: xi + xj ≤ 1 ∀(i, j) ∈ E,
(2.12)

where E indicates the set of couples of nodes not connected by an edge. Ex-
pressing the constraint as the quadratic penalty shown in Table 2.1 and including
it in f(x), the following QUBO formulation is obtained:

minimize f(x) = −
Ø
i∈V

xi + P

 Ø
(i,j)∈E

xixj

 , (2.13)

where the penalty coefficient is often chosen as P = 2.
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2.4.3 Max-cut
Given an undirected graph G(V,E), with vertex set V and edge set E, the max-
cut target is to partition the graph in two subsets such that the sum of the edges
that connects a vertex in one subset to a vertex in the other is the maximum one
[14] (example in Figure 2.4).
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Figure 2.4: Example of maximum cut (subsets of vertices highlighted in orange and
blue, cut shown by the red dashed line).

The QUBO formulation can be written by associating a variable xi with the
ith vertex, which assumes the binary value 1 if it is part of one subset, or it is
equal to 0 otherwise. Note that this is a maximization problem, thus it will be
considered as a minimization one by flipping the sign of the objective function once
it is generated. For each edge, it is desired that the objective function increases
if the two vertices are in different subsets, thus there is a cut going through this
edge, and it does not increase if the vertices are in the same subset. Therefore, the
polynomial expression xi+xj − 2xixj is equal to 1 when the nodes, associated with
those variables, are separated by a cut, whereas it is equal to 0 when they are in
the same subset. By summing this expression for every edge, the following QUBO
formulation is obtained:

minimize f(x) =
Ø

(i,j)∈E
(−xi − xj + 2xixj) (2.14)
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Chapter 3

Grover Adaptive Search

The Grover Adaptive Search (GAS) is a hybrid quantum-classical successive
approximation algorithm that looks for the optimal value and solution of a cost
function f : {0,1}n → R. In the beginning, the cost function is encoded in a
quantum state. Then, Grover’s search finds a negative sample, the function is
shifted by the obtained value and this process is repeated until there are no more
negative values, thus the minimum is reached (Figure 3.1). The scheme of this
procedure is reported in Figure 3.2.

This chapter is organized in the following way: Section 3.1 explores the state
preparation mechanism to encode the cost function into a quantum state and Sec-
tion 3.2 discloses the algorithm in detail.

Cost

0...0 1...1

Cost

0...0 1...1

Cost

0...0 1...1

Figure 3.1: Visualization of the GAS procedure on the function profile. In the
leftmost plot, a negative sample is identified. In the middle one, the function is
shifted. In the rightmost one the global minimum is detected.
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Cost function
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a quantum
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Figure 3.2: Grover adaptive search algorithm scheme

3.1 Quantum dictionary
The GAS algorithm needs an operator (here called Ay) to prepare an input state
composed of an equal superposition in key-value pair format of all |x⟩n inputs and
|f(x) − y⟩m outputs. It is called quantum dictionary [18] and is the quantum
counterpart of a dictionary, i.e., a data structure in which values are associated with
unique keys. The former are the values of the objective function corresponding to
the input x shifted by the amount y, while the latter are the inputs. In this way,
when a new function sample is found, it is possible to know both the value and the
input configuration required for obtaining it.

Ay |0⟩n |0⟩m = 1√
2n

2n−1Ø
x=0

|x⟩n |f(x) − y⟩m . (3.1)

In order to realize the Ay operator each value has to be encoded in the Fourier
basis, i.e., representing the number as a rotation across the z-axis, starting from
the x-axis, of the base angle 2π

2n times the number that is wanted to be encoded
for the most significant qubit, then the double of the angle for the next qubit and
so on. A controlled phase gate is used to rotate the state of a qubit according to
the binary values of the controlled qubits, namely the keys. In this way, keys and
values are entangled and when a value is found by the Grover search algorithm, the
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input state will collapse to a solution associated with it. The phase gates encode
each coefficient of the objective function coupling it with the variables which appear
in the same term. For instance, for the term qijxixj, the key is the configuration
of variables xi = 1 and xj = 1 and the value is qij. Therefore, the gates have
as control qubits the ones related to variables xi and xj and encode the value qij
in the local phase angles of the value qubits, namely the Fourier basis outlined
in Section 1.5. Once this process is performed for all the terms in the objective
function, the state will be a superposition of entangled key-value couples composed
of all the configurations of input variables and the values assumed by the function.
In the end, when the superposition of all the key-value pairs is created, the inverse
QFT is applied to the value register so that the encoded numbers are transformed
into the usual computational basis, encoding them in the two’s complement binary
number representation. This is obtained thanks to its similarity with the Fourier
encoding since angles up to π/2 correspond to positive numbers, while angles from
π/2 correspond to negative ones just like two’s complement numbers are positive if
their most significant bit is 0, while they are negative, if it is 1. For instance, 7π/4
is equal to −π/4 as 1112 is equal to −0012.

An example encoding the simple function f(x) = −x0x1 is reported in Figure 3.3
and the resulting measured states obtained by simulating the circuit are reported
in Figure 3.4. It can be observed how only the four possible states are measured:
the first three corresponding to the inputs 00, 01 and 10 for which the function
assumes value 0, the last corresponding to the input 11 for which the function
assumes value 1. The state obtained is the equal superposition of these four states,
hence the probability of measuring one state is equal for all of them. In order to
draw and simulate quantum circuits the Qiskit library [19] for Python has been
employed.

Keys

Values

Figure 3.3: Quantum dictionary that encodes at the key |11⟩ the value |11⟩
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Figure 3.4: Simulation of quantum dictionary

The same initial state can be obtained by exploiting an ancilla qubit and phase
kickback [18]. It uses controlled phase gates on the ancilla qubit to change the local
phases of the states of the controlled qubits, while the ancilla remains unchanged.
If a controlled gate is applied on a state, which is one of its eigenvectors, then this
state is unchanged, since unitary matrices have eigenvalues with absolute value
equal to 1. For example, a Ry gate, that is a rotation across the y-axis, does not
affect a state lying on the same axis. Instead, for the controlled qubits, if a gate
applies a global phase, this is not visible when measuring the qubit state, but if
the control one is in a superposition then the phase becomes local, therefore its
state can be changed. For instance, a phase gate P (θ) applies a phase shift only
if the qubit is in the state |1⟩, but this is a global phase. Though, if a controlled
phase gate is applied to the same qubit and the control qubit is in a superposition
of states [11, Sec. 2.3], the phase shift is applied only if both qubits are in the state
|1⟩, hence now a local phase has been applied and the state of the control qubit has
changed. In this 2-qubit system example, the effect of this gate on the quantum
state of the two qubits, in which the control is applied to the least significant one,
is shown by the following equation:

CP

C
|1⟩ ⊗ 1√

2
(|0⟩ + |1⟩)

D
= CP

C
1√
2

(|10⟩ + |11⟩)
D

=

1√
2

1
|10⟩ + eiθ |11⟩

2
=

C
|1⟩ ⊗ 1√

2
(|0⟩ + eiθ |1⟩)

D
.

(3.2)

In order to obtain the same state as before, Ry(θ) controlled gates, performing a
rotation of the same angle as previous gates, can be applied on the ancilla qubit,
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3.2 – Grover search of negative samples

taking as control the qubits whose value has to be assigned. As in the previous
case, the inverse QFT is needed at the end to transform values from the Fourier
basis to the computational basis. An example is reported in Figure 3.5 and the
resulting measured states simulating the circuit are reported in Figure 3.6.

Keys

Values

Ancilla

Figure 3.5: Quantum dictionary that encodes at the key |11⟩ the value |11⟩ using
Ry(θ) gates
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Figure 3.6: Simulation of quantum dictionary with Ry(θ) gates

3.2 Grover search of negative samples
In Section 1.4 it has been shown that Grover’s search iterates the phase oracle and
diffuser operators to maximize the amplitude of the state of interest, but the same
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3 – Grover Adaptive Search

algorithm can be applied also to amplify the amplitudes of multiple states. The
optimal number of quantum iterations (or rotations) r is given by the following
equation:

r ≈ π

4

ó
2n
M
, (3.3)

where M is the number of states of interest. This number of rotations ensures to
measure one of the M states with the largest probability. However, M is usually
unknown so r changes according to the cost function profile, thus GAS is employed
to attain a quite accurate number of rotations. This can be achieved with a ran-
domized approach as in the basic version of GAS or by selecting a certain policy
as proposed in [20].

The two key elements of Grover’s search algorithm, the state preparation and
the oracle, can be designed so that all states for which the value of the function
is lower than a given threshold y (f(x) < y) are flagged. In this way, a solution
of f with a value lower than y is found and it can be used as a new threshold for
the next iteration, thus finding a value closer to the global minimum until this is
actually reached. Though, to have an oracle as simple as possible and equal for
every iteration the threshold is always set to 0 and when a solution of f lower than
0 is found the function is shifted by that value [18]. In this way, the oracle has just
to check if the value is negative and it can be done just by observing the value of the
most significative qubit since numbers are represented in two’s complement. The
quantum circuit implementing the Grover Adaptive Search procedure is reported
in Figure 3.7.

0

0

0

0

DiffuserOracle

Repeat r times

Figure 3.7: Grover Adaptive Search circuit. In this example the Diffuser performs
the operation described in Section 1.4, but with a global phase −1. The result is
unchanged since global phases do not affect measurements.

The state preparation, as opposed to the example shown in Section 1.4, is not
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3.3 – GAS degrees of freedom

just made of Hadamard gates to create superposition, but it is made of the operators
needed to construct a quantum dictionary as expressed in Section 3.1. Once the
state preparation creates a superposition between inputs and function values shifted
by the threshold as in Equation (3.1), the oracle performs the following operation:

Uf |x⟩ |f(x) − y⟩ = sign(f(x) − y) |x⟩ |f(x) − y⟩ . (3.4)

This process (Figure 3.2) is repeated until a given number of iterations, a given
elapsed time, a given value of y is reached or other termination conditions. In
order to test the Grover Adaptive Search to solve optimization problems the Qiskit
qasm simulator through the Qiskit library [19] has been employed.

3.3 GAS degrees of freedom
The GAS algorithm has some degrees of freedom, such as Grover rotations and
the stop condition of the algorithm, that can be selected according to predefined
policies. The right number of Grover rotations r, as observed in Section 1.4, ensures
that the final state is as close as possible to the equal superposition of the target
states. Initially, every rotation brings the state closer to its ideal destination of an
angle θ, but θ depends on the number of target states, therefore, not knowing it a
priori, can result in a too-small or an excessive rotation.

The ideal stop condition is when the optimal value has been sampled by Grover’s
search and there are no more negative values in the cost function. In this case, there
is a uniform probability to sample any configuration, but sampling non-negative val-
ues can be a misleading stop condition because it can also occur when an improper
number of quantum rotations has been selected. Hence, it is possible to count the
number of consecutive non-negative samples and define a threshold t that stops
the algorithm when it is overcome [20]. For these reasons, r has to be chosen at
each iteration, since the number of labeled states changes each time the function is
shifted, and t has to be determined to find a tradeoff between fast execution and
a good probability of finding the global minimum. In the Qiskit implementation
of the GAS solver, r is obtained randomly and increased anytime a positive value
is measured, whereas the stop condition must be defined by the user. The study
in [20] presents dynamic policies, i.e. that vary according to the results of each
iteration, for the estimation of these two degrees of freedom.

