
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Analyzing SCERPA and ToPoliNano
Simulators for the Design of Molecular
Field-Coupled Nanocomputing Circuits

Supervisors
Prof. Mariagrazia Graziano
Dr. Fabrizio Riente
Dr. Yuri Ardesi

Candidate
Dario Castagneri

April 2023

Abstract

Moore’s Law, proposed by Intel co-founder Gordon Moore in 1965, forecast that the num-
ber of transistors on a microchip would double approximately every two years, paving the
way to significant advancements in computing technology, efficiency, and performance.
Initially, the projection proved to be highly accurate, describing the rapid progression of
the semiconductor industry for over five decades. However, as the physical limitations
of current transistor technology have been approached, researchers and engineers have
questioned the long-term viability of Moore’s Law, prompting the exploration of alterna-
tive nanoscale computing approaches, such as the Beyond CMOS. The paradigm involves
the development of unconventional materials and device structures that are beyond tra-
ditional silicon technology to favor a continuous evolution of next-generation systems.
Molecular Field-Coupled Nanocomputing (mFCN) is one of the most promising Beyond
CMOS implementations. It relies on molecules arranged in nanolevel structures, with
their charge distributions encoding logic information. Computation and signal prop-
agation are enabled by exploiting Coulomb electrostatic interactions across molecules
in cooperation with external electric fields. The mFCN approach offers several ad-
vantages over traditional CMOS digital systems, including significantly reduced power
consumption, higher operating frequency, and highly scalable device sizes. To study the
paradigm, the VLSI Lab group of the Politecnico di Torino has developed a collection
of nanoelectronic applications: MagCAD, a graphical 3D editor used to design emerging
computing devices; ToPoliNano, a CAD tool for studying and simulating these systems,
recently embedded with SCERPA (Self-Consistent ElectRostatic Potential Algorithm),
an academic MATLAB procedure for molecular circuit analysis; and FCNviewer, a 3D
visualization program used to represent and check for correct information propagation
and elaboration. The thesis aims at reviewing the integrability of the research-based
algorithm in the ToPoliNano software and assessing the accuracy of the CAD simula-
tion results. To achieve the goal, a comprehensive verification and validation strategy,
supported by a series of comparing and testing scripts, is implemented and applied to
a range of increasingly complex molecular circuits. Furthermore, new features and en-
hancements are introduced to both SCERPA and ToPoliNano suite, maximizing their
compatibility, usability, and functionality. One specific improvement of the SCERPA
algorithm is the introduction of a dynamic damping feature that accelerates the conver-
gence of the method, reducing the time required for molecular analysis. The study also
explores the possibility of designing novel and more complex molecular devices by using

ii

the newly verified and improved ToPoliNano package. In particular, it generalizes the
1-bit full adder layout to an N-bit version and successfully converts and validates the
ISCAS c17 benchmark circuit into its molecular equivalent. In conclusion, the thesis has
contributed to the field of molecular Field-Coupled Nanocomputing (mFCN) by provid-
ing researchers with an effective and reliable framework to investigate the behavior of
mFCN systems.

iii

Contents

List of Figures vii

List of Tables xi

List of Algorithms xii

List of Acronyms xiii

1 Introduction and background 1
1.1 More Moore . 2
1.2 More than Moore . 4
1.3 Beyond CMOS . 5
1.4 Field-Coupled Nanocomputing . 6
1.5 Cellular Automata . 7
1.6 Quantum-dot Cellular Automata . 7

1.6.1 Designing logic circuits . 9
1.6.2 Enhanced QCA cell . 11
1.6.3 Four-phase clocking system . 12
1.6.4 Materials and techniques for QCA fabrication 13

2 Molecular Quantum-dot Cellular Automata 19
2.1 Promising candidate molecules for mQCA 20

2.1.1 Dyallyl-butane . 22
2.1.2 Decatriene . 22
2.1.3 Bis-ferrocene carbazole . 23

2.2 Methodologies for analyzing mQCA systems 24
2.2.1 Ab initio methods . 24
2.2.2 QCADesigner . 25
2.2.3 MosQuiTo . 26
2.2.4 Characterization of the single molecule 26
2.2.5 Post-processing of results . 27
2.2.6 Analysis at the system-level . 32

2.3 Molecular FCN devices . 34
2.3.1 Single molecular cell . 34

iv

2.3.2 Single phase wire . 34
2.3.3 Three phases wire . 35
2.3.4 Two-line three phases wire . 35
2.3.5 Two-line L-connection . 35
2.3.6 Two-line T-connection . 36
2.3.7 The inverter . 36
2.3.8 The majority voter . 38
2.3.9 The exclusive OR . 38

2.4 Manufacturing molecular FCN devices . 39

3 The Self-Consistent ElectRostatic Potential Algorithm (SCERPA) 42
3.1 The layout . 42
3.2 The algorithm . 44
3.3 The optimizations . 46

3.3.1 Interaction Radius . 46
3.3.2 Active Region . 46

3.4 The convergence . 48

4 The ToPoliNano EDA framework 50
4.1 ToPoliNano EDA framework . 51

4.1.1 ToPoliNano simulator . 52
4.1.2 MagCAD graphical editor . 52
4.1.3 FCNviewer . 53

4.2 Detailed overview of molecular ToPoliNano 53

5 Comparative analysis of the molecular FCN simulators 61
5.1 Methodology . 62
5.2 Evaluating SCERPA importers . 63

5.2.1 Result discussion . 67
5.3 Evaluating SCERPA and ToPoliNano simulators 67

5.3.1 Result discussion . 68
5.4 Molecule encoding checker . 70

6 Enhancing the SCERPA algorithm 72
6.1 Dynamic damping . 72

6.1.1 Assessing the impact of dynamic damping performance 74
6.2 Charge convergence . 74
6.3 ToPoliNano clock waveforms . 76

7 Enhancing the ToPoliNano EDA framework 80
7.1 Parallelizing ToPoliNano simulator . 80

7.1.1 Assessing the impact of parallelization 81
7.2 Introducing double-driver . 82
7.3 Enabling hierarchical layouts . 84

v

7.4 Toward information crossing . 87
7.4.1 The new molecule in the ToPoliNano EDA framework 88
7.4.2 Simulating the crosswire with ToPoliNano 90

7.5 Consistent visualization in the FCNviewer 91

8 Advanced molecular FCN circuit design with the ToPoliNano EDA
framework 95
8.1 QCA adders . 96
8.2 Molecular 1-bit full adder . 97

8.2.1 Layout . 98
8.2.2 Simulation and testing . 98

8.3 Molecular 2-bit full adder . 99
8.3.1 Layout . 100
8.3.2 Simulation and testing . 100

8.4 Molecular N-bit full adder . 100
8.5 Molecular ISCAS C17 . 101

8.5.1 Layout . 103
8.5.2 Simulation and testing . 104

References 116

Appendix A Comparative analysis of the molecular FCN simulators 117
A.1 Evaluating SCERPA importers . 117
A.2 Evaluating SCERPA and ToPoliNano simulators 119
A.3 Molecule encoding checker . 121

Appendix B Enhancing the SCERPA algorithm 123
B.1 Dynamic damping . 123
B.2 ToPoliNano clock waveforms . 124

Appendix C Enhancing the ToPoliNano EDA framework 126
C.1 Parallelizing the ToPoliNano simulator . 126
C.2 Introducing double-driver . 127
C.3 Enabling hierarchical layouts . 129
C.4 Consistent visualization in the FCNviewer 130

vi

List of Figures

1.1 Graphical representation of Moore’s Law, showing the exponential in-
crease in the number of transistors on integrated circuits over time. 2

1.2 Paradigms in the semiconductor industry. Moore Moore, More than Moore,
and Beyond CMOS paradigms, along with their main characteristics. . . . 3

1.3 Numbering convention for the dots in a QCA cell used to compute the
polarization of the cell. 8

1.4 Polarization states of a QCA cell representing logic ‘0’ and logic ‘1’ derived
by the charge distribution within the quantum dots. 9

1.5 A binary wire in QCA designs comprised of six cells transmitting logic ‘1’. 9
1.6 Two different layouts for the QCA inverter. (a) The widely used dual-

branch inverter, and (b) the alternative single-branch inverter. 10
1.7 Majority voter circuit implemented using QCA principles with three input

cells, one evaluation cell, and one output cell. 11
1.8 Three states of a QCA cell: logic ‘0’, logic ‘1’ and null state. 12
1.9 Trapezoidal clock waveforms scheme for reliable and smooth information

transmission in complex QCA layouts. 13
1.10 Four-phase clocking scheme. Adiabatic switching ensures smooth transi-

tion and propagates information among clock zones. 14
1.11 Two logical encoding states of a metal-dot QCA cell. 15
1.12 Three states of a magnetic QCA cell. Up state encoding logic ‘0’, down

state encoding logic ‘1’, and null state. 17
1.13 Examples of MQCA devices: (a) Magnetic QCA wire. (b) Magnetic QCA

majority voter. 18

2.1 Encoding states of a 2-dots oxidized molecule: logic ‘0’, transient state,
and logic ‘1’. 19

2.2 Three states of a molecular QCA cell with three dots. 20
2.3 Structural and schematic representations of the dyallyl-butane molecule. . 22
2.4 Structural and schematic representations of the decatriene molecule. . . . 23
2.5 Structural and schematic representations of the bis-ferrocene carbazole

molecule. 24
2.6 Switching field effects on a bis-ferrocene molecule. A positive field re-

strains the charge in Dot2, whereas a negative field confines it in Dot1. . . 27

vii

2.7 Clock field effects on a bis-ferrocene molecule. A positive field facilitates
the molecule’s transition to an encoding state, whereas a negative field
causes the charge to be pushed into the null state. 28

2.8 Charge distribution of the bis-ferrocene molecule alongside its aggregated
charges. 29

2.9 Interactions in a complete mQCA cell. (a) 3D view and (b) top view. . . 31
2.10 Vin − Vout Transcharacteristics of a complete bis-ferrocene cell subjected

to three clock fields. 31
2.11 Vin–AC transcharacteristics of a bis-ferrocene molecule subjected to three

clock fields. 32
2.12 MosQuiTo schematic model for system-level interactions. 33
2.13 Schematic representation of the molecular wire. 34
2.14 Single mFCN cell layout made of a driver, two adjacent molecules and an

output. 34
2.15 Single phase mFCN wire layout made of six cells. 35
2.16 Three phases mFCN wire layout made of twelve cells. 35
2.17 Two-line three phases mFCN wire layout. 36
2.18 Two-line mFCN L-connection layout. 36
2.19 Two-line mFCN T-connection layout. 37
2.20 Two-line mFCN inverter gate layout. 37
2.21 Two-line mFCN majority voter layout. 38
2.22 XOR gate implemented in the digital domain with a majority voter and

inverter-based logic. 39
2.23 Two-line mFCN XOR gate layout. Each square corresponds to an mQCA

cell, consisting of two adjacent bis-ferrocene molecules. 40
2.24 Top view representation of a practical clocked wire implementation. . . . 41

3.1 SCERPA directory structure. 43
3.2 Schematic of SCERPA highlighting the main sections. 43

4.1 The ToPoliNano EDA framework. 51
4.2 ToPoliNano’s EDA framework flow to desing, simuale and validate mFCN

circuits. 53
4.3 Single-line mFCN majority voter layout implemented with MagCAD editor. 54
4.4 ToPoliNano’s GUI to specify simulation parameters. 56
4.5 FCNviewer graphical representation of the majority voter simulated at

four different time instances: (a) when all cells, except drivers, are in
reset, (b) the propagation of the driver value to the central cell, (c) the
evaluation of the central cell based on the most recurrent input, and (d)
the final propagation of the result toward the output. 59

4.6 FCNviewer graphical representation of the clock waveforms and the charge
variations of the output cell dots during the simulation. 60

6.1 Dynamic damping analysis for the inverter gate. 75

viii

6.2 Dynamic damping analysis for the majority voter gate. 76
6.3 The effects of dynamic damping on simulation time for the inverter gate

compared to static damping. 77
6.4 The effects of dynamic damping on simulation time for the majority voter

gate compared to static damping. 78
6.5 ToPoliNano clock waveforms generated with nSteps = 20 and N = 4. . . 78

7.1 Multi-threaded and single-thread simulation times for a set mFCN circuits. 82
7.2 The effects of parallelization on simulation time for a set of mFCN circuits

compared to single-thread. 83
7.3 Single (a) and double-driver (b) representation of a majority voter. 84
7.4 One-level hierarchical design applied to the XOR gate. 87
7.5 Neutralized bis-ferrocene molecular QCA cell. 88
7.6 mFCN crosswire layout made of neutral oxidized bis-ferrocene molecules. 89
7.7 Vin–aggregated charge transcharacteristics of the neutralized oxidized bis-

ferrocene molecule subjected to two clock fields. 89
7.8 The new ToPoliNano molecular GUI with the driver molecule settings. . . 91
7.9 Two mFCN crosswire layouts. (a) mFCN crosswire layout for same in-

puts. The input branches are synchronized by the same clock phase, and
the output branches share the same clock to forward propagate the data
crossing. (b) mFCN crosswire layout for opposite inputs. The input and
output branches are synchronized with the same clock phase, allowing the
last cell of one input branch to influence the first cell of the other branch
without interference from the evaluation cell. 92

7.10 ToPoliNano simulations for the crosswire layouts. (a) Drivers encode same
logic ‘0’ state. (b) Drivers encode two opposite logic states. 92

7.11 mFCN wire layout generated by MagCAD with shifts and rotations ap-
plied to molecules. 93

7.12 mFCN wire layout represented by the SCERPA 3D viewer with shifts and
rotations applied to molecules. 94

7.13 Top view of the modified mFCN wire layout generated by the FCN viewer. 94
7.14 Lateral view of the modified mFCN wire layout generated by the FCN

viewer. 94

8.1 Schematic flow adopted to design, simulate and test the novel molecular
architectures. 96

8.2 One of the earliest 1-bit full adder layouts proposed for QCA technology
and implemented with a majority voter and inverter-based logic. 97

8.3 Optimized 1-bit full adder implemented with a majority voter and inverter-
based logic. 98

8.4 1-bit molecular full adder implemented with a robust two-line fashion with
a majority voter and inverter-based logic. Each square corresponds to an
mQCA cell, consisting of two adjacent bis-ferrocene molecules. 99

ix

8.5 Optimized 2-bit full adder implemented with a majority voter and inverter-
based logic. 101

8.6 Optimized 2-bit full adder highlighting majority voter and inverter blocks
and the double stage structure. Each square corresponds to an mQCA
cell, consisting of two adjacent bis-ferrocene molecules. 102

8.7 Schematic representation of an N-bit full adder layout. 102
8.8 N-bit full adder hierarchical layout. 103
8.9 ISCAS C17 digital layout. 104
8.10 ISCAS C17 digital circuit implemented with duplicated inputs to over-

come the need to use crosswire. 105
8.11 Two-line mFCN 2-input NAND layout employed a fundamental block to

realize the mFCN ISCAS C17 circuit. 105
8.12 ISCAS C17 molecular circuit highlighting the fundamental NAND logic

gates. Each square corresponds to an mQCA cell, consisting of two adja-
cent bis-ferrocene molecules. 107

8.13 ISCAS C17 molecular circuit hierarchically implemented with NAND gates.108

x

List of Tables

1.1 Inverter truth table. 10
1.2 3-input majority voter truth table. 11

2.1 Exclusive-OR truth table. 39

7.1 Crosswire truth table. 88

8.1 1-bit full adder truth table. 97
8.2 NAND truth table. 104
8.3 ISCAS C17 truth table. 106

xi

List of Algorithms

1 SCERPA pseudocode . 47
2 ToPoliNano’s molecular core pseudocode. 58
3 Pseudocode for printing molecules IDs and Dot4 coordinates. 65
4 Pseudocode for matching molecule IDs in MATLAB and MagCAD. 65
5 Pseudocode for comparing MATLAB and MagCAD ACs. 66
6 Pseudocode for comparing ToPoliNano and SCERPA ACs. 69
7 Pseudocode for validating cell encoding for a given molecule at step τ . . . 71

xii

List of Acronyms

AC Aggregated Charge

AIMD Ab initio Molecular Dynamics

AR Active Region

CA Cellular Automata

CAD Computer-Aided Design

CMOS Complementary Metal-Oxide Semiconductor

CNTFET Carbon Nanotube Field-Effect Transistor

DFT Density Functional Theory

ED Ehrenfest Dynamics

EDA Electronic Design Automation

FCN Field-Coupled Nanocomputing

FinFET Fin Field-Effect Transistor

GAA-FET Gate-All-Around Field-Effect Transistor

GUI Graphical User Interface

HDL Hardware Description Language

HF Hartree–Fock

HOMO Highest Occupied Molecular Orbital

IC Integrated Circuit

iNML In-Plane Nano-Magnetic Logic

IR Interaction Radius

IRDS International Roadmap for Devices and Systems

xiii

IRTS International Technology Roadmap for Semiconductors

ISCAS International Symposium on Circuits and Systems

MC Monte Carlo

mFCN Molecular Field-Coupled Nanocomputing

MosQuiTo Molecular Simulator Quantum-dot cellular automata Torino

MQCA Magnetic Quantum-dot Cellular Automata

mQCA Mmolecular Quantum-dot Cellular Automata

MUT Molecule Under Test

NML Nano-Magnetic Logic

NWFET Nanowire Field-Effect Transistor

PCB Printed Circuit Board

pNML Perpendicular Nano-Magnetic Logic

QCA Quantum-dot Cellular Automata

RT-TDDFT Real-Time Time-Dependent Density Functional Theory

SAM Self-Assembled Monolayer

SCERPA Self-Consistent ElectRostatic Potential Algorithm

SCF Self-consistent Field

TFET Tunnel Field-Effect Transistor

ToPoliNano TOrino POLItecnico NANOtechnology

TSA Two-State Approximation

VACT Vin-Aggregated Charge Transcharacteristic

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

VVT Vin-Vout Transcharacteristic

xiv

Chapter Summaries

The following paragraphs provide an overview of the document’s organization and high-
light key topics discussed in each chapter.

Chapter 1: Introduction and background

Chapter 1 provides an overview of the challenges facing traditional silicon technology and
the emergence of the Momolecular Field-Coupled Nanocomputing (mFCN) paradigm as
a promising solution to overcome these limitations. The chapter highlights the advan-
tages of mFCN implementations, including speed, power, and scalability benefits.

Chapter 2: Molecular Quantum-dot Cellular Automata

Chapter 2 delves deeper into the Molecular Quantum-dot Cellular Automata (mQCA),
one of the key implementations in the FCN paradigm. It begins by introducing the main
characteristics of the approach, including the different types of molecules proposed in
the literature, and the strategies used to analyze them. It then discusses the MosQuiTo
methodology, a promising approach for modelling molecules and examining interactions.
Finally, the chapter explores the challenges involved in manufacturing practical devices.

Chapter 3: The Self-Consistent ElectRostatic Potential Algorithm (SCERPA)

Chapter 3 focuses on SCERPA, a state-of-the-art mFCN research algorithm that em-
ploys a self-consistent iterative loop to solve electrostatic interactions among molecules,
offering an efficient alternative to computationally expensive ab initio methods. The
chapter provides a comprehensive description of the procedure, including its main steps
and key characteristics.

Chapter 4: The ToPoliNano EDA framework

Chapter 4 introduces the ToPoliNano EDA Framework developed to bridge the gap
between academic research and real-world EDA applications in emerging technologies.
The chapter provides detailed information about the molecular simulation core of the
framework, which leverages a similar approach to SCERPA to enable the study of mFCN
circuits.

xv

Chapter 5: Comparative analysis of the molecular FCN simulators

Chapter 5 aims to validate the layout importers of SCERPA and compare the results
obtained between the academic and CAD simulators. The chapter explains the method-
ology used to automate the comparison process and provides a thorough discussion of
the results, highlighting key discoveries.

Chapter 6: Enhancing the SCERPA algorithm

Chapter 6 introduces improvements made to SCERPA, including the addition of dynamic
damping to promote faster analysis and a charge convergence method to assess stability.
The algorithm is also equipped with clock waveforms to regulate information propagation
throughout circuits, similar to the ToPoliNano simulator.

Chapter 7: Enhancing the ToPoliNano EDA framework

Chapter 7 describes novel features and enhancements introduced to the ToPoliNano
framework to bridge the gap between academic research and real-world EDA applica-
tions. These include parallelizing the molecular engine, supporting hierarchical design,
and introducing new molecule for more flexible layouts.

Chapter 8: Advanced molecular FCN circuit design with the ToPoliNano
EDA framework

Chapter 8 showcases the EDA suite’s ability to design, simulate, and test complex molec-
ular circuits. The chapter includes demonstrations of transposing a 1-bit full adder to a
2-bit version and adapting a digital benchmarking circuit into its molecular equivalent.

Conclusions and future perspectives

The final chapter summarizes the key points discussed in this work and emphasizes the
potential of mFCN technology in revolutionizing computation. Moreover, it highlights
a possible area for continued research and development in the field.

Appendices

The appendices provide the code developed and presented in the chapters of this work.

xvi

Chapter 1

Introduction and background

The semiconductor industry is one of the very few industries that began with a roadmap
even before its actual start. In 1965, Intel co-founder Gordon Moore predicted that the
number of transistors in integrated circuits would double roughly every two years [43].
The forecast, known as Moore’s law, has proven to be remarkably accurate, resulting
in significant improvements in computing technology, efficiency, and performance over
the past five decades, making it one of the most impressive and enduring technological
achievements in history [24]. Figure 1.1 shows a graphical representation of Moore’s
Law.

Over time the transistor count regularly increased while the size of each transistor
consistently decreased. As the transistor sizes shrunk, the actual density - defined as
the number of transistors per unit area - was raised, enhancing the functionality of a
given chip size. This aspect allowed the fabrication of more integrated circuits for each
wafer, thus reducing manufacturing costs. In addition, bigger wafer sizes, made possible
by the evolution and optimization of the lithography processes, kept production costs
low. Another advantage of a scaled transistor was the reduction of its switching time
which reduced power consumption along with a trend that used lower and lower supply
voltages.

It is clear how the scaling transistor phenomenon was initially a success since it
helped manufacture more compact, faster and more efficient chips. However, as Moore
pointed out, this phenomenon would eventually face physical limitations. Not surpris-
ingly, in the 70s already, researchers and engineers started to be sceptical about the
actual duration of Moore’s law and tried to forecast its conclusion or its slowdown [57].
The main factors arguing Moore’s exceptional prediction accuracy are related to an im-
minent reach of atomistic and quantum mechanical boundaries and to the constraints
imposed at technological, economic and fabrication levels. For these reasons, scientists
and researchers have started examining ways to keep Moore’s Law exponential trend on
track by investigating alternative computing paradigms to substitute traditional silicon
technology.

At the current time, Figure 1.2 shows the three main paradigms the semiconductor
industry can rely on: Moore Moore, More than Moore and Beyond CMOS [44, 45, 16].

1

1.1. MORE MOORE

Figure 1.1. Graphical representation of Moore’s Law, showing the exponential increase
in the number of transistors on integrated circuits over time.

1.1 More Moore

The term More Moore attempts to achieve higher performance and lower production
costs through continuous scaling of electronic devices, in line with the principle that en-
abled Moore’s prediction to become a reality. This approach can pursue several methods,
including traditional geometric scaling and non-geometric strategies focusing on other
system qualities, such as improved electron mobility or reduced power consumption.

Geometric scaling involves shrinking the size of transistors, which increases the num-
ber of transistors per unit area, resulting in more efficient and higher-performing devices.

On the contrary, non-geometric techniques leverage new materials for manufacturing
chips, such as germanium, or employ 3D integration to stack multiple layers of tran-
sistors, packing more devices into a smaller area. In addition to scaling, the paradigm
emphasizes digital information processing and data storage, thanks to advancements in
microprocessors, logic devices, and memories [44].

This approach enabled a smooth transition beyond the limitations of planar CMOS
transistor technology, which faced issues with gate leakage and power consumption as

2

1.1. MORE MOORE

More Moore

More than
Moore

CPULogic

Memory

Scalng

Analog/RF

Biochips

Sensors & Actuators

Digital data

System-on-chip

Non-digital data

System-in-package

Diversification

Beyond CMOS

Alternative Information Processing

Emerging materials

Novel Memory Devices

Figure 1.2. Paradigms in the semiconductor industry. Moore Moore, More than Moore,
and Beyond CMOS paradigms, along with their main characteristics.

sizes continued to shrink. To address these challenges, researchers engineered the Fin
Field-Effect Transistor (FinFET), which employs a three-dimensional device surrounded
by a gate electrode that protrudes from the substrate. This structure provides better
gate control, reducing leakage and improving energy efficiency. FinFETs also offer su-
perior electrostatic control, improving transistor performance and reducing the impact
of variability in the manufacturing process [20].

While the semiconductor industry has widely adopted FinFET technology, ongoing
research and advancements in the field continue to lead to the introduction of new
and improved versions of FinFETs, demonstrating the importance of the More Moore
paradigm in the development of future technology transistors [44]. Some examples are:

• Gate-All-Around Field-Effect Transistor (GAA-FET): The gate electrode
surrounds the channel, providing better control over the current flow. Moreover,
the design results in faster switching speeds, lower power consumption, and higher
reliability.

• Tunnel Field-Effect Transistor (TFET): The operation is based on quantum
tunneling, offering reduced power consumption and better performance, especially
at low voltages. Nevertheless, limitations still exist around fabrication, optimiza-
tion, and high-quality tunneling materials.

3

1.2. MORE THAN MOORE

• Nanowire Field-Effect Transistor (NWFET): Nanowires made of silicon (Si),
germanium (Ge) or indium arsenide (InAs) are employed for channel manufacture,
offering advantages in terms of electrostatic control, scalability, and reduced short-
channel effects. Nonetheless, obstacles remain in fabrication difficulties, reliability
and correct sizing.

• Carbon Nanotube Field-Effect Transistor (CNTFET): They replace the
active channel of traditional transistors with nanoscale graphene structures called
carbon nanotubes. They offer advantages such as improved performance and low-
power consumption thanks to high carrier mobility. However, their fabrication and
reliability present significant challenges.

The More Moore paradigm, in general, poses significant challenges in the short-term
and long-term. These include physical, material, power and thermal, technological, and
economical concerns [31, 44]:

• Physical: Leakage losses become more pronounced as devices are miniaturized,
affecting their performance, stability and reliability.

• Material: Finding suitable materials for electronic device fabrication is difficult,
especially for providing adequate conduction and insulation properties. This issue
becomes increasingly important as device scaling continues.

• Power and thermal: As the number of transistors per unit area increases, so do
power consumption and thermal activity. Proper management of these challenges
is crucial to prevent overheating and device failure.

• Technological: Lithographical-based processes used for device manufacturing
have limitations that become critical as device dimensions decrease. Ensuring
the accuracy of these processes is crucial for correct device operation.

• Economical: Fabrication costs, including masks, wafer production, and testing,
increase as sizes shrink. There is a risk that these costs may become too expensive,
making More Moore economically unfeasible.

1.2 More than Moore
The expression More than Moore was proposed by the International Technology Roadmap
for Semiconductors (IRTS) in 2005 [45]. It represents a significant shift in the semi-
conductor industry away from merely scaling transistors and toward integrating more
functionalities and components into integrated circuits [28].

This trend has emerged in response to the observation that many of the market’s
application requirements, such as high performance, low power consumption, advanced
RF communication, and the integration of sensors and actuators, cannot be met solely
through Moore’s Law [45]. The inability to meet these demands is mainly due to the
unique and diverse needs of specific applications rather than limitations in technology

4

1.3. BEYOND CMOS

development. Therefore, the approach seeks to integrate analog and mixed-signal tech-
nologies with standard silicon-based computation to create heterogeneous systems that
can meet the complex demands of applications.

More Moore and More than Moore are not seen as two competing paradigms, but
rather as complementary strategies for creating higher-value systems.

More than Moore systems are based on three main features [28, 59]:

• Multidisciplinarity: This principle involves knowledge integration from multi-
ple fields into a single device to meet the specifications of the application domain.
Different areas of expertise, such as physics, materials science, and computer en-
gineering, offer More than Moore devices better performance and functionality
compared to traditional, single-discipline approaches.

• Heterogeneity: The approach emphasizes the integration of multiple digital and
non-digital components, such as sensors, actuators, and communication interfaces,
which cooperate to achieve the desired device goals. By incorporating diverse func-
tionalities, a More than Moore system can provide more comprehensive solutions
for a wide range of applications.

• Reliability: A reliable system requires a suitable testing environment to validate
its behavior in different conditions.

The More than Moore paradigm presents some issues that require attention. One
of the major obstacles is the integration of digital and non-digital components, which
requires software development to bridge the gap between the two worlds [45]. Despite
these difficulties, there has been a growing interest in the More than Moore approach
in recent years, particularly in domains that require integrating digital elements for
computation and non-digital components for application-specific information extraction
[28].

1.3 Beyond CMOS
Beyond CMOS refers to a class of emerging technologies and materials that seek to
overcome the limitations of current silicon technology [16, 21]. These innovative alter-
natives introduce novel approaches to information computing and storage for addressing
the challenges of power consumption, scalability, and performance that are becoming
increasingly problematic for standard electronics. Beyond CMOS technologies have the
potential to replace or supplement current silicon generation, leading to faster and more
energy-efficient devices. Examples of technologies include:

• Spintronics: The technology exploits the spin of electrons as an alternative way
of storing and processing information. The spin is manipulated using different
techniques like magnetic fields or other spin interactions. This mechanism can be
applied to manufacture new types of memory and logic devices with better energy
efficiency, higher density, and additional functionalities.

5

1.4. FIELD-COUPLED NANOCOMPUTING

• Quantum Computing: The paradigm leverages the properties of quantum me-
chanics to process and store data. Quantum bits represent not only the tradi-
tional binary states but also any simultaneous combination of them, thanks to the
phenomenon of quantum superposition. The aspect enables quantum computing
systems to potentially solve problems that classical computers cannot efficiently
handle, such as breaking encryption. Nonetheless, challenges such as fragile qubits,
scaling up, and maintaining consistency over time to be faced to reach their full
potential.

• Field-Coupled Nanocomputing: The technology encodes digital information
in the physical properties of nanoscale components. By leveraging local field in-
teractions, information is transferred element by element. One example of this
approach is Quantum-dot Cellular Automata (QCA), which uses the charge states
of quantum dots to propagate information and perform logical operations through
Coulomb interactions. It offers numerous advantages over traditional comput-
ing technologies, including higher device density and lower power consumption.
Moreover, there are diverse materials for practical manufacturing, such as metals,
semiconductors, magnets, and molecules.

1.4 Field-Coupled Nanocomputing

Field-Coupled Nanocomputing (FCN) is a novel class of computational technology that
goes beyond the limitations of traditional silicon-based computing. While silicon-based
systems have been the primary means of digital processing and storage for several
decades, they are currently facing significant challenges from power consumption, scala-
bility, and speed perspectives. In contrast, FCN offers a promising solution to overcome
these issues, providing an alternative approach to computing.

