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Abstract

With the growing diffusion of online courses with video lectures, both from universi-
ties such as PoliTo and from MOOC1 platforms, the ability to distill key information
is becoming more and more quintessential to the life of a student. Video lectures
provide their contents in a multimodal way, not only with the voice of the speaker,
which can be transcribed, but also with visual information such as writings on
a blackboard or projected slides. The aim of this work is to offer a new tool to
learners and teachers that will allow them to supply one of the proposed models
with the transcript of a video lecture and obtain its short summary in return in a
fully automatic way. To train our Transformer-based models, we build two datasets:
OpenULTD, a university lecture and public talk transcripts dataset that expands
on the previously released VT-SSum, and UniSum, an original transcript-summary
dataset of university lectures from sixtyseven courses offered at MIT and Yale,
which we also extend leveraging the lectures’ visual information.

1Massive Open Online Course.
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Chapter 1

Introduction

Online courses are growing exponentially in availability. Universities of the whole
world, among which PoliTo, have begun offering online lecture recordings and
study material years ago, and with the recent pandemic this effort has dramatically
increased. Massive open online courses platforms are also seeing a steady rise in
popularity.
This tremendous amount of information, made possible by this so diverse offering of
e-learning content, may sometimes seem too onerous to delve into at once. The aim
of the present master’s thesis is thus to improve on existing ways of distilling the
most crucial information from very large quantities of text, providing high-quality
summaries of entire lecture transcripts, while also making use of visual information
contained in the corresponding video files.
Our focus is in the abstractive branch of the field of summarization, which means
we are not only interested in the extraction of the underlying concise meaning of
an extended body of text, but also in re-elaborating this information in a way that
is coherent and pleasant to read.

Our objective carries with it a number of different aspects to solve: first, we
need to identify what is the state-of-the-art technology to create text summaries.
Even though the field of natural language processing (NLP for short) has existed
for at least seven decades, an important breakthrough has been achieved only
recently in 2017. This consisted of a novel at the time deep neural network archi-
tecture, known as the Transformer [1], which was the first to be purely based on
an associative memory mechanism similar to part of the human brain’s behavior
(the same architecture is what powers the now extremely popular ChatGPT large
language model). What also contributed very significantly to the rapid adoption
of this particular architecture was the introduction, a year later in 2018, of the
pretraining-finetuning paradigm for language models [2]: this is the idea of train-
ing a model on large general-purpose text datasets, e.g. the English Wikipedia
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Introduction

[3], to let it learn the underlying rules and representations of the language in
question, to then release the “pretrained” model (this has been usually done by
research groups at big tech companies such as Google, Meta, and Microsoft); at
this point, any practitioner with a much smaller dataset at hand and a specific
task in mind can leverage the pre-made model to accomplish their objective at
a much lower cost than what would have been required to train a model from scratch.

Secondly, we have to find a big enough source of data to train our neural network
on, in order for it to learn how to perform our task in the best possible way. Two
requirements for this data source are, naturally, that its use is permitted, and that
the transcripts it contains are made by a human expert of the subject, instead of an
automated system, which would be more error-prone in domain-specific contexts.
We find that the MIT OpenCourseWare platform and the YouTube channel of Yale
University offer the largest quantity of quality text and video data with an open
license, so we scrape and thoroughly clean this information to create our proposed
summarization dataset, UniSum, which contains 1,583 lecture transcript-summary
pairs from 67 courses, of which 31 offered at MIT and 36 at Yale. We also propose
a variant of this dataset extended with the additional information, derived from
the video files with a separate video classifier model [4], of whether the lecture
speaker was writing (e.g. on a blackboard) while pronouncing a sentence, for
each sentence of every transcript. The extended version of UniSum can thus be
considered multimodal.
We hypothesize that finetuning a model, which was pretrained on written text,
on text transcribed from natural speech would not allow it to reach its maximum
performance. To address this domain incompatibility, we propose another dataset,
OpenULTD, with 14,677 transcripts from the MIT OpenCourseWare platform
(3,397), the Yale Courses YouTube channel (1,094), the German OpenHPI platform
(957), and a previously released spoken text summarization dataset, VT-SSum [5]
(9,229).

Finally, since lecture transcripts are quite long, we need to overcome the in-
herent maximum input length limitation of Transformer-based models. To do
this, we adopt two different but similar methods that have been proposed in 2020
(Longformer [6]) and in 2022 (local-sparse-global attention [7]). Both of these
approaches reduce the amount of memory required to use a model on an input
sequence of length N from a quadratic dependence O(N2) to a linear one O(N)
by implementing a sliding window plus global attention mechanism that allows the
model to mainly refer to the surrounding context of the word in question, while
still being able to reference the contents of the entire document. In this way, if a
professor mentions the beginning of the lecture in even one of the final sentences,
the context can still be retrieved.
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On top of the results that we obtain with a model trained on our standard
dataset, we investigate the advantages given by pretraining on OpenULTD and by
using the extended UniSum variant. We measure the performance of our models
with the ROUGE [8] and BERTScore [9] metrics, which respectively reflect their
recall and semantic similarity abilities by comparing their generated summaries
with the corresponding human-made originals.
To perform our summarization experiments we choose BART [10], which is a
Transformer-based model pretrained by Meta AI Research with a text denoising
task, that is to say trained to restore corrupted text, which its authors find improves
the network’s abstractive summarization capabilities. We continue its pretraining
on our transcript-only dataset, OpenULTD, for the process known as domain
adaptation. We then modify the model with one of the previously mentioned more
efficient attention mechanisms to make it able to process long input sequences. We
finetune different instances of the resulting model on the standard and extended
variants of the UniSum dataset, to obtain a final model that generates qualitatively
good summaries.
We notice that the model variant finetuned on extended UniSum tends to improve
upon the performance of its counterpart finetuned on standard UniSum when
generating summaries of course lectures where the speaker tends to only write a
few things (i.e. mostly in humanities courses in our dataset, such as literature or
psychology), which are likely to be very important. We think that this positive
effect is negatively correlated with the amount of writing that a professor produces
while teaching a lecture. That is, put more clearly: if most sentences of a lecture are
classified as “writing”, the model will not be able to capture any new information
from this augmented input; but if, instead, most sentences are classified as “not
writing” and only a few as “writing”, then those few can be deemed more relevant
for the summary by the model.
We find that, although not to the same extent and in every case, the domain
adaptation step performed with OpenULTD and the additional information derived
from the video modality contained in the extended version of our UniSum dataset
contribute to measurably better performance.

The curious reader will find some example summaries generated by our best
model in table A.1 and our released code, datasets, and models in our repository
available at https://github.com/e-caste/masters-thesis.
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Chapter 2

Background

In this chapter we are going to present the most relevant historical results that
have allowed for the birth of the field of natural language processing (§ 2.1),
which this master’s thesis is part of, and its subsequent thriving in today’s deeply
interconnected world (§ 2.2 and § 2.3).

2.1 Before the Transformer
The father of all the models upon which the present work is based on is the
Transformer, a «revolutionary» (LeCun [11]) neural network architecture authored
by Vaswani et al. [1] in 2017, which first introduced models purely built on the
attention mechanism, and is currently «taking the world by storm» [11], so much
so that researchers are replacing their whole neural networks with Transformers.

In order to illustrate why and how the Transformer has revolutionized the field
of natural language processing (e.g. ELMo, Peters et al. 2018 [12]; BERT, Devlin
et al. 2018 [2]; GPT, Radford et al. 2018 [13]; RoBERTa, Liu et al. 2019 [14];
XLNet, Yang et al. 2019 [15]; BART, Lewis et al. 2019 [10]; GPT-2, Radford et al.
2019 [16]; T5, Raffel et al. 2019 [17]; PEGASUS, Zhang et al. 2019 [18]; GPT-3,
Brown et al. 2020 [19]; BigBird, Zaheer et al. 2020 [20]; Codex, Chen et al. 2021
[21], powers GitHub Copilot; InstructGPT, Ouyang et al. 2022 [22], is the basis
for ChatGPT; BlenderBot, Shuster et al. 2022 [23]) and is currently making its
way into other fields, such as computer vision (e.g. DETR, Carion et al. 2020 [24];
ViT, Dosovitskiy et al. 2020 [25]; CLIP, Radford et al. 2021 [26]; DALL-E and
DALL-E 2, Ramesh et al. 2021 [27] and 2022 [28]; Stable Diffusion, Rombach et al.
2022 [29]) and automatic speech recognition (e.g. HuBERT, Hsu et al. 2021 [30];
Whisper, Radford et al. 2022 [31]), we must first review what came before it.
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As the human language, in its spoken and written forms, is the principal way of
communication on the planet, researchers and innovators have thought of NLP1

and NLU2, which are the ability of a machine to work with language as is created
by humans to obtain a certain outcome, and to have a formal understanding of
the underlying rules of language, such as syntax, grammar, and context, since the
birth of machines themselves.

Though an attempt to make a mechanical computer was carried out by Charles
Babbage already in the 1830s with partial success [32], Alan Turing was the first to
propose, in 1950 [33], a way to evaluate if a machine «could think», where a machine
is more specifically defined as an «‘electronic computer’ or ‘digital computer’»,
which he called «the imitation game» and is now known to the general public as
the Turing test. The game is posed as such: there are three participants, A, B,
and C, in different rooms, communicating via typewritten text only; A and B are
a man and a woman; C is the interrogator, who can be of either sex, and their
objective is to correctly guess the gender of the other participants by asking them
any kind of question and evaluating their replies. Turing argues that this same
game, after replacing A or B with a machine3, can be used as a test of the quality
of the machine: if the interrogator is not only unable to distinguish A from B, but
is fooled by the machine to choose it instead of the human competitor at least in
some instances, then the machine has done well and has won the imitation game.
The attentive reader will have noticed that the question that the imitation game
answers has changed from the initial formulation “Can machines think?” to “How
well does the machine perform?”. This is intended, and follows Turing’s article
[33]: first, he proposes the original question; then, since there is no way to measure
thinking («The original question, ‘Can machines think?’ I believe to be too
meaningless to deserve discussion.»), he suggests to replace it with the question
given by the imitation game: «Are there imaginable digital computers which would
do well in the imitation game?»; and finally, after defining that digital computers
are, in fact, discrete state machines with a very high number of possible states, he
updates the question to: «Are there discrete state machines which would do well?»
(in the imitation game).
In the same article [33], Turing also attempts to predict the distant future:

1Natural Language Processing.
2Natural Language Understanding.
3He actually specifies that the machine would replace the woman and not the man, likely due

to other people’s theological arguments at the time, possibly more felt in the UK in the 1950s
than today, about only the men certainly having a soul given by God; in this way, the machine
would beat a soul-given human.
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«I believe that in about fifty years’ time it will be possible to programme
computers, with a storage capacity of about 109, to make them play
the imitation game so well that an average interrogator will not have
more than 70 per cent chance of making the right identification after five
minutes of questioning.»4 1

and

«I believe that at the end of the century the use of words and general
educated opinion will have altered so much that one will be able to speak
of machines thinking without expecting to be contradicted.» 2

While in current times many still find the latter 2 quite debatable [34], particularly
with respect to the definition of “sentience” more than thinking in general (which
can be seen as processing information), the former 1 seems to have come true.

The recent article “Human or machine? Turing tests for vision and language”
by Zhang et al. [35] released in November 2022 shows (see figure 2.1) that, within
the scope of conversation, some of the latest Transformer-based AI chatbots such
as BlenderBot by Meta AI Research [23] and GPT-3 by OpenAI [19] are classified
as humans by human judges more than 50% of the times, with this score reaching
the proximity of 60% in shorter conversations.

4The storage is, for Turing, the union of the table of instructions and the active variables. In
current terms, these would be the CPU registers and memory. The storage capacity he refers to
is the base-2 logarithm of the number of binary states: a capacity of 109 bits (= 1 gigabit ≈ 100
megabytes) corresponds to 2109 states.
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Figure 2.1: Length dependence of Turing test results for different settings and
models, average curves over all settings and models. Figure S88a in [35].

Considering that the length of these AI-human judge or person-human judge
conversations are reported to not exceed a duration of ten minutes, and that the
number of exchanges is twentyfour (twelve texts by the human judge and twelve
texts by the receiving part under the Turing test, either an AI or a person), then
Turing’s proposed five minute mark 1 corresponds to the twelfth exchange on the
graph, where it is reported that AIs are classified as humans by human judges in
~55% of the instances, while people are classified correctly as humans by human
judges slightly more than 60% of the times. Thus, given that the probability of the
text being written by a human or by an AI is the same («in total we collected 40
conversations for each category» [35], where the categories are AI-AI, AI-human,
and human-human):

p(AI as H) = p(AI as H | text written by H) + p(AI as H | text written by AI)
2

= (1 − 0.65) + 0.55
2

= 0.35 + 0.55
2

= 0.9
2

= 0.45
= 45% (2.1)
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where p(AI as H) is the probability of an AI being classified as a human.
Equation 2.1 shows that Turing’s conjecture of human judges being unable to
distinguish a machine from a human in at least 30% of tests after five minutes
of textual conversation within the end of the century 1 has been proven correct,
even though with a delay of twentytwo years.

This preamble allows us to highlight the fact that natural language has been
regarded as the primary desired form of human-machine interaction for at least seven
decades, therefore an excellent way to perform its processing and understanding
has been in the past and is being now constantly researched and improved upon.
The extensively detailed report of the Georgetown-IBM system demonstration of
1954 published by Hutchins in 2005 [36] explores the first publicly known seq2seq5

model running on a computer. Although the idea of using computers for machine
translation had been alredy suggested in the late 1940s, this was the first instance
of a computer performing it in practice. The hardware that IBM had provided
to the Georgetown university was a 701-type machine initially «developed for
military applications» [36] and «was at that time only one of about one hundred
general-purpose computers in existence». The IBM 701 was made of eleven distinct
electronic units [36], had a memory that could store up to 4,096 words of 36 bits
each (for a total of 18 kilobytes), and could process 14,000 instructions per second
[37].
Due to the textual nature of the data to process in a typical MT6 task, and that
as we have seen the IBM 701 was one of the very first general-purpose digital
computers available in those days, every action to be performed on non-numerical
data had to be programmed from scratch, including the text encoding [36]. The
two most relevant aspects to the present thesis of that experiment are however the
model and the data that it was to process. In 1953, the most advanced technology
for MT consisted of rule-based models; more specifically, the model that they
used to translate more than sixty sentences, for the great part about chemical
processes and including some of general interest, from Russian to English, had only
six basic rules to follow [36]. These rules would be transcribed in very few lines of
code of a modern programming language rather than in machine code on punch
cards, but then again, that would not mean pioneering neither machine translation
nor digital general-purpose computing, the both of which Georgetown University
and IBM’s researchers were in fact doing at the time. Furthermore, the model’s

5Sequence-to-sequence: a class of models that receives a sequence as input, applies some
transformations to it, and outputs the transformed sequence. A sequence is defined as a set where
the order of its composing elements is crucial to the set’s identity. In NLP the elements could be
words or word stems, thus an example of a sequence would be a sentence.

6Machine Translation.
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entire vocabulary only encompassed two hundred and fifty between stems and word
endings7 in Russian, with either one or two corresponding English translations.
This publicity stunt worked very well in favor of Georgetown University, which
received close to M$ 2 by the CIA in research funds to continue working on the
matter.
But the post-war optimism clouded the judgment of both the leaders and the
viewers about what was, in fact, a very simplistic experiment, which abundantly
underestimated all that is needed to effectively understand a language, or even two
languages in the case of translation. In the IBM press release which followed the
demonstration, Dostert, the Georgetown professor heading the project, said [36]:

«Those in charge of this experiment now consider it to be definitely estab-
lished that meaning conversion through electronic language translation is
feasible.» 3

And, most notably:

«Five, perhaps three, years hence, interlingual meaning conversion by
electronic process in important functional areas of several languages may
well be an accomplished fact.» 4

This premature conclusion has proven to be quite incorrect: after having im-
plemented a major update into Google Translate [38], the nature of which will be
discussed later in more detail, Le and Schuster write: «machine translation is by
no means solved» [39]. This was in 2016, sixtytwo years after Dostert’s prediction
of MT being solved within three to five years at most 4 .

In the decades following the 1950s, the progress in the field of NLP, except for
the appearance of the first rule-based chatbots8 such as ELIZA in 1966 [40] (see
figure 2.2), was very slow. ELIZA is a perfect example of the technology available at
the time: using simple pattern matching and keyword ranking, e.g. “you” followed
by “me”, or “you” followed by “are”, the latter being interpreted as an assertion,
the chatbot would reply in a way that prompted excitement and bedazzlement in
«even the most experienced observer» [40], by making them believe that it had
understood the prompt. But, as Weizenbaum [40] poetically puts it:

«once a particular program is unmasked, once its inner workings are
explained in language sufficiently plain to induce understanding, its magic

7To facilitate NLP models to process variants of the same original word, words are usually
split into stems and endings. As an example: given the word “playing”, the stem would be “play-”
and “-ing” would be the ending; “played” shares the same stem, but its ending is “-ed”.

8A portmanteau of “chatter” and “robot”.
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crumbles away; it stands revealed as a mere collection of procedures, each
quite comprehensible.» 5

We will see that this 5 is less, although still in some sense, true today.

Figure 2.2: An example conversation with a reimplementation of the DOCTOR
script of ELIZA, originally created by Joseph Weizenbaum in 1966 at MIT.

Starting in the 1970s and continuing the efforts in the 1980s, great discoveries
were made in the dawning field of deep learning, some of which are still at the core
of the current learning processes with little to no modification. Let us be clear,
the hardware available at the time is in no way comparable to what we have now9,
hence few NLP practical applications were available. In 1986, Guida and Mauri
[43] write:

«Research on natural language processing (NLP) has received increasing
attention over the last thirty years and, recently, it has begun to interest

9...or, actually, it is comparable but the hardware has so hugely improved in various aspects
that it makes little sense. But, since we are engineers, here is a number comparison of floating
point operations per second of a 1982 supercomputer [41] versus a current generally available
graphics card [42] (the one used for the present thesis):

Name Cost in 2021 USD Performance
Cray X-MP/48 39,120,000 0.8 GFLOPS (1x)
NVIDIA RTX 3090 1,000 35.6 TFLOPS (44,500x)
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concrete applications in business, services, and industry. While a lot
of effort has been devoted in this period to the study of computational
models of language and to their implementation into experimental systems,
surprisingly enough only little attention has been reserved for the issue
of evaluating their power and performance.» 6

This lack of interest towards measuring the actual performance of NLP models was
most likely due to the fact that the field had not yet flourished, and could not offer
great results, at least for a couple of decades.
But, despite the commercial and general unavailability of efficient NLP systems,
those years were crucial for laying the foundation of contemporary deep learning
models [44]: the concepts introduced with PDP10 networks (McClelland, Rumelhart,
Hinton 1986 [45]), applied to NLP (Miikkulainen and Dyer 1991 [46]) in conjunction
with deep networks (Hopfield 1982 [47]; Fukushima et al. 1983 [48]; Ackley, Hinton,
Sejnowski 1985 [49]; LeCun et al. 1989 [50]) trained by means of backpropagation
(Werbos 1974 [51]; Parker 1985 [52]; LeCun 1985 [53]; LeCun 1986 [54]; Rumelhart,
Hinton, Williams 1986 [55]), would set the course of the field of NLP for decades
to come.

The idea of machine learning was not conceived in the 1980s; it was not even
conceived in the twentieth century. In fact, it was Ada Byron, Countess of Lovelace
who probably expressed the first ever opinion on the matter, albeit negatively,
in the 1840s [56], when writing about Charles Babbage’s (unfinished) Analytical
Engine:

«The Analytical Engine has no pretensions whatever to originate anything.
It can do whatever we know how to order it to perform.» 7

In reference to this same quote 7 , Hartree [57] adds:

«This does not imply that it may not be possible to construct electronic
equipment which will “think for itself”, or in which, in biological terms,
one could set up a conditioned reflex, which would serve as a basis for
“learning”. Whether this is possible in principle or not is a stimulating
and exciting question suggested by some of these recent developments.
But it did not seem that the machines constructed or projected at the
time had this property.» 8

10Parallel Distributed Processing.
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Turing found himself [33] in strong agreement with Hartree 8 , and clarified
that he believed that Lady Lovelace, while working for the betterment of Babbage’s
Analytical Engine, simply had not had enough inputs as to which suppose that
such a machine could “think” or “learn”. Further, Turing seems to have correctly
predicted the underlying idea of backpropagation [33]:

«If, for instance, the machine was trying to find a solution of the equation
x2 − 40x − 11 = 0 one would be tempted to describe this equation as
part of the machine’s subject matter at that moment. In this sort of
sense a machine undoubtedly can be its own subject matter. It may
be used to help in making up its own programmes, or to predict the
effect of alterations in its own structure. By observing the results of its
own behaviour it can modify its own programmes so as to achieve some
purpose more effectively. These are possibilities of the near future, rather
than Utopian dreams.»11 9

11Emphasis added to highlight the statement most closely related to the concept of
backpropagation.
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Before explaining in more detail the most significant precursor to the Transformer,
that is to say the recurrent neural network, or RNN for short, it would be unwise
to gloss over the main general principles of deep learning.