All quantum backends have a severely limited number of qubits, which makes it
very difficult to use the GAS algorithm to solve QUBO problems with a reasonably
high number of variables. For exploiting the algorithm, the number of qubits em-
ployed for the variables and the function’s values with the quantum dictionary must
be lower or equal to the number of qubits available in a given backend. Further-
more, the number of needed qubits for function values has to be known in advance
to correctly solve the problem because a lower number of qubits may lead to a
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3 – Grover Adaptive Search

wrong result, since values will not be encoded properly, whereas a higher number
of qubits will lead to a waste of resources. Therefore, preprocessing is needed to
estimate an upper and a lower bound of the objective function in order to know the
necessary amount of qubits. In addition, the GAS algorithm has some degrees of
freedom, for which a preprocessing step can also be used to choose the best policy
according to the type of problems or some parameters of the QUBO model. In this
way, it is possible to use a number of Grover rotations which allows for achieving a
better probability of finding a negative solution and a stop condition that permits
finding the optimal solution in the shortest possible time.
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Preprocessing toolchain
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Chapter 4

General structure

The preprocessing toolchain proposed in this thesis aims to perform automati-
cally all the steps needed to solve a combinatorial optimization problem on a solver
that can be a quantum one such as quantum annealer, Grover Adaptive Search,
Quantum Approximate Optimization Algorithm (QAOA) or Variational Quantum
Eigensolver (VQE), or a classical one such as simulated annealing. A first step is
required for translating an abstract description of the problem to solve in a cost
function written in a solver-compliant formalism (QUBO in this case), eventually
taking into account variable constraints. Afterwards, the other steps are not funda-
mental for addressing an optimization problem, but can improve the exploitability
of any solver and, in particular, of quantum ones, which may not have a sufficient
number of qubits. Indeed, they aim to reduce the number of involved variables, es-
timate the range of values assumed by the cost function and subdivide the problem
into smaller ones. In this thesis, the target solver considered is the GAS algorithm
and, consequently, the main effort is in reducing the number of qubits required. In
particular, in order to apply the successive techniques, it is necessary to transform
the QUBO problem into an equivalent graph representation. Exploiting the
graph form, several algorithms (fix persistencies block) are then employed in
order to reduce the number of variables, finding assignments for those variables
that will be surely present in the final solution. Therefore, these variables can be
removed from the graph since their value is known and the graph can be simplified.
Once as many variables as possible have been removed a lower bound for the QUBO
function is found once again exploiting its graph representation (Probing block).
Thanks to the lower bound, it is possible to estimate the number of qubits needed
to encode the function in a quantum dictionary.
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Figure 4.1: Toolchain structure

Successively decomposition techniques (decomposition block) acting on the
graph allow splitting the graph into smaller ones so that the subgraphs will have
fewer variables and it will be possible to find the minimum of the functions asso-
ciated with each subgraph and then combine them to obtain the solution of the
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initial QUBO problem. Furthermore, many decomposition routines have been stud-
ied for specific classes of problems, thus such routines (specific decomposition
block) can be applied to the problem, if it belongs to one of the categories that
the toolchain supports. The toolchain includes algorithms for the decomposition of
graphs for maximum clique and minimum vertex cover, but it can be expanded in
the future. In the end, only if all the previous methods prove to be not sufficient to
reduce the number of qubits needed below the number of qubits available, another
decomposition method (Shannon decomposition block) can be used because,
although not efficient, it allows removing one variable at each iteration for any
QUBO function. This last method is thought to be used just as a final resource
to remove very few variables. Before using the final solver algorithms such as the
Grover adaptive search, a normalization step could be necessary to scale down
the QUBO coefficients in order to have the smallest coefficient equal to 1 and all
the other ones scaled accordingly, still keeping them as integers. Finally, when all
the preprocessing techniques have been performed, the QUBO functions obtained
can be split into functions characterized by a strongly connected graph representa-
tion and a not strongly connected graph representation. These two groups can be
solved independently by any QUBO solver, but for the latter group the minimum
value for each function is known. The whole structure of the toolchain is reported
in Figure 4.1.

The toolchain is written in C++ by using the object-oriented programming
paradigm. The functions must be called by a Python program since all the interfaces
for quantum solvers or quantum solvers simulators are written in this language.
Hence the Cython language is employed to act as a bridge between C++ and
Python. Cython allows writing C or C++ extensions for Python, allows static
type declarations in a Python code, translates the source code into C or C++ and
compiles it as a Python extension module, achieving a great speed up with respect
to pure Python [21]. In this way, the programmer can use the high-level Python
interface, with the possibility to write wrappers, i.e., Python functions to interface
the code with C or C++ external modules, and execute code within the standard
CPython environment but at the speed of compiled C or C++ language. Cython is
based on Pyrex which is a language for writing Python extension modules hiding
the Python/C API to the user, so the user can mix Python and C data structures
without knowing the Python/C API [22]. In order to wrap C++ functions in a
Pyrex file (or in a Python file), the header file in which the function is declared has
to be included and the declaration of the function to be used has to be translated
into the Cython syntax. At this point, the C++ function can be called within a
wrapper function that converts parameters from Python data structures to C++
ones and converts the returned objects from C++ data structures to Python ones.
Afterwards, a setup.py script is needed to make Cython compile a C++ source.
In this file, an extension object is created to which some parameters have to be
specified: the extension name, all the source files, the Pyrex file and the language
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of the source files, in this case, C++. Executing this script, Cython generates a
C++ file, which is the optimized translation of the wrapper, and a shared object
file that is the library made by the wrapper and by the C++ source files which can
be imported at runtime by Python files, just as a usual Python module.

.PYX
Setup.py

Source code

Wrapper
generate

Wrapper.cpp

.SO
Shared object

Python file

Import Toolchain

Figure 4.2: File organization for the generation of the Python extension module
with Cython
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Chapter 5

QUBO network
representation

Any QUBO objective function has an immediate equivalent graph representation
that can be obtained considering a node for each variable with a weight equal to
the coefficient of its linear term and considering an edge for each quadratic relation
connecting the two variables interacting, having as weight the value of the quadratic
coefficient.

However, this graph form does not allow the application of preprocessing al-
gorithms, thus, in the following sections, another graph representation valid for
any QUBO model, which can be exploited, since using this particular symmetrical
structure many algorithms, to achieve the presented preprocessing goals, — such as
variable reduction, estimation of the lower bound of the optimum value and function
decomposition — will be presented. Section 5.1 shows an alternative mathematical
form of writing the cost function, Section 5.2 discloses how to transform it in the
equivalent graph representation. Successively, Sections 5.3 and 5.4 explore all the
graph transformations needed to apply the toolchain methods.

5.1 Posiform
For each binary variable xi within the QUBO model, its complement can be
defined as xi = 1 − xi and all the variables and their complemented counterparts
are called literals.

Any QUBO function, or in general any pseudo-boolean function, can be repre-
sented as a posiform. A posiform [23] ϕ is a multilinear polynomial expression,
defined on the set of all literals, that has only positive coefficients, except, eventu-
ally, the constant term.

ϕ(x) =
Ø
T⊆L

cT
Ù
u∈T

u, (5.1)
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5 – QUBO network representation

where L is the set of the literals and cT ≥ 0, if T /= ∅. The degree of the posiform
is the size of the largest subset of literals for which cT ≥ 0.

Every quadratic pseudo-boolean function can be transformed in a quadratic
posiform with linear complexity depending on its size, that is the number of its
nonzero terms. Starting from the function of Equation 2.1, this transformation can
be performed by substituting a variable xi with 1 −xi for any term with a negative
coefficient. Hence, for every quadratic term having qij < 0:

qijxixj = qijxi(1 − xj) = qijxi + (−qij)xixj. (5.2)

Therefore, it is obtained the equation:

f(x) = q0 +
nØ
i=1

cixi +
Ø

1≤i<j≤n
qij >0

qijxixj +
Ø

1≤i<j≤n
qij <0

(−qij)xixj, (5.3)

where:
ci = qi +

Ø
i<j≤n
qij <0

qij. (5.4)

Now for every linear term with ci < 0, the substitution xi = 1 − xi is applied, so,
in the end, it is obtained:

f(x) = c0 +
nØ

i=1
ci>0

cixi +
nØ

i=1
ci<0

(−ci)xi +
Ø

1≤i<j≤n
qij >0

qijxixj +
Ø

1≤i<j≤n
qij <0

(−qij)xixj, (5.5)

where
c0 = q0 +

Ø
i=1

ci<0

ci. (5.6)

Writing the result in a more compact form, the posiform is represented by the
following equation:

ϕ(x) = c0 +
Ø
u∈L

cuu+
Ø
u,v∈L

cuvuv, (5.7)

in which cu ≥ 0 and cuv ≥ 0 for any u, v ∈ L. From a quadratic posiform is
also possible to go back to a quadratic pseudo-boolean function using the inverse
procedure.

5.2 Implication network
An implication network is an equivalent representation of a quadratic posiform
in the form of a directed weighted graph. In order to represent the function as an
implication network, first of all, the posiform must be transformed into a purely
quadratic one, thus all linear terms in the posiform are multiplied by a fictitious
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5.2 – Implication network

variable x0 with a constant assignment x0 = 1. Therefore, all terms can be con-
sidered quadratic. Then, moving the constant term to the left-hand side of the
equation, a homogeneous quadratic expression is attained:

ϕ(x) − c0 =
Ø

u,v∈N,u/=v
cuvuv, (5.8)

where N is the set of literals including x0 and x0, which coincides with the set of
nodes of the implication network. The set of edges is constituted by two edges for
any couple of literals (u, v) that appear in a term in the posiform, one edge between
the nodes u and v and the other edge between v and u, both having as weight γ
half of the coefficient of that term’s value.

γuv = γvu = 1
2cuv. (5.9)

There is a one-to-one correspondence between implication networks and quadratic
posiforms, thus given an arbitrary implication network, it is always possible to as-
sociate it with a quadratic posiform. The implication network is part of a specific
category of graphs called networks [24, 25], which are directed graphs with non-
negative weights in which a source node s, with only outgoing arcs, and a sink t,
with only incoming arcs, are distinguished. In such networks, a feasible flow can
be defined as a mapping φ : N ×N → R that satisfies the following constraints:

• capacity constraint: an arc’s flow can not exceed the weight (or capacity)
of that arc:

0 ≤ φ(u, v) ≤ γuv; (5.10)

• conservation condition: for every u ∈ N/{s, t} the net flow across the node
u is 0: Ø

e+=u
φ(e) =

Ø
e−=u

φ(e), (5.11)

where e+ indicates the end-point node of the arc e and e− indicates the
starting-point node of the arc e.

Networks are naturally suitable to model transportation infrastructures (Figure 5.1).
The source can be seen as a production center and the sink can be seen as the des-
tination. The weights of the edges represent the maximum rate at which goods can
be transported along a certain track. In this analogy, the flow stands for the actual
rate at which goods are transported on each edge, so the flow can never overcome
the maximum rate of each edge (capacity constraint) and the rate at which the
products enter a node must be the same at which these products leave the node
(conservation condition).
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Figure 5.1: Example of network modeling a transportation infrastructure

Given a network G(N,E), where N is the set of nodes and E is the set of edges,
a residual network is a network with node set N and edge set Eφ with residual
weight γφ(e) = γ(e) − φ(e) defined as the difference between the edge’s weight
and its flow. Consider that for any edge (u, v) the flow between nodes v and u is
provided by φ(v, u) = −φ(u, v). The flow value v(φ) is the sum of the flow of
each edge leaving the source or, analogously, entering the sink:

v(φ) =
Ø

(s,v)∈E
φ(s, v) (5.12)

The maximum flow is the particular flow for which there are no augmenting paths
in the network. An augmenting path is a path joining source and sink in the
residual network and for each edge in the path γ(e) > 0. The maximum flow
value is the value of the maximum flow and it can be indicated with v(G, γ). The
maximum flow corresponds to the maximum rate of goods transported from the
production center to the destination along any possible path.

In this thesis, the edges in the residual network going towards the source or
coming from the sink will be never reported because they have no role in all the
algorithms, that make use of this graph representation, presented in the next chap-
ters.

Example. Construct an implication network from a QUBO function.

f(x) = 3 + 2x1 + 3x2 − x3 + x4 + x1x2 − 4x2x3 + x3x4 − 2x4x5.

First of all, the function has to be converted in a posiform, thus for every quadratic
term with a negative coefficient the transformation 5.2 is applied.

ϕ(x) = 3 + 2x1 + 3x2 − x3 + x4 + x1x2 − 4x2(1 − x3) + x3x4 − 2x4(1 − x5)
= 3 + 2x1 − x2 − x3 − x4 + x1x2 + 4x2x3 + x3x4 + 2x4x5.
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Now the same transformation is applied to linear terms:
ϕ(x) = 3 + 2x1 − (1 − x2) − (1 − x3) − (1 − x4) + x1x2 + 4x2x3 + x3x4 + 2x4x5

= 2x1 + x2 + x3 + x4 + x1x2 + 4x2x3 + x3x4 + 2x4x5.

Multiplying all the linear terms for the fictitious variable x0, with the constant
assignment x0 = 1, the posiform becomes a homogeneous quadratic polynomial

ϕ(x) = 2x0x1 + x0x2 + x0x3 + x0x4 + x1x2 + 4x2x3 + x3x4 + 2x4x5.

The implication network can be constructed by producing two edges (u, v), (v, u)
for each term uv in the posiform. The result is shown in Figure 5.2.

0.5
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2 2
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0.5

1 11 1

Figure 5.2: Implication network associated with the cost function f(x)

Note that the implication network has a symmetrical structure by construction.
△

Calling Ψ the quadratic posiform derived from the residual network GΨ(N,Eφ),
with residual capacities γφ, obtained from the feasible flow φ in the implication
network Gϕ, the following equations, presented in [23], hold.

ϕ = c0 + v(φ) + Ψ. (5.13)
c0 + v(G, γ) ≤ minϕ(x) (5.14)
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The inequality is called roof dual bound. This is a lower bound for the minimum
of the QUBO function that can be used to estimate the qubits needed to encode
the values of the function in a quantum dictionary.