Unlike traditional silicon elaboration, FCN does not rely on transistors or charge
transportation to process information. Instead, it exploits local field interactions between
nano-size modules organized in well-defined structures and designed to interact with
each other. This characteristic is derived from the theory of cellular automata (CA),
a mathematical concept for processing and storing information in a decentralized way
[32].

FCN offers an unprecedented combination of higher computational performance and
exceptionally low power consumption compared to current silicon devices. Furthermore,
its modular design allows for a straightforward scaling up or down by adding or removing
the nano-modules as needed, providing exceptional scalability and flexibility.

The development of FCN technology has been a collaborative effort of researchers,
resulting in multiple possible technology implementations, each focusing on unique nano-
level structures, properties, and features. One of the most promising approaches is the
Quantum-dot Cellular Automata (QCA), which lays the foundations to develop both
magnetic (MQCA) and molecular (mQCA) variants. These QCAs leverage the unique

6

1.5. CELLULAR AUTOMATA

properties of electrons and the magnetic spin of molecules to store and process informa-
tion, offering a multitude of promising paradigms beyond the conevntional computing
scenario.

1.5 Cellular Automata

Cellular Automata (CA) is a theoretical mathematical concept that allows the study
of complex systems and processes using simple, local rules of interaction applied in a
decentralized manner. It is a discrete-time, discrete-space model composed of a number
of identical, locally interacting elements arranged in a regular grid.

Each cell has a finite number of possible states and evolves according to a fixed set of
rules that depend only on the states of its neighbors at the previous time step. The rules
are often expressed in terms of a transition function that takes the current state of a cell
and its neighbors as input and produces a new state for the cell as output. The system
evolves in parallel and synchronously as a sequence of snapshots, each representing the
state at a particular instant in time.

One of the most remarkable features of CA is its ability to describe and simulate
complex behavior patterns that emerge from the simple interactions between individual
components, making it possible to describe a wide range of phenomena with appropri-
ate rules and initialization. Various fields, including physics, biology, electronics, and
computer science, leverage this property.

In particular, researchers have explored CA as a basis for building computational
systems, with one of the most promising realizations being the Quantum-dot Cellular
Automata (QCA). This approach encodes digital information in the physical properties
of nanoscale components and uses local field interactions to transfer information element
by element, enabling higher device density and lower power consumption.

1.6 Quantum-dot Cellular Automata

Quantum Cellular Automata (QCA) is a highly promising technology for Beyond CMOS
implementations, as it enables information processing and storage at the nanoscale level.
QCA derives from the classical Cellular Automata (CA) paradigm, integrating quantum
mechanical principles to process and store information. The concept was first introduced
in the 1990s by Lent et al. [34].

In QCA, the traditional cells of CA consist of quantum dots, which are semicon-
ductor structures at the nanoscale capable of confining electrons in three dimensions,
resulting in the quantum mechanical properties of quantization of energy levels and
electron tunneling.

The paradigm exploits these properties to enable fine-tuned information processing
and storage down to the electron level. The elementary QCA cell is square-shaped and
represented by two potential zones. The high potential zones represent quantum dots,
while the low potential zones act as barriers that realize quantum confinement.

7

1.6. QUANTUM-DOT CELLULAR AUTOMATA

Each QCA cell contains a pair of free-to-move electrons, which behaves according to
Coulomb’s law. These electrons tend to occupy the farthest possible spots from each
other, minimizing the electrostatic repulsion force. As a result, each cell acquires one of
two energetically equivalent arrangements in which both electrons locate in the antipodal
quantum dots. This binary state of the cell encodes information, with one configuration
corresponding to a logic ‘1’ and the other to a logic ‘0’.

Unlike conventional digital computing, which uses voltage levels to represent infor-
mation, QCA relies solely on the electrostatic coupling interactions among cells, without
charge movements outside them. This approach allows for high speed, low power, and
scalability, making it highly attractive for alternative computing. Despite numerous
advantages over traditional CMOS technology, the practical implementation of QCA
presents significant challenges, especially when scaling up to larger sizes and complexi-
ties.

The polarization of a QCA cell is a measure of the charge distribution within the cell
and is computed as:

P = (ρ2 + ρ3) − (ρ1 + ρ4)
(ρ1 + ρ2 + ρ3 + ρ4) (1.1)

where ρi represents the electronic charge at quantum dot i, and the numbering of
dots is generally decided according to a standard convention, as shown in Figure 1.3. The
polarization of the stable states is +1 or −1 and is used to encode binary information of
‘1’ and ‘0’, respectively. Figure 1.4 illustrates the two encoding states of a QCA cell.

1 3

42

Figure 1.3. Numbering convention for the dots in a QCA cell used to compute the
polarization of the cell.

Interactions between neighbouring cells are achieved through Coulomb interactions,
which arise from the repulsion between the electrons in adjacent dots, resulting in a local
electric field exploitable for transferring information.

The simplest QCA structure consists of two QCA cells placed at a proper distance
from each other. The first cell, named driver, is polarized by forcing its electrons into one
of two allowed configurations. The second cell adopts a state that minimizes Coulomb
repulsion, which is the same as the driver’s state, allowing encoded binary information
to propagate from the first cell. Electrons within the second cell move solely toward
a logic state of ‘0’ or ‘1’ based on the driver’s polarization, without any current flows,
resulting in low-power dissipation and high-speed operation.

8

1.6. QUANTUM-DOT CELLULAR AUTOMATA

P = +1 (logic '1')P = -1 (logic '0')

Figure 1.4. Polarization states of a QCA cell representing logic ‘0’ and logic ‘1’ derived
by the charge distribution within the quantum dots.

Following the same principle, binary wire is created by placing multiple QCA cells
next to each other in the same axis direction [25]. The Coulomb repulsion between
adjacent cells rearranges the positions of electrons in all consecutive cells, allowing input
information to propagate to the last cell. This collective movement of charges is usually
referred to as the domino effect and facilitates the propagation of input information.
Figure 1.5 depicts a binary wire comprised of six cells transmitting logic ‘1’.

A Out

Figure 1.5. A binary wire in QCA designs comprised of six cells transmitting logic ‘1’.

1.6.1 Designing logic circuits

QCA cells can be arranged in specific structures to create a variety of logic computation
devices. The inverter and the majority voter are the two fundamental devices in QCA
technology, and any Boolean circuits can be designed by combining them [25].

The inverter

The inverter is a fundamental building block of digital circuits, responsible for trans-
forming an input signal into its logical complement, based on the truth table provided in
Table 1.1. In QCA designs, the most commonly used structure is the double-branch in-
verter, illustrated in Figure 1.6(a). The layout employs a dual-stage complement process,
which ensures efficient and reliable information inversion.

In contrast, Figure 1.6(b) showcases an alternative layout known as the single-branch
inverter, which utilizes a single-stage diagonal interaction process across two cells. This
design results in more compactness at the expense of worse reliability than the dual-
branch version. Nonetheless, it is often preferred when the area is critical and the
circuit is less inclined to noise. Although the single-branch inverter can operate within

9

1.6. QUANTUM-DOT CELLULAR AUTOMATA

the standard QCA paradigm, it can only work with neutral or zwitterionic molecules in
the molecular counterpart, as demonstrated in [4].

A Out
A

Out

(a) (b)

Figure 1.6. Two different layouts for the QCA inverter. (a) The widely used dual-
branch inverter, and (b) the alternative single-branch inverter.

A Out
0 1
1 0

Table 1.1. Inverter truth table.

Majority Voter Gate

In addition to the inverter, the majority voter is another crucial component in the
design of QCA circuits. It acts as a logic computation device, producing an output
corresponding to the most frequent input signal. Table 1.2 and Figure 1.7 show the
truth table and layout of a 3-input majority voter, respectively. The structure contains
three inputs, one output, and an evaluation cell. The evaluation cell is always polarized
to the majority state, as this minimizes the Coulombic repulsion between the electrons
of the three inputs.

The relationship between the inputs and the output of the majority gate can be
reported as:

MV (A, B, C) = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C) (1.2)

where MV () denotes a majority voter operation and ∧ and ∨ denote AND and OR
operations, respectively.

By setting one of the three inputs of the majority gate to a constant polarization, it
is possible to implement AND and OR gates. Specifically, when a single input polarizes
with P = −1, the output is an AND of the other two inputs:

MV (0, B, C) = B ∧ C (1.3)

Similarly, when a single input polarizes with P = 1, the output is an OR of the other
two inputs:

10

1.6. QUANTUM-DOT CELLULAR AUTOMATA

A B C Out
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1.2. 3-input majority voter truth table.

B

C

A

Out

Figure 1.7. Majority voter circuit implemented using QCA principles with three input
cells, one evaluation cell, and one output cell.

MV (1, B, C) = B ∨ C (1.4)

1.6.2 Enhanced QCA cell

The QCA paradigm relies on the assumption that each cell can switch between its two
possible states seamlessly due to a low potential barrier between them while maintaining
stable logic values thanks to a high potential barrier [63]. Inputs propagate in a specific
direction, typically from left to right. Thus any loss of information is minimized. An
edge-driven approach is employed to favor data propagation. The strategy involves
changing the input condition of the circuit via the domino effect.

11

1.6. QUANTUM-DOT CELLULAR AUTOMATA

However, this technique has limitations, particularly with circuit size, as larger lay-
outs tend to stabilize in unwanted metastable configurations. This behavior can corrupt
the information flow and lead to data loss, making the paradigm challenging to apply in
practice [47, 35].

To address these challenges, an enhanced QCA cell with two additional central dots
that define a non-encoding null or reset configuration is introduced. The new cell includes
two additional central dots that define a non-encoding null or reset configuration, which
can only be accessed by electrons when an external signal is active [17]. These dots play
a crucial role in maintaining stable logic values during switching events by increasing the
distance between charge carriers and raising the potential barrier between the two logic
configurations. This behavior results in more stable states and minimizes the possibility
of errors. Additionally, the dots reduce the barrier for switch and transmission events,
which ensures low-power consumption during switching [63, 47]. Figure 1.8 illustrates
the new QCA cell and its available configurations.

Logic '1'Logic '0' Null

Figure 1.8. Three states of a QCA cell: logic ‘0’, logic ‘1’ and null state.

An external electric field handles the null state. While ideally, a perfect square wave
should be employed, this is practically impossible due to the absence of instantaneous
transitions. Therefore, practical scenarios leverage approximated trapezoidal waves. An
active clock signal gradually pushes charges toward one of the stable states. Once the
clock signal is released, the cell assumes the same configuration as the input [35, 17].

Complex circuits require adiabatic and stable signal transfer to ensure reliable oper-
ation. The layout is organized into zones controlled by a separate clock signal. These
clock signals are partially superposed with adjacent zones, typically through a phase
shift of π/2, to smoothly synchronize the transitions between clock zones in a pipeline
fashion [35]. Each zone has a maximum number of cells to prevent data loss and assure
integrity during signal transmission. Trapezoidal signals are utilized to ensure proper
system function, even in the case of jitter, which can occur due to minimal variations in
signal clock timing [47].

1.6.3 Four-phase clocking system

The external clock signal plays a critical role in maintaining the correct polarization of
cells and ensuring reliable encoding and propagation of information [35, 10]. It consists
of four distinct phases, each serving a specific purpose. Figures 1.9 and 1.10 report a
graphical representation of the four-phase clocking scheme. The phases include:

12

1.6. QUANTUM-DOT CELLULAR AUTOMATA

• Switch phase: The clock is gradually intensified to slowly increment the inter-
dot potential barriers. Therefore, cells encode and propagate information, moving
from the null configuration to the same logical state of neighboring cells.

• Hold phase: The clock and the inter-dot potential barriers reach their maximum
value, leading to clear polarization of the cells. As a result, cells remain locked in
their encoding state, acting as drivers for the next phase.

• Release phase: The clock is gradually released such that the potential barriers
between the logical and the middle dots are decremented. Therefore, the mobile
charges tunnel from the logic toward the intermediate dots, and the cell polariza-
tion gradually becomes less clear, heading to the loss of the logical state. Once the
clock field is entirely released, the cells assume the null configuration.

• Relax phase: The potential barriers between adjacent cells reach their minimum
value, effectively isolating each cell from its neighbors in other clock zones. As a
result, a buffer zone facilitates a smooth transition to the next clock phase. The
duration of this phase is long enough to allow any residual charges in the cells
to dissipate, thus preventing any degradation of the information during the next
clock period.

0.25 0.50 0.75 1 1.25 1.5 1.75 2

Clock zone 1

Clock zone 4

Clock zone 3

Clock zone 2

0

Input

OutputTime (T)

Figure 1.9. Trapezoidal clock waveforms scheme for reliable and smooth information
transmission in complex QCA layouts.

1.6.4 Materials and techniques for QCA fabrication

Over the years, numerous physical implementation approaches have been proposed to
advance the Quantum Cellular Automata paradigm. These strategies typically involve

13

1.6. QUANTUM-DOT CELLULAR AUTOMATA

0.25 0.50 0.75

Switch Hold Release Relax

0 1

Clock
voltage

Time (T)

Figure 1.10. Four-phase clocking scheme. Adiabatic switching ensures smooth transi-
tion and propagates information among clock zones.

exploring different materials and their properties to encode binary information, devel-
oping suitable quantum dots, and designing alternative techniques to meet the unique
demands of the paradigm. QCA cells can be manufactured using various materials, in-
cluding metals, semiconductors, magnets, and molecules. The selection of material and
implementation approach depends on specific requirements, such as operating tempera-
ture, speed, power consumption, and scalability.

Semiconductor QCA

Semiconductor QCA operates on the same fundamental principles as traditional QCA.
It involves manipulating the state of electrons in quantum dots to transfer information
and perform logical operations [42]. The QCA system consists of an array of semicon-
ductor islands arranged in a regular lattice pattern, with each island having two stable
polarization states, depending on the net charge and the direction of the electric field
[56].

Neighbors influence the behavior of adjacent cells. When two semiconductor islands
are brought close to each other, the movement of electrons through the tunneling barrier
induces a polarization change in the neighboring cells [42].

Semiconductor technology can leverage decades of expertise in materials and fabrica-
tion techniques developed through advanced silicon fabrication to enable the realization
of semiconductor QCA [42]. One of the advantages of using conventional lithography
approaches is the possibility to fabricate accurate structures for essential reliable QCA
cells [56]. The standard manufacturing techniques are modified to meet the specific
requirements of QCA technology [56, 41, 42]. The main steps include:

• Substrate preparation: A smooth and uniform substrate is prepared, commonly
using materials such as gallium arsenide (GaAs) or silicon (Si).

• Island formation: Nano-sized islands are formed on the substrate using semi-
conductor processes such as electron beam lithography, ion beam milling, or self-
assembly.

14

1.6. QUANTUM-DOT CELLULAR AUTOMATA

• Electrode deposition: Techniques like sputtering or evaporation deposit plat-
inum (Pt) or gold (Au) electrodes on the substrate. These electrodes provide a
means to apply an electric field to the islands, allowing for manipulation of their
quantum state.

• Tunneling barriers: They let electrons to tunnel between adjacent islands, al-
lowing their charge state manipulation. They are realized by depositing insulating
materials such as aluminum oxide (Al2O3) or silicon dioxide (SiO2).

• Wiring and interconnections: Sputtering or evaporation techniques are used
to deposit interconnections, link the islands, and form logic circuits.

• Device testing and characterization: The devices are tested and characterized
to verify their functionality.

Metallic QCA

The Metal-dot or Metallic QCA was the first practical implementation used to demon-
strate the feasibility of the QCA paradigm. According to the technology, the islands are
typically made of metal, such as aluminum (Al), and the tunneling barriers are made
of insulating materials, such as silicon dioxide (SiO2) [42, 46]. The fabrication and op-
eration principles are similar to those of the semiconductor counterpart, where islands’
polarization encodes binary information.

Figure 1.11 depicts a metallic QCA cell, which can exist in two different polarization
states, allowing for the implementation of logical operations. Capacitors are introduced
to prevent unwanted charge movements between consecutive islands [42]. Metal QCA
provides several advantages, such as a potential for high-speed operation, low power
consumption, and scalability [47]. Metallic islands can also simplify the fabrication
process compared to other QCAs, as standard lithographic techniques can fabricate
them [47].

Despite its pioneering importance, metal QCA has some limitations, such as low
polarization stability compared to its semiconductor counterpart, which can limit the
size of the circuits [42, 2].

Logic '0' Logic '1'

electron
capacitor

tunnel junction

metal islands

Figure 1.11. Two logical encoding states of a metal-dot QCA cell.

15

1.6. QUANTUM-DOT CELLULAR AUTOMATA

Challenges of semiconductor and metal QCA In recent years, metal and semi-
conductor QCA research has been hindered by fabrication and operating challenges at
room temperature. Since QCA cells depend on the quantum behavior of electrons in
a material, thermal noise at room temperature can disrupt their operation. Conse-
quently, these cells typically work at extremely low temperatures, around 70mK [47],
requiring expensive and complex cooling systems. Furthermore, the maximum operating
frequency of cells is usually in the MHz range, which is significantly lower than magnetic
and molecular QCA implementations.

Another significant challenge is fabricating high-quality quantum dots with consis-
tent size and shape. Despite efforts to control geometry through custom growth and
etching techniques, achieving uniformity in size and spacing can be challenging, and
any unwanted variations can lead to misbehavior of the final systems. Additionally, the
properties of the material used to manufacture them heavily influence the performance
of the cells.

Magnetic QCA

Magnetic Quantum-dot Cellular Automata (MQCA) is a QCA implementation that
leverages the properties of nanosize magnets to store and process information [23, 22].
Ferromagnetism is the main principle underlying MQCA, whereby certain materials such
as iron (Fe), nickel (Ni), and cobalt (Co) exhibit a persistent magnetic field, even if there
is no external field [13]. The phenomenon arises due to the exchange interaction between
the magnetic moments of individual atoms in ferromagnetic materials [13].

The exchange interaction causes electrons with the same spin orientation to occupy
adjacent atomic sites, resulting in the alignment of the magnetic moments of neighboring
atoms [23]. Therefore, the magnetic moments of the entire material become aligned,
leading to macroscopic magnetization. Moreover, an external magnetic field further
aligns the magnetic moments of the material, which increases the overall magnetic field
that persists even after the external field is released [37].

MQCA leverages the persistent magnetization of ferromagnetic materials to store
and manipulate binary information [15, 37]. An external magnetic field is employed to
polarize cells in either the up or down direction to encode ‘0’ or ‘1’, respectively [29].
If no external field is present, MQCA cells can be oriented horizontally to create a null
state. In this state, the magnetic moments of the cell are perpendicular to the direction
of magnetization, resulting in a metastable intermediate state that does not contribute
to the global magnetic field [29, 26]. Figure 1.12 illustrates the three configurations of a
magnetic QCA cell.

Furthermore, the inherent non-volatility of magnetic materials enables the retention
of information without constant refreshing, thereby reducing energy consumption [23].

Magnetic QCA cells typically range in size from 50 to 100 nm and are arranged in
a regular grid pattern [15]. These cells interact with their neighbors through magnetic
field coupling [29], which depends on the alignment of their magnetic moments. If
the magnetic moments are aligned, the interaction is more vigorous, whereas if not,

16

1.6. QUANTUM-DOT CELLULAR AUTOMATA

Logic '1' NullLogic '0'

Figure 1.12. Three states of a magnetic QCA cell. Up state encoding logic ‘0’, down
state encoding logic ‘1’, and null state.

it is weaker [37, 29]. MQCA exploits this field interaction to implement information
propagation and logic operations in [29, 48].

In the case of an MQCA horizontal wire, transmission occurs in two steps. First,
a global external magnetic field aligns all nanomagnets along their magnetically hard
axes. Then, the external field is removed, and the input value is applied to the driver cell.
As a result, the dipole field alignment between neighboring cells induces an antiparallel
magnetization state, thereby propagating the signal [48].

Regarding logical operations, the majority voter is the fundamental logic gate in
MQCA, functioning similarly to the standard QCA paradigm [15]. Figure 1.13 shows a
wire and a majority voter implemented according to MQCA.

In magnetic QCA, as with standard QCA, the reliability of signal propagation can
decrease as the number of cells in a circuit increases. A commonly used solution involves
dividing the circuit into more compact zones, each driven by suitable clock circuitry.
This partitioning limits signal propagation to a smaller number of cells, facilitating
more reliable cascade propagation.

Compared to metal and semiconductor QCA implementations, magnetic QCA offers
several advantages. It features more feasible fabrication processes, operates at room tem-
perature, and consumes less power [22, 26]. Additionally, the persistent ferromagnetic
property is leveraged to create systems that combine computation and memory without
the need for continuous power [26]. However, stability issues may arise if the nanomag-
nets have dimensions below 20 nm [29]. Moreover, the maximum working frequency is
not as high as in the molecular counterpart [15].

Molecular QCA

The molecular QCA approach is the most promising, along with the magnetic imple-
mentation. It employs molecules as charge storage and creates quantum-dot structures
using the redox active centers within the molecule. These regions enable the exchange
of charges while preserving the nature of the molecule. Due to their versatility and effi-
ciency, molecular QCA cells have significant potential for creating powerful computing
devices. The following chapter provides further details on the mQCA paradigm.

17

1.6. QUANTUM-DOT CELLULAR AUTOMATA

A

Out

(a) (b)

A Out B

C

Figure 1.13. Examples of MQCA devices: (a) Magnetic QCA wire. (b) Magnetic QCA
majority voter.

18

Chapter 2

Molecular Quantum-dot Cellular
Automata

According to [36], the molecular implementation of QCA is one of the best options
available in the Beyond CMOS scenario. This approach, also known as molecular field
Coupled nanocomputing (mFCN), takes advantage of local field interactions among
nanoscale molecules to enable propagation and computation without charge transporta-
tion.

In mFCN, redox-active centers are used as quantum dots to release or accept an
electron following oxidation or reduction, respectively. These reduction-oxidation centers
are sites within a molecule capable of exchanging electrons with the surroundings and
modifying the charge distribution of the molecule, resulting in a net positive or negative
charge. The charge positions enable the encoding of binary information while preserving
the molecule integrity [36].

Molecular QCA relies on at least two redox centers connected by a linking element
to promote charge tunneling and enable the realization of a half mQCA cell. Figure 2.1
illustrates the two binary encoding states of a half mQCA implemented with a two-dot
molecule.

+e +e

Logic '0' Logic '1'Transient state

Redox centersTunneling path

Figure 2.1. Encoding states of a 2-dots oxidized molecule: logic ‘0’, transient state,
and logic ‘1’.

19

2.1. PROMISING CANDIDATE MOLECULES FOR MQCA

Nevertheless, to prevent metastability issues and ensure reliable information trans-
mission, a third non-encoding dot is added to enable the null state, as discussed in Section
1.7. Therefore, a complete mQCA cell typically consists of two juxtaposed molecules
with three dots each, resulting in six redox active sites. When two molecules are placed
at a proper distance from each other, their Coulombic electrostatic coupling leads to
two distinct configurations that minimize the system energy. Figure 2.2 shows the two
binary encoding states and the null configuration of a complete mQCA cell.

Logic '1'Logic '0' Null

Figure 2.2. Three states of a molecular QCA cell with three dots.

Multiple mQCA cells can be arranged together to create complex molecular systems,
where each molecule’s charge distribution is influenced by its neighbors through elec-
trostatic interactions. The four-phase clocking scheme, which comprises switch, hold,
release, and relax phases, in combination with the null state, enables adiabatic switching.

Molecular QCA is widely recognized as a highly promising approach, offering nu-
merous advantages from technological, computational, and operational standpoints [34].
One significant advantage is the absence of charge transport, resulting in extremely
low-power dissipation. This aspect enables exceptional working frequencies in the ter-
ahertz range, high device density, and the ability to operate at ambient temperature
[34, 33]. Furthermore, chemical synthesis processes can be employed to produce high-
quality and uniform molecules, overcoming the inherent process variations associated
with lithographic fabrication techniques [39].

2.1 Promising candidate molecules for mQCA
The development of molecular FCN has led to the proposal of a wide range of candidate
molecules. However, the practical implementation of these molecules can pose significant
challenges, requiring advanced processing techniques. In addition, to meet the require-
ments of the FCN paradigm, a suitable molecule must possess several features [61, 40]
to ensure proper functioning. These include:

• Polarization activity: Polarizability describes a molecule’s ability to generate
a dipole moment when exposed to an electric field. The property is exploited for
information encoding due to its potential for binary information storage.

• Structural and electronic stability: The molecules should exhibit structural

20

2.1. PROMISING CANDIDATE MOLECULES FOR MQCA

and electronic stability during ambient operations. Molecules with high energy
barriers prevent spontaneous changes, reducing the chances of device failure in the
long term.

• Electron transport: The molecules should possess high electron mobility and
low resistance to ensure efficient information propagation within the device.

• Binding affinity: The molecules should allow for strong binding affinity for the
substrate. Adding specific binding groups to the molecule enables a strong enough
connection.

• Synthesis feasibility: The molecules should be synthesized in a reproducible and
scalable manner, facilitating the manufacture of practical devices.

• Testability: The molecules should be testable to accurately characterize their
properties, allowing for a deeper understanding of the molecule behavior.

• Low-power consumption and high-speed: The molecules should have a low
energy barrier between their stable states, providing fast switching with minimal
delays, meeting the unique low-power and high-speed characteristics of the mQCA
paradigm.

In addition to the above strict requirements, there are also less stringent properties
the paradigm can exploit for information encoding. One such property is redox activity,
which allows molecules to undergo reversible changes in their oxidation state, modulating
their electrical properties and enhancing their encoding capabilities. For example, the
bis-ferrocene leverages its redox activity to switch between two stable states, enabling
bistable information encoding. However, there are also monostable structures that can
leverage only on their polarizability binary storing. Diallylbutane is one such molecule
that has been demonstrated as a viable candidate for mFCN technology [7, 6].

Charge neutrality is another less strict property for modeling mFCN, but essential
when manufacturing practical devices. It helps avoid unwanted vertical interactions
among molecules, which can become significant in a 2D implementation, where molecules
are deposited in both horizontal and vertical directions. A counterion is introduced
during the synthesis process to ensure charge neutrality. [40].

Although many molecules possess the physical, electronic, and structural properties
required by the paradigm, only a limited number have been successfully synthesized and
tested for practical applications. Notably, diallyl-butane and decatriene are considered
the benchmark for mQCA implementation due to their demonstrated feasibility [39, 33].

Furthermore, the University of Bologna synthesized the bis-ferrocene molecule specif-
ically for mQCA applications, as documented in [68, 12]. This molecule has exhibited
significant promise at the circuit level, indicating its potential as a viable compound for
practical devices, as evidenced by research conducted by the Politecnico di Torino [8,
67].

21

2.1. PROMISING CANDIDATE MOLECULES FOR MQCA

2.1.1 Dyallyl-butane

One of the first molecules presented for mQCA is the diallyl-butane, which is depicted
in structural and schematic forms in Figure 2.3 [8]. This molecule consists of two allyl
groups that function as quantum dots and a butane connection that links them. It is
often used in its cationic form to let the unpaired electron move in the structure and
localize in one of the two dots. To realize a complete QCA cell, two diallyl-butane
molecules are placed at a proper distance d.

Despite its good performaces, a real FCN implementation cannot use it due to the
lack of a third dot to encode the null state. As a result, it is impossible to control
it through an external clock field. Moreover, there is no binding element, making its
practical realization even less feasible.

Dot1

Dot2

Allyl

Butane

Allyl

Linker

(a) (b)

z

Figure 2.3. Structural and schematic representations of the dyallyl-butane molecule.

2.1.2 Decatriene

Decatriene C10H16 is a linear hydrocarbon molecule classified as an alkene due to the
presence of at least one carbon-carbon double bond [39]. Its structure consists of a
linear chain of ten carbon atoms with alternating double carbon-carbon bonds, creating
a conjugated system of pi electrons. This configuration results in an electron cloud
that contributes to the molecule’s unique electronic properties and stability. These
qualities make decatriene a promising candidate for various applications in chemistry
and materials science [39]. Figure 2.4 shows the molecular structure and schematic
representation of decatriene.

The molecule has two ethylene C2H4 groups at each end of the carbon chain and
a third ethylene group in the center. These groups can act as quantum dots, realizing
a three-polarization state. Decatriene has been proposed as a potential candidate to
overcome the limitations of diallyl-butane, as it contains a third ethylene group that

22

2.1. PROMISING CANDIDATE MOLECULES FOR MQCA

enables the null state, allowing for clock controlling [39]. Nonetheless, just like diallyl-
butane, decatriene lacks the necessary elements to bind to a surface.

(a) Dot1 Dot2

Dot3

(b)

LinkerLinker

EthyleneEthylene

Ethylenez

Figure 2.4. Structural and schematic representations of the decatriene molecule.

2.1.3 Bis-ferrocene carbazole

Bis-ferrocene carbazole or bis-ferrocene is a hybrid molecule that combines two ferrocene
units, Fe(C5H5)2, linked by a bridging carbazole group, C12H9N. The molecule has been
extensively studied and synthesized by researchers, including L. Zoli in [68] and V. Arima
et al. in [12], providing a comprehensive understanding of its properties and potential
applications in molecular computing.

L. Zoli’s work [68] focuses more on the theoretical aspects, conducting theoretical
density functional theory (DFT) calculations to study the behavior and electronic prop-
erties of the molecule in circuits. On the other hand, V. Arima et al. in [12] present
thiolated-carbazole linked bis-ferrocenes, which are similar to bis-ferrocene carbazole but
with thiol groups added for surface binding. The work is more focused on the synthesis
and characterization of these molecules and their self-assembled monolayers (SAM) on
gold surfaces.

Figure 2.5 displays the structure and schematic representation of the bis-ferrocene
molecule [8]. Each ferrocene unit contains two cyclopentadienyl rings bound to an iron
atom, providing a pair of delocalized electrons to use as quantum dots. The carbazole
group, a heterocyclic compound containing a nitrogen atom, acts as a third dot, enabling
the implementation of the null state [68]. The carbazole group also offers a means of
functionalizing the molecule for surface binding, which is critical for practical implemen-
tations [68].

The molecule is typically oxidized due to better performance by removing an electron
through electrochemistry [8]. A counterion is combined with the molecule to maintain
charge neutrality [12].

23

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

(a) (b)

Dot4

-SH

z

Dot1 Dot2

Ferrocene

Dot3

Thiol

Dot4

Carbazole

Ferrocene

Figure 2.5. Structural and schematic representations of the bis-ferrocene carbazole
molecule.

2.2 Methodologies for analyzing mQCA systems

Designing a functional molecular QCA device is a complex process that requires a thor-
ough analysis of every aspect of the mQCA paradigm. A comprehensive methodology is
demanded to ensure a rigorous and universally applicable flow to all candidate molecules.

One possible approach is to use quantum mechanical chemistry analysis through ab
initio simulations to rigorously characterize each molecule and its interactions with other
molecules in the system. Nevertheless, this method is computationally intensive, making
it suitable for simple circuits and single molecules only.

Therefore, it is crucial to explore alternative approaches for studying the behavior of
molecules in mQCA systems that can handle complex circuits and multiple interactions
while minimizing computational resources.