Artificial Intelligence:
Mimicking the intelligence or 
behavioural pattern of humans 
or any other living entity.

Machine Learning:
A technique by which a computer
can "learn" from data, without
using a complex set of different
rules. This approach is mainly 
based on training a model from 
datasets.

Deep Learning:
A technique to perform 
machine learning
inspired by our brain's
own network of
neurons.

Figure 2.3: Venn diagram of AI including ML including, in turn, DL. By Wikipedia
user Tukijaaliwa, shared under the CC BY-SA 4.0 license.

Deep learning is a subset of machine learning methods (as shown in figure 2.3)
that make use of deep neural networks. Although single layer neural networks (see
figure 2.4) exist and have been the basis for multiple layer networks (see figure 2.5),
a deep neural network is characterized by the presence of hidden layers among its
constituents. These hidden layers are so called due to the fact that they are neither
the input layer, which is where the data is fed into, nor the output layer, which is
where the network manifests the outcome of its internal processing.
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Figure 2.4: A single-layer perceptron, first introduced by Rosenblatt in 1957 [58]
based on the 1943 results of McCulloch and Pitts [59]. The H function is known
as the Heaviside step function, which outputs 1 if its input is greater than 0 and 0
if its input is less than or equal to 0 (see figure 2.6f). The xi values are the inputs
of the network, the wi are the weights (one for each input), and b is the bias of
the neuron, which in this case behaves as a binary classifier due to its activation
function.

The hidden layers are essential to learn the inner hierarchical representations of
the data that is input to the network, without having to «design a feature extractor
that transforms the raw data (such as the pixel values of an image) into a suitable
internal representation or feature vector from which the learning subsystem, often
a classifier, can detect or classify patterns in the input» [44].
LeCun, Bengio, and Hinton, often referred to as “the fathers of deep learning” [60],
have provided an overview of why deep networks are so efficient at solving complex
problems in 2015 [44]:

«Deep-learning methods are representation-learning methods with multi-
ple levels of representation, obtained by composing simple but non-linear
modules that each transform the representation at one level (starting
with the raw input) into a representation at a higher, slightly more ab-
stract level. With the composition of enough such transformations, very
complex functions can be learned. [...] The key aspect of deep learning is
that these layers of features are not designed by human engineers: they
are learned from data using a general-purpose learning procedure. [...]
[Deep learning] has turned out to be very good at discovering intricate
structures in high-dimensional data and is therefore applicable to many
domains of science, business and government.» 10

15



Background

Figure 2.5: A deep neural network with one fully connected hidden layer. In this
case, the Heaviside step function could be replaced by the positive part f+, also
known as the ReLU (Rectified Linear Unit) activation function (see figure 2.6c),
commonly used in today’s deep networks [61]. It can be implemented in Python as
max(0, value).
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Figure 2.6: Five commonly used activation functions in today’s deep networks
and the Heaviside step function used in the Perceptron (2.6f). The most notable
are the rectified linear unit (2.6c) and its derivatives: the GELU [62] (2.6d) and the
leaky ReLU (2.6e, shown with an arbitrary 0.1 slope factor in the negative part).
The sigmoid (2.6a) and the hyperbolic tangent (2.6b) were more widely used in
the past.

To “train” these deep networks to accomplish the task they are designed for,
researchers and practitioners use stochastic gradient descent [63], SGD for short,
enabled by the backpropagation algorithm [53], [55]. The idea behind it is not overly
complicated: given that a deep network is a non-linear function with a big number
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of adjustable weights and biases, also known altogether as parameters, we need
to know how to adjust them in a way that the model performs the task obtaining
the best possible result. To do this, we iteratively show the model a sample of the
available training data, known as mini-batch or simply batch, we compute with a
previously established loss or cost function how big the error of the network’s predic-
tion is with respect to the known answer, also named label or labels in supervised
learning, and at this point we compute how much each parameter is responsible for
the error, which translates mathematically to the derivative of the parameter with
respect to the loss function of the result, propagated through the network’s layers
using the chain rule. Finally, we adjust the parameter by that result. Since we usu-
ally have many parameters, instead of a single derivative it is more correct to refer
to this variation as the gradient. This step is known as backpropagation, and once
it is applied to all parameters, the effect is for the network to take a step towards
the minimum of the loss function, which the lower value it assumes, the more it
reflects that the model has learned well to perform the specified task given a dataset.

A core step forwards in terms of training performance of deep networks was
made in the 2000s: drawing on the idea that DL models require a hefty quantity
of matrix additions and multiplications (an in-depth example can be found in
section 2.2), GPUs12 could be used for the training process of deep networks instead
of CPUs13, leveraging their much higher core count14. NVIDIA was the first to
release a framework for GPGPU15 programming with their CUDA16 API17 in 2008
[64].
The advantage of using GPUs was apparent from the beginning: just the year after
the first CUDA release, Raina, Madhavan, and Ng demonstrated a 70× decrease in
training time on an NVIDIA GTX 280 with respect to a contemporary dual-core
CPU [65], which drove researchers to networks with more parameters. The decisive
moment that the world accepted GPUs as the best platform for training deep
networks was a few years later in 2012, when Krizhevsky, Sutskever, and Hinton
[66] proposed AlexNet, a CNN18 trained on two NVIDIA GTX 580 which improved
the state of the art in image classification by a very significant margin.

12Graphics Processing Unit.
13Central Processing Unit.
14In 2023, a typical CPU core count is ~10, while a common GPU core count is ~10,000.
15General-Purpose computing on Graphics Processing Units.
16Compute Unified Device Architecture.
17Application Programming Interface.
18Convolutional Neural Network.
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Figure 2.7: A diagram for a one-unit recurrent neural network (RNN). From
bottom to top: input state x, hidden state h, output state o. U , V , and W are
the weights of the network. Looping diagram on the left and unfolded version on
the right. The t subscript indicates the time instant. By Wikipedia user fdeloche,
shared under the CC BY-SA 4.0 license.

Among the various types of notable neural networks, the one that was the most
applied to sequence-to-sequence tasks before the birth of the Transformer was the
RNN, shown in figure 2.7. First introduced by Hopfield in 1982 [47], then improved
by Rumelhart, Hinton, and Williams in 1986 [55], recurrent neural networks are
a class of deep neural networks that can handle a variable-length input sequence.
This approach has two critical consequences:

1. since the network cannot know the number of inputs a priori, all the layers
share the same weights;

2. the looping network needs to be “unrolled” in all its intermediate states,
the number of which depends on the number of inputs, before being able
to apply the backpropagation algorithm to perform SGD. This variant of
backpropagation is known as backpropagation through time [55], or BPTT
for short.

Point 2 is especially the reason why a simple, or fully, recurrent neural network
(FRNN) will never be able to learn a task successfully with a long input sequence.
This is known as the vanishing and exploding gradients problem, studied by Bengio
et al. in 1994 [67]. A few attempts at solving these issues have been proposed
over the years: in 1995, El Hihi and Bengio [68] studied hierarchical RNNs; in
1997, Hochreiter and Schmidhuber achieved a breakthrough with the LSTM19 [69],
shown in figure 2.8a, which specifically tackles the issue of long-distance memory;
some optimization methods for training RNNs were proposed by Pascanu, Mikolov,

19Long Short-Term Memory.
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and Bengio in 2012 [70] and by Sutskever in 2013 [71]; finally, in 2014, Cho et
al. introduced the GRU20 [72], shown in figure 2.8b, a further optimization of the
LSTM.
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(a) A diagram for a one-unit Long Short-Term Memory (LSTM).
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(b) A diagram for a one-unit Gated Recurrent Unit (GRU).

Figure 2.8: From bottom to top: input state xt, hidden state ht, cell state
ct (in the LSTM), and output state ot. Gates are sigmoids (σ) or hyperbolic
tangents (tanh), both shown in figure 2.6. Other operators: element-wise sum and
multiplication. Weights are not displayed. By Wikipedia user fdeloche, shared
under the CC BY-SA 4.0 license.

20Gated Recurrent Unit.
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2.2 – The Transformer

2.2 The Transformer
The Transformer is, as mentioned at the beginning of section 2.1, the father of all
the models employed in the present thesis. Its release in 2017 by Vaswani et al. [1]
was a watershed moment for the world of NLP and is having an impact on other
DL branches such as computer vision and speech recognition.

This neural network architecture (shown in figure 2.9) had when it was pub-
lished and still has today a big significance in the deep learning field, specifically
because it is «based solely on attention mechanisms, dispensing with recurrence
and convolutions entirely» [1], where CNNs21 and RNNs were the most widely used
types of models until that moment.
This change of architecture has three main consequences with respect to the previous
approach to sequences of recurrent networks:

1. since the Transformer does not contain any loops, the BPTT22 technique
used in RNNs can be replaced by simple backpropagation. This translates
to a significant speed-up in training and inference times [1], since what was
a sequential approach is now heavily parallelizable, especially on current
hardware, i.e. GPUs and TPUs;

2. the downside of the previous point is that this comes at the cost of trading off
variable-length input sequences for fixed-size inputs;

3. the Attention mechanism can be exploited for better associative memories
than those found in RNNs, be they FRNNs, LSTMs, or GRUs, with long-range
dependencies developed in such a way that the final input in the sequence can
attend to the initial one (and viceversa) in a constant number of steps23.

Let us now delve into some implementation details of the Transformer in order to
gain some insights on the reason why it was a breakthrough in NLP. First of all, it is
essential to have a high-level intuition of the Attention mechanism. This mechanism,
apart from the addition of the scaling factor [1], existed before the Transformer
under several names: multiplicative module, quadratic layer, product unit, Sigma-
Pi unit [11]. These are all variations of a matrix-based software implementation of

21Convolutional Neural Networks, mainly used for computer vision tasks such as object recog-
nition and semantic segmentation.

22Back-Propagation Through Time.
23This number of steps is exactly 1 when using the original paper’s [1] implementation of

Attention, whose memory requirement linearly depends on the fixed input size N with O (N),
where e.g. N = 512. Methods to reduce the amount of required memory at the cost of extra steps
are addressed in chapter 4.
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a dimmer switch with multiple inputs: their purpose is to brighten or dim each
of their inputs, with a shared maximum level of brightness. To this end, it is
desirable to work with a weight distribution that sums to 1, which can be obtained
by utilizing the softmax function, who some prefer to call softargmax, here applied
to w ∈ RK :

softmax(w)i = ewiqK
j=1 e

wj
(2.2)

Despite its daunting look, it is a simple function; let us see an example with
w = {−1.23, 4.56, 3.14} (hence w ∈ R3 and K = 3):

sm(w) =
I

e−1.23q3
j=1 e

wj
,

e4.56q3
j=1 e

wj
,

e3.14q3
j=1 e

wj

J

=
; 0.29

0.29 + 95.58 + 23.10 ,
95.58

0.29 + 95.58 + 23.10 ,
23.10

0.29 + 95.58 + 23.10

<
= {0.002, 0.803, 0.195} (2.3)

where sm is the softmax function and 0.002 + 0.803 + 0.195 = 1.
It is apparent that the softmax function turns the biggest value of w, in this case
4.56, into the highest weight, or probability, in the output distribution.
These weights w can then be applied to an input vector, say x, to get in return
the same input vector xw, now weighted by level of importance given to each xi by
its corresponding weight wi.
This is the essence of the Attention mechanism: learning how important a certain
input is with respect to the desired outcome in the given context, and focus more
on the relevant parts while setting aside the unimportant details.

The main actors in the Transformer architecture are thus what we have called
the input vector x, which in practice translates to the three matrices Q, K, and V ,
for queries, keys, and values. These, along with the learnable parameters contained
in the token embeddings, are what the Transformer optimizes when it is subject to
training on a task with a given dataset. The whole process can be seen in figure 2.9.

Transformers are canonically composed of two main sections: the encoder
(shown in the left half of figure 2.9) and the decoder (in the right half of the same
figure). The encoder has the task of “converting” the input sequence, which in
the context of NLP is usually a sentence string, to its internal representations.
The decoder’s objective is instead to provide a new sequence, taking into account
the representations learned by the encoder, its own weights, and the previous
sub-sequence.
Here is an example: the string "Hello World!" is provided to a Transformer.
Before it can be processed into input or output embeddings (see the bottom of
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Figure 2.9: The Transformer architecture as presented in the original paper [1],
where this is figure 1.

figure 2.9), it first needs to be translated into numerical tokens, e.g. [72, 101,
108, 108, 111, 32, 87, 111, 114, 108, 100, 33]. This toy example makes use
of a character-level tokenizer, which simply returns the index in the ASCII24 table
given a character25, but real-world tokenizers use more sophisticated algorithms
like BPE26 with subword units [73] or SentencePiece Unigram [74], [75]. The tokens
can now be embedded into a matrix E ∈ Rdvocab×dmodel , where dvocab ≈ 50,000 and

24American Standard Code for Information Interchange.
25Easily implemented in Python: str2tok = lambda s: [ord(char) for char in s].
26Byte Pair Encoding.
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dmodel = 512. This matrix is summed with another one of the same size, containing
the embeddings for the absolute and relative positions between the tokens, which
results in the actual input of both the encoder and the decoder. At this point
the input embedding follows a different path depending on which “half” of the
Transformer it is fed into:

• in the encoder27, the embedding matrix Eenc is first processed with Self-
Attention. Self-Attention is one of the possible Attention mechanism, and
involves using the same knowledge source, here a numerical matrix, for queries,
keys, and values. Specifically, the Transformer uses three matrices WQ

i ∈
Rdmodel×dk , WK

i ∈ Rdmodel×dk , and W V
i ∈ Rdmodel×dv , for queries, keys, and

values respectively, where i is the index of the head to which the ith matrix
belongs. The head is one of h28 parallel attention layers, which the authors
[1] demonstrate is beneficial to include in the architecture as each head learns
different linguistic aspects as shown in figure 2.10. The Multi-Head Attention
block shown in figure 2.9 is nothing more than the concatenation of the results
of the different heads:

headi :=Attention
1
QWQ

i , KW
K
i , V W

V
i

2
headienc =Attention

1
EencW

Q
ienc

, EencW
K
ienc

, EencW
V
ienc

2
(2.4)

where Eenc ≡ Q ≡ K ≡ V is applied since these heads perform Self-Attention,
and:

Attention(Q,K, V ) = softmax

A
QKT

√
dk

B
V (2.5)

The intuition behind this last equation is the following: the dot product
between the queries matrix Q and the transpose of the keys matrix K is, at its
core, a projection which allows to determine how aligned each of their compos-
ing vectors is with each vector in the other matrix. The scaling factor 1√

dk
was

introduced by the Transformer’s authors [1] to avoid too polarizing attention
vectors similar to one-hot encodings (e.g. {0.0005, 0.001, 0.998, 0.0005}), which
would not allow a token to attend to other tokens with a soft distribution,
and would instead force its focus on a limited number of other tokens, or even
just a single one. Finally, the dot product with the values matrix V acts as
a soft indexing inside what can be thought of as a key-value store or a hash

27The 2021 NYU Deep Learning course by LeCun and Canziani [11] and the 2023 GPT from
scratch video and repository by Karpathy [76] have proven to be quite phenomenal resources for
the understanding of the inner workings of the Transformer.

28The number used in the paper is h = 8, which as a consequence, due to the proposed formula
dk = dv = dmodel

h , causes dk = dv = 512
8 = 64.
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table (a depiction of this kind of soft indexing is presented in figure 2.10). The
line in figure 2.9 connecting the input embedding matrix directly to the “Add
& Norm” block represents a residual connection [77], also employed in every
other sublayer, which helps with optimization issues of deep neural networks.
Further, the block in question also implements layer normalization [78] for
the same reason. The final block, or sublayer, of the encoder is the “Feed
Forward”: this is a simple multi-layer perceptron (see figures 2.4 and 2.5),
which is implemented as a fully connected layer that maps from input size
dmodel to 4×dmodel, then applies a non-linearity such as the ReLU (figure 2.6c),
and maps back from 4 × dmodel to the original length dmodel. The feedforward
block allows the Attention head to store higher quality information about the
Self-Attention communication that happened in the preceding block.

• Most of the things that happen in the encoder also happen in the decoder,
with two notable differences:

1. the lower “Multi-Head Attention” block is now specifically “Masked”: this
means that the future tokens in the sequence are masked by multiplying
the Edec embedding matrix with a lower triangular matrix of ones, where
its zeros are in turn replaced with −∞, in such a way that illegal (future)
tokens are ignored by the softmax operation. This additional step is
needed for the decoder to “unroll” the output sequence one token at a
time, without being able to reference what cannot possibly already have
been written by the model itself;

2. the “Multi-Head Attention” block (third from the bottom in the decoder
frame in figure 2.9) now replaces the Self-Attention operation with Cross
Attention. This is the crucial modification that allows the decoder to
query the language representations learned by the encoder, which may
contain semantic, grammatical, and syntactical information. Equation 2.4
can now be rewritten as:

headidec
= Attention

1
QdecW

Q
idec
, KencW

K
idec
, VencW

V
idec

2
= Attention

1
EdecW

Q
idec
, EencW

K
idec
, EencW

V
idec

2
(2.6)

Note the different enc and dec subscripts for different origins of the queries,
keys, and values matrices.

The final “Linear” and “Softmax” layers in figure 2.9 are used to transform the
embeddings back into token probabilities, from which the best one is selected to
continue the sequence generation conditioned on both the encoder’s knowledge and
the decoder. As an example, the Transformer’s authors apply the original model
to the 2014 WMT English-German dataset [79]: while the encoder provides the
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representations for the full German sentence “Wir wissen nicht, was passiert.”, the
decoder generates each subword unit token for the English sentence “We do not
know what is happening.” one at a time, conditioning itself with its own output
during generation (“We”, then “We do”, then “We do not” and so on).
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(a) One head of a trained Transformer.
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(b) Another head of the same Trans-
former.

Figure 2.10: Figure 5 in the original Transformer paper [1]: «many of the attention
heads exhibit behaviour that seems related to the structure of the sentence. We give
two such examples above, from two different heads from the encoder self-attention
at layer 5 of 6. The heads clearly learned to perform different tasks.»
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2.3 BERT
Even though the Transformer from 2017 [1] was the neural network architecture
breakthrough that revolutionized the field of NLP in recent years, it was not until
the publication of the BERT paper in 2018 [2] that the adoption of Transformers
became widespread. This was due to two main reasons: self-supervised training
tasks and transfer learning.

BERT29, or Bidirectional Encoder Representations from Transformers, is ar-
chitecturally the same as the Transformer explained in section 2.2 and shown in
figure 2.9 («BERT’s model architecture is a multi-layer bidirectional Transformer
encoder based on the original implementation described in Vaswani et al. [1]
and released in the tensor2tensor library. Because the use of Transformers has
become common and our implementation is almost identical to the original, we
will omit an exhaustive background description of the model architecture and refer
readers to Vaswani et al. [1] as well as excellent guides such as “The Annotated
Transformer” [80]» [2]); the innovation proposed in the paper by Devlin et al. [2]
consists, instead, of the training framework for the Transformer.
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Figure 2.11: A diagram highlighting the bidirectional Transformer architecture of
BERT [2] versus the left-to-right GPT [13]. BERT’s representations are conditioned
on left and right context in every layer. From figure 3 in [2].