5.3 Maximum flow
The best-known way to find the maximum flow in a network is the Ford-Fulkerson
algorithm, which also shows the connection between the value of the maximum flow
and the minimum weight cut that disconnects the source and the sink. This method
consists of finding the augmenting paths in the network. However, the Push-Relabel
method, introduced by Goldberg and Tarjan [26], based on the concept of preflow,
ensures finding the maximum flow with lower computational complexity. The pre-
flow is a function on vertex pairs that satisfies the same properties of a flow except
for the conservation constraint which is relaxed in the nonnegativity constraint. The
conservation constraint for a flow, moving the right-hand side of Equation (5.11)
to the left, is: Ø

u∈N/{s,t}
u=e+

φ(u, v) −
Ø

u∈N/{s,t}
u=e−

φ(v, u) = 0

=⇒
Ø

u∈N/{s,t}
φ(u, v) = 0,

(5.15)

whereas the nonnegativity constraint for a preflow is:Ø
u∈N/{s}

φ(u, v) ≥ 0. (5.16)

Therefore, the total flow into any vertex except s is greater than or equal to the
total flow out. The flow excess for a vertex v is the net flow into v:

e(v) =
Ø
u∈N

φ(u, v). (5.17)

The algorithm examines vertices different from s and t with positive flow excess.
It pushes the excess to vertices closer to the sink t and if the sink is not reachable
from that vertex the excess is pushed to vertices closer to the source. Once all the
vertices have zero excess the preflow becomes the maximum flow. If a vertex v has
positive excess and an edge (v, w) has positive residual capacity γφ, an amount of
flow excess equal to min(e(v), γφ(v, w)) can be moved from v to w. The algorithm
begins with the preflow equal to the capacity of the edge for the edges leaving the
source and equal to 0 for all the other edges. In order to determine whether or
not a vertex is closer to the sink or the source, the distance of a vertex from s
and t is estimated by the labeling function d : N → N, which is defined such
that d(s) = n, where n is the number of nodes, d(t) = 0 and d(v) ≤ d(w) + 1
for every residual edge (v, w). The initial label for each node except source and
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sink can be assigned to 0. However, a more efficient one can be computed with
a breadth-first search (BFS) from the source and then from the sink. It assigns
as a label to each node either the distance from the sink or the number of nodes
if a node is reachable only from the source. A push (figure 5.3a) operation from
v to w adds an amount of flow given by min(e(v), γφ(v, w)) to φ(v, w) and e(w)
and subtracts the same amount from φ(w, v) and e(v). A relabel (figure 5.3b)
operation on v sets the label of v as d(v) = d(w) + 1 taking the minimum d(w)
considering all the vertices w connected to v, but if v has no edge with positive
residual capacity the label is set as d(v) = n and the vertex becomes inactive. The
algorithm terminates when there are no more active vertices, where a vertex v is
active if v ∈ V/{s, t}, d(v) < n, e(v) > 0.

Find maximum of flow excess that
can be moved from v to w

Start

Add excess to the flow of the edge
Subtract it from the opposite flow 

Add the excess to w
Subtract the excess from v

End

(a) push operation on edge (v, w)

Start

Find the node closest to
sink reached by an edge

d(starting node) =
d(node found) + 1

End

Is there an
outgoing edge with positive

capacity?

d(starting node) = n

(b) relabel operation on vertex v

Figure 5.3: Flowcharts of Figure 5.3a push and (b) relabel operations

The same routine is repeated for each vertex which is selected according to an
order established by a certain policy. It can perform three operations for a selected
vertex v:

1. a push is performed on the current edge (v, w) if the residual capacity of the
edge is larger than 0 and if d(v) = d(w) + 1,

2. if 1. is not applicable, if the current edge is not the last one, it changes the
current edge to the next edge going out from v,

3. if 1. and 2. are not applicable, it makes the first edge the current one and it
applies a relabel operation

The current edge of a vertex v is defined as the current candidate for a push
operation and it is, initially, the first edge outgoing from v. The discharge (Fig-
ure 5.4) operation repeats this routine until the excess on that vertex is null or the
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label of that vertex is increased and at the same time it keeps track of the order of
the vertices to be selected.

Start

Current edge = First edge (v, w)
Set relabel as not done

Push(v, w)

capacity(v, w) > 0
and d(v) = d(w) + 1 and

d(w) < n

w is active?

Put w in vertex ordering
structure

Yes

Yes

current edge =
last edge?

current edge = next edgeRelabel(v)
Set relabel as done

No

Yes No

No

End

excess(v) = 0 or
relabel done?

v is active?

Put v in vertex ordering
structure

Yes

No

Yes

No

Figure 5.4: Flowchart of discharge operation on vertex v

To select the order of the nodes to be processed, a FIFO queue can be employed.
At every iteration, a vertex is removed from the queue and the discharge operation
is repeated until the queue is empty. If a vertex becomes active during these steps, it
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is added to the queue. By using a FIFO queue, the algorithm has O(n3) complexity,
where n is the number of nodes in the network. The highest-level (HL) selection
strategy, instead, has O(n2√m) complexity, where m is the number of edges [27].
Therefore, this is the procedure adopted in the toolchain. This strategy selects the
node with positive excess furthest from the sink, so the one with the highest label.
In this way, every push operation will be performed on a node with maximal flow
excess, which means that the subtree rooted at this node has no other flow excesses.
Thanks to it, the total number of pushes is decreased [28]. The implementation of
this strategy uses an array in which for each index is stored a list of all the active
nodes that have a label equal to that index and an index b that is the highest label
among the active nodes. At each iteration, a node is taken from the list at the
index b of the array, it is processed using the discharge operation and b is updated.

This algorithm allows finding the value of the maximum flow, but in order to
obtain the residual network a second step, that transforms the preflow in a flow, is
needed. To achieve this result, the nodes with positive excess have to be processed
in reverse topological order. A topological order is a linear succession of nodes
such that for each edge (u, v) in the graph, the node u comes before the node v
in the succession [29]. A reverse topological sort algorithm can be realized using a
postorder depth-first search (DFS) on the transposed graph, which is a graph
that has the same edge set but every edge has opposite direction. In order to obtain
a postorder traversal, nodes are added to the list keeping track of the order when
the DFS last visits them. A topological sort is possible only for directed acyclic
graphs, thus if the DFS finds a cycle, the flow is decreased until one of the edges
in the cycle has 0 flow and then the search is restarted. A cycle of flow has to be
removed since it is not contributing to transport flow from the source to the sink.
Following this reverse order, when a vertex with positive excess is being processed
it is ensured that all the vertices that are reachable from itself have already been
visited. Therefore, its excess can no longer increase. This means that for each node,
all the possible flow is pushed back to them from nodes closer to the sink before
they are visited. In this way, they can be visited just once ensuring that the flow
is always going back towards the source and the visited nodes are always left with
0 excess and it will never increase again. Repeating this process for all the nodes
following the reverse ordering until the source, all the excesses of the visited nodes
become null, hence the preflow becomes a flow.

Example. Calculate the maximum flow on a network.
The maximum flow on the implication network of the example in Section 5.2 must
be calculated to obtain the residual network. As a starting point, the initial labeling
function is calculated and the result is reported in Figure 5.5. The nodes are visited
with a BFS starting from the sink and the label is set as the distance, in terms of
edges traversed, from the sink. Nodes that do not have a path leading to the sink
are labeled with the number of variables. The first step of the algorithm moves the
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5 – QUBO network representation

flow from nodes with positive excess to nodes closer to the sink alternating push
and relabel operations until the maximum flow value is found.
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Figure 5.5: Initial labeling function
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Figure 5.6: Example of the push-relabel method first step

Figure 5.6 shows what the algorithm does in a portion of the graph composed
of the nodes x2, x3 and x5. The preflow value of the edges leaving the source is
initialized at the capacity of these edges. x3 is closer to the sink than x2, thus a
flow equal to the excess of x2 is pushed to x3.
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Figure 5.7: First step of push-relabel method
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Figure 5.8: Residual network
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Afterward, the same condition occurs with x3 and x5, but this time the capacity
of the edge is lower than the excess, hence a flow equal to the capacity is pushed
to x5. The final result is shown in Figure 5.7.

The maximum flow value can be calculated as the sum of the flow going into the
sink, but it can be seen that the flow is still a preflow since some nodes still have an
excess greater than 0. For this reason, in the second step, all the excess remaining
in the nodes is pushed back to the source. Therefore nodes x1, x2, x3 are analyzed
in reverse topological order obtained from the starting network, that is (x1, x3, x2)
and finally the residual network is achieved (Figure 5.8). △

5.4 Residual network
Calculating the maximum flow on the implication network, the residual network can
be constructed, but another step may be needed before applying the preprocessing
techniques. There is a one-to-one correspondence between the posiform and its
associated implication network and in order to keep this correspondence between
the posiform and its associated residual network the structure of the latter must
be symmetric. If an edge (u, v) has positive residual capacity, the edge (v, u) must
exist and must have exactly the same capacity as the first edge. The algorithm
disclosed in Section 5.3 correctly calculates the value of the maximum flow and a
residual network, but it does not ensure that the produced network is symmetric,
thus it has to be made symmetrical. For each edge (u, v) in the residual network,
the final weight is given by the average between the weight of the edge and its
symmetrical counterpart:

γφ(u, v) = γφ(v, u) = 1
2 (γφ(u, v) + γφ(v, u)) . (5.18)

Example. Symmetrization of a residual network.
Given an objective function:

f(x) = 4 + 4x2 − 4x1x2 + 4x1x3 − 4x2x3 ,

and computing the associated posiform, then implication network and finally the
maximum flow using the push-relabel method (Figure 5.9), the value of the max-
imum flow is correct. It can be seen that there are no augmenting paths in the
network. However, the obtained graph does not respect the symmetry imposed
by the one-to-one correspondence with the posiform. Edge (x1, x2) has not the
same weight as edge (x2, x1). Therefore, the coefficients of the posiform can not
be computed with cij = 2γφ(i,j) = 2γφ(j,i) as in Equation (5.9) because the equality
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5.4 – Residual network

is not true. Therefore, the residual network can be symmetrized with the process
described above, and observing the result in Figure 5.10, it is possible to check that
the value of the maximum flow is still 2, it has not changed, and it is still maximum
because there are no augmenting paths. The maximum flow function is not unique,
thus another one has been found that makes the residual network symmetric and
it will be used to apply all the preprocessing techniques.

2

2

2

2

2 2

Figure 5.9: Residual network obtained with the push-relabel method
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11

11
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Figure 5.10: Residual network after symmetrization operation

△
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Chapter 6

Persistencies

In this chapter, methods to reduce the size of a QUBO cost function are explored.
Sections 6.1 and 6.2 detect nodes that can be removed in the residual network by
exploiting two different graph algorithms, whereas Section 6.3 applies temporary
changes to the network to pinpoint additional removable nodes and also obtains a
lower bound for the function minimum.

Let xi be a binary variable in a pseudo-boolean objective function and let a ∈ B
be a binary value, xi is a strong (or weak) persistency [23], if xi = a for all minima
(or at least one minimum) of the objective function. Finding a persistency means
individuating the value a for a certain variable, hence it can be substituted in the
function reducing the number of variables. The algorithms presented in this chapter
aim to find as many persistencies as possible from the QUBO model, reducing the
number of qubits needed to encode the function in a quantum solver.

6.1 Source-reachable persistencies
Let S ⊆ N be the set of nodes v ∈ N , in the residual network constructed with
the maximum flow φ, for which it exists a directed path from the source x0 to the
node v that has every arc with positive capacity. Moreover, let T = {v | v ∈ S}.
It is impossible to have {u, v} ∈ S, if there is a quadratic term auvuv with auv > 0.
Otherwise, it would be present in the residual network a positive capacity arc from
u to v, where v ∈ T , so it is connected to x0, thus violating the maximality of
the flow. Recall that a flow is maximum if there are no augmenting paths, i.e.,
paths connecting the source to the sink. Therefore, all the literals in S are strong
persistencies since the assignment that sets all these literals to 1 is present in every
solution because it makes vanish all the terms including literals belonging to S. By
construction of the implication network, a linear term auu in the posiform produces
an edge (x0, u) in the network. Hence, if the literals u ∈ S, directly connected with
x0, are assigned to 1 the linear terms will vanish. Furthermore, the nodes v ∈ S
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that are connected to u form a quadratic term, but, as previously stated, v /∈ S, so
v does not appear in a linear term. Consequently, if v is assigned to 1, the quadratic
terms will vanish too. To sum up, if u ∈ S and there is an arc (u, v), then v /∈ S
otherwise there would be an augmenting path. This makes it possible to find the
optimal values of all the variables present in S. To identify these persistencies,
the toolchain uses a breadth-first search (BFS) starting from the source that
marks all the visited nodes. For this reason, they are called source-reachable. This
algorithm explores all the paths starting from the source, thus detecting all the
literals in S. Since all the terms containing the persistencies vanish, the residual
network is updated eliminating all the nodes corresponding with them. Finally,
these variables and their assignments are stored and they will be joined to the rest
of the solution to achieve the final result.