2.2.1 Ab initio methods

Ab initio calculations are a class of computational methods that rely on the principles
of quantum mechanics to model the structure and properties of various materials, in-
cluding electronic energy and charge distribution, without using any experimental data
or empirical parameters. Some examples are:

• Hartree-Fock (HF): It is a quantum mechanical method that relies on solving
the Schrödinger equation for the molecular orbitals of electronic systems.

• Density Functional Theory (DFT): It computes the electronic structure of de-
vices considering the distribution of electrons in space, unlike traditional quantum
mechanical methods, which solve wavefunctions of single charges.

24

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

• Monte Carlo (MC): It provides a statistical description of the system’s elec-
tronic transport properties, such as conductivity, mobility, and carrier density, by
randomly sampling the positions and speed of electrons.

• Ab initio Molecular Dynamics (AIMD): It is based on Molecular Dynam-
ics (MD) which describes how electronic properties of nuclei change over time
by solving the classical equations of motion. A starting configuration is chosen
and initial speeds are assigned to each element. The simulation proceeds by it-
eratively advancing the positions and velocities of the particles using numerical
integration techniques to calculate the forces acting on each particle at each time
step. Similarly, AIMD achieves the same goal but on the base of quantum me-
chanical calculation, which makes it more accurate, but also very computationally
demanding.

• Real-Time Time-Dependent Density Functional Theory (RT-TDDFT):
If external forces acting on a system and initial state are known, the theory can pre-
dict how the system’s electronic wavefunction will evolve. Chemistry and physics
employ it to characterize time-dependent properties such as electron movement.

• Ehrenfest Dynamics (ED): Originally introduced by Paul Ehrenfest to investi-
gate the behavior of molecules in a gas, ED is a simulation technique that models a
group of particles as individual point elements interacting with each other, track-
ing their positions and momenta over time. This information is used to make
predictions about how the group as a whole will behave.

Ab initio calculations have been extensively utilized in researching QCA interactions
among individual and multiple molecules [33, 49, 35]. One of their main advantages is
their high accuracy, which allows for the precise characterization of molecular systems.
However, their computational expense and time-consuming nature limit their practicality
for modeling information propagation in complex systems.

2.2.2 QCADesigner

To address ab initio computations drawbacks, researchers are actively searching for more
efficient methods. In the context of quantum cellular automata, two-state approxima-
tion (TSA) is a commonly used quantum mechanics model that describes the electronic
states of cells using ground and exited states [38]. The approach forms the basis of
QCADesigner, a highly effective simulation tool for the general QCA paradigm [65].

However, it has limited applicability in describing the behavior of molecular FCN
circuits due to the use of an overly simplified model and inability to include process
variations [11]. For these reasons, the authors in [9, 50] propose a new methodology to
analyze molecular devices.

25

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

2.2.3 MosQuiTo

Molecular Simulator Quantum-dot cellular automata Torino (MosQuiTo) [9, 50] is a
promising method for analyzing molecular devices. Although initially presented for the
bis-ferrocene, any candidate mFCN molecule can employ it. The procedure is deeply
connected with the nano-level physical parameters of the molecule under test and consists
of three main steps:

• Single molecule characterization: Ab initio simulations are employed to re-
trieve the molecule electronic properties.

• Post-processing: The obtained results are post-processed to extract relevant
figures of merit.

• Analysis at the system-level: It is performed to consider every intermolecular
interaction in the circuit.

The MosQuiTo methodology translates every molecule interaction into a set of elec-
trostatic equations that describe the actual circuit behavior at the molecular level. This
approach overcomes the need to rely on very demanding ab initio simulations while
preserving the connection with the underlying physics. The three-step analysis yields
results employed as a model by the Self-Consistent ElectRostatic Potential Algorithm
(SCERPA), a standalone procedure that simulates complex molecular FCN logic devices.
Chapter 3 provides more details about SCERPA.

2.2.4 Characterization of the single molecule

The starting point of the procedure is to obtain the electronic structure and physical
properties of the molecular system through quantum mechanical analysis. In case of the
bis-ferrocene, density functional theory (DFT) is leveraged using Gaussian 09, a widely
used software package for computational chemistry [11]. Next, the single molecule is
characterized in three conditions: under the influence of another molecule, a switching
field, and a clock signal.

Effect of another molecule

The characterization process of a molecular system involves analyzing the simplest form
of a mFCN device to pave the way for the analysis of the full range of interactions
present in more complex molecular systems. Specifically, a single molecule is analyzed
in response to a driver molecule positioned at a distance d. The driver can be modeled as
a neutral element with two-point charges filling the two encoding dots or as an oxidized
element with a single positive charge.

26

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

Effect of switching field

The switching field is an electric field applied parallel to the working dots to induce charge
localization in one of the two logical dots, allowing for the desired molecule polarization
to be defined. Conventionally, if positive, the charge is confined in Dot2, and if negative,
the charge localizes in Dot1. This mechanism enables the writing of logical state ‘0’ or
‘1’ to the single molecule. Figure 2.6 depicts a graphical representation of the switching
field effects.

Positive switching field

+e Negative switching field

Dot1 Dot1
Dot2

Dot3

+e

Dot3
Dot2

y x

z

Figure 2.6. Switching field effects on a bis-ferrocene molecule. A positive field restrains
the charge in Dot2, whereas a negative field confines it in Dot1.

Effect of clock field

The clock field is an electric field required to satisfy the adiabatic switching condition. It
can enhance or impede the interaction between neighboring molecules, thereby providing
greater control over information processing. In the context of the bis-ferrocene and other
three-dot molecules, the field is applied along the vertical axis of the molecule to achieve
the desired charge distribution and enable proper logic switching. Conventionally, if
positive, the charge can localize in one of the encoding dots, whereas, when negative, the
molecule remains in the null state. Figure 2.7 depicts a representation of the switching
field effects.

2.2.5 Post-processing of results

The results of the ab initio simulation are further processed to generate more usable
figures of merit, which allow for a more accurate interpretation and understanding of
the physical and chemical properties of the system [11].

27

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

Dot3

+e

Positive clock field
+e

Positive clock field

Dot1

Dot2

Dot1

Dot2
Dot3

Negative clock field

Dot1

Dot2
+e Dot3

y x

z

Figure 2.7. Clock field effects on a bis-ferrocene molecule. A positive field facilitates
the molecule’s transition to an encoding state, whereas a negative field causes the charge
to be pushed into the null state.

Atomic charge

Atomic charges are computed via ab initio simulations using the Merz-Singh-Kollman
(MK) approximation scheme [58]. They are an alternative to the traditional HOMO-
based analysis, providing insight into the molecule’s behavior under different operating
conditions, such as ground state and biasing.

Aggregated Charge (AC)

The total charge of each dot in a molecule is represented by the aggregated charge. This
charge is calculated by summing all the atomic charges of the redox center to which
the dot belongs. The AC model considers the molecule as a collection of aggregated
point charges. For instance, in the case of bis-ferrocene, the molecule is represented by
three ACs: Q1, Q2, and Q3, which correspond to Dot1, Dot2, and Dot3. The charge
distributions of the bis-ferrocene molecule and its corresponding aggregated charges are
displayed in Figure 2.8.

Electric field

The electric field generated by the charge distribution of a molecule can be computed
using electrostatic formulas. Specifically, the electric field generated by a single point
charge +q1 located at position r1 can be evaluated at any point in space r by introducing
a test charge +qt. The distance between the two charges is:

r1 = r1 · r̂ (2.1)

r1 =
ñ

(x − x1)2 + (y − y1)2 + (z − z1)2 (2.2)

where r̂ is the unit vector pointing from the charge +q1 to the test charge +qt and
r1 is the distance magnitude. Gauss law is used to obtain the Coulomb force applied on
the test charge +qt:

F1(r) = 1
4πε0

q1 · qt

r2
1

· r̂ (2.3)

28

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

Dot1 Dot2

Dot3

Dot4

Figure 2.8. Charge distribution of the bis-ferrocene molecule alongside its aggregated
charges.

where ε0 is the vacuum permittivity.
The associated electric field E1 is computed as:

E1(r) = F1(r)
qt

= 1
4πε0

q1
r2

1
· r̂ (2.4)

The model can be extended to a system of N point charges by summing over all the
individual contributions. The total Coulomb force on the test charge +qt becomes:

F (r) =
NØ

i=1

1
4πε0

q1 · qt

r2
1

· r̂ (2.5)

with an associated electric field:

E(r) = F (r)
qt

=
NØ

i=1

1
4πε0

q1
r2

1
· r̂ (2.6)

The electric field has three components along the x, y, and z directions:

Ex(x, y, z) =
NØ

i=1
Ex,i(x, y, z) (2.7)

29

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

Ey(x, y, z) =
NØ

i=1
Ey,i(x, y, z) (2.8)

Ez(x, y, z) =
NØ

i=1
Ez,i(x, y, z) (2.9)

The voltage associated to an electric field can be computed as:

V (r) = −
Ú

γ
E · dl = −

Ú
γx

Ex
∂V

∂x
dx −

Ú
γy

Ey
∂V

∂y
dy −

Ú
γz

Ez
∂V

∂z
dz (2.10)

where E is the electric field, dl is the differential length element, and γ is the path
connecting the two charges. The integrals represent the line integrals of the electric field
along the three coordinate axes.

Correspondingly, the electric field is calculated from the voltage as:

E(r) = −∇V (r) = −∂V

∂x
x̂ − ∂V

∂y
ŷ − ∂V

∂z
ẑ (2.11)

where ∇ is the gradient operator and x̂, ŷ, and ẑ are the unit vectors in the x, y, and
z directions, respectively and the negative sign means that the electric field is directed
from higher potential to lower potential.

Equivalent voltage at the receiver

The electrostatic model mentioned earlier is employed to analyze the system of charges
illustrated in Figure 2.9. In this system, a collection of NAC charges denoted by
{QD

1 , . . . , QD
NAC

} and positioned at {rD
1 , . . . , rD

NAC
}, represents a driver D. In turn, the

driver generates a voltage VD at any point r in space, which can be obtained as:

VD(r) = 1
4πε0

NACØ
β=1

QD
i

d
1
rD

β , r
2 (2.12)

where d
1
rD

β , r
2

represents the Euclidean distance between each of the aggregated
charges of the driver and the point r.

When a molecule MUT is placed at a distance d from the driver, with its active dots
Dot1 and Dot2 positioned at rj

1 and rj
2, respectively, the electric field generated by the

driver on the MUT is determined as:

Vin =
Ú

γ
ED · dl = VD(rj

1) − VD(rj
2) (2.13)

where ED represents the electric field generated by the driver charge distribution,
and γ is the path connecting the dots of the MUT.

The voltage generated by the MUT in response to the driver voltage is named equiv-
alent voltage at the receiver (Vout). To measure it, a receiver molecule is employed,
resulting in a complete mQCA cell.

30

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

(a) (b)

Qj
2

D1

D3

Qj1

rj3

rD1

Qj
3

rj2
Qj

1

y x

z

MUT

rj2rD2
QD

1

QD
2

d

Driver

QD
3

rD3

Qj
2

QD
1 Qj

1

y
x

Driver

Vout

QD
2 Qj

2

MUT

d

QD
1 Qj

1

Figure 2.9. Interactions in a complete mQCA cell. (a) 3D view and (b) top view.

Vin − Vout Transcharacteristic (VVT)

The relationship between the input driver voltage and the output generated voltage is
named Vin −Vout Transcharacteristic. This figure of merit can be studied in the presence
of external clock fields and by varying intermolecular distances. Figure 2.10 depicts the
variations in the Vin − Vout transcharacteristic of a bis-ferrocene complete mQCA cell as
a function of intermolecular distance under three external clock fields.

Figure 2.10. Vin − Vout Transcharacteristics of a complete bis-ferrocene cell subjected
to three clock fields.

Vin–Aggregated Charge Transcharacteristic (VACT)

The quantity is derived from ab initio simulations that quantitatively describes the
relationship between the input voltage Vin and the aggregated charges in the presence

31

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

of clock fields. The input voltage is obtained from Equation (2.13) integrated over the
path that links the logical dots of the molecule. Figure 2.11 shows the variations of the
Vin–AC transcharacteristic of a bis-ferrocene molecule as a function of intermolecular
distance under three external clock fields.

Figure 2.11. Vin–AC transcharacteristics of a bis-ferrocene molecule subjected to three
clock fields.

2.2.6 Analysis at the system-level

The figures of merit derived earlier can be employed to shift the focus from a molecular
level to a broader system perspective. A recent study [51] has successfully demonstrated
the feasibility of leveraging a write-in read-out system to model a molecular wire and
analyze information propagation through an iterative procedure. The method can be
generalized and applied to any circuit based on mFCN technology, efficiently analyzing
complex systems.

The procedure can be described using the system shown in Figure 2.12 as a reference.
The generic Molecule j is modelled as a set of NAC charges {Qj

1, . . . , Qj
NAC

} positioned
at {rj

1, . . . , rj
NAC

}. As per Equation (2.12), Molecule j generates a voltage in a generic
position r in space, given by:

Vj(r) = 1
4πε0

NACØ
β=1

Qj
i

d
1
rD

β , r
2 . (2.14)

Simultaneously, all molecules in the system are influenced by Molecule j, both in the
backward driver and forward output direction. If another generic Molecule i, modelled
as {Qi

1, . . . , Qi
NAC

} in positions {ri
1, . . . , ri

NAC
}, the interaction between Molecule j and

Molecule i results in the generation of a voltage by Molecule j, computed as:

32

2.2. METHODOLOGIES FOR ANALYZING MQCA SYSTEMS

Qj
2

D1

D3

Qj1
r1jrD2

rj3
Qj

3

rj2 Qj
1

Qj
2

Driver

Molecule j
rD1

Molecule i
QD

2

QD
1

rD3
ri2

Qi
2

Qi
3

Qi
1

ri3

ri1
QD

3

y x

z

Figure 2.12. MosQuiTo schematic model for system-level interactions.

Vj,i = Vj

1
ri

1

2
− Vj

1
ri

2

2
= 1

4πε0

NACØ
β=1

Qj
β

 1
d
1
ri

1, rj
β

2 − 1
d
1
ri

2, rj
β

2
 (2.15)

After Molecule i receives the influence of Molecule j, it acts as a driver that generates
a backward response to every other element in the system.

In a broader sense, the input voltage Vin,i of each Molecule i is determined by the
combined effects of the voltage generated by the driver VD,i and that of other molecules
Vj,i. In addition, by using the Vin–AC transcharacteristic, the effect of the external field
is considered as:

Vin,i = VD,i +
NACØ
j=1
j /=i

Vj,i (Vin,j , Eclk,j) (2.16)

Furthermore, the Vin–AC transcharacteristic can be employed to retrieve the ag-
gregated charges of each molecule in the system, which can assess the propagation
and computation of the given circuit. Figure 2.13 illustrates the propagation of sig-
nals in a molecular wire, demonstrating how the free charges rearrange themselves in
each molecule dot.

Building upon the unidirectional molecular propagation enabled by the MosQuiTo
method, the authors in [11, 10] propose a more comprehensive algorithm named SCERPA
for studying molecular propagation. The procedure is based on an iterative self-consistent
loop that considers all molecules interactions by modeling them using their aggregated
charges [52]. The algorithm enables the simulation of complex molecular FCN logic
devices without expensive ab initio computations, still providing insights into the un-
derlying physics.

33

2.3. MOLECULAR FCN DEVICES

Output

Molecule i+1Molecule i-1

Molecule j
Molecule i

Input

.....
.....

.

y x

z

Figure 2.13. Schematic representation of the molecular wire.

2.3 Molecular FCN devices
Molecular FCN systems can be categorized into two types based on functionality: those
that solely propagate information and those that realize logical operations. Circuits are
divided into an appropriate number of clock zones, depending on their complexity, to
ensure proper functionality and promote adiabatic switching. The following sections
explore a range of increasingly complex molecular circuits.

2.3.1 Single molecular cell

The simplest molecular FCN circuit consists of a single molecular QCA cell conceived
with two adjacent molecules, as depicted in Figure 2.14. This system is analogous to
the one used by the Mosquito methodology to characterize the behavior of a cell under
the influence of a driver placed at a distance of d. The cell is subjected to a single-phase
clock that facilitates the rearrangement of charges in the molecule after the driver is
imposed in one of the possible encoding states.

A Out

Figure 2.14. Single mFCN cell layout made of a driver, two adjacent molecules and
an output.

2.3.2 Single phase wire

Multiple mFCN cells can be consecutively juxtaposed to create the simplest form of
unidirectional propagation, resulting in a wire. As a reference, Figure 2.15 depicts a
circuit consisting of six cells. Due to the relatively low number of cells, transmission
through a wire of this size can be effectively controlled and guaranteed using a single-
phase clock. Information flows from the driver toward the end of the circuit.

34

2.3. MOLECULAR FCN DEVICES

A Out

Figure 2.15. Single phase mFCN wire layout made of six cells.

2.3.3 Three phases wire

If many cells are placed consecutively, adiabatic switching may not be satisfied, lead-
ing to incorrect information propagation. As a result, long wires are partitioned into
multiple clock phases. This approach is illustrated in Figure 2.16, which depicts a wire
of twelve molecules divided into three clock phases. A pipeline can be created by pre-
cisely synchronizing with the external clock and modifying the driver value every time
the previous information reaches the third clock zone, which occurs with a period T .
In this situation, the driver is far enough to avoid any interaction with the third-phase
molecules and can be changed to another value, improving the circuit bandwidth.

A Out

Figure 2.16. Three phases mFCN wire layout made of twelve cells.

2.3.4 Two-line three phases wire

Experimental simulations have revealed that the last molecule of each clocked wire phase
exhibits weaker charge separation due to a common mFCN border effect [11, 6]. An al-
ternative wire layout based on a two-line bus structure typically solves the issue [10].
Although it may result in crosstalk between the two adjacent lines and an uneven charge
distribution along the bus, information propagation remains accurate. Figure 2.17 illus-
trates the alternative three phases wire layout.

2.3.5 Two-line L-connection

The L-connection is a single-input single-output propagation device. It enables a seam-
less 90-degree turn, allowing for easy transitions of information propagation between
the horizontal and vertical directions of a 2D plane. The two-line bus structure version
depicted in Figure 2.18 further enhances the device’s robustness against information loss
or degradation, such as border effects. The circuit consists of two branches with consec-
utive clock phases that create a pipeline-like structure, enabling complete information
propagation in one direction before copying it to the other and reaching the output.

35

2.3. MOLECULAR FCN DEVICES

OutA

Figure 2.17. Two-line three phases mFCN wire layout.

A

Out

Figure 2.18. Two-line mFCN L-connection layout.

2.3.6 Two-line T-connection

The T-connection device follows the same principle as the L-connection device in sep-
arating the information propagation into two perpendicular directions. It features one
input and two outputs, divided into three branches with two consecutive clock regions.
The first encompasses the driver and facilitates transmission up to the copy point, while
the second propagates the information toward the two outputs. Figure 2.19 shows the
two-line T-connection structure.

2.3.7 The inverter

The inverter logic gate is an essential QCA device used for logic computation that
produces the complement of the input value. It can be implemented in a single-line
configuration, as shown in Section 1.6.1 for the standard QCA paradigm, or in a two-
line bus fashion.

Notwithstanding, research has shown that the single-line structure, when imple-
mented with the bis-ferrocene molecule, is particularly fragile and susceptible to degra-
dation of the output cell polarization [11]. Therefore, the two-line version reported in
Figure 2.20 is preferred for its enhanced encoding stability and robustness.

36

2.3. MOLECULAR FCN DEVICES

B

Out1

Out2

Figure 2.19. Two-line mFCN T-connection layout.

OutA

Figure 2.20. Two-line mFCN inverter gate layout.

37

2.3. MOLECULAR FCN DEVICES

2.3.8 The majority voter

The majority voter is an example of a logic computation device where the output cor-
responds to the most recurrent input signal according to the truth table presented in
Table 1.2. Its molecular structure implemented in a two-line bus fashion is depicted in
Figure 2.21.

The device is partitioned into three clock regions, identifying the input branches, the
central region, and the output branch. The branches propagate the input signals to the
central region, which determines the majority input signal and propagates it through
the third region to the output.

The advantage of having a dedicated evaluation region is required to synchronize all
inputs that may arrive at different times. In [67], various alternative structures of the
majority voter have been proposed, some of which feature an enlarged central region
that fully or partially incorporates the input branches.

B

A

C

Out

Figure 2.21. Two-line mFCN majority voter layout.

2.3.9 The exclusive OR

Majority voters and inverters can be combined to generate any Boolean function [25].
As an example, the XOR logic gate can be computed as a combination of three majority
voters and two inverters:

A ⊻ B = MV (MV (Ā, B, 0), 1, MV (A, B̄, 0)) = (A ∧ B̄) ∨ (Ā ∧ B) (2.17)

38

2.4. MANUFACTURING MOLECULAR FCN DEVICES

where MV () refers a majority voter operation, Ā and B̄ are the two inverted inputs,
and ⊻, ∧, and ∨ denote the XOR, AND, and OR operations, respectively. The device
produces ‘1’ when the input values differ and ‘0’ when they are the same according to
the truth table reported in Table 2.1. The digital implementation of Equation (2.7) and
the two-line molecular XOR gate are shown in Figure 2.23 and Figure 2.22, respectively,
with the molecular version highlighting the fundamental QCA blocks.

A B Out
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1. Exclusive-OR truth table.

A

A

B

B

MV1

MV2

OutMV3
INV1

INV2

Figure 2.22. XOR gate implemented in the digital domain with a majority voter and
inverter-based logic.

Each molecular block preserves its clock phase partition, ensuring information in-
tegrity throughout the three pipeline stages of the circuit. The two inverters comple-
ment the inputs synchronously, making them available to the two majority voters and
implementing the AND logical gate. Finally, their outputs are combined with the third
majority voter, performing the OR operation and providing the final result.

2.4 Manufacturing molecular FCN devices
The implementation of molecular FCN is a significant challenge. Currently, research in
this field is limited, as evidenced by the reduced number of studies [51, 17].

One of the major obstacles is the nanometer size of the molecules involved, which
typically ranges from 1 to 2 nm, making it difficult to manufacture working FCN de-
vices using conventional lithography-based techniques. A possible solution is to exploit

39

2.4. MANUFACTURING MOLECULAR FCN DEVICES

'1''0''0'
'0' '0'

B

A

'1'

INV2 MV2

MV3

MV1

B

A

Out

INV1

Figure 2.23. Two-line mFCN XOR gate layout. Each square corresponds to an mQCA
cell, consisting of two adjacent bis-ferrocene molecules.

molecules that support Self-Assembled Monolayer (SAM). These molecules can attach
to a surface in a highly organized fashion.

Generating the electric fields required for controlling the computation is another
significant challenge. One possible solution involves placing molecules in a trench over
a wire, with two electrodes on the edges. An electric field is generated by applying a
voltage between the electrodes, acting like a capacitor [30]. Figure 2.24 shows a top view
of a clocked wire. However, depending on the size of the electrodes, a certain number
of molecules are inevitably affected, which can result in undesired border effects and
potentially unacceptable behavior [11, 6].

Another critical challenge is finding suitable surfaces for placing molecules and elec-
trodes. Gold surfaces are used as substrate material due to their excellent electrical
conductivity, stability, and compatibility with molecular self-assembly techniques. De-
spite that, the precision of the surface remains limited by the lithography process, and
any roughness can result in vertical misalignment, horizontal shifts, and rotations, which

40

2.4. MANUFACTURING MOLECULAR FCN DEVICES

can affect the propagation of information.
Among the molecules discussed in Section 2.1, bis-ferrocene supports SAM. Its thiol

group is employed to bind it to a gold substrate, as demonstrated in [51]. Molecules
are typically transferred onto the desired surface using techniques such as microcontact
printing or dip-pen nanolithography. The first involves a patterned stamp, while the
latter exploits a fine-tipped pen to deposit the molecules onto the surface.

Clock 1

Clock 1

IN

IN

Clock 2 Clock 3

Clock 3Clock 2 Clock 4

Clock 4

Tr
en

ch
G

old
W

ire

Figure 2.24. Top view representation of a practical clocked wire implementation.

41

Chapter 3

The Self-Consistent ElectRostatic
Potential Algorithm (SCERPA)

Self-Consistent ElectRostatic Potential Algorithm (SCERPA) [11, 10] has been intro-
duced by the VLSI Lab group at the Department of Electronics and Telecommunications
of Politecnico di Torino as an effective tool aimed at the analysis of circuits based on the
molecular FCN paradigm. Its main strength is the ability to model every required aspect
of each molecular cell without relying on computationally expensive ab initio methods,
significantly reducing simulation time compared to contender tools.

SCERPA is implemented as a collection of MATLAB scripts that leverage the molec-
ular electronic model proposed by the MosQuiTo methodology in Section 2.2.3 [50]. The
algorithm employs a self-consistent iterative loop to solve all the electrostatic interactions
among molecules of a device. SCERPA generates an approximate solution that accu-
rately describes the charge distributions of every molecule involved in the computation
and propagation process.

In addition to its core functionality, the procedure provides supplementary analy-
sis, such as the signal energy required for propagation and information processing [7].
Furthermore, the tool includes a viewer engine that visualizes the quantities generated
throughout the simulation, providing a more intuitive understanding of the system’s
behavior.

SCERPA is organized into multiple parts, each with a specific focus. Figure 3.1 and
3.2 depict the directory structure and the algorithm scheme, respectively.

3.1 The layout

The layout section provides tools for defining the physical details of mFCN systems. The
circuit structure can be specified directly within MATLAB using a matrix or importing
a qll file created in the MagCAD graphical editor. For instance, a four-cell wire can be
defined in MATLAB using the following lines:

1 circuit . structure = {’Dr_1 ’ ’1’ ’1’ ’1’ ’1’ ’2’ ’2’ ’2’ ’2’ ’out_y ’};

42

3.1. THE LAYOUT

SCERPA

Algorithm: Carrying the molecular simulations.
...

Database: Ab initio molecule data.
...

DemoFiles: Showing the tool capabilities.
...

Documentation: How to use the tool.
...

Layout: Importing the circuit layout.
...

Viewer: Representing the simulation results.
...

SCERPA.m

Figure 3.1. SCERPA directory structure.

MATLAB

MagCAD

LAYOUT CALCULATION

.qss table.txt

VIEWER

Figure 3.2. Schematic of SCERPA highlighting the main sections.

where Dr_1 and out_y denote the driver and output of the circuit, respectively,
while integers specify the clock phase of standard molecules. The driver logic values

43

3.2. THE ALGORITHM

can be set using the circuit.Values_Dr field. Additionally, the circuit.shift and
circuit.rotation attributes specify shifts and rotations of individual molecules, which
can help model the presence of process variations and more realistic device manufactur-
ing scenarios. To define the molecule to be used for the circuit, circuit.molecule is
employed.

Each molecule is fully characterized by a info.txt file stored in the Database folder.
For example, the bis-ferrocene molecule is described as:

1 CHARGES 4
2 -3.622 -5.062 -0.094
3 -3.588 +5.083 -0.094
4 +3.133515 -0.011731 -0.755
5 +11.776298 -0.053777 +0.409
6

7 ASSOCIATION 3
8 1 3
9 2 3

10 3 4
11

12 CLOCKDATA 3
13 ck1.txt -2 V 39 values
14 ck2.txt 0 V 39 values
15 ck3.txt +2 V 37 values

The CHARGES section lists the coordinates of each atom in the molecule, while the
ASSOCIATION part specifies the connections among atoms for graphical representation.
The CLOCKDATA section contains references to the transcharacteristics of the molecule
obtained through ab initio calculations under different clock conditions.

Time is discretized into a predefined number of steps {t0, . . . , tT }. The layout defines
clock specifications for each time step through the circuit.stack_phase setting. The
mapping between each time step and its clock value is stored in a clock field matrix. Its
generic element {i, τ} contains the electric clock field Eτ

clk,i of Molecule i at the instant tτ .

Alternatively, MagCAD qll description provides a more intuitive way to define a
sub-set of layout-oriented parameters, including molecule type, position, shifts, rotations,
and clock regions, through a graphical interface. Section 4.2 provides an example of qll
content.

3.2 The algorithm

The pseudocode of SCERPA is reported in Algorithm 1. The procedure is divided into
four main steps: initialization, selection, evaluation, and output.

Initialization step

The algorithm initiates by importing the information generated during the layout phase,
along with any algorithmic-oriented options of the procedure not strictly related to

44

3.2. THE ALGORITHM

layout details. These options include settings that influence how the simulation evolves
and stops, such as approximation, precision, and convergence. During this phase, the
molecule transcharacteristics are reshaped over a predetermined number of voltages to
improve performance and reduce interpolation costs. Initially, all the molecules are set
with a null voltage, and the effect of the driver D on each Molecule i is computed as VD,i,
using Equation (2.13). Moreover, the algorithm creates a distance matrix that stores
the distances among every molecule to generate the Interaction Radius (IR) list.

Selection step

At each time step tτ , the procedure translates the interactions among all the molecules in
the circuit into a nonlinear system, solved during the evaluation step. More specifically,
the input voltage of Molecule i is computed as:

V τ
in,i = V τ

D,i +
NACØ
j=1
j /=i

V τ
j,i

1
V τ

in,j , Eτ
clk,j

2
(3.1)

Evaluation Step

The non-linear system reported in Equation (3.1) is solved iteratively as:

V k,τ
in,i = Fi

1
V k−1,τ

in,1 , . . . , V k−1,τ
in,i−1 , V k−1,τ

in,i+1 , . . . V k−1,τ
in,N

2
(3.2)

where k is the self-consistent field (SCF) step of the loop and Fi refers to Equation
(3.1). At each generic k, Equation (3.2) illustrates how all the molecules in the circuit
affect one another. Furthermore, the voltage variation between two consecutive steps is
computed as dVi = |V k

in,i − V k−1
in,i |, and leveraged to evaluate the convergence of step k.

In particular, if dVi < εmax, it indicates that consistency between AC and voltage
is reached and the molecules no longer influence each other. Once every molecule gains
stability, the algorithm is considered to have converged to a solution for the specific time
step tτ . The evaluation stage ends when convergence is achieved for all time steps T .

During the process, charges to compute V k
in,i are derived by applying the VACT.

Output Step

The procedure generates a set of output files according to the options specified in the
initialization step. These files include:

• qss files: They contain the charge distributions of each molecule in the circuit
for each time step tτ . The viewer can read these files to generate their graphical
representation in different forms.

• txt files: They contain additional data used during the simulation or by the viewer.

• jpg files: They are produced as combinations of the two data above and include:

45

3.3. THE OPTIMIZATIONS

– 1D charge figures: They represent how the charge distribution evolves in a
one-dimensional perspective.

– 3D charge figures: The same as 1D charge figures, but in a 3D fashion.
– Potential figures: They show the voltage generated by the molecular charge

distribution.
– Logic figures: They show the information propagation through the circuit

using standard QCA encoding.
– Waveform figures: They represent the drivers, outputs, and clock values in

the form of waveforms, easing the verification of the circuit logic correctness.