It had already been demonstrated in 2014 [81], especially in the field of computer
vision, how pretraining a network (e.g. a CNN) on a big dataset such as ImageNet
[82] and then finetuning it for a downstream task (e.g. image classification, semantic

29There has been a fun tradition to call novel NLP models or frameworks with an acronym
that forms the name of a Muppet from Sesame Street in recent years. Examples are ELMo [12],
BERT [2], and BigBird [20].
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segmentation) was an «effective recipe» [2]. While other researchers had previously
attempted to apply the same approach to NLP models with varying degrees of
success, the most notable in 2018 being OpenAI’s GPT30 [13], BERT’s authors
argue that a left-to-right pretraining procedure, where the token at the ith step ti
can only attend to the tokens in the preceding sequence {t0, ..., ti−1}, is not optimal
for sentence- and token-level tasks. In its place, they propose a combined masked
language modeling (MLM) and next sentence prediction (NSP) pretraining task,
shown in figure 2.12.
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Figure 2.12: «Overall pre-training and fine-tuning procedures for BERT. Apart
from output layers, the same architectures are used in both pre-training and fine-
tuning. The same pre-trained model parameters are used to initialize models for
different down-stream tasks. During fine-tuning, all parameters are fine-tuned.
[CLS] is a special symbol added in front of every input example, and [SEP] is a
special separator token (e.g. separating questions/answers).» Figure 1 in [2].

Here is a breakdown of the two pretraining tasks employed by BERT:

MLM Masked language modeling is Devlin’s et al. technique to pretrain a language
model’s internal linguistic representations bidirectionally. It is inspired by the
Cloze procedure, proposed by Taylor in 1953 [83], where the objective is to
correctly guess a masked word given the surrounding context of a sentence
(e.g. fill [MASK] in the sentence: “The [MASK] is chasing the mouse in the
kitchen.” The context to the left of the [MASK] token is almost useless for an
accurate prediction, while being able to attend to the context to its right we
can predict that the masked token is most likely “cat”). MLM is similar in

30GPT corresponds to the decoder part of the Transformer, while BERT corresponds to the
encoder. Reference in figure 2.9.
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principle to the denoising autoencoder [84], but instead of reconstructing the
entire input its objective is to only predict the missing token.

NSP Next sentence prediction is used to jointly pretrain text-pair representations,
such as a question followed by an answer or a name and its description. This
was added because «many important downstream tasks such as Question
Answering (QA) and Natural Language Inference (NLI) are based on under-
standing the relationship between two sentences, which is not directly captured
by language modeling» [2]. To include this information in the training data,
the segment to which the token belongs is added to its embedding vector, as
can be seen in figure 2.13.
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Figure 2.13: BERT’s input representation. It is shown that, on top of the now
familiar token and position embeddings (see § 2.2), BERT makes use of additional
segment embeddings to encode information useful for its NSP pretraining task.
Figure 2 in [2].

All in all, what the release of BERT caused has been a revolution in the ease
of adoption of an NLP model for specific tasks. Platforms and libraries such as
https://huggingface.co and HuggingFace Transformers [85] have popularized
the application of Transformers to many downstream tasks, e.g. sentiment analysis,
translation, summarization, question answering, conversation, etc.
This has been in large part due to the effective pretraining framework proposed
by Devlin et al. [2] and by the release of language model checkpoints pretrained
on large corpora (e.g. Wikipedia [3], BookCorpus [86]), whose learned language
representations can then easily be transferred to a task-specific model without the
need for an expensive training procedure from scratch.
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Chapter 3

Related Works

In this chapter we are going to explore all the relevant previous works on which
this master’s thesis is based on. These can be thought of as falling under two main
categories: models (§ 3.1), which include novel neural network architectures and
underlying mechanisms, and datasets (§ 3.2), which either propose a new task or
aim to put in the hands of researchers a more complete benchmark to test their
models with than the pre-existing ones on an established task. Finally, we discuss
some previous works in the specific field of video lecture summarization (§ 3.3).

Name Type Usage
BART [10] Model BART is the foundational model used throughout

this work.
Longformer

[6]
Long

Attention
The Longformer efficient long attention

mechanism will be applied to BART to allow us
to work with very long input sequences.

LSG [7] Long
Attention

The LSG long attention mechanism is an
alternative to the above.

X-CLIP [4] Model X-CLIP is a previously trained model that we will
use to introduce information from the video

modality into the transcripts of our novel lecture
transcript-summary dataset, UniSum (§ 4.2.2).

Kinetics [87] Dataset The Kinetics dataset was used for the training of
X-CLIP by its authors.

Table 3.1: A brief explanation of each of the components mentioned in this
chapter. Their usage will be thoroughly illustrated in chapter 4.
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3.1 Models
3.1.1 Summarization Models
Summarization is the task of reducing a long sequence to its core elements. It can
be interpreted as a form of deliberately lossy compression, as, per its goal, it does
not claim to maintain all the initial information.

While video summarization is the branch of automatic summarization that
aims to extract key-frames or key-fragments from videos [88], [89] (e.g. YouTube’s
auto-generated thumbnails after uploading a video), in this thesis we will focus on
automatic text summarization1. There are two kinds of automatic summarization:

• extractive summarization is the simpler one, where the summary does not
include any rephrased part of the input text. It can be reduced to a sentence
or sub-sentence tokenization2 step followed by a binary classification into two
“important” and “unimportant” classes for each token. At the end, tokens
classified as “important” are merged together to form the final summary;

• abstractive summarization is the more complex kind of automatic summariza-
tion, which involves understanding the whole input text, implicitly categorizing
what are the important notions (instead of tokens), and then reassembling
them into the final summary in an original form.

Many automatic summarization techniques have been devised over the years [90]
since interest for the field sprung in the 1950s [91]. What we will focus on in this
section will be the most recent developments in deep-learning-oriented methods.
The three most prominent Transformer-based models at the time of writing are
T53 [17], PEGASUS4 [18], and BART5 [10].

T5 is not a summarization-specific model: it is a unified text-to-text model
that can perform multiple tasks given a specific pre-prompt (see figure 3.1), among
which there is also input text summarization. The authors specify that their «goal
is not to propose new methods but instead to provide a comprehensive perspective

1For the sake of brevity, the term “automatic summarization” will always refer to “automatic
text summarization” from this point onwards.

2Read: split. We use the word “token” since it may indicate any amount of text: a letter, a
syllable or sub-word, a word, a clause or sub-sentence, a sentence, etc.

3Text-To-Text Transfer Transformer.
4Pre-training with Extracted Gap-sentences for Abstractive Summarization.
5Bidirectional and Auto-Regressive Transformers.
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Figure 3.1: A diagram showing T5’s ability to perform different text-to-text tasks
without a specific finetuning for each downstream task. Figure 1 in [17].

on where the field stands» [17]. Nonetheless: «on CNN/Daily Mail [92] we attain
state-of-the-art performance, though only by a significant amount on the ROUGE-2-
F score» [17], which means that in some aspects T5 achieved SOTA summarization
results for 2019. T5 also showed the importance of scaling a Transformer-based
model to a large number of parameters to improve performance (the authors scale
up to 11B parameters, but present-day LLMs6 much surpass this threshold, with
e.g. BLOOM7 reaching 176B internal parameters [93]).

PEGASUS and BART introduce, instead, new pretraining objectives for the
Transformer architecture [1] seen in section 2.2, both expanding upon the masked
language modeling technique proposed for the training of BERT [2].

PEGASUS is specifically trained for abstractive summarization applications
and uses a Gap Sentences Generation (or GSG for short) pretraining objective.
The idea is similar to MLM, but instead of masking tokens, it is implemented by
masking entire sentences. The authors find a positive correlation between masking
«putatively important sentences» [18], instead of randomly selected ones, and an
increase in performance. These important gap sentences, that are what PEGASUS
has to predict during its training phase, are selected by ranking the document’s
sentences by decreasing ROUGE1-F1 (see § 5.1.1 for an explanation of the metric)
with the rest of the document.
PEGASUS was trained on the C48 [17] and the HugeNews (currently unreleased by
Google) datasets, and in 2019 achieved «state-of-the-art results on all 12 diverse

6Large Language Models.
7BigScience Large Open-science Open-access Multilingual Language Model.
8Colossal Clean Crawled Corpus.
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downstream datasets considered» [18], which include: XSum [94], CNN/Daily Mail
[92], NEWSROOM [95], Multi-News [96], Gigaword [97], [98], WikiHow [99], Reddit
TIFU [100], BIGPATENT [101], arXiv [102], PubMed [103], AESLC [104], and
BillSum [105].
Google is currently using PEGASUS as the underlying model for some of its prod-
ucts: in 2022, they published a blog post [106] where they explained how they
offer automatic document summarization in Google Docs. As a note, to optimize
inference times, they replaced PEGASUS’s decoder with an RNN [107] without
performance loss.

BART [10] takes a different approach to tackle the same issue, with a twist: the
authors use the (well-tried in CV) technique of the denoising autoencoder, thus the
model instead of having to predict a part of the original input that has been masked,
it has to reconstruct it entirely. This pretraining objective is seen by Lewis et al. as
a generalization of BERT’s MLM plus NSP objective, and even though they did not
intend originally to specifically address the summarization downstream task, they
show that «BART is particularly effective when finetuned for text generation but
also works well for comprehension tasks. It matches the performance of RoBERTa
[14] with comparable training resources on GLUE9 [108] and SQuAD10 [109], and
achieves new state-of-the-art results on a range of abstractive dialogue, question
answering, and summarization tasks. For example, it improves performance by 6
ROUGE over previous work on XSum [94]» [10].

BART’s architecture only slightly differs from BERT’s: instead of using ReLU
[61], BART’s authors use its slight variant GELU [62] (see figure 2.6d), and they
remove the feed-forward network from the encoder.

A B C . D E .A . C . E . A _ . D _ E .

A _C . _ E . C . D E . A B
Document RotationToken Masking

Token Deletion Text Infilling

D E . A B C .
Sentence Permutation

Figure 3.2: The five composable transformations that are used to add noise
to text fed to BART during pretraining. Dots “.” denote the end of a sentence,
underscores “_” indicate the insertion of a [MASK] token. Figure 2 in [10].

9General Language Understanding Evaluation benchmark.
10Stanford Question Answering Dataset.
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As is shown in figure 3.2, the text submitted to BART during pretraining can
be transformed in different ways:

1. token masking is the same as MLM used in BERT [2];

2. token deletion involves completely removing a token without it leaving any
trace in the input text;

3. sentence permutation is the random shuffling of the sentences that compose
the input document;

4. document rotation is the random choice of a token with which the input text
will begin, “rotating” the document preserving the relative positions of the
tokens;

5. text infilling is the most interesting transformation: a number is extracted
from a Poisson distribution with λ = 3; this (which could also be 0) becomes
the number of tokens that will be replaced with a single [MASK] token. This
was inspired by SpanBERT [110], though this approach applies a heavier
transformation.

These noising functions teach BART different aspects about the input recon-
struction process, such as which positions have a missing token, how many tokens
are missing from a span, and where is the start of the document [10].

Lewis et al. provided the test results for BART on different tasks, among
which we focus on summarization with the CNN/Daily Mail [92] and XSum [94]
datasets. Even though the CNN/Daily Mail dataset contains summaries that often
resemble sentences picked from the story, making it a dataset prone to give good
results to extractive models, the authors report that BART outperforms all existing
works. XSum is, instead, a highly abstractive dataset, and on it BART improves
on the previous top works by ~6 ROUGE points on all metrics, maintaining high
output quality. We note that PEGASUSLARGE trained on the HugeNews dataset
outperforms BARTLARGE by up to 2.0 points in different ROUGE metrics, when
testing on both the XSum and the CNN/Daily Mail datasets.
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Bidirectional 
Encoder

A _ C _ E 

B D 

(a) With BERT, tokens are randomly
replaced with masks and the input se-
quence is encoded bidirectionally. The
masked tokens are predicted indepen-
dently of each other, which does not
allow for text generation.

Autoregressive 
Decoder

A B C D E

<s> A B C D 

(b) With GPT, the tokens are predicted
in an autoregressive fashion, which
works well for sequence generation. Its
main limitation is the left-to-right Trans-
former directionality, which precludes
GPT from learning bidirectional interac-
tions.

Autoregressive 
Decoder

Bidirectional 
Encoder

A B C D E

A _ B _ E <s> A B C D 

(c) With BART, the input document is subjected to arbitrary noise transformations and
fed into a bidirectional encoder (on the left), then the likelihood of the original input
sequence is computed with the autoregressive decoder (on the right). To finetune BART,
an uncorrupted input is given to both encoder and decoder, then the representations
from the final hidden state of the decoder are used.

Figure 3.3: A comparison of the different pretraining objectives of BERT, GPT,
and BART and how they influence their applications. Figure 1 in [10].
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3.1.2 Long-sequence Attention
As we have seen in section 2.1, the RNN had the advantage of theoretically being
able to process up to infinite-length input sequences, though with many difficulties,
such as the vanishing and exploding gradients problem [67], that were progressively
solved during the years, with the LSTM [69], the GRU [72], and other clever
modifications of the original architecture. But when the Transformer was published
in 2017 [1], the performance of NLP tasks leapt forward in a way that RNNs could
not compete with. This came at the cost, anticipated in section 2.2, of alleviating
the constraint of indefinite-length input sequences. This was not only due to
the internals of the Transformer’s encoder and decoder, which had been designed
to work with matrices of predefined dimensions from the start, but also to the
implementation of the Self-Attention mechanism (see equation 2.4), which relies on
the assumption that each token can attend to every other token in the sequence,
in such a way that having an N -tokens-long input sequence, the Self-Attention
operation will need to work on a matrix of dimensions N×N . This made the
memory dependence quadratic, or O(N2) (shown by the blue line in figure 3.4), and
as a consequence made the maximum input lengths of popular Transformer-based
models, such as BERT, GPT, and BART quite limited11 on current hardware12.

Figure 3.4: Runtime and memory usage dependence from the input sequence
length in tokens. Comparison of full Self-Attention with respect to different
implementations of the Longformer attention. Figure 1 in [6].

For this reason, in recent years, many articles have been published on research

11BERT has a default maximum input length of 512 tokens; GPT-2 and BART have a default
maximum input length of 1,024 tokens.

12Though they can be clustered for more distributed compute and memory, single NVIDIA
GPUs currently integrate from 8 to 80 GB of on-board memory [111].
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to efficiently extend these limits. In 2020, Beltagy et al. published Longformer [6],
and Zaheer et al. released BigBird [20]. In 2022 Condevaux and Harispe proposed
a similar kind of long-sequence attention to apply to many existing models, LSG
[7], and Phang et al. looked into extending the original PEGASUS model for long
sequences [112].
All these slightly different approaches (see figure 3.5) share the underlying idea
of a sparse full Self-Attention matrix with a sliding window and global tokens.
The sliding window improves the memory dependence of an N -tokens-long input
sequence from O(N2) (quadratic) to O(N) (linear), and is justified by the data
locality principle [113]: in essence, the most important information for a token is
contained in its surrounding context. On the other hand, global tokens favor the flow
of information between all tokens, which is beneficial for long-range dependencies
(e.g. the conclusion of the input sequence references the introduction).

Figure 3.5: A comparison of different long attention patterns. From left to right:
LSG [7], BigBird [20], and Longformer [6]. Figure 1 in [7].

Here is a list of peculiarities for each of the aforementioned models:

Longformer Beltagy’s et al. main proposition was an encoder-only RoBERTa-
based13 [14] Transformer that, with some MLM pretraining continued from a
RoBERTa checkpoint, could improve the SOTA results on the WikiHop [114]
and the TriviaQA [115] datasets. But they also proposed an encoder-decoder
variant, known as LED14, that was instead based on BART [10], and without
additional pretraining or finetuning, marginally improved the SOTA (BigBird
at the time) results on the arXiv summarization dataset [102]. This was an

13Longformer and LED models based on a previously trained model with maximum input
length L = 1024 means that the authors increased L to 16,384 and copied the position embedding
matrix 16 times into the new matrix [6].

14Longformer-Encoder-Decoder.
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important piece of the puzzle when coming up with the methodology for the
present thesis.

BigBird Zaheer’s et al. work, other than including some theoretical proofs of
the reasons why sparse Self-Attention, when replacing full Self-Attention,
works in long contexts, is very similar to Beltagy’s et al. paper [6], with the
exception of the additional use of random token attention on top of sliding
window and global attention. The most significant difference is that the base
model for BigBird for seq2seq tasks like summarization was Google’s own
PEGASUS [18]. With this extension, the authors achieved SOTA results on
three summarization datasets: arXiv [102], PubMed [103], and BIGPATENT
[101].

LSG Attention The contribution by Condevaux and Harispe is twofold: first,
they propose a different approach with respect to BigBird’s random attention
that they call “sparse”; second, they publish an open source Python library15 to
convert existing checkpoints of many popular models with their LSG attention.
There are several ways to compute the tokens in the sparse matrix that each
attention head independently considers; an example is “max norm”, which
is their library’s default. Its objective is to select the most highly rated key
tokens in the score matrix by computing the alignment between the key and
query tokens q,k ∈ Rd with qkT = cos(θ) ||q|| ||k||, where the sign of cos(θ) is
unknown, but the authors write that in most situations the correct key should
dominate the softmax regardless of the query. The key tokens are thus chosen
inside each sequence block and each attention head.

PEGASUS-X The work of Phang et al. focuses on the study of the possible
variations on a Transformer-based summarization model that accepts long
input sequences. They show that a global-local architecture (similar to the
work above) with block staggering, a large number of global tokens, and a
large block size gets the best results, along with a relatively brief pretraining
continuation of the elongated model before its finetuning. Their large variant
of the PEGASUS-X model achieves SOTA results on the BIGPATENT [101]
and GovReport [116] datasets.

Along these and other long-input Transformer models, some benchmarks to
reliably compare them have been proposed. Long-Range Arena16 (by Tay et al.
[117]) offers a unified benchmark for evaluating different aspects of Transformers

15Available at https://github.com/ccdv-ai/convert_checkpoint_to_lsg.
16Benchmark available at https://github.com/google-research/long-range-arena.
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with input sequences ranging from 1,024 to 16,384 tokens. SCROLLS17 [118] is an
answer to Long-Range Arena that is entirely NLP-oriented.

(a) Full Self-Attention. Ev-
ery token attends to every
other token in the embed-
dings matrix.

(b) Sliding window atten-
tion. If the sliding win-
dow’s width is w, every
ith token attends to the to-
kens in the sliding window:
{ti− w

2
, ..., ti, ..., ti+ w

2
}.

(c) Dilated sliding window
attention. Same as sliding
window attention, but an
additional dilation factor is
considered when comput-
ing the token indices in the
window.

(d) The complete attention pattern proposed in the Longformer paper [6]. Each token
attends to the other tokens in the sliding window, plus some “global” tokens can attend
to every other one like in full Self-Attention.

Figure 3.6: A comparison of the different composing subpatterns of the Longformer
attention mechanism. Figure 2 in [6].

17Standardized CompaRison Over Long Language Sequences. Benchmark available at https:
//www.scrolls-benchmark.com.
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3.1.3 X-CLIP
X-CLIP18 [4] is a Transformer-based video-language model that builds upon CLIP
[26], a previously released model by OpenAI that learns joint visual-textual repre-
sentations.

X-CLIP’s innovation is threefold: first, instead of training on a closed-set of
possible textual labels that correspond to a set of video clips (like previous work
such as Swin [119] and ViViT [120]), it uses the joint internal language-image
representations learned with a method based on CLIP; second, it does so with
much less computation (the authors report 12× fewer FLOPS); third, it improves
the zero-shot19 video recognition SOTA results on the Kinetics-400 dataset [87]
and obtains improved few-shot20 performance when the amount of labeled data is
extremely limited.

0 1 2 3 4 5 N0 1 2 3 4 5 N

Cross-frame Communication Transformer

0 1 ...2 3 4 5 N

Multi-frame Integration Transformer

1 2 3 4 5 ... T

Text Encoder

Video-specific Prompting

...

...

Air drum Cry Swim

Patch Embedding

Maximize the score for ground-truth

......

...

...

... ...

Random initializationRandom initializationPartially pretrained initializationPartially pretrained initializationPretrained initializationPretrained initialization

Figure 3.7: The X-CLIP framework, which allows for freely chosen natural
language text labels and jointly processes them with a video clip using a cross-
frame communication Transformer in combination with a multi-frame integration
Transformer. Figure 2 in [4].

The main application of X-CLIP is video classification on natural language
textual classes. We will explain how this has been used in the present work in
chapter 4.