Example. Detection of source-reachable persistencies.
Consider the cost function of the examples in Section 5.2 and 5.3:

f(x) = 3 + 2x1 + 3x2 − x3 + x4 + x1x2 − 4x2x3 + x3x4 − 2x4x5.

0.5
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0.5

0.5

1 1 1

0.5 0.50.5 0.5
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0.5

1

Figure 6.1: Residual network with source-reachable persistencies highlighted in blue
and paths from the source colored in red
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In Section 5.3, the residual network has been derived (Figure 6.1), so in this
graph, a BFS is executed starting from the source x0. All the nodes visited, i.e.,
that can be reached from the source, are persistencies and can be assigned to 1.
They are highlighted in Figure 6.1.

In this case, the nodes x2 and x3 and the complemented node x1 have been
visited, therefore the variables x2 and x3 are assigned to 1, whereas x1 is assigned
to 0. △

6.2 Strongly connected persistencies
The strongly connected components Ki (also called strong components) of
a graph are the subgraphs composed of a set of nodes for which each node can be
reached by any other one (example in Figure 6.2). In a residual network, it holds
that either:

• {v | v ∈ Ki} ∈ Ki;

• {v | v ∈ Ki} ∈ Ki′ ;

where Ki′ is a set that contains the complements of the literals present in Ki and
is a strong component as well because of the symmetry property of such networks.

0

5

4 3

2

1

Figure 6.2: Example of a strongly connected directed graph

Strong components Ki, in which for every literal v also v is present, will be
called complete strongly connected components (CSCCs) and they will be
treated in Section 7.2. For the strong components Ki that imply the existence
of twin strong components Ki′ , the variables contained are all weak persistencies.
Therefore, the assignment that sets all the nodes v ∈ Ki to 1 and the assignment
that sets all the nodes v ∈ Ki to 0 are present in at least two different optimal
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solutions of the cost function. Indeed, if the literals in the strong components have
all the same value, the terms including them will vanish, thus not increasing the
posiform value. In an implication network, an edge (u, v) symbolizes a term uv in
the posiform, and to make it vanish if u is equal to 1, v must be equal to 1, while
if v = 0, u must be equal to 0. Hence, literals in a strong component must all have
the same value.

If there is a directed path in the residual graph from the source x0 to Ki, or if
there is an edge betweenKi andKi′ , the variables contained are strong persistencies.
In the former case, the persistencies are source-reachable, therefore it is already
handled by the BFS algorithm, as described in Section 6.1. In the latter case, if the
edge starts in Ki and goes to Ki′ , the literals in Ki′ must equal 1 and the literals in
Ki must equal 0 since they are complementary. In an implication network, a node
equal to 1 can only lead to nodes equal to 1. Hence literals in Ki can not be equal to
1 otherwise literals in Ki′ should be equal to 1 contradicting the complementarity
of the components. Vice versa, if the edge starts in Ki′ and goes to Ki, the literals
in Ki must equal 1 and the literals in Ki′ must equal 0. Since these persistencies
are found in a strong component, they are called strongly connected.

In order to determine strongly connected persistencies, the first step is to iden-
tify the strongly connected components in the residual network. This is achieved
through Tarjan’s algorithm [30] that is treated in Section 6.2.1. Once these
components are identified, strong persistencies assignments can be stored to add
them to the final solution and the corresponding variables can be eliminated by
the network since their value is known in all the optimal solutions. On the other
hand, before removing weak persistencies, a routine is needed to avoid the choice
of assignments belonging to different optimal solutions, thus giving origin to a non-
optimal one. In an implication network, if the value of a variable depends on the
value of another one, there is a path that connects the latter to the former, whereas
if a variable has no connections, its value does not affect the assignments of the
other variables. Therefore, if a component of weak persistencies is not connected
to any other weak persistencies, its literals can be indistinctly assigned to 0 or
1. The two different assignments are present in two different, but both optimal,
solutions. Instead, if this subgraph is reached by a path starting from other weak
persistencies, the variables can not be assigned to any value because they depend
on the other ones. This scenario can be detected by launching a reverse BFS from
one of the literals in the component that finds whether there are other nodes, as-
sociated with persistencies, that can reach the starting literal. Hence, in this case,
the variables are temporarily not assigned because when the subgraph of weak per-
sistencies which can reach them is processed, it is possible to run a BFS starting
from a node of this component, assigning to 1 all the nodes reached by the graph
traversal algorithm. In this way, also all the other components of persistencies that
have a dependency on the group of literals under examination can be assigned.
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6.2 – Strongly connected persistencies

Example. Detection of weak strongly connected persistencies.
Take the same cost function of the previous example and the already obtained
residual network to which the source-reachable persistencies have been removed.
At this point, the toolchain launches Tarjan’s algorithm to identify the strongly
connected components. However, it can be clearly seen by inspection that the two
sets of nodes {x4, x5} and {x4, x5} form two strong components (Figure 6.3). Since
there is no connection with the source and among them, the variables x4 and x5 are
weak persistencies. Therefore, there is one solution where x4 = x5 = 0 and another
one where x4 = x5 = 1. In this example, the techniques employed have been able
to solve the optimization problem, even without resorting to a final quantum or
classical solver. The two final solutions are:

x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 1;
x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 0.

0.5 0.50.5 0.5

Figure 6.3: Residual network with the two strong components highlighted

△

Example. Detection of strong strongly connected persistencies.
Now consider a new cost function:

f(x) = 4 + 4x2 − 4x1x2 + 2x1x3 − 4x2x3.

The corresponding posiform can be easily calculated, obtaining:

ϕ(x) = 4x1 + 4x1x2 + 2x1x3 + 4x2x3.

Following the rules expressed in section 5.2 the implication network in Figure 6.4
is attained.

Computing the maximum flow, the residual network in Figure 6.5 is found. In
this network, the two strongly connected components are highlighted with red and
blue colors. It can be seen that they are connected by two edges (x3, x1) and (x1, x3),
thus the variables in these components are strong persistencies. If x1 = 0, then the
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node x1 = 1, but this would imply that also x3 = 1. x1 and x3 are part of the
same strong component, hence also x1 = 1, but this violates the initial hypotesis.
Therefore, the presence of the two edges between the strong components allows
inferring that x1 = x2 = x3 = 1 is a strong persistency, so it is the only optimal
solution.

2 2
2 2

22

1 1

Figure 6.4: Implication network

1 1
11

11

11

11

Figure 6.5: Residual network highlighting the two strong components

△

6.2.1 Tarjan’s strongly connected components algorithm
An algorithm for finding strongly connected components with computational com-
plexity O(V,E) in any directed graph G(V,E) was proposed by Tarjan in [30]. The
order of the visits performed by the depth-first search (DFS) on a directed graph
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generates a tree, whose edges are the ones explored when a new node in the graph
is discovered. The node-set is given by the visited nodes. In this tree, also edges
that go from a node to one of its ancestors, i.e. nodes that have been discovered
before the current one, can be considered. These edges can be part of two cate-
gories: edges that go from descendants back to ancestors, called fronds, and edges
that connect a subtree to another subtree, called cross-links. To keep the order of
when nodes of the graph are first visited, each one is associated with the discovery
number, which starts at 1 for the node from which the search is started and is
incremented for every visited node. The strongly connected components form a
subtree in which from all the nodes it is possible to reach the root of the subtree.
Therefore, the problem of finding strong components is equivalent to finding the
roots of the subtrees in the DFS tree. If two nodes are part of a strongly connected
component, they have the highest common ancestor, that is the one that has been
first discovered, that also belongs to the component. This is because at least a
frond or a cross-link is needed to have a closed path that allows connecting the two
nodes passing through the ancestor. To keep note of the highest ancestor of every
node, the lowlink of a node v is defined as the vertex, with the lowest discovery
number, reachable from a subtree having v as the root. The lowlink number of a
node is the discovery number of its lowlink. Hence, the root of a strong component
can be identified whenever the discovery number of a node is the same as its lowlink
number since no frond or cross-link generates a path from this node to another one
with a lower discovery number.

Example. Detection of strongly connected components in a generic graph.
Consider the graph shown in Figure 6.6, where the nodes are already numbered
according to the order in which they are visited using a DFS.

0 21

3

5

4

Figure 6.6: Example graph

Therefore, the DFS produces the tree displayed in Figure 6.7, in which the fronds
are represented by dashed lines. At the top of the nodes, it is reported the lowlink
number for each of them, which is the discovery number of their highest ancestor.
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0 21 3 54

0 1 2 2 2 2

Figure 6.7: DFS tree with fronds

By inspecting the tree and the lowlink numbers it can be seen that there are
three strongly connected components in the graph, consisting of the subsets of
nodes {0}, {1} and {2, 3, 4, 5}. △

The DFS can be slightly modified with the goal of calculating the lowlink for each
node and identifying the strongly connected components. Every node is inserted in
a stack when it is first visited. Then, for any node u, the lowlink can be computed
according to two possibilities:

• if there is an edge (u, v) and v has not been already visited the lowlink number
of u is given by

lowlink(u) = min(lowlink(u), lowlink(v)); (6.1)

• if there is a frond (u, v), hence v has already been visited the lowlink number
of u is given by

lowlink(u) = min(lowlink(u), discovery(v)). (6.2)

Cross-link must not be considered since they are back edges but they do not
lead to closed paths in the graph. Therefore a back edge must have the end-
point in the stack to be considered.

As soon as a node with equal discovery and lowlink numbers, i.e. a root, is found,
all the nodes in the stack are popped until the root is obtained. All the extracted
nodes are part of a strongly connected component. The process terminates when
all the nodes have been examined.

The flowchart of the modified DFS algorithm is reported in Figure 6.8. It is
made the distinction between visiting and discovering a node. The former term is
used to indicate when all the edges of the node have already been examined, thus
all the paths starting from this node have been explored and will never be processed
again. The latter term is used to indicate when a node is encountered for the first
time during the graph traversal.
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Figure 6.8: Flowchart of Tarjan’s strongly connected components algorithm
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6.3 Probing
The Probing technique modifies the residual network with the goal of finding
new persistencies and a lower bound for the minimum of the function. It consists
in fixing at 1 or 0 the value of one of the n variables of the cost function [23], for
instance xi. However, instead of substituting the value and evaluating the function,
it generates two networks: one with an added penalty term for xi = 0 and the other
with a penalty for xi = 1 by inserting edges to the residual network. Calling M
the penalty coefficient, the following equation holds:

minϕ(x) = min(minϕ(x) +Mxi, minϕ(x) +Mxi). (6.3)

The M coefficient must be large enough to ensure that the solution violating the
constraint imposed on the variable xi is higher than an upper bound on the mini-
mum of the posiform. This is necessary to ensure that it is possible to calculate the
best maximum flow, i.e. the one for which the roof dual bound (Equation (5.14))
is equal to the actual minimum. To estimate a penalty coefficient M , a method
that computes an upper bound U on the minimum is needed. If there is the ideal
chance of calculating the best possible flow, and if

M > U − c0, (6.4)

where c0, is the constant coefficient of the posiform, then the edges exiting the source
and entering the sink are able to carry more flow than the maximum, therefore it
is possible to calculate it. Since in the toolchain Probing is directly applied on the
residual network, c0 = 0. Consequently, it is sufficient that M > U . To achieve an
upper bound, the Devour Digest Tidy-up (DDT) algorithm [31] is employed. It
is used the one-pass version [32] that allows converging to a solution in the fastest
way, assigning a value to one variable at each iteration. In this way, by modifying
the residual network adding two edges, the maximum flow can be recomputed. The
roof-dual bound sets a lower limit for the minimum of the function that depends on
the maximum flow. Therefore, if the flow increases the roof-dual bound gets closer
to the actual minimum, thus attaining a better estimation. The Probing procedure
can be repeated for all the variables, hence calculating 2n times the maximum
flow. Calling LBu the roof-dual bound related to the posiform ϕ(x) + Mu, and
LBu the one related to the posiform ϕ(x) +Mu, a new lower bound is obtained in
the following way:

LB = max
u∈L

(min(LBu, LBu)) , (6.5)

where L is the set of literals. Therefore, for a certain variable xi, if the maximum
flow increases both in the case of the penalty for xi = 0 and in the case for xi = 1,
the lower bound can be increased. In Section 6.3.2, it is shown that, by modifying
the residual network with Probing, it is also possible to identify new persistencies.
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Example. Improving lower bound with Probing.
Take for example the following cost function:

f(x) = 4 + 2x2 + 2x4 − 2x1x2 + 2x1x3 − 2x2x3 − 2x3x4 + 2x3x5 − 2x4x5 .