3.3 The optimizations
Although the use of VACT to evaluate the charge-voltage relationship resultes in a sig-
nificant reduction in simulation time by eliminating ab initio calculations, the algorithm
still has two nested loops, resulting in a O(N2) complexity. This complexity can make
the algorithm computationally expensive for circuits with a large number of molecules.
To address this issue, two optimization techniques are used to reduce simulation time:
Interaction Radius (IR) and Active Region (AR) [11, 10].

3.3.1 Interaction Radius

The Interaction Radius (IR) technique takes advantage of the fact that faraway molecules
have a negligible influence on each other due to the inverse proportionality of the
Coulomb potential expression to the distance. During the selection phase for a given
Molecule i, only neighboring molecules within a maximum dIR are considered.

A large dIR reduces the number of interactions considered for the computation of the
Molecule i input voltage, thereby reducing the required simulation time. Despite that,
the final solution is less accurate since it approximates what occurs in a real scenario.
On the other hand, a smaller dIR produces a larger interaction radius list since more
neighboring elements influence the Molecule i. In this case, the solution is more precise,
but it requires a higher amount of simulation time.

To strike a balanced dIR value, the authors suggest that the interaction radius should
be approximately six intermolecular distances, providing a reasonable trade-off between
simulation time and solution precision [6].

3.3.2 Active Region

The Active Region (AR) is based on the experimental observation that the polarization
of a Molecule i is mainly influenced by its neighboring molecules. Therefore, the input
voltage of Molecule i is approximated as null if its neighbors are not polarized. In
addition, the authors in [11] show that once a molecule becomes polarized, its input
voltage in a given step is very similar in the immediate next steps. As a result, the

46

3.3. THE OPTIMIZATIONS

Algorithm 1 SCERPA pseudocode
1: Import simulation settings. ▷ Initialization stage
2: Import molecular layout.
3: Import and reshape molecule transcharacteristics.
4: Compute distance matrix.
5: for each molecule as i do
6: for each molecule as j do
7: Evaluate distance between i and j.
8: if distance < dIR then
9: Add j in the IR list of i.

10: end if
11: end for
12: end for
13: for each time step as τ do ▷ Selection stage
14: Evaluate driver effects.
15: Update driver effects.
16: Update clock effects.
17: while |dVi| < εmax do ▷ Evaluation stage
18: Create active region list as AR based on dVi > VAR.
19: for each molecule in AR list as i do
20: Evaluate driver effect on i as Vin,i = VD,i.
21: for each molecule in IR list of i as j do
22: Evaluate j effect on i as Vi,j .
23: Update effect on i as Vin,i = Vin,i + Vi,j .
24: end for
25: end for
26: Evaluate voltage variation dVi.
27: end while
28: Output charge distributions. ▷ Output stage
29: Output energy consumption.
30: end for
31: Generate simulation graphs. ▷ Viewer

47

3.4. THE CONVERGENCE

evaluation step of the procedure is completed only for those molecules that are considered
active.

An active element is a Molecule i whose voltage variation dVi = |(V k
in,i − V k−1

in,i)|
between two consecutive steps k and k − 1, is greater than a certain value, VAR. All
active elements for a given molecule are organized in the active region list of Molecule i
determined during the initialization phase. By setting a small VAR, the computation for
the specific step k can be accelerated. Nevertheless, just like with the dIR parameter,
the VAR values should be chosen carefully to avoid obtaining poor quality results as the
approximation made by the optimization may not hold for larger values of VAR.

While interaction radius and active region techniques do not directly affect the over-
all complexity of the algorithm, they can significantly reduce the number of calculations
required, resulting in an almost N -independent computational cost [11]. As the number
of molecules N increases, the increase in computational time will be much less than N2,
allowing for faster and more efficient simulations. By leveraging the two optimizations
together, the algorithm can minimize the computational cost while still providing ac-
curate results. A combination of the two is particularly advantageous for large circuits
with many molecules, where the reduction in simulation time can be critical for achieving
efficient and effective simulations.

3.4 The convergence
As explained in Section 4.1, SCERPA terminates when a solution to the nonlinear prob-
lem represented by Equation (3.2) is found. The problem is simplified to a fixed-point
numerical task whose convergence is ensured whenever ||JF || < 1 for some matrix norm
[53]. JF represents the Jacobian matrix of function F and shows how the Molecule i
is influenced by a Molecule j in terms of input voltage. The complete expression is:
{JF }i,j = δVin,i/δVin,j [11]. The author of [3] demonstrates that the algorithm con-
vergence is mainly influenced by charge distances and transcharacteristics slope. In
particular:

• The convergence is improved by larger intermolecular distances.

• The convergence is disfavored by larger Vin–AC transcharacteristic (VACT) slope.

The first point suggests that molecular FCN systems with short intermolecular dis-
tances are disfavored in terms of convergence. Experimental results show this tendency
[3]. In this scenario, SCERPA can favor its convergence by using a damping parameter
0 ≤ ξ ≤ 1, which reduces the voltage variations between two consecutive steps of the
iterative procedure. Equation (3.2) becomes:

V k,τ
in,i = ξV k−1,τ

in,i + (1 − ξ) Fi

1
V k−1,τ

in,1 , . . . , V k−1,τ
in,N

2
(3.3)

The damping can be deliberately set as a value in the range [0 − 1] considering a
higher damping ξ can enhance convergence but also increase the necessary simulation

48

3.4. THE CONVERGENCE

time. For these reasons, the ξ parameter should be chosen considering the needs of the
specific circuit under analysis or whether it is required to favor the convergence or to
reduce time analysis. The two limit cases ξ = 0 and ξ = 1 should be avoided as:

• having ξ = 0 implies Equation (3.3) to become V k,τ
in,i = Fi

1
V k−1,τ

in,1 , . . . , V k−1,τ
in,N

2
. In

this case, the damping is disabled, preventing any of its benefits.

• having ξ = 1 implies Equation (3.3) to become V k,τ
in,i = V k−1,τ

in,i . In this case, the
convergence loop is prevented from continuing, thus producing a final solution.

The main drawback of this implementation is, in general, the necessity to perform
multiple tests to come up with a suitable value. As explained before, this is particularly
true for situations where the circuit is prone to convergence problems due to critical
operating conditions or molecules in use. In addition, once the sub-optimal ξ is set, the
same parameter is statically applied from the first step down to the last of the procedure
iterative loop, regardless of the convergence level reached throughout the analysis. To
overcome these limitations, Section 6.1 proposes a dynamic damping alternative.

49

Chapter 4

The ToPoliNano EDA framework

The field of Electronic Design Automation (EDA), also known as Electronic Computer-
Aided Design (ECAD), refers to any software tool aimed at designing, verifying, and
testing electronic systems, including integrated circuits (ICs) and printed circuit boards
(PCBs). Over the past half-century, the integration of EDA and CAD has played a
leading role in the evolution of silicon-based systems, providing designers with essen-
tial technologies for the development and production of high-volume integrated circuits
efficiently and predictably.

One of the EDA and CAD most remarkable characteristics has been the capacity to
combine interdisciplinary knowledge from a wide variety of science fields, mathematics,
material sciences, physics, and chemistry in computation theory. This multidisciplinary
approach has resulted in an impressive ability to abstract low-level physical properties
of devices, realize a separation of concerns, and develop a well-defined and scalable flow
to support the work of designers [14].

Furthermore, the collaboration between the EDA industry and the academic com-
munity has strengthened over the years as they both address the challenges of the semi-
conductor industry. Through extensive research, the EDA community has continuously
developed new algorithms and optimization techniques to cope with the increasing com-
plexity of designing and testing new integrated circuits. The industry’s success is a
testament to the contribution of the EDA community [14].

It is safe to say that Moore’s law would probably have never come true without the
tools provided by the EDA domain to pursue continued growth and innovation in the
semiconductor industry.

Nonetheless, as the semiconductor industry scaling trend slows down, it becomes in-
creasingly important to explore innovative computing paradigms. Therefore, it is crucial
to develop new EDA and CAD tools that can assist in the development, verification,
and testing of electronic systems based on emerging technologies.

In this context, research remains central in collaborating with the industry to bridge
the gap between academic and real-world applications. One example is the ToPoli-
Nano EDA framework, a promising set of tools for studying non-conventional computing
paradigms based on Field-Coupled Nanocomputing technology.

50

4.1. TOPOLINANO EDA FRAMEWORK

4.1 ToPoliNano EDA framework

The ToPoliNano framework [55, 54, 27] provides a comprehensive suite of EDA software
tools for designing, simulating, and testing circuits based on beyond CMOS technologies.
The central idea of the suite is to provide a top-down approach as similar as possible to
the one provided by traditional EDA software.

The suite is developed in C++ using the Qt libraries by the VLSI Lab group at
the Department of Electronics and Telecommunications of Politecnico di Torino. It is
constantly under development to enlarge the support to other emerging technologies.
As for now, it supports magnetic FCN, both in-plane and out-of-plane implementations,
and partially molecular FCN.

The framework is composed of three nanoelectronic applications: MagCAD, a graph-
ical 3D editor used to design emerging computing devices; ToPoliNano, a CAD tool for
studying and simulating these systems, recently embedded with SCERPA; and FCN-
viewer, a 3D visualization program used to represent and check for correct information
propagation and elaboration. Thanks to the portability offered by the Qt libraries, all
three software are available on Windows, Mac, and Linux. Figure 4.1 reports a schematic
representation of the suite.

ToPoliNano

Target Library

HDL Circuit
Description

HDL
Testbench

HDL Parser

Layout
Generator

Simulator

QSS Results

MagCAD

Layout Editor

HDL Generator

Import/Export
Layout

FCNviewer

QSS
3D Viewer

Figure 4.1. The ToPoliNano EDA framework.

51

4.1. TOPOLINANO EDA FRAMEWORK

4.1.1 ToPoliNano simulator

ToPoliNano [55] is a software tool designed to simulate devices based on cutting-edge
technologies that extend beyond the current silicon approach, including magnetic and
molecular FCN implementations. The tool is developed with a top-down approach that
closely mirrors the workflow offered by commercial digital EDA tools, providing a famil-
iar and intuitive environment to analyze novel circuits.

To perform simulations, the tool can import circuits in one of two ways, depending
on the technology. For magnetic, it requires a structural/hierarchical HDL (Hardware
Description Language) format, while for both magnetic and molecular circuits, it can
import a graphical representation created in MagCAD.

The software employs VHDL testbenches to instantiate elements as digital compo-
nents, thus reinforcing its affinity with commercial tools simulation workflows. Moreover,
ToPoliNano offers an intuitive and straightforward graphical interface that enables users
to define all the physical parameters and analysis settings.

Compared to research-oriented simulators like SCERPA, the simulator provides a
single, comprehensive tool for analyzing multiple novel technologies. Its C++ imple-
mentation delivers better efficiency and performance compared to MATLAB coding.
Additionally, its user-friendly graphical interface makes it a valuable candidate for com-
mercial beyond-CMOS software in the near future.

On the other hand, ToPoliNano may currently lack support for additional in-depth
functionalities that are more easily explored using a scientific and research-oriented ap-
proach with coding languages like MATLAB. Therefore, the best is to adopt a collabora-
tive combination of academic and EDA tools like SCERPA and ToPoliNano. The former
can be used to gain a more comprehensive and in-depth understanding of the technology,
while the latter can assess the integrability of the research insights and determine which
features are truly useful for more commercial-oriented software.

4.1.2 MagCAD graphical editor

MagCAD [54, 27] is a 3D graphical editor to sketch circuits based on emerging technolo-
gies. At the current time, the supported technologies are Nano Magnet Logic (NML),
in-plane (iNML) and perpendicular (pNML) versions, and molecular FCN (mFCN). The
tool focuses on simplifying the circuit design, providing an intuitive Graphical User In-
terface (GUI).

In addition, the editor can realize hierarchical circuits by reloading and reusing the
previously extracted components. Once the technology is decided, the layout realization
process can start by directly placing the building blocks of the target technology library
in the desired location.

In the case of magnetic logic technology, the elementary blocks consist of nanomag-
nets interacting through an anti-ferromagnetic fashion, while in the case of molecular
FCN, the elementary blocks are mQCA cells made of a couple of molecules interacting
electrostatically.

All the parameters of the specific emerging technology, design rules, and physical

52

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

constraints are set by the designer and internally handled by the software. Once the
design is completed, the tool saves the circuit description that can be imported into a
simulator tool like ToPoliNano to asses its correctness and evaluate its performance.

4.1.3 FCNviewer

Field-Coupled Nanocomputing (FCN) Viewer is software to be used in conjunction with
the output simulation files generated by the ToPoliNano simulator. The tool creates a
free explorable 3D graphical representation of the entire circuit, allowing one to asses its
intended behavior. It currently supports magnetic and molecular visualizations.

Figure 4.2 displays the complete ToPoliNano framework flow to design, simulate and
validate mFCN circuits.

4.2 Detailed overview of molecular ToPoliNano

The molecular ToPoliNano simulator enables the analysis of mFCN circuits. A parser
function explores the qll layout designed in MagCAD and extracts all relevant charac-
teristics, including general information such as intermolecular distances, clock phases,
global circuit dimensions, technology type, and employed molecules. Furthermore, spe-
cific information about each cell composing the circuit is imported, such as its coor-
dinates, clock phase belonging, name, ID, shifts, rotations, and whether it acts as a
driver. As an example, Figure 4.3 depicts a majority voter designed in the MagCAD
environment, while the correspondent qll is provided in Listing 4.1.

MagCAD FCNviewerToPoliNano

Design Simulation Validation

Figure 4.2. ToPoliNano’s EDA framework flow to desing, simuale and validate mFCN
circuits.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <!--File describing the layout of a QCA circuit -->
3 <qcalayout >
4 <technologies >
5 <settings tech=" MolFCN ">
6 <property name=" Layoutwidth " value="6"/>
7 <property name=" Intermolecular Distance " value="1000"/>
8 <property name=" PhaseNumber " value="3"/>

53

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

Figure 4.3. Single-line mFCN majority voter layout implemented with MagCAD editor.

9 <property name=" Layoutheight " value="5"/>
10 <property name=" CZSequence " value="4"/>
11 <property name=" layersEnabled " value="false"/>
12 </ settings >
13 </ technologies >
14 <components >
15 <item tech=" MolFCN " name=" Bisferrocene "/>
16 </ components >
17 <layout >
18 <pin tech=" MolFCN " name="Out" direction ="1" id="1" x="6" y="3"

layer="0"/>
19 <pin tech=" MolFCN " name="C" direction ="0" id="2" x="3" y="5"

layer="0"/>
20 <pin tech=" MolFCN " name="B" direction ="0" id="3" x="1" y="3"

layer="0"/>
21 <pin tech=" MolFCN " name="A" direction ="0" id="4" x="3" y="1"

layer="0"/>
22 <item comp="0" id="5" x="5" y="3" layer="0">
23 <property name="phase" value="2"/>
24 </item >
25 <item comp="0" id="6" x="4" y="3" layer="0">
26 <property name="phase" value="2"/>
27 </item >
28 <item comp="0" id="7" x="3" y="3" layer="0">
29 <property name="phase" value="1"/>
30 </item >
31 <item comp="0" id="8" x="3" y="4" layer="0">
32 <property name="phase" value="0"/>
33 </item >
34 <item comp="0" id="9" x="3" y="2" layer="0">
35 <property name="phase" value="0"/>
36 </item >

54

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

37 <item comp="0" id="10" x="2" y="3" layer="0">
38 <property name="phase" value="0"/>
39 </item >
40 </ layout >
41 </ qcalayout >

Listing 4.1. The qll file representing the majority voter reported in Figure 4.3.

A VHDL file acting as a testbench is required to instantiate the device under test
and associate input values for the simulation. Listing 4.2 displays the VHDL testbench
for a majority voter.

1 entity testbench is
2 end testbench ;
3

4 architecture behavioral of testbench is
5 signal a, b, c, o: std_logic ;
6

7 component test is
8 port(a: in std_logic ;
9 b: in std_logic ;

10 c: in std_logic ;
11 o: out std_logic);
12 end component ;
13 begin
14 DUT: test port map(a, b, c, o);
15

16 INP_PROC : process
17 begin
18 a <= ’0’;
19 b <= ’1’;
20 c <= ’1’;
21 wait for 200 ns;
22 end process ;
23 end behavioral ;

Listing 4.2. The VHDL testbench for simulating the majority voter layout.

Once the circuit layout and its respective testbench are associated, the user configures
the analysis operating on the GUI shown in Figure 4.4. The available options include
simulation parameters, such as the number of steps and N, representing the number
of points used to interpolate the clock waveforms. The former impacts the simulation
duration, while the latter, if increased, can enhance the accuracy of the simulation,
bringing it closer to a complete adiabatic solution.

Moreover, physical parameters, including damping factor, interaction radius, clock
voltage levels, and stability threshold, are also specified, following the same meanings as
in the original SCERPA.

The tool also allows for a verbose mode, which prints out every charge distribution of
the self-consistent loop for each not-yet-converged step. Users may also specify any out-
put parameters to be represented, including clock waveforms and the charge distribution
of specific molecules. A table.txt file saves this information, which the FCNviewer can
import to generate graphical representations.

55

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

Figure 4.4. ToPoliNano’s GUI to specify simulation parameters.

ToPoliNano employs the methods of the MolecularSimulationController class to
carry on the molecular analysis. The pseudocode of the molecular engine is reported
in Algorithm 2. The simulation begins with the ReadMolecules() method, which im-
ports the transcharacteristics of the supported molecules. Unlike the original SCERPA,
ToPoliNano’s transcharacteristics are pre-interpolated over a predetermined number of
values, reducing computational costs. Afterward, the controller applies the user-specified
physical parameters.

Following this, the controller initializes clock entities based on the number of phases
in the circuit via the createClocks() function. Next, the controller iterates over each
QcaItem in the layout, distinguishing between drivers and non-drivers. For each item,
two MolecularElements are created by assigning molecule initial charges and local po-
sitions within the cell. If specified, shifts and rotations are applied. At this point,
all molecules of the original circuit are internally conceived as nodes in a graph. The
controller completes the layout modeling by creating edges to model the influence in-
teractions between molecules. In particular, the buildInteractions() method iterates
over all the molecules, computing distances between each pair. If the gap is smaller
than the interaction radius, an edge represents the interaction, with directions and dis-
tances between every dot. The process provides a comprehensive representation of every
interaction within the circuit, similar to what SCERPA does, as explained in Section
3.2.

The simulation begins with the startSimulation() method, which first generates

56

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

clock waveforms based on the GUI parameters. Then, a loop iterates over every simula-
tion step, with the setInputValue() procedure setting the charge values of the driver
cells according to the digital inputs specified in the testbench.

For each molecule in a given simulation step, the evaluateInteraction() method
computes the effect of all other molecules within the specified interaction radius. In
particular, the computeNewValue() method determines the voltage difference across
Dot1 and Dot2 of each molecule. The voltage is then linked with the applied clock field
to obtain the aggregated charges through the transcharacteristics. Then, the ACs are
multiplied by the damping factor to favor convergence and applied to the molecule in
its new state.

The advanceStep() function evaluates the convergence of each step by comparing
the charge values between two consecutive steps. If the difference is above the sta-
bility threshold, the step is not yet stable, and the solution requires refinements until
convergence.

ToPoliNano differs from SCERPA in the approach used to verify convergence. While
SCERPA exploits the voltage difference between consecutive steps, ToPoliNano employs
aggregated charges linked to the voltages through the transcharacteristics.

Once each step has reached convergence, the qssWriteOnFile() method saves all the
molecules’ charge distributions throughout the simulation in separate qss files for each
step. Additionally, a table.txt file, created by tableWriteOnFile() function, stores
data about the clock. Moreover, if any molecule IDs were specified in the table items
field of the GUI, the correspondent charge values are also included in the table.txt file.

The FCNviewer can import the qss and table.txt files to provide graphical rep-
resentations of how information propagates through the simulation, clock, and charge
behavior. For instance, Figure 4.5 illustrates the molecular majority voter displayed in
Figure 4.3, simulated at four different time instances: (a) when all cells, except drivers,
are in reset, (b) the propagation of the driver value to the central cell, (c) the evaluation
of the central cell based on the most recurrent input, and (d) the final propagation of
the result toward the output. The table.txt content visualized in Figure 4.6 shows the
three clock waveforms and the charge variations of the output cell during the simulation.

57

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

Algorithm 2 ToPoliNano’s molecular core pseudocode.
1: Import molecules transcharacteristics. ▷ ReadMolecules()
2: Initialize clocks. ▷ CreateClocks()
3: Import molecular layout. ▷ MolecularSimulationController()
4: Import simulation settings.
5: Create and initialize molecules.
6: for each molecule as i do ▷ BuildInteractions()
7: for each molecule as j do
8: Evaluate distance between i and j.
9: if distance < dIR then

10: Add j in the IR list of i.
11: end if
12: end for
13: end for
14: Generate clocks waveforms. ▷ createClock()
15: for each time step as τ do ▷ StartSimulation()
16: Update driver value. ▷ setInputValue()
17: while τ convergence is not reached do
18: for each molecule as i do ▷ EvaluateInteraction()
19: for each molecule within IR of i as j do ▷ computeNewValue()
20: Evaluate voltage effect of j on i.
21: Apply transcharacteristic to retrieve charge values.
22: Update effect on i.
23: end for
24: end for
25: Evaluate charge variation. ▷ advanceStep()
26: end while
27: Output charge distributions. ▷ qssWriteOnFile()
28: end for
29: Output clocks information. ▷ tableWriteOnFile()

58

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

(c)

(d)

(a) (b)

(d)

Figure 4.5. FCNviewer graphical representation of the majority voter simulated at
four different time instances: (a) when all cells, except drivers, are in reset, (b) the
propagation of the driver value to the central cell, (c) the evaluation of the central cell
based on the most recurrent input, and (d) the final propagation of the result toward
the output.

59

4.2. DETAILED OVERVIEW OF MOLECULAR TOPOLINANO

Figure 4.6. FCNviewer graphical representation of the clock waveforms and the charge
variations of the output cell dots during the simulation.

60

Chapter 5

Comparative analysis of the
molecular FCN simulators

One of the main focuses of this work is to compare and validate the results generated
by the two SCERPA versions described previously:

• The research-oriented version that allows for importing circuits using either a
MATLAB matrix textual description or a graphical MagCAD representation.

• The EDA/CAD-oriented version that is already integrated into the ToPoliNano
simulator.

To accomplish the goal, a two-stage validation methodology, taking the SCERPA
academic version with the MATLAB importer as the point of reference, is proposed.

The first stage aims at assessing consistency between the two SCERPA importers and
identifying discrepancies between them. Both importers are expected to behave similarly
regardless of the circuit definition mode. The two versions share the same molecular
analysis core, with the only differences lying in how the two versions import a circuit
and extract the required information. Therefore, both versions are foreseen to produce
the same charge distributions throughout the simulation with minimal differences for
every step.

On the contrary, the second stage focuses on comparing the SCERPA-MagCAD
outputs that have been validated in the first stage with the ones generated by the CAD
counterpart. The ToPoliNano simulator and the MagCAD graphical editor are part of
the same EDA framework, suggesting their compatibility and consistency at the circuit
level. Indeed, both tools share the same libraries, which enable the generation of a qll
layout in MagCAD and its import in ToPoliNano. However, to ensure correct functioning
between the original SCERPA version and its CAD counterpart, it is still necessary to
validate them to identify and address any potential issues or discrepancies that may have
arisen during the integration process.

61

5.1. METHODOLOGY

5.1 Methodology

To ensure a well-structured and organized validation and testing process for the different
SCERPA versions, a systematic methodology is derived:

• Define a set of molecular circuits to be analyzed.

• Apply shifts and rotations.

• Define a framework to automate the validation and testing process.

A standardized set of molecular circuits as benchmarks helps maintain consistency
across all the SCERPA version comparisons. For this purpose, it includes layouts with
an increasing level of complexity:

• Single molecular cell.

• Single phase wire of six molecular cells.

• Three phases wire of twelve molecular cells.

• Two-line three phases wire of twelve molecular cells.

• Two-line T-connection.

• Two-line L-connection.

• Two-line inverter logic gate.

• Two-line majority voter logic.

• XOR logic gate.

Shifts and rotations are employed to simulate process variations that may occur in
practical molecular circuit implementations, which can prevent proper information prop-
agation. Therefore, multiple random combinations of shifts and rotations are applied to
molecules of a given cell. This approach verifies that all versions of SCERPA can cor-
rectly simulate circuits with molecules that are displaced from their original positions.

A framework consisting of a set of Bash scripts is developed to automate the valida-
tion and testing process. The Bash language is chosen for its high portability, enabling
the framework to be used on any Unix/Linux system without modifications. Addition-
ally, Bash provides powerful built-in tools for manipulating textual files and efficient
automation capabilities to automate repetitive tasks, making it a suitable choice for this
task. All the scripts are executable from the Testing directory located in the SCERPA
folder.

62

5.2. EVALUATING SCERPA IMPORTERS

5.2 Evaluating SCERPA importers

Each QCA cell is associated with a label that contains an integer serving as its iden-
tifier within the circuit. A suffix of either “a” or “b” is appended to the cell label to
differentiate between the two molecules within the same cell. As explained in Section
3.1, the SCERPA tool provides two methods for importing molecular layouts: a textual
description stored in a qll file generated by the MagCAD graphical editor or a textual
matrix directly defined in the algorithm caller script. Cell IDs are assigned according to
the way the circuit is designed. In the MagCAD case, cells retain the same ID assigned
by the editor according to the order of creation. Conversely, in the MATLAB case, cells
are labeled as an increasing integer based on their position in the layout, following the
order of their location in the circuit plane. Both methods preserve the same suffix to
distinguish each molecule within a QCA cell.

A single caller script initializes two consecutive SCERPA calls to simultaneously
generate MagCAD and MATLAB simulations. For each version, a folder named after
the circuit is created in the main SCERPA directory, with two subfolders, “magcad” and
“matlab” containing the corresponding simulation results.

To accurately compare the charge distributions of each molecule across time steps,
it is necessary to establish a way to associate the molecules between the two cases. One
possible approach to realize associations is by exploiting the spatial coordinates of the
Dot4 of each molecule in both layouts. For this purpose, a MATLAB function named
saveLabelsAndDot4Coord is added to the SCERPA Algorithm folder. Its pseudocode
and complete code are reported in Algorithm 3 and Appendix A.1, respectively. The
function prints the label and Dot4 spatial coordinates of every molecule in two separate
files, depending on the type of circuit. It is only called at the end of the simulation
if the corresponding setting is flagged. For a six-cell wire layout defined in MATLAB
and MagCAD, an example of the function output is reported in Listings 5.1 and 5.2,
respectively.

A script named generateMatchingMolecules.sh was developed to automate the
associations. Algorithm 4 and Appendix A.2 outline its pseudocode and complete code,
respectively. The script is executed from the Testing folder with the command:

1 ./ generateMatchingMolecules .sh circuitName

where circuitName is the name of the circuit.
At first, the script imports the previously collected data on the circuit name provided

as input. Subsequently, for each molecule in the MATLAB simulation, the script iterates
over every molecule in the MagCAD simulation. If the coordinates of the two molecules
match, the program writes their corresponding IDs to the output file. The inner loop is
terminated to reduce execution time. For reference, the matches between molecules in
the example provided in Listing 5.1 and 5.2 are reported in Listing 5.3.

63

5.2. EVALUATING SCERPA IMPORTERS

1 Dr 014 11.7763 -0.0538 0.4090
2 Mol 01a 11.7763 -0.0538 10.4090
3 Mol 01b 11.7763 -0.0538 20.4090
4 Mol 02a 11.7763 -0.0538 30.4090
5 Mol 02b 11.7763 -0.0538 40.4090
6 Mol 03a 11.7763 -0.0538 50.4090
7 Mol 03b 11.7763 -0.0538 60.4090
8 Mol 04a 11.7763 -0.0538 70.4090
9 Mol 04b 11.7763 -0.0538 80.4090

10 Mol 05a 11.7763 -0.0538 90.4090
11 Mol 05b 11.7763 -0.0538 100.4090
12 Mol 06a 11.7763 -0.0538 110.4090
13 Mol 06b 11.7763 -0.0538 120.4090

Listing 5.1. ID molecules and Dot4
coordinates of a MATLAB layout.

1 Dr 010 11.7763 -0.0538 0.4090
2 Mol 07b 11.7763 -0.0538 100.4090
3 Mol 14a 11.7763 -0.0538 30.4090
4 Mol 05b 11.7763 -0.0538 60.4090
5 Mol 02a 11.7763 -0.0538 70.4090
6 Mol 13b 11.7763 -0.0538 20.4090
7 Mol 08a 11.7763 -0.0538 110.4090
8 Mol 05a 11.7763 -0.0538 50.4090
9 Mol 14b 11.7763 -0.0538 40.4090

10 Mol 02b 11.7763 -0.0538 80.4090
11 Mol 13a 11.7763 -0.0538 10.4090
12 Mol 07a 11.7763 -0.0538 90.4090
13 Mol 08b 11.7763 -0.0538 120.4090

Listing 5.2. ID molecules and Dot4
coordinates of a MagCAD layout.

1 014 010
2 01a 13a
3 01b 13b
4 02a 14a
5 02b 14b
6 03a 05a
7 03b 05b
8 04a 02a
9 04b 02b

10 05a 07a
11 05b 07b
12 06a 08a
13 06b 08b

Listing 5.3. MATLAB-MagCAD labels associations.

The comparison of matched molecules between the MATLAB and MagCAD simula-
tions is performed using a script named checkMatlabMagcadQSS.sh, whose pseudocode
and complete code are provided in Algorithm 5 and Appendix A.3, respectively. The
script is executed from the Testing folder with the command:

1 ./ checkMatlabMagcadQSS .sh circuitName

where circuitName is the name of the circuit whose data are to be validate and used
to retrieve the location of the simulation qss.

The script compares the aggregate charges of each molecule in the MATLAB and
MagCAD simulations directories for every qss simulation step. If the molecule IDs
match and at least one aggregated charges differ, the program prints the information
about the mismatch to the output file and terminates the inner loop. The script outputs
the execution time in the end. Listing 5.4 shows an example of print mismatches.

1 Found a mismatch between MATLAB 012. qss and MagCAD 012. qss files:
2 MATLAB reports : 03a 0.8453435 0.0851060 -0.2134495 -0.717
3 MagCAD reports : 05a 0.8687645 0.0844106 -0.2078541 -0.717
4 Differences : 0.0234210 0.0006954 0.0055954 0
5

64

5.2. EVALUATING SCERPA IMPORTERS

6 Found a mismatch between MATLAB 018. qss and MagCAD 018. qss files:
7 MATLAB reports : 02a 0.0107268 0.9142049 -0.2079317 -0.717
8 MagCAD reports : 14a 0.0094517 0.9264848 -0.2074253 -0.717
9 Differences : 0.0012751 0.0122799 0.0005064 0

Listing 5.4. Example of mismatching printings.

Algorithm 3 Pseudocode for printing molecules IDs and Dot4 coordinates.
Require: Drivers and molecules stacks.
Ensure: Molecules IDs and Dot4 coordinates for MATLAB and MagCAD simulations.