18eXpanded Contrastive Language-Image Pretraining.
19Zero-shot learning is a type of ML problem where the classification model at test time has to

predict classes unseen during training.
20Similar to zero-shot learning, with the difference that the model has access to a few examples

per class during training.
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3.2 Datasets
The work contained in this thesis, which will be explored in detail in chapter 4,
makes use of two pre-existing datasets. A brief overview of these is set out below.

3.2.1 VT-SSum
VT-SSum21 [5] is an extractive text summarization dataset that focuses on spoken
language, with data extracted from http://videolectures.net, «which includes
125K transcript-summary pairs from 9,616 videos» [5].

Video

Slides
We had our first standard committee meeting yesterday and
we started off with a presentation on existing standards. I so a
little X lemon and Alexis and Alexis data model and I forgot that
I make zero in my presentation, which we all had to present a
presentation tomorrow for. Sorry bout that. But what we
discussed, it was basically the essential role of the Alexis data
model, and we we discussed the possibilities to make the
model a standard in Oasis, with both on the next Lemon anti,
Alex Zero as civilizations so. And there's also plans for joint until
X, Lemon, anti Alex Zero meeting in the context of the next
Elecs conference.

Transcripts	from	speech	recognition

Text	extraction	from	the	slide

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 731015. Standards Committee meeting
18-2-2019 • Presentations on • Existing standards and ELEXIS:
based on FCSH-UNL Report on ISO Standards for ELEXIS TEI
Lex-0 and ELEXIS • Ontolex-Lemon and ELEXIS • ELEXIS data
model • Discussion on the essential role of the Elexis data
model and the possibility to make the model a standard in
OASIS, with both Ontolex Lemon and TEI Lex-0 as
serialisations • Plans for joined Ontolex-Lemon TEI Lex-0
meeting

1. We had our first standard committee meeting yesterday and we started
off with a presentation on existing standards.

2. But what we discussed, it was basically the essential role of the Alexis data
model, and we we discussed the possibilities to make the model a
standard in Oasis, with both on the next Lemon anti, Alex Zero as
civilizations so.

Extractive	summary	from	the	transcript

Summary

We had our first standard committee meeting yesterday and
we started off with a presentation on existing standards. I so a
little X lemon and Alexis and Alexis data model and I forgot
that I make zero in my presentation, which we all had to
present a presentation tomorrow for. Sorry bout that. But
what we discussed, it was basically the essential role of the
Alexis data model, and we we discussed the possibilities to
make the model a standard in Oasis, with both on the next
Lemon anti, Alex Zero as civilizations so. And there's also
plans for joint until X, Lemon, anti Alex Zero meeting in the
context of the next Elecs conference.

And there's quite some interesting challenges defined for
Objective 2, which is publication, standardization, target,
even a new standard data set of compliance which we haven't
been talking bout today. Use of conversion to scientific
output. So a lot of challenges there.

So C Mon and is this in the ground agreement decided that it
would be good to have standards committee just to monitor
this process of standardization to bring the group together to
discuss work on standards. And this was what we said in the
ground agreement. The game of the Standing Committee will
be to ensure the realization of the project objective too. And
this is establishing common standards and solutions. We
heard it already and repeating, but maybe it's a mantra we
want to doing that wewant to be doing that work.

Like got all upset yesterday and I borrowed this little cat Ola.
It's a minimum model common data model capturing the
main concept of the lexicographical resources. Do we
understand as our understanding of what is a lemma or ahead
word is that the same within for all the data in the project. It
takes into account international standards and it can be
expressed in barbos interoperability format. So the until X,
lemon and T adding zero to ensure a semantic
interoperability. Between lexicographic resources and to
enable integration in the elexis context.

Transcripts

Figure 3.8: An illustration of the process VT-SSum’s [5] authors used to extract the
summaries from the full transcripts with weak supervision from the corresponding
slide. Figure 1 in [5].

The process to make the VT-SSum dataset follows these steps:

Data Collection The videos and their corresponding slides are downloaded from
http://videolectures.net. This platform also provides the timestamps of
start and end of each slide’s projection.

Transcript Extraction The authors extract the textual transcript from the audio
track of the video lecture with Microsoft Speech to Text.

21Video Transcript Segmentation and Summarization. Dataset available at https://github.
com/Dod-o/VT-SSum.
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Slide-Text Block Alignment The full transcript can then be separated into
blocks of text spoken during the projection of a slide based on the aforemen-
tioned slide timestamps.

Transcript Segmentation Each block of text is segmented into single sentences,
which are then binarily classified into “sentences to consider for the summary”
and its opposite class by computing if the ROUGE1-F1 score between the sen-
tence and the contents of the slide crosses a fixed threshold. The concatenation
of these selected sentences is considered the gold summary.

The distribution of the data contained in VT-SSum is shown in figure 3.9. The
VT-SSum dataset is under the Creative Commons Attribution-NonCommercial-
NoDerivatives International 4.0 license.

(a) (b)

Figure 3.9: The lengths distributions of the transcripts (3.9a) and the summaries
(3.9b). The x-axis denotes the number of sentences and the y-axis denotes the
number of samples. Figure 2 in [5].
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3.2.2 Kinetics
Google DeepMind offers «a collection of large-scale, high-quality datasets22 of URL
links of up to 650,000 video clips that cover 400/600/700 human action classes,
depending on the dataset version. The videos include human-object interactions
such as playing instruments, as well as human-human interactions such as shaking
hands and hugging. Each action class has at least 400/600/700 video clips. Each
clip is human annotated with a single action class and lasts around 10 seconds.»

Of the three datasets (Kinetics-400 [87], Kinetics-600 [121], Kinetics-700 [122]
then updated in 2020 [123]), we especially mention Kinetics-400 and Kinetics-600
for their benchmark use in the X-CLIP paper [4] (see § 3.1.3), which we will see
applied in the scope of this thesis in chapter 4.

(a) “dunking basketball” (b) “playing violin”

(c) “robot dancing” (d) “riding a bike”

Figure 3.10: A few video clip examples from the Kinetics-400 dataset. Each
figure’s caption corresponds to the video clip label. From figure 1 in [87].

The Kinetics datasets are released under the Creative Commons Attribution 4.0
International license.

22Official website at https://www.deepmind.com/open-source/kinetics.
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3.3 Video Lecture Summarization
Before proceeding onto our proposed methodology, it is appropriate to review some
of the previous works in our particular chosen field, which is that of automatic
summarization of educational content, and, more specifically, of video lectures.

Name Type Description
BERT [2] Model BERT’s embeddings can be clustered and used

for extractive summarization [124].
PreSumm

[125]
Model PreSumm is a set of BERT-based extractive

and abstractive summarization models.
VT-SSum [5] Dataset The VT-SSum dataset is a part of our novel

long lectures transcripts dataset, OpenULTD
(§ 4.2.1).

Lecture2Note
[126]

Framework Lecture2Note is an unreleased note-generation
tool that transforms slide-based video lectures

into schematic notes.
Lecture2Notes

[127]
Framework Lecture2Notes is an open source service that

summarizes entire video lecture transcripts. It
also provides a slide-by-slide summary.

Table 3.2: A brief overview of related works in the field of video lecture summa-
rization.

Video lectures contain two modalities, namely video and audio, from which
other modalities can be derived, such as textual, where the transcript can be
generated from the audio by an ASR model or a human, and visual, where the main
figures, diagrams, formulas, etc. can be extrapolated from the video in different
ways. As such, many different approaches have been taken during the years by
various researchers; of these many approaches we focus on the ones leveraging the
Transformer neural architecture, since that is what allows to reach state-of-the-art
results at the time of writing.
Though a notable mention must be given to Xu et al. [126], who proposed a method
to provide students with notes-like documents containing images and text extracted
from a slide-based video lecture (see figure 3.11), we need to narrow our focus down
to purely textual summarization for a relevant and fair comparison with our work.

Most of the available approaches to summarization of long spoken text follow
the extractive pattern. We have seen in section 3.2.1 that VT-SSum’s [5] authors
proposed a weak supervision method based on the slide contents to extract what
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Figure 3.11: The neatly formatted notes output by the Lecture2Note system.
Figure 3 in [126].

they consider the most relevant sentences of the speech. To give a numerical
baseline, they employ a variant of PreSumm [125], which is a set of extractive and
abstractive BERT-based models for summarization.
A previous work by Miller [124] used the embeddings produced by the original
pretrained BERT directly to perform the selection of the most significant sentences
via K-Means clustering [128].

The first of the two works most similar to the present master’s thesis, mainly
due to the use of abstractive summarization applied to educational videos, is the
one by Housen [127], who proposed and deployed an end-to-end system to generate
a textual summarization of the speech corresponding to each projected slide (see
figure 3.12) and to the whole lecture. At the core of the summarization system,
he used, in part like us, a BART model extended with the long attention mecha-
nism proposed with Longformer [6]. His research was more integration-oriented,
and from his paper it does not appear he concentrated on the specific aspect of
summarization, though he released the TransformerSum library23, but instead he
presented a ready-to-use system accessible through a dedicated working website,
with many underlying components made to fit together.

23Available at https://github.com/HHousen/TransformerSum.
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(a) (b)

Figure 3.12: The summary of the complete transcript (3.12a) and of the transcript
corresponding to a single slide (3.12b) made with the Lecture2Notes system. From
figure 5 in [127].

The second work akin to the current one was made by Benedetto et al. at PoliTo
in 2021 [129]. Their contributions were a novel transcript-summary dataset based
on courses offered at MIT called EduSum (which comprises 7 courses; we propose
a ~10× larger educational summarization dataset, UniSum § 4.2.2, of 67 courses),
a method for the restoration of missing punctuation signs applicable to transcripts
generated by an ASR model, and an extractive-abstractive approach to long input
sequence summarization, which does not make use of linear memory dependent
attention mechanisms.

As a final note, it is key that we investigate the effect that applying our proposed
methods in schools and universities would have on the students’ preparation. Our
aim is, hopefully, to put in the hands of the students a tool to facilitate their
study and revision of course materials, with two upsides with respect to a lecture
summary made by a human, be they the professor or a teaching assistant: first, the
process can be automated, which should grant more time to the human to dedicate
to other work; second, the summary content is derived directly from what was said
during the lecture, in a way that allows the most relevant topics to emerge in the
summary.
It has been demonstrated in a recent study [130], where 58 graduate students of
health informatics were asked to classify annotated bibliographies (which require
expertise in a certain field to produce) between AI-made and human-made, that
AI-generated content in an educational context can yield human-level-quality sum-
maries. This can be interpreted both as a sign of the fact that we can already
apply these deep models to real world tasks, and, as the authors note, that the
task of summarization is, while complex, not high-level enough to judge a student’s
creative abilities since an AI might have been used for cheating.
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Given the scarcity of previous works in this specific field, we conclude that ours
would be a novel contribution.
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Chapter 4

Methodology

Now that we have a general understanding of all the underlying technology, including
some historical background, it is time to present the purpose that the present
master’s thesis intends to achieve.
We will first cover the broad task and its main challenges (§ 4.1), then we will
propose two novel datasets especially designed to solve said task (§ 4.2), and finally
we will see some of the techniques that can be adopted to train a Transformer-based
deep network on these datasets (§ 4.4).

4.1 Strategy
With the present work, we want to explore the automatic summarization of univer-
sity video lectures. This task presents three main obstacles to overcome:

1. we have seen in section 2.3 that current successful language models follow
the pretraining-finetuning transfer learning pattern to achieve downstream
task flexibility and reusability of model checkpoints pretrained with general
language tasks, such as MLM [2], GSG [18], and denoising [10]. Most of the
corpora these models are trained on only contain written text; two examples
would be Wikipedia [3] and BookCorpus [86]. But video lectures are given by
professors who, as eloquent as they can be, are not speaking like one would
write a book; their speeches contain repetitions, anacolutha, conversations
with students, interruptions, etc. The first challenge is therefore that, while
language models are pretrained on datasets in the written text domain, we
need to apply them on text from another domain, which is that of spoken text
(i.e. transcripts);

2. a typical university lecture tends to last from one to two hours. This translates
to a large quantity of information that the professor is able to convey during
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that time, which in turn, when the speech is converted into text, makes for
a very long transcript. As we have discussed in depth in sections 2.2 and
3.1.2, a long input sequence requires some special handling when fed to a
Transformer-based model;

3. finally, as a bonus challenge that is not dictated by the constraints of the
data, but by our need to attempt to use as much information from the original
videos as possible, we try to inject multimodal information into the lecture
transcripts.

Figure 4.1: A diagram of the training process used to produce the models
presented in this work. First we perform BART’s [10] domain adaptation on
OpenULTD (§ 4.2.1), then we convert BART with long attention to either LED [6]
or LSG [7], and finally we finetune the resulting model on either the standard or
the extended variant of the UniSum dataset (§ 4.2.2).

The strategy we use to solve all of these problems is the following:

1. to account for the difference in domain between the written text datasets used
for model pretraining and the spoken text data used for model finetuning
on the summarization task, we continue the pretraining of the model in this
new domain, effectively performing the step of domain adaptation [131]. To
accomplish this, we propose a novel dataset of 14,677 unlabeled university
lecture transcripts, illustrated in section 4.2.1;

2. then, to enable the model to handle very long input sequences (up to 16,384
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tokens), we extend the original attention mechanism of the model in ques-
tion with quadratic memory dependency with a global plus sliding window
mechanism (see § 3.1.2 for different approaches), which has a linear memory
dependency. To finetune the resulting model on the summarization task, we
propose a novel dataset of 1,583 lecture transcript-summary pairs, explored in
detail in section 4.2.2;

3. to inject additional information into the transcripts of the summarization
dataset, we use X-CLIP [4] (see § 3.1.3) to extract a binary classification from
the video modality that reflects the moments during which the lecture speaker
is writing.

Figure 4.2: A diagram of the inference process proposed in the present thesis.

It is now appropriate to illustrate the proposed datasets.
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4.2 Novel Datasets

4.2.1 OpenULTD

OpenULTD1 is the first of the two novel datasets proposed with the present work.
Its name is derived from the fact that it is made of four subdatasets, each from an
open learning platform. More specifically, we include an existing dataset, VT-SSum
[5] (see § 3.2.1), and we add data from the MIT OpenCourseWare platform2 (OCW
for short), the OpenHPI platform3, and the Yale Open Courses platform4, for a
total of 14,677 samples.

Subset Number of
Samples

Number of
Courses

License

MIT OCW 3,397 126 CC BY-NC-SA
OpenHPI 957 28 CC BY-NC-SA
VT-SSum 9,229 N/A CC BY-NC-ND

Yale 1,094 43 CC BY-NC-SA

Table 4.1: The data composition of the OpenULTD with respect to its subsets.
Note that the number of courses of the VT-SSum subset is not available due to
each lecture being standalone (e.g. a seminar).

Some information about the composition of the dataset are shown in table 4.1.
We note that, while the other three subsets have a license that allows derivative
works, the VT-SSum dataset is licensed under the stricter Creative Commons
Attribution-NonCommercial-NoDerivatives variant of the license. This means that
«if you remix, transform, or build upon the material, you may not distribute the
modified material» [132], therefore the published OpenULTD does not contain the
VT-SSum subset, but it contains very simple instructions to follow to reconstruct
the full dataset.

1Open University Lecture Transcripts Dataset.
2Available at https://ocw.mit.edu.
3Available at https://open.hpi.de.
4Available at https://oyc.yale.edu. Videos available at https://www.youtube.com/

@YaleCourses.

52

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://ocw.mit.edu
https://open.hpi.de
https://oyc.yale.edu
https://www.youtube.com/@YaleCourses
https://www.youtube.com/@YaleCourses


4.2 – Novel Datasets

Transcript
Professor Steven Smith: Okay, good morning. I’m going to show another movie
today but not until a little bit later in the class. We’ll get it. We’ll get there.

Don’t worry! It doesn’t fit until the last part of the class. But today, I want to
talk about sovereignty. There are two great concepts that come out of Hobbes

that you have to remember. One is the state of nature and the other is
sovereignty. I spoke a bit about the first one yesterday or Monday rather.

Today, I want to talk about Hobbes’ theory of the sovereign state, the creation
of the sovereign. Hobbes refers to the sovereign as a mortal god, as his answer

to the problems of the state of nature, the state, the condition of life being
solitary, poor, nasty, brutish and short. And it is only the creation of the
sovereign for Hobbes, endowed or possessed with absolute power, that is

sufficient to put an end to the condition of perpetual uncertainty, anxiety and
unrest that is the case of the natural condition. [...]

Yeah hi, I’m Lucy. I’m in the University of Southampton and together with
Pavlos who’s also in Southampton and Hardy from the laboratory. Laboratoire

Uber Korea. We worked on newer generation of multilingual Wikipedia
summaries from wiki data for article placeholders. If you don’t know those

words, I’ll explain them in a. Uh, while we have little content on Wikipedia in
different languages, we have a lot of resources in wiki data. Wiki data is a
knowledge base, maintain and edited by community of users and we have

around 48 million items on wiki data and each item can be labeled and over 400
languages. And as we showed in a previous study, the varieties of languages
covered by wiki data is pretty high. Exists, which is the article placeholder.

Those article placeholders display triples on Wikipedia and a tabular form and
they are dynamically generated, meaning if something up is updated on wiki

data, it is automatically updated in Wikipedia as well. [...]
OK. So my name is Kasper. Listen and I’m a PhD student of Professor Bunker
at the University of Bern in Switzerland. So this talk here considers the general
graph matching paradigm of graph edit distance. So first of all I will talk about
graph edit distance, so graph matching paradigm then. And I will briefly talk
about standard procedure for computing the graph. Edit distance by means of a

tree search algorithm, and then next I will talk about more Chris algorithm,
which is in fact an algorithm for solving the assignment problem in polynomial
time complexity, and then our contribution here is that we adapt this algorithm
for solving the assignment problem to the problem of graph edit distance. So I
will talk about this. Then of course we will provide several experimental results

that we have achieved. With our new algorithm for computing graph, edit
distance and finally I will draw conclusions. And that we apply. [...]

Table 4.2: A sample of the contents of the OpenULTD. The transcript is truncated
to the end of the last full sentence within the first 1,000 characters.
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After having taken a look at a sample of the data contained in the OpenULTD
shown in table 4.2, albeit very limited in quantity and truncated in length, it is time
to describe the process that was used to collect these transcripts. A breakdown of
the steps for each subset follows.
VT-SSum Starting from the simplest subset, since it was pre-made for the most

part, we first need to git clone the repository from GitHub (link in § 3.2.1),
which already contains all the data in the dev, test, and train directories.
Each of these directories, which represent the dataset split given by the
authors, but which we will ignore for our purposes, contain thousands of
files in JSON5 format, with each of these files corresponding to one video
lecture from http://videolectures.net. We are particularly interested in
the segmentation object, which is the list of all transcript sentences segmented
by projected slide. We re-aggregate these sentences to obtain the full transcript
back, and with these we create a single JSON file in return, which represents
a single list of objects, each composed by the title, url, and text data for
each video lecture; a sample is shown in code snippet 4.1.

[
{

"title": "NMR of Demixing and Phase Separation in Liquid Crystals",
"url": "http://videolectures.net/clc2010_zalar_dpsls/",
"transcript": "Hello everybody. The engagement of Fabiana Group with investigations of

phase separation in oriented liquid's to my knowledge basically started half a
century ago. When I visit it with, then fill a 10 or Philadelphia it can state right?
[...]"

ñ→
ñ→
ñ→

},
...

Code Snippet 4.1: The beginning of the transcripts file of the VT-SSum subset
of the OpenULTD in JSON format.

MIT OpenCourseWare The MIT offers a multitude of open courses on its online
platform. Unfortunately, what they do not offer is a public set of APIs to collect
data on their courses, thus we need to scrape this information directly from
their website. To do this, we use the excellent Selenium6 library for Python,
which allows us to interact with every webpage without restrictions, meaning
we can inject custom JavaScript code, e.g. to scroll down, and read CSS8

5JavaScript Object Notation.
6Available at https://www.selenium.dev. Downloadable from PyPI7 at https://pypi.org/

project/selenium.
7Python Package Index.
8Cascading Style Sheets.
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classes to select specific elements from the HTML9 DOM10. The scraping code,
provided in the repository associated with this master’s thesis, is unfortunately
quite complicated due to it having to account for the total freedom that MIT
leaves to professors in organizing their online courses, including the ability to
make custom webpages. Further, the code in question has been written in
September 2022, but possibly due to some changes to the OpenCourseWare
platform, it seems to not be working anymore; the collected data is instead
available. After having tentatively scraped the data for 233 courses, including
all the download URLs11 (see code snippet 4.2) from the MIT OCW platform,
the next step is to effectively download the linked data, including the videos
and the transcripts, from said URLs. Of these initial 233 courses, we filter
the duplicate courses, the duplicate lectures, and of these lectures we select
only those with a transcript, to form the final 126-courses-long MIT OCW
subset of the OpenULTD. The assembled JSON file containing the downloaded
transcripts and fewer metadata is shown in code snippet 4.3.