After computing the associated posiform, constructing the implication network and
calculating the maximum flow, the residual network in Figure 6.9 is obtained.

1

1

1

1

1

1

1

1

1 1

1 1

Figure 6.9: Example residual network

Now applying the Probing technique to the variable x3 means generating two
networks: one with an added term Mx3 and one with an added term Mx3. In
Figure 6.10, both the couples of additive edges are reported in the same residual
network to display that in both cases new paths from source to sink are formed.
Therefore, the maximum flow can be increased in both cases, leading to an en-
hancement of the lower bound. In blue, it is highlighted the path from source
to destination for the residual network associated with the posiform ϕ(x) + Mx3,
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whereas red is used for the counterpart associated with the posiform ϕ(x) +Mx3.
Penalty terms are represented by dashed lines.

M

M

M
M

Figure 6.10: Residual network with added penalty terms for x3 = 0 (dashed blue
lines) and for x3 = 1 (dashed red lines)

△

6.3.1 DDT one-pass heuristic
The Devour Digest Tidy-up (DDT) is a heuristic method able to provide an
upper bound for the optimal solution of a QUBO problem. The solution obtained
may not be the best estimation. However, a one-pass strategy reads input data just
once and one-at-a-time assignments ensure that at least one variable is assigned to
a binary value at each iteration. Therefore, this procedure finds a solution greater
or equal to the optimal one with polynomial complexity. It can be applied to the
cost function, to the posiform or to alternative representations of the posiform [32].
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Figure 6.11: Flowchart of DDT algorithm for a residual network
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In the toolchain, it has been realized a modified version that receives as input
the residual network associated with a cost function, after all the persistencies have
been fixed. In this way, it provides the right penalty to be added to the edges
according to the Probing technique in the residual network. As the name suggests,
the algorithm is divided into 3 steps:

• Devour, in which the term with the largest coefficient in absolute value is
identified and is set to 1 or 0 in order to make it vanish.

• Digest, in which logical conclusions, i.e., binary assignments for variables in
the term, are derived to make it vanish.

• Tidy-up, in which the previous conclusions are substituted into the residual
network (or posiform in the standard case).

To implement the one-at-a-time assignments policy, in the Digest step, at least one
variable is always set to a binary value. The Devour step looks for the term with
the largest coefficient. If it finds a linear one, then the variable is assigned to the
binary value that makes the term vanish. Otherwise, it looks for the quadratic
relation with the largest coefficient formed by variables that are also present, with
their complement, in a linear term. If it is found, the variable not in the linear
term is set to the binary value which makes the quadratic relation vanish. In this
way, the function value does not increment and the linear term can be eliminated
in a successive iteration. If both are present in a linear term, the one with the
lowest coefficient is chosen to make the quadratic relation vanish. In this way,
the function value is incremented by the lowest amount between the two linear
coefficients. Finally, if it is not found, the first variable of the term obtained at the
beginning is set to the binary value that makes it vanish (flowchart in Figure 6.11).

6.3.2 Probing persistencies
The Probing technique generates two networks in which the maximum flow can be
recomputed. This means that by modifying the edges with respect to the original
network, it may be possible to run again the persistency-finding algorithms and
identify new variables assignments that could not be previously found. Of course,
the optimal value of the variable chosen for Probing is not known. Therefore, it
is not known which modified network can be considered correct. For this reason,
to identify new persistencies, the information provided by both networks must be
combined: Given the posiform Ψu = Φ + Mu and defining Su and Wu as the sets
of strongly and weakly persistent literals and Lu the roof dual bound [23]:

• If Lu > U , u = 0 is a strong persistency for Φ;

• if v ∈ Sxj
∩ Sxj

, v = 1, is a strong persistency for Φ;
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• if v ∈ Wxj
∩Wxj

v = 1, is a weak persistency for Φ;

• if v ∈ Sxj
and v ∈ Sxj

then xj = v is a strong persistency for Φ;

• if v ∈ Wxj
and v ∈ Wxj

then xj = v is a weak persistency for Φ;

• for all v ∈ Sxj
and w ∈ Sxj

the quadratic relations xj ≤ v, xj ≤ w and w ≤ v
are all strong persistencies for Φ;

• for all v ∈ Wxj
and w ∈ Wxj

the quadratic relations xj ≤ v, xj ≤ w and w ≤ v
are all weak persistencies for Φ.

Only linear relations are considered for the time being, but quadratic ones can be
easily added in the future. Weak persistencies found in this way can be considered
in the same way as strong ones. In a single iteration, the weak persistencies are in
accordance with each other because they are found with the method described in
Section 6.2. At the same time, for the other iterations, if a new weak persistency
is found, it is independent of the previously detected ones. This is because, if they
were correlated, there would have been an implication in the network, that is a path
that connects the previous persistency with the new one, thus allowing detection of
it. Therefore, a new persistency is independent of the previous one or it would have
been found together with them. Consequently, the weak persistencies can all be
substituted in the network with the values found at the end of the Probing process.
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Chapter 7

Decomposition

Decomposition methods allow subdividing the optimization problem into smaller
ones with the goal of solving subproblems with smaller sizes, i.e. with a lower
number of variables, and reducing the overall execution time. Sections 7.1 and
7.2 deal with residual networks, obtaining subnetworks that can be transformed
into functions that can be solved independently. In Section 7.3, routines for the
decomposition of particular classes of problems exploiting their characteristics are
described. Finally, Section 7.4 discloses a decomposition technique applicable to
the cost function of any QUBO problem.

7.1 Trivial decomposition
The trivial decomposition method consists just of identifying whether the cost
function is composed of subfunctions independent of each other. If a function is
made up of two subfunctions:

f(x) = g(x) + h(x), (7.1)

where g and h contain disjoint sets of variables then:

min f(x) = min g(x) + min h(x). (7.2)

Remembering that after the persistencies detection, the cost function is represented
by the residual network, it is possible to identify if there are subfunctions containing
disjoint sets of variables by observing whether there are disconnected compo-
nents in this network. These components are subgraphs that are not connected
by any edge. If in the residual network, two subgraphs A and B are not connected
by any edge, the associated cost function is composed of terms with variables only
present in A and others with variables only present in B. To find disconnected
components, it is employed the disjoint-set union-based algorithm. At first, it con-
siders every node as a disjoint set, namely using the so-called disjoint-set data
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structure, and then unites them if they are part of the same subgraph. This pro-
cedure is detailed in Section 7.1.1

Example. Disconnected components in a residual network.
Consider the simple cost function

f(x) = x1x2 + x3x4.

It has no linear terms, therefore the corresponding implication network is already
a residual network and it is shown in Figure 7.1.

0.5

0.5

0.5

0.5

Figure 7.1: Example residual network

In the red and blue circles, two disconnected components are highlighted. Hence,
the network can be divided into two subnetworks that can be solved independently.
This can be clearly seen, in this example, just by looking at the function expression.
The terms x1x2 and x3x4 have no variables in common and to obtain the minimum
value both terms must vanish. For this purpose, it is sufficient that at least one
between x1 and x2 equals 0 and at least one between x3 and x4 equals 0. △

7.1.1 Disconnected components algorithm
The algorithm explored in this section allows for finding disconnected components
in undirected graphs. However, it can be used also for directed graphs, such as
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7.1 – Trivial decomposition

networks, just by considering any edge as if it did not have a direction. When
traversing a graph, if there is an edge between a and b, the node a is defined as the
child of b and the node b is defined as the parent of a. The ancestor of a node in a
connected subgraph can be defined as the node that has only children and it is the
parent of itself, namely, it has no parent. The goal is to find a common ancestor
for each node in a connected component so that all the nodes constituting each
subgraph are identified. Therefore, finding the common ancestors means solving
the problem. In the beginning, every node is initialized as the ancestor of itself,
hence each one is part of its own set. Successively, for each edge, the ancestor of an
endpoint is assigned as the ancestor of the ancestor of the other endpoint. In this
way, all the nodes, children of the ancestor of the second endpoint, can trace back
to the new, just-assigned, ancestor. Hence, when the process is terminated, from
each node is possible to arrive at the common ancestor of their component. Finally,
all the nodes with the same ancestor are joined in the same set. The flowchart of
the algorithm is displayed in Figure 7.2.

Start

Initialize all nodes as
ancestors of theirselves

End

All edges (u,v)
explored?

Find ancestor of u
Find ancestor of v

Set ancestor of v as ancestor
of ancestor of u

All nodes u
explored?

Find ancestor of u
Insert u in the set with all the

nodes with the same
ancestor

Yes

No
Yes

No

Figure 7.2: Disconnected components algorithm flowchart
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7.2 Strong components decomposition
Section 6.2 shows how Tarjan’s strongly connected components algorithm allows the
identification of these components that can be exploited to find strong and weak
persistencies, which are then removed from the residual network. The remain-
ing subgraphs are the so-called complete strongly connected components
(CSCC). Aspvall, Plass and Tarjan demonstrated in [33] that a conjunction of
boolean clauses, in which each clause is a disjunction of at most two literals, is
satisfiable if and only if in the implication graph associated with the boolean ex-
pression of these clauses there are no complete strongly connected components. A
conjunction of boolean clauses has the form uv+wz, while a term in a posiform has
the form auvuv, thus the only difference is the presence of weights, but the theorem
is applicable also for pseudo-boolean functions. Hence, in a posiform, the terms
can all vanish, thus not incrementing the value of the posiform, only if there are
no CSCCs in the corresponding residual network. An assignment of truth values
to the vertices of an implication graph makes all the terms vanish if and only if the
following two conditions hold:

• a vertex xi and its complement xi get complementary truth values;

• no edge has starting vertex assigned true and ending vertex assigned false.
This is intrinsic in the definition of implication graph because two edges (u, v) and
(v, u) are added for a term uv in the posiform. Therefore, for an edge (u, v) the
posiform has the term uv and if u is assigned to 1 and v is assigned to 0 the term
vanishes. If a vertex u is in the same strongly connected component of its negated
counterpart u, any truth assignment to the vertices of the graph violates one of the
two conditions expressed above. Since there is a path from u to u, either the two
vertices have complementary truth values or there is a path from a true vertex to a
false one. By induction, if a vertex is marked true, it leads only to true vertices and
if it is marked false it is reached only by false vertices, thus if no complete strongly
connected component is present the boolean expression is satisfiable. Translating
it in the QUBO context, if no complete strongly connected component is present in
the residual network, the minimum value of a homogeneously quadratic posiform
is 0. Recall that after all the source-reachable persistencies have been fixed, any
QUBO problem is represented by a purely quadratic posiform.

If the residual network has c CSCCs and the posiform associated with each of
them is indicated as ϕi, whereas the whole posiform is indicated as ϕ, the following
relation holds:

cØ
i=0

ϕi ≤ ϕ, (7.3)

which implies:
cØ
i=1

(minϕi) ≤ minϕ. (7.4)
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The minimum of the posiform associated with a CSCC can be determined by sum-
ming the weights of the edges with the smallest weight that if removed would make
the component no longer strongly connected, which is equivalent to solving the
QUBO problem corresponding to this CSCC. A posiform ϕ with CSCCs can be
defined as the sum of a posiform g with no CSCCs and Ti terms, which, by adding
the corresponding edges in the residual network, generate c CSCCs, with i going
from 1 to c. Given a vector x∗ for which g(x∗) = 0, in the worst case the value of
the posiform ϕ is 0 plus the weight of the edges that have been added [34]. As a
consequence:

ϕ(x∗) ≤
cØ
i=1

Ø
k∈Ti

ak, (7.5)

where ak are the coefficients of the added terms. In the worst case, all the added
terms contribute to increasing the value of the posiform, but:Ø

k∈Ti

ak = (minϕi), (7.6)

implying that:

minϕ ≤
cØ
i=1

(minϕi). (7.7)

Therefore, this proves that the minimum of a posiform is equal to the sum of the
minima of the posiforms associated with the complete strongly connected compo-
nents in the residual network. Equivalently, if the graph has c CSCCs:

minϕ =
cØ
i=1

(minϕi). (7.8)

Moreover, ϕ(x∗) = minϕ, so an assignment vector that results in the minimum
value of the function can be determined from a vector that minimizes the posiform
without CSCCs and the vectors which minimize the posiforms associated with
CSCCs. It means that the residual network can be decomposed extracting its
CSCCs and removing from the original network the edges with the minimum weight
that make a component strongly connected. It is possible to know which edges have
to be removed by finding the minima of the posiforms associated with the CSCCs,
therefore solving the minimization problem for those posiforms. Since posiforms
associated with CSCCs have to be solved first, the assignments found are directly
substituted in the remaining CSCC-free posiform so that it can be solved having
the lowest possible number of variables.