1: Determine output file name based on the simulation type.
2: for each driver do
3: Write identifier and Dot4 spatial coordinates to the output file.
4: end for
5: for each molecule do
6: Write identifier and Dot4 spatial coordinates to the output file.
7: end for

Algorithm 4 Pseudocode for matching molecule IDs in MATLAB and MagCAD.
Require: Molecules IDs and coordinates for MATLAB and MagCAD simulations.
Ensure: Molecules IDs matches and script execution time.

1: Remove previous output files.
2: Read the molecule IDs and coordinates of the MATLAB simulation.
3: Read the molecule IDs and coordinates of the MagCAD simulation.
4: Create an output file for listing the identified correspondences.
5: for each molecule in MATLAB simulation do
6: for each molecule in MagCAD simulation do
7: if coordinates are the same then
8: Write the corresponding IDs to the output file.
9: Terminate inner loop to reduce execution time.

10: end if
11: end for
12: end for
13: if some IDs remain unmatched then
14: Return an error.
15: end if
16: Print script execution time.

65

5.2. EVALUATING SCERPA IMPORTERS

Algorithm 5 Pseudocode for comparing MATLAB and MagCAD ACs.
Require: Molecules IDs and coordinates for MATLAB and MagCAD simulations and

circuit name.
Ensure: Mismatches file and script execution time.

1: Remove any previous output files.
2: Define MATLAB simulation circuit location.
3: Define MagCAD simulation circuit location.
4: for each step τ in simulation do
5: Use circuit name and τ to define name of the MATLAB qss.
6: Use circuit name and τ to define name of the MagCAD qss.
7: for each aggregate charge in MATLAB do
8: for each aggregate charge in MagCAD do
9: if molecule IDs are equal then

10: if aggregated charges are not equal then
11: Print information about the mismatch to the output file.
12: Terminate the inner loop to reduce execution time.
13: end if
14: end if
15: end for
16: end for
17: end for
18: Print script execution time.

66

5.3. EVALUATING SCERPA AND TOPOLINANO SIMULATORS

5.2.1 Result discussion

The above-described scripts were used to analyze the increasingly complex molecular
FCN circuits discussed in Section 2.3. As expected, the simulation core remained con-
sistent regardless of the circuit definition, resulting in identical aggregate charge dis-
tributions for each molecule between the two circuit modes. However, when molecules
were subjected to shifts or rotations were analyzed, differences in the imported molecule
coordinates became evident.

Specifically, applying shifts along the x-y-z directions resulted in the MagCAD frame
of reference inverting the x and z axis compared to the MATLAB version. As a result,
any shifts in the x direction in the graphical-defined circuit led to shifts in the z direction
in the MATLAB version, and vice versa. Additionally, employing different shift values
to the two molecules of the same QCA cell caused inconsistent coordinates in relation to
the applied shifts. The issue arose from an inversion between the two molecules during
the import of the MagCAD circuit.

Since the MagCAD editor only supports rotation along the z direction, simulations
were made with the correspondent rotation in MATLAB. Nonetheless, even in this case,
the application of rotation in the graphical circuit was not coherent with the one gener-
ated in MATLAB due to an error in the computation of the center molecules.

Finally, the solutions previously introduced to solve the issues resulted in some graphs
no longer being consistent with the new ordering of the molecule stack, thereby gener-
ating incorrect graphical representations. As a result, consistency between the qll
importer and the viewer was restored.

5.3 Evaluating SCERPA and ToPoliNano simulators

Unlike the validation conducted for the two circuit importers, the ToPoliNano simulator
and MagCAD editor share the same library core to create and parse qll circuits, thus
eliminating the need to generate molecule matches between the two SCERPA versions.

Since the ToPoliNano clock waveforms are strictly tied to the parameters specified
in its GUI and less personalization is allowed, such values are statically assigned to the
clock phase structure of SCERPA.

To automate the comparison process between the charge distributions generated
by the two simulators, the script named checkMatlabTopolinanoQSS was developed.
It follows a similar approach to Algorithm 5, with the pseudocode and complete code
provided in Algorithm 6 and Appendix A.4, respectively. However, to avoid the detection
of minimal hypothetical charge mismatches as actual discrepancies while still accounting
for minor differences that may arise due to the different implementations of the two
simulators, the new algorithm includes an additional input that specifies the maximum
allowable distance. The script is executed from the Testing folder with the command:

1 ./ checkMatlabTopolinanoQSS .sh circuitName maxAllowedOffset

where:

67

5.3. EVALUATING SCERPA AND TOPOLINANO SIMULATORS

• circuitName is the name of the circuit whose data are to be validated and used
to retrieve the location of the simulation qss.

• maxAllowedOffset is the value that determines whether a difference between the
charge distributions is considered an actual mismatch or not. This value is used
as a threshold, above which a charge mismatch is deemed significant enough to
warrant attention.

Listing 5.5 shows an output generated by the script when a mismatch is found.
1 Found a mismatch between MATLAB 005. qss and MagCAD 005. qss files:
2 Maximum +/- allowed discrepancy : 0.1.
3 MATLAB reports : 09a 0.125541 0.806824 -0.215365 -0.718
4 ToPoliNano reports : 09a 0.573384 0.363899 -0.219975 -0.718
5 Differences are: 0.447843 0.442925 0.00461 0
6

7 Found a mismatch between MATLAB 005. qss and MagCAD 005. qss files:
8 Maximum +/- allowed discrepancy : 0.1.
9 MATLAB reports : 04b 0.7195854 0.215076 -0.217662 -0.717

10 ToPoliNano reports : 04b 0.0114838 0.913637 -0.208121 -0.717
11 Differences are: 0.7081016 0.698561 0.009541 0

Listing 5.5. Example of mismatching printings.

5.3.1 Result discussion

The earlier presented scripts were essential in analyzing the charge distributions pro-
duced by SCERPA and ToPoliNano for the molecular FCN circuits described in Section
2.3. However, during the initial testing phase, some unusual behavior was observed,
resulting in incorrect aggregated charges in particular molecules with values exceeding
the charge unit.

Upon further investigation, a problem affecting how transcharacteristics were used
to retrieve aggregated charges was identified. Additionally, there was an error af-
fecting coordinate assignments during the creation of each molecule. Furthermore,
another issue causing incorrect waveform was found. The error resulted in compar-
isons that did not consider a threshold for determining if two double-precision floating-
point numbers were close enough to be considered equal. To address the problem
std::numeric_limits<double>::epsilon() was employed to return the smallest pos-
sible difference between two double-precision floating-point numbers, leading to accurate
comparisons and correct clock waveforms.

To improve the aggregated charges precision, the bis-ferrocene transcharacteristics
were substituted with ones with more decimals. Following these corrections, all simple
propagation circuits, including the single-cell system, wires, and T- and L-connections,
exhibited precise and accurate charge distributions in both simulators. The differences
in the four molecule charge dots remained below a mean value of 0.01, which is consistent
with the tools’ distinct implementations.

On the other hand, when simulating more complex circuits involving computations
such as the majority voter, large inverter, and XOR gate, differences in produced charges

68

5.3. EVALUATING SCERPA AND TOPOLINANO SIMULATORS

Algorithm 6 Pseudocode for comparing ToPoliNano and SCERPA ACs.
Require: Molecules IDs and coordinates for ToPoliNano and SCERPA simulations,

circuit name and maximum allowed distance.
Ensure: Mismatches file and script execution time.

1: Remove previous output files.
2: Define ToPoliNano simulation circuit location.
3: Define SCERPA simulation circuit location.
4: for each step τ in simulation do
5: Use circuit name and τ to define name of the ToPoliNano qss.
6: Use circuit name and τ to define name of the SCERPA qss.
7: for each aggregate charge in ToPoliNano do
8: for each aggregate charge in SCERPA do
9: if molecule IDs are equal then

10: if aggregated charges are not equal then
11: Compute charges differences.
12: if charges difference > maximum allowed difference then
13: Print information about the mismatch to the output file.
14: Terminate the inner loop to reduce execution time.
15: end if
16: end if
17: end if
18: end for
19: end for
20: end for
21: Print script execution time.

69

5.4. MOLECULE ENCODING CHECKER

persisted between the two software, particularly for small values of N . Despite this,
from a graphical perspective, the FCNviewer always displayed consistent propagation
and computation patterns for each device. A possible explanation is that increasing the
N value generates clock waveforms that help provide a nearly adiabatic solution.

To investigate the reason for the results discrepancies, a thorough comparison be-
tween all elementary functions used in both tools. The analysis confirmed that all
functions behave equivalently in both simulators, yet the cause for the differences in
produced charge remains unknown.

5.4 Molecule encoding checker
To streamline the efficiency of the validation process, a supplementary script named
moleculeEncodingChecker was developed. Although not directly involved in the com-
parison methodology, the script is particularly useful for verifying the correct charge
distribution of a specific molecule in a circuit layout, thereby determining the encoding
state of the corresponding cell without relying on the graphical representation generated
by the FCNviewer. Its pseudocode and complete code are provided in Algorithm 7 and
Appendix A.5, respectively. It significantly reduced the effort required for verifying the
functionality of the more complex circuits described in Section 2.3 and Chapter 8. The
script can be executed from the folder containing all the qss generated by ToPoliNano.
The procedure receives the list of the x and y coordinates of the molecules whose en-
coding state has to be checked, along with the digital values the cell is required to be
consistent with. The script can be called from the simulation folder of the circuit to be
validated using the following command:

1 ./ moleculeEncodingChecker .sh qssNumber xCoord yCoord digitalValues

where:

• qssNumber: The number of the qss file identifying the simulation step to be
checked.

• xCoord: A list of the x-coordinates of the molecules to be checked.

• yCoord: A list of the y-coordinates of the molecules to be checked.

• digitalValues: A list of the digital values (‘0’ or ‘1’) that the cells are expected
to be consistent with.

For example, the procedure can be called to check the encoding state of the molecules
at coordinates (32, 0) and (32, 13) in a given circuit at the 90th simulation step, with
expected digital values of ‘0’ and ‘1’, respectively, using the following command:

1 ./ moleculeEncodingChecker .sh 90 "32 32" "0 13" "0 1"

The script scans the current directory to retrieve the qll layout description. Then,
it searches for the corresponding molecule IDs based on the provided coordinates and
extracts the aggregate charge of the first dot. The value is compared with predetermined

70

5.4. MOLECULE ENCODING CHECKER

thresholds of 0.8 for a digital ‘0’ and 0.3 for a digital ‘1’ to determine whether the encod-
ing state of the molecule matches the expected value. These thresholds were determined
by statistically inspecting the aggregated charge values corresponding to clear 1 or 0.
Finally, the script prints the result of the check. An instance of successful output is:

1 qss file to be validated : 0090. qss
2 Molecule 65a to be validated for a digital 1.
3 Molecule 93a to be validated for a digital 0.
4

5 Molecule 65a correctly encodes a digital 1.
6 Molecule 93a correctly encodes a digital 0.

Algorithm 7 Pseudocode for validating cell encoding for a given molecule at step τ .
Require: Step τ , molecules’ coordinates to be validated, expected digital values.
Ensure: Validation of the encoding state for the given molecule.

1: Obtain the directory path of the qll layout.
2: Parse the layout to retrieve the coordinates of the desired molecules.
3: Define the charge thresholds for digital ‘0’ and ‘1’.
4: for each pair of coordinates do
5: Retrieve the corresponding molecule IDs.
6: for each molecule do
7: Extract ACs of the first Dot1.
8: Compare ACs with the predetermined thresholds.
9: Determine whether the encoding state matches the expectation.

10: Print the result of the check for each molecule.
11: end for
12: end for

71

Chapter 6

Enhancing the SCERPA
algorithm

The extensive comparison of the research SCERPA version and its implementation in
ToPoliNano identifies some differences between the tools. This chapter aims to describe
how SCERPA was enhanced to improve it and make it more compatible with the CAD
counterpart.

6.1 Dynamic damping

Section 3.4 discusses how SCERPA uses a static damping value within the range (0, 1)
to help the self-consistent loop convergence in each simulation step τ and convergence
step k expressed by Equation (3.3):

V k,τ
in,i = ξV k−1,τ

in,i + (1 − ξ) Fi

1
V k−1,τ

in,1 , . . . , V k−1,τ
in,N

2
(6.1)

One of the main issues with the current damping implementation is the need to
balance between selecting a damping factor that is large enough to facilitate the conver-
gence of the generic SCF step and avoiding choosing a value that is too large, which can
increase the number of steps required for the procedure to converge. Moreover, a single
damping value applied uniformly throughout every step of the algorithm, regardless of
convergence level, may hinder the ability to produce a final solution.

To address these issues, a new dynamic damping approach that considers the history
of voltage variations of molecules, leading to a potentially more efficient procedure, was
derived. For a given simulation step τ , the voltage variation in the current step V k

in,i

is compared to that in the previous step V k−1
in,i using the ratio of the two. Due to

the unavailability of an earlier voltage variation in the first convergence step k of each
simulation step τ , a static damping value is employed. This value can either be specified
or left as a default one. Additionally, the first voltage variation becomes the previous
voltage variation for the next step, and the same applies to subsequent SCF steps, where

72

6.1. DYNAMIC DAMPING

the current voltage variation becomes the previous for the next step. In general, a ratio
smaller than 1 ensures convergence: A

V k
in,i

V k−1
in,i

B
< 1 (6.2)

Previously, a static damping was employed to reduce the voltage variation produced
by each molecule and improve convergence. In this new approach, a parameter µ is
introduced to reduce the reported ratio:

µ

A
V k

in,i

V k−1
in,i

B
< 1 (6.3)

As a result, µ can be obtained by:

µ =
A

V k−1
in,i

V k
in,i

B
(6.4)

Equation (6.4) generates a vector of future possible damping values based on the
number of molecules in the system. To assure consistency among all molecules, a single
damping value is required. Therefore, the minimum absolute value of the damping vector
is used to achieve a single positive candidate damping value. The associated molecule
is the one farthest from reaching convergence consequently, the most critical element in
the system.

Equation (6.4) becomes:

µ = min

A

V k−1
in,i

V k
in,i

B ----- (6.5)

To ensure that the damping value remains at an appropriate level, which would
prevent convergence performance from decreasing, a precision parameter named Σ is
introduced. The precision parameter Σ ranges from 0 to 1, where a value of 1 indicates
maximum simulation precision but a higher risk of convergence failure, and a value of 0
indicates minimum simulation precision and an inability to progress with the procedure.

If µ is greater or equal to the precision, the final damping ξ is set to the precision value
to ensure that the convergence process is not sped up excessively, especially for solutions
with a slow convergence. On the other hand, if µ is less than Σ, the final damping ξ is
computed as the product of µ and Σ. This aspect ensures that the voltage variations
are dumped to accelerate the convergence process and improve overall performance.

Therefore, Equation 6.4 becomes:

ξ =
I

Σ if µ ≥ Σ
µ · Σ otherwise

(6.6)

The earlier discussed dynamic damping was integrated into the SCERPA main self-
consistent loop. To enable this feature, the importSettings.m file was modified was

73

6.2. CHARGE CONVERGENCE

showed in Listing 6.1. The added lines specify the default damping mode as static.
In the case of autodamping, default values for the first convergence step damping and
precision are set if the user does not deliberately set them. The complete code is provided
in Appendix B.1.

1 % 0 static damping ; 1 dynamic damping
2 scerpaSettings . autodamping = setDefault (userSettings ,’autodamping ’, 0);
3 if scerpaSettings . autodamping == 1
4 scerpaSettings . autodampingPrecision =
5 setDefault (userSettings , ’autodampingPrecision ’, 0.99);
6 scerpaSettings . autodampingFirstStep =
7 setDefault (userSettings , ’autodampingFirstStep ’, 0.4);
8 end

Listing 6.1. Added source code in importSettings() function to enable dynamic
damping.

6.1.1 Assessing the impact of dynamic damping performance

Increasing the precision parameter is theoretically expected to improve both the total
number of convergence steps and the global simulation time, with the best performance
achieved when Σ = 1. On the contrary, a Σ = 0 should correspond to the worse solution
or better to a non-solution since the convergence is unreachable.

Figures 6.1 and 6.2 offer a visual representation of how the inverter and majority
voter circuits perform under dynamic damping with varying precision parameters. In
particular, four key metrics are reported as the precision parameter increases: total
simulation time, mean SCF step, maximum SCF step, and median SCF step. To help
comparisons, red dotted lines are included to provide a reference point and show the
performance of the default damping value of 0.4.

The simulation results demonstrate that higher precision values lead to better per-
formance, with the best results achieved when Σ = 1. Conversely, the simulations using
Σ = 0. correctly prevented the circuit simulator from generating a solution since con-
vergence cannot be reached.

To further examine the impact of precision on simulation time, Figures 6.3 and 6.4
focus on the percentage improvement and worsening of simulation time compared to
the static damping reference point. The figures clearly show that positive increments in
performance begin at a precision of around 0.55 for the inverter and about 0.45 for the
majority voter. The maximum improvement achieved is 36% for the inverter and 40.8%
for the majority voter, with a mean improvement of 19.08% and 21.1%, respectively,
considering only positive increments.

6.2 Charge convergence
SCERPA’s ability to generate a solution at each time step τ , is based on converting Equa-
tion (3.1) into Equation (3.2), as explained in Section 3.2. During each self-consistent
field (SCF) step, the voltage variation of the specific Molecule i is compared with the

74

6.2. CHARGE CONVERGENCE

Figure 6.1. Dynamic damping analysis for the inverter gate.

stability threshold in the previous SCF step. If the difference is less than the threshold,
the SCF has achieved convergence, and the time step ends. Conversely, if the difference
is higher than the threshold, the procedure proceeds until convergence is accomplished.
By utilizing this approach, SCERPA ensures that it generates an accurate solution at
each time step while maintaining computational efficiency.

In contrast, as reported in Section 4.2, ToPoliNano verifies the stability of each step
based on the variation between the charges of two consecutive steps. To ensure com-
patibility between the two simulators, SCERPA is enriched with the charge convergence
mode of ToPoliNano. The integration starts by introducing an additional convergence
setting in the importSettings.m file, as shown in Listing 6.2. The new line sets the
default convergence mode to be the voltage mode unless differently specified.

1 % 0 voltage convergence ; 1 charge convergence
2 scerpaSettings . convergence_mode =
3 setDefault (userSettings , ’convergence_mode ’, 0);

Listing 6.2. Enabling the new charge convergence mode in importSettings.m

The new charge convergence mode involved modifying the self-consistent loop. In
the first SCF, the aggregated charges of the molecules are stored as the previous charge
state. In subsequent steps, when the molecules retrieve their new state, their ACs are

75

6.3. TOPOLINANO CLOCK WAVEFORMS

Figure 6.2. Dynamic damping analysis for the majority voter gate.

saved as the current charge state. Convergence is verified by computing the difference
between the molecule’s current and previous charge states. If it exceeds the stability
threshold, the step is not stable yet, and refinement is required. The current charge
distribution of all molecules is saved as the new previous state for the next iteration.
This process is repeated until all molecules in every simulation step reach convergence.

The two modes were compared for several circuits, and in all cases, the difference in
the final charge distributions was negligible, typically in the order of 0.001. Therefore,
they remain broadly equivalent in achieving stable solutions. The complete code is
provided in Appendix B.2.

6.3 ToPoliNano clock waveforms

The circuit.stack_phase(i,:) structure is used by SCERPA to specify the clock
phases for simulating the circuit. The clock phases can be defined by either manually
setting the clock values for each step or using the linspace MATLAB method.

An example of how SCERPA defines the clock phases in MATLAB is:
1 %clock values definitions
2 clock_low = -2;

76

6.3. TOPOLINANO CLOCK WAVEFORMS

Figure 6.3. The effects of dynamic damping on simulation time for the inverter gate
compared to static damping.

3 clock_high = +2;
4 clock_step = 3;
5

6 %clock phases definitions
7 pSwitch = linspace (clock_low ,clock_high , clock_step);
8 pHold = linspace (clock_high ,clock_high , clock_step);
9 pRelease = linspace (clock_high ,clock_low , clock_step);

10 pReset = linspace (clock_low ,clock_low , clock_step);
11

12 pCycle = [pSwitch pHold pRelease pReset];
13

14 circuit . stack_phase (1 ,:) = [pCycle pReset pReset pReset];
15 circuit . stack_phase (2 ,:) = [pReset pCycle pReset pReset];
16 circuit . stack_phase (3 ,:) = [pReset pReset pCycle pReset];
17 circuit . stack_phase (4 ,:) = [pReset pReset pReset pCycle];

The linspace function generates N equally spaced points between the start and end
parameters. Once the pCycle is defined, the first phase is typically obtained as pCycle
appended with a number of pReset phases. Other clock zones are generated by shifting
the first by one, two, or three pReset phases. generated

In contrast, ToPoliNano generates clock waveforms in a static pre-defined manner by
using the number of simulation steps nSteps and the number of points N to interpolate
each clock waveform, along with two transients identifying the switch and release phases

77

6.3. TOPOLINANO CLOCK WAVEFORMS

Figure 6.4. The effects of dynamic damping on simulation time for the majority voter
gate compared to static damping.

and two horizontals defining the hold and reset zones. The number of points in each 1/4
clock period is equal to N, without considering the upper limit and the different phases
are shifted by π/2. As a reference, ToPoliNano clock waveforms generated with nSteps
= 20 and N = 4 are shown in Figure 6.5.

Figure 6.5. ToPoliNano clock waveforms generated with nSteps = 20 and N = 4.

To create clock waveforms that match ToPoliNano’s, given the total number of simu-
lation steps n_steps_topo and a number of interpolating points N_topo, the clock_step
variable in SCERPA is set to N_topo + 1, while the switch, hold, release and reset phases

78

6.3. TOPOLINANO CLOCK WAVEFORMS

are obtained as before:
1 clock_step = N_topo + 1;
2

3 pSwitch = linspace (clock_low ,clock_high , clock_step);
4 pHold = linspace (clock_high ,clock_high , clock_step);
5 pRelease = linspace (clock_high ,clock_low , clock_step);
6 pReset = linspace (clock_low ,clock_low , clock_step);

To obtain the elementary ToPoliNano pCycle, the length of the two horizontal phases
are reduced by removing their first and last points. Then, the four phases are concate-
nated to create pCycle as before:

1 pHold = pHold (2: length (pHold) -1);
2 pReset = pReset (2: length (pReset) -1);
3

4 pCycle = [pSwitch pHold pRelease pReset];

The four elementary clock phases are generated based on the pCycle phase defined
earlier. The first waveform coincides with pCycle, while the others are pCycle circularly
shifted depending on the phase number and N_topo:

1 topo_pCycle_1 = pCycle ;
2 topo_pCycle_2 = circshift (pCycle , N_topo);
3 topo_pCycle_3 = circshift (pCycle , N_topo *2);
4 topo_pCycle_4 = circshift (pCycle , N_topo *3);

To generate a complete waveform with a size of n_steps_topo, the number of rep-
etitions of the elementary cycle pCycle is determined by dividing the total number of
simulation steps by the length of pCycle and rounding up to the nearest integer:

1 seq_length = length (pCycle);
2 num_repeats = ceil(n_steps_topo / seq_length);

Finally, the four clock waveforms are stacked together and resized to num_repeats
previously computed. Each clock matrix row corresponds to each clock waveform gen-
erated earlier:

1 phase_i = repmat (topo_pCycle_i , 1, num_repeats);
2 phase_i = phase_i (1: n_steps_topo);
3

4 circuit . stack_phase (i ,:) = phase_i ;

Using the parameters n_steps_topo = 20 and N_topo = 4, the SCERPA code pre-
sented before can generate clock waveforms that match the ones produced by ToPoliNano
in Figure 6.5.

The complete code is provided in Appendix B.3.

79

Chapter 7

Enhancing the ToPoliNano EDA
framework

The recent integration of SCERPA into the ToPoliNano framework is a significant step
toward bridging the gap between research and EDA scenario, creating a promising can-
didate for commercial Beyond-CMOS tool in the future.

By leveraging the SCERPA’s deep understanding of physical and technological de-
tails, the framework can design, simulate, and verify complex molecular architectures,
employing a self-consistent iterative loop to solve electrostatic interactions without com-
putationally expensive ab initio methods.

Although the integration of SCERPA has improved the molecular framework’s ca-
pabilities, the ToPoliNano suite lacks support for features that could be useful for an
effective EDA platform. Therefore, the current chapter describes the enhancements in-
troduced to the ToPoliNano framework to bridge the gap between academic research
and real-world EDA applications.

7.1 Parallelizing ToPoliNano simulator
Within the ToPoliNano simulator, the most computationally demanding task is the eval-
uation of molecular interactions that occur within a circuit. As the number of molecular
cells grows, it rapidly becomes a significant limitation in the program’s usability.

To address the issue, parallelization is a great way to improve performance by dividing
the highly demanding task into smaller subtasks that can be executed simultaneously
on multi-core systems. Qt libraries provide strong support for parallelization by offering
many high-level APIs, like QtConcurrent. This framework enables several advantages,
including the abstraction of many low-level details of parallel programming, such as
synchronization, thread management, and data sharing.

In the ToPoliNano scenario, the most appropriate function to concurrently handle
all the molecular interaction computations is the QtConcurrent::map. The routine
simultaneously applies a function to each element of a collection according to the system
specifications gathered using platform-specific APIs. In particular:

80

7.1. PARALLELIZING TOPOLINANO SIMULATOR

• It receives the input data to be handled in parallel, usually as an iterable collection,
and the mapping function is responsible for the data processing.

• It splits the input data into smaller chunks and associates them to the available
threads along with the mapping function.

• It returns the processed data as a QFuture object.

• It is often used in conjunction with the waitForFinished() method to coordinate
with remaining data processing ensuring a sequential execution flow.

The code in Listing 7.1 demonstrates how the evaluateInteraction() method is
parallelized. The variable node_it contains all the graph vertices representing every
molecular interaction in the circuit. It is used as an iterator by QtConcurrent::map
along with the molecularEvaluator working as a mapping function to compute the
new molecule state. The code of the molecularEvaluator is reported in Appendix
C.2. The processed interaction is stored in the QFuture object future. The method
waitForFinished() on the future object blocks the new calling thread until all the
dependencies of the given interaction are solved.

1 void MolecularSimulationController :: evaluateInteractionParallel () {
2 auto node_it = boost :: vertices (system_ .graph ());
3 QFuture <void > future = QtConcurrent :: map(
4 node_it .first ,
5 node_it .second ,
6 molecularEvaluator (
7 &system_ ,
8 simulation_time_ ,
9 simulation_step_ ,

10 &molecules ,
11 damping_factor_
12)
13);
14 future . waitForFinished ();
15 }

Listing 7.1. Source code of evaluateInteractionParallel() function.

7.1.1 Assessing the impact of parallelization

To investigate the advantages of parallelizing the ToPoliNano simulator, molecular cir-
cuits described in Section 2.3 were simulated using single-threaded and multi-threaded
applications. The resulting simulation times in nanoseconds are shown in Figure 7.1,
utilizing a logarithmic scale for more accurate visualization across differences. All sim-
ulations employed identical parameters, including simulation steps (100) interpolating
points in each clock phase (N = 5), interaction radius (dIR = 10.1e−9), and stability
threshold (εmax = 5e−6) and were carried out on an Intel Core i5-4690 processor running
at 3.90 GHz with 8GB of RAM.

81

7.2. INTRODUCING DOUBLE-DRIVER

As expected, the results show a substantial enhancement in overall performance with
reduced simulation times across all devices.

Figure 7.2 provides a more detailed analysis of the improvement percentages across
all the devices. The best improvement is observed for the three-phase wire at 70.97%,
while the two-line L-connection shows the worse enhancement at 33.66%. On average,
the progress is around 54.82%. The reason why some devices are more prone to benefit
from parallelization remains unclear.

Figure 7.1. Multi-threaded and single-thread simulation times for a set mFCN circuits.

7.2 Introducing double-driver

In the MATLAB version of SCERPA, the molecular cell of the driver can be configured
in two different ways: either as a single molecule that realizes a half mQCA cell or as
two adjacent molecules that form a complete mQCA cell. To introduce double-driver
support in the ToPoliNano framework, modifications were made to both the simulator
and the viewer.

82

7.2. INTRODUCING DOUBLE-DRIVER

Figure 7.2. The effects of parallelization on simulation time for a set of mFCN circuits
compared to single-thread.

ToPoliNano Simulator

As previously outlined in Section 4.2, the molecularSimulationController method
performs a loop through the qcaItems in the imported circuit to identify whether each
item is a driver or not. If a driver is detected, the method generates a single molecule.
If not, the controller generates two molecules and appends “a” or “b” at the end of their
IDs.

Consequently, to introduce two molecules for each driver, the controller was modified
to mimic the behavior applied to non-driver cells, labeling their molecules with “a” and
“b”. Throughout the simulation process, the driver charge state is updated via the
setInputValue() method based on the digital input defined in the testbench. Currently,
this is carried out for the single molecule of the driver cell only. Hence, the additionally
introduced input molecule is treated as the opposite of the first. For instance, when the
testbench indicates a logical ‘1’ for the input cell, a positive voltage is applied to the
first molecule to retrieve an aggregated charge that mimics a state where the free charge
is confined in Dot2, based on the transcharacteristics. Conversely, a negative voltage is

83

7.3. ENABLING HIERARCHICAL LAYOUTS

applied to the second molecule of the same cell to move the charge toward Dot1.
The complete code is reported in Appendix C.3 and C.4.

FCNviewer

The FCNviewer was modified with the same intent. In particular, the parseQll()
method of the QSSReader class is responsible for importing the qll circuit description
and initializing the structures used by the openGL libraries to represent molecules of
the circuit. When an input cell is detected, two molecules are created and positioned
at the proper intermolecular distance, similar to non-driver cells. Figure 7.3 displays a
comparison between a majority voter that uses single and double drivers.

The complete code is provided in Appendix C.5.

(a)

Logic 1

Logic 1

Logic 0

(b)

Logic 1

Logic 1

Logic 0

Logic 1

Figure 7.3. Single (a) and double-driver (b) representation of a majority voter.

7.3 Enabling hierarchical layouts

The basic idea behind hierarchical design of circuits is to divide complex architecture into
smaller and more manageable parts which can be arranged in a hierarchical multilevel
structure. Each level is designed and optimized independently from the others so that
designers can focus on each level individually without caring about the complexity of the
entire circuit. Other advantages include easier maintainability and an improved system
understanding.

84

7.3. ENABLING HIERARCHICAL LAYOUTS

In MagCAD, hierarchical designs are based on the component entity, which can
represent any set of molecular or magnetic supported items. A component creation
starts with the drawing of the circuit to be converted in a black box and proceeds with
its extraction in the form of a xml file with a qcc extension that contains all the data
required for its use and graphical representation.

Components are organized in libraries the designer can fill as desired. A component
definition always starts with the name of the library to which it belongs, its name,
its dimensions, and an alphanumerical ID used to unequivocally reference it among
other components. Then, it lists all the items composing the circuit layout specifying
coordinates and phase numbers.