OpenHPI The process of data collection from the OpenHPI platform is very
similar to the one described above. Luckily, in this case the scraping is easier
due to a very predictable interface of the website. Like above, we start by
scraping the website (in this case we need to create an account to access
all materials) with Selenium for URLs (a sample of these is shown in code
snippet 4.4), then we download the transcript files and we aggregate them
in a single JSON file for the whole subset, shown in code snippet 4.5, after
having filtered the duplicate courses in this case as well.

Yale For the Yale subset, the procedure to apply is slightly different. Since their
video lectures are offered on YouTube, the initial “scraping” of the video
playlists has to be done by hand (and brain); the objective is to maximize
the number of courses without including false positives, such as playlists of
shorter videos (see sample of the playlist files in code snippet 4.6). Then, the
data scraping for each video can be done with the handy YouTube API12,
which offers the ability to get not only details about the playlist given its
URL, but also of all the individual videos it is made of; the metadata file
with the URLs is shown in code snippet 4.7. For ease of use, to download the

9HyperText Markup Language.
10Document Object Model.
11Uniform Resource Locator.
12Documentation available at https://developers.google.com/youtube/v3/

getting-started.
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[
{

"title": "Introduction to Special Relativity",
"url": "https://ocw.mit.edu/courses/8-20-introduction-to-special-relativity-january-iap-2 ⌋

021/",ñ→
"description": "The theory of special relativity, originally proposed by Albert Einstein

in his famous 1905 paper, has had profound consequences on our view of physics,
space, and time. This course will introduce you to the concepts behind special
relativity including, but not limited to, length contraction, time dilation, the
Lorentz transformation, relativistic kinematics, Doppler shifts, and even so-called
“paradoxes.”",

ñ→
ñ→
ñ→
ñ→
ñ→
"professors": [

"Prof. Markus Klute"
],
"departments": [

"Physics"
],
"categories": [

"Science",
"Relativity",
"Physics"

],
"codes": [

"8.20"
],
"levels": [],
"lectures": [

{
"title": "Week 1: Foundations of Special Relativity\nLECTURE 1.1: COURSE

ORGANIZATION",ñ→
"description": "Description: Discussion of the course outline and setup, grading

scheme, and first introduction to the concept of relativity.
(19:07)\nInstructor: Prof. Markus Klute",

ñ→
ñ→
"video_url":

"https://archive.org/download/MIT8.20IAP21/MIT8_20IAP21_lec01-1_300k.mp4",ñ→
"transcript_url": "https://ocw.mit.edu/courses/8-20-introduction-to-special-relat ⌋

ivity-january-iap-2021/8483288e0c9b5b24beb9c4d3639b4170_uMc-j5aQTH8.vtt",ñ→
"duration_in_seconds": 1146.859

},
...

Code Snippet 4.2: The beginning of the URLs file of the MIT OpenCourseWare
subset of the OpenULTD in JSON format.

transcript files we use the popular CLI13 utility youtube-dl14, to finally get a
JSON file in a format similar to the one of the other subsets, partially shown
in code snippet 4.8.

For the MIT OCW, OpenHPI, and Yale subsets, we apply a few regular expres-
sions to filter repetitive or unnecessary parts of the transcripts. The aggregated

13Command Line Interface.
14Available at https://youtube-dl.org.
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[
{

"title": "Introduction to Special Relativity",
"url": "https://ocw.mit.edu/courses/8-20-introduction-to-special-relativity-january-iap-2 ⌋

021/",ñ→
"lectures": [

{
"title": "Week 1: Foundations of Special Relativity\nLECTURE 1.1: COURSE

ORGANIZATION",ñ→
"transcript": "MARKUS KLUTE: Welcome to 8.20. Welcome to Special Relativity. And

let me start by wishing you all a happy New Year, happy New Year 2021. I'm
pretty sure this is going to be an exciting year with a lot of changes ahead
and a lot of exciting events. My name is Markus Klute, and I will guide you
through this IAP lecture on special relativity. This is very likely my
favorite class at MIT, A, because it's IAP, and we start a new year. There's
a lot of excitement in the air. And we have a chance to focus for this one
month of January on this specific subject. B. I have a chance to introduce a
man, Albert Einstein, through a discussion of his physics, [...]"

ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
ñ→

},
...

Code Snippet 4.3: The beginning of the transcripts file of the MIT OpenCourse-
Ware subset of the OpenULTD in JSON format.

{
"sustainablesoftware2022": {

"Lecturer Introduction: Mathias Renner": {
"lecture": "https://open.hpi.de/courses/sustainablesoftware2022/items/4syELkfTqiXoLbk ⌋

Vqkv2vM",ñ→
"material": [

"https://open.hpi.de/streams/2bf2d932-54f7-4ff6-9c52-5b91ed13cf43/downloads/hd",
"https://open.hpi.de/streams/2bf2d932-54f7-4ff6-9c52-5b91ed13cf43/downloads/sd",
"https://openhpi-video.s3.openhpicloud.de/streams/1kVEqFO4YTp6lsdmDJjHWP/audio_v8 ⌋

.mp3"ñ→
],
"transcript": "https://open.hpi.de/subtitles/4b27625c-798a-44e4-acfe-ff179da15ac7"

},
...

Code Snippet 4.4: The beginning of the URLs file of the OpenHPI subset of the
OpenULTD in JSON format.

JSON file is then processed one last time to remove 112 transcripts shorter than
500 characters and 552 duplicate transcripts with the help of the incredibly terse
Pandas15 data analysis library for Python.

15Available at https://pandas.pydata.org. Downloadable from PyPI at https://pypi.org/
project/pandas.
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[
{

"title": "sustainablesoftware2022",
"url": "https://open.hpi.de/courses/sustainablesoftware2022",
"lectures": [

{
"title": "Lecturer Introduction: Mathias Renner",
"url": "https://open.hpi.de/courses/sustainablesoftware2022/items/4syELkfTqiXoLbk ⌋

Vqkv2vM",ñ→
"transcript": "Hi, a few words about myself. My name is Mathias. I hold a

bachelor's and master's degree in Information Systems, in which I focus on
two topics that I [...]"

ñ→
ñ→

},
...

Code Snippet 4.5: The beginning of the transcripts file of the OpenHPI subset
of the OpenULTD in JSON format.

[
"https://www.youtube.com/playlist?list=PLh9mgdi4rNeyViG2ar68jkgEi4y6doNZy",
"https://www.youtube.com/playlist?list=PLh9mgdi4rNez7ZuPRY3KNJ2ef16qebyZe",
"https://www.youtube.com/playlist?list=PLh9mgdi4rNewA25FVJ-lawQ-yr-alF58z",
"https://www.youtube.com/playlist?list=PLh9mgdi4rNeyuvTEbD-Ei0JdMUujXfyWi",
"https://www.youtube.com/playlist?list=PLh9mgdi4rNeyqnC6Gj5VCZERhhy9CC1S6",
"https://www.youtube.com/playlist?list=PLh9mgdi4rNezhx8YiGIV8I22ICSuzslja",
"https://www.youtube.com/playlist?list=PLh9mgdi4rNewfxO7LhBoz_1Mx1MaO6sw_",
"https://www.youtube.com/playlist?list=PL3F6BC200B2930084",
"https://www.youtube.com/playlist?list=PL851F45079A91C3F2",
...

Code Snippet 4.6: The beginning of the playlist URLs file of the Yale subset of
the OpenULTD in JSON format.
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[
{

"title": "Power and Politics in Today’s World",
"url": "https://www.youtube.com/playlist?list=PLh9mgdi4rNeyViG2ar68jkgEi4y6doNZy",
"description": "This course provides an examination of political dynamics and

institutions over this past tumultuous quarter century, and the implications of these
changes for what comes next. Among the topics covered are the decline of trade unions
and enlarged role of business as political forces, changing attitudes towards parties
and other political institutions amidst the growth of inequality and middle-class
insecurity, the emergence of new forms of authoritarianism, and the character and
durability of the unipolar international order that replaced the Cold War. To view
the Office Hours of this course, visit
https://www.youtube.com/playlist?list=PLh9mgdi4rNewXXh3Yej7icrFY35qDmGT5",

ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
"lectures": [

{
"title": "Lecture 1: Introduction to Power and Politics in Today’s World",
"description": "Professor Ian Shapiro introduces the class “Power and Politics in

Today’s World.” \nThis course provides an examination of political dynamics
and institutions over this past tumultuous quarter century, and the
implications of these changes for what comes next. Among the topics covered
are the decline of trade unions and enlarged role of business as political
forces, changing attitudes towards parties and other political institutions
amidst the growth of inequality and middle-class insecurity, the emergence of
new forms of authoritarianism, and the character and durability of the
unipolar international order that replaced the Cold War.",

ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
ñ→
"video_url": "https://www.youtube.com/watch?v=BDqvzFY72mg",
"duration_in_seconds": 3375

},
...

Code Snippet 4.7: The beginning of the URLs file of the Yale subset of the
OpenULTD in JSON format.

[
{

"title": "Power and Politics in Today’s World",
"url": "https://www.youtube.com/playlist?list=PLh9mgdi4rNeyViG2ar68jkgEi4y6doNZy",
"lectures": [

{
"title": "Lecture 1: Introduction to Power and Politics in Today’s World",
"video_url": "https://www.youtube.com/watch?v=BDqvzFY72mg",
"transcript": "- Hello everybody and welcome. How is everybody today? Great.

Well, I'm delighted to have the opportunity to be giving the DeVane Lectures.
And the DeVane Lectures, as you can tell, from looking around you double as
being a regular Yale course for credit that students can take for credit and
lectures that are open to the general public. [...]"

ñ→
ñ→
ñ→
ñ→

},
...

Code Snippet 4.8: The beginning of the transcripts file of the Yale subset of the
OpenULTD in JSON format.
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As is shown in figure 4.3, created like all the other plots in this chapter with
the very powerful Seaborn16 statistical data visualization library for Python, the
transcript lengths in tokens (obtained with the BART [10] tokenizer available in
the Transformers library [85]) are quite evenly distributed in the MIT OCW and
Yale subsets, while OpenHPI has the shortest transcripts and VT-SSum contains
many relatively short ones, though with a tail that touches the 16K tokens. As a
reminder, the standard input token length of BERT [2] is 512, for BART 1,024,
and attention mechanisms optimized for long sequences can reach 16,384.
We note that OpenULTD transcripts fall within the 16,384 token threshold up to
the 98.9th percentile.

Figure 4.3: The overlaid distributions of the transcript lengths in tokens of the
four OpenULTD subsets.

Looking instead at figure 4.4, it is apparent from the overlap of the blue and
yellow lines that the transcript lengths in tokens are just a little larger than those
in words, which means that most tokens correspond to one word exactly. Also, all
four distributions approximately follow the same curve, which means there is a

16Available at https://seaborn.pydata.org. Downloadable from PyPI at https://pypi.
org/project/seaborn.
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direct proportionality between characters, tokens, words, and sentences.

Figure 4.4: A comparison of the distributions of the transcript lengths of the
whole OpenULTD, shown in tokens, words, sentences, and characters with the x
axis in logarithmic scale.

We conclude our commentary of OpenULTD by interpreting figure 4.5, which
represents the number of lectures per course divided by subset. It is clear how
most courses contain a number of lectures between 20 and 40, which is what many
would consider a normal amount for a higher education course. MIT OCW is the
subset with the most outliers, with one course of even ~240 lectures, while Yale is
the most consistent subset.
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Figure 4.5: The distribution of the course lengths in terms of lectures of the MIT
OCW, OpenHPI, and Yale subsets of OpenULTD. VT-SSum is not considered due
to its course-less structure.
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4.2.2 UniSum
UniSum17 is the second of the two novel datasets proposed with this work. Its
name takes inspiration from other popular summarization datasets, like XSum [94].
As shown in table 4.3, it is derived from the OpenULTD (see § 4.2.1) MIT OCW
and Yale subsets, which we choose due to their human-made transcripts and video
descriptions, useful for abstractive summarization. More specifically, from these two
subsets we select only the lectures that contain both a transcript and a description
(also respectively referred to as “text” and “target” or “summary”), and as a
last step we remove 16 lectures with a video file unavailable at the previously
scraped URL, 1 lecture with a duplicate transcript, and 18 lectures with a duplicate
description, leaving us with a total of 1,583 samples.

Subset Number of
Samples

Number of Courses

MIT OCW 693 31
Yale 890 36

Table 4.3: The data composition of the UniSum dataset with respect to its subsets.
For the subset licenses, see table 4.1.

(a) Divided by subset. (b) Divided by macrocategory.

Figure 4.6: The distribution of the description (or summary) lengths of the
UniSum dataset in tokens.

It is immediately apparent from figure 4.6 that there is a high correlation be-
tween MIT courses being in the scientific macrocategory and Yale courses falling

17University Summarization dataset.
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more in the humanities macrocategory, though there are a few exceptions.
The same figure also tells us an important fact about the UniSum dataset, that is
that not all lecture descriptions follow the same length distribution: descriptions
of lectures of scientific courses tend to be more succinct, with a maximum length
of ~200 tokens, while lectures of courses in the humanities field also go up to ~350.
The absolute maximum length is 375 tokens, which is manageable by a Transformer
decoder (see § 2.2) with a standard Self-Attention mechanism.

In figure 4.7 we see how most MIT OCW outlier courses, by length in lectures,
present in OpenULTD (see figure 4.5), have been pruned.
The UniSum dataset is therefore more consistent in terms of kind of courses it is
composed of.

Figure 4.7: The distribution of the course lengths in terms of lectures in the
UniSum dataset, divided by subset.

Table 4.4 shows some Unisum data samples, which are transcript-summary pairs.
We note that, though unable to verify this information for each description, we
strive to collect the most part of human-made summaries, avoiding auto-generated
ones to exclude the chance of using these data to learn the internal language
representations previously learned by another automatic summarization model.
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Transcript Summary
RICHARD SCHMALENSEE: So
today, we’re going to talk about

non-renewable sources– boring, dull,
fossil stuff. The main reason for

talking about this stuff is it’s really
important. It’s about 92% of US
primary energy. And if you look

global, and you look just at marketed
energy, forgetting gathered wood and
related stuff, it’s also about 92%. And

this is an EIA graph that basically
shows the [...]

This lecture focuses on the state of
non-renewable energy on the global
market. Classic hotelling theory is

covered in the beginning, and then oil,
coal, and natural gas markets are

analyzed over the across geographies
and time.

Hi. This is the first lecture in MIT’s
course 18.06, linear algebra, and I’m

Gilbert Strang. The text for the course
is this book, Introduction to Linear
Algebra. And the course web page,

which has got a lot of exercises from
the past, MatLab codes, the syllabus
for the course, is web.mit.edu/18.06.
And this is the first lecture, lecture
one. So, and later we’ll give the web

address for viewing [...]

A major application of linear algebra
is to solving systems of linear

equations. This lecture presents three
ways of thinking about these systems.

The “row method” focuses on the
individual equations, the “column
method” focuses on combining the

columns, and the “matrix method” is
an even more compact and powerful
way of describing systems of linear

equations.
Well, in 1921 a group of workmen
working on the highway near the

village of St. Osyth, which is here in
Essex, in East Anglia, discovered a
skeleton. And at first they thought

they’d uncovered a modern crime, but
it was soon established that it was
very old. And subsequently, on the
basis of both documentary evidence

and forensic evidence, they identified it
as being probably the remains of a [...]

In this lecture, Professor Wrightson
discusses witchcraft and magic. He
begins with the context of magic

beliefs in this period, introducing the
‘cunning folk’ who had reputations as
healers and were often consulted. He
then considers the specific problem of

witchcraft, the use of magic to do
harm, and its identification by the late

medieval church as a form of
anti-Christian cult. [...]

Table 4.4: A sample of the contents of the UniSum dataset. Transcripts and
summaries are truncated (indicated by [...]) to the first 400 characters.
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At this point, it is necessary to add that we provide two flavors, or variants, of
the UniSum dataset, which we refer to as “standard” and “extended”. A sample of
the standard variant is what is shown in table 4.4.
We aim to “extend” this initial version of the dataset in a multimodal fashion,
where the first modality is text and the second modality is video. To decide what
information to include from the video files18 of the lectures, we guess that an
interesting additional fact to feed the summarization model would be, for each
sentence of the transcript, the binary classification of whether the lecture speaker
was writing while saying the sentence or not, based on the hypothesis that if a
professor writes down a concept while they are explaining it, what they are saying
at the same time is likely worth of highlighting.
To extract this information from the video lectures, we proceed in three steps:

1. the first thing we do is finding the correspondence between each sentence and
their beginning and end in terms of seconds from the start of the video. To
do so, we implement our own function to read and split into captions the
transcript files in WebVTT19 format. We keep the captions, separated by
initial and end timecodes, and we separate again the full transcript, this time
into sentences, using the NLTK20 library for Python. Using what revealed
itself to be not so trivial code, we obtain the initial and end timecodes for
each full sentence;

2. the second step of our plan involves effectively performing the binary clas-
sification of each of the composing video clips, corresponding to one full
sentence, of each video lecture. We use a Microsoft X-CLIP [4] model from
the Transformers [85] library, specifically its "microsoft/xclip-large-pat ⌋

ch14-kinetics-600" checkpoint, chosen after a few empirical trials. Since
this model, as seen in section 3.1.3, supports natural language labels, we ex-
periment until we find that labels = ["not a person who is writing", "a
person who is writing"] are what works best for our use case. Specifically,
we feed X-CLIP video clips of 8 linearly spaced frames at a 224×224 resolution;

3. once we have collected the binary classification list for each lecture, we join
the transcript sentences wrapped between two tokens, to get f"<w>{sentence ⌋

}</w>" if the classification for the video clip corresponding to the sentence was
"a person who is writing", and f"<nw>{sentence}</nw>" otherwise, where

18We make the 1,603 videos downloaded in early January 2023 available at https://cloud.
caste.dev/s/7zkgBJ4KHrmDFPD.

19Web Video Text Tracks.
20Natural Language ToolKit. Available at https://www.nltk.org. Downloadable from PyPI

at https://pypi.org/project/nltk.
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“w” stands for “writing” and “nw” for “not writing”. These HTML-style tags
are inspired by BART’s [10] standard tokens and represent a special kind
of token that the summarization model will learn to recognize and assign a
meaning to autonomously. We do so by leveraging the feature of the tokenizer
classes offered by the Transformers library [85] that allows to easily add a
list of custom special tokens, which for us would be ["<w>", "</w>", "<nw>",
"</nw>"].

Figure 4.8 shows the length distributions of the transcripts and the descriptions
of the UniSum dataset. We note that the additional information extracted from
the videos is not applicable to the descriptions, thus it is only in figure 4.8a that we
can see a comparison of the transcripts from the standard and extended UniSum
dataset variants. More specifically, we see that the extended transcripts are only
marginally longer than the standard ones. Additionally, the NLTK library seems
to have been thrown off by the HTML-like tokens in determining the number of
sentences in the extended UniSum version (shown by the brown line).
We note that, while the standard transcripts are within the 16,384 tokens mark
until the 98th percentile, the extended ones are so until the 93.8th percentile,
which translates to a not irrelevant loss of information by the summarization
model working with the extended dataset, which truncates any token in the input
sequence after the 16,384th, but still preserves a large enough part of information.
Therefore, we deem the extended dataset usable for the experiments that we will
see in section 4.4.

(a) (b)

Figure 4.8: A comparison of the UniSum dataset transcript and description
lengths measured in characters, tokens, words, and sentences.
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Standard Transcript Extended Transcript
RICHARD SCHMALENSEE: So
today, we’re going to talk about

non-renewable sources– boring, dull,
fossil stuff. The main reason for

talking about this stuff is it’s really
important. It’s about 92% of US
primary energy. And if you look

global, and you look just at marketed
energy, forgetting gathered wood and
related stuff, it’s also about 92%. And

this is an EIA graph that basically
shows the [...]