Furthermore, for a CSCC-free posiform or for a posiform whose CSCCs have
been extracted the minimum value is known a priori. Therefore, for such functions,
a Grover oracle can be specifically designed to find the optimal value. Conse-
quently, the Grover Adaptive Search is no more necessary, and Grover’s search
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can be directly exploited to solve the optimization problem. This results in a signif-
icant reduction of the execution time since the solver employed is a purely quantum
one, no classical iterations are needed.

Example. Complete strongly connected components decomposition.
Consider the following cost function to optimize:

f(x) = 4 + 8x1 + 10x2 + 4x3 − 12x1x2 + 4x1x3 − 10x2x3 − 4x3x4 + 2x4x5.

After computing the associated posiform, constructing the implication network and
calculating the maximum flow, the residual network in Figure 7.3 is obtained.

1 1

5 1

1 1

1

4 4

5

2 2

1 1

1 1

Figure 7.3: Residual network (CSCC highlighted in blue)

The nodes colored in blue {x1, x2, x3, x1, x2, x3} form a complete strongly con-
nected component. If the optimization problem is solved without applying decom-
position six different optimal solutions can be obtained:
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x1 x2 x3 x4 x5 f(x)
0 0 0 0 0 4
0 0 0 0 1 4
0 0 0 1 0 4
0 0 1 1 0 4
0 1 1 1 0 4
1 1 1 1 0 4

As explained in this section, the complete strongly connected component can be
extracted from the network, transformed back to a function form employing the
reverse of the process used to create the implication network, and solved indepen-
dently. Then, the solution achieved can be substituted in the function associated
with the network and it is possible to find the solution of the obtained function
knowing its minimum in advance, that is 0 since it is a purely quadratic posiform.
Therefore, extracting the CSCC and transforming the networks in posiform two
functions are obtained:

ΨCSCC(x) = 10x1x2 + 2x1x2 + 2x1x3 + 2x1x3 + 8x2x3 + 2x2x3.

ΨnoCSCC = 4x3x4 + 2x4x5.

For the function without CSCC, the variables x1 and x2 have been removed since
they do not have any term in common with x4 and x5, therefore they do not affect
the solution. If the posiform associated with the CSCC is solved, four different
optimal solutions are obtained:

x1 x2 x3 ΨCSCC(x)
0 0 0 4
0 0 1 4
0 1 1 4
1 1 1 4

At this point if the two possible assignments for x3 are substituted into ΨnoCSCC ,
two different functions are obtained:

• If x3 = 0:
Ψ′
noCSCC = 2x4x5.

The optimal values for this posiform are:

x4 x5 Ψ′
noCSCC

0 0 0
0 1 0
1 0 0
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• If x3 = 1:

Ψ′′
noCSCC = 4x4 + 2x4x5.

The optimal values for this posiform are:

x4 x5 Ψ′′
noCSCC

1 0 0

It is remarked that when the decomposed solutions are recombined together, they
are exactly equivalent to the results attained without decomposition. △

7.3 Problem-specific decomposition

Problem-specific decomposition methods exploit the features of a certain class
of problems to divide them into smaller ones or make assumptions and discard
non-optimal solutions. In this section, it is described a decomposition routine for
maximum clique (MC) and minimum vertex cover (MVC) problems [35].

In both cases, in order to split up the graph, the subject of the problem, into
two smaller ones, a vertex v is identified to obtain two subgraphs G+ and G−, in
which it is assumed that in G+, v belongs to the optimal solution and in G−, it
does not. The best choice for v is the vertex with the lowest degree (i.e. number of
connections of a vertex) for maximum clique and the one with the highest degree
for minimum vertex cover. Successively, the splitting routine employed is problem
dependent. At this point, it is possible to discard one of the subgraphs, if its solution
can not be better than the best one found at the time being or an estimated one.
For maximum clique, if the subgraph can have the best solution smaller than the
current best one, it can be discarded. Alternatively, for minimum vertex cover, if
the subgraph can have the best solution larger than the current best one, it can be
discarded. Furthermore, vertex and edge removal techniques can be used to reduce
the size of the graph. If a subgraph contains more vertices than a predefined cutoff
value, it is possible to proceed recursively splitting it again into two subgraphs.
A cutoff value can be defined as the maximum number of vertices for which it is
possible to solve the graph with the available hardware. When this limit is reached
the optimization problem in the leaf subgraph is solved and the best solution is
updated for each recursion. Let µ be the value of the objective function, updated
at each iteration, that is initialized as ∞ if the problem is a minimization or as
−∞ otherwise.
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7.3.1 Maximum clique splitting routine
The maximum clique specific splitting routine generates the subgraph G+ taking all
the nodes connected by an edge with the vertex v and the subgraph G− removing
the vertex v and all the edges connected to it from the graph G. For G+, µ+ = µ+1
since the removed vertex v is part of the clique, while for G−, µ− = µ. In both
cases, the graph size is reduced by at least 1, since v is removed. Therefore, the
termination of the algorithm is guaranteed.

In order to reduce the number of nodes and edges of the graph for the max clique
problem the vertex and node k-core algorithms can be employed. The k-core of
a graph is the maximal subgraph in which each node has at least degree k. A
clique of size k+1 is contained in the k-core, so, if a lower bound to use as value
k is known, all the nodes outside the k-core can be removed. A lower bound can
be obtained by applying the DDT heuristic disclosed in Section 6.3.1, or it can be
defined by the subgraphs already solved. For instance, if a subgraph has a size of
four and the solution of another previously processed subgraph is five, the current
subgraph can be discarded. The edge k-core algorithm [36], first selects a random
vertex v in the k-core subgraph. Then, all the edges (v, n) for which the following
relation holds:

|N(v) ∩N(n)| < lowerbound− 2, (7.9)
(where |N(v) ∩N(n)| is the intersection of the neighbors, i.e., nodes connected by
an edge, of v and n) are removed since they can not be part of a clique with a size
higher than the current lower bound.

Example. Maximum clique splitting routine.
Take the graph in Figure 7.4 and apply the decomposition technique to find the
maximum clique.

0

3

7

65

21

4

Figure 7.4: Example graph
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The vertex selected (colored in blue in Figure 7.4) is vertex 3, since it is the one
with the lowest degree. Now decomposition is applied following the rules described
in this section and the subgraphs G+ and G− are obtained (Figure 7.5).

0

7

65

21

4

(a) G− subgraph

0

6

(b) G+ subgraph

Figure 7.5: Subgraphs obtained by the decomposition

If the problem on graph G− is solved first, a maximum clique with a size greater
than 2 is attained, therefore the graph G+ can be discarded since it can not provide
a better solution. To furtherly reduce the number of vertices and edges in the graph
G− the k-core algorithms can be applied.

0

7

65

21

Figure 7.6: G− after vertex and edge 3-core

Suppose, for example purposes, that a lower bound on the dimension of the
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clique is known and it is equal to 4. Then, all the vertices part of the clique are
also part of the 3-core of G−. The only vertex with a degree lower than 3 is vertex
4. Hence it can not be part of the clique, since it has less than 3 edges, and can
be removed. Finally, the edge k-core algorithm can be applied and suppose that
vertex 6 is selected. It has 3 edges that connect it with 3 different vertices: 0 with
which it has one neighbor in common (2) and 2 and 7 with which it has 0 neighbors
in common. All the edges whose endpoints have less than 2 neighbors in common
can be eliminated, thereby all of them are deleted (Figure 7.6). △

7.3.2 Minimum vertex cover splitting routine
The minimum vertex cover specific splitting routine generates the subgraph G+ re-
moving all the edges that have as endpoint the vertex v. This vertex is supposed to
be part of the MVC, so all the edges connected to it are already covered, thus they
are not part of the MVC and can be eliminated together with v. The subgraph G−

is generated considering that all the u vertices connected to v are part of the MVC
because the edges (u, v) between them and v must be covered. For this reason, they
can be removed (updating µ), and also all edges that have as endpoint a vertex u
can be discarded because they are already covered. µ is updated according to the
nodes added to the MVC in each recursion.

Example. Minimum vertex cover splitting routine.
Take the same graph used for the example for maximum clique (Section 7.3.1).

0

3

7

65

21

4

Figure 7.7: Graph with selected vertex highlighted

The best choice on the vertex to be used for applying the decomposition is the
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one with the highest degree, that is vertex 0 in this case (highlighted in Figure 7.7).
Following the rules described in this section two subgraphs G+ and G− can be
obtained and they are shown in Figure 7.8.

7

4

(a) G− subgraph

3

7

65

21

4

(b) G+ subgraph

Figure 7.8: Subgraphs obtained by the decomposition

For instance, if G+ is solved first, it can be found that the solution has size 5.
To construct G−, all the 5 nodes connected to vertex 0 are supposed to be part of
the cover, thus it has a size larger than the best solution and it can be discarded.
The routine can be applied recursively until the subgraphs have a size smaller than
a predefined cutoff. △

7.4 Shannon decomposition
The Shannon decomposition method name is derived from the Shannon expan-
sion theorem for boolean algebra, since it is exploited to decompose a QUBO cost
function. The theorem states that for a boolean function F and a variable xi:

F = xiFxi
+ xiFxi

, (7.10)

where Fxi
and Fxi

are respectively the function F evaluated for xi = 1 and xi = 0.
Since variables are binary, this also holds for a pseudo-boolean function, or in
particular, for a QUBO one. If xi = 1, f = fxi

, whereas if xi = 0, f = fxi
,

thus this relation is still valid. Therefore, by applying the Shannon expansion
theorem, it is possible to decompose a cost function in two subfunctions with one
less variable. This method is always applicable, but, if executed iteratively for
all the n variables belonging to the function f , 2n evaluations of f are needed,
hence it is equivalent to a brute-force approach that tries all the possible input
configurations to find the minimum value. Clearly, this is not an efficient way to
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try to solve an NP problem. Anyway, the Shannon decomposition can be employed
after all the variable reduction and decomposition techniques treated in the previous
sections to ultimately prune the QUBO function, if the number of variables is still
too high for the qubits availability of quantum hardware. If just k variables have
to be removed, the QUBO function can be decomposed in 2k subfunctions, using
k recursion levels. Then, after finding the minimum value of all of them, the
optimal solution is given by the one obtained from the subfunction with the lowest
minimum value merged with all the expansion variables assignments set to attain
that particular subfunction.

Furthermore, consider a vertex v belonging to a strongly connected subgraph.
v is a strong articulation point [37], if its removal makes the subgraph not
strongly connected. When removing a strong articulation point, either the sub-
graph becomes made up of two strongly connected components or there are no
strongly connected components at all. This implies that, if the expansion variable
chosen for the Shannon decomposition corresponds to an articulation point in the
residual network associated with the cost function, it can break a complete strongly
connected component. Therefore, if two complete strongly connected components
are formed, the strong components decomposition (Section 7.2) can be used to de-
compose the network furtherly. Otherwise, if no strongly connected components
are present all the persistency-finding techniques can be applied, thus eliminating
more variables from the QUBO function.

Example. Breaking a strongly connected component with Shannon decomposition.
Consider the minimization problem of the following cost function:

f(x) = 12 − 4x3 + 4x1x2 − 4x1x4 + 4x2x3 − 4x2x4 + 4x3x4.

After computing, the corresponding posiform, constructing the implication network
and calculating the maximum flow, the residual network in Figure 7.9 is obtained.
It is easy to observe that the residual network is composed of a unique complete
strongly connected component that includes all the variables. In such a network, no
persistency can be found and no general decomposition technique can be applied.
Now suppose to apply Shannon decomposition and select as the expansion variable
the one associated with the node with the highest degree. Namely, the variable
that appears in most terms of the function. In this way, the largest amount of
terms, or edges, is removed after the function evaluation. Therefore, the variable
x2 is chosen. Then, the two subfunctions are obtained evaluating f for x2 = 0 and
x2 = 1:

fx2 = 12 − 4x3 − 4x1x4 + 4x3x4.

fx2 = 12 + 4x1 − 4x4 − 4x1x4 + 4x3x4.
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1 1

1 1
1 1

1 1
1 1

1 1

1

1

1

1

2 2

Figure 7.9: Residual network with unique complete strongly connected component

The two subfunctions produce two different implication networks. The network
corresponding to fx2 can be transformed into a residual network by calculating the
maximum flow. The result is shown in Figure 7.10. In the network corresponding
to fx2 , the maximum flow is 0 because there is no path from source to sink, hence
the network is already in the form of a residual one. It is reported in Figure 7.11.