Listing 7.2 shows an example of a MagCAD component representing a molecular
majority voter.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <!--File describing the QCA component -->
3 <qcacomponent Version ="2" tech=" MolFCN " lib=" MolFCN_library " name="

majorityVoter " ID="
afb843f07d1747174b424fa30d8f10d0b8f7fe5ab0fedf1a5e2f54bbedb56a83 "
function ="" maxX="3" maxY="2" MagnetsCount ="6">

4 <entity />
5 <components >
6 <item tech=" MolFCN " name=" Bisferrocene "/>
7 </ components >
8 <layout >
9 <item comp="0" x="0" y="1" layer="0">

10 <property name="phase" value="0"/>
11 </item >
12 <item comp="0" x="1" y="0" layer="0">
13 <property name="phase" value="0"/>
14 </item >
15 <item comp="0" x="1" y="2" layer="0">
16 <property name="phase" value="0"/>
17 </item >
18 <item comp="0" x="1" y="1" layer="0">
19 <property name="phase" value="1"/>
20 </item >
21 <item comp="0" x="2" y="1" layer="0">
22 <property name="phase" value="2"/>
23 </item >
24 <item comp="0" x="3" y="1" layer="0">
25 <property name="phase" value="2"/>
26 </item >
27 <wiring />
28 </ layout >
29 </ qcacomponent >

Listing 7.2. A molecular majority voter described as a qcc component.

MagCAD currently supports hierarchical design for both molecular and magnetic cir-
cuits. Nevertheless, the ToPoliNano simulator does not support the analysis of molecular-
based hierarchical circuits.

85

7.3. ENABLING HIERARCHICAL LAYOUTS

To enable this feature, ToPoliNano must first determine whether the QcaItem read
from the qll is a component or not. If it is a component, ToPoliNano has to reference
the component in the QCC library, retrieve the list of all the component sub-QcaItems,
and proceed with the import procedure. Since a hierarchical layout can have an arbitrary
number of nested levels, the optimal approach is to use a recursive function to explore
the entire design and flatten it, allowing for every elementary molecule of the circuit to
be included in the simulation. Therefore, the exploreHierarchicalLayout() function
is added to the molecularController. It receives:

• The QcaItem list of the identified component, obtained as component->items().

• The spatial coordinates of the component.

• The ID of the component, created by concatenating its spatial coordinates in the
format x.y.z.

• The settings required to carry on with the import.

The structure of the exploreHierarchicalLayout() function is similar to that of
the MolecularController, as it loops through all the QcaItems of the circuit and calls
itself recursively for every nested component found. For each recursion level, the position
of each item is adjusted with the offset of the component coordinates to determine each
molecule’s location in the layout.

In addition, to facilitate identifying a specific molecule in the output simulation
results, the cell ID was modified from the one described in Section 4.2. Specifically,
MagCAD no longer defines it according to the ordering of placement, but instead uses
the cell coordinates in the layout in the form x.y.z.

As a result, for a one-level component placed at coordinates (1,0,0) and containing
a cell at coordinates (1,1,0), the resulting molecule IDs would be:

1 1.0.0 _1 .1.0a
2 1.0.0 _1 .1.0b

The complete code is reported in Appendix C.6 and C.7.
The introduced hierarchical simulation support was tested using circuits in several

conditions, ranging from single-level layouts to multiple layouts. Hierarchical designs
offer particular benefits for complex systems, which can be broken down into smaller,
more manageable components.

As a reference, the molecular XOR gate, shown in Figure 2.23, was realized using
a one-level hierarchical approach, according to the mFCN inverter and majority voter
fundamental blocks. The result is shown in Figure 7.4, highlighting the perspective
offered by hierarchical design, with improvements in the readability and cleanliness of
the layout.

86

7.4. TOWARD INFORMATION CROSSING

Figure 7.4. One-level hierarchical design applied to the XOR gate.

7.4 Toward information crossing

In molecular FCN, the interconnections play a crucial role in propagating information
and enabling computations within the circuit. These interconnections facilitate commu-
nication among cells within the same layout and connections with other components,
realizing complete and advanced devices. In molecular FCN interconnections are typi-
cally achieved using wires implemented using L- and T-connections.

To explore new opportunities for improving the paradigm, recent research [1] pro-
posed to realize information crossing by taking advantage of the diagonal interaction in
the traditional QCA paradigm. Building on this result, the authors in [5] investigated
the possibility of transposing the same diagonal interaction to molecular FCN devices.
The proposed layout, as shown in Figure 7.6, includes a vertical and horizontal wire that
crosses at a shared cell called an evaluation cell. This intersection allows for information
crossing and enables the propagation of the two driver values to their respective output
cells. A correct layout functioning requires particular neutral molecules, therefore the
authors introduced a neutral version of the commonly used bis-ferrocene presented in
Section 2.1.3.

The associated molecular QCA cell consists of two juxtaposed neutral bis-ferrocene
with positive and negative charges placed in the logical dots as reported in Figure 7.5.

87

7.4. TOWARD INFORMATION CROSSING

Figure 7.5. Neutralized bis-ferrocene molecular QCA cell.

The working principle of the evaluation cell depends on whether the two driver cells
encode the same data or not. If they do, the cell propagates the information of the
two branches to the outputs. If they do not, the cell remains non-polarized and does
not affect the output branches. In the latter case, information crossing is achieved by
exploiting the cells’ neutrality and the fact that the horizontal output branch is primarily
influenced by the vertical input branch due to their proximity and vice versa. As a result,
the horizontal output cell is pushed to encode the logical value opposite to the vertical
one. Moreover, to minimize the effect of the evaluation cell on the output branches when
the logic values are opposite, the cell is subjected to a reduced clock field [5].

Figure 7.6 and Table 7.1 show the molecular layout and the truth table of the cross-
wire circuit proposed in [5], respectively.

A B Out1 Out2
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Table 7.1. Crosswire truth table.

7.4.1 The new molecule in the ToPoliNano EDA framework

To introduce the neutralized oxidized bis-ferrocene molecule into the ToPoliNano simula-
tor, its name, and x-y-z spatial coordinates were added to the defineChargePosition()
method of the MolecularElement class. This method sets the position of each dot when-
ever the molecularController() function creates a new molecule.

Once the molecule is defined, the tool imports the correspondent transcharacteristics.
As explained in Section 4.2, ToPoliNano requires the transcharacteristics to be interpo-
lated on a predetermined number of voltage values. Therefore, the SCERPA reshape
function converts the transcharacteristics obtained from ab initio simulations into the
required format. Figure 7.7 shows the transcharacteristics of the molecule under two
clock conditions.

88

7.4. TOWARD INFORMATION CROSSING

Out1

B

A

Out2

Figure 7.6. mFCN crosswire layout made of neutral oxidized bis-ferrocene molecules.

Figure 7.7. Vin–aggregated charge transcharacteristics of the neutralized oxidized bis-
ferrocene molecule subjected to two clock fields.

The molecular controller retrieves molecules differently depending on whether they
belong to a driver cell. For non-driver cells, the item->name() method returns the name
of the molecule defined in the qll circuit, which is later used to determine the number
of dots and select the appropriate transcharacteristic.

Conversely, ToPoliNano currently has a hardcoded bis-ferrocene molecule describing
driver cells. To allow the use of the new molecule, a new variable driverMolecularName
was introduced and treated in the same manner as other simulation parameters. This
variable stores the molecule name used for driver cells during initialization by the ToPoli-
Nano controller.

89

7.4. TOWARD INFORMATION CROSSING

Integrating the new molecule into the GUI

To associate the driverMolecularName variable with a specific molecule chosen by the
user, the GUI of the ToPoliNano simulation window was expanded. A new section was
added to the window, featuring a drop-down list of available molecule options.

In particular, a new widget named “Driver settings” was created and attached to the
molecular analysis window. It is implemented as a QGroupBox and contains a QComboBox
drop-down list that displays the available driver molecules for selection, with the default
option set to "Bisferrocene".

Listings 7.3 and 7.4 shows the source code of the createDriverSettingsBox() and
addComboDriverMoleculeList() which generates the settings box and the drop-down
list, respectively. Figure 7.8 displays the new ToPoliNano molecular GUI with the new
driver option.

1 void createDriverSettingsBox () {
2 m_GroupDriverSettings . setTitle (" Driver settings ");
3 m_driverMoleculeLabel . setText (" Driver molecule name");
4

5 addComboDriverMoleculeList (m_ComboDriverMoleculeList);
6

7 m_GridLayoutDriverSettings . addWidget (& m_driverMoleculeLabel , 1, 0);
8 m_GridLayoutDriverSettings . addWidget (& m_ComboDriverMoleculeList , 1,

1);
9

10 m_GroupDriverSettings . setLayout (& m_GridLayoutDriverSettings);
11 }

Listing 7.3. Source code to create the driver settings box

1 void addComboDriverMoleculeList (QComboBox &box) {
2 box. addItem (" Bisferrocene ");
3 box. addItem (" NeutralizedOxBisferrocene ");
4

5 box. setCurrentIndex (0); // Default is Bisferrocene
6 }

Listing 7.4. Source code to realize the drop-down molecules list

7.4.2 Simulating the crosswire with ToPoliNano

The authors in [5] devised a method to reduce the clock applied to the evaluation cell to
reduce its influence on the output branches when two opposite inputs are propagated.

However, ToPoliNano currently does not allow such precise customization of clock
waveforms, making it impossible to achieve correct information crossing in this case. As
a workaround, two layouts were developed: one for the same inputs and another for
different inputs, as illustrated in Figure 7.9a and Figure 7.9b, respectively.

When both drivers are equal, the input branches are synchronized by the same clock
phase, providing the evaluation cell with data to be evaluated on the next clock phase.
The output branches share the same clock to forward propagate data crossing.

90

7.5. CONSISTENT VISUALIZATION IN THE FCNVIEWER

Figure 7.8. The new ToPoliNano molecular GUI with the driver molecule settings.

In contrast, when inputs are opposite, the input and output branches are synchro-
nized with the same clock phase, allowing the last cell of one input branch to influence
the first cell of the opposite branch and vice versa. Meantime, the evaluation cell is
subjected to the next clock zone to not interfere with this interaction and enable the
information crossing.

To assess layouts’ functionality, simulations were performed using ToPoliNano. As
a reference, Figure 7.10a shows the successful propagation of drivers encoding logical
‘0’ to the outputs after the crossing, while Figure 7.10b illustrates the instance where
the input branches, carrying logical ‘1’ and ‘0’, are causing a complementary state to be
imposed on the output branches due to the deactivation of the evaluation cell.

The new neutralized oxidized bis-ferrocene has successfully demonstrated a practical
approach for supporting new molecules in the ToPoliNano EDA framework. Moreover,
this integration paves the way for possible future exploration of hybrid designs that
combine different molecules in the same circuit, leveraging their unique electrical and
physical properties to enhance performance and functionality.

7.5 Consistent visualization in the FCNviewer
The FCNviewer was modified to comply with the same frame of reference as the SCERPA
viewer while retaining the x-z direction inversion in MagCAD. Previously, when rotations
and shifts were applied along different directions, they produced comparable charge
distributions over time, but the graphical representation between the two viewers was

91

7.5. CONSISTENT VISUALIZATION IN THE FCNVIEWER

(a) (b)

Figure 7.9. Two mFCN crosswire layouts. (a) mFCN crosswire layout for same inputs.
The input branches are synchronized by the same clock phase, and the output branches
share the same clock to forward propagate the data crossing. (b) mFCN crosswire layout
for opposite inputs. The input and output branches are synchronized with the same clock
phase, allowing the last cell of one input branch to influence the first cell of the other
branch without interference from the evaluation cell.

(a) (b)

Figure 7.10. ToPoliNano simulations for the crosswire layouts. (a) Drivers encode
same logic ‘0’ state. (b) Drivers encode two opposite logic states.

92

7.5. CONSISTENT VISUALIZATION IN THE FCNVIEWER

not the same.
In particular, the function getChargePosition() was updated to use the coordinates

of the ToPoliNano simulator to define the position of each molecule’s dot in the circuit.
The parseQll() function, which imports the circuit layout and identifies any shifts or
rotations, was also modified to align with the conventions used in the SCERPA viewer.

Furthermore, due to the x-z axis inversion, the view of the circuit placed the Dot4
at the top and the Dot1 and Dot2 at the bottom. Therefore, the resetRotation()
function was modified to reset the x-axis position to 180 degrees, ensuring the correct
orientation. Appendix C.8 and C.9 report the complete code.

To verify the efficacy of the modifications, Figure 7.11 showcases a MagCAD layout
with multiple shifts and rotations applied to a molecular wire. In particular:

• Mol_1 shifted along the x-axis by 200 pm.

• Mol_2 shifted along the x-axis by -200 pm.

• Mol_3 shifted along the z-axis by 500 pm.

• Mol_4 shifted along the z-axis by -500 pm.

• Mol_5 shifted along the y-axis by 200 pm.

• Mol_6 shifted along the y-axis by -200 pm.

• Mol_7 rotated by 30 degrees.

• Mol_8 rotated by -30 degrees.

The correspondent layout was simulated in both SCERPA and ToPoliNano. Figure
7.12 presents the SCERPA 3D graphical circuit view, while Figures 7.13 and 7.14 display
the top and lateral views of the layout generated by FCNviewer.

All shifts and rotations match between the two viewers, demonstrating the effective-
ness of the modifications.

Mol _7 Mol _8 Mol _5 Mol _6 Mol _1 Mol _2 Mol _3 Mol _4

Figure 7.11. mFCN wire layout generated by MagCAD with shifts and rotations
applied to molecules.

93

7.5. CONSISTENT VISUALIZATION IN THE FCNVIEWER

Figure 7.12. mFCN wire layout represented by the SCERPA 3D viewer with shifts
and rotations applied to molecules.

Figure 7.13. Top view of the modified mFCN wire layout generated by the FCN viewer.

Figure 7.14. Lateral view of the modified mFCN wire layout generated by the FCN
viewer.

94

Chapter 8

Advanced molecular FCN circuit
design with the ToPoliNano EDA
framework

The ToPoliNano framework has made remarkable progress in enhancing its functionality
and performance. In particular, a crucial advancement has been achieved through the
parallelization of molecular analysis, particularly in the computation of molecule inter-
actions within a layout. This aspect enables the ToPoliNano suite to investigate more
complex molecular circuits more rapidly and realistically, bringing it closer to practical
Beyond-CMOS EDA applications.

Furthermore, the framework has been validated through extensive testing, including
comparison with its research SCERPA counterpart, which gives good hope of its capa-
bility in converting digital architectures into their molecular counterparts while ensuring
their correctness.

The following chapter introduce a range of molecular FCN circuits, including the 1-
bit and 2-bit full adders, alongside some innovative layouts that have yet to be explored
in the molecular FCN scenario. One such example is the ISCAS C17 benchmark digital
circuit, which was engineered in its molecular equivalent using the MagCAD editor from
scratch. The aim is to evaluate the extent of architecture complexity SCERPA can
analyze.

To guarantee consistent and reliable results, all devices underwent ToPoliNano anal-
yses with the same physical and electrical parameters, comprising clock settings, inter-
polating points in each clock phase (N = 5), interaction radius (dIR = 10.1e−9), and
stability threshold (εmax = 5e−6). The simulations were carried out on an Intel Core
i5-4690 processor running at 3.90 GHz with 8GB of RAM.

Finally, the results were validated by combining the FCNviewer and the validation
script described in Section 5.4.

Figure 8.1 reports the schematic flow adopted to design, simulate and test the novel
molecular architectures.

95

8.1. QCA ADDERS

ToPoliNano

SIMULATE

MagCAD

DESIGN

VALIDATE

Encoding
Checker

FCNviewer

Figure 8.1. Schematic flow adopted to design, simulate and test the novel molecular
architectures.

8.1 QCA adders

In digital electronics, addition is a fundamental operation performed using various meth-
ods. One of the most common and straightforward ways is through a full adder, which
adds two binary numbers alongside an input carry, producing a sum and a carry-out.
Table 8.1 reports the truth table of a 1-bit full adder.

A modular approach exploiting multiple 1-bit full adders can be taken to implement
an N-bit full adder. Each 1-bit adder’s carry-out is connected to the carry-in of the next,
and the sum output of each module is combined to produce the N-bit result.

Researchers have been digging quantum-dot cellular automata (QCA) principles to
design full adders. Like other molecular FCN logical devices, full adders can be realized
by properly arranging the inverter gate and majority voter fundamental blocks. One of
the earliest structures was presented in [60] and further explored in [64]. The structure
consists of five majority gates and three inverters and resembles a carry look-ahead
(CLA) structure as the carry-out signal is ready before the sum. Figure 8.2 illustrates
the layout using fundamental QCA computational blocks.

More recently, [66] has demonstrated that:

Cout = MV (A, B, Cin) (8.1)

Sum = MV (Cout, Cin, MV (A, B, Cin)) (8.2)

proposing an optimized full adder layout that requires only three majority voters and
two inverters according to the arrangement depicted in Figure 8.3.

96

8.2. MOLECULAR 1-BIT FULL ADDER

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 8.1. 1-bit full adder truth table.

A B Cin

MV4

MV3

MV5MV2

Cout

S

MV1

INV4

INV1

INV2

INV3

Figure 8.2. One of the earliest 1-bit full adder layouts proposed for QCA technology
and implemented with a majority voter and inverter-based logic.

8.2 Molecular 1-bit full adder

The feasibility of transposing the optimized full adder layout proposed in [66] into the
molecular domain has been already demonstrated in [5] by leveraging the bis-ferrocene
molecule. In that context, the circuit was designed using the MagCAD graphical editor
and successfully simulated with SCERPA.

97

8.2. MOLECULAR 1-BIT FULL ADDER

MV2

Cin

MV1

MV3

Cout

S

A B

INV1

INV2

Figure 8.3. Optimized 1-bit full adder implemented with a majority voter and inverter-
based logic.

8.2.1 Layout

Due to the circuit’s complexity in terms of the number of cells, reliable data propaga-
tion with no border effects is ensured by designing the device with a uniform partition
into the four-phase clocking system. The clock zones are maintained large enough to
preserve correct transmission and avoid metastability. As a result, the structure has
a four-pipeline fashion that makes the outputs available through the two critical paths
propagating the carry-out and the sum, with a delay of 4T , where T is the clock pe-
riod. The design reported in Figure 8.2 follows a two-line fashion to enhance robustness
against information loss and degradation. Each square in the figure corresponds to an
mQCA cell, consisting of two bis-ferrocene molecules juxtaposed under the influence of
one of the four-phase clocks.

Due to the lack of complete crossing information support, the layout require some of
its inputs to be duplicated, increasing the total area.

8.2.2 Simulation and testing

The integration of parallel interaction computation into the CAD simulator tool provides
new opportunities to investigate the enhanced efficiency of ToPoliNano. A comparison
between the recent parallel version and the old single-threaded version in terms of re-
quired simulation time can provide valuable insights into the reduction of analysis time
for not just full adder, but other molecular FCN devices as well.

The simulation times for the single-threaded and multi-threaded versions of ToPoli-
Nano carried for 90 steps are as follows:

• Single-threaded: 6840 seconds.

• Multi-threaded: 2617 seconds.

It is noteworthy that the parallel version of ToPoliNano results in a significant 61.74%
reduction in the required analysis time.

To ensure correctness, exhaustive testing was performed, generating a proper test-
bench for each of the eight possible input combinations and verifying charge distributions

98

8.3. MOLECULAR 2-BIT FULL ADDER

on output molecules using flow reported in Figure 8.1. The layout synchronously pro-
duces carry-out and sum after 90 steps.

INV1

MV2

MV3

MV1

INV2

Cin

B

A

B

A

S

Cout

Figure 8.4. 1-bit molecular full adder implemented with a robust two-line fashion with
a majority voter and inverter-based logic. Each square corresponds to an mQCA cell,
consisting of two adjacent bis-ferrocene molecules.

8.3 Molecular 2-bit full adder

The 2-bit full adder operates similarly to its 1-bit counterpart, except it processes two
bits for each input instead of one.

99

8.4. MOLECULAR N-BIT FULL ADDER

8.3.1 Layout

To construct the 2-bit version, two 1-bit full adders are connected in sequence using an L-
connection, with the carry-out of the previous stage serving as the carry-in of the second
as Figure 8.5 illustrates. The molecular equivalent is derived similarly by replicating two
molecular 1-bit full adders joined in sequence, as shown in Figure 8.6.

The clocking system is maintained between the two stages to ensure information
correctness throughout the circuit. The sum of the first two input bits is available after
4T , while the sum of the remaining ones is ready after 10T , where T represents the clock
period. The L-connection links the carries of the two stages with a delay of 5/4T . The
critical path propagates and computes the carries, resulting in a global delay of 10T .

8.3.2 Simulation and testing

The simulations were performed using standard physical parameters, and they took
3840 seconds to complete using the ToPoliNano multi-threaded version. To track the
information propagation, 90 steps were required, and the outputs of the first and second
stages are ready at steps 90 and 210, respectively.

It is worth noting that reducing the stability threshold can significantly reduce the
required simulation time, albeit at the expense of lower result precision. For instance,
by setting a stability threshold εmax = 5e − 3, the simulation time was reduced to 724
seconds without affecting the circuit information propagation, at least from the graphical
perspective.

Similarly to the 1-bit version, the 2-bit full adder underwent exhaustive testing for
every possible input combination using proper testbenches, the validation script reported
in Section 5.4, and the FCNviewer. The circuit performs as expected for all input
combinations leveraging on the flow reported in Figure 8.1.

8.4 Molecular N-bit full adder

To create an N-bit full adder, the principle used to move from the 1-bit to the 2-bit
version can be generalized. N adders are arranged in sequence and connected using
(N − 1) L-connections that propagate the carry from each block to the next. Each
stage performs the addition between two single-bit inputs using the carry-out from the
previous as the carry-in. The generalized N-bit full adder is shown in Figure 8.7.

The complexity of the circuit and the required analysis time depend on the number of
stages. Specifically, the layout includes 3TN majority voters and 2TN inverters, where
T is the clock period and N is the number of stages. The critical path of the circuit is
determined by the carry propagation, producing the last sum after a delay of 10TN .

The successful testing of the previous two full adders generates optimistic expecta-
tions for the performance of the N-bit full adder.

Additionally, due to its modular implementation, the N-bit full adder is an excellent
example of a circuit that can exploit the hierarchical design by instantiating N black

100

8.5. MOLECULAR ISCAS C17

MV2

MV1

MV3 S0

A0 B0

MV5

MV4

MV6 S1

A1 B1 Cin1

Cout1

Cin0

Cout0

INV4

INV3

INV1

INV1

Figure 8.5. Optimized 2-bit full adder implemented with a majority voter and inverter-
based logic.

boxes acting as the stages required by the adder. Figure 8.8 shows a 3-bit full adder
implemented hierarchically with 1-bit full adders.

8.5 Molecular ISCAS C17

International Symposium on Circuits and Systems (ISCAS) is a prestigious electrical and
electronics engineering annual convention, serving as a valuable occasion for academics,
engineers, and industry professionals to collaborate and exchange knowledge on the latest
research and cutting-edge technologies. The seminar covers several topics, emphasizing
the design and implementation of analog and digital circuits and the importance of
innovative validation and testing techniques to ensure high-quality and reliable electronic
systems.

Through the years, it has cooperated closely with the EDA community by offering
several circuit benchmarking collections to assess and compare the performance across
logic simulation, synthesis, place-and-route, and verification tools. One of the most com-
monly used packages is the ISCAS’85 suite [18, 19], which consists of thirteen digital

101

8.5. MOLECULAR ISCAS C17

INV4

INV3

MV5

MV6

INV1

MV2

MV3

MV1

INV2

2nd FULL ADDER

B0

A0

Cin0

1st FULL ADDER

Cout1

MV4

B0

A0

S0

B1

B1

A1

A1

Cout0

S1
Cin1

Figure 8.6. Optimized 2-bit full adder highlighting majority voter and inverter blocks
and the double stage structure. Each square corresponds to an mQCA cell, consisting
of two adjacent bis-ferrocene molecules.

S0

A0 B0 Cin0

Cout0

A1 B1 Cin1

An-1 Bn-1 Cinn-1

S1

Cout1

Sn-1

Coutn-1

Stage 1

Stage 0

Stage n-1

Figure 8.7. Schematic representation of an N-bit full adder layout.

102

8.5. MOLECULAR ISCAS C17

Figure 8.8. N-bit full adder hierarchical layout.

circuits of different complexity, spanning from simple basic logic gates to more sophisti-
cated systems, such as comparators, arithmetic and logic units (ALUs), and multipliers.

Selecting the appropriate circuit for verifying the usability and effectiveness of the
ToPoliNano EDA framework is essential. In the context of this work, the C17 circuit is
the best option as it strikes a suitable balance between complexity and testability.

8.5.1 Layout

Figure 8.9 displays the digital implementation of the ISCAS C17 circuit, which includes
five inputs, two outputs, and six NAND logic gates. The outputs are generated according
to the following Boolean expressions:

Out1 = (A ∧̄ B) ∧̄ ((B ∧̄ C) ∧̄ D)

Out2 = (D ∧̄ (B ∧̄ C)) ∧̄ (E ∧̄ (B ∧̄ C))
(8.3)

where ∧̄ identifies the NAND operation. Table 8.3 displays the associated truth
table.

The ISCAS C17 molecular implementation employs a 2-bit NAND logic gate as the
fundamental building block whose truth table is provided in Table 8.2. The element uses
a 3-input majority voter, with one input fixed at ‘0’. The result is complemented by a
molecular inverter, which negates the output and implements the NAND function as:

A ∧̄ B = NOT (MV (A, B, 0)) (8.4)

where ∧̄, NOT () and MV () stands for NAND, NOT and majority voter operations,
respectively. Figure 8.11 depicts the molecular 2-bit NAND logic gate, highlighting the
majority voter and inverter gates.

However, due to the lack of complete support for information crossing, a direct
transformation of the digital ISCAS C17 circuit displayed in Figure 8.9 is not feasible.
As a result, signals that feed into multiple paths must be duplicated, resulting in the
more complex configuration shown in Figure 8.10. The MagCAD editor is used to
insert each NAND gate. Connections are realized by using vertical and horizontal wires
arranged as L and T-connections. The circuit resembles a two-line structure to improve

103

8.5. MOLECULAR ISCAS C17

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

A

B

C

D

E

Out1

Out2

Figure 8.9. ISCAS C17 digital layout.

robustness, while the four-phase clocking scheme is carefully applied in each building
block to guarantee adiabatic transmission [62] and ensure enough information encoding
stability. In addition, horizontal and vertical propagation are implemented with no
more than five consecutive cells with the same clock zones to avoid metastability issues.
Furthermore, the phases are synchronized such that the two outputs are ready at the
same time step. The complete molecular ISCAS C17 is reported in 8.12

A B Out
0 0 1
0 1 1
1 0 1
1 1 0

Table 8.2. NAND truth table.

8.5.2 Simulation and testing

As per the previous circuits, the flow reported in Figure 8.1 is applied. A number of 100
steps are required to follow the entire information propagation from the inputs to the
outputs. The simulations with the usual physical parameters and the multi-threaded
version of ToPoliNano completed in 1324 seconds.

Exhaustive testing was employed to ensure circuit correctness for all possible inputs.
In particular, the outputs are compared against the expected ones, using the truth table
shown in 8.3 as a reference. Given the 25 combinations, instead of visually checking the
output charge distributions using the FCNviewer, the script introduced in Section 5.4

104

8.5. MOLECULAR ISCAS C17

A
B

C

Out1

Out2

B

B
C

D

D

B
C

E

NAND1

NAND2

NAND8

NAND5

NAND3
NAND6

NAND8NAND4
NAND7

Figure 8.10. ISCAS C17 digital circuit implemented with duplicated inputs to over-
come the need to use crosswire.

A

'0'

B

Out

MV1 INV1

Figure 8.11. Two-line mFCN 2-input NAND layout employed a fundamental block to
realize the mFCN ISCAS C17 circuit.

105

8.5. MOLECULAR ISCAS C17

reduced the testing effort. The circuit performed as expected for all input combinations.
In addition, after each NAND addition, a check for correct signal transfer throughout
the layout was performed to streamline the global testing process.

Similar to previous circuits, the C17 could benefit from using information crossing to
relax some design constraints. In particular, the crosswire could eliminate the need to
duplicate some inputs, thereby saving global area. Additionally, a hierarchical design ap-
proach could be leveraged to instantiate NAND black box components, improving overall
clarity and readability. As a reference, Figure 8.13 depicts the ISCAS C17 implemented
hierarchically with NAND gates.

The successful implementation, testing, and verification of the molecular ISCAS C17
demonstrates the feasibility of transposing digital architectures into their molecular coun-
terparts using the ToPoliNano framework.

A B C D E Out1 Out2
0 0 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 0 0
0 0 0 1 1 0 1
0 0 1 0 0 1 1
0 0 1 0 1 1 1
0 0 1 1 0 1 1
0 0 1 1 1 1 1
0 1 0 0 0 0 0
0 1 0 0 1 0 1
0 1 0 1 0 0 0
0 1 0 1 1 0 0
0 1 1 0 0 1 1
0 1 1 0 1 1 1
0 1 1 1 0 0 0
0 1 1 1 1 0 0

A B C D E Out1 Out2
1 0 0 0 0 0 0
1 0 0 0 1 0 1
1 0 0 1 0 0 0
1 0 0 1 1 0 1
1 0 1 0 0 1 1
1 0 1 0 1 1 1
1 0 1 1 0 1 1
1 0 1 1 1 1 1
1 1 0 0 0 1 0
1 1 0 0 1 1 1
1 1 0 1 0 1 0
1 1 0 1 1 1 0
1 1 1 0 0 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 0
1 1 1 1 1 1 0

Table 8.3. ISCAS C17 truth table.

106

8.5. MOLECULAR ISCAS C17

B

'0'

A

'0' '0'

'0''0'

'0''0'

C

C

C

B D

B D

B E '0'

'0'

Out1

Out2

NAND1

NAND2

NAND3

NAND5

NAND6

NAND4 NAND7

NAND8

NAND9

Figure 8.12. ISCAS C17 molecular circuit highlighting the fundamental NAND logic
gates. Each square corresponds to an mQCA cell, consisting of two adjacent bis-ferrocene
molecules.

107

8.5. MOLECULAR ISCAS C17

Figure 8.13. ISCAS C17 molecular circuit hierarchically implemented with NAND
gates.

108

Conclusions and future
perspectives

The presented work delves into the promising molecular Field-Coupled Nanocomputing
(mFCN) paradigm, which offers numerous advantages over traditional silicon technology,
including higher speed, lower power consumption, and greater scalability. However,
practical device manufacturing still poses limitations that require further research.

To tackle these challenges, SCERPA has emerged as an effective tool for model-
ing molecules as electronic devices. It maintains a vivid connection to physical and
technological perspectives and leverages ab initio calculations only for molecule charac-
terizations. Specifically, SCERPA assesses the field generated by all the molecules in the
circuit and links it to the charge, enabling a comprehensive analysis of signal propagation
and computation.

In parallel, the ToPoliNano framework is being developed as an effective and intuitive
EDA environment to offer a top-down approach similar to standard-silicon software for
designing systems based on emerging technologies.