<nw>RICHARD SCHMALENSEE:
So today, we’re going to talk about
non-renewable sources– boring, dull,
fossil stuff.</nw><nw>The main

reason for talking about this stuff is
it’s really important.</nw><nw>It’s

about 92% of US primary
energy.</nw><nw>And if you look
global, and you look just at marketed
energy, forgetting gathered wood and

related stuff, it’s also about
92%.</nw><w>And this is an [...]

Hi. This is the first lecture in MIT’s
course 18.06, linear algebra, and I’m

Gilbert Strang. The text for the course
is this book, Introduction to Linear
Algebra. And the course web page,

which has got a lot of exercises from
the past, MatLab codes, the syllabus
for the course, is web.mit.edu/18.06.
And this is the first lecture, lecture
one. So, and later we’ll give the web

address for viewing [...]

<w>Hi.</w><w>This is the first
lecture in MIT’s course 18.06, linear

algebra, and I’m Gilbert
Strang.</w><w>The text for the
course is this book, Introduction to
Linear Algebra.</w><w>And the

course web page, which has got a lot
of exercises from the past, MatLab
codes, the syllabus for the course, is
web.mit.edu/18.06.</w><w>And

this is the first lecture, lecture
one.</w><w>So, and later we’ll [...]

Well, in 1921 a group of workmen
working on the highway near the

village of St. Osyth, which is here in
Essex, in East Anglia, discovered a
skeleton. And at first they thought

they’d uncovered a modern crime, but
it was soon established that it was
very old. And subsequently, on the
basis of both documentary evidence

and forensic evidence, they identified it
as being probably the remains of a [...]

<w>Well, in 1921 a group of workmen
working on the highway near the

village of St. Osyth, which is here in
Essex, in East Anglia, discovered a

skeleton.</w><w>And at first they
thought they’d uncovered a modern

crime, but it was soon established that
it was very old.</w><w>And

subsequently, on the basis of both
documentary evidence and forensic
evidence, they identified it as [...]

Table 4.5: A comparison of the standard transcripts with the transcripts extended
with the “writing” video classification in the UniSum dataset. Transcripts are
truncated (indicated by [...]) to the first 400 characters.
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We corroborate our hypothesis of subset-macrocategory positive correlation,
previously made in reference to figure 4.6, by looking at figure 4.9. This figure shows
an aspect of the UniSum dataset directly derived from the binary “writing”/“not
writing” classification obtained with X-CLIP [4], which is how frequently the
sentences in the lectures of a course are classified as “writing”.
A writing frequency of 0 means that no sentences in none of the lectures in a course
have been classified as being spoken while the lecture speaker was writing, and
a writing frequency of 1 means that the speaker was writing while saying every
sentence in every lecture of the course.
We note that MIT and scientific courses have a higher writing frequency than Yale
and humanities courses, which is expected. The majority of the former have a
writing frequency greater than 50%, while the exact opposite can be said for the
latter.

(a) Divided by subset. (b) Divided by macrocategory.

Figure 4.9: The distribution of the course writing frequency in the UniSum
dataset.

We conclude our presentation of the UniSum dataset by looking at figures 4.10
and 4.11, which differ only by the division of their composing histograms, by subset
in the first case and by macrocategory in the second.
We note that the transcript lengths distributions follow very similar curves for both
the standard and extended variants of the dataset, the extended transcripts being
derived from the standard.
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(a) From the standard variant. (b) From the extended variant.

(c) Overlaid standard and extended variants.

Figure 4.10: A comparison of the transcript lengths distributions for the standard
and extended variants of the UniSum dataset, divided by subset.
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(a) From the standard variant. (b) From the extended variant.

(c) Overlaid standard and extended variants.

Figure 4.11: A comparison of the transcript lengths distributions for the standard
and extended variants of the UniSum dataset, divided by macrocategory.

71



Methodology

4.3 Reproducibility
In this brief section, we aim to provide the reader with all the possible information
needed to reproduce our results.

4.3.1 Hardware Specifications
Before discussing the training process that was used for the present thesis, since
we will give some information about computation times, batch sizes, and so on,
which are all hardware-dependent information, we must first specify on what kind
of hardware our experiments were run.
Though some experimentation was conducted in the beginning on Google Colab21

and on a different local machine, all experiments have been run on the following
ad-hoc custom-built configuration:

Component Model Specifications
CPU AMD Ryzen 5 5600X 6 cores, 12 threads, 3.7-4.6

GHz
RAM22 G.SKILL Aegis DDR4, 3200 MHz, 48 GB
GPU NVIDIA RTX 3090 10,496 CUDA cores, 24

GB of GDDR6X VRAM23

SSD24 Kingston NV1 NVMe, 500 GB
Motherboard MSI B550M PRO-VDH N/A

Table 4.6: The hardware specifications of the machine purpose-built to run the
experiments required by the present thesis.

4.3.2 Software Specifications
As with the hardware specifications, it is no less important to show the specific
software that was used to conduct all the experiments presented in the next sections.

We use a Debian-based GNU/Linux25 distribution as the operating system
and Python as the programming language, since it currently is the language of

21Available at https://colab.research.google.com.
22Random-Access Memory.
23Video Random-Access Memory.
24Solid-State Drive.
25GNU is Not UNIX.
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choice of data scientists and ML practitioners, and thus has the most flourishing
developer community among other languages. Most of the code is written within
the browser-based Jupyter Lab IDE26 for easier interaction, but some scripts, such
as those used for web crawling and data scraping, have been written using the
JetBrains PyCharm Professional IDE.
The main Python libraries used to interact with the models, be it for training or for
inference, are the ones made by Hugging Face [85]. The Weights & Biases library
[133] is used to track the experiments, version the models, and make graphs related
to the training process.
In table 4.7 we show the specific versions of the most relevant software used in this
work, whereas the full list is published in the code repository.

Type Name Version
OS27 System76 Pop!_OS 22.04 LTS

Kernel Linux 6.0.12
GPU Driver NVIDIA 525.85.05

CUDA Toolkit NVIDIA 11.2
Language Python 3.10.6

Python Library PyTorch 1.13.0+cu117
Python Library Hugging Face Transformers 4.25.1
Python Library Hugging Face Datasets 2.7.1
Python Library Hugging Face Evaluate 0.4.0
Python Library LSG Converter 0.0.4
Python Library Pandas 1.5.2
Python Library NLTK 3.8
Python Library Seaborn 0.12.1
Python Library NumPy 1.23.5
Python Library Weights & Biases 0.13.7
Python Library Jupyter Lab 3.5.1

Table 4.7: The software specifications used to run the experiments required by
the present thesis.

26Integrated Development Environment.
27Operating System.
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4.4 Model Training
In this section we will describe in detail the process we followed to train the deep
models that we used to obtain the results presented in chapter 5. A diagram of the
complete process is shown in figure 4.1.

4.4.1 Domain Adaptation
The first step in training our models was adapting BART, already pretrained by
Meta AI Research, on the domain of video lecture transcripts. The main idea
behind this procedure is to perform a short continuation of BART’s pretraining,
with the same denoising objective (described in § 3.1.1), on the whole OpenULTD.
This is useful for focusing the model on a certain data distribution, which in the
case of OpenULTD is that of video lectures, presentations, and public talks.
We train both the base and large variants of BART for 1 epoch, following recent
results that advise against data repetition during pretraining [134], with a learning
rate of 1×10−4, a linear scheduler, a number of warm-up steps equal to 1% of the
total steps (as shown in figure 4.12b), and an effective batch size28 of 64 when
training BARTLARGE and 4 when training BARTBASE. Since most transcripts
present in OpenULTD are longer than BART’s maximum input length of 1,024
tokens (see figure 4.3), we split them into multiple 1,024-tokens-long sequences,
converting the original 14,677 long OpenULTD transcripts into 65,930 shorter
samples.

(a) (b)

Figure 4.12: The training loss and the linearly scheduled learning rate of the
two BART models on which we perform the domain adaptation with one epoch on
OpenULTD. Graphs made with Weights & Biases [133].

28ebs = bs×gas, where ebs is the effective batch size, bs is the training batch size (actual number
of samples in the GPU memory at each step), and gas is the number of gradient accumulation
steps.

74



4.4 – Model Training

Among the eleven experiments that we run, for a total compute time of ~24
hours spent in training, we select one for each size of BART, which we compare to
the original pretrained models in table 4.8.

Model Validation
Loss ↓

Perplexity29↓ Accuracy ↑

BARTBASE 3.6060 36.8185 N/A
BART⋆

BASE 0.9645 2.6234 0.8008
BARTLARGE 5.2540 191.3301 N/A
BART⋆

LARGE 0.8125 2.2535 0.8282

Table 4.8: The numerical results of the domain adaptation of the base and large
variants of BART on OpenULTD. The models accompanied by the ⋆ symbol have
been subjected to domain adaptation.

The graphs of validation loss and accuracy on the validation split of OpenULTD
during training are shown in figure 4.13.

(a) (b)

Figure 4.13: The validation loss and accuracy of the two BART models on which
we perform the domain adaptation with one epoch on OpenULTD. Graphs made
with Weights & Biases [133].

29p = el, where p is the perplexity and l is the loss.

75



Methodology

4.4.2 Summarization Finetuning
The second and final step of our training process is the finetuning of our initial
models on the two flavors of the UniSum dataset, standard and extended.
This involves finetuning many model variants, whose test results are described and
compared in section 5.2.

As a first step, we determine the best learning rate values for the base and large
versions of our models. We conduct 10 experiments, varying the learning rate and
the number of warmup steps before settling on 10% warmup steps of the total
training steps for all models, a 7.5×10−5 learning rate for the BARTBASE-derived
models, and a 5×10−5 learning rate for the BARTLARGE-derived models. Though
we experiment with a pure cosinusoidal scheduler and a cosinusoidal scheduler
with hard restarts, we find that a simpler linear scheduler works best. All of our
models are trained with an effective batch size of 32 (with a training batch size of
2 and 16 gradient accumulation steps for base models and a training batch size of
1 and 32 gradient accumulation steps for large models) for 10 epochs with 16-bit
floating point precision and the AdamW optimizer [135] with β1 = 0.9, β2 = 0.999,
ϵ = 1×10−8, and a weight decay of 0.01. We perform one evaluation per epoch,
and we choose the best checkpoint (that we use for testing) as the one that obtains
the highest ROUGE-2 metric result on the validation set during training. We
always use, for validation, testing, and inference, a length penalty of 2.0, which
we find favors a mean generation length similar to the mean overall length of the
summaries contained in our dataset, and a number of beams for beam search equal
to 5, which is a larger-than-default number that does not yet cause memory or
performance issues while allowing for slightly higher-quality results.
Having identified these hyperparameters, we finetune 22 other models for a total of
more than 450 hours, or 19 days, of compute time. We show the different possible
model variations that we train in table 4.9.

Variant Variants
Number

Variant Names

Model Size 2 Base, Large
Model Type 3 BART, LED, LSG

Domain Adaptation 2 None, Short (done on BART)
Dataset Flavor 2 Standard, Extended

Table 4.9: The different model variants that we obtain at the end of the finetuning
step.
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In the following pages we show the differences in loss and metric results for each
of the model variations of table 4.9 with 16 of our trained models: in figure 4.14
between base and large models (8 and 8); in figure 4.15 between models with
different types of long attention (8 with a Longformer and 8 with an LSG type of
Self-Attention); in figure 4.16 between models trained with (8) and without (8)
domain adaptation; and in figure 4.17 between models finetuned on the standard
and extended variants of the UniSum dataset (8 on standard and 8 on extended).

Figure 4.14 tells us a few things: first, large models learn faster (figure 4.14a),
even at a lower learning rate with respect to base models (figure 4.14b), though for
the same reason they tend to also overfit the training data at epochs closer to the
beginning (figure 4.14c). As for the metrics, where all ROUGE-N, ROUGE-L and
BERTScore higher values mean a better result (the generation length is simply
an indication of what is the average length of the generated summaries across all
the validation samples), the mean lines seem to indicate that base models perform
better than large ones in general. This counterintuitive behavior likely stems from
the fact that some of the larger models are heavily penalized by their quicker
learning towards the end of the finetuning process (in the right-hand side of the
graphs), especially models with the Longformer type of Self-Attention as can be
seen in figure 4.15b.
From all metrics in figure 4.15, it is apparent how the LSG long attention type is
the one that better preserves the performance of the original quadratically memory-
dependent Self-Attention mechanism, given both its higher mean lines and smaller
value range.
Figure 4.16 shows how having previously performed the domain adaptation step is
helpful for the general performance of the model.
Finally, figure 4.17 shows that there is no appreciable difference in training and
validation loss between models trained on different dataset versions, though the
models finetuned on the extended version suffer from a general small loss in perfor-
mance across all metrics likely due to the slightly smaller amount of text available
for training, since it gets truncated at the 16,384th token and the additional special
tokens may cause a “data overflow” in some cases.

The learning rate is chosen based on the model size as seen in figure 4.14a, thus
it is omitted from the figures following the first.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.14: The mean values and their minimum-to-maximum range of the
training and evaluation metrics of all the trained models with long attention
grouped by dmodel (where dmodel = 768 indicates a base model and dmodel = 1,024
indicates a large model; dmodel is the internal dimension of the network as seen in
§ 2.2). Graphs made with Weights & Biases [133].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.15: The mean values and their minimum-to-maximum range of the
training and evaluation metrics of all the trained models with long attention grouped
by type of long attention (LED indicates a Longformer type of Self-Attention, as
seen in § 3.1.2). Graphs made with Weights & Biases [133].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.16: The mean values and their minimum-to-maximum range of the
training and evaluation metrics of all the trained models with long attention
grouped by type of domain adaptation (DA). Graphs made with Weights & Biases
[133].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.17: The mean values and their minimum-to-maximum range of the
training and evaluation metrics of all the trained models with long attention
grouped by version of the UniSum dataset they have been trained on. Graphs
made with Weights & Biases [133].
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Chapter 5

Experimental Evaluation

Since some experimental results will be presented in this chapter (§ 5.2), a brief
overview of the metrics (§ 5.1) used to measure the performance of the involved
models is the first thing that we must cover in order to have a general understanding
of the numerical results we obtain.

5.1 Metrics
Even though the loss function of a deep network is what actually defines how well
it is performing, it is numerically incomparable between different models and even
between different sizes of the same model.
Since it is fundamental for researchers to be able to compare the results of different
networks, some task-specific metrics have been designed during the years.

5.1.1 ROUGE
ROUGE1 is a set of four metrics (ROUGE-N, ROUGE-L, ROUGE-W, ROUGE-S)
proposed in 2004 by Lin [8] for the automatic evaluation of summaries. Its idea
stems from the previous work of Papineni et al, who in 2002 proposed a similar
metric, BLEU2 [136], for measuring the quality of machine-generated translations.

1Recall-Oriented Understudy for Gisting Evaluation. A Python implementation of
the original ROUGE Perl package is available at https://github.com/google-research/
google-research/tree/master/rouge.

2BiLingual Evaluation Understudy.
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Here is an explanation of the two most popular variants of ROUGE:

ROUGE-N This metric «is an n-gram recall between a candidate summary and
a set of reference summaries» [8], where an n-gram is an ordered sequence of
n tokens, such as words or sub-words. It is computed as:

ROUGEN =
q

S∈ReferenceSummaries

q
gramn∈S countmatch (gramn)q

S∈ReferenceSummaries

q
gramn∈S count (gramn) (5.1)

This equation can be simplified in the case of a single reference summary to:

ROUGEN =
q

gramn∈GeneratedSummary countmatch (gramn)q
gramn∈ReferenceSummary count (gramn) (5.2)

where, in both equations 5.1 and 5.2, the count function simply counts the
number of instances of an n-gram in the sequence, and countmatch counts
the number of overlapping n-grams from the generated summary with the
reference summary.

ROUGE-L This variant of ROUGE measures the LCS3 given a generated summary
and its reference. The length of the LCS is to be intended as a measure of
similarity between two sequences: the higher the ROUGE-L is, the more
similar the generated summary is to the reference. Given two sequences, X
of length m and Y of length n, the LCS function which returns the longest
common subsequence of two sequences, the recall RLCS = LCS(X,Y )

m
, and the

precision PLCS = LCS(X,Y )
n

, with β set to a big number:

ROUGEL = (1 + β2)RLCSPLCS

RLCS + β2PLCS

(5.3)

It is important to note that in this context the elements of each sequence
occupy consecutive positions within the sequence, that is to say, given the
generated sentence “the cat is a table” and its reference “the cat is on the
table”, the LCS between the two would be “the cat is”, and not “the cat is
table”.

3Longest Common Subsequence.
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5.1.2 BERTScore
The BERTScore4 is a metric introduced by Zhang et al. in 2019 [9] that mea-
sures the similarity between two sequences of tokens using the learned contextual
embeddings of a pretrained BERT-based model, which improves the Pearson cor-
relation with human judgment with respect to other metrics such as BLEU [136].
«BERTScore computes the similarity of two sentences as a sum of cosine similarities
between their tokens’ embeddings» [9].

An example of why BERTScore works better than other metrics in this regard
is the following: given the reference sentence “people like foreign cars”, BLUE
would rate the generated sentence “people like visiting places abroad” higher than
“consumers prefer imported cars” in similarity, but the meaning of the second
sentence is actually more similar to the reference sentence than that of the first
one.

Reference
the weather is 
cold today

Candidate
it is freezing today

Candidate

Contextual
Embedding

Pairwise Cosine
Similarity

RBERT =
(0.713⇥1.27)+(0.515⇥7.94)+...
1.27+7.94+1.82+7.90+8.88

1.27

7.94

1.82

7.90

8.88

idf
weights

Importance Weighting
(Optional)

Maximum Similarity

x

x̂ R
ef

er
en

ce

Figure 5.1: A diagram of the computation of the recall measure in BERTScore.
Figure 1 in [9].

The human judgment correlation changes with different models: while the
authors at the time of publication [9] advised to use the 24-layer variant of
RoBERTaLARGE [14], they have investigated other models since and, at the time
of writing, the model with the highest correlation, which we use for this reason, is
DeBERTaXLARGE [137] finetuned on the MNLI5 dataset contained in the GLUE
benchmark dataset [108].

4Python implementation available at https://github.com/Tiiiger/bert_score.
5Multi-genre Natural Language Inference corpus.
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5.2 Results
In this section, we will present our results obtained with all the different model
variants seen in section 4.4. We note that, like for the training and validation splits
of the UniSum dataset, there are also two different test splits depending on the
dataset version, either standard or extended. We remind the reader that this only
affects the input and not the output sequences of the model, since all summaries
are free of the additional tokens mentioned in section 4.2.2.

5.2.1 Interpretation Notes
For all tables:

• each row represents one test, which is done with one model on one test set;

• if the test set is not specified, then the use of the complete UniSum test set
(N = 159) is implied;

• the tables are split by double vertical lines: the left part indicates the test
configuration, the right part shows the corresponding results;

• the table headers are abbreviations: size stands for model size, type stands
for long attention type (or lack thereof), DA means domain adaptation, train
stands for training set (employed in model finetuning), R1, R2, and RL are
different types of the ROUGE metric (respectively, ROUGE-1, ROUGE-2,
and ROUGE-L, as seen in § 5.1.1), BS means BERTScore (see § 5.1.2);

• all metrics correlate higher values with better performance;

• we multiply all metric values by 100, to avoid redundant leading zeros (e.g.
we show 12.34 instead of 0.1234), keeping in mind that ROUGE values range
from 0 to 1, so in our case from 0 to 100, and BERTScore values go from -1
to 1, in our case from -100 to 100;

• both ROUGE and BERTScore metrics are obtained from precision and recall
values. We always use the F1 score, calculated as their harmonic mean:

F1 = 2 PR

P +R
= 2tp

2tp+ fp+ fn
(5.4)

where P is the precision, R is the recall, tp represents the number of true pos-
itives, fp the number of false positives, and fn the number of false negatives;
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• close rows that are not separated by a horizontal line are directly comparable
(only one configuration parameter changes between them), and the best value
between them is underlined;

• the bold numbers are the best values for the column they belong to for each
test set;

• the boxed numbers are the best overall value in their column, across test sets
and different configurations. The boxing is omitted when only one test set is
used, in which case it is sufficient to refer to the bold values.