2 2
2 2

Figure 7.10: Residual network associated with fx2

In the network in Figure 7.10, no persistency-finding technique and no general
decomposition method can simplify the network. However, from a graph only
composed of a complete strongly connected component a graph with none of them
has been attained. Therefore the minimum value of fx2 is known and it is equal to
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8. The minimum of a CSCC-free purely quadratic posiform is 0 and by adding the
constant term (4) and the maximum flow value (4) the correct result is achieved.
For this reason, as proven in Section 7.2, the optimal input configuration of fx2

can be found just by exploiting Grover’s search instead of Grover Adaptive Search,
achieving a considerable speedup.

2 2
2 2

2 2

Figure 7.11: Residual network associated with fx2

In the network in Figure 7.11, x3 and x4 can be reached from the source, there-
fore they are strong persistencies (as explained in Section 6.1). x1 remains alone in
the network, thus it can be equal to both binary values. From a complete strongly
connected component in which no variable assignments can be known in advance,
thanks to Shannon decomposition, if x2 = 0, the optimal values of all the other
variables are known. they are x1 = 0,1, x3 = 0, x4 = 1. △
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Chapter 8

Results

In this chapter, all the results obtained by executing the toolchain on different
benchmark problems, of different dimensions, are reported and explained in detail.
Python scripts have been used to randomly generate several instances of each prob-
lem, with a certain span of the number of variables and density. These scripts, then,
call the toolchain functions and the solver interfaces provided by external libraries.
They are all executed on a server, whose characteristics are described in [38].

In Section 8.1, the minimum vertex cover (described in Section 2.4.1) is used as
a benchmark to observe the number of persistencies found, decompositions applied
and the total decrease of the size of the problem, as functions of the characteristics
of the QUBO matrix. In Section 8.2 and Section 8.3, the same analysis is carried
out on two other benchmarks, that are respectively maximum clique (Section 2.4.2)
and maximum cut (Section 2.4.3). In Section 8.4, the toolchain has been used to
enhance the capabilities of the GAS solver. It is shown that the toolchain can be
used to solve problems with larger sets of variables and it enables achieving a faster
convergence to the solution.

8.1 Minimum vertex cover
The minimum vertex cover problem is used as a benchmark to verify the effective-
ness of the methods employed in the toolchain. The goal is to find the fraction
of persistencies identified, the number of decompositions applied and the accuracy
of the lower bound estimation as functions of the size of the problems, which can
be expressed as the number of variables in the corresponding QUBO formulation,
and the density of the QUBO matrix. The density of the graph is defined as the
probability of having an edge between a couple of nodes, or, similarly, the fraction
of existing edges on the combination of all the possible couples of nodes. Moreover,
expressing the QUBO formulation in matrix form, its density can be defined as the
probability of a non-diagonal term being different from 0, i.e. of having a quadratic
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coefficient different from 0. Since in the minimum vertex cover QUBO formulation
there is a quadratic term anytime there is an edge between two nodes, the density
of the QUBO matrix is directly proportional to the density of the graph.

The problem instances are produced by constructing graphs with the desired
number of nodes, where an edge between two nodes is generated according to a
probability equal to the desired density. One thousand and forty graphs have been
created with the following characteristics:

• number of nodes ranging from a minimum of 10 nodes to a maximum of 70
with a step of 2;

• four different density values: 2%, 5%, 10%, 20%;

• ten different randomly generated edge sets for each size and density.

Then, each problem is solved by providing its corresponding QUBO matrix as input
to the toolchain, which gives as output persistencies and simplified and decomposed
QUBO functions, which are finally solved using the simulated annealing algorithm
exploiting the qubovert Python library [17]. To verify their correctness, the re-
sults obtained are compared with the solution attained by directly solving each
problem with the simulated annealing. Since the simulated annealing is a heuristic
algorithm, it may find a suboptimal solution, hence an error is eligible, but it is
expected to be very low with respect to the range of values assumed by the cost
function. For every problem, the error has been computed as the difference between
the minimum obtained with the use of the toolchain and the minimum obtained
just with simulated annealing. An average error of 0.1 and a maximum of 3 with
respect to cost function values up to around 4000 have been obtained, which have
been considered sufficient to prove the validity of the results.

Figure 8.1 shows the average percentage of variables that can be identified as
persistencies. For the lowest density, the percentage is almost always 100%. There-
fore, the toolchain is very efficient in this case, allowing to solve problems without
even resorting to any solver. However, the higher the density and the number of
nodes, the lower the probability to find a high percentage of persistencies. Indeed,
a higher number of terms in the QUBO formulation leads to a denser implication
network, i.e. with a larger amount of edges, thus resulting in greater difficulty in
finding relations between variables.

Figure 8.2 displays the average number of trivial decompositions. It can be
noticed that the occurrences of residual networks made up of disconnected compo-
nents are very rare. This is because for lower densities, when it is more probable for
the network to have isolated sets of nodes, the persistencies-finding techniques are
able to identify the optimal assignments for them. Hence by removing these vari-
ables, the disconnected components disappear. For high densities, instead, there is
just a lower probability to have disconnected components in the first place.
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Figure 8.1: Average percentage of persistencies found
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Figure 8.2: Average number of trivial decompositions

Figure 8.3 reports the average number of CSCC decompositions, i.e. the number
of times that a CSCC has been identified in the residual network and extracted.
The number of CSCCs increases with the number of nodes and the density of the
QUBO matrix, and consequently, of the residual network. This trend is due to
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the fact that a higher density means a higher number of edges, thus it is more
probable to have paths that can reach all the other variables. With the same
density, a greater number of nodes also increases this probability. It is noteworthy
that the profiles of the number of CSCCs decompositions and the persistencies
found are approximately one the opposite of the other. This similarity tells that
the persistency-finding techniques are particularly effective when no CSCCs are
present. Then, increasing the density, the probability to have a CSCC increases
and consequently the probability of finding persistencies decreases. On one hand,
this further validates the current techniques for low density and on the other hand,
it sets the goal for the next methods to be added, namely to find persistencies or
apply decomposition that allow breaking and reducing CSCCs. It should be also
observed that it is extremely rare, and in this case never occurs, that two or more
independent CSCCs are present in the network. Hence, CSCCs for large problems
with high densities are an obstacle to finding persistencies and have a dimension
that is still big enough to not enable the use of GAS in current quantum backends.
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Figure 8.3: Average number of CSCC decompositions

Figure 8.4 shows the total reduction of the number of variables, i.e. the dif-
ference, as a percentage computed with respect to the dimension of the original
problem, between the size of the problem itself and that of the biggest subproblem
provided by the toolchain. The curves in this plot are very similar to the persis-
tencies ones, therefore the main contribution to the reduction of the number of
variables is given by persistencies. This enforces the observation that persistency-
finding techniques are effective when CSCCs are not present. Instead, when they
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8.1 – Minimum vertex cover

are, their number is very often equal to 1, so decompositions do not have a strong
effect on the dimension of the problem. The differences between these two graphs
are due to CSCC decomposition when the residual network, after persistencies have
been removed, is composed of a CSCC and another subset of nodes, so that when
these two components are divided the number of nodes is decreased.
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Figure 8.4: Average percentage of the total reduction in the number of variables

Figure 8.5 reports the error on the lower bound estimation, expressed as the
difference between the minimum value of the cost function and the lower bound
obtained. Also in this case, if the density and the number of nodes increase the
lower bound gets worse, since more edges are present and more iterations of Probing
would be needed to further increase the maximum flow in the network. If an upper
bound is symmetrically computed, it would enable the estimation of the number
of qubits necessary to encode the values in the quantum dictionary. Supposing to
have an equal error on the upper bound, the values found are very accurate and
would result in an error on the value qubits required most of the times of no more
than one. The number of qubits estimated is correct if the span of values assumed
by the function, considering also the shifts performed by the GAS algorithm, can be
encoded by the same number of qubits also including the error. For example, with
an error of 20 for both bounds, the span must be lower than 16 to have a difference
of more than two qubits between the ideal number and the estimated one. If the
span is larger than 16 at least 5 qubits are necessary to encode the values and
25 + 20 < 26, hence only one more qubit is required. However, when the error on
the lower bound estimation is 20 the number of nodes is 70, so a typical span of
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values assumed by the function is 3500 which is way greater than 32 and this is not
even considering the shifts that GAS performs that would make the actual span of
values larger. Of course, an error of 1 qubit should always be considered because if
n qubits are ideally needed to encode the values of a cost function with a span of
2n − 1, an error of 1 in the lower bound estimation would result in an extra qubit.
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Figure 8.5: Average error on lower bound estimation

8.2 Maximum clique
The maximum clique problem has been employed as another benchmark to check
the correctness of the results obtained with the use of the toolchain and the effec-
tiveness of the methods to reduce the size of the problems. In the maximum clique
QUBO formulation (see Section 2.4.2), it is added a quadratic term every time
there is no edge between a couple of nodes. Therefore, the density of the graph in
which the clique has to be found is inversely proportional to the density of the cor-
responding QUBO matrix. The graphs have been constructed by inserting an edge
between two nodes according to a probability equal to the desired density. One
thousand and forty graphs have been created with the following characteristics:

• number of nodes ranging from a minimum of 10 nodes to a maximum of 70
with a step of 2;

• four different density values: 80%, 90%, 95%, 98%;

• ten different randomly generated edge sets for each size and density.
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As described in Section 8.1, the simulated annealing algorithm has been used to
solve the problems provided as outputs by the toolchain and to verify the correctness
of the results obtained. An error equal to 0 has been attained for all the problem
instances, therefore the solutions are all to be considered valid.

The results obtained for this benchmark are very similar to the minimum vertex
cover ones. The densities indicated in the plots are referred to graph subject of
the problem, i.e. where the clique has to be found. Therefore, the highest density
corresponds to the lowest density of the QUBO matrix. Figure 8.6 shows the
average fraction of persistencies detected. Also in this case, as the density and
the number of nodes increase the number of persistencies found decreases and the
techniques are very efficient for low densities.

Trivial decompositions are very rare since persistencies make the isolated terms
disappear. Therefore, it is possible to derive the conclusion that the presence of
disconnected components after the elimination of the persistencies from the residual
network is mainly random or very uncommon for the characteristics of the graphs
produced. In this particular test, they never occur, for this reason, their plot is not
reported.
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Figure 8.6: Average percentage of persistencies found

CSCC decompositions (Figure 8.7) follow the opposite profile of the persisten-
cies, therefore the persistency-finding techniques are very effective when there are
no CSCCs, and also for maximum clique the issue to be solved to obtain problems
of reduced size is to break or decrease the dimension of CSCCs.
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Figure 8.7: Average number of CSCC decompositions
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Figure 8.8: Average percentage of the total reduction in the number of variables

The total reduction of the number of variables (Figure 8.8) is, similarly to the
minimum vertex cover case, dominated by the removal of persistency. Especially
for high density and a high number of nodes, it can be seen the effect of CSCC
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decomposition which causes an additional reduction of variables to what was al-
ready obtained by the persistencies. For the 95% density curve between 60 and 70
nodes, it can be observed a further reduction of the size of the problem of around
10%. This effect is also evident in the 90% density curve for problems larger than
40 variables.
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Figure 8.9: Average error on lower bound estimation

The error on the lower bound estimation (Figure 8.9) follows the same trend as
the minimum vertex cover case, but its maximum is even smaller, arriving at 17
for problems with 70 variables.

8.3 Max-cut
The max-cut problem has been used as a benchmark to check the correctness of the
results obtained with the use of the toolchain and the effectiveness of the methods
to reduce the size of the problems. In the max-cut QUBO formulation (see Sec-
tion 2.4.3), it is added a quadratic term and two linear terms every time there is
an edge between a couple of nodes. Therefore, the density of the graph in which
the cut has to be found is directly proportional to the density of the corresponding
QUBO matrix. The graphs have been constructed by inserting an edge between two
nodes according to a probability equal to the desired density. Unlike the minimum
vertex cover and maximum clique cases, the element to minimize or maximize is
not the number of nodes but the number of edges, hence a variable appears in a
linear or a quadratic term only if it has at least one edge. For this reason, it is

97



8 – Results

not possible to construct a graph that leads to a QUBO matrix with a predefined
number of variables and a low density. Otherwise, it would be possible to have a
node that does not appear in the QUBO formulation, thus resulting in a number of
nodes, and consequently, a density, different from the predefined ones. Therefore,
for this particular benchmark, 9% has been chosen as the lowest density value. One
thousand and forty graphs have been created with the following characteristics:

• number of nodes ranging from a minimum of 10 nodes to a maximum of 70
with a step of 2;

• four different density values: 9%, 12%, 15%, 20%;

• ten different edge sets for each size and each density;

• weight of an edge, when present, randomly assigned to an integer number
between 1 and 4.