The recent integration of SCERPA into the ToPoliNano framework is a significant
step toward bridging the gap between research and EDA scenario, creating a promising
candidate for commercial Beyond-CMOS tool in the future. By leveraging the SCERPA’s
deep understanding of physical and technological details, the framework can design, sim-
ulate, and verify complex molecular architectures, employing a self-consistent iterative
loop to solve electrostatic interactions without relying on computationally expensive ab
initio methods.

This work objective is to validate the results produced by SCERPA and ToPoliNano,
while simultaneously devising novel features and improvements for both tools, enhancing
their functionality, usability, and compatibility.

A systematic methodology achieves the validation goal, proving highly effective in
identifying and solving issues and discrepancies affecting the MagCAD importer of
SCERPA and the ToPoliNano simulator. One significant advantage of this methodology
is the ability to abstract the differences across the various SCERPA implementations,
enabling a better understanding of potential discrepancies. In particular, the method-
ology is employed to compare the results of the two SCERPA importers, solving issues
and demonstrating consistency between them. Similarly, the simulation results between
research and EDA-oriented SCERPAs are validated for simple circuits. However, for

109

CONCLUSIONS AND FUTURE PERSPECTIVES

complex layouts, discrepancies are observed. While a thorough comparison of every
function of the two environments is conducted, the exact reason for the differences re-
mains unknown. The degree of adiabaticity of the circuit solution could explain the
reason for the differences. Increasing the number of interpolating points of the clock
waveforms results in comparable results between the two tools.

Overall, the methodology has helped to build a more robust and reliable EDA plat-
form, contributing to accurate and consistent circuit simulations.

This work introduces several new features and improvements to enhance the usability
and effectiveness of ToPoliNano as a CAD tool for simulating mFCN systems.

One significant enhancement is the parallelization of the molecular engine responsible
for computing interactions among molecules. This upgrade results in better performance
compared to the previous single-threaded version. Increasingly complex molecular de-
vices are simulated using the old single-threaded version and the new multi-threaded
version to assess improvements. As expected, the results demonstrate a substantial en-
hancement in overall performance, with reduced simulation times across all devices. This
aspect is particularly crucial in paving the way toward a commercial beyond-CMOS EDA
tool capable of efficiently designing and simulating circuits regardless of the complexity.

In addition, this study adds hierarchical design support to the ToPoliNano simula-
tor. The feature enables users to create nested sub-circuits and manage complex system
designs more effectively, improving general clarity and readability. This aspect is particu-
larly critical for a market-oriented EDA application that aims to abstract many low-level
physical and electrical details of the simulation by providing an intuitive interface. The
benefits of hierarchical layouts are assessed by applying them to the more complex cir-
cuits developed in this work. Specifically, the N-bit full adder benefits significantly by
instantiating a number of 1-bit full adders, realizing an adder of any dimensions.

Moreover, to enhance circuit design flexibility, the newly introduced molecule support
in ToPoliNano enables information exchange when two wires cross. This aspect increases
the flexibility of circuit design, allowing for the creation of circuits with fewer constraints.
To engineer the crosswire layout, MagCAD is employed to design it, while ToPoliNano
is used to simulate it. However, due to the lack of low-level personalization of external
clock fields, The evaluation cell may not always be situated in optimal conditions to
generate the intended outputs. As a result, using the same crosswire layout proposed by
the literature for all input combinations is impossible. Therefore, this work introduces
two crosswire layouts to handle separately the cases in which the inputs are equal or
not. This issue highlights the need for further work to introduce more fine-tuned clock
personalization at the ToPoliNano level or explore new molecules capable of supporting
information crossing regardless of external conditions. Overall, the successful integration
of the new molecule and the flow used to introduce it demonstrates the potential for
adding new molecules to ToPoliNano’s capabilities and paves the way for the possibility
of hybrid molecular circuits.

The study also emphasizes the refined and validated ToPoliNano suite to be used to
analyze complex molecular circuits. One of the notable achievements is the successful

110

CONCLUSIONS AND FUTURE PERSPECTIVES

transposition of the 1-bit full adder layout to a 2-bit version, which demonstrates the gen-
eralization of the N-bit version. Moreover, the framework’s effectiveness is demonstrated
by transposing digital architectures into molecular equivalents, such as the widely-used
digital benchmark circuit ISCAS C17.

To improve its effectiveness and versatility as a state-of-the-art research algorithm
for studying mFCN, SCERPA is enhanced with a dynamic damping feature that adapts
the parameter already used to facilitate iterative loop convergence, resulting in faster
analysis. A comparison with static damping evaluates performance improvement.

The research procedure now includes the same charge convergence mode as ToPoli-
Nano to evaluate the convergence of the iterative loop, improving its comparability with
its CAD counterpart. Furthermore, now SCERPA comprises the same clock waveforms
as ToPoliNano to regulate information propagation through circuits.

Regarding future perspectives, there are several promising areas of investigation for
both SCERPA and ToPoliNano.

The academic procedure could enhance the accuracy of performance, power estima-
tions, and overall analysis by fully characterizing time-dependent properties such as elec-
tron movement through molecular dynamics concepts like Real-Time Time-Dependent
Density Functional Theory (RT-TDDFT). Although the current self-consistent itera-
tive loop provides valuable modeling, it does not fully describe the actual behavior of
molecules over time. Incorporating a dynamic description of the system would offer
a more comprehensive and realistic understanding of how molecules behave, a critical
aspect in paving the way for mFCN prototype realization. Additionally, the algorithm
could serve as a basis for exploring alternative methods for mFCN computation, such as
employing molecule positions instead of charges or through a combination of magnetic
and electrostatic external stimuli. Another encouraging research topic for SCERPA
could be related to improving the characterization of process variations, which could
help assess their effect on final devices and facilitate concrete device realization.

Similarly, the ToPoliNano framework could leverage SCERPA’s deep understanding
of the technology and evaluate the integrability of research insights to enhance practical
EDA applications. For instance, the framework could integrate the SCERPA model
to assess the energy dissipated by a molecular circuit. Meanwhile, other visualization
methods that mimic the range of representations provided by the SCERPA viewer could
enhance the FCNviewer. Moreover, the entire EDA framework could explore technologies
across different domains, allowing for the design of hybrid emerging technology circuits.

111

References

[1] M. Ali and A. Esam. «A new approach to bypass wire crossing problem in QCA
nano technology», in: Circuit World (2021).

[2] I. Amlani, A. O. Orlov, G. L. Snider, C. S. Lent, and G. H. Bernstein. «External
charge state detection of a double-dot system», in: Applied physics letters 71.12
(1997).

[3] Y. Ardesi. «Investigation of Molecular FCN for Beyond-CMOS. Technology, de-
sign, and modeling for nanocomputing». PhD thesis. 2022.

[4] Y. Ardesi, G. Beretta, M. Vacca, Gianluca G. Piccinini, and M. Graziano. «Impact
of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot
Cellular Automata Circuits», in: Electronics 11.2 (2022).

[5] Y. Ardesi, U. Garlando, F. Riente, G. Beretta, G. Piccinini, and M. Graziano.
«Taming Molecular Field-Coupling for Nanocomputing Design», in: Emerging Tech-
nologies in Computing Systems 19.1 (2022), pp. 1–24.

[6] Y. Ardesi, L. Gnoli, M. Graziano, and G. Piccinini. «Bistable propagation of
monostable molecules in molecular field-coupled nanocomputing», in: Proc. 15th
Conf. Ph.D. Res. Microelectron. Electron (2019), pp. 225–228.

[7] Y. Ardesi, M. Graziano, and G.Piccinini. «A Model for the Evaluation of Monos-
table Molecule Signal Energy in Molecular Field-Coupled Nanocomputing», in:
Journal of Low Power Electronics and Applications 12.1 (2022).

[8] Y. Ardesi, A. Pulimeno, M. Graziano, F. Riente, and G. Piccinini. «Effectiveness
of Molecules for Quantum Cellular Automata as Computing Devices», in: Low
Power Electronics and Applications (2018).

[9] Y. Ardesi, A. Pulimeno, M. Graziano, F. Riente, and G. Piccinini. «Effectiveness
of molecules for quantum cellular automata as computing devices», in: Low Power
Electronics and Applications 8.3 (2018), p. 24.

[10] Y. Ardesi, G. Turvani, G. Piccinini, and M. Graziano. «SCERPA Simulation of
Clocked Molecular Field-Coupling Nanocomputing», in: IEEE Transactions. Very
Large Scale Integration (VLSI) Systems 29.3 (2021), pp. 558–567.

112

REFERENCES

[11] Y. Ardesi, R. Wang, G. Turvani, G. Piccinini, and M. Graziano. «SCERPA: A Self-
Consistent Algorithm for the Evaluation of the Information Propagation in Molec-
ular Field-Coupled Nanocomputing», in: IEEE Transactions Computer-Aided De-
sign Integrated Circuits Systems 39.10 (2020), pp. 2749–2760.

[12] V. Arima, M. Iurlo, L. Zoli, S. Kumar, M. Piacenza, F. Della Sala, F. Matino,
G. Maruccio, R. Rinaldi, F. Paolucci, M. Marcaccio, P. Cozzi, and A. Bramanti.
«Toward quantum-dot cellular automata units: Thiolated-carbazole linked bisfer-
rocenes», in: Nanoscale 4 (2012), pp. 813–823.

[13] P. W. Atkins and J. D. Paula. «Physical Chemistry», in: (2006).
[14] R. Iris Bahar, Alex K. Jones, Srinivas Katkoori, Patrick H. Madden, Diana Mar-

culescu, and Igor L. Markov. «Workshops on Extreme Scale Design Automation
(ESDA) Challenges and Opportunities for 2025 and Beyond», in: CoRR (2020).

[15] Gary H. Bernstein, Alexandra Imre, V. Metlushko, Alexei O. Orlov, L. Zhou, L.
Ji, György Csaba, and Wolfgang Porod. «Magnetic QCA systems», in: Microelec-
tronics Journal 36.7 (2005), pp. 619–624.

[16] «Beyond CMOS», in: International Roadmap for Devices and Systems (2022).
[17] E. P. Blair. «Quantum-dot cellular automata: A clocked architecture for highspeed,

energy-efficient molecular computing», in: Unconventional Computation and Nat-
ural Computation (2017), pp. 56–68.

[18] F. Brglez and H. Fujiwara. «A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran», in: Int. Symposium on Circuits and
Systems (1985).

[19] F. Brglez, P. Pownall, and R. Hum. «Accelerated ATPG and Fault Grading via
Testability Analysis», in: Proc. IEEE Int. Symposium on Circuits and Systems
(1985).

[20] Y. S. Chauhan, D. D. Lu, S. Vanugopalan, S. Khandelwal, J.P. Duarte, N. Pay-
davosi, A. Niknejad, and C. Hu. FinFET Modeling for IC Simulation and Design.
Academic Press, 2015.

[21] T. C. Chen. «Overcoming Research Challenges for CMOS Scaling», in: Industry
Directions", Proc. of 8th Intl. Conference on Solid-State and Integrated Circuit
Technology (2006), pp. 4–7.

[22] R. P. Cowburn and M. E. Welland. «Room temperature magnetic quantum cellular
automata», in: Science (2000).

[23] B.D. Cullity and C.D. Graham. «Introduction to Magnetic Materials», in: Wiley
(2009).

[24] M. A. Cusumano. «The Changing Economics and Strategy of the Semiconductor
Industry», in: IEEE Engineering Management Review 45.3 (2017).

[25] P. Douglas and C. S. Lent. «Logical devices implemented using quantum cellular
automata», in: Applied Physics 75 (1994).

113

REFERENCES

[26] T. Farrelly. «A review of Quantum Cellular Automata», in: Quantum 4 4 (2020).
[27] U. Garlando, F. Riente, and M. Graziano. «FUNCODE: Effective Device-to-System

Analysis of Field-Coupled Nanocomputing Circuit Designs», in: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 40.3 (2021),
pp. 467–478.

[28] M. Graef. «More than Moore White Paper», in: IEEE International Roadmap for
Devices and Systems Outbriefs (2021), pp. 1–47.

[29] M. Graziano, M. Vacca, and M. Zamboni. «Magnetic QCA Design: Modeling,
Simulation and Circuits», in: Cellular Automata - Innovative Modelling for Science
and Engineering (2011).

[30] M. Graziano, R. Wang, M. R. Roch, Y. Ardesi, F. Riente, and G. Piccinini. «Char-
acterisation of a bis-ferrocene molecular QCA wire on a non ideal gold surface»,
in: Micro & Nano Letters 14 (2019), pp. 22–27.

[31] N. Z. Haron. «Why is CMOS scaling coming to an END?», in: 3rd International
Design and Test Workshop (2009), pp. 98–103.

[32] A. Ilachinski. «Cellular Automata: A Discrete View of the World», in: World Sci-
entific Publishing Co Inc. (2001).

[33] C. S. Lent, B. Isaksen, and M. Lieberman. «Molecular quantum-dot cellular au-
tomata», in: American Chemical Society 125.4 (2003), pp. 1056–1063.

[34] C. S. Lent and Gregory L. Snider. «The development of quantum-dot cellular au-
tomata», in: In Field-Coupled Nanocomputing, Springer Berlin Heidelberg (1994),
pp. 3–20.

[35] C.S. Lent and B. Isaksen. «Clocked molecular quantum-dot cellular automata»,
in: IEEE Transactions on Electron Devices 50.9 (2003), pp. 1890–1896.

[36] C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein. «Quantum cellular au-
tomata», in: Nanotechnology 4 (1993), pp. 49–57.

[37] D. Litvinov and K. Ingersent. «Magnetic Quantum Cellular Automata», in: Jour-
nal of Applied Physics (2004).

[38] Y. Lu and C. S. Lent. «A metric for characterizing the bistability of molecular
quantum-dot cellular automata», in: Nanotechnology 19.15 (2008).

[39] Y. Lu, M. Liu, and C.S. Lent. «Molecular quantum-dot cellular automata: From
molecular structure to circuit dynamics», in: Applied physics (2007), p. 102.

[40] M. Macucci. Quantum cellular automata: theory, experimentation and prospects.
London: Imperial College Press, 2006.

[41] F. P. Martinez, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, S. J. Chorley,
and C. G. Smith. «Demonstration of a quantum cellular automata cell in a Ga As⁄
Al Ga As heterostructure», in: Applied physics letters 91.3 (2007).

[42] U. Mehta and V. H. Dhare. «Quantum-dot Cellular Automata (QCA): A Survey»,
in: CoRR (2017).

114

REFERENCES

[43] G. E. Moore. «Cramming more components onto integrated circuits», in: Electron-
ics (1965).

[44] «More Moore», in: International Roadmap for Devices and Systems (2022).
[45] «More than Moore», in: International Roadmap for Devices and Systems (2022).
[46] A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider. «Realiza-

tion of a functional cell for quantum-dot cellular automata», in: Science 277.5328
(1997).

[47] A. O. Orlov, R. K. Kummamuru, R. Ramasubramaniam, G. Toth, C. S. Lent,
G. H. Bernstein, and G. L. Snider. «Experimental demonstration of a latch in
clocked quantum-dot cellular automata», in: Applied Physics Letters 78.11 (2001).

[48] M. Ottavi, S. Pontarelli, and A. Salsano. «Modeling Magnetic Quantum-dot Cel-
lular Automata by HDL», in: 11th IEEE International Conference on Nanotech-
nology (2011), pp. 1139–1144.

[49] A. M. Pintus, A. Gabrieli, F. G. Pazzona, G. Pireddu, and P. Demontis. «Molec-
ular QCA embedding in microporous materials», in: Physical Chemistry Chemical
Physics 21 (15 2019), pp. 7879–7884.

[50] A. Pulimeno, M. Graziano, A. Antidormi, R. Wang, A. Zahir, and G. Piccinini.
«Understanding a Bisferrocene Molecular QCA Wire», in: Springer Berlin Heidel-
berg 8280.2 (2014), pp. 307–338.

[51] A. Pulimeno, M. Graziano, D. Demarchi, and G. Piccinini. «Towards a molecular
QCA wire: simulation of write-in and read-out systems», in: Solid-State Electronics
77 (2012), pp. 101–107.

[52] A. Pulimeno, M. Graziano, R. Wang, D. Demarchi, and G. Piccinini. «Charge
distribution in a molecular QCA wire based on bis-ferrocene molecules», in: IEEE
International Symposium on Nanoscale Architectures (2013), pp. 42–43.

[53] A. Quarteroni and F. Saleri. «Numerical Mathematics», in: Springer-Verlag (2006).
[54] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. R. Roch, and M. Graziano.

«MagCAD: A Tool for the Design of 3D Magnetic Circuits», in: IEEE Journal on
Exploratory Solid-State Computational Devices and Circuits 3 (2017), pp. 65–73.

[55] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and M. Graziano.
«ToPoliNano: A CAD Tool for Nano Magnetic Logic», in: 36.7 (2017), pp. 1061–
1074.

[56] L. C. S. and P. D. Tougaw. «A device architecture for computing with quantum
dots», in: Proceedings of the IEEE 85.4 (1997).

[57] E. Scott and Thompson et al. «In Search of ’Forever,’ Continued Transistor Scaling
One New Material at a Time», in: IEEE Transactions on Semiconductor Manu-
facturing 18.1 (2005), pp. 26–36.

[58] U. C. Singh and P. A. Kollman. «An approach to computing electrostatic charges
for molecules», in: Journal on Computational Chemistry 5 (1984), pp. 129–145.

115

REFERENCES

[59] R. O. Topaloglu. «More than Moore Technologies for Next Generation Computer
Design», in: Springer (2016).

[60] P.D. Tougaw and C. S. Lent. «Logical devices implemented using quantum cellular
automata», in: Applied Physics 75 (1994).

[61] J. M. Tour. «Molecular Electronics. Synthesis and Testing of Components», in:
Accounts of Chemical Research 33 (2000).

[62] V. Vankamamidi, M. Ottavi, and F. Lombardi. «A line-based parallel memory for
QCA implementation», in: IEEE Transactions on Nanotechnology 4.6 (2005).

[63] V. Vankamamidi, M. Ottavi, and F. Lombardi. «Clocking and Cell Placement for
QCA», in: In Proceedings of theIEEE-NANO 1 (2006).

[64] A. Vetteth, K. Walus, V. S. Dimitrov, and G. A. Jullien. «Quatum-dot cellular
automata carry-look-ahead adder and barrel shifter», in: IEEE Emerging Telecom-
munications Technologies Conference (2002).

[65] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman. «QCADesigner: A rapid
design and simulation tool for quantum-dot cellular automata», in: Nanotechnology
3.1 (2004), pp. 26–31.

[66] W. Wang, K. Walus, and G. A. Jullien. «Quantum-Dot Cellular Automata Adders»,
in: IEEE Conference on Nanotechnology (2003).

[67] A. Yuri, U. Garlando, F. Riente, G. Beretta, G. Piccinini, and M. Graziano. «Tam-
ing Molecular Field-Coupling for Nanocomputing Design», in: 19.1 (2022).

[68] L. Zoli. «Active Bis-Ferrocene Molecules as Unit for Molecular Computation».
PhD thesis. 2010, pp. 1056–1063.

116

Appendix A

Comparative analysis of the
molecular FCN simulators

This appendix includes the code developed to facilitate the comparison of the two
SCERPA layout importers and the SCERPA and ToPoliNano simulators.

A.1 Evaluating SCERPA importers

Listing A.1. MATLAB source code of SaveLabelsAndDot4Coord.m.
1 function Function_SaveLabelsAndDot4Coord (stack_mol , stack_driver , circuit_name , out_path)
2
3 %file management
4 if strcmp (circuit_name , ’matlabDrawing ’)
5 fileLabelMatlab = sprintf (’%s/ labelsAndDot4CoordinatesMatlab .txt ’, out_path);
6 fileIDMatlab = fopen (fileLabelMatlab ,’wt ’);
7 else
8 fileLabelMagcad = sprintf (’%s/ labelsAndDot4CoordinatesMagcad .txt ’, out_path);
9 fileIDMagcad = fopen (fileLabelMagcad ,’wt ’);

10 end
11
12 % insert drivers
13 for kk =1: stack_driver .num
14 if strcmp (circuit_name , ’matlabDrawing ’)
15 fprintf (fileIDMatlab ,’Driver %s %.4f %.4f %.4f\n’, stack_driver . stack (kk). identifier_qll ,

stack_driver . stack (kk). charge (4).x, stack_driver . stack (kk). charge (4).y, stack_driver . stack (kk). charge (4)
.z);

16 else
17 fprintf (fileIDMagcad ,’Driver %s %.4f %.4f %.4f\n’, stack_driver . stack (kk). identifier_qll ,

stack_driver . stack (kk). charge (4).x, stack_driver . stack (kk). charge (4).y, stack_driver . stack (kk). charge (4)
.z);

18 end
19 end
20
21 % insert molecules
22 for kk =1: stack_mol .num
23 if strcmp (circuit_name , ’matlabDrawing ’)
24 fprintf (fileIDMatlab ,’Molecule %s %.4f %.4f %.4f\n’, stack_mol . stack (kk). identifier_qll , stack_mol .

stack (kk). charge (4).x, stack_mol . stack (kk). charge (4).y, stack_mol . stack (kk). charge (4).z);
25 else
26 fprintf (fileIDMagcad ,’Molecule %s %.4f %.4f %.4f\n’, stack_mol . stack (kk). identifier_qll , stack_mol .

stack (kk). charge (4).x, stack_mol . stack (kk). charge (4).y, stack_mol . stack (kk). charge (4).z);
27 end
28 end
29
30 % close file
31 if strcmp (circuit_name , ’matlabDrawing ’)
32 fclose (fileIDMatlab);
33 else
34 fclose (fileIDMagcad);

117

A.1. EVALUATING SCERPA IMPORTERS

35 end
36 end

Listing A.2. Bash source code of generateMatchingMolecules.sh.
1 #!/ bin/bash
2 # ###
3 # Script Name : generateMatlabMagcadTopolinanoCorrespondences .sh
4 # Description : the script receives the name of the circuit to be tested .
5 # It requires to have already executed the corrispondent
6 # MATLAB testing file from the Testing folder .
7 # It generates the label correspondences between
8 # MATLAB and MagCAD (= ToPoliNano) outputs according
9 # to the molecules DOT4 coordinates

10 # Inputs : name of the circuit to be tested (i.e. ThreePhasesWire)
11 # Outputs : label matche between SCERPA - MATLAB and SCERPA - MagCAD
12 # Author : Dario Castagneri
13 # ##
14 start_time ="$(date -u +%s)"
15
16 #Move to main SCERPA directory
17 cd ..
18
19 # Files generated by scerpa - MATLAB and scerpa - MagCAD
20 # storing the labels along with the coordinates of DOT4
21 matlab_file ="./ $1/ matlab / SCERPA_OUTPUT_FILES / labelsAndDot4CoordinatesMatlab .txt"
22 magcad_file ="./ $1/ magcad / SCERPA_OUTPUT_FILES / labelsAndDot4CoordinatesMagcad .txt"
23
24 # Check if correspondences file is already
25 # present due to a previous test.
26 #If yes , delete it.
27 correspondencesFile ="./ $1/ labelsMatlabMagcadTopo .txt"
28 if [-f " $correspondencesFile "]; then
29 rm $correspondencesFile
30 fi
31
32 nRows =0
33 nLabels =0
34 # Generate the correspondences between the labels of MATLAB and
35 # MagCAD by searching the labels with the same DOT4 coordinates .
36 while IFS=’ ’ read -r matCol1 matCol2 matCol3 matCol4 matCol5
37 do
38 let nRows = nRows +1
39 while IFS=’ ’ read -r magCol1 magCol2 magCol3 magCol4 magCol5
40 do
41 if [[$matCol3 == $magCol3 &&
42 $matCol4 == $magCol4 &&
43 $matCol5 == $magCol5]]; then
44 echo $matCol2 $magCol2 >> $correspondencesFile
45 let nLabels = nLabels +1
46 break # Break the loop to save computation time.
47 fi
48 done < " $magcad_file "
49 done < " $matlab_file "
50
51 # Check wether the number of correspondences is
52 # equal to tne number of labels .
53 #If not , exit the program .
54 if [$nRows -ne $nLabels]; then
55 echo "It was not possible to find all the correspondences "
56 exit 1
57 fi
58
59 end_time ="$(date -u +%s)"
60 elapsed ="$(($end_time - $start_time))"
61 echo " Execution time is $elapsed seconds ."

Listing A.3. Bash source code of checkMatlabMagcadQSS.sh.
1 #!/ bin/bash
2 # ###
3 # Script Name : checkMatlabMagcadQSS .sh
4 # Description : the script receives the name of the circuit to be tested .
5 # It requires to have already executed the corrispondent
6 # MATLAB testing file from the Testing folder .
7 # It assumes that the generateMatlabMagcadTopolinanoCorrespondences .sh script
8 # has already been executed to generate labels between Matlab and Magcad (= Topolinano)
9 # It checks for any mismateches between matlab and magcad .qss files .

10 # Argument : name of the circuit to be tested (i.e. ThreePhasesWire)
11 # Author : Dario Castagneri

118

A.2. EVALUATING SCERPA AND TOPOLINANO SIMULATORS

12 # ##
13 start_time ="$(date -u +%s)"
14
15 #Move to main directory
16 cd ..
17
18 # Correspondences file is already generated by generateMatlabMagcadTopolinanoCorrespondences .sh script
19 corresponcencesFile ="./ $1/ labelsMatlabMagcadTopo .txt"
20
21 # Check if mismatches file is already present due to a previous test.
22 #If yes , delete it.
23 mimsmatchesFile ="./ $1/ mismatchesMatlabMagcad .txt"
24 if [-f " $mimsmatchesFile "]; then
25 rm $mimsmatchesFile
26 fi
27
28
29 lineNumber =35 # Considering the header , lineNumber specifies from where the reading starts .
30 numberQss =39
31 i=0 #i specifies the number of QSS files to be compared .
32 while [$i -le $numberQss]
33 do
34 matlabQss ="./ $1/ matlab / SCERPA_OUTPUT_FILES /00000 $i.qss"
35 magcadQss ="./ $1/ magcad / SCERPA_OUTPUT_FILES /00000 $i.qss"
36
37 if [$i -ge 10]; then
38 matlabQss ="./ $1/ matlab / SCERPA_OUTPUT_FILES /0000 $i.qss"
39 magcadQss ="./ $1/ magcad / SCERPA_OUTPUT_FILES /0000 $i.qss"
40 fi
41
42 echo " Checking : "
43 echo $matlabQss
44 echo $magcadQss
45
46 #read MATLAB qss
47 while IFS=’ ’ read -r matCol1 matCol2 matCol3 matCol4 matCol5
48 do
49 #read corresponcences file
50 while IFS=’ ’ read -r corrMatlab corrMagcad ;
51 do
52 if [[$corrMatlab == $matCol1]]; then
53 #read MagCAD qss
54 while IFS=’ ’ read -r magCol1 magCol2 magCol3 magCol4 magCol5
55 do
56 if [[$corrMagcad == $magCol1]]; then
57 if [[${ matCol2 :0:5} != ${ magCol2 :0:5} || ${ matCol3 :0:5} != ${ magCol3

:0:5} || ${ matCol4 :0:5} != ${ magCol4 :0:5} || ${ matCol5 :0:5} != ${ magCol5 :0:5}]]; then
58 echo " Found a mismatch between MATLAB 0${i}. qss and MagCAD 0$

{i}. qss files :" >> $mimsmatchesFile
59 echo " MATLAB reports : $matCol1 $matCol2 $matCol3 $matCol4

$matCol5 " >> $mimsmatchesFile
60 echo -e " MagCAD reports : $magCol1 $magCol2 $magCol3 $magCol4

$magCol5 \n" >> $mimsmatchesFile
61 fi
62 fi
63 done < <(tail -n + $lineNumber $magcadQss)
64 fi
65 done < " $corresponcencesFile "
66 done < <(tail -n + $lineNumber $matlabQss)
67 let "i=i+1"
68 done
69
70 end_time ="$(date -u +%s)"
71 elapsed ="$(($end_time - $start_time))"
72
73 echo " Execution time is $elapsed seconds ."

A.2 Evaluating SCERPA and ToPoliNano simulators

Listing A.4. Bash source code of checkMatlabTopolinanoQSS.sh.
1 #!/ bin/bash
2 # ###
3 # Script Name : checkMatlabTopolinanoQSS .sh
4 # Description : the script receives the name of the circuit to be tested and maximum offset .
5 # It directly compares the dot charges looking for the same molecule label in topolinano and

magcad .qss files .
6 # To be used before the modifications to inital voltages and clock in topolinano (initial

voltage 4.5V -> 0 and clock 0 -> -2)

119

A.2. EVALUATING SCERPA AND TOPOLINANO SIMULATORS

7 # Argument : name of the circuit to be tested (i.e. ThreePhasesWire), maximum offset allowed to consider
a mismatch

8 # Author : Dario Castagneri
9 # ##

10
11 start_time ="$(date -u +%s)"
12
13
14 # ###
15 computeDifferenceCharges () {
16 #echo "$1 $2"
17
18 if (($(echo "$1 >= $2" | bc -l))); then
19 difference =$(echo "$1 - $2" | bc)
20 else
21 difference =$(echo "$2 - $1" | bc)
22 fi
23 }
24 # ###
25
26
27 offsetOK =$2
28
29 #Move to main directory
30 cd ..
31
32 # Check if mismatches file is already present due to a previous test.
33 #If yes , delete it.
34 mimsmatchesFile ="./ $1/ mismatchesMagcadTopo .txt"
35 if [-f " $mimsmatchesFile "]; then
36 rm $mimsmatchesFile
37 fi
38
39 topoDirectory ="/mnt/a/ Utenti / Dario / Desktop / topoWorkSpace /Work/ MolQCAProject / Simulations /"
40 eval "cd $topoDirectory "
41 simName =$(eval "ls -t | head -n 1")
42 topoDir =" $topoDirectory$simName "
43 eval "cd /mnt/c/ scerpa "
44
45
46 lineNumberMatlab =35 # Considering the header , lineNumber specifies from where the reading starts .
47 lineNumberTopo =15
48 numberQss =39
49 i=0 #i specifies the number of QSS files to be compared .
50 while [$i -le $numberQss]
51 do
52 matlabQss ="./ $1/ magcad / SCERPA_OUTPUT_FILES /00000 $i.qss"
53 topoQss =" $topoDir /00000 $i.qss"
54
55 if [$i -ge 10]; then
56 matlabQss ="./ $1/ magcad / SCERPA_OUTPUT_FILES /0000 $i.qss"
57 topoQss =" $topoDir /0000 $i.qss"
58 fi
59
60 echo " Checking : "
61 echo $matlabQss
62 echo $topoQss
63
64 #read MATLAB qss
65 while IFS=’ ’ read -r matCol1 matCol2 matCol3 matCol4 matCol5
66 do
67 #read Topo qss
68 while IFS=$’\t’ read -r topoCol1 topoCol2 topoCol3 topoCol4 topoCol5
69 do
70 if [[$matCol1 == $topoCol1]]; then
71 if [[$matCol2 != $topoCol2 || $matCol3 != $topoCol3 || $matCol4 != $topoCol4 || $matCol5 !=

$topoCol5]]; then
72
73 computeDifferenceCharges $matCol2 $topoCol2
74 DOT1difference = $difference
75
76 computeDifferenceCharges $matCol3 $topoCol3
77 DOT2difference = $difference
78
79 computeDifferenceCharges $matCol4 $topoCol4
80 DOT3difference = $difference
81
82 matCol5 =$(echo " $matCol5 " | tr -d $’\r’)
83 topoCol5 =$(echo " $topoCol5 " | tr -d $’\r’)
84
85 computeDifferenceCharges $matCol5 $topoCol5
86 DOT4difference = $difference
87

120

A.3. MOLECULE ENCODING CHECKER

88 # difference is greater for one of the four parameters wrt to offset
89 if (($(echo " $DOT1difference > $2" | bc -l) || $(echo " $DOT2difference > $2" | bc -l

) || $(echo " $DOT3difference > $2" | bc -l) || $(echo " $DOT4difference > $2" | bc -l))); then
90 echo " Found a mismatch between MATLAB 0${i}. qss and MagCAD 0${i}. qss files

greater than maximum +/- allowed discrepancy :" >> $mimsmatchesFile
91 echo " Maximum +/- allowed discrepancy : $offsetOK " >> $mimsmatchesFile
92 echo -e " MATLAB reports : \ t$matCol1 \ t$matCol2 \ t$matCol3 \ t$matCol4 \ t$matCol5 "

>> $mimsmatchesFile
93 echo -e " ToPoliNano reports : \ t$topoCol1 \ t$topoCol2 \ t$topoCol3 \ t$topoCol4 \

t$topoCol5 " >> $mimsmatchesFile
94 echo -e " Differences are: \t\t\ t$DOT1difference \ t$DOT2difference \

t$DOT3difference \ t$DOT4difference \n" >> $mimsmatchesFile
95 fi
96 fi
97 fi
98 done < <(tail -n + $lineNumberTopo $topoQss)
99 done < <(tail -n + $lineNumberMatlab $matlabQss)

100 let "i=i+1"
101 done
102
103 end_time ="$(date -u +%s)"
104 elapsed ="$(($end_time - $start_time))"
105
106 echo " Execution time is $elapsed seconds ."

A.3 Molecule encoding checker

Listing A.5. Bash source code of moleculeEncodingChecker.sh.
1 #!/ bin/bash
2 # ###
3 # Script Name : checkTopolinanoMoleculeEncoding .sh
4 # Description : The script receives a list of x and y coordinates of molecules whose encoding state needs to

be checked .
5 # Argument : The QSS to be checked , list of x- coordinates , list of y- coordinates , digital values .
6 # (i.e. 90 "32 32" "0 13" "0 1")
7 # Author : Dario Castagneri
8 # ##
9 zeroThreshold =0.8

10 oneThreshold =0.3
11
12 qssToBeChecked =$1
13 echo "QSS to be checked : 00 $qssToBeChecked .qss"
14 qssFile ="$PWD /0000 $qssToBeChecked .qss"
15
16 xCoordinates =($2)
17 yCoordinates =($3)
18 digitalValues =($4)
19
20 qllFile =$(find . -maxdepth 1 -name "*. qll" -type f)
21 moleculeIds =()
22
23 for ((i=0; i<${# xCoordinates [@]}; i++));
24 do
25 tag=$(grep -m1 "x=\"${ xCoordinates [$i]}\".*y=\"${ yCoordinates [$i]}\"" " $qllFile ")
26 echo $tag
27 id=$(echo $tag | sed -n ’s/.* id ="\([0 -9]*\) ".*/\1/ p’)
28 moleculeIds +=($id)
29 done
30
31 for i in "${! digitalValues [@]}";
32 do
33 echo " Molecule ${ moleculeIds [$i]}a to be checked for a digital ${ digitalValues [$i]}."
34 done
35
36 for i in "${! digitalValues [@]}";
37 do
38 match ="^${ moleculeIds [$i]}a"
39 line=$(eval "grep $match $qssFile ")
40 DOTaValue =$(echo $line | awk ’{ print $2}’)
41
42 if [[${ digitalValues [$i]} -eq 0]]; then
43 if (($(echo " $DOTaValue < $zeroThreshold " | bc -l))); then #a problem is found
44 echo " Found a problem for molecule ${ moleculeIds [$i]}a while checking it for digital 0.

Exiting ."
45 else
46 echo " Molecule ${ moleculeIds [$i]}a correctly encodes a digital 0."
47 fi
48 else
49 if (($(echo " $DOTaValue > $oneThreshold " | bc -l))); then #a problem is found

121

A.3. MOLECULE ENCODING CHECKER

50 echo " Found a problem for molecule ${ moleculeIds [$i]}a while checking it for digital 1.
Exiting ."

51 else
52 echo " Molecule ${ moleculeIds [$i]}a correctly encodes a digital 1."
53 fi
54 fi
55 done

122

Appendix B

Enhancing the SCERPA
algorithm

This appendix includes the code developed to enhance SCERPA as a state-of-the-art
research algorithm for studying mFCN.

B.1 Dynamic damping

The code implements the dynamic damping feature presented in Section 6.1 to promote
faster analysis by favoring convergence.

Listing B.1. MATLAB source code implementing the dynamic damping in the main
loop.

1 if settings . autodamping == 1 % autodamping ON
2 if scfStep ==1 %at first step
3 % in case of first step , the autodamping is statically
4 % assigned to a standard value specified by the user or
5 % by default
6 deltaV_previous_step = Vout - preV_afterVoltageVariation ;
7 autodampingFirstStepValue = (1 - settings . autodampingFirstStep);
8 else % not first step
9 deltaV_current_step = Vout - preV_afterVoltageVariation ;

10 % in case of a normal step , the autodamping is
11 % (deltaV_previous_step / deltaV_current_step) *
12 % precision (how far is the solution wrt to ideal case with damping =1)
13 autodampingValueVector = abs ((deltaV_previous_step ./ deltaV_current_step));
14 autodampingValue = min(autodampingValueVector);
15 if (autodampingValue >= settings . autodampingPrecision)
16 autodampingValue = settings . autodampingPrecision ;
17 else
18 autodampingValue = autodampingValue * settings . autodampingPrecision ;
19 end
20 deltaV_previous_step = deltaV_current_step ; % assign last step deltaV to current step deltaV
21 end
22 else % static damping
23 damping = 1 - settings . damping ;
24 end
25 if settings . autodamping == 2 % if real autodaming is on , apply the autodamping value
26 if scfStep ==1
27 Vout = preV_afterVoltageVariation + autodampingFirstStepValue *(Vout - preV_afterVoltageVariation);
28 else
29 Vout = preV_afterVoltageVariation + autodampingValue *(Vout - preV_afterVoltageVariation);
30 end
31 else
32 Vout = preV_afterVoltageVariation + damping *(Vout - preV_afterVoltageVariation);
33 end

123

B.2. TOPOLINANO CLOCK WAVEFORMS

B.2 ToPoliNano clock waveforms

The code introduces the matched clock waveforms of ToPoliNano to regulate information
propagation.

Listing B.2. MATLAB source code to enable ToPoliNano clock waveforms.
1 clear variables
2 close all
3
4 generate_topo_clock = 1;
5 n_steps_topo = 20;
6 N_topo = 4;
7
8 % clock values definitions
9 clock_low = -2;

10 clock_high = +2;
11 clock_step = 3;
12
13 if generate_topo_clock == 1
14 clock_step = N_topo + 1;
15 end
16
17 % layout (MagCAD)
18 file = ’circuit .qll ’;
19 circuit . qllFile = fullfile (pwd ,file);
20 circuit . doubleMolDriverMode = 1;
21 circuit . magcadImporter = 1;
22
23 % drivers and clock
24 D0 = num2cell (+4.5* ones (1, clock_step *4));
25 D1 = num2cell (-4.5* ones (1, clock_step *4));
26 Dnone = num2cell (zeros (1, clock_step *4));
27
28 circuit . Values_Dr = {
29 ’a1_c ’ +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5 +4.5

+4.5 +4.5
30 ’a1 ’ -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5

-4.5 -4.5
31 };
32
33 % normal clock phases
34 pSwitch = linspace (clock_low , clock_high , clock_step);
35 pHold = linspace (clock_high , clock_high , clock_step);
36 pRelease = linspace (clock_high ,clock_low , clock_step);
37 pReset = linspace (clock_low ,clock_low , clock_step);
38
39 if generate_topo_clock == 1
40 pHold = pHold (2: length (pHold) -1);
41 pReset = pReset (2: length (pReset) -1);
42 end
43
44 pCycle = [pSwitch pHold pRelease pReset];
45
46 if generate_topo_clock == 1
47 topo_pCycle1 = pCycle ;
48 topo_pCycle2 = circshift (pCycle , N_topo);
49 topo_pCycle3 = circshift (pCycle , N_topo *2);
50 topo_pCycle4 = circshift (pCycle , N_topo *3);
51
52 seq_length = length (pCycle);
53 num_repeats = ceil(n_steps_topo / seq_length);
54
55 phase_1 = repmat (topo_pCycle1 , 1, num_repeats);
56 phase_1 = phase_1 (1: n_steps_topo);
57 circuit . stack_phase (1 ,:) = phase_1 ;
58
59 phase_2 = repmat (topo_pCycle2 , 1, num_repeats);
60 phase_2 = phase_2 (1: n_steps_topo);
61 circuit . stack_phase (2 ,:) = phase_2 ;
62
63 phase_3 = repmat (topo_pCycle3 , 1, num_repeats);
64 phase_3 = phase_3 (1: n_steps_topo);
65 circuit . stack_phase (3 ,:) = phase_3 ;
66
67 phase_4 = repmat (topo_pCycle4 , 1, num_repeats);
68 phase_4 = phase_4 (1: n_steps_topo);
69 circuit . stack_phase (4 ,:) = phase_4 ;
70 else
71 circuit . stack_phase (1 ,:) = [pCycle pReset pReset pReset];

124

B.2. TOPOLINANO CLOCK WAVEFORMS

72 circuit . stack_phase (2 ,:) = [pReset pCycle pReset pReset];
73 circuit . stack_phase (3 ,:) = [pReset pReset pCycle pReset];
74 circuit . stack_phase (4 ,:) = [pReset pReset pReset pCycle];
75 end
76
77 % SCERPA settings
78 settings . damping = 0.6;
79 settings . verbosity = 0;
80 settings . dumpDriver = 1;
81 settings . dumpOutput = 1;
82 settings . dumpClock = 1;
83 settings . dumpEnergy = 1;
84 settings . evalConformationEnergy = 1;
85 settings . evalIntermolecularEnergy = 1;
86 settings . evalPolarizationEnergy = 1;
87 settings . evalFieldEnergy = 1;
88 settings . energyEval = 1;
89
90 %PLOT settings
91 plotSettings . plot_waveform = 1;
92 plotSettings . plot_3dfig = 0;
93 plotSettings . plot_1DCharge = 0;
94 plotSettings . plot_logic = 0;
95 plotSettings . plot_potential = 1;
96 plotSettings . plotSpan = 1;
97 plotSettings . fig_saver = 0;
98 plotSettings . HQimage = 0;
99

100 %copy outputh path from algorithm settings if specified by the user
101 if isfield (settings ,’out_path ’)
102 plotSettings . out_path = settings . out_path ;
103 end
104
105 %%%%
106 diary on
107 this_path = pwd;
108 scerpa_path = fullfile (’../ ’);
109 cd(scerpa_path)
110 SCERPA (’generateLaunchView ’, circuit , settings , plotSettings);
111 cd(this_path)
112 diary off
113 if isfield (settings ,’out_path ’)
114 movefile (’diary ’,fullfile (settings .out_path ,’logfile .log ’))
115 end

125

Appendix C

Enhancing the ToPoliNano EDA
framework

This appendix includes the code developed to enhance the ToPoliNano EDA framework
as a emerging EDA platform to study molecular circuits based on mFCN.

C.1 Parallelizing the ToPoliNano simulator
The section provides the code to parallelize the ToPoliNano’s function to compute new
molecule state along simulation.

Listing C.1. Source code of the wrapper function evaluateInteractionParallel to
synchronise parallel computation results during simulation.

1 void MolecularSimulationController :: evaluateInteractionParallel () {
2 auto node_it = boost :: vertices (system_ . graph ());
3 QFuture <void > future = QtConcurrent :: map(node_it .first , node_it .second , molecularEvaluator (& system_ ,

simulation_time_ , simulation_step_ , &molecules , damping_factor_));
4 future . waitForFinished ();
5 }

Listing C.2. Source code of the molecularEvaluator to compute new molecule state.
1 struct molecularEvaluator {
2 molecularEvaluator (System < MolecularElement *, MolecularEdge *, AmorphicClockElement *>* system , double

simulation_time , double simulation_step , QHash <QString , MoleculeParameters > *molecules , double
damping_factor)

3 : system_ (system), simulation_time_ (simulation_time), simulation_step_ (simulation_step), molecules_ (
molecules), damping_factor_ (damping_factor) { }

4
5 void operator ()(long node_it) {
6 double vClock = 0;
7 double v1 = 0, v2 = 0;
8 QVector <double > neighbor_charge ;
9 auto current_desc = node_it ;

10 MolecularElement * current = system_ ->at(current_desc);
11 // Do not compute step for input elements
12 if(current -> IsInput ())
13 return ;
14 Value current_value = current -> getValue ();
15 for(auto clk : system_ -> clocks ()) {
16 Value clk_v = clk -> getValueInPos (current -> GetPosition ());
17 vClock += clk_v [" Voltage "];
18 }
19
20 for (auto neighbor_it_pair = system_ -> inEdges (current_desc); neighbor_it_pair . first !=

neighbor_it_pair . second ; ++ neighbor_it_pair . first) {

126

C.2. INTRODUCING DOUBLE-DRIVER

21 auto edge_desc = * neighbor_it_pair . first ;
22 MolecularEdge * edge = system_ -> graph ()[edge_desc];
23 auto distances = edge -> getAggregateChargeDistances ();
24 auto neighbor = system_ ->at(boost :: source (edge_desc , system_ -> graph ()));
25 Value neighbor_value = neighbor -> getValue ();
26 int neighbor_charge_number = molecules_ -> value (neighbor -> getMoleculeName ()). getNumberOfCharges ();
27 neighbor_charge . resize (neighbor_charge_number);
28 for(int i = 0; i < neighbor_charge_number ; i++) {
29 neighbor_charge [i] = neighbor_value [QString ("Q%1").arg ((char)(i + ’a’))];
30 }
31 for(int i = 0; i < neighbor_charge_number ; i++) {
32 v1 += kVoltageFacroe * neighbor_charge [i] / distances [0][i];
33 v2 += kVoltageFacroe * neighbor_charge [i] / distances [1][i];
34 }
35 }
36 QVector <double > newState = molecules_ -> value (current -> getMoleculeName ()). getChargesValue (v1 - v2 ,

vClock);
37 Value newValue ;
38 for(int i = 0; i < newState .size (); i++) {
39 newValue . AddValue (QString ("Q%1").arg ((char)(i + ’a’)), newState [i] + damping_factor_ * (

current_value [QString ("Q%1").arg ((char)(i + ’a’))] - newState [i]));
40 }
41 current -> setNew_value (newValue);
42 }
43
44 System < MolecularElement *, MolecularEdge *, AmorphicClockElement *>* system_ ;
45 double simulation_time_ ;
46 double simulation_step_ ;
47 QHash <QString , MoleculeParameters >* molecules_ ;
48 double damping_factor_ ;
49 };

C.2 Introducing double-driver

The section lists the code that introduce the double-driver in the ToPoliNano simulator
and FCNviewer.

Listing C.3. Source code portion of molecularSimulationController() method to
generate double-driver cells.

1 QcaPin * pin = static_cast < QcaPin *>(item);
2 if(pin -> direction () != QcaPin :: OUTPUT) {
3 for(int i = 0; i < 2; i++) {
4 Geometry :: Point center (physical_parameters_ . offset + (item ->pos ().x() + 0.5 * i) * physical_parameters_

. cell_distance ,
5 physical_parameters_ . offset + item ->pos ().y() * physical_parameters_ .

cell_distance ,
6 physical_parameters_ . offset + item -> layer () * physical_parameters_ . cell_distance

);
7 geometry = new MultiPoint (molecules . value (driverMoleculeName). getNumberOfCharges () , center);
8 try {
9 // done reading parameters : create the Element

10 QVector <double > initial_value = molecules . value (driverMoleculeName). getChargesValue (
kInitialInputVoltage , kInitialClockVoltage);

11 Value value ;
12 for(int i = 0; i < initial_value .size (); i++) {
13 value . AddValue (QString ("Q%1").arg ((char)(i + ’a’)), initial_value [i]);
14 }
15 MolecularElement * element = new MolecularElement (geometry , driverMoleculeName , value);
16 element -> setNumberOfCharges (molecules . value (driverMoleculeName). getNumberOfCharges ());
17 element -> defineChargePosition ();
18 element -> setId (item ->id () + (char)(’a’ + i));
19 element -> setIsInput (true);
20 element -> rotate (item -> angle ());
21 element -> setName (pin ->name ());
22 system_ . addElement (element);
23 }
24 catch (const std :: runtime_error & e) {
25 throw std :: runtime_error (" Error while creating an Element ");
26 }
27 }
28 }

127

C.2. INTRODUCING DOUBLE-DRIVER

Listing C.4. Source code of setInputValue() function to assign inputs to double-
driver cells during simulation.

1 void MolecularSimulationController :: SetInputValue (QString name , Value value) {
2 for (auto node_it = boost :: vertices (system_ . graph ());
3 node_it . first != node_it . second ; ++ node_it . first) {
4 if(system_ .at (* node_it . first)->getName () == name) {
5 QChar id_letter = system_ .at (* node_it . first)->getId ().back ();
6
7 // first molecule driver .
8 if(id_letter == (char) (’a’)){
9 double input = (value [" Logic "] == 1) ? voltage_high_ : voltage_low_ ;

10 QVector <double > state = molecules . value (system_ .at (* node_it . first)-> getMoleculeName ()).
getChargesValue (input , 2);

11 Value inputValue ;
12 // Set the first driver molecule state charges according to the actual testbench value .
13 for(int i = 0; i < state .size (); i++){
14 inputValue . AddValue (QString ("Q%1").arg ((char)(i + ’a’)), state [i]);
15 }
16 system_ .at (* node_it . first)->setValue (inputValue);
17 }
18 // second molecule driver as complementary of the
19 // first molecule driver
20 else {
21 double input = (value [" Logic "] == 1) ? voltage_low_ : voltage_high_ ;
22 QVector <double > state = molecules . value (system_ .at (* node_it . first)-> getMoleculeName ()).

getChargesValue (input , 2);
23 Value inputValue ;
24 // Set the second driver molecule state charges
25 // according to the complementary testbench value .
26 for(int i = 0; i < state .size (); i++)
27 {
28 inputValue . AddValue (QString ("Q%1").arg ((char)(i + ’a’)), state [i]);
29 }
30 system_ .at (* node_it . first)->setValue (inputValue);
31 }
32 }
33 }
34 }

Listing C.5. Source code portion of parseQll() function to instantiate two molecules
when a driver is imported.

1 QcaPin * pin = static_cast < QcaPin *>(item);
2 if (pin -> direction () != QcaPin :: OUTPUT) {
3 int item_rotation = item -> angle ();
4 QVector3D item_center (
5 (item ->pos ().x() + 0.5f) * intermolecular_Dist ,
6 (item ->pos ().y() * intermolecular_Dist),
7 item -> layer () * intermolecular_Dist
8);
9 for (int i = 0; i < 2; i++) {

10 if (! item -> getProperty (QString (" disabled_ %1").arg(char(i+’a’)). toStdString (). c_str ()). toBool ()) {
11 float dx = item -> getProperty (QString (" xshift_ %1").arg(char(i+’a’)). toStdString (). c_str ()). toFloat

();
12 float dy = item -> getProperty (QString (" yshift_ %1").arg(char(i+’a’)). toStdString (). c_str ()). toFloat

();
13 float dz = item -> getProperty (QString (" zshift_ %1").arg(char(i+’a’)). toStdString (). c_str ()). toFloat

();
14 QVector3D offset ((i -0.5f)*0.5f* intermolecular_Dist , 0, 0);
15 QVector3D mol_center = item_center + rotateZ (offset , item_rotation) + QVector3D (dx , dy , dz);
16 int rotation = item_rotation + item -> getProperty (QString (" angle_ %1").arg(char(i+’a’)). toStdString

(). c_str ()). toInt ();
17 QString item_ID = QString :: number (item ->id ()) + char(i+’a’);
18 drawing . insertMolecule (item_ID , mol_center , rotation);
19 // find min and max x
20 if(mol_center .x() < xmin) xmin= mol_center .x();
21 else if(mol_center .x() > xmax) xmax= mol_center .x();
22 // find min and max y
23 if(mol_center .y() < ymin) ymin= mol_center .y();
24 else if(mol_center .y() > ymax) ymax= mol_center .y();
25 // find min and max z
26 if(mol_center .z() < zmin) zmin= mol_center .z();
27 else if(mol_center .z() > zmax) zmax= mol_center .z();
28 }
29 }
30 }

128

C.3. ENABLING HIERARCHICAL LAYOUTS

C.3 Enabling hierarchical layouts
The section provides with the code to simulate hierarchical layouts.

Listing C.6. Source code of exploreHierarchicalLayout() function call in
MolecularSimulationController().

1 if(item ->type () != QcaItem :: PIN) {
2 if(item ->type () == QcaItem :: COMPONENT) {
3 QcaComponent * component = static_cast < QcaComponent *>(item);
4 QList < QcaItem *> list = component -> items ();
5
6 // generate component id according to its x, y, layer
7 // coordinates in the format x.y. layer
8 QString component_id = QString :: number (component ->pos ().x()) +
9 "." + QString :: number (component ->pos ().y()) +

10 "." + QString :: number (component -> layer ());
11
12 exploreHierarchicalLayout (list ,
13 component ->pos ().x() ,
14 component ->pos ().y() ,
15 component -> layer () ,
16 settings ,
17 component_id ,
18 driverMoleculeName);
19 }
20 }

Listing C.7. Source code of exploreHierarchicalLayout(). recursive function to
explore hierarchical layouts.

1 void MolecularSimulationController :: exploreHierarchicalLayout (QList < QcaItem *> list , double
x_hierarchical_offset , double y_hierarchical_offset , double layer_hierarchical_offset , const
MQCAFloorplanParameters &settings , QString component_id , QString driverMoleculeName) {

2 MultiPoint * geometry ;
3 foreach (QcaItem * item , list) {
4 if(item ->type () != QcaItem :: PIN) {
5 if(item ->type () == QcaItem :: COMPONENT) {
6 QcaComponent * component = static_cast < QcaComponent *>(item);
7 QList < QcaItem *> list = component -> items ();
8 exploreHierarchicalLayout (list , x_hierarchical_offset + component ->pos ().x() , y_hierarchical_offset +

component ->pos ().y() , layer_hierarchical_offset + component -> layer () , settings , component_id + "_" +
QString :: number (component ->pos ().x()) + "." + QString :: number (component ->pos ().y()) + "." + QString ::
number (component -> layer ()), driverMoleculeName);

9 }
10 else {
11 for(int i = 0; i < 2; i++) {
12 qDebug () << item -> getProperty (QString (" disabled_ %1").arg ((char)(i + ’a’)). toStdString (). c_str ()).

toBool ();
13 qDebug () << item -> getProperty (QString (" angle_ %1").arg ((char)(i + ’a’)). toStdString (). c_str ()).

toInt ();
14
15 if (! item -> getProperty (QString (" disabled_ %1").arg ((char)(i + ’a’)). toStdString (). c_str ()). toBool ()

) {
16 double dx = item -> getProperty (QString (" xshift_ %1").arg ((char)(i + ’a’)). toStdString (). c_str ()

). toDouble () * 1e -12;
17 double dy = item -> getProperty (QString (" yshift_ %1").arg ((char)(i + ’a’)). toStdString (). c_str ()

). toDouble () * 1e -12;
18 double dz = item -> getProperty (QString (" zshift_ %1").arg ((char)(i + ’a’)). toStdString (). c_str ()

). toDouble () * 1e -12;
19
20 Geometry :: Point center (physical_parameters_ . offset +
21 (item ->pos ().x() + 0.5 * i + x_hierarchical_offset) *

physical_parameters_ . cell_distance + dx ,
22 physical_parameters_ . offset +
23 (item ->pos ().y() + y_hierarchical_offset) * physical_parameters_ .

cell_distance + dy ,
24 physical_parameters_ . offset +
25 (item -> layer () + layer_hierarchical_offset) * physical_parameters_ .

cell_distance + dz);
26 geometry = new MultiPoint (molecules . value (item ->name ()). getNumberOfCharges () , center);
27 try {
28 // done reading parameters : create the Element
29 QVector <double > initial_value = molecules . value (item ->name ()). getChargesValue (

kInitialInputVoltage , kInitialClockVoltage);
30 Value value ;
31 for(int i = 0; i < initial_value .size (); i++) {
32 value . AddValue (QString ("Q%1").arg ((char)(i + ’a’)), initial_value [i]);

129

C.4. CONSISTENT VISUALIZATION IN THE FCNVIEWER

33 }
34 MolecularElement * element = new MolecularElement (geometry , item ->name () , value);
35 element -> setNumberOfCharges (molecules . value (item ->name ()). getNumberOfCharges ());
36 element -> defineChargePosition ();
37
38 // generate second portion of element id
39 // according to its x, y, layer coordinates
40 // in the format x.y. layer
41 QString element_id = QString :: number (item ->pos ().x()) + "." + QString :: number (item ->pos ()

.y()) + "." + QString :: number (item -> layer ());
42
43 // generate complete element id as the concatenation
44 // of any component of which the element is part of and the element id itself
45 QString full_element_id = component_id + "_" + element_id ;
46
47 // append a letter to the id in order to identify
48 // the single molecule in the cell.
49 element -> setId (full_element_id + (char)(’a’ + i));
50
51 element -> setIsInput (false);
52 element -> rotate (item -> getProperty (QString (" angle_ %1").arg ((char)(i + ’a’)). toStdString ().

c_str ()). toInt ());
53 system_ . addElement (element);
54 for(auto clk : system_ . clocks ()) {
55 if(clk -> getName () == QString (" clock %1").arg(item -> getProperty (" phase "). toInt () +1))
56 clk -> addInfluenced (center);
57 }
58 }
59 catch (const std :: runtime_error & e) {
60 throw std :: runtime_error (" Error while creating an Element ");
61 }
62 }
63 }
64 }
65 }

C.4 Consistent visualization in the FCNviewer
The section provides with the code to make the FCNviewer consistent with SCERPA’s
viewer.
Listing C.8. Source code of getChargePositions(). method to set molecule coordi-
nate.

1 QVector3D Molecule :: getChargePosition (molecule_t molType , int index , int angle){
2 QVector3D pos;
3 switch (molType){
4 case molecule_t :: BISFERROCENE :
5 switch (index) {
6 case 0: pos.setX (-9.4f); pos.setY (-506.2f); pos.setZ (-362.2f); break ;
7 case 1: pos.setX (-9.4f); pos.setY (+508.3 f); pos.setZ (-358.8f); break ;
8 case 2: pos.setX (-75.5f); pos.setY (-1.1731f); pos.setZ (+313.3515 f); break ;
9 case 3: pos.setX (+40.9 f); pos.setY (-5.3777f); pos.setZ (+1177.6298 f); break ;

10 default :
11 qDebug () << " ERROR : Molecule :: getChargePosition (molecule_t molType , int index , int angle): wrong

index ";
12 return QVector3D ();
13 }
14 break ;
15 default :
16 qDebug () << " ERROR : Molecule :: getChargePosition (molecule_t molType , int index , int angle):

unsupported molecule type";
17 return QVector3D ();
18 }
19 return rotateZ (pos , angle);
20 }

Listing C.9. Source code of resetRotation() function to have a top view of the
layout.

1 void GLWidget :: resetRotation () {
2 xRot = 180.0 f; // to have a clearer above view of the two encoding DOTs
3 yRot = zRot = 0.0f;
4 }

130

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction and background
	More Moore
	More than Moore
	Beyond CMOS
	Field-Coupled Nanocomputing
	Cellular Automata
	Quantum-dot Cellular Automata
	Designing logic circuits
	Enhanced QCA cell
	Four-phase clocking system
	Materials and techniques for QCA fabrication

	Molecular Quantum-dot Cellular Automata
	Promising candidate molecules for mQCA
	Dyallyl-butane
	Decatriene
	Bis-ferrocene carbazole

	Methodologies for analyzing mQCA systems
	Ab initio methods
	QCADesigner
	MosQuiTo
	Characterization of the single molecule
	Post-processing of results
	Analysis at the system-level

	Molecular FCN devices
	Single molecular cell
	Single phase wire
	Three phases wire
	Two-line three phases wire
	Two-line L-connection
	Two-line T-connection
	The inverter
	The majority voter
	The exclusive OR

	Manufacturing molecular FCN devices

	The Self-Consistent ElectRostatic Potential Algorithm (SCERPA)
	The layout
	The algorithm
	The optimizations
	Interaction Radius
	Active Region

	The convergence

	The ToPoliNano EDA framework
	ToPoliNano EDA framework
	ToPoliNano simulator
	MagCAD graphical editor
	FCNviewer

	Detailed overview of molecular ToPoliNano

	Comparative analysis of the molecular FCN simulators
	Methodology
	Evaluating SCERPA importers
	Result discussion

	Evaluating SCERPA and ToPoliNano simulators
	Result discussion

	Molecule encoding checker

	Enhancing the SCERPA algorithm
	Dynamic damping
	Assessing the impact of dynamic damping performance

	Charge convergence
	ToPoliNano clock waveforms

	Enhancing the ToPoliNano EDA framework
	Parallelizing ToPoliNano simulator
	Assessing the impact of parallelization

	Introducing double-driver
	Enabling hierarchical layouts
	Toward information crossing
	The new molecule in the ToPoliNano EDA framework
	Simulating the crosswire with ToPoliNano

	Consistent visualization in the FCNviewer

	Advanced molecular FCN circuit design with the ToPoliNano EDA framework
	QCA adders
	Molecular 1-bit full adder
	Layout
	Simulation and testing

	Molecular 2-bit full adder
	Layout
	Simulation and testing

	Molecular N-bit full adder
	Molecular ISCAS C17
	Layout
	Simulation and testing

	References
	Appendix Comparative analysis of the molecular FCN simulators
	Evaluating SCERPA importers
	Evaluating SCERPA and ToPoliNano simulators
	Molecule encoding checker

	Appendix Enhancing the SCERPA algorithm
	Dynamic damping
	ToPoliNano clock waveforms

	Appendix Enhancing the ToPoliNano EDA framework
	Parallelizing the ToPoliNano simulator
	Introducing double-driver
	Enabling hierarchical layouts
	Consistent visualization in the FCNviewer