Before proceeding with the presentation of our results, a few further notes must
be made:

• in most tests, the BERTScore value is anti-correlated with better ROUGE
values. This metric has been included for completeness, but it is important
to remember that the BERT model used to measure the quality of the text
produced by our finetuned models has been trained in a general domain, while
our work is focused on spoken language used in higher education settings;

• in many tests, large models perform worse than their base counterpart, es-
pecially those with a Longformer type of Self-Attention. The reader must
keep in mind that, as described in section 4.4.2, we always select the model
checkpoint which obtains the best ROUGE-2 value during training, regardless
of any other variable. Due to this method, we find ourselves picking the best
checkpoint at earlier finetuning steps for large models than for base models,
which as on one hand prevents them from overfitting the training data too
heavily, on the other hand it likely stops them from learning as well as the
base models.

With our setup, the testing process took ~150 hours, or about 6 days. Further
statistics about this project are shown in table 6.1.
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5.2.2 Results Analysis
With each of the tables present in this chapter we aim not only to illustrate our
general findings, but also to compare different variations of the models, with a
special interest towards the effectiveness of the domain adaptation step and the
usefulness of the “writing”/“not writing” classification added in the extended
UniSum flavor.

Size Type DA Train R1 R2 RL BS
base BART no none 17.03 3.26 10.31 49.67
base BART yes none 17.34 3.07 9.90 50.94
large BART no none 17.61 3.44 10.40 51.92
large BART yes none 17.27 3.11 10.11 50.70
base LSG no none 14.72 2.40 9.43 44.58
base LSG yes none 17.39 2.75 9.79 51.22
base LED no none 15.32 2.46 9.29 47.59
base LED yes none 17.42 2.92 9.80 51.97
large LSG no none 16.34 2.82 9.91 49.97
large LSG yes none 16.99 2.93 9.96 51.23
large LED no none 15.89 2.77 9.88 48.41
large LED yes none 17.40 2.75 9.78 51.66
base LSG no std 35.12 11.13 22.84 63.03
base LSG yes std 33.51 10.58 21.85 62.65
base LED no std 35.25 11.07 22.81 63.41
base LED yes std 34.93 11.49 22.69 62.90
large LSG no std 34.83 11.48 23.12 64.22
large LSG yes std 34.55 11.61 22.61 63.84
large LED no std 34.32 11.08 22.58 63.73
large LED yes std 34.49 11.42 23.23 64.31

Table 5.1: The effect of domain adaptation on models before finetuning (upper
part of the table) and after finetuning on the standard variant of UniSum (lower
part of the table).

Table 5.1 shows what effect performing the domain adaptation step has on
the final summarization results of the models. While the test results of the
models lacking finetuning, shown for completeness in the upper sub-table, are not
particularly intriguing, we can see from the results of the finetuned models that
the domain adaptation does not always have an overall positive effect, which is
somewhat unexpected. We hypothesize that this behavior is due to possibly two
factors: first, the data from the VT-SSum subset, which was obtained with an
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ASR model, mostly accurate but still imperfect, particularly with complex words,
constitutes 62.8% of OpenULTD; second, despite our extensive checks, we might
have missed the absolute best way to configure BART’s pretraining continuation,
thus resulting in sub-par domain adaptation performance.
That said, we wish to highlight the fact that three out of four metrics’ best results
are obtained by a model with domain adaptation, specifically the ROUGE-2,
ROUGE-L, and BERTScore.

Size Type DA Train R1 R2 RL BS
base BART no std 31.71 9.71 21.59 61.60
base LED no std 35.24 11.05 22.79 63.41
base LSG no std 35.06 11.11 22.77 63.03
large BART no std 31.38 9.57 21.31 61.51
large LED no std 34.23 11.06 22.56 63.73
large LSG no std 34.84 11.46 23.10 64.22
base BART yes std 31.61 9.28 21.30 60.92
base LED yes std 34.89 11.50 22.67 62.90
base LSG yes std 33.51 10.58 21.85 62.65
large BART yes std 32.15 9.93 21.59 61.92
large LED yes std 34.48 11.44 23.22 64.31
large LSG yes std 34.55 11.61 22.61 63.84

Table 5.2: The effect of different types of long attention on the summarization
performance of the models.

In table 5.2 we compare the different kinds of Self-Attention used in the model
encoders: the original quadratic one from BART [10], and its two extended variants.
While the Longformer Self-Attention [6] variant (LED in the table) seems to work
best with base-sized models, LSG [7] gets the highest results with large-sized ones,
especially without domain adaptation.
LED looks like the best performer overall, obtaining three out of four best metric
results (ROUGE-1, ROUGE-L, BERTScore), with LEDLARGE requiring slightly
more specific training to consistently outperform LSG.
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Size Type DA Train R1 R2 RL BS
base LSG no std 35.06 11.11 22.77 63.03
base LSG no ext 34.71 11.02 22.58 63.13
base LED no std 35.24 11.05 22.79 63.41
base LED no ext 35.18 11.11 22.54 63.42
large LSG no std 34.84 11.46 23.10 64.22
large LSG no ext 35.74 11.61 23.13 63.91
large LED no std 34.23 11.06 22.56 63.73
large LED no ext 33.67 10.54 22.28 62.87
base LSG yes std 33.51 10.58 21.85 62.65
base LSG yes ext 33.67 10.20 21.55 62.97
base LED yes std 34.89 11.50 22.67 62.90
base LED yes ext 35.46 11.67 23.27 63.45
large LSG yes std 34.55 11.61 22.61 63.84
large LSG yes ext 34.81 11.11 22.51 63.78
large LED yes std 34.48 11.44 23.22 64.31
large LED yes ext 34.96 11.57 23.16 63.81

Table 5.3: The effect of the training set version of UniSum used for finetuning on
the summarization performance of the models.

In table 5.3 we are interested in understanding in what cases the extended
UniSum flavor works best. Even though all four metrics are improved together by
using this variant only in one case (LEDBASE with domain adaptation), while it is
common for it to instead improve only some of a model’s metrics, we note that
all ROUGE metrics’ best values are obtained with a model finetuned on UniSum
extended.

To further investigate the effectiveness of extended UniSum, we split the dataset’s
test set by course macrocategory, course category, course, and writing frequency6.
Table 5.4 particularly shows a remarkable improvement in the ROUGE metrics’
results when using the extended dataset with courses in the humanities field,
which as is shown in figure 4.9b, correlates positively with a lower mean course
writing frequency. This is in agreement with the results shown in the “infrequent
writing” section of table 5.5, where especially models with domain adaptation
highlight a significant performance improvement when also making use of the

6While we also provide the writing frequency for each lecture individually, we split the dataset
by mean writing frequency over all the lectures of each course. The writing frequency is computed
as fw = sentences classified as writing

total sentences .
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writing classification.

Size Type DA Train Test R1 R2 RL BS
base LSG no std hum 36.74 11.19 22.29 61.87
base LSG no ext hum 36.80 11.65 22.79 62.06
base LED no std hum 36.88 11.41 22.39 62.45
base LED no ext hum 36.98 11.26 22.35 62.22
large LSG no std hum 34.80 11.39 22.09 62.55
large LSG no ext hum 35.81 11.58 22.31 62.64
large LED no std hum 35.98 11.54 22.46 62.73
large LED no ext hum 34.47 10.59 21.64 61.62
base LSG yes std hum 34.65 10.65 21.24 61.65
base LSG yes ext hum 35.40 10.49 21.39 62.07
base LED yes std hum 36.10 11.43 22.28 61.69
base LED yes ext hum 37.47 11.76 22.82 62.27
large LSG yes std hum 35.40 11.26 22.10 62.82
large LSG yes ext hum 35.33 11.03 21.85 62.79
large LED yes std hum 34.88 10.80 22.21 63.14
large LED yes ext hum 36.33 11.60 22.78 62.78
base LSG no std sci 33.29 11.09 23.27 64.27
base LSG no ext sci 32.48 10.34 22.39 64.28
base LED no std sci 33.47 10.70 23.18 64.43
base LED no ext sci 33.32 10.96 22.70 64.69
large LSG no std sci 34.99 11.37 24.24 65.99
large LSG no ext sci 35.69 11.70 24.07 65.27
large LED no std sci 32.57 10.51 22.65 64.79
large LED no ext sci 32.67 10.42 23.00 64.20
base LSG yes std sci 32.33 10.56 22.49 63.72
base LSG yes ext sci 31.92 9.83 21.77 63.92
base LED yes std sci 33.76 11.61 23.06 64.19
base LED yes ext sci 33.35 11.52 23.81 64.70
large LSG yes std sci 33.46 11.97 23.20 64.92
large LSG yes ext sci 34.35 11.21 23.15 64.83
large LED yes std sci 34.10 12.11 24.39 65.57
large LED yes ext sci 33.50 11.45 23.60 64.90

Table 5.4: The effect of the training set version of UniSum used for finetuning on
the summarization performance of the models on the test set split by macrocategory
(Nhumanities = 82, Nscientific = 77).
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We note that using the extended UniSum flavor for courses in the scientific
macrocategory does not favor performance in our testing. The same can be said
for courses with a medium writing frequency, while those with a higher frequency
unexpectedly also see an improvement when treated by models trained on extended
UniSum in a few cases, especially with LSGLARGE with no domain adaptation.

Size Type DA Train Test R1 R2 RL BS
base LSG no std freq 32.72 10.24 22.21 63.04
base LSG no ext freq 31.62 9.70 21.74 63.01
base LED no std freq 33.21 10.82 22.58 63.50
base LED no ext freq 33.55 10.62 22.38 63.76
large LSG no std freq 34.63 11.40 23.50 64.99
large LSG no ext freq 35.59 11.89 23.91 64.47
large LED no std freq 33.46 10.86 22.97 64.27
large LED no ext freq 31.56 10.23 21.81 62.97
base LSG yes std freq 31.97 10.91 21.87 62.90
base LSG yes ext freq 32.16 9.61 21.64 62.82
base LED yes std freq 33.44 11.37 22.39 63.41
base LED yes ext freq 33.22 11.36 23.46 63.92
large LSG yes std freq 33.52 12.23 23.10 64.22
large LSG yes ext freq 35.16 11.14 23.44 64.10
large LED yes std freq 33.39 12.06 23.65 64.58
large LED yes ext freq 33.39 11.51 23.23 64.07
base LSG no std med 33.60 10.88 23.13 64.23
base LSG no ext med 33.90 10.27 22.36 64.28
base LED no std med 33.54 9.58 22.21 64.36
base LED no ext med 33.70 10.11 21.79 64.42
large LSG no std med 31.61 9.71 22.33 64.41
large LSG no ext med 33.16 9.78 22.21 64.49
large LED no std med 31.15 9.05 21.05 63.77
large LED no ext med 31.30 8.61 22.04 63.36
base LSG yes std med 31.83 9.39 21.81 63.46
base LSG yes ext med 31.26 9.36 20.85 63.75
base LED yes std med 32.69 10.53 22.01 63.36
base LED yes ext med 32.70 10.67 22.54 63.73
large LSG yes std med 32.68 9.91 21.45 64.53
large LSG yes ext med 31.70 10.24 21.28 64.18
large LED yes std med 32.64 10.18 22.66 65.18
large LED yes ext med 33.31 9.84 22.62 64.51

Continues →
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base LSG no std infreq 38.45 12.11 23.18 62.07
base LSG no ext infreq 38.39 12.80 23.39 62.34
base LED no std infreq 38.58 12.46 23.45 62.57
base LED no ext infreq 38.01 12.31 23.20 62.29
large LSG no std infreq 37.54 12.77 23.42 63.33
large LSG no ext infreq 37.87 12.79 23.18 62.93
large LED no std infreq 37.64 12.75 23.45 63.18
large LED no ext infreq 37.31 12.25 22.79 62.38
base LSG yes std infreq 36.41 11.31 21.77 61.77
base LSG yes ext infreq 37.17 11.38 22.15 62.48
base LED yes std infreq 38.02 12.35 23.43 62.05
base LED yes ext infreq 39.79 12.68 23.77 62.78
large LSG yes std infreq 36.88 12.33 22.95 62.92
large LSG yes ext infreq 37.10 11.74 22.58 63.15
large LED yes std infreq 36.97 11.94 23.27 63.37
large LED yes ext infreq 37.75 12.90 23.59 62.99

Table 5.5: The effect of the training set version of UniSum used for finetuning
on the summarization performance of the models on the test set split by writing
frequency averaged across all course lectures (Nfrequent = 55, Nmedium = 46,
Ninfrequent = 58).

We deem the 976-rows-long table with 16 tests for each of the 61 courses present
in the test set too detailed to include in this thesis7; we instead show a middle
ground level of aggregation between it and the course macrocategories (table 5.4),
in the form of courses combined by specific category, in table 5.6. At a high level,
the course categories that most benefit from the use of the extended UniSum variant
are business, economics, history, philosophy, physics, and psychology.
In table 5.6 we use the following abbreviations: bio ↔ biology, biz ↔business, cs
↔ computer science, econ ↔ economics, eng ↔ engineering, hist ↔ history, lit
↔ literature, math ↔ mathematics, phil ↔ philosophy, phys ↔ physics, pol ↔
politics, psy ↔ psychology, soc ↔ social studies.

Size Type DA Train Test R1 R2 RL BS
base LSG no std arts 34.84 10.90 23.72 65.12
base LSG no ext arts 35.20 10.88 24.53 64.48
base LED no std arts 33.68 10.85 22.92 65.06

Continues →

7We make this table available in our repository.
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base LED no ext arts 34.76 10.79 20.20 64.08
large LSG no std arts 31.51 9.74 21.11 64.76
large LSG no ext arts 30.96 8.11 19.92 65.58
large LED no std arts 32.30 7.36 20.25 63.44
large LED no ext arts 29.98 6.67 19.80 61.66
base LSG yes std arts 33.60 11.80 26.58 63.96
base LSG yes ext arts 35.33 9.46 20.65 65.94
base LED yes std arts 30.78 10.88 22.08 63.57
base LED yes ext arts 33.98 10.76 22.86 62.50
large LSG yes std arts 33.35 8.32 20.03 65.83
large LSG yes ext arts 29.13 10.27 20.32 64.20
large LED yes std arts 31.52 7.53 20.51 64.79
large LED yes ext arts 31.46 6.61 19.53 63.41
base LSG no std bio 34.49 14.95 27.62 71.45
base LSG no ext bio 36.95 14.37 28.50 71.04
base LED no std bio 31.40 10.84 24.01 69.74
base LED no ext bio 37.23 14.00 26.69 71.57
large LSG no std bio 38.71 17.60 33.15 72.92
large LSG no ext bio 37.00 13.56 27.55 70.63
large LED no std bio 29.41 9.03 23.17 69.71
large LED no ext bio 33.20 11.77 27.09 69.33
base LSG yes std bio 34.21 13.32 26.65 70.88
base LSG yes ext bio 34.35 13.77 24.40 70.91
base LED yes std bio 39.51 17.28 30.04 70.81
base LED yes ext bio 34.99 14.40 26.36 71.53
large LSG yes std bio 33.99 14.34 26.85 71.09
large LSG yes ext bio 35.29 14.06 26.16 69.54
large LED yes std bio 41.71 21.82 34.75 72.79
large LED yes ext bio 35.58 13.55 27.39 70.70
base LSG no std biz 28.29 6.85 20.72 63.09
base LSG no ext biz 25.14 6.07 20.86 62.01
base LED no std biz 29.46 6.35 21.46 63.98
base LED no ext biz 28.22 7.00 21.38 64.06
large LSG no std biz 28.49 9.44 23.11 66.79
large LSG no ext biz 34.73 13.42 28.77 68.50
large LED no std biz 31.96 9.16 23.73 66.31
large LED no ext biz 28.89 8.61 24.19 64.03
base LSG yes std biz 30.28 11.97 21.54 63.20
base LSG yes ext biz 30.67 9.74 23.60 63.31
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base LED yes std biz 29.27 10.73 21.77 63.71
base LED yes ext biz 21.78 5.83 18.81 62.45
large LSG yes std biz 30.59 10.04 22.81 65.38
large LSG yes ext biz 30.85 9.93 23.73 65.64
large LED yes std biz 29.56 10.80 23.33 65.32
large LED yes ext biz 31.88 8.88 26.47 66.25
base LSG no std cs 32.20 11.00 24.03 64.69
base LSG no ext cs 31.63 10.36 22.77 64.91
base LED no std cs 32.30 9.79 22.84 64.73
base LED no ext cs 31.34 9.35 22.16 64.39
large LSG no std cs 31.54 9.68 22.62 66.20
large LSG no ext cs 33.47 9.91 23.40 65.42
large LED no std cs 31.43 9.74 22.47 65.65
large LED no ext cs 31.04 8.56 22.19 64.51
base LSG yes std cs 30.87 8.92 21.40 63.74
base LSG yes ext cs 31.53 9.18 21.98 64.57
base LED yes std cs 33.49 11.04 23.50 64.10
base LED yes ext cs 31.71 10.13 23.53 64.53
large LSG yes std cs 32.04 10.28 22.34 65.07
large LSG yes ext cs 32.07 9.73 21.76 65.30
large LED yes std cs 33.16 9.96 24.08 65.71
large LED yes ext cs 32.48 10.22 23.12 64.98
base LSG no std econ 28.91 8.05 17.00 59.41
base LSG no ext econ 28.39 7.58 17.62 60.50
base LED no std econ 30.72 9.01 19.49 61.43
base LED no ext econ 30.54 8.58 18.52 62.20
large LSG no std econ 27.91 6.77 16.45 60.66
large LSG no ext econ 30.88 7.47 19.51 61.83
large LED no std econ 28.38 7.54 17.46 60.71
large LED no ext econ 27.41 6.71 17.59 61.37
base LSG yes std econ 28.55 9.44 18.46 59.68
base LSG yes ext econ 29.32 9.49 18.72 61.02
base LED yes std econ 29.63 8.66 17.87 59.76
base LED yes ext econ 30.92 9.71 19.64 61.60
large LSG yes std econ 29.64 8.87 18.45 62.18
large LSG yes ext econ 29.50 7.38 18.13 61.79
large LED yes std econ 26.87 8.48 17.58 61.87
large LED yes ext econ 32.70 8.80 20.01 61.24