As described in Section 8.1, the simulated annealing algorithm has been used to
solve the problems provided as outputs by the toolchain and to verify the correctness
of the results obtained. An error equal to 0 has been attained for all the problem
instances, therefore the solutions are all to be considered valid.

The results for this benchmark differ from the other ones mainly because cliques
and vertex covers depend only on the presence or absence of edges, whereas the
maximum cut also depends on the weight of the edges.
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Figure 8.10: Average percentage of persistencies found
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The trends of the plots are the same as the previous benchmarks, but the results
are slightly worse. The average persistencies percentage (Figure 8.10) decreases
faster as the density of the graphs subject of the problem, and consequently of the
QUBO matrices, increase.
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Figure 8.11: Average number of CSCC decompositions
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Figure 8.12: Average percentage of the total reduction in the number of variables

99



8 – Results

The trivial decompositions are not reported since the occurrences of disconnected
graphs are mainly random and extremely few. The average number of CSCC de-
composition (Figure 8.11), in accordance with the persistencies plot, has a faster
increase as the density of the graphs increases, thus maintaining the complementar-
ity with it. This behavior can be explained by the fact that there are different edge
weights in the graphs which result in a greater heterogeneity of the coefficients in
the QUBO matrix. Hence, when calculating the maximum flow, it is more probable
that for an edge the flow is lower than its weight which leads to the existence of two
edges with opposite directions that increase the probability of having strongly con-
nected components. As a consequence, since all the results prove this correlation, if
the probability of finding a complete strongly connected component increases, the
probability of finding persistencies decreases.

The total reduction in the number of variables (Figure 8.12) follows the previous
trends as well, but it is obviously influenced by the lower amount of persistencies
found.
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Figure 8.13: Average error on lower bound estimation

The error on the lower bound estimation (Figure 8.13) is considerably higher
than the previous cases. This can be explained by the fact that if CSCCs with higher
degrees of connectivity are present, the minimum of the cost function is increased
with respect to a CSCC-free case because of the presence of many quadratic terms
that is not possible to make vanish. Thus, the initial lower bound, calculated with
the initial maximum flow, is further from the real minimum. Several recursions of
Probing would be needed to better estimate this bound. However, this result can
still be considered sufficient to guarantee an accurate estimation of the number of
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qubits necessary to encode values in the quantum dictionary.

8.4 Exploitability of GAS simulator
The ultimate goal of the toolchain is to improve the chances of employing the GAS
algorithm to solve real-world combinatorial optimization problems. Therefore, the
minimum vertex cover problem has been used as a benchmark to compare the time
taken to converge to the solution by the GAS solver after the execution of the
preprocessing toolchain and the GAS solver alone. For this purpose, the execution
time of the two different procedures has been chosen as figure of merit. The Grover
search employed by the GAS algorithm is executed on the qasm simulator provided
by Qiskit [19]. The problems are generated by producing random graphs in which
the minimum vertex cover has to be found and they are then translated in QUBO
formulation and given as input to the toolchain and the GAS solver. Two hundred
graphs with the following characteristics have been created:

• two different density (defined as described in Section 8.1) values: 20%, 40%;

• number of nodes ranging from 3 up to 7 for problems to be solved only with
GAS, up to 9 for problems preprocessed by the toolchain with 40% density
and up to 13 for problems preprocessed by the toolchain with 20% density;

• ten different randomly generated edge sets for each size and density.
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Figure 8.14: Comparison between the execution time of problems solved by running
the toolchain before the GAS simulator or with GAS only.
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The results obtained (Figures 8.14 and 8.15) show that the toolchain effectively
improves the exploitability of the GAS algorithm and reduces the execution time.
It can be observed that the solution of problems with 40% density and 8 or 9 nodes
preprocessed with the toolchain takes a time of the same order of magnitude as
problems with 7 nodes solved only by the GAS algorithm. Instead, for problems
with 20% density the execution time up to 13 nodes is substantially lower and does
not even scale exponentially. Therefore, preprocessing enables dealing with larger
problems with respect to what is currently possible, since the GAS solver employs
an unfeasible amount of time for problems with more than 8 variables and the limit
of qubits that can be simulated is also overcome.
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Figure 8.15: Comparison between the execution times with or without the use of
the toolchain in logarithmic scale.

The efficiency of the toolchain and its ability to decrease execution time depends
on the density of the problem at hand. Consequently, the efficacy of the toolchain
for problems involving heavily interconnected graphs is limited. On the other hand,
encouraging results can be obtained for problems like the minimum vertex cover,
for which it is common to have a sparse matrix.
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Chapter 9

Future perspectives

The preprocessing toolchain presented in this thesis is the first milestone that lays
the foundations for a complete automation of quantum optimization processes,
starting from the generation of the QUBO formulation of a combinatorial opti-
mization problem and ending with the solution of the problem itself exploiting the
available quantum hardware, together with the choice of the most suitable quantum
algorithm to solve it.

First of all, a combinatorial optimization problem can be written as just a set of
constraints, or in the form of a function, not necessarily in a QUBO form. There-
fore, to implement the first two steps of a toolchain for quantum optimization,
approaches like the one proposed in [39] can be employed. In addition, in Sec-
tion 2.2, it has been described that penalty coefficients for embedding constraints
in the QUBO formulation must be chosen within a certain range to guarantee
that optimal solutions do not violate constraints and that it is easy to understand
whether a solution is better than another one. Too high penalty coefficients can also
enlarge the span of values assumed by the cost function leading to a greater need
for qubits to encode these values in a quantum dictionary. Hence, together with
an automatic generation of the QUBO formulation, a method for the estimation of
penalty coefficients, as proposed in [40], can be added. Then, in order to accept
any constraint expressed in inequality form, methods for the definition of the lowest
possible number of slack variables, as presented in [41], have to be added, so that
to keep the size of the problems small enough to be able to use quantum solvers.
All the previous steps combined permit having a complete mechanism for QUBO
recasting of the most general set of combinatorial optimization problems.

The toolchain currently works only with integer QUBO coefficients, therefore
it can be improved by supporting floating points coefficients. For this purpose, a
normalization step can be added, that adapts all the coefficients according to the
value of the smallest one, recasting them to integers. Normalization can also be
used to reduce the value qubits in the GAS algorithm, dividing all the coefficients by
their greatest common divisor. In addition, knowing the range of values assumed
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by the function, it is possible to apply an offset in order to start the GAS in a
condition where few negative values are present, but it is ensured that there is at
least one. In this way, the classical iterations needed to find the optimum value
may be decreased.

Furthermore, dynamic policies explored in [20] to select the number of Grover
rotations and a threshold for the stop condition in the Grover Adaptive Search
algorithm can be employed to achieve faster convergence of the algorithm and a
greater probability of success. It could be also possible to analyze which policy
suits best a certain problem by observing the characteristics of its corresponding
QUBO matrix, such as density or mean and variance of the coefficients.

The results show that, for what concerns variables reduction mechanisms, the
main issue to be solved is the presence of large complete strongly connected compo-
nents (CSCCs) in the residual networks, therefore the toolchain should be expanded
with a method to break them or find valid assignments for variables belonging to
these components. The Shannon decomposition is theoretically capable of breaking
a CSCC or splitting it into two, but the outcome of the decomposition depends on
the choice of the expansion variable. This election can be handled by an algorithm
that can identify a strong articulation point, as demonstrated by [37]. However, the
previous approach is able to break a strongly connected subgraph only if eliminat-
ing just one node is sufficient. Hence, to decompose any CSCC the best expansion
variable selection algorithm should find the smallest subset of nodes whose removal
makes a CSCC no longer strongly connected. In this way, a number of Shannon
decomposition iterations equal to the number of nodes in the subset could split up
any CSCC. Moreover, the current implementation of Probing in the toolchain does
not take into account quadratic persistencies that could be included in the future
to find new variable assignments in CSCCs. More quadratic persistencies could
also be found by employing the methods presented in [42].

An automated quantum toolchain for combinatorial optimization problems (Fig-
ure 9.1), in general, would be necessary to provide an abstraction layer allowing
non-experts to use the power of quantum computation for these purposes [43, 44].
This is, by the way, a long-term prospect since it would require embedding many
different quantum solvers employing different quantum algorithms to choose the
best fit for the problem at hand. The first step could be the automatic generation
of the QUBO formulation given a user-friendly interface as expressed above. At
this point, the preprocessing toolchain, subject of this thesis, with the described
improvements, could be utilized to reduce and decompose the cost function and
to provide the lower bound estimation, for instance, to determine the number of
qubits necessary to encode the function for the GAS algorithm. Then, according
to the characteristics of the QUBO formulation of each particular problem, such
as the number of variables, the density of the matrix or mean and variance of
the coefficients, the best quantum device or quantum paradigm could be chosen
to achieve the desired solution with the best accuracy and the lowest execution
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time. Each solver is preceded by a step for the selection of the best parameters for
the problem at hand, for instance, the number of quantum rotations and thresh-
old for the stop condition for the Grover Adaptive Search. Many solvers such as
the quantum annealer, Quantum Approximate Optimization Algorithm (QAOA),
Variational Quantum Eigensolver (VQE) and Grover Adaptive Search could be sup-
ported, but they are just a glimpse of all the algorithms and paradigms available,
therefore this list can be expanded in the future.

QUBO
generation

QUBO
preprocessing

Solver
selection

Parameters
selection

Parameters
selection

Parameters
selection

QAOA VQE GAS

Parameters
selection

Quantum
annealer

Decoding

Real-world
problem

Easy to understand
solution

Figure 9.1: Idea of a quantum optimization toolchain structure. In blue is reported
the QUBO toolchain described in this thesis. In green are highlighted the quantum
solvers that can be chosen by the toolchain. The solvers indicated are just to be
considered as an example and not as an exhaustive list of the available ones.
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Chapter 10

Conclusions

This thesis allows speeding up the solution of combinatorial optimization prob-
lems and enhancing the exploitability of currently available quantum or quantum-
assisted solvers. It tries to identify a possible improvement for the limited number
of qubits available in current quantum hardware through preprocessing of cost
functions expressed in the QUBO formalism. At first, an introduction to quantum
computing and the Grover Adaptive Search is provided to motivate the need for
a preprocessing toolchain. Afterward, an introduction to the QUBO formulation
is given to understand the characteristics of quadratic binary cost functions and
to explore the details of the classes of problems used as benchmarks to test the
toolchain.

The goal of the toolchain is to reduce the number of variables of the cost function
or decompose it into smaller ones. For this purpose, it is transformed into a network
representation, hence in the thesis, for the comprehension of the toolchain behav-
ior, an exhaustive treatment is provided of the fundamentals of these particular
kinds of graphs and all the instruments and algorithms to calculate the maximum
flow, obtain a residual network, find strongly connected components and discon-
nected components. By using all these graph tools, it is shown how persistencies
can be found, thus reducing the number of variables in a cost function, and de-
compositions can be applied. This thesis also displays that, by extracting complete
strongly connected components from the residual network associated with the cost
function, it is possible to use just the Grover search algorithm to find the solution
to these subproblems instead of using the more time-consuming GAS. Moreover, it
is reported how to find a lower bound to the cost function allowing the estimation
of the number of qubits needed to encode the values assumed by the function in a
quantum state.

Finally, minimum vertex cover, maximum clique and maximum cut benchmarks
have been employed to test and validate the methods explored. The results show
that improvements have been achieved, i.e. the toolchain makes it possible to
solve problems with larger dimensions than what only GAS can solve, especially for
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QUBO functions with low densities. The lower bound estimations allow an accurate
definition of the span of values assumed by the function, hence the qubits needed
to encode them. However, this is still not enough to make quantum computers
suitable to process all the real-world optimization problem instances. Next steps
to make the employed methods more effective are also mentioned, such as the
inclusion of quadratic persistencies and the use of algorithms for variable selection
in the Shannon decomposition.

Furthermore, future perspectives of this thesis have been identified in the con-
struction of a more complete toolchain able to generate the QUBO formulation
of combinatorial optimization problems given as input in a user-friendly fashion,
apply preprocessing to the obtained cost function and choose the best quantum
solver to solve every particular problem, thus not limiting itself only to GAS.

The toolchain presented can be employed within a set of methods useful to
automate the solution of optimization problems with quantum computers. It suc-
cessfully reduces the number of variables of QUBO problems with low densities and
it is disclosed how theoretically permits to use directly the Grover search to CSCC-
free cost functions. For higher densities, the toolchain limits are highlighted, thus
setting the goal of breaking and reducing complete strongly connected components
as future strive to further improve the obtained results.

Current quantum hardware can not scale sufficiently to address problems, and
non-idealities further limit the possibility of exploiting them in a real-world scenario.
The proposed toolchain, improved with the future automation steps, could have an
impact on making feasible for everyone the resolution of optimization problems
whose dimensions were inconceivable until the time being.
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