Continues →
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base LSG no std eng 27.76 4.15 16.95 60.05
base LSG no ext eng 28.61 5.38 17.35 62.43
base LED no std eng 30.75 5.22 20.07 63.76
base LED no ext eng 30.63 5.26 18.25 62.59
large LSG no std eng 28.63 4.75 17.96 62.90
large LSG no ext eng 30.83 5.11 18.82 62.35
large LED no std eng 25.42 3.89 16.52 61.46
large LED no ext eng 31.59 8.06 21.70 63.05
base LSG yes std eng 29.50 5.47 17.45 60.69
base LSG yes ext eng 23.57 3.62 15.29 59.53
base LED yes std eng 28.14 6.76 17.52 61.35
base LED yes ext eng 32.47 6.96 21.14 63.88
large LSG yes std eng 31.48 9.98 21.54 65.08
large LSG yes ext eng 30.18 4.86 18.16 62.46
large LED yes std eng 28.80 5.52 19.68 63.37
large LED yes ext eng 32.23 7.55 18.70 64.86
base LSG no std hist 37.90 10.82 22.68 61.41
base LSG no ext hist 38.35 11.47 23.40 62.24
base LED no std hist 37.22 10.94 22.45 61.82
base LED no ext hist 37.82 11.24 22.51 61.85
large LSG no std hist 35.95 11.61 22.42 62.52
large LSG no ext hist 37.66 11.74 23.30 63.06
large LED no std hist 37.13 12.14 23.03 63.00
large LED no ext hist 34.96 10.85 21.79 62.05
base LSG yes std hist 34.88 9.51 20.38 61.51
base LSG yes ext hist 36.22 9.88 21.02 61.92
base LED yes std hist 36.87 11.36 22.40 61.22
base LED yes ext hist 38.16 11.48 22.67 61.61
large LSG yes std hist 35.34 11.32 22.32 62.01
large LSG yes ext hist 35.42 11.13 22.27 62.86
large LED yes std hist 35.83 10.62 22.96 62.59
large LED yes ext hist 36.49 11.66 22.28 62.37
base LSG no std lit 42.46 14.43 26.02 62.87
base LSG no ext lit 42.52 15.87 26.77 63.02
base LED no std lit 42.76 14.97 26.13 62.83
base LED no ext lit 41.97 14.05 26.43 63.17
large LSG no std lit 40.49 14.87 26.18 63.26
large LSG no ext lit 40.27 13.72 24.30 62.63
large LED no std lit 42.52 15.14 27.05 63.83
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large LED no ext lit 40.79 12.67 24.77 61.45
base LSG yes std lit 40.25 14.20 23.88 62.45
base LSG yes ext lit 40.85 13.27 23.91 61.62
base LED yes std lit 42.53 14.49 26.11 62.50
base LED yes ext lit 42.96 14.69 26.50 62.91
large LSG yes std lit 40.84 13.43 24.82 63.29
large LSG yes ext lit 41.44 13.70 24.95 63.79
large LED yes std lit 39.49 13.79 24.97 64.40
large LED yes ext lit 41.27 14.40 26.53 64.30
base LSG no std math 34.93 12.23 22.32 63.73
base LSG no ext math 32.07 11.07 20.25 62.90
base LED no std math 32.40 13.39 23.35 63.58
base LED no ext math 33.45 12.37 21.91 63.87
large LSG no std math 38.28 13.21 24.92 65.60
large LSG no ext math 36.33 13.92 22.88 64.42
large LED no std math 34.80 12.73 23.48 64.08
large LED no ext math 33.51 12.24 21.12 62.93
base LSG yes std math 34.92 12.97 23.86 63.65
base LSG yes ext math 32.87 10.42 20.77 62.93
base LED yes std math 34.63 12.68 21.64 64.28
base LED yes ext math 33.33 13.37 23.39 63.74
large LSG yes std math 34.21 13.29 22.61 63.90
large LSG yes ext math 37.12 13.06 23.55 63.37
large LED yes std math 35.42 13.83 23.30 64.52
large LED yes ext math 36.18 14.52 24.67 64.29
base LSG no std phil 38.97 13.41 23.35 62.08
base LSG no ext phil 39.97 13.87 22.63 61.94
base LED no std phil 37.30 11.84 21.41 62.88
base LED no ext phil 38.70 13.26 22.18 62.45
large LSG no std phil 36.44 13.50 22.03 62.83
large LSG no ext phil 37.75 15.24 22.89 61.70
large LED no std phil 38.26 13.85 21.99 62.04
large LED no ext phil 37.56 13.08 21.41 61.65
base LSG yes std phil 35.98 11.54 21.30 61.50
base LSG yes ext phil 36.80 11.08 22.29 63.09
base LED yes std phil 37.85 13.24 23.30 61.92
base LED yes ext phil 41.85 14.39 24.29 63.45
large LSG yes std phil 36.47 13.63 23.56 63.03
large LSG yes ext phil 37.75 12.42 22.37 62.91
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large LED yes std phil 38.50 13.59 23.26 63.47
large LED yes ext phil 39.86 15.24 24.63 63.11
base LSG no std phys 35.60 11.93 24.46 63.72
base LSG no ext phys 34.92 10.98 23.91 63.68
base LED no std phys 38.04 11.91 24.38 63.50
base LED no ext phys 36.18 13.16 24.60 64.53
large LSG no std phys 37.73 12.43 24.99 64.91
large LSG no ext phys 39.34 13.46 26.04 64.76
large LED no std phys 35.51 12.51 23.91 63.82
large LED no ext phys 34.46 11.62 24.72 63.83
base LSG yes std phys 32.91 10.81 22.93 62.68
base LSG yes ext phys 34.19 11.26 23.62 63.55
base LED yes std phys 34.51 11.23 23.82 63.25
base LED yes ext phys 36.74 12.85 25.53 64.30
large LSG yes std phys 36.11 13.23 24.11 63.61
large LSG yes ext phys 36.36 12.93 25.51 64.86
large LED yes std phys 34.44 12.81 24.00 64.94
large LED yes ext phys 32.37 11.43 23.21 63.33
base LSG no std pol 37.65 10.99 22.58 65.33
base LSG no ext pol 35.82 13.43 23.86 65.15
base LED no std pol 41.11 13.51 24.62 65.10
base LED no ext pol 39.39 14.17 25.25 64.22
large LSG no std pol 38.04 12.65 24.48 65.37
large LSG no ext pol 38.50 14.42 23.48 64.61
large LED no std pol 36.82 11.72 24.26 65.37
large LED no ext pol 35.94 15.02 24.09 63.64
base LSG yes std pol 37.11 11.26 25.42 64.64
base LSG yes ext pol 33.66 12.17 23.42 63.91
base LED yes std pol 38.43 11.90 23.07 66.12
base LED yes ext pol 35.85 11.01 23.40 65.55
large LSG yes std pol 38.81 14.54 23.46 65.72
large LSG yes ext pol 34.37 13.01 21.94 63.37
large LED yes std pol 35.85 12.32 23.69 66.34
large LED yes ext pol 34.44 12.47 23.92 64.26
base LSG no std psy 24.41 7.69 18.99 65.80
base LSG no ext psy 22.50 2.85 15.20 61.90
base LED no std psy 30.08 9.46 20.39 67.50
base LED no ext psy 22.95 3.95 16.85 62.13
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large LSG no std psy 25.19 7.95 20.09 65.97
large LSG no ext psy 21.93 5.92 19.18 66.19
large LED no std psy 25.19 5.56 17.41 67.60
large LED no ext psy 27.12 8.30 20.33 66.41
base LSG yes std psy 22.88 7.32 18.03 64.39
base LSG yes ext psy 29.37 9.37 19.44 66.55
base LED yes std psy 25.39 8.30 20.94 66.50
base LED yes ext psy 31.11 7.99 18.61 67.73
large LSG yes std psy 26.41 8.55 21.07 67.54
large LSG yes ext psy 34.06 7.58 22.06 68.32
large LED yes std psy 31.54 8.67 23.26 68.29
large LED yes ext psy 31.23 8.94 24.01 69.38
base LSG no std soc 27.73 4.28 15.84 57.00
base LSG no ext soc 27.35 3.61 16.28 55.60
base LED no std soc 28.53 5.11 14.93 58.54
base LED no ext soc 29.23 3.60 15.86 57.15
large LSG no std soc 21.67 3.43 15.76 56.87
large LSG no ext soc 23.31 4.84 15.70 57.47
large LED no std soc 25.18 5.54 15.95 57.47
large LED no ext soc 24.80 4.31 17.28 56.09
base LSG yes std soc 25.38 5.06 14.04 57.34
base LSG yes ext soc 26.90 4.68 16.84 56.47
base LED yes std soc 24.48 3.82 14.45 56.50
base LED yes ext soc 27.69 4.99 15.27 57.02
large LSG yes std soc 28.95 4.30 16.68 58.88
large LSG yes ext soc 27.83 4.87 16.21 56.57
large LED yes std soc 23.73 2.62 14.42 56.86
large LED yes ext soc 27.14 4.48 15.37 57.65

Table 5.6: The effect of the training set version of UniSum used for finetuning
on the summarization performance of the models on the test set split by course
category (Narts = 5, Nbiology = 6, Nbusiness = 3, Nchemistry = 0, Ncomputer science = 24,
Neconomics = 9, Nengineering = 7, Nhistory = 29, Nliterature = 16, Nmathematics = 18,
Nphilosophy = 11, Nphysics = 19, Npolitics = 5, Npsychology = 2, Nsocial studies = 5).
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Chapter 6

Conclusions

At last, it is time to draw the conclusions of this several-months-long master’s
thesis.

6.1 Project Review
We initially began building upon the connection between the ideas that there
has recently been an upsurge in availability of university-level lectures, and that
the quantity of information that higher-education students need to handle and
assimilate is running more and more the risk of becoming overwhelming. Driven by
the relatively recent revolution in the field of natural language processing that has
been brought by the Transformer, after elaborating on these concepts, we found
a contact point which had not received the quantity of attention we thought it
deserved; we have thus devised a methodology to train a deep network (or in our
case, as we have shown in section 4.4, more than twenty of them) to automate the
process of extrapolating and re-elaborating the most essential information from a
university lecture.

This has involved creating a dataset of transcript-summary pairs for each lecture
with the largest quantity of high-quality, open-licensed, and manually curated
university material. We call this the UniSum dataset. It contains 1,583 data points
and we release it in two variants: standard, which does not include additional
information, and extended, which adds a video-based binary classification for each
sentence of the transcript of whether the lecture speaker was writing while saying
it, and can be considered in some way multimodal (more details in § 4.2.2).

We have also created a larger transcript-only dataset, OpenULTD, to aid the
BART models we start training from, previously trained on general written English
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text, in their transition to the more complex spoken text domain the UniSum
transcripts are part of. OpenULTD is made of the original 9,229 transcripts of the
pre-existing VT-SSum dataset, plus our additional 5,448 transcripts from other
reputable sources, for a total of 14,677 data samples (details in § 4.2.1).

6.2 On the Generated Summaries
Having chosen LEDBASE with domain adaptation trained on UniSum extended as
the best overall model, we analyze the summaries it generates given the UniSum
test set as input1.

We empirically notice that the model successfully gains a satisfying proficiency
level in the usage of complex and context-specific words, and has the ability to
abstract the concepts contained in the input transcript to convey the original
meaning in an effective manner, although lacking the extensive prior knowledge
of the subject typical of a professor, which allows them to provide higher-level
abstractions and connections. An example of these skills would be: “In this lecture,
Dr. Winston discusses the miracles of learning, including the Sussman-Yip machine.
He begins with a discussion of phonological mechanisms and examples. He then
moves on to talk about some naive biological mimicry”.
We also want to highlight the flexibility of our model. As it is BART-derived, it
shares its same 50,265-tokens-long vocabulary2, which is a good amount of different
textual expressions to be able to distinguish, but it is not infinite. Nonetheless, our
model appears to understand the importance and correct usage of tokens that are
not included in its vocabulary, such as in this instance, where it uses the unicode
character for the Greek letter psi3, which it encountered in the input transcript:
“The allowed energy states of a particle in a ring are discussed. The allowed energy
of a free particle is quantized and the wave function ψ(x) is explained. The quanti-
zation of energy is explained using the Schrödinger equation. Finally, the allowed
wave functions are explained”.

As expected, our model also has some limitations. We especially notice the
following ones:

• duplicates in lists;

1A selection of these is available in table A.1.
250,269 if we include our additional tokens for sentence classification.
3We replace it in this document with its corresponding LATEX character generated with $\psi$.
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• name hallucinations or confusions, particularly with professor last names and
character names from literary works which are the lecture’s subject;

• errors with numbers and years, mostly when written in digits;

• confusion between beginning and end of a course or lecture. This does not affect
the contents of the summary, just words such as “begins” and “concludes”;

• unawareness of gender. This means that the model may confuse e.g. a male
professor for a woman and viceversa.

Despite these, we feel the generated summaries may still be used in an informal
setting, for example to give students the ability to quickly check what are the
main topics of a lecture or of a course, without the expectations of an impeccable
wording.

6.3 Possible Improvements
Our efforts have brought us to an acceptable result, but it is apparent by reading
the previous section and the table in the appendix that more work can be done in
different directions to perfect the summarization capabilities of our models.

First, to improve our very same models, an investigation on the underlying
reasons why LEDLARGE has in many test cases a worse performance than LEDBASE

would be in order. The researcher who does this would most likely obtain a model
that outperforms all of ours.
A second line of work that we left uncharted due to time constraints is exploring
the benefits of giving the model an input that contains contextual information on
top of the transcript, such as the course description or the course and lecture titles.
A relatively simple exploration could also be done by replacing the BART model
with different pretrained language models, such as PEGASUS [18], PEGASUS-X
[112], T5 [17], or others. The performance could even be measured against one
of the recent large language models to get an idea of the purely summarization-
oriented models’ efficiency (e.g. in terms of model parameters with respect to the
obtained ROUGE scores).
Finally, the same approach could be expanded to languages other than English:
for example, BART has recently been made available in Italian [138]; the main
difficulty would be creating a dataset equivalent to UniSum in the target language.
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Conclusions

We show a few statistics about our work in table 6.1.

Statistic Value

SLOC4

Datasets | Python 3,009
Experiments | Python 5,091

Thesis | LATEX 4,238
Total 12,338

Compute Time

Domain Adaptation 24 hours | 1 day
UniSum Extension 69 hours | 3 days

Finetuning 450 hours | 19 days
Testing 150 hours | 6 days
Total 693 hours | 29 days

Table 6.1: A synthetic summary of our efforts.

We release our code, datasets, and models at https://github.com/e-caste/
masters-thesis.

4Source Lines Of Code, excluding comments, blank lines, and whitespace.
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Appendix A

Human vs. AI: a
Summarization Comparison

In this appendix chapter we want to give the reader access to a comparison of some
of the summaries generated from the UniSum test set with the model chosen as the
best, that is LEDBASE with domain adaptation finetuned on the extended UniSum
flavor.

Table A.1 contains 8 out of 159 blocks1, separated by thick horizontal rules,
each with three rows2:

1. the first row, in smaller print, contains all the metadata useful to get the
context for the lecture, including its subset, the writing frequency classification
of the course it belongs to, its macrocategory, category, the title of the course
it belongs to, and its title;

2. the second row contains the summary generated by our trained model;

3. and the third row contains the original summary.

We note that absolutely no modification was applied to the summaries, both
generated and original, unless there was a specific clash with the formatting rules
of LATEX (this occurred in around ten cases in total, for special characters). We
also avoid any transformations of the course and lecture titles.

1The full table is available in our repository.
2We choose this format over a two-column table for readability purposes.
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Yale | Medium Frequent Writing | Scientific | Physics | Frontiers/Controversies in Astrophysics with Charles
Bailyn | 3. Our Solar System and the Pluto Problem

Planets and exoplanets are introduced and classified according to their orbital period. Different
categories of objects are defined, such as planets, comets, asteroids, and other celestial bodies.
The lecture ends with a discussion of the geography of the Solar System and how it evolved.

Class begins with a review of the first problem set. Newton’s Third Law is applied in explaining
how exoplanets are found. An overview of the Solar System is given; each planet is presented
individually and its special features are highlighted. Astronomy is discussed as an observational
science, and the subject of how to categorize objects in the Solar System is addressed. The
Pluto controversy is given special attention and both sides of the argument regarding its status
are considered.

MIT | Frequent Writing | Scientific | Computer Science | Artificial Intelligence | Lecture Videos LECTURE 14:
LEARNING: SPARSE SPACES, PHONOLOGY

In this lecture, Dr. Winston discusses the miracles of learning, including the Sussman-Yip
machine. He begins with a discussion of phonological mechanisms and examples. He then
moves on to talk about some naive biological mimicry.

Why do “cats” and “dogs” end with different plural sounds, and how do we learn this? We
can represent this problem in terms of distinctive features, and then generalize. We end this
lecture with a brief discussion of how to approach AI problems.

MIT | Frequent Writing | Scientific | Mathematics | Graph Theory and Additive Combinatorics | Video Lectures
LECTURE 18: ROTH’S THEOREM I: FOURIER ANALYTIC PROOF OVER FINITE FIELD

In this lecture, Prof. Zhao discusses the Fourier analytic proof of Roth’s theorem, using
similarities, graph regularity lemma, and the triangle removal lemma.

The finite field model is a nice sandbox for methods and tools in additive combinatorics.
Professor Zhao explains how to use Fourier analysis to prove the analog of Roth’s theorem in
the finite field setting.

Yale | Infrequent Writing | Humanities | History | Yale University’s Lectures: The Early Middle Ages, 284-1000
| 07. Barbarian Kingdoms

In this lecture, Professor Freedman discusses the collapse of the Roman Empire in 530 and the
rise of the Visigoths in the West. The barbarian kingdoms are discussed in detail, along with
the reasons for their existence and their resistance to Roman rule. The lecture ends with a
discussion of the Eastern Roman Empire and the Burgundian Code.

Continues →

106



Human vs. AI: a Summarization Comparison

In this lecture, Professor Freedman considers the various barbarian kingdoms that replaced
the Western Roman Empire. Oringinally the Roman reaction to these invaders had been to
accommodate them, often recruiting them for the Roman army and settling them on Roman
land. Now, however, they were the rulers of the previously Roman lands of the West. These
tribes included the Ostrogoths and Visigoths in Italy, the Franks in Gaul, and the Vandals
in North Africa. As most sources about these groups come from the Roman perspective,
it’s unclear how coherent each group was. In general, the barbarian groups characterized by
disorganization, internal fighting and internecine feuds, and lack of economic development.
Professor Freedman closes with some remarks on the Burgundian Code as evidence of barbarian
society and institutions.

MIT | Medium Frequent Writing | Scientific | Biology | Introductory Biology | Lecture Videos LECTURE 17:
GENOMES AND DNA SEQUENCING

In this lecture, Prof. Martin talks about how knowing the DNA sequence can be helpful in
identifying a gene through functional complementation. He then talks about more modern
techniques to sequencing, including Sanger sequencing.

Professor Martin talks about DNA sequencing and why it is helpful to know the DNA sequence,
followed by linkage mapping and then the different methods of sequencing DNA.

Yale | Infrequent Writing | Humanities | Literature | Dante in Translation with Giuseppe Mazzotta | 5. Inferno
IX, X, XI

Professor Mazzotta begins with a discussion of the cantos IX-X. The pilgrim’s encounter with
the so-called heretics and the guide Virgil leads him to the city of Dis. The lecture then moves
on to discuss the relationship between the pilgrim and the philosopher Guido Cavalcanti. The
relationship between these two types of allegories is discussed in detail in the context of Inferno
IX, where Dante’s anti-Pagans, neo-Platonists, and theologians are introduced. The discussion
of Dante’s failure to master his own will is continued in the second canto of Inferno, where the
poet enters the City of Dis, a soulless city described by the three Erinyes of Greek mythology:
Alecto, Tesiphone, and Megaera. This lecture concludes with the discussion of Purgatory IX.

In this lecture, Professor Mazzotta discusses Inferno IX-XI. An impasse at the entrance to
the City of Dis marks Virgil’s first failure in his role as guide (Inferno IX). The invocation of
Medusa by the harpies that descend while they wait for divine aid elicits Dante’s first address
to the reader. The question of literary mediation, posed in the previous lecture in the context
of Inferno V, is explored further, and the distinction Dante draws between the "allegory of
poets" and the "allegory of theologians" is introduced. Inferno X is read with a view to the
uniqueness of the sin it deals with - heresy. The philosophical errors of the shades encountered
here, Farinata and Cavalcante, are tied to the political turmoil they prophecy for Florence.
From the disorder of the earthly city, Dante moves on to the order on its infernal counterpart,
mapped by Virgil in Inferno XI. The moral system of Dante’s Hell is then discussed with a
view to its classical antecedents.

Yale | Frequent Writing | Scientific | Physics | Fundamentals of Physics II with Ramamurti Shankar | 22.
Quantum mechanics IV: Measurement theory, states of definite energy

Continues →
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The allowed energy states of a particle in a ring are discussed. The allowed energy of a free
particle is quantized and the wave function ψ(x) is explained. The quantization of energy is
explained using the Schrödinger equation. Finally, the allowed wave functions are explained.

It is shown how to extract the odds for getting different values of momentum from a generic
wave function by writing it as a sum over functions of definite momentum. A recipe is given
for finding states of definite energy, which requires solving a differential equation that depends
on what potential the particle is experiencing. The particle in a box is considered and the
allowed energies derived.

Yale | Infrequent Writing | Humanities | Economics | Financial Markets (2008) with Robert Shiller | 23. Options
Markets

In this lecture, Professor Shiller discusses options. Options are traded on the Chicago Mercantile
Exchange (CME) as a hedging mechanism against possible counterparty risks. The lecture
begins with a discussion of the Black-Scholes formula, which is used to price single-family home
price options. He then discusses the arbitrage relation between the stock price and the exercise
date. He ends with an example of an option exercised under the condition of no arbitrage
opportunity.

Options introduce an essential nonlineary into portfolio management. They are contracts
between buyers and writers, who agree on exercise prices and dates at which the buyer can buy
or sell the underlying (such as a stock). Options are priced based on the price and volatility
of the underlying asset as well as the duration of the option contract. The Black-Scholes
options pricing model is one of the most famous equations in finance and offers a useful first
approximation for prices for option contracts. Options exchanges and futures exchanges both
are involved in creating a liquid and transparent market for options. Options are not just for
stocks; they are also important for other asset classes, such as real estate.

Table A.1: A comparison of generated summaries with their original counterparts
for eight lectures of the UniSum test set (N = 159), obtained with LEDBASE with
domain adaptation trained on the extended UniSum variant.
